
Journal of Machine Learning Research 23 (2022) 1-28 Submitted 6/21; Revised 9/22; Published 11/22

Graph Partitioning and Sparse Matrix Ordering using
Reinforcement Learning and Graph Neural Networks

Alice Gatti agatti@lbl.gov
Computational Research Division,
Lawrence Berkeley National Laboratory,
Berkeley, CA, USA

Zhixiong Hu zhu95@ucsc.edu
LinkedIn Corporation,
Sunnyvale, CA, USA

Tess Smidt tsmidt@mit.edu
Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology,
Cambridge, MA, USA

Esmond G. Ng egng@lbl.gov
Computational Research Division,
Lawrence Berkeley National Laboratory,
Berkeley, CA, USA

Pieter Ghysels pghysels@lbl.gov

Computational Research Division,

Lawrence Berkeley National Laboratory,

Berkeley, CA, USA

Editor: Risi Kondor

Abstract

We present a novel method for graph partitioning, based on reinforcement learning and graph
convolutional neural networks. Our approach is to recursively partition coarser representations
of a given graph. The neural network is implemented using SAGE graph convolution layers, and
trained using an advantage actor critic (A2C) agent. We present two variants, one for finding
an edge separator that minimizes the normalized cut or quotient cut, and one that finds a small
vertex separator. The vertex separators are then used to construct a nested dissection ordering to
permute a sparse matrix so that its triangular factorization will incur less fill-in. The partitioning
quality is compared with partitions obtained using METIS and SCOTCH, and the nested dissection
ordering is evaluated in the sparse solver SuperLU. Our results show that the proposed method
achieves similar partitioning quality as METIS, SCOTCH and spectral partitioning. Furthermore,
the method generalizes across different classes of graphs, and works well on a variety of graphs
from the SuiteSparse sparse matrix collection.

Keywords: Graph partitioning, sparse matrix ordering, graph neural networks, reinforcement
learning, machine learning for scientific computing.

1. Introduction

The problem of partitioning a graph into approximately equal sized subgraphs while minimizing
the number of cut edges is an NP-complete problem (Garey and Johnson, 1990). Practical graph
partitioning algorithms for large scale problems are based on heuristics which give approximate
solutions. In general it is not known how far these approximations are from the optimal solution.

©2022 Alice Gatti, Zhixiong Hu, Tess Smidt, Esmond G. Ng, Pieter Ghysels.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided at
http://jmlr.org/papers/v23/21-0644.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v23/21-0644.html

Gatti, Hu, Smidt, Ng, Ghysels

(a) Minimum cut (b) Minimum normalized cut

Figure 1: Graph partitioned into different ways. The left partition has minimum cut, but the sizes of
the partitions are highly unbalanced, since all nodes except one are in the blue partition. The right
partition has higher cut, but the partitions have volumes 22 and 24, hence they are approximately
balanced.

Moreover, many of the heuristic algorithms are inherently sequential in nature and do not exploit
current high-performance computing hardware efficiently. Heuristic algorithms exhibit very irregular
memory access patterns – leading to low memory bandwidth usage because of wasted cache lines
and branch prediction misses – and perform mostly integer manipulations. Deep learning is an
expressive and flexible algorithmic framework that can run efficiently on modern hardware, making
it a powerful tool for tackling the problem of graph partitioning from a new perspective.

We present a novel approach for graph partitioning based on deep reinforcement learning and
graph convolutional layers. The proposed method refines a partition which is computed from a
coarser representation of the graph, where the coarsening relies on heavy-edge matching. We stress
that, in this context, we are not interested in learning a coarsening strategy, but only in the partition-
ing properties. In the refinement procedure, an agent, implemented using SAGE graph convolutional
layers from (Hamilton et al., 2017a), moves nodes from one partition to the other in order to im-
prove the normalized cut of the partitioning. The agent is trained using the advantage actor critic
reinforcement learning algorithm. A similar deep reinforcement learning algorithm is also used to
partition the coarsest graph in the multilevel scheme. This multilevel graph bisection scheme is
then modified in a subsequent section to directly find a vertex separator. Vertex separators are
used in the nested dissection ordering algorithm, which is a heuristic to reduce the fill-in in sparse
direct solvers. We implement a nested dissection sparse matrix ordering algorithm where the vertex
separators are computed using the proposed multilevel deep reinforcement learning based algorithm,
and we evaluate the quality of this ordering using the SuperLU (Li, 2005) sparse solver.

We use the following notation: a graph G = (V,E) has a set of vertices V = {v1, . . . , vn}
connected by edges E = {eij = (vi, vj) | vi, vj ∈ V }. The total number of vertices, also called nodes,
is denoted by |V | = n. We define the degree of a vertex as deg(v) =

∑
(v,w)∈E 1 and throughout the

paper we will assume, without loss of generality, that all graphs are undirected and fully connected.

Graph partitioning is the problem of grouping the nodes of a graph G = (V,E) into non-empty
disjoint subsets. For graph bisection, i.e., partitioning the graph in two sub-graphs GA = (VA, EA)
and GB = (VB , EB), such that VA ∩ VB = ∅ and V = VA ∪ VB . Often k-way graph partitioning
is implemented using recursive bisection. However, this does not always guarantee well-balanced
partitions, see Figure 1. The goal of partitioning is often to minimize the number of edges between
the partitions, i.e., the cut, while keeping the sizes – either cardinality or volume, i.e., the sum of
the node degrees – of the partitions balanced.

A popular heuristic for graph partitioning is the Kernighan-Lin (KL) (Kernighan and Lin, 1970)
method. However, this has a cost of O(|V |2d), where d is the maximum node degree in G. A variation
on KL, the Fiduccia-Mattheyses (Fiduccia and Mattheyses, 1982) algorithm, reduces this cost to
O(|E|). The Fiedler vector is the eigenvector corresponding to the smallest non-zero eigenvalue λ2
of the graph Laplacian L(G) = D−A, where D is a diagonal matrix with the node degrees, and A is

2

Graph Partitioning and Sparse Matrix Ordering using Reinforcement Learning and Graph Neural Networks

Figure 2: Multilevel approach for graph partitioning. On the top of the picture the graph is coarsened
recursively, until the coarsest graph as few vertices. The coarsening is made by matching vertices
included in the same gray ellipse. Then, on the bottom part of the figure, the coarsest graph is
partitioned and it is interpolated back by one level, where the partition is further refined. The
interpolation/refinement continues up to the initial graph. The vertices included in the red or blue
ellipses have been interpolated from a red or blue node respectively.

the adjacency matrix of G. In spectral partitioning (Pothen et al., 1990; Simon, 1991) the values of
this vector are used for partitioning. The Cheeger bound (Cheeger, 1969; Chung, 1997) guarantees
that spectral bisection provides partitions with nearly optimal conductance (the ratio between the
number of cut edges and the volume of the smallest part). Spectral methods make use of global
information of the graph, while combinatorial algorithms like KL and FM rely on local information.

State-of-the-art graph partitioning codes typically use a multilevel approach illustrated in Figure
2: first the graph is coarsened, then a much smaller graph is partitioned and then this partitioning
is interpolated back to the finer graph where it can be refined. Different algorithms can be used for
the coarse partitioning and for the refinement.

Although the KL and FM algorithms are widely used in practice, they have limited parallelism
and have irregular memory access patterns and lots of integer manipulations, making them inefficient
on modern hardware. Spectral graph methods on the other hand, are based on eigenvalue solvers
and can take advantage of the huge computational power of modern CPUs, including SIMD units,
and GPUs. Still, spectral methods can be expensive, as the number of iterations for the eigensolver,
for instance Lanczos (Lanczos, 1950), Rayleigh quotient iteration (Trefethen and Bau III, 1997) or
LOBPCG (Knyazev, 2001), can be large. Popular graph partitioning libraries are METIS (Karypis
and Kumar, 1998) and SCOTCH (Pellegrini, 2009), and their parallel versions ParMETIS (Karypis
and Kumar, 1999) and PT-SCOTCH (Chevalier and Pellegrini, 2008), as well as Zoltan(2) (Devine
et al., 2002).

Graphs arise frequently in scientific computing. For example, a mesh used in the discretization
of partial differential equations can be considered a graph. Sparse matrices are another example;
their sparsity structures can be represented by graphs as well. Partitioning of graphs is an im-
portant pre-processing step in high-performance parallel computing, with the goal of distributing
the computational work evenly over the compute nodes while minimizing communication in, for
instance, Krylov iterative solvers and preconditioners like algebraic multigrid (AMG) (Falgout and
Yang, 2002), block Jacobi and domain decomposition (Smith et al., 2004). For instance the widely

3

Gatti, Hu, Smidt, Ng, Ghysels

used scientific computing codes PETSc (Balay et al., 2020), Trilinos (Heroux et al., 2005) and the
MFEM finite element library (Anderson et al., 2019) all use METIS for graph partitioning.

The remainder of the paper is organized as follows. Section 2 provides an overview of machine
learning methods for combinatorial problems. Section 3 briefly introduces reinforcement learning,
in particular the distributed advantage actor critic (DA2C) training algorithm. In Section 4 we
present an algorithm to compute a minimal edge separator using deep reinforcement learning within
a multilevel framework. Section 5 shows a variation of this algorithm presented to compute a vertex
separator instead of an edge separator. The vertex separator algorithm is used in Section 6 to
construct a nested dissection sparse matrix ordering. We conclude the paper with a summary and
outlook in Section 7. All the codes are made available at the GitHub page https://github.com/

alga-hopf/drl-graph-partitioning.

2. Related work

In recent years there has been a growing interest in using machine learning techniques to find
approximate solutions of NP problems, like the travelling salesman problem, knapsack problem,
vertex cover etc. Many of the problems in this class are naturally formulated as combinatorial
optimization problems over graphs, and powerful learning tools to handle this type of data are
graph neural networks (Bronstein et al., 2017; Hamilton et al., 2017b; Battaglia et al., 2018), which
are an extension of usual deep neural networks to non-Euclidean data such as graphs. One of the key
ingredients of graph neural networks is graph convolution, that generalizes convolution over grids to
graph data structures. This generalization is often called message passing and it allows to aggregate
local information on the neighbors and propagate it on the graph. This scheme has been integrated
in many different convolutional layers such as GCN (Kipf and Welling, 2017), SAGE (Hamilton
et al., 2017a) and GAT (Veličković et al., 2018), in which message passing is combined with the
attention mechanism. More generally, deep learning (DL) methods for graphs are currently an area
of active development with several powerful tools emerging from the community such as PyTorch
geometric (Fey and Lenssen, 2019) and the Graph Nets library (Graph Nets) for TensorFlow (Abadi,
M. et al., 2015). Much of the recent DL work has been targeted at GPUs and TPUs, which are
becoming integrated components in modern high performance computing architectures. One of the
most studied combinatorial optimization problems is the Travelling salesman problem, in which,
given distances between points, one has to find the shortest path that traverses each point exactly
once. For this problem, many models have been proposed, including reinforcement learning, graph
neural networks and the attention mechanism (Zheng et al., 2021; Bello et al., 2017; Prates et al.,
2019; Miki et al., 2018; Joshi et al., 2019; Deudon et al., 2018; Kool et al., 2019). Many other
problems have been tackled with supervised and unsupervised methods together with reinforcement
learning, like knapsack problem (Afshar et al., 2020), vertex cover and maximum cut (Khalil et al.,
2017), minimum spanning tree Drori et al. (2020), as well as other challenging geometric tasks
Vinyals et al. (2015). There are also works focused on the graph partitioning problem. (Karalias
and Loukas, 2020) combines a probabilistic method with graph neural networks, while (Nazi et al.,
2019) presents an unsupervised deep learning method, which seems promising from the performance
point of view. However, both of them have not been tested on big graphs. For a complete review of
reinforcement learning models for combinatorial optimization problems see Mazyavkina et al. (2021).

3. Advantage Actor Critic

Reinforcement learning (Sutton and Barto, 2018) is an extremely flexible framework for training an
agent, interacting with an environment, to maximize its cumulative reward. In particular, the agent
acts on instances of the environment, called states, by taking actions following a certain policy π,
that determine the transition to another state. We denote by S the set of states of the environment,

4

https://github.com/alga-hopf/drl-graph-partitioning
https://github.com/alga-hopf/drl-graph-partitioning

Graph Partitioning and Sparse Matrix Ordering using Reinforcement Learning and Graph Neural Networks

A(s) the set of actions that the agent can take in state s and by r : S × A → R the reward
function. A reinforcement learning problem may be described by a (finite) Markov decision process
(MDP) (st, at, rt+1)t∈[0,T−1], where st ∈ S, at ∈ A(st) are the state and action at time t, while
rt+1 := r(st, at) is the reward received after action at is performed. The time t runs from 0 to T ,
the time step at which the episode ends. Since the process is Markov, a transition to the next state
depends only on the previous state. The goal of the agent is to find an optimal way of behaving,
i.e., a policy π that maximizes the discounted cumulative reward, or return,

Rt =

T−t−1∑
k=0

γkrt+1+k, (1)

where γ ∈ [0, 1] is a constant called the discount factor. The value of the discount factor indicates
how far in time we take the rewards into account: if it is close to 0, then we have a “myopic” vision
of the process, while if it is close to 1 then also actions that happen farther in time are relevant in
the computation of the return.

In practice it is very difficult to solve an MDP exactly. For example, very often the transition
probabilities are not known and determining them is computationally too expensive even for small
scale problems. Thus one often tries to find an approximate solution of the MDP that models the
reinforcement learning problem. In particular, we are going to estimate the probabilities by using a
deep neural network. In this case, the policy will be denoted by πθ, where θ denotes the parameters
of deep the neural network.

We make use of a popular policy gradient approach called synchronous advantage actor-critic
(A2C) (Williams, 1992) to find an approximate solution to the graph partitioning problem. A2C com-
bines the standard REINFORCE algorithm (Williams, 1992), in which updates are made in the direc-
tion ∇θ log(πθ(at, st))Rt, with θ the parameters of the approximator, with a baseline (Rt − bt(st)),
that helps to reduce the variance. So the resulting update takes the form ∇θ log(πθ(at, st)(Rt −
bt(st)). A baseline that is commonly used is the value function of a state v(st) (Sutton and Barto,
2018; Degris et al., 2012), a function of a state that, roughly speaking, measures how good it is to
be in that state. the term (Rt − v(st)) is called the advantage. In this model, policy (actor) and
value (critic) learning are highly intertwined, resulting in a lower variance and better stability of the
approximation. The loss function to be minimized is then

L = −
T−1∑
t=0

log πθ(at|st)(Rt − v(st)). (2)

In our case, the agent will be modeled by a two-headed deep neural network, with parameter
tensor θ, that takes as input a state s and returns a tensor of probabilities πθ(·|s) for the actions,
and a scalar value vθ(s) for the value function. Here we use vθ(s) to approximate the true value
function v(st). Hence, the loss function becomes

L(θ) = −
T−1∑
t=0

log πθ(at|st)(Rt − vθ(st)) + α

T−1∑
t=0

(Rt − vθ(st))2, (3)

where we added the weighted “critic loss” α
∑T−1
t=1 (Rt − vθ(st))

2 to stabilize the training, with
α ∈ (0, 1].

Figure 3 illustrates the A2C procedure. Given a state, the actor determines what action to take,
which will generate a new state. Meanwhile, the critic branch of the network computes the value
vθ(st) of the state, which is used to compute the advantage (Rt− vθ(st)) of the future state st. This
advantage is then used to reinforce the chosen action at. Algorithm 1 illustrates the A2C weight
update procedure.

5

Gatti, Hu, Smidt, Ng, Ghysels

Input to

Input to

State St

Takes

Actor
(policy network)

Generates

Results in

Action at

Input to

State St+1

Is used to train

Predicts

Reward Rt+1

Critic
(value network)

Is used to reinforce

Advantage of St+1

Figure 3: Illustration of the advantage actor-critic (A2C) reinforcement learning approach. Given
a state St, the actor determines what action to take, generating a new state. Meanwhile, the
critic branch of the network estimates the value (v(St)) of the state, which is used to compute the
advantage (Rt − v(St)) of the future state St. This advantage is then used to reinforce the chosen
action at. This figure is based on an illustration from (Zai and Brown, 2020).

Algorithm 1 Update model parameters θ using advantage actor critic (A2C).

Input: model parameters θ,
rewards ri, log-probabilities log(πi) and values vi for i ∈ [1, t],
learning rate δ, coefficient α

1: procedure update model parameters A2C(θ, r, log(π), v)
2: R←

[
r1, r2 + γr1, . . . , rt + γrt−1 + . . .+ γt−1r1

]
. compute returns, Eq. 1

3: R← normalize(R)
4: . combine actor and critic loss, sum over steps taken, Eq. 3
5: L← −

∑t
1 log(π)(R− v) + α

∑t
1 (v −R)2

6: θ ← θ − δ · ∂L/∂θ . back-propagation and step with the optimizer
7: end procedure

6

Graph Partitioning and Sparse Matrix Ordering using Reinforcement Learning and Graph Neural Networks

We set the coefficient α to 0.1, in order to let the actor learn faster than the critic. The discount
factor γ is set to 0.9, since we are interested in the long term return, as opposed to finding a strictly
greedy approach. For the training we use the Adam optimizer (Kingma and Ba, 2015) with learning
rate δ set to 10−3.

Algorithm 2 Forward evaluation of the agent’s neural network.

Input: graph G(V,E), feature tensor F , Imask list of features with masks for nodes to exclude
Output: actor (action (log-)probabilities), critic (scalar value, only returned in training mode)

1: function agent(G, F , Imask)
2: mask ← where(

⋃
i∈Imask

(F (:, i) 6= 0))

3: F ← Tanh(SAGEConv(F)) . convolutional layers common to actor and critic
4: F ← Tanh(SAGEConv(F))
5: actor ← SAGEConv(F) . actor branch
6: actor(mask) ← −∞ . exclude certain actions
7: actor ← log softmax(actor)
8: if not training then
9: return actor . critic is not required in eval mode

10: end if
11: critic ← detach(F) . critic branch
12: critic ← Tanh(SAGEConv(critic))
13: critic ← Linear(critic) . linear layer
14: critic ← Tanh(global mean pool(critic)) . reduce critic to a single scalar ∈ (−1, 1)
15: return actor, critic
16: end function

Algorithm 2 shows the neural network used for all experiments, which relies on the SAGEConv
graph convolutional layer, described in (Hamilton et al., 2017a). The SAGE layer implements the
relation

F ′i ← FiW1 + (meanj∈N (i)Fj)W2, (4)

where F is the feature tensor, W1 and W2 are weight matrices and N (i) is the neighborhood of node
i. The number of rows in W1 and W2 is determined by the number of features in F . In Algorithm
2, the output dimensions are not explicitly mentioned. In the experiments, the number of output
channels for the layers is set equal to the number of input channels. The network, as used with 5
input features in Section 4 (finding an edge separator) has 182 tunable parameters. For computing
a vertex separator, Section 5, 7 input features are used and the network has 338 parameters. The
hyperbolic tangent is used for the nonlinear activation function. The network has two branches, the
actor and the critic. The actor contains (log-)probabilities for the possible actions, while the critic
predicts the value of the current state. Note that the critic is only required during training. The
input to the critic branch of the network, F , is detached in Line 11 so that the common layers are
only updated by the actor loss. In Line 14, the critic is reduced to a single scalar value, which, due
to the hyperbolic tangent activation function belongs to the interval (−1, 1).

The possible actions are each of the nodes in the graph. What each of these actions means will
be discussed in the subsequent sections. However, depending on the context and the current state,
certain nodes should not be chosen as they would not lead to valid actions. Therefore, some inputs
to the log softmax layer are set to −∞, so these nodes will never be selected as actions, see Line 2
and Line 6.

We implement Algorithm 2 using PyTorch geometric (Fey and Lenssen, 2019). To speed up the
training process, we run the A2C training using multiple workers with a single shared model, which
is called distributed A2C. The workers are created using the PyTorch multiprocessing API.

7

Gatti, Hu, Smidt, Ng, Ghysels

4. Finding a Minimal Edge Separator

Given a graph G = (V,E), partitioned as V = VA ∪ VB with VA ∩ VB = ∅, its cut is defined as

cut(G) =
∑

(v,w)∈E
v∈VA,w∈VB

1 , (5)

which is simply the number of edges between partitions VA and VB . (In the remainder of the paper,
when we say G = (V,E) is partitioned into VA and VB , it is assumed that V = VA ∪ VB and
VA ∩ VB = ∅ even though we will not state it explicitly.) Our goal is to minimize the cut while
keeping the two partitions balanced. A popular objective is to minimize the normalized cut, which
is defined as

NC(G) = cut(G)

(
1

vol(VA)
+

1

vol(VB)

)
, (6)

with the volume of a partition defined as

vol(VA) =
∑
v∈VA

deg(v) . (7)

For a pictorial example of the cut and the normalized cut see Figure 1.
In Algorithm 3, we present an algorithm to find a partition V = VA ∪ VB for the graph G(V,E)

that approximately minimizes the normalized cut. The outline of the algorithm is as follows. If
the graph G is large enough, the algorithm constructs a coarse representation GC of the graph, and
Algorithm 3 is applied recursively on this coarser graph GC . To stop the recursion, when the graph
is small enough, i.e., when |V | ≤ nmin, the graph is partitioned directly using for instance the METIS
graph partitioner (Line 3), or a separately trained reinforcement learning-based graph partitioning
algorithm, see Section 4.2. The result of the recursive call is a partitioning V C = V CA ∪ V CB of
the coarser graph, which is then interpolated back (Line 7) to the finer graph G. The resulting
partitioning, which should already be relatively good, is then refined using a deep reinforcement
learning approach (Line 15 - Line 27). This multilevel approach is sketched in Figure 2. However, to
speed up the refinement process, a subgraph Gsub is constructed (Line 10) with the nodes in G that
are within a small number of hops from the cut. The cut is then only refined within this subgraph.

For the coarsening step, we use the graclus (Auer and Bisseling, 2012) graph clustering code,
which is based on heavy edge matching and groups nodes in clusters of size 2, with a small number
of unmatched nodes leading to clusters of size 1. These clusters define the nodes for the coarse graph
GC . The coarsening rate is typically slightly less than 2, leading to ∼ log |V | recursion levels. For
the interpolation of the coarse partitioning back to the finer graph, nodes in G which correspond
to coarse nodes in V CA , or V CB , are all assigned to VA, or VB respectively, in the fine graph (Line
7). In Algorithm 3, IC denotes the mapping from coarse to fine nodes. Note that the first step
in the graclus clustering algorithm is a random permutation of the nodes, which means that the
graph coarsening phase is not deterministic. Since the partition quality depends also on the graph
coarsening, for each graph the algorithm is repeated 3 times and the best partitioned graph is kept.

The procedure in Algorithm 3 handles both the training and the evaluation for a single graph.
During the training Algorithm 3 is called for each graph in the training dataset, and this is repeated
for multiple epochs.

4.1 Refinement of the Cut using Deep Reinforcement Learning

Line 15 to Line 27 of Algorithm 3 show a single episode of the deep reinforcement learning algorithm
to refine the interpolated partition. Let c denote the size of the cut of the interpolated partitioning,
computed in Line 13. Since it is assumed that the algorithm achieved a high quality partitioning on
the coarser problem, we expect to only require O(c) steps to refine the cut on the finer graph in order

8

Graph Partitioning and Sparse Matrix Ordering using Reinforcement Learning and Graph Neural Networks

Algorithm 3 Computing an edge separator using deep reinforcement learning. This illustrates both
the training and evaluation on a single graph.

Input: graph G(V,E)
Output: partitions VA and VB , such that V = VA ∪ VB
1: function edge separator(G)
2: if |V | < nmin then . end the recursion
3: return metis partition(G) or edge separator coarse(G) . See Section 4.2
4: end if
5: GC , IC ← coarsen(G) . get coarse graph and interpolation info
6: V CA , V

C
B ← metis partition(GC) if training else edge separator(GC) . recursion

7: VA, VB ← V CA (IC), V CB (IC) . interpolate VA and VB from coarse to fine
8: V 0

A, V
0
B ← VA, VB . keep a copy

9: VC ← {v} ∪ {w},∀ v, w : ∃ ev,w with v ∈ VA, w ∈ VB . find nodes around the cut
10: Gsub ← k hop subgraph(G, VC , khops) . subgraph with all nodes at most khops from VC
11: . construct feature tensor
12: F (v)←

[
v ∈ VA , v ∈ VB , v ∈ ∂Gsub , vol(VA)/vol(V) , vol(VB)/vol(V)

]
, ∀ v ∈ Gsub

13: c← cut(G,VA, VB) . compute the cut size, Eq. 5
14: C ← NC(G,VA, VB) . compute normalized cut, Eq. 6
15: for t← 1 to c do
16: if training then
17: policyt, valuet ← agent(Gsub, F , 2) . forward evaluation of the agent, see Algorithm

2
18: at ← categorical sample logits(policyt) . pick action
19: else
20: policyt ← agent(Gsub, F , 2) . forward evaluation of the agent, see Algorithm 2
21: at ← argmax(policyt) . pick action
22: end if
23: VA, VB ← VA \ at, VB ∪ at if at ∈ VA else VA ∪ at, VB \ at . move at from VA/VB to

VB/VA
24: F (v)←

[
v ∈ VA , v ∈ VB , v ∈ ∂Gsub , vol(VA)/vol(V) , vol(VB)/vol(V)

]
, ∀ v ∈ Gsub . update

features
25: Cold, C ← C, NC(G,VA, VB) . compute normalized cut, Eq. 6
26: rt ← Cold − C . compute reward
27: end for
28: if training then
29: update model parameters A2C(agent, r, policy, value)
30: else
31: VA, VB ← V 0

A, V
0
B

32: for t← 1 to argmax(r) do
33: VA, VB ← VA \ at, VB ∪ at if at ∈ VA else VA ∪ at, VB \ at
34: end for
35: end if
36: return VA, VB
37: end function

9

Gatti, Hu, Smidt, Ng, Ghysels

Algorithm Feature tensor
Partition info Binary mask Imbalance info

Edge-cut refining v ∈ VA v ∈ VB v ∈ ∂Gsub vol(VA)
vol(V)

vol(VB)
vol(V)

Edge-cut coarsest graph v ∈ VA v ∈ VB
Vertex separator v ∈ VA v ∈ VB v ∈ VS v ∈ ∂Gsub v ∈ V min

S
|VA|/|V | |VB |/|V |

Table 1: Feature tensors for each considered model. On the left we list the studied models: edge-cut
refining, coarsest graph partitioning and vertex separator. On the right, each feature is positioned
in a specific column according if it is related to the partition information, it serves as a mask or it
is an imbalance information. Binary mask features exclude the node from being picked during the
DRL process.

to overcome imperfections introduced by the interpolation procedure. Therefore we set the episode
length to c (Line 15). From the experiments we observe that taking more than c steps typically does
not further improve the partitioning. In every step of the episode one node from Gsub is selected
and used to perform an action. During training, this node is selected by sampling (Line 18) from
the agent’s policy. The policy contains log-probabilities for each of the nodes in Gsub. The policy
corresponds to the actor output from the agent’s neural network (see Algorithm 2) applied to the
graph Gsub and the corresponding node feature tensor F . The feature tensor is discussed in more
detail below. During evaluation, the node with highest probability is selected (Line 21). When a
node at is selected, an action is taken (Line 23). The action at step t is also denoted as at, and we
use a to refer to the vector with all actions from step 1 up to the current step t. If the selected
node at is in VA, then it is moved to VB , alternatively, if at was in VB , it is moved to VA. At this
point the normalized cut is computed for the new state, and the reward rt+1 at step t is defined as
the difference between the previous and the new normalized cut (Line 26). Note that if at is moved
from VA to VB , the volumes vol(VA) and vol(VB) can simply be updated by subtracting and adding
deg(at) respectively. Likewise, the cut c can be updated cheaply by only considering the neighbors
of at.

The Feature Tensor At Line 12 the feature tensor F is constructed, with 5 features per node
in the graph Gsub. The first two features are a one-hot encoding of the partition the node belongs
to, with [1, 0] referring to VA and [0, 1] to VB . Let ∂Gsub denote the boundary of the subgraph
Gsub around the cut, i.e., the nodes in Gsub which are connected to nodes in G \Gsub. These nodes
have edges which are not part of Gsub and are hence not seen by the agent. Therefore, these nodes
should not be selected as actions. Thus, the next feature denotes whether (1) or not (0) a node is
in ∂Gsub. Nodes with this feature set to 1 will never be selected, since in the agent’s neural network
their input to the softmax layer is set to minus infinity, see Line 2, 6 in Algorithm 2. In our case,
the softmax layer is defined as a layer σ that takes as input a (m, 1)-tensor z and returns

σ(z)i =
exp(zi)∑m
j=1 exp(zj)

, (8)

where m is the number of nodes of the input graph Gsub. The final two features are the normalized
volumes of the two partitions: vol(VA)/vol(V) and vol(VB)/vol(V). These volumes play an important
role in the reward function, and they cannot be determined from Gsub and the other features alone.
The feature tensor is updated in every step of the episode, after an action is taken, on Line 24. Table
1 summarizes the different features used for each deep reinforcement learning model.

In Algorithm 3, r is used to denote the vector of all rewards from the first steps up to the current
step t. Similarly, policyt refers to the log-probabilities at step t and policy contains all these log-
probabilities stacked together. In Algorithm 3, to simplify the notation, the network parameters are

10

Graph Partitioning and Sparse Matrix Ordering using Reinforcement Learning and Graph Neural Networks

Figure 4: Representation of the algorithm to partition the coarsest graph. At the first step all nodes
are in one partition (blue) except for one node with minimum degree (the red one). Then, at each
step the agent picks a blue node and turns it into a red one, until there are exactly the same number
of blue and red vertices.

updated only once, after the entire episode is finished. The update of the model parameters is done
in Line 29, with a call to the A2C update procedure Algorithm 1. However, in practice, the network
parameters θ are updated after a fixed number of steps in the episode, as well as at the end of the
episode.

In evaluation mode, only the actions that actually contribute to the peak cumulative reward are
applied to the graph. Therefore, a copy is made of the initial partitioning VA, VB before the start
of the episode, see Line 8. Line 32 to Line 34 apply the actions from the episode that lead to the
peak cumulative reward obtained during the episode.

4.2 Partitioning the Coarsest Graph

In order to partition the coarsest graphs (see Line 3 in Algorithm 3) we train a separate actor-critic
reinforcement learning agent. Given a graph G with n vertices, we assign all of its nodes to partition
B, except for one, one of the nodes with smallest degree, which is assigned to partition A. By
choosing the node with smallest degree the initial normalized cut is as small as possible. In this
case, each node v in B has feature F (v) = [1, 0], while each node v in A has feature F (v) = [0, 1],
see Table 1. During the training, the agent picks a node in partition B, according to the output
probabilities of the deep neural network, and moves it to partition A. This corresponds to changing
the feature F (v) of the chosen node from [1, 0] to [0, 1]. The process is repeated until the two
partitions reach the same cardinality: |A| = |B| if n is even or |A| = |B| + 1 if n is odd. During
evaluation we allow an imbalance of ι = 1% of n between the two partitions. Algorithm 4 shows the
training and the evaluation process explained above. Figure 4 illustrates the above algorithm on a
toy example.

The deep neural network used for this task is slightly different than the one (Algorithm 2) for
the refinement phase. An important ingredient is the attention mechanism on graphs, which is
implemented by graph attention (GAT) (Veličković et al., 2018) layers. The neural network has the
actor and the critic branches after 4 common GAT layers. For the actor, a few dense layers are
used, while for the critic branch we use a global pooling layer (Li et al., 2017), which allows to get a
scalar value. In this case, the nodes that have already been picked, i.e., the nodes with feature [0, 1],
are masked. All convolutional layers have 10 units, while all linear layers have 5 units. The global
pooling layer includes a dense neural network with 2 linear layers, with 5 and 1 units respectively,
and Tanh as activation function in between. Algorithm 5 shows the structure of the neural network.

4.3 Algorithm Complexity

For a graph with n = k2 nodes resulting from the spatial discretization of a regular, square, k × k
two-dimensional problem, the size of the cut will be c = O(n

1/2). Likewise, for a three-dimensional
problem, the cut will be c = O(n

2/3), i.e., a plane through the domain. In Algorithm 3, the evaluation
of the neural network (Line 20) on Gsub takes O(c) computations, since Gsub has O(c) nodes and
the network has a fixed, small number of convolutional layers. The refinement procedure takes at

11

Gatti, Hu, Smidt, Ng, Ghysels

Algorithm 4 Computing an edge separator using deep reinforcement learning on the coarsest graph.
This illustrates both the training and evaluation on a single graph.

Input: graph G(V,E), with |V | = n. Imbalance factor ι.
Output: partitions VA and VB , such that V = VA ∪ VB
1: function edge separator coarse(G)
2: V 0

A, V
0
B ← VA, VB . keep a copy

3: C ← NC(G,VA, VB) . compute normalized cut, Eq. 6
4: for t← 1 to n/2− 1 do
5: if training then
6: policyt, valuet ← agent(G,F , 2) . forward evaluation of the agent, see Algorithm 5
7: at ← categorical sample logits(policyt) . pick action
8: else
9: policyt ← agent(G,F , 2) . forward evaluation of the agent, see Algorithm 5

10: at ← argmax(policyt) . pick action
11: end if
12: VA, VB ← VB \ at, VA ∪ at . move at from VA/VB
13: F (at)← [0, 1] . update features
14: Cold, C ← C, NC(G,VA, VB) . compute normalized cut, Eq. 6
15: rt ← Cold − C . compute reward
16: end for
17: if training then
18: update model parameters A2C(agent, r, policy, value)
19: else
20: VA, VB ← V 0

A, V
0
B

21: for t← 1 to n/2− 1 + ιn/100 do
22: VA, VB ← VB \ at, VA ∪ at
23: end for
24: end if
25: return VA, VB
26: end function

12

Graph Partitioning and Sparse Matrix Ordering using Reinforcement Learning and Graph Neural Networks

Algorithm 5 Forward evaluation of the agent’s neural network on the coarsest graph.

Input: graph G(V,E), feature tensor F , Imask list of features with masks for nodes to exclude
Output: actor (action (log-)probabilities), critic (scalar value, only returned in training mode)

1: function agent(G, F , Imask)
2: mask ← where(

⋃
i∈Imask

(F (:, i) 6= 0))

3: F ← Tanh(GATConv(F)) . convolutional layers common to actor and critic
4: F ← Tanh(GATConv(F))
5: F ← Tanh(GATConv(F))
6: F ← Tanh(GATConv(F))
7: F ← Tanh(Linear(F)) . dense layers common to actor and critic
8: F ← Tanh(Linear(F))
9: actor ← Tanh(Linear(F)) . actor branch

10: actor ← Tanh(Linear(actor))
11: actor(mask) ← −∞ . exclude certain actions
12: actor ← log softmax(actor)
13: if not training then
14: return actor . critic is not required in eval mode
15: end if
16: critic ← GlobalAttention(F) . critic branch
17: critic ← Tanh(Linear(critic))
18: critic ← Linear(critic)
19: return actor, critic
20: end function

most O(c) steps, so the total cost for the refinement at the finest level is O(c2) or O(n) in 2D and
O(n

4/3) in 3D. Since the coarsening rate is close to 2, the total cost for Algorithm 3 is

cost2D =

logn∑
i=1

n

2i−1
= O(n) , cost3D =

logn∑
i=1

(n

2i−1

)4/3

= O(n
4
3) , (9)

for 2D and 3D respectively.

4.4 Experimental Evaluation

This section discusses experiments with the proposed DRL partitioning algorithm. We consider two
types of graphs: triangulations and graphs from a variety of different applications, all from spatial
discretizations. For the first class, training is performed on a set of Delaunay triangulations and
the resulting algorithm is tested on other triangulations, constructed using finite element modeling.
In the second case, we train on graphs from 2D and 3D discretizations from a matrix collection
commonly used as benchmark.

Delaunay Triangulations The graphs in this test correspond to planar Delaunay triangulations
from points randomly generated in the unit square, see for example Figure 10a. The training dataset
contains roughly N train graphs with ntrain ∈ [ntrainmin , n

train
max] nodes. This set is constructed as follows.

A random Delaunay graph with ntrain (sampled uniformly from [ntrainmin , n
train
max]) nodes is generated

and added to the dataset. Then this last graph is coarsened, and the coarsened graph is added to
the dataset. As long as the coarser graph has more than ntrainmin nodes, this is repeated by coarsening
the coarser graph again and adding the coarser version to the dataset as well. These operations
are repeated until the dataset has N train elements. The graphs in the test set are simply randomly

13

Gatti, Hu, Smidt, Ng, Ghysels

Train Test ¬ Test Test ® Test ¯

N

Delaunay 10000 20 127 181 172
GradedL - 16 26 6 -

Hole3 - 11 20 13 5
Hole6 - 11 20 13 5
nmin 100 100 5000 30000 60000
nmax 5000 5000 30000 60000 90000

Table 2: Parameters describing the datasets. The graphs in the Delaunay dataset are constructed
from nmin < n ≤ nmax random points in [0, 1]2. The GradedL, Hole3 and Hole6 dataset are finite
element triangulations of 3 different geometries, for multiple levels of mesh refinement. The test sets
are split in 4 separate ranges.

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0 200 400 600 800 1000

re
w

ar
d

episode

episode rewards
50-moving avg

(a) Episode rewards

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

cu
t(

V
A

,V
B

)

n

METIS
Scotch

DRL

(b) Edge cut

Figure 5: Training on dataset with Delaunay graphs from random points in [0, 1]2. Figure 5a: Total
rewards of 1000 episodes. The final rewards are consistently positive. Figure 5b: Cut sizes of all
graphs in the training dataset, sorted based on number of nodes, as computed with the propsed
DRL method, METIS and SCOTCH. For these 2D graphs, the cut size scales as

√
n.

generated Delaunay triangulations, without the coarsenings. The parameter ntrainmin is also used to
stop the recursive coarsening during the evaluation phase, see Line 3 in Algorithm 3.

We consider four different tests, with different parameters as detailed in Table 2.

Figure 5a shows the cumulative rewards for episodes on each of the graphs in the training
dataset. Figure 5b compares the cut sizes on the training graphs for the proposed method, METIS
and SCOTCH. This also illustrates that for planar problems on a square domain, as expected, the
cut size scales as

√
n.

Figure 6 compares the normalized cut, the cut and the balance on the Delaunay testing dataset
obtained by our model, METIS, SCOTCH, and spectral partitioning. For spectral partitioning, we
compute the eigenvector associated to the smallest non-trivial eigenvalue of the normalized graph
Laplacian and look for the splitting point such that the corresponding partition has minimum nor-

malized cut Shi and Malik (2000). The balance is measured by max
{

vol(A)
vol(B) ,

vol(B)
vol(A)

}
. We see that,

in every range of nodes, the normalized cut is very close to the one produced by METIS, SCOTCH
and spectral partitioning, and the partitions are balanced as well. The edge cut results are slightly
higher for graphs having from 60,000 to 90,000 nodes.

14

Graph Partitioning and Sparse Matrix Ordering using Reinforcement Learning and Graph Neural Networks

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

100<n≤5K 5K<n≤30K 30K<n≤60K 60K<n≤90K

N
or

m
al

iz
ed

 c
u
t,

 N
C

(V
A

,V
B

)

DRL
DRL_METIS

METIS
Scotch

Spectral

0.
03

82

0.
03

85

0.
03

73

0.
03

63

0.
03

56

0.
01

23

0.
01

21

0.
01

07

0.
01

06
0.

01
19

0.
00

72

0.
00

72

0.
00

62

0.
00

62
0.

00
69

0.
00

56

0.
00

57

0.
00

48

0.
00

48

0.
00

54

(a) Normalized cut

 0

 100

 200

 300

 400

 500

 600

 700

100<n≤5K 5K<n≤30K 30K<n≤60K 60K<n≤90K

C
ut

,
C

(V
A

,V
B

)

DRL
DRL_METIS
METIS
Scotch
Spectral

10
1.

6
10

3.
6
97

.8
93

.811
1.

6

29
2.

3

28
5.

8

25
4.

3

25
2.

328
6.

6

48
5.

1

48
1.

0

41
5.

2
41

7.
646

2.
7

62
3.

4
62

9.
4

53
1.

9
53

4.
4
61

0.
9

(b) Edge cut

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

100<n≤5K 5K<n≤30K 30K<n≤60K 60K<n≤90K

B
al

an
ce

 |V
A

|/|
V

B
|

DRL
DRL_METIS

METIS
Scotch

Spectral

1.
061.

09

1.
03

1.
01

1.
15

1.
07

1.
06

1.
01

1.
011.

05 1.
061.

07

1.
0
1.

011.
03 1.

071.
08

1.
0
1.

011.
03

(c) Partition balance

Figure 6: Evaluation of the partitioning algorithms on the Delaunay testing sets. DRL and
DRL METIS refer to Algorithm 3. DRL METIS uses METIS on the coarses level, while DRL
uses reinforcement learning partitioning on the coarsest level as well.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

100<n≤5K 5K<n≤30K 30K<n≤60K

N
or

m
al

iz
ed

 c
ut

,
N

C
(V

A
,V

B
)

DRL
DRL_METIS

METIS
Scotch

Spectral

0.
04

43

0.
04

41

0.
04

37

0.
04

31

0.
04

08

0.
01

25

0.
01

23

0.
01

2
0.

01
2

0.
01

1

0.
00

8

0.
00

79

0.
00

75

0.
00

79

0.
00

64

(a) Normalized cut

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

100<n≤5K 5K<n≤30K 30K<n≤60K

C
ut

,
C

(V
A

,V
B

)

DRL
DRL_METIS
METIS
Scotch
Spectral

85
.7

85
.1

85
.0

83
.2

74
.9

26
4.

7

26
0.

8

25
3.

0
25

5.
3

23
3.

4

40
6.

8

40
0.

5

38
0.

740
2.

8
40

6.
5

(b) Edge cut

 0

 0.5

 1

 1.5

 2

100<n≤5K 5K<n≤30K 30K<n≤60K

B
al

an
ce

 |V
A

|/|
V

B
|

DRL
DRL_METIS

METIS
Scotch

Spectral

1.
04

1.
04

1.
01 1.

0

1.
70

1.
08

1.
07

1.
0

1.
01

1.
49

1.
03 1.

05

1.
0

1.
01

1.
42

(c) Partition balance

Figure 7: Evaluation of the partitioners on the GradedL triangulation dataset. Training was per-
formed on Delaunay graphs with 100 < n ≤ 5000 nodes.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

100<n≤5K 5K<n≤30K 30K<n≤60K 60K<n≤90K

N
or

m
al

iz
ed

 c
ut

,
N

C
(V

A
,V

B
)

DRL
DRL_METIS

METIS
Scotch

Spectral

0.
02

01

0.
01

94

0.
01

95

0.
01

98

0.
01

93

0.
00

8

0.
00

78

0.
00

76

0.
00

75

0.
00

73

0.
00

29

0.
00

26

0.
00

26

0.
00

29

0.
00

25

0.
00

29

0.
00

23

0.
00

21

0.
00

24

0.
00

19

(a) Normalized cut

 0

 50

 100

 150

 200

 250

 300

100<n≤5K 5K<n≤30K 30K<n≤60K 60K<n≤90K

C
ut

,
C

(V
A

,V
B

)

DRL
DRL_METIS
METIS
Scotch
Spectral

32
.3
30

.1
30

.5
30

.2
30

.0

12
6.

5

12
2.

1

11
9.

6

11
9.

2

11
0.

3

18
6.

3

16
4.

9
16

7.
61
89

.8

15
8

27
8.

4

21
7.

2

20
8.

62
30

.2

20
6.

0

(b) Edge cut

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

100<n≤5K 5K<n≤30K 30K<n≤60K 60K<n≤90K

B
al

an
ce

 |V
A

|/|
V

B
|

DRL
DRL_METIS
METIS
Scotch
Spectral

1.
1
1.

08

1.
03

1.
021

.0
8

1.
061.

09

1.
011.

01

1.
24

1.
111.

14

1.
0
1.

01
1.

16
1.

15
1.

14

1.
0
1.

01
1.

16

(c) Partition balance

Figure 8: Evaluation of the partitioners on the Hole3 (see Figure 11b) triangulation dataset. Training
was performed on Delaunay graphs with 100 < n ≤ 5000 nodes.

15

Gatti, Hu, Smidt, Ng, Ghysels

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

100<n≤5K 5K<n≤30K 30K<n≤60K 60K<n≤90K

N
or

m
al

iz
ed

 c
u
t,

 N
C

(V
A

,V
B

)
DRL

DRL_METIS
METIS
Scotch

Spectral

0.
03

37

0.
02

88

0.
02

91
0.

02
98

0.
02

88

0.
00

7

0.
00

66

0.
00

65

0.
00

66

0.
00

64

0.
00

29

0.
00

27

0.
00

26

0.
00

29

0.
00

25

0.
00

27

0.
00

22

0.
00

21

0.
00

23

0.
00

24

(a) Normalized cut

 0

 50

 100

 150

 200

 250

 300

100<n≤5K 5K<n≤30K 30K<n≤60K 60K<n≤90K

C
ut

,
C

(V
A

,V
B

)

DRL
DRL_METIS
METIS
Scotch
Spectral

50
.5

45
.0
45

.5
45

.2
45

.0

13
0.

5

12
4.

4

12
4.

0
12

7.
4

12
0.

0

18
2.

7

17
4.

6

16
7.

618
3.

2

15
8.

0

26
3.

6

20
9.

2

20
8.

622
4.

0

26
4.

9

(b) Edge cut

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

100<n≤5K 5K<n≤30K 30K<n≤60K 60K<n≤90K

B
al

an
ce

 |V
A

|/|
V

B
|

DRL
DRL_METIS
METIS
Scotch
Spectral

1.
03

1.
02

1.
0

1.
0

1.
0 1.

051.
06

1.
0
1.

011.
04 1.

081.
13

1.
0
1.

01
1.

16
1.

13
1.

1

1.
0
1.

011
.0

7

(c) Partition balance

Figure 9: Evaluation of the partitioners on the Hole6 (see Figure 11c) triangulation dataset. Training
was performed on Delaunay graphs with 100 < n ≤ 5000 nodes.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

A B

(a) Partitioned Delaunay triangulation

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

A B ∂Gsub

(b) 3-hop subgraph Gsub around cut

Figure 10: Figure 10a shows a Delaunay triangulation from 750 random points in [0, 1]2, partitioned
using METIS. Call VA the partition including the purple nodes and VB the partition including
the green nodes. Figure 10b illustrates the 3-hop subgraph around the edge cut. The purple
circular nodes have features [1, 0, 0, vol(VA)/vol(V) , vol(VB)/vol(V)] while the green ones have features
[0, 1, 0, vol(VA)/vol(V)]. The nodes bounded by an orange circle belong to the boundary. More precisely,
the purple orange-bounded nodes have features [1, 0, 1, vol(VA)/vol(V) , vol(VB)/vol(V)], while the green
orange-bounded nodes have features [0, 1, 1, vol(VA)/vol(V) , vol(VB)/vol(V)].

Figure 10 illustrates the partitioning of one example of a Delaunay graph. Figure 10b shows the
sub-graph Gsub, consisting of all nodes at distance at most 3 hops from the edge cut.

Finite Element Triangulations Figure 11 illustrates the finite element triangulations we use
for testing. We consider three different meshes – GradedL, Hole3 and Hole6 – each with multiple
levels of refinement. Figures 7, 8 and 9 show the normalized cut, the cut size and the balance for
these datasets, and the comparison with the ones obtained with METIS, SCOTCH and spectral
partitioning. Notice that partitioning quality is close to that of METIS, SCOTCH and spectral
partitioning. On the other hand, spectral partitioning produces highly unbalanced partitions for
meshes of Graded L type. Recall that these graphs have a very different sparsity pattern with
respect to the ones in the training dataset (Delaunay graphs), so this shows that the agent is able
to generalize well on unseen planar triangulations.

16

Graph Partitioning and Sparse Matrix Ordering using Reinforcement Learning and Graph Neural Networks

 0

 500

 1000

 1500

 2000

-500 0 500 1000 1500 2000 2500

A B

(a) GradedL

-100

 0

 100

 200

 300

 400

 500

 600

 700

 0 200 400 600 800 1000 1200

A B

(b) Hole3

-100

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 200 400 600 800 1000 1200

A B

(c) Hole6

Figure 11: Illustrations for the different finite element triangulations, Figure 11a GradedL after 15
refinements, Figure 11b Hole3 after 10 refinements, and Figure 11c Hole6 after 10 refinements.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

100<n≤5K 5K<n≤30K 30K<n≤60K

N
or

m
al

iz
ed

 c
ut

,
N

C
(V

A
,V

B
)

DRL
DRL_METIS

METIS
Scotch

Spectral

0.
02

63

0.
02

60
0.

02
71

0.
02

55

0.
03

17

0.
03

15

0.
03

110
.0

34
6

0.
03

25

0.
02

62
0.

02
74

0.
02

67

0.
02

40

0.
02

37

0.
01

63

(a) Normalized cut

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

100<n≤5K 5K<n≤30K 30K<n≤60K

C
ut

,
C

(V
A

,V
B

)

DRL
DRL_METIS
METIS
Scotch
Spectral

15
08

.7

15
17

.9

16
49

.1

15
37

.4

11
37

7.
1

39
34

.4

38
41

.8
47

55
.1

44
94

.9

24
01

2.
8

78
55

.6

84
59

.4
10

10
3.

2

99
27

.1

42
10

2.
2

(b) Edge cut

 0

 0.5

 1

 1.5

 2

 2.5

100<n≤5K 5K<n≤30K 30K<n≤60K

B
al

an
ce

 |V
A

|/|
V

B
|

DRL
DRL_METIS
METIS
Scotch
Spectral

1.
19

1.
13

1.
02

1.
01

1.
89

1.
28

1.
23

1.
03

1.
02

2.
54

1.
65

1.
46

1.
04

1.
03

1.
54

(c) Partition balance

Figure 12: Evaluation of the partitioners on the SuiteSparse dataset. Training was performed on
graphs from the SuiteSparse collection with 100 < n ≤ 5000 nodes.

Sparse Matrices from the SuiteSparse Collection We also tested our model on a number
of 2D and 3D discretizations from the SuiteSparse Matrix Collection (Kolodziej et al., 2019). We
trained a separate agent, with a deep neural network having the same structure as the one used for the
Delaunay triangulations. The training dataset is built in the same fashion as we did for the training
on Delaunay triangulations. More precisely, we pick a (fully connected) 2D/3D discretization having
number of vertices in (100, 5000] and we add it to the dataset. Then we coarsen it until the coarsest
graph has less than 100 nodes and we add all the coarser graphs to the dataset. These operations
are repeated until the dataset has 10,000 elements. It is important to stress that training a separate
agent for these kind of graphs is necessary, since they have a great variety of sparsity patterns. The
agent trained on Delaunay triangulations may fail to generalize correctly, in particular in providing
balanced partitions.

In order to see if the model is able to generalize to unseen graphs, we tested it on larger 2D/3D
discretizations, with between 5,000 and 90,000 nodes (again, for testing we do not include coarser
graphs). Figure 12 shows the normalized cut, the cut size and the balance for these graphs. The
agent is able to generalize to these graphs, producing a lower cut and a lower normalized cut. The
partitions are slightly unbalanced for graphs in the mid range of nodes. Observe that spectral
partitioning performs poorly on these graphs. Indeed, even if the normalized cut is good on average,
the cut and the balance are really high compared to other methods.

17

Gatti, Hu, Smidt, Ng, Ghysels

Figure 13: Example of a vertex separator. The vertices in the separator are depicted in green,
while the other two partitions are depicted in red and blue. Note that the subgraph obtained by
removing the vertices in the separator has exactly two connected components. In this case, the two
components have approximately the same cardinality.

5. Finding a Minimal Vertex Separator

A vertex separator is a set of nodes that, if removed from the graph, would split the graph in
two unconnected sub-graphs, see Figure 13. Hence, the graph is partitioned in three subgraphs
GA = (VA, EA), GB = (VB , EB) and GS = (VS , ES), such that V = VA ∪ VB ∪ VS and there are
no edges connecting VA and VB . The aim is to minimize |VS | while keeping the two other graphs
VA and VB balanced. While the normalized cut (Eq. 6), which was used for graph bisection as
discussed in Section 4, is based on the volumes of the partitions (Eq. 7), we will now try to balance
the cardinalities |VA| and |VB |. More precisely, we attempt to minimize

NS(G) = |VS |
(

1

|VA|
+

1

|VB |

)
, (10)

a measure for the normalized separator. Note that a vertex separator can be computed using
a number of heuristics (Leiserson and Lewis, 1987; Hendrickson and Rothberg, 1998), or can be
constructed from an edge separator using a minimum cover approach (Pothen and Fan, 1990; Duff,
1981).

Algorithm 6 computes, for a given graph G(V,E), a vertex separator VS that approximately
minimizes Eq. 10. Algorithm 6 follows the same structure as Algorithm 3, with some significant
differences. Most importantly, the reward used in Algorithm 6 is based on Eq. 10. In Line 3, to stop
the recursion, now METIS is called to compute a vertex separator instead of an edge separator.

As before, a separator (now a vertex separator) is computed first on the coarser graph and
then interpolated back to the finer graph. Then this separator is refined using deep reinforcement
learning applied to a subgraph Gsub containing all nodes within a small number of hops from the
vertex separator. In every step of the deep reinforcement learning episode a single node at is selected.
Algorithm 7 illustrates the action that is taken for a selected node at. If node at is part of VA, it
is simply removed from partition VA and added to the separator VS (Line 3). Likewise, if at was
in VB , then node at is removed from VB and added to VS (Line 5). The partition volumes can
be updated directly. If the selected node at is part of the separator, we try to remove it from the
separator VS and move it to one of the partitions VA or VB . However, doing so could result in a
state where VS is no longer a valid separator. This would be the case if after removing at from
the separator – and moving it to either VA or VB – there would be a direct edge between VA and
VB . However, by construction of the feature tensor and the agent’s neural network, such a node will
never be selected, as discussed in more detail below. Algorithm 7 thus assumes that it is safe to
remove at from the separator. To decide whether to move at from VS to VA or, instead to VB , it is
checked if at was already connected to either VA or VB . If there is an edge from at to any node in

18

Graph Partitioning and Sparse Matrix Ordering using Reinforcement Learning and Graph Neural Networks

Algorithm 6 Computing a vertex separator using deep reinforcement learning. Shown here is only
the evaluation phase.

Input: graph G(V,E)
Output: vertex separator VS , unconnected components VA and VB , such that V = VS ∪ VA ∪ VB
1: function vertex separator(G)
2: if |V | < nmin then
3: return metis separator(G)
4: end if
5: GC , IC ← coarsen(G) . get coarse graph and interpolation info
6: V CS , V

C
A , V

C
B ← vertex separator(GC) . recursive call using coarse graph

7: VS , VA, VB ← V CS (IC), V CA (IC), V CB (IC) . interpolate VS , VA and VB from coarse to fine
8: V 0

S , V
0
A, V

0
B ← VS , VA, VB . keep a copy

9: Gsub ← k hop subgraph(G, VS , khops) . subgraph with all nodes at most khops from VS
10: . construct feature tensor
11: F (v)←

[
v ∈ VA , v ∈ VB , v ∈ VS , v ∈ ∂Gsub , v ∈ V min

S , |VA|/|V | , |VB |/|V |
]
, ∀ v ∈ Gsub

12: S ← NS(VS , VA, VB) . compute normalized separator, Eq. 10
13: for t← 1 to 2|V 0

S | do
14: policyt ← agent(Gsub, F , {2, 3}) . forward evaluation of agent’s neural network
15: at ← argmax(policyt) . pick action
16: apply action vertex separator(at, G, VS , VA, VB) . take an action, see Algorithm 7
17: . update features
18: F (v)←

[
v ∈ VA , v ∈ VB , v ∈ VS , v ∈ ∂Gsub , v ∈ V min

S , |VA|/|V | , |VB |/|V |
]
, ∀ v ∈ Gsub

19: Sold ← S
20: S ← NS(VS , VA, VB) . compute normalized separator, Eq. 10
21: rt ← Sold − S . compute reward
22: end for
23: VS , VA, VB ← V 0

S , V
0
A, V

0
B

24: for t← 1 to argmax(r) do
25: apply action vertex separator(at, G, VS , VA, VB) . take an action, see Algorithm 7
26: end for
27: return VS , VA, VB
28: end function

19

Gatti, Hu, Smidt, Ng, Ghysels

VA, then at can be moved to VA (Line 10). Likewise, if at was already connected to VB it can be
moved to VB (Line 11). If at has no edge to either VA or VB , then at is added to whichever one of
VA or VB has the smallest cardinality (Line 12). Doing so will always result in a positive reward:
the separator becomes smaller and the balance improves.

Algorithm 7 Apply an action to a vertex separator. This is used in Algorithm 6 to compute a
minimal vertex separator. This assumes node a is not an essential node for the separator, i.e., node
a is not connected to both VA and VB .

Input: node a, graph G(V,E), partitions VS , VA and VB
Result: node a is moved to a different partition

1: procedure apply action vertex separator(a,G(V,E), VS , VA, VB)
2: if a ∈ VA then
3: VA, VS ← VA \ a, VS ∪ a . move node a from VA to VS
4: else if a ∈ VB then
5: VB , VS ← VB \ a, VS ∪ a . move node a from VB to VS
6: else if a ∈ VS then
7: VS ← VS \ a
8: if ∃ ea,v ∈ E : v ∈ VA then . node a is in VS and connected to VA
9: VA ← VA ∪ a . move a to VA

10: else if ∃ ea,v ∈ E : v ∈ VB then . node a is in VS and connected to VB
11: VB ← VB ∪ a . move a to VB
12: else if |VA| ≤ |VB | then . a is not connected to VA or VB
13: VA ← VA ∪ a . moving a to VA improves the balance
14: else . |VB | < |VA|
15: VB ← VB ∪ a . moving a to VB improves the balance
16: end if
17: end if
18: end procedure

Since we assume that the vertex separator computed at the coarser graph is of high quality, only
a small number of refinement steps will be required. However, since moving the vertex separator by
one node requires two actions – first adding a node to the separator, then removing one – the length
of an episode is set to 2|V 0

S |, i.e., twice the size of the interpolated separator.

For brevity, the training is omitted from Algorithm 6, since it can be added similarly to Algorithm
3.

The Feature Tensor The feature tensor used in Algorithm 6 is similar to the one used in Al-
gorithm 3 to compute an edge separator. However, there are two additional features. One extra
features comes from the fact that there are now three partitions instead of two, so the one-hot en-
coding of the partitioning is now [1, 0, 0], [0, 1, 0] and [0, 0, 1] for VA, VB and VS respectively. The
next feature again denotes whether a node is part of ∂Gsub, in which case it should not be selected as
an action. The next features is a binary feature that is set to 1 for the nodes that are essential to the
separator, i.e., removing this node from the separator would lead to an invalid state. In Algorithm 6
this set of nodes is denoted as V min

S , and these are all nodes v ∈ VS : ∃ ev,i, ev,j with i ∈ VA, j ∈ VB ,
i.e., node v is in the separator and is connected to both VA and VB . The final two features are
|VA|/|V | and |VB |/|V |.

20

Graph Partitioning and Sparse Matrix Ordering using Reinforcement Learning and Graph Neural Networks

 0

 0.02

 0.04

 0.06

 0.08

 0.1

100<n≤5K 5K<n≤30K 30K<n≤60K 60K<n≤90K

N
or

m
al

iz
ed

 s
ep

ar
at

or
,
N

S
(V

A
,V

B
)

DRL
METIS0.

08
7

0.
06

2

0.
04

3

0.
02

7

0.
02

6

0.
01

5 0.
02

0.
01

2

(a) Delaunay

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

100<n≤5K 5K<n≤30K 30K<n≤60K 60K<n≤90K

N
or

m
al

iz
ed

 s
ep

ar
at

or
,
N

S
(V

A
,V

B
)

DRL
METIS

0.
09

7

0.
09

0.
02

4

0.
04

7

0.
00

9

0.
00

7
0.

00
8

0.
00

6

(b) Hole6

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

5K<n≤30K 30K<n≤60K 60K<n≤90K

N
or

m
al

iz
ed

 s
ep

ar
at

or
,
N

S
(V

A
,V

B
)

DRL
METIS

0.
07

1

0.
05

2

0.
03

2

0.
02

1

0.
03

4

0.
01

9

(c) SuiteSparse

Figure 14: Comparison of the normalized separator, Eq. 10, using the proposed Algorithm 6, and
METIS.

5.1 Experimental Evaluation

Delaunay Triangulations We train the algorithm on Delaunay triangulations with between 100
and 1,000 nodes. As for the normalized cut, all intermediate coarsened graphs are included in the
dataset, for a total of ∼ 10,000 training graphs.

Figure 14a shows the normalized separator, Eq. 10, for the Delaunay testing sets corresponding
to the parameters as given in Table 2. Figure 14b shows the normalized separator for the Hole6
dataset. For the DRL experiments, METIS is used to find a vertex separator at the coarsest level.
Our model produces slightly larger normalized separators than METIS, but the difference is small
in all the different tests. Also, the algorithm is able to generalize extremely well also to the unseen
triangulations of the Hole6 dataset, and it outperforms METIS for graphs having between 5,000 and
30,000 vertices.

Sparse matrices from the SuiteSparse matrix collection As in the edge cut case, we train
our agent on some 2D/3D discretizations from the SuiteSparse matrix collection. The dataset is the
same as the one discussed in Section 4.4 for the SuiteSparse experiments, and so is the structure of
the deep neural network.

Testing was done on 101 2D/3D discretizations from the SuiteSparse dataset with number of
vertices between 5,000 and 90,000. Figure 14c shows the results for this dataset. Also in this case,
the normalized separator values found with DRL are slightly higher than the ones from METIS, but
overall the results are good. Indeed, the testing dataset includes larger graphs with a wide variety
of sparsity patterns, many of them not included in the training dataset.

6. Nested Dissection Sparse Matrix Ordering

The nested dissection algorithm is a heuristic used to order the rows and columns of a sparse matrix
before applying Gaussian elimination to the matrix. When computing an LU decomposition of a
sparse matrix A as A = LU , the factors L (lower triangular) and U (upper triangular) are typically
less sparse than the original matrix A. The extra nonzeros which are introduced in the factors are
known as the fill-in. However, reordering the matrix before performing the numerical factorization
can greatly reduce this fill-in, and nested dissection is known to produce orderings that drastically
reduce the fill. This is illustrated in Figure 15 for the matrix nos41 from the SuiteSparse matrix
collection.

Nested dissection orders the rows and columns of a sparse matrix A as follows. Consider the
graph G corresponding to the sparsity pattern of A if A is symmetric, or to AT + A otherwise.
Find a minimal vertex separator VS of G, that splits G into two unconnected sets of nodes VA and
VB . Then first order the matrix rows and columns corresponding to the nodes in VA using nested

1. https://sparse.tamu.edu/HB/nos4

21

Gatti, Hu, Smidt, Ng, Ghysels

(a) (b) (c) (d)

Figure 15: Nested dissection ordering of the 100× 100 sparse matrix A = nos4 from the SuiteSparse
matrix collection. It is structurally symmetric, so its sparsity pattern can be represented by a graph
with 100 nodes and 594 edges. (a) The sparsity pattern of the original matrix A, with 594 number
of non-zero entries (nnz). (b) The sparsity pattern of L and U , the triangular factorization of
A = LU , with nnz = 1417. (c) The matrix symmetrically permuted using the minimum fill-reducing
ordering: PTAP , with nnz = 594. (d) Sparsity pattern of the LU factorization of the ordered matrix
PTAP = LU , with nnz = 1160.

dissection (recursively), next, number the rows and columns corresponding to the nodes in VB using
nested dissection, and lastly, order the rows and columns corresponding the nodes in the vertex
separator VS .

Algorithm 8 Nested dissection sparse matrix reordering, using deep reinforcement learning to find
a vertex separator (Algorithm 6).

Input: graph G(V,E) corresponding to the sparsity pattern of a symmetric matrix A, or to AT +A
Output: permutation vector p

1: function nested dissection(G)
2: if |V | < nmin then
3: return AMD(G) . end recursion by calling AMD ordering (Amestoy et al., 1996)
4: end if
5: VS , VA, VB ← vertex separator(G) . See Algorithm 6
6: pA ← nested dissection(subgraph(VA, G)) . recursive call
7: pB ← nested dissection(subgraph(VB , G)) . recursive call
8: return [VA(i) for i in pA] + [VB(i) for i in pB] + VS
9: end function

Algorithm 8 shows the nested dissection algorithm, using the recursive formulation for ease of
notation. However, in the actual implementation this recursion is avoided using an implementation
based on a stack data structure. Line 6 and Line 7 show the recursive calls. The recursion is
stopped early, in Line 3, by calling a different ordering algorithm once the graph becomes smaller
than the threshold nmin. Here we use the approximate minimum degree ordering (AMD) (Amestoy
et al., 1996), which is a different heuristic known to produce good ordering for small to medium
sized problems, and for which highly efficient sequential codes are available. Algorithm 8 returns a
permutation vector p, corresponding to a permutation matrix P , which can be used to symmetrically
permute the rows and the columns of the matrix.

22

Graph Partitioning and Sparse Matrix Ordering using Reinforcement Learning and Graph Neural Networks

 10000

 100000

 1x106

 1x107

100<n≤5K 5K<n≤30K 30K<n≤60K 60K<n≤90K

F
il

l,
 n

n
z(

L
)+

nn
z(

U
)

w
it

h
A

(G
)

=
 L

U
DRL_ND
METIS_ND
METIS
SCOTCH
COLAMD

(a) Delaunay graphs

 1x106

 1x107

 1x108

5K<n≤30K 30K<n≤60K 60K<n≤90K

F
il

l,
 n

n
z(

L
)+

nn
z(

U
)

w
it

h
A

(G
)

=
 L

U

DRL_ND
METIS_ND
METIS
SCOTCH
COLAMD

(b) SuiteSparse graphs

Figure 16: Comparison of the fill in the triangular factors L and U of a matrix A corresponding
to (Figure 16a) the adjacency matrix (and a diagonal shift) of several Delaunay graphs or (Figure
16b) several Suitesparse matrices. For DRL ND, the sparse matrix is reordered using Algorithm 8
with Algorithm 6 to find the vertex separators. For METIS ND, the permutation is computed using
Algorithm 8, but with METIS to find the vertex separators. The METIS datapoints in this figure
use the nested dissection algorithm as implemented in the METIS package.

6.1 Experimental Evaluation

We compare several sparse matrix ordering techniques on a number of sparse matrices by comput-
ing a factorization using the SuperLU sparse direct solver (Li, 2005), through the Scipy Python
interface (Virtanen et al., 2020). The orderings considered are:

• DRL ND: nested dissection using Algorithm 8, computing the vertex separators using Algo-
rithm 6.

• METIS ND: nested dissection using Algorithm 8, but computing the vertex separators using
METIS.

• METIS: nested dissection implementation from METIS.

• SCOTCH: nested dissection implementation from SCOTCH.

• COLAMD: approximate minimum degree ordering applied to the graph of ATA (the default
option for SuperLU).

In Algorithm 8, nmin is set to 100.

Delaunay Triangulations Figure 16a collects the results for the fill on 100 Delaunay triangula-
tions having between 100 and 90,000 vertices with the different orderings. Our model (DRL ND)
always outperforms minimum degree (COLAMD) and it gives results similar results to the SCOTCH
orderings, while performing slightly worse than METIS and nested dissection (Algorithm 8) with
METIS to find the vertex separators (METIS ND). This shows that the model is able to generalize
well to larger and unseen graphs.

Sparse Matrices from the SuiteSparse Collection Figure 16b shows the results for the fill on
101 2D/3D discretizations from the SuiteSparse matrix collection, with number of vertices between
5,000 and 90,000. We notice that our proposed algorithm (DRL ND) performs similarly to SCOTCH
and outperforms minimum degree (COLAMD) in every class of graphs. The fill with DRL turns out
to be a little higher than the one obtained with METIS and METIS ND. Recall that this testing
dataset includes larger graphs than the ones used for training and a wide variety of sparsity patterns,

23

Gatti, Hu, Smidt, Ng, Ghysels

so the results show that the model generalizes well to larger graphs, and to graphs from different
types of discretizations.

7. Conclusions

We have presented a graph partitioning approach based on deep reinforcement learning, using a
multilevel framework. We show both an edge partitioner, computing graph bisections, as well as a
variant of the method which computes a vertex separator. We show that the graph partitioning and
vertex separator codes, when trained on graphs of a certain type and with less than 5,000 nodes,
generalize well to graphs with many more nodes, as well as to different types of graphs. For instance,
Figures 12b and 12a show that for graphs with up to 90,000 nodes, the cut and the normalized cut for
the partitions from the proposed method, are very competitive with those computed using METIS
and SCOTCH. Note, the graphs we used for this test are from the SuiteSparse dataset, which
contains problems from a variety of applications, showing a wide range of sparsity patterns.

In Section 6, the vertex separator code is used recursively to construct a nested dissection order-
ing, which we then evaluate in the sparse solver SuperLU. We show that the resulting sparse matrix
ordering effectively reduces the fill-in, and does this more so than the approximate minimum degree
ordering. The quality of the ordering is comparable to the ordering produced by SCOTCH and only
slightly worse than the nested dissection ordering from METIS. We believe further tuning of the
neural network, and training on more and larger graphs, could further improve these results.

From our complexity analysis in Section 4.3, we believe that the presented approach can also
perform well, competitively with the state-of-the-art codes METIS and SCOTCH. As a possible
improvement to the runtime of the algorithms, we could consider selecting multiple actions at once,
effectively reducing the number of forward evaluations of the neural network. Furthermore, we plan
to port the method from Python to compiled C++, to gain additional computation efficacy.

Acknowledgements

This work was supported by the Laboratory Directed Research and Development Program of
Lawrence Berkeley National Laboratory under U.S. Department of Energy Contract No. DE-AC02-
05CH11231.

References

Abadi, M. et al. TensorFlow: Large-scale machine learning on heterogeneous systems.
https://www.tensorflow.org/, 2015. Software available from tensorflow.org.

Reza Refaei Afshar, Y. Zhang, Murat Firat, and U. Kaymak. A State Aggregation Approach for
Solving Knapsack Problem with Deep Reinforcement Learning. In ACML, 2020.

P.R. Amestoy, T.A. Davis, and I.S. Duff. An Approximate Minimum Degree Ordering Algorithm.
SIMAX, 17(4):886–905, 1996.

Robert Anderson, Julian Andrej, Andrew Barker, Jamie Bramwell, Jean-Sylvain Camier, Jakub
Cerveny, Veselin Dobrev, Yohann Dudouit, Aaron Fisher, Tzanio Kolev, et al. MFEM: a modular
finite element methods library. arXiv:1911.09220 [cs.MS], 2019.

Bas O. Fagginger Auer and Rob H. Bisseling. A GPU algorithm for greedy graph matching. In
Facing the Multicore-Challenge II, pages 108–119. Springer, 2012.

Satish Balay, Shrirang Abhyankar, Mark F. Adams, Jed Brown, Peter Brune, Kris Buschelman,
Lisandro Dalcin, Alp Dener, Victor Eijkhout, William D. Gropp, Dmitry Karpeyev, Dinesh

24

Graph Partitioning and Sparse Matrix Ordering using Reinforcement Learning and Graph Neural Networks

Kaushik, Matthew G. Knepley, Dave A. May, Lois Curfman McInnes, Richard Tran Mills, Todd
Munson, Karl Rupp, Patrick Sanan, Barry F. Smith, Stefano Zampini, Hong Zhang, and Hong
Zhang. PETSc users manual. Technical Report ANL-95/11 - Revision 3.13, Argonne National
Laboratory, 2020. URL https://www.mcs.anl.gov/petsc.

P. Battaglia, Jessica B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. Zambaldi, Mateusz Malinowski,
Andrea Tacchetti, David Raposo, A. Santoro, R. Faulkner, Çaglar Gülçehre, H. Song, A. J.
Ballard, J. Gilmer, George E. Dahl, Ashish Vaswani, Kelsey R. Allen, Charlie Nash, Victoria
Langston, Chris Dyer, N. Heess, Daan Wierstra, P. Kohli, M. Botvinick, Oriol Vinyals, Y. Li, and
Razvan Pascanu. Relational inductive biases, deep learning, and graph networks. arXiv:1806.01261
[cd.LG], 2018.

Irwan Bello, Hieu Pham, Quoc V. Le, Mohammad Norouzi, and Samy Bengio. Neural Combinatorial
Optimization with Reinforcement Learning. arXiv:1611.09940 [cs.AI], 2017.

Michael M. Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst. Geo-
metric Deep Learning: Going beyond Euclidean data. IEEE Signal Processing Magazine, 34(4):
18–42, July 2017.

Jeff Cheeger. A lower bound for the smallest eigenvalue of the Laplacian. In Proceedings of the
Princeton conference in honor of Professor S. Bochner, pages 195–199, 1969.

C. Chevalier and F. Pellegrini. PT-Scotch: A tool for efficient parallel graph ordering. PARCO, 34
(6-8):318–331, 2008.

Fan R. K. Chung. Spectral Graph Theory. AMS, 1997.

T. Degris, P. Pilarski, and R. Sutton. Model-free reinforcement learning with continuous action in
practice. 2012 American Control Conference (ACC), pages 2177–2182, 2012.

Michel Deudon, Pierre Cournut, Alexandre Lacoste, Yossiri Adulyasak, and Louis-Martin Rousseau.
Learning heuristics for the tsp by policy gradient. In Willem-Jan van Hoeve, editor, Integration of
Constraint Programming, Artificial Intelligence, and Operations Research, pages 170–181, Cham,
2018. Springer International Publishing.

Karen Devine, Erik Boman, Robert Heaphy, Bruce Hendrickson, and Courtenay Vaughan. Zoltan
data management service for parallel dynamic applications. Computing in Science & Engineering,
4(2):90–97, 2002.

Iddo Drori, Anant Kharkar, William R. Sickinger, Brandon Kates, Qiang Ma, Suwen Ge, Eden Dolev,
Brenda Dietrich, David P. Williamson, and Madeleine Udell. Learning to solve combinatorial
optimization problems on real-world graphs in linear time. In 2020 19th IEEE International
Conference on Machine Learning and Applications (ICMLA), pages 19–24, 2020.

Iain S. Duff. On algorithms for obtaining a maximum transversal. ACM Transactions on Mathe-
matical Software (TOMS), 7(3):315–330, 1981.

Robert D Falgout and Ulrike Meier Yang. hypre: A library of high performance preconditioners. In
International Conference on Computational Science, pages 632–641. Springer, 2002.

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In
ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

C.M. Fiduccia and R.M. Mattheyses. A linear-time heuristic for improving network partitions. In
19th Design Automation Conference, pages 175–181. IEEE, 1982.

25

https://www.mcs.anl.gov/petsc

Gatti, Hu, Smidt, Ng, Ghysels

Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., USA, 1990.

Graph Nets. Graph Nets: DeepMind’s library for building graph networks in Tensorflow and Sonnet.
https://github.com/deepmind/graph_nets. Accessed: 2020-05-20.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In Advances in neural information processing systems, pages 1024–1034, 2017a.

William L. Hamilton, Rex Ying, and J. Leskovec. Representation Learning on Graphs: Methods
and Applications. arXiv:1709.05584 [cs.SI], 2017b.

Bruce Hendrickson and Edward Rothberg. Improving the run time and quality of nested dissection
ordering. SIAM Journal on Scientific Computing, 20(2):468–489, 1998.

Michael A. Heroux, Roscoe A. Bartlett, Vicki E. Howle, Robert J. Hoekstra, Jonathan J. Hu, Tamara
G. Kolda, Richard B. Lehoucq, Kevin R. Long, Roger P. Pawlowski, Eric T. Phipps, et al. An
overview of the trilinos project. ACM Transactions on Mathematical Software (TOMS), 31(3):
397–423, 2005.

Chaitanya K. Joshi, Thomas Laurent, and Xavier Bresson. An efficient graph convolutional network
technique for the travelling salesman problem, 2019.

Nikolaos Karalias and Andreas Loukas. Erdős goes neural: an unsupervised learning framework
for combinatorial optimization on graphs. In ”34th Conference on Neural Information Processing
Systems (NeurIPS 2020)”, Vancouver, Canada, 2020.

G. Karypis and V. Kumar. Parallel Multilevel k-Way Partitioning Scheme for Irregular Graphs.
SIAM Review, 41(2):278–300, 1999.

George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for partitioning irregular
graphs. SIAM Journal on scientific Computing, 20(1):359–392, 1998.

B.W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs. Bell system
technical journal, 49(2):291–307, 1970.

Elias Boutros Khalil, H. Dai, Yuyu Zhang, B. Dilkina, and L. Song. Learning combinatorial opti-
mization algorithms over graphs. In NIPS, 2017.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2015.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv:1609.02907 [cs.LG], 2017.

Andrew V. Knyazev. Toward the optimal preconditioned eigensolver: Locally optimal block pre-
conditioned conjugate gradient method. SIAM journal on scientific computing, 23(2):517–541,
2001.

Scott P. Kolodziej, Mohsen Aznaveh, Matthew Bullock, Jarrett David, Timothy A. Davis, Matthew
Henderson, Yifan Hu, and Read Sandstrom. The Suitesparse matrix collection website interface.
Journal of Open Source Software, 4(35):1244, 2019.

Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems! In
International Conference on Learning Representations, 2019.

26

https://github.com/deepmind/graph_nets

Graph Partitioning and Sparse Matrix Ordering using Reinforcement Learning and Graph Neural Networks

Cornelius Lanczos. An iteration method for the solution of the eigenvalue problem of linear differ-
ential and integral operators. United States Governm. Press Office Los Angeles, CA, 1950.

Charles E. Leiserson and John G. Lewis. Orderings for parallel sparse symmetric factorization. In
Proceedings of the Third SIAM Conference on Parallel Processing for Scientific Computing, pages
27–31, 1987.

X.S. Li. An overview of SuperLU: Algorithms, implementation, and user interface. ACM TOMS,
31(3):302–325, 2005.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph sequence neural
networks. arXiv:1511.05493v4 [cs.LG], 2017.

Nina Mazyavkina, Sergey Sviridov, Sergei Ivanov, and Evgeny Burnaev. Reinforcement learning for
combinatorial optimization: A survey. Computers & Operations Research, 134:105400, 2021.

Shoma Miki, Daisuke Yamamoto, and Hiroyuki Ebara. Applying deep learning and reinforcement
learning to traveling salesman problem. In 2018 International Conference on Computing, Elec-
tronics & Communications Engineering (iCCECE), pages 65–70, 2018.

Azade Nazi, Will Hang, Anna Goldie, Sujith Ravi, and Azalia Mirhoseini. Gap: Generalizable
approximate graph partitioning framework. arXiv:1903.00614 [cd.LG], 2019.

Francois Pellegrini. Distillating knowledge about SCOTCH. In Uwe Naumann, Olaf Schenk, Horst D.
Simon, and Sivan Toledo, editors, Combinatorial Scientific Computing, number 09061 in Dagstuhl
Seminar Proceedings, Dagstuhl, Germany, 2009. Schloss Dagstuhl - Leibniz-Zentrum fuer Infor-
matik, Germany. URL http://drops.dagstuhl.de/opus/volltexte/2009/2091.

A. Pothen, H.D. Simon, and K.-P. Liou. Partitioning sparse matrices with eigenvectors of graphs.
SIMAX, 11(3):430–452, 1990.

Alex Pothen and Chin-Ju Fan. Computing the block triangular form of a sparse matrix. ACM
Transactions on Mathematical Software (TOMS), 16(4):303–324, 1990.

Marcelo O. R. Prates, Pedro H. C. Avelar, Henrique Lemos, L. Lamb, and Moshe Y. Vardi. Learning
to solve NP-complete problems - a graph neural network for the decision TSP. In AAAI, 2019.

Jianbo Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 22(8):888–905, 2000.

Horst D. Simon. Partitioning of unstructured problems for parallel processing. Computing systems
in engineering, 2(2-3):135–148, 1991.

Barry Smith, Petter Bjorstad, and William Gropp. Domain decomposition: parallel multilevel meth-
ods for elliptic partial differential equations. Cambridge university press, 2004.

R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT Press, 2nd edition,
2018.

Lloyd N. Trefethen and David Bau III. Numerical linear algebra, volume 50. Siam, 1997.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018. URL https://openreview.net/forum?id=rJXMpikCZ.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In Advances in Neural
Information Processing Systems, volume 28. Curran Associates, Inc., 2015.

27

http://drops.dagstuhl.de/opus/volltexte/2009/2091
https://openreview.net/forum?id=rJXMpikCZ

Gatti, Hu, Smidt, Ng, Ghysels

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Courna-
peau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der
Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson,
Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake
VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero,
Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mul-
bregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing
in Python. Nature Methods, 17:261–272, 2020. doi: 10.1038/s41592-019-0686-2.

Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine Learning, 8(3-4):229–256, 1992.

Alexander Zai and Brandon Brown. Deep reinforcement learning in action. Manning Publications,
2020.

Jiongzhi Zheng, Kun He, Jianrong Zhou, Yan Jin, and Chu-Min Li. Combining reinforce-
ment learning with Lin-Kernighan-Helsgaun algorithm for the Traveling Salesman Problem.
arXiv:2012.04461 [cs.AI], 2021.

28

	Introduction
	Related work
	Advantage Actor Critic
	Finding a Minimal Edge Separator
	Refinement of the Cut using Deep Reinforcement Learning
	Partitioning the Coarsest Graph
	Algorithm Complexity
	Experimental Evaluation

	Finding a Minimal Vertex Separator
	Experimental Evaluation

	Nested Dissection Sparse Matrix Ordering
	Experimental Evaluation

	Conclusions

