
Journal of Machine Learning Research 23 (2022) 1-41 Submitted 7/21; Revised 3/22; Published 4/22

Intrinsically Motivated Goal Exploration Processes with
Automatic Curriculum Learning

Sébastien Forestier seb@forest.bio
Inria Bordeaux Sud-Ouest
200 avenue de la Vieille Tour, 33405 Talence, France

Rémy Portelas remy.portelas@inria.fr
Inria Bordeaux Sud-Ouest
200 avenue de la Vieille Tour, 33405 Talence, France

Yoan Mollard yoan.mollard@inria.fr
Inria Bordeaux Sud-Ouest
200 avenue de la Vieille Tour, 33405 Talence, France

Pierre-Yves Oudeyer pierre-yves.oudeyer@inria.fr
Inria Bordeaux Sud-Ouest
200 avenue de la Vieille Tour, 33405 Talence, France

Editor: George Konidaris

Abstract
Intrinsically motivated spontaneous exploration is a key enabler of autonomous developmental
learning in human children. It enables the discovery of skill repertoires through autotelic learning,
i.e. the self-generation, self-selection, self-ordering and self-experimentation of learning goals. We
present an algorithmic approach called Intrinsically Motivated Goal Exploration Processes (IMGEP)
to enable similar properties of autonomous learning in machines. The IMGEP architecture relies
on several principles: 1) self-generation of goals, generalized as parameterized fitness functions; 2)
selection of goals based on intrinsic rewards; 3) exploration with incremental goal-parameterized
policy search and exploitation with a batch learning algorithm; 4) systematic reuse of information
acquired when targeting a goal for improving towards other goals. We present a particularly efficient
form of IMGEP, called AMB, that uses a population-based policy and an object-centered spatio-
temporal modularity. We provide several implementations of this architecture and demonstrate
their ability to automatically generate a learning curriculum within several experimental setups.
One of these experiments includes a real humanoid robot exploring multiple spaces of goals with
several hundred continuous dimensions and with distractors. While no particular target goal is
provided to these autotelic agents, this curriculum allows the discovery of diverse skills that act as
stepping stones for learning more complex skills, e.g. nested tool use.

Keywords: Developmental learning, developmental AI, open-ended learning, intrinsic motivations,
autotelic agents, population-based IMGEP, goal exploration, curiosity-driven learning, modularity,
robotics, automatic curriculum learning.

1. Introduction

An extraordinary property of natural intelligence in humans is their capacity for lifelong autonomous
learning. During cognitive development, processes of autonomous learning in infants have several
properties that are fundamentally different from many current machine learning systems. Among
them is the capability to spontaneously explore their environments, driven by an intrinsic motivation
to discover and learn new tasks and problems that they imagine and select by themselves (Berlyne,
1966; Gopnik et al., 1999). Crucially, there is no engineer externally imposing one target goal that

c©2022 Sébastien Forestier, Rémy Portelas, Yoan Mollard and Pierre-Yves Oudeyer.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided at
http://jmlr.org/papers/v23/21-0808.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v23/21-0808.html

Forestier, Portelas, Mollard and Oudeyer

they should explore, hand providing a curriculum for learning, nor providing a ready-to-use database
of training examples. Rather, children are autotelic learners: they self-select their objectives within
a large, potentially open-ended, space of goals they can imagine, and they collect training data by
physically practicing these goals. In particular, they explore goals in an organized manner, attributing
to them values of interestingness that evolve with time, and allowing them to self-define a learning
curriculum that is called a developmental trajectory in developmental sciences (Thelen and Smith,
1996). This self-generated learning curriculum prevents infants from spending too much time on
goals that are either too easy or too difficult, and allows them to focus on goals of the right level of
complexity at the right time. Within this developmental learning process, the new learned solutions
are often stepping stones for discovering how to solve other goals of increasing complexity. Thus,
while they are not explicitly guided by a final target goal, these mechanisms allow infants to discover
highly complex skills. For instance, biped locomotion or tool use would be extremely difficult to
learn by focusing only on these targets from the start as the rewards for those goals are typically
rare or deceptive.

An essential component of such organized spontaneous exploration is the intrinsic motivation
system, also called curiosity-driven exploration system (Kidd and Hayden, 2015; Oudeyer and Smith,
2016; Gottlieb and Oudeyer, 2018). In the last two decades, a series of computational and robotic
models of intrinsically motivated exploration and learning in infants have been developed (Oudeyer
and Kaplan, 2007; Baldassarre and Mirolli, 2013; Bazhydai et al., 2020), opening new theoretical
perspectives in neuroscience and psychology (Gottlieb et al., 2013). Two key ideas have allowed to
simulate and predict important properties of infant spontaneous exploration, ranging from vocal
development (Moulin-Frier et al., 2014; Forestier and Oudeyer, 2017), to object affordance and tool
learning (Forestier and Oudeyer, 2016a,c). The first key idea is that infants might select experiments
that maximize an intrinsic reward based on empirical learning progress (Oudeyer et al., 2007). This
mechanism would generate automatically developmental trajectories (e.g. learning curricula) where
progressively more complex tasks are practiced, learned and used as stepping stones for more complex
skills. The second key idea is that beyond selecting actions or states based on the predictive learning
progress they provide, a more powerful way to organize intrinsically motivated exploration is to select
goals, i.e. self-generated fitness functions, based on a measure of competence progress, i.e. a measure
of progress in learning to produce diverse and controlled behavioral features (Baranes and Oudeyer,
2010b, 2013). Here, the intrinsic reward is the empirical improvement towards solving self-selected
goals (Oudeyer and Kaplan, 2007; Forestier and Oudeyer, 2016a), happening through lower-level
policy search mechanisms that generate physical actions. The efficiency of such goal exploration
processes relies on a form of hindsight learning that leverages the fact that the data collected when
targeting a goal can be informative to find better solutions to other goals (for example, a learner
trying to achieve the goal of pushing an object on the right but actually pushing it on the left fails to
progress on this goal, but learns as a side effect how to push it on the left). These general ideas have
been instantiated and studied in the context of population-based learning architectures (e.g. Baranes
and Oudeyer (2013); Péré et al. (2018)), as well as more recently in goal-conditioned reinforcement
learning architectures (e.g. Colas et al. (2019); Nair et al. (2018); Choi et al. (2021)), used to build
autotelic agents (Colas et al., 2022).

Beyond neuroscience and psychology, we believe these models open new perspectives in artificial
intelligence, contributing to the foundations of the new field of developmental artificial intelligence
(Eppe and Oudeyer, 2021). In particular, algorithmic architectures for intrinsically motivated goal
exploration were shown to allow the efficient acquisition of repertoires of high-dimensional motor
skills with automated curriculum learning in several robotics experiments (Baranes and Oudeyer,
2013; Forestier and Oudeyer, 2016a). This includes for example learning omnidirectional locomotion
or learning multiple ways to manipulate complex soft objects (Rolf et al., 2010; Baranes and Oudeyer,
2013).

2

Intrinsically Motivated Goal Exploration Processes

In this article, we make several contributions:

• We present a formalization of Intrinsically Motivated Goal Exploration Processes (IMGEP),
that is both more compact and more general than these previous models. In particular, it
considers a generalized definition of the concept of goals, construed as abstract parameterized
fitness functions that can express arbitrary objectives over full behavioural trajectories and
include constraints. This enables to express a diversity of goal exploration algorithms in the
same framework, including Quality-Diversity algorithms that were not previously formalized as
goal exploration algorithms.

• We present a new population-based IMGEP algorithmic architecture, called AMB, implementing
two forms of object-centered modularity and using learning-progress to sample associated
modular goal spaces. First, we introduce spatial modularity: each object of the environment is
associated to a goal space. Second, we introduce temporal modularity: the temporal structure
of objects’ movement is leveraged for more efficient leveraging of discovered stepping-stones in
goal exploration, through a stepping-stone preserving mutation operator (SSPMutation). We
also present various instantiations.

• We present a systematic experimental study of this new IMGEP algorithm in diverse en-
vironments providing opportunities for discovering complex skills like tool use, as well as
including complex distractors: a 2D simulated environment, a Minecraft environment, and a
real humanoid robotic setup. We compare several variants of IMGEP algorithms, including
ablations, in terms of sample efficiency to discover a diversity of behavioral features. We also
compare IMGEPs algorithms with algorithms exploring only one target object: we show that
letting agents self-organize exploration of diverse objects is vastly more efficient for discovering
how to control the target object than channeling the agent to explore only this object. We also
compare the exploration resulting from the self-organized learning curriculum of intrinsically
motivated agents with the exploration following a curriculum designed by hand with expert
knowledge of the task, showing a similar exploration efficiency.

2. Intrinsically Motivated Goal Exploration Processes

We define a framework for the intrinsically motivated exploration of multiple goals, where the data
collected when exploring a goal give some information to help reach other goals. This framework
considers that when the agent performed an experiment, it can compute the fitness of that experiment
for achieving any goal, not only the one it was trying to reach. Importantly, it does not assume that
all goals are achievable, nor that they are of a particular form, enabling to express complex objectives
that do not simply depend on the observation of the end policy state but might depend on several
aspects of entire behavioral trajectories (see Box on features, goals and goal spaces). Also, the agent
autonomously builds its goals but does not know initially which goals are achievable or not, which
are easy and which are difficult, nor if certain goals need to be explored so that other goals become
achievable.

2.1 Notations and Assumptions

Let’s consider an agent that executes continuous actions a P A in continuous states s P S of
an environment E. We consider policies producing time-bounded rollouts through the dynamics
δEpst`1 | st0:t,at0:tq of the environment, and we denote the corresponding behavioral trajectories
τ “ tst0 , at0 , ¨ ¨ ¨ , stend

, atend
u P T.

We assume that the agent is able to construct a goal space G parameterized by g, representing
fitness functions fg giving the fitness fgpτq of an experimentation τ to reach a goal g (see Box on

3

Forestier, Portelas, Mollard and Oudeyer

In the general case, the agent has algorithmic tools to construct any goal as any function fg
(parameterized by vector g), taking as input a state-action trajectory τ , and returning the fitness
of τ for achieving the goal. As a shorthand, we call the goal g (vector of parameters), but the full
representation of the goal consists in the combination of the parameters g and the function or
program computing the fitness functiona.

Formally, given a behavioural trajectory τ “ tst0 , at0 , ¨ ¨ ¨ , stend
, atend

u, we assume the agent
can compute a set of behavioural features ϕ1pτq, ..., ϕnpτq, also called outcomes, over the
full trajectory. Those features are vectors that encode any static or dynamic property of the
environment or the agent itself. Examples include the average speed of an object, an encoding of
an object’s trajectory or relation to other objects, the frequency of a movement, or the result of a
test checking whether a movement or an object fulfills some properties specified in a sub-part of
vector g. The features may be given to the agent, or learned, for instance using generative models
(see Péré et al. (2018); Nair et al. (2018); Laversanne-Finot et al. (2018); Reinke et al. (2020)).

We also assume that computational tools, in the form of mathematical operatorsb, are available
to the agent for constructing goals, i.e. for constructing fitness functions fg using these features.
Examples include:
• fgpτq “ ϕgpτq: the goal is to produce a trajectory τ that maximizes feature ϕgpτq, where
the goal parameter vector g is a simple one dimensional index of the target behavioural
feature. Sampling the space of goals thus amounts to sampling which feature to maximize,
e.g. maximize agent’s speed or number of objects collected.

• fgpτq “ ´||ϕψ1pgqpτq ´ ψ2pgq||: the goal g is to produce a trajectory τ so that its features
ϕψ1pgqpτq are as close as possible to the target vector ψ2pgq, using a measure ||.||, e.g. move
the hand or a ball to a particular 3D position (Baranes and Oudeyer, 2013; Péré et al., 2018),
or produce a sound with a particular target spectrum (Moulin-Frier et al., 2014).

• fgpτq “ ϕipτq if ϕjpτq P ψ3pgq else 0: the goal g is to produce a trajectory τ which
maximizes feature i while keeping feature vector j inside a local region specified by ψ3pgq, e.g.
maximize agent’s speed while displaying a certain type of pattern of leg movement. When
goal sampling is made in this form of function space, IMGEPs correspond to quality-diversity
algorithms (Pugh et al., 2016) such as MAP-Elite (Cully et al., 2015).

• fgpτq “ fg1pτq if fg2pτq ă fg3pτq else fg4pτq: goals can be combined to form more
complex constrained optimization problems, e.g. move the ball to follow a target while not
getting too close to the walls and holes and minimizing the energy spent.

A goal space is a set of goals (fitness functions) parameterized by a vector g. Diverse forms of
structured parameterization can be used, as shown by the examples above, and corresponding to
diverse types of goals. In the experiments of this paper, we define several goal spaces, each with a
parameterization representing the target trajectory of positions or sound or light of an object in
the environment. Each object k and modality m defines a goal space Gk,m containing goals g of the
form fk,mg pτq “ ´||ϕψk,m

1 pgqpτq ´ψ
k,m
2 pgq|| where ψk,m2 pgq denotes the target trajectory of object k

in modality m (positions, sound or light), and ϕψk,m
1 pgqpτq denotes the features of trajectory τ of

the same object and modality.

a. The term "fitness function" is here a synonym for "goal-achievement reward function" sometimes used in related
work.

b. These operators are pre-defined in existing work and in this paper, but they could in principle be learned.

Generalized Goals and Goal Spaces

4

Intrinsically Motivated Goal Exploration Processes

Architecture 1 Intrinsically Motivated Goal Exploration Process (IMGEP)
Require: Action space A, State space S
1: Initialize knowledge E “ H
2: Initialize goal space G and goal policy Γ
3: Initialize policies Π and Πε

4: Launch asynchronously the two following loops:
5: loop Ź Exploration loop
6: Choose goal g in G with Γ
7: Execute a roll-out of Πε, observe trajectory τ

Ź From now on fg1pτq can be computed to estimate the fitness of the current experiment τ
for achieving any goal g1 P G

8: Compute the fitness f “ fgpτq associated to goal g
9: Compute intrinsic reward ri “ IRpE , g, fq associated to g

10: Update exploration policy Πε with (E , g, τ, f) Ź e.g. fast incremental algo.
11: Update goal policy Γ with (E , g, τ, f, ri)
12: Update knowledge E with (g, τ, f, ri)
13: loop Ź Exploitation loop
14: Update policy Π with E Ź e.g. batch training of deep NN, SVMs, GMMs
15: Update goal space G with E
16: return Π

features, goals and goal spaces). Also, we assume that given a trajectory τ , the agent can compute
fgpτq for any g P G.

Given S, A and G, the agent explores the environment by sampling goals in G and searching for
good solutions to those goals, and learns a goal-parameterized policy Πpat`1 | g, st0:t`1,at0:tq

to reach any goal from any state.
We can then evaluate the agent’s exploration and learning efficiency either by observing its

behavior and estimating the diversity of its skills and the reached stepping-stones, or by “opening”
agent’s internal models and policies to analyze their properties.

2.2 Algorithmic Architecture

We present Intrinsically Motivated Goal Exploration Processes (IMGEP) as an algorithmic architec-
ture that can be instantiated into many particular algorithms sharing several general principles (see
pseudo-code in Architecture 1):

• The agent autonomously builds and samples goals as fitness functions, possibly using intrinsic
rewards,

• Two processes are running in parallel: 1) an exploration loop samples goals and searches for
good solutions to those goals with the exploration policy; 2) an exploitation loop uses the data
collected during exploration to improve the goal-parameterized policy over the goal space(s),

• The data acquired when exploring solutions for a particular goal is reused to extract potential
solutions to other goals.

2.3 Goal Exploration

In the exploration loop, the agent samples a goal g, executes its exploration policy Πε, and observes
the resulting trajectory τ . This new experiment τ can be used to:

5

Forestier, Portelas, Mollard and Oudeyer

• compute the fitness associated to goal g,

• compute an intrinsic reward evaluating the interest of the choice of g,

• update the goal policy (sampling strategy) using this intrinsic reward,

• update the exploration policy Πε with a fast incremental learning algorithm,

• update the learning database E .

Then, asynchronously, this learning database E can be used to learn a target policy Π with a slower
or more computationally demanding algorithm, but on the other end resulting in a more accurate
policy. The goal space may also be updated based on this data.

2.4 Intrinsic Rewards

In goal exploration, a goal g P G is chosen at each iteration. G may be infinite, continuous and of
high-dimensionality, making the choice of goal important and non-obvious. Indeed, even if the fitness
function fg1pτq may give information about the fitness of a trajectory τ to achieve many goals g1 P G,
the policy leading to τ has been chosen with the goal g to solve in mind, thus it may not give as
much information about other goals than the execution of another policy chosen when targeting
other goals.

Intrinsic rewards provide a mean for the agent to self-estimate the expected interest of exploring
particular goals for learning how to achieve all goals in G. An intrinsic reward signal ri is associated to
a chosen goal g, and based on a heuristic (denoted IR) such as outcome novelty, progress in reducing
outcome prediction error, or progress in competence to solve problems (Oudeyer and Kaplan, 2007).

In the experiments of this paper, we use intrinsic rewards based on measuring the competence
progress towards the self-generated goals, which has been shown to be particularly efficient for
learning repertoires of high-dimensional robotics skills (Baranes and Oudeyer, 2013). Figure 1 shows
a schematic representation of possible learning curves and the exploration preference of an agent
with intrinsic rewards based on learning progress.

3. Modular Population-Based IMGEP Architecture

In the previous section, we defined the most general IMGEP architecture without specifying the
implementation of its components such as goals and policies. We define here a particular IMGEP
architecture, used in the experiments of this paper, where the goal-parameterized policy Π is based on
a population of solutions, the goal space G is constructed in a modular manner from a set of objects
and the exploration mutations is temporally modular through taking into account the movement
of those objects. This particular architecture is called Modular Population-Based IMGEP, and we
detail its ingredients in the following sections. Its pseudo-code is provided in Architecture 2. Figure
2 summarizes the different components of Active Model Babbling (AMB), our implementation of
the Modular Population-Based IMGEP architecture, using learning progress for goal sampling and
stepping-stone preserving mutations.

3.1 Population-Based Meta-Policies Π and Πε

In this version of the IMGEP framework, the goal-parameterized policy Π is based on a population of
low-level policies. We consider that the starting state st0 of a trajectory is characterized by a feature
vector c called context. The policy Π is built from a set of low-level policies πθ parameterized by
θ P Θ, and from a meta-policy Πpθ | g, cq which, given a goal and context, chooses the best policy
πθ to achieve the goal g. The policies πθpat`1 | st0:t`1,at0:tq can be implemented for instance by
stochastic black-box generators or small neural networks (see experimental section).

6

Intrinsically Motivated Goal Exploration Processes

Training Time
0.0

0.2

0.4

0.6

0.8

1.0

L
ea

rn
in

g
C

u
rv

e

Training Time
0.0

0.2

0.4

0.6

0.8

1.0

P
re

fe
re

n
ce

Figure 1: Schematic representation of possible learning curves for different goals and the associated
exploration preference for an agent with intrinsic rewards based on learning progress.
Left: schematic learning curves associated to 5 imaginary goals: the y axis represents the
competence of the agent to achieve the goal (1 is perfect, 0 is chance level), and the x axis
is training time on a goal. The blue, orange and green curves represent achievable goals,
for which agent’s competence increases with training, at different rates, and saturates after
a long training time. The purple curve represents a goal on which the agent always has the
same competence, with no progress. The red curve is the learning curve on an unreachable
goal, e.g. moving an uncontrollable object. Right: exploration preference of an agent with
a learning progress heuristic (competence derivative) to explore the 5 goals defined by the
learning curves. At the beginning of exploration, the agent makes the most progress on
goal blue so it prefers to train on this one, and then its preference will shift towards goals
orange and green. The agent is making no progress on goal purple so will not choose to
explore it, and goal red has a noisy but low estimated learning progress.

During the goal exploration loop, the main objective consists in collecting data that covers well
the space of goals: finding θ parameters that yield good solutions to as many goals as possible. The
exploration meta-policy Πεpθ | g, cq is learned and used to output a distribution of policies πθ
that are interesting to execute to gather information for solving in context c the self-generated goal
g and goals similar to g. To achieve the objective of collecting interesting data, the exploration
meta-policy Πε must have fast and incremental updates. As the aim is to maximize the coverage
of the space of goals, being very precise when targeting goals is less crucial than the capacity to
update the meta-policy quickly and incrementally. In our experiments, the exploration meta-policy
Πεpθ | g, cq is implemented as a fast memory-based nearest neighbor search with a kd-tree (Bentley,
1975). More precisely, we record for each policy πθ in our database the associated context c it was
used in and the outcome oτ it produced. Then, given a new context cnew and a goal g to attain,
which correspond to an (object-specific) outcome o to produce, Πε selects for interaction the policy
πθ1 whose associated context and (object-specific) outcome is closest to cnew and g (using a nearest
neighbor search in the concatenated context-outcome space). Note that c is not used for goal selection,
such that a single learning progress-based motivation level can be inferred per goal space.

On the contrary, the purpose of the target meta-policy Π is to be used in exploitation mode:
later on, it can be asked to solve as precisely as possible some goals g with maximum fitness. As the
training of this meta-policy can be done asynchronously from data collected by the goal exploration
loop, this allows the use of slower training algorithms, possibly batch, that might generalize better,
e.g. using Gaussian mixture models, support vector regression or (deep) neural networks. These
differences justify the fact that IMGEP uses in general two different representations and learning
algorithms for Πε and Π. This two-level learning scheme has similarities with the Complementary

7

Forestier, Portelas, Mollard and Oudeyer

Goal Space Choice Goal Choice

Policy Choice

 execution

 New Outcome

P
ro

gr
es

s

World Model

Object
Trajectory

Figure 2: Summary of AMB, our modular population-based IMGEP implementation. At each
iteration, the agent observes the current context c and chooses a goal space (an object)
to explore based on intrinsic rewards (the learning progress to move each object) with Γ.
Then a particular goal g for the chosen object is sampled with γk, for instance to push
the left joystick to the right. The agent chooses the best policy parameters θ to reach
this goal, with the exploration meta-policy Πε, and using an internal model of the world
implementing object-centered modularity in goals and mutations. The agent executes
policy πθ, observes the trajectory τ and compute the outcome oτ encoding the movement
of each object. Finally, each component is updated with the result of this experiment.

Learning Systems Theory used to account for the organization of learning in mammalian brains
(Kumaran et al., 2016). To keep our experiments tractable and focus on studying intrinsically
motivated exploration, we consider a simple target meta-policy Π, corresponding to our exploration
meta-policy without mutations mechanisms (section 3.3).

3.2 Object-Centered Modular Goal Construction

In the IMGEP architecture, the agent builds and samples goals autonomously. Here, we consider the
particular case where the agent builds several goal spaces that correspond to moving each object in the
environment. Each goal space represents features of the movement of an object in the environment,
such as its end position in τ or its full trajectory.

We define the outcome oτ P O of an experiment τ as the features of the movement of all objects,
so that O “ś

k

Ok where okτ P Ok are the features of object k. Those features come from a perceptual

system that may be given to the agent or learned by the agent. From feature space Ok, the agent
can autonomously generate a corresponding goal space Gk that contains fitness functions of the form
fgpτq “ ´||g ´ o

k
τ ||k. The norm ||.||k is a distance in the space Ok, which can be normalized to be

able to compare the fitness of goals across goal spaces. The goal space is thus modular, composed of
several object-related subspaces: G “ Ť

k

Gk.

8

Intrinsically Motivated Goal Exploration Processes

Architecture 2 Modular Population-Based IMGEP
Require: Action space A, State space S, Context space C, Outcome space O
1: Initialize knowledge E “ H
2: Initialize goal space G, goal policies γk and goal space policy Γ
3: Initialize meta-policies Π and Πε

4: Launch asynchronously the two following loops:
5: loop Ź Exploration loop
6: Observe context c
7: Choose goal space Gk with Γ
8: Choose goal g in Gk with γk
9: Choose policy parameters θ to explore g in context c with Πε

10: Execute a roll-out of πθ, observe trajectory τ
11: Compute outcome oτ from trajectory τ

Ź From now on, fg1pτq can be computed to estimate the fitness of the experiment τ for
achieving any goal g1 P G

12: Compute the fitness f “ fgpτq associated to goal g
13: Compute intrinsic reward ri “ IRpE , c, g, θ, oτ , fq associated to g in context c
14: Update exploration meta-policy Πε with (E , c, θ, τ, oτ) Ź e.g. fast incr. algo.
15: Update goal policy γk with (E , c, g, oτ , f, ri)
16: Update goal space policy Γ with (E , c, k, g, oτ , f, ri)
17: Update knowledge E with (c, g, θ, τ, oτ , f, ri)
18: loop Ź Exploitation loop
19: Update meta-policy Π with E Ź e.g. batch training of DNN, SVM, GMM
20: return Π

With this setting, goal sampling is hierarchical in the sense that the agent first chooses a goal space
Gk to explore with a goal space policy Γ and then a particular goal g P Gk with the corresponding
goal policy γk. Those two levels of choice can make use of self-computed intrinsic rewards ri (see Sec.
2.4).

Given an outcome oτ , the fitness fgpτq can thus be computed by the agent for all goals g P G and
at any time after the experiment τ . For instance, if while exploring the goal of moving object A to
the left, object B moved to the right, that outcome can be taken into account later when the goal is
to move object B.

3.3 Object-Centered Temporal Modularity: Stepping-Stone Preserving Mutations

When targeting a new goal g, the internal model (a memory-based nearest neighbor search in our
experiments) infers the best policy πθ to reach the goal g. The exploration meta-policy Πε then
performs a mutation on θ in order to explore new policies. This mutation step can be seen as
analogous to existing approaches injecting noise in parametric RL policies to foster exploration
(Fortunato et al., 2018; Plappert et al., 2018). The mutation operator could just add a random noise
on the parameters θ, however, those parameters do not all have the same influence on the execution of
the policy, in particular with respect to time. In our implementations, the parameters are sequenced
in time, with some parameters influencing more the beginning of the policy roll-out and some more
the end of the trajectory. However, in the context of tool use, the reaching or grasping of a tool is
necessary for executing a subsequent action on an object. A random mutation of policy parameters,
irrespective of the moment when the tool is grasped, can result in an action where the agent do not
grasp the tool and thus cannot explore the corresponding object.

The Stepping-Stone Preserving Mutation operator (SSPMutation) analyzes the trajectory of the
target object while the previous motor policy πθ was run, to find the moment when the object

9

Forestier, Portelas, Mollard and Oudeyer

started to move. The operator does not change the variables of θ concerning the movement before
the object moved and mutates the variables of θ concerning the movement after the object moved
(see an example mutation in Fig. 15). When the goal of the agent is to move the tool and it already
succeeded to move the tool in the past with policy πθ, then the application of this mutation operator
changes the behavior of the agent only when the tool start to move, which makes the agent explore
with the tool once grasped and avoid missing the tool. Similarly, when the goal of the agent is to
move a toy controlled by a tool, the mutation changes the behavior only when the toy starts to move,
which makes the agent grasp the tool and reach the toy before exploring new actions, so that the
agent do not miss the tool nor the toy. The idea of this stepping-stone preserving operator is similar
to the Go-Explore approach (Ecoffet et al., 2021).

3.4 Active Model Babbling (AMB) and Random Model Babbling (RMB)

The Modular Population-Based IMGEP architecture gives a high-level description of the learning
agent with a population-based policy and an object-centered modularity in goals and mutations.
Each component of this architecture may be instantiated in various ways. For instance, in the main
loop of Architecture 2, many aspects are not constrained such as how the goal is chosen, how the
parameters θ are computed, how the policies πθ are implemented, how the intrinsic rewards are
defined.

An important contribution of the present work is to design and showcase the effectiveness of one
particular instantiation of modular population-based IMGEPs, called Active Model Babbling (AMB,
see fig. 2), which uses a learning-progress based mechanism for sampling goal spaces (see section
4.2.3 for examples of implementations) as well as the stepping-stone preserving mutations mechanism
described in section 3.3 (see section 4.2.2 for implementation details).

In addition to AMB, we also present an alternative variant, called Random Model Babbling
(RMB), which also uses the stepping-stone preserving mutations, but implements a simpler goal space
policy: instead of using learning progress estimates, goal spaces are selected randomly throughout
training. Although apparently simplistic, this approach can perform surprisingly well, especially
when all goal spaces are relevant, i.e. when there are no distractors (see figure 20).

In Section 4.2, we detail implementations of these types of Modular Population-Based IMGEP
architectures, as well as other baselines.

4. Experiments

In this section, we evaluate the Modular Population-Based IMGEP architecture by designing several
algorithmic implementations and several environments suitable for curriculum learning, where the
exploration of a task brings information to later solve other tasks. In particular, we study environments
where agents discover objects that can be used as tools to move other objects. A good exploration of
a tool and of its functioning will yield a better exploration of the objects on which this tool can act.
Those tasks provide the opportunity for an intrinsically motivated agent to build on the skills it has
learned to explore and learn new skills on its own.

Here, we first describe three tool-use learning environments and we detail our implementations
of IMGEP and of several control conditions. Then, we study the behavior of the different agents
in the different environments depending on the learning architecture. We investigate in particular
the benefits of a modular representation of the sensory feedback with goals based on objects, and
how the exploration mutations can take into account the movement of the goal object. We further
examine how and in which conditions the intrinsic motivation component of the IMGEP architecture
improves the learning of skills that can be reused, such as using a tool to move an object.

10

Intrinsically Motivated Goal Exploration Processes

Handle

Arm

Joints

Gripper

Magnetic objects

Magnet

Stick

Static objects

1.5

Cat

Dog

1.0 0.5 0.0 0.5 1.0 1.5 X

0.0

0.5

1.0

1.5
Y

Velcro Objects

Velcro

Figure 3: 2D Simulated Tool-Use Environment. A simulated robotic arm with a gripper can grab
sticks and move toys. The gripper has to close near the handle of a stick to grab it. One
magnetic toy and one Velcro toy are reachable with their corresponding stick. Other toys
cannot be moved (static or too far away). The cat and the dog are distractors: they move
randomly, independently of the arm.

4.1 Tool-Use Environments

We design three tool-use environments. The first one is a 2D simulated robotic arm with 3 joints and
a gripper that can grab sticks and move toys. It is a simple environment with no physics and only 2D
geometric shapes so very fast to execute. The second environment is a Minecraft scene where an agent
is able to move, grab and use tools such as a pickaxe to break blocks. The third one is a real robotic
setup with a Torso robot moving its arm that can reach joysticks controlling a toy robot. This setup
has complex high-dimensional motor and sensory spaces with noise both in the robot physical arm
and in the interaction between objects such as its hand and the joysticks. It is a high-dimensional
and noisy environment with a similar stepping-stone structure as the robotic environments but with
a completely different sensorimotor setup. The code of the different environments and experiments is
available on GitHub1.

4.1.1 2D Simulated Tool-Use Environment

In the 2D Simulated Environment (see Fig. 3), the learning agent controls a robotic arm with a
gripper, that can grab one of two sticks, one with a magnet at the end and one with Velcro, that can
themselves be used to move several magnets or Velcro toys. Some other objects cannot be moved,
they are called static distractors, and finally a simulated cat and dog are randomly moving in the
scene, they are random distractors.

1. Code of the IMGEP experiments: https://github.com/sebastien-forestier/IMGEP

11

https://github.com/sebastien-forestier/IMGEP

Forestier, Portelas, Mollard and Oudeyer

The 2D robotic arm has 3 joints that can rotate from ´π rad to π rad. The length of the 3
segments of the arm are 0.5, 0.3 and 0.2 so the length of the arm is 1 unit. The starting position of
the arm is vertical with joints at position 0 rad and its base is fixed at position p0, 0q. The gripper
gr has 2 possible positions: open (gr ě 0) and closed (gr ă 0). The robotic arm has 4 degrees of
freedom represented by a vector in r´1, 1s4.

Two sticks of length 0.5 can be grasped by the handle side (orange side) in order to catch an
out-of-reach object. The magnetic stick can catch magnetic objects (in blue), and the other stick
has a Velcro tape to catch Velcro objects (in green). If the gripper closes near the handle of one
stick, this stick is considered grasped and follows the gripper’s position and the orientation of the
arm’s last segment until the gripper opens. If the other side of a stick reaches a matching object
(magnetic or Velcro), the object then follows the stick. There are three magnetic objects and three
Velcro objects, but only one of each type is reachable with its stick. A simulated cat and dog are
following a random walk, they have no interaction with the arm nor with other object. Finally, four
static black squares have also no interaction with other objects. The arm, tools and other objects
are reset to their initial state at the end of each iteration of 50 steps.

The agent receives a sensory feedback representing the result of its actions. This feedback (or
outcome) is either composed of the position of each object at 5 time points during the 50 steps
trajectory, or just the end state of each object, depending on the experiments. First, the hand is
represented by its X and Y position and the aperture of the gripper (1 or ´1). The sticks are
represented by the X and Y position of their tip. Similarly, each other object is represented by
their X and Y positions. Each of the 15 objects defines a sensory space Si (10 of those objects are
uncontrollable distractors). The total sensory space S has either 155 dimensions if trajectories are
represented, or 31 dimensions if only the end state of each object is represented.

4.1.2 Minecraft Mountain Cart

The Minecraft Mountain Cart (MMC) extends the famous Mountain Car control benchmark in a 3D
environment with a multi-goal setting (see Fig. 4).

In this episodic task, the agent starts on the left of the rectangular arena and is given ten seconds
(40 steps) to act on the environment using 2 continuous commands: move and strafe, both using
values in r´1; 1s. move(1) moves the agent forward at full speed, move(-0.1) moves the agent slowly
backward, etc. Similarly strafe(1) moves the agent left at full speed and strafe(-0.1) moves it slowly
to the right. Additionally, a third binary action allows the agent to use the currently handled tool.

The first challenge of this environment is to learn how to navigate within the arena’s boundaries
without falling in water holes (from which the agent cannot get out). Proper navigation might lead
the agent to discover one of the two tools of the environment: a shovel and a pickaxe. The former is
of no use but the latter enables to break diamond blocks located further ahead in the arena. A last
possible interaction is for the agent to get close enough to the cart to move it along its railroad. If
given enough speed, the cart is able to climb the left or right slope. The height and width of these
slopes were made in such a way that an agent simply hitting the cart at full speed will not provide
enough inertia for the cart to climb the slope. The agent must at least partially support the cart
along the track to propel it fast enough to fully climb the slope.

The outcome of an episode is a vector composed of the end position of the agent (2D), shovel
(2D), pickaxe (2D), cart (1D) and 3 distractors (2D each) positions along with a binary vector (5D)
encoding the 5 diamond blocks’ states (3 objects out of 8 are uncontrollable distractors).

This environment is interesting to study modular IMGEP approaches since it is composed of a
set of linked tasks of increasing complexity. Exploring how to navigate will help to discover the tools
and, eventually, will allow to break blocks and move the cart.

12

Intrinsically Motivated Goal Exploration Processes

Figure 4: Minecraft Mountain Cart Environment. If the agent manages to avoid falling into water
holes it may retrieve and use a pickaxe to break diamond blocks and access the cart. A
shovel is also located in the arena and serves as a controllable distractor.

4.1.3 Robotic Tool-Use Environment

In order to benchmark different learning algorithms in a realistic robotic environment with high-
dimensional action and outcome spaces, we designed a real robotic setup composed of a humanoid
arm in front of joysticks that can be used as tools to act on other objects (see Fig. 5). We recorded
a video of an early version of the experimental setup2.

A Poppy Torso robot (the learning agent) is mounted in front of two joysticks and explores with
its left arm. A Poppy Ergo robot (seen as a robotic toy) is controlled by the right joystick and can
push a ball that controls some lights and sounds. Poppy is a robust and accessible open-source 3D
printed robotic platform (Lapeyre et al., 2014).

The left arm has 4 joints, with a hook at the tip of the arm. A trajectory of the arm is here
generated by radial basis functions with 5 parameters on each of the 4 degrees of freedom (20
parameters in total).

Two analogical joysticks (Ultrastick 360) can be reached by the left arm and moved in any
direction. The right joystick controls the Poppy Ergo robotic toy, and the left joystick do not control
any object. The Poppy Ergo robot has 6 motors, and moves with hardwired synergies that allow
control of rotational speed and radial extension.

A tennis ball is freely moving in the blue arena which is slightly sloped so that the ball comes
close to the center at the end of a movement. The speed of the ball controls (above a threshold) the
intensity of the light of a LED circle around the arena. Finally, when the ball touches the border of
the arena, a sound is produced and varied in pitch depending on ball position.

Several other objects are included in the environment, with which the agent cannot interact. Two
Ergo robots (2D objects) are moving randomly, independently of the agent. Six objects are static:
the right hand (3D) of the robot that is disabled in this experiment, the camera recording the ball

2. Early version of the experimental setup: https://youtu.be/NOLAwD4ZTW0

13

https://youtu.be/NOLAwD4ZTW0

Forestier, Portelas, Mollard and Oudeyer

Figure 5: Robotic Tool-Use Environment. Left: a Poppy Torso robot (the learning agent) is mounted
in front of two joysticks that can be used as tools to act on other objects: a Poppy Ergo
robotic toy and a ball that can produce light and sound. Right: 6 copies of this setup are
running in parallel to gather more data. Several Ergo robots are placed between robots:
they act as distractors that move randomly, independently of the agents.

trajectory (3D), the blue circular arena (2D), an out-of-reach yellow toy (2D), the red button also
out-of-reach (2D) and the lamp (2D). All distractor objects are reset after each roll-out.

The context c of this environment represents the current configuration of objects in the scene. In
practice, since only the Ergo and ball are not reset after each roll-out, this amounts to measuring the
rotation angle of the Ergo and of the ball around the center of the arena.

The agent is given a perceptual system providing sensory feedback that represents the trajectories
of all objects in the scene. First, the 3D trajectory of the hand is computed through a forward model
of the arm as its x, y and z position. The 2D states of each joystick and of the Ergo are read by
sensors, and the position of the ball retrieved through the camera. The states of the 1D intensity of
the light and the 1D pitch of the sound are computed from the ball position and speed. Each of the
15 objects defines a sensory space Si representing its trajectory (8 of those objects are uncontrollable
distractors). The total sensory space S has 310 dimensions.

4.2 Implementation of the Modular Population-Based IMGEP Architecture

In the following subsections, we detail our implementations of the algorithmic parts of the modular
population-based IMGEP architecture (see architecture 2).

4.2.1 Motor Policy πθ

In the 2D Simulated environment and the Robotic environment, we implement the motor policies
with Radial Basis Functions (RBF). We define 5 Gaussian basis functions with the same shape (σ “ 5
for a 50 steps trajectory in the 2D environment and σ “ 3 for 30 steps in the Robotic environment)
and with equally spaced centers (see Fig. 6). The movement of each joint is the result of a weighted
sum of the product of 5 parameters and the 5 basis. The total vector θ has 20 parameters, in both
the 2D Simulated and the Robotic environment. In the 2D environment, the fourth joint is a gripper
that is considered open if its angle is positive and closed otherwise.

In the Minecraft Mountain Cart environment, trajectories are sampled in a closed-loop fashion
using neural networks. The observation vector has the same structure as the outcome vector: it
provides the current positions of all objects normalized in r´1; 1s (18D). Each neural network is
composed of one hidden layer of 64 Relu units and a 3D output with tanh activation functions. The

14

Intrinsically Motivated Goal Exploration Processes

0 5 10 15 20 25 30

Timesteps

0.0

0.2

0.4

0.6

0.8

1.0

B
as

is
P

ow
er BF 1

BF 2

BF 3

BF 4

BF 5

(a) Basis Functions shape

0 5 10 15 20 25 30

Timesteps

−150

−100

−50

0

50

100

150

Jo
in

t
an

gl
es

(d
eg

)

Joint 1

Joint 2

Joint 3

Joint 4

(b) Example Joints Trajectory

Figure 6: Implementation of motor policies πθ through Radial Basis Functions. (a) 5 Gaussian bases
with different centers but same shape. (b) the movement of each joint is the result of a
weighted sum of the product of 5 parameters and the 5 basis. The total vector θ has 20
parameters, in both the 2D Simulated and the Robotic environment.

1411 policy parameters are initialized using the initialization scheme of He et al. (2015). Note that
in our experiments, neural networks are not trained through backpropagation: as for RBF policies,
their parameters are mutated. Our mutation-based approach is close to neuroevolution approaches
(Stanley et al., 2019).

4.2.2 Stepping-Stone Preserving Mutations

The Stepping-Stone Preserving Mutation operator (SSPMutation) does not change the variables of θ
concerning the movement before the object moved and modifies the variables of θ concerning the
movement after the object moved. SSPMutation adds a Gaussian noise around those values of θ in
the 2D simulated environment (σ “ 0.05) and in Minecraft Mountain Cart (σ “ 0.3), or adds the
Gaussian noise around the previous motor positions (in the robotic environment with joysticks). In
the experimental section we compare it to the FullMutation operator that adds a Gaussian noise to
θ irrespective of the moment when the target object moved.

4.2.3 Goal Space Policy Γ

The agent estimates its learning progress globally in each goal space (or for each model learned).
At each iteration, the context c is observed, a goal space k is chosen by Γ and a random goal g is
sampled by γk in Gk (corresponding to a fitness function fg). Then, in 80% of the iterations, the
agent uses Πεpθ | g, cq to generate with exploration a policy θ and does not update its progress
estimation. In the other 20%, it uses Π, without exploration, to generate θ and updates its learning
progress estimation in Gk, with the estimated progress in reaching g. To estimate the learning
progress ri made to reach the current goal g, the agent compares the outcome oτ with the outcome
o1τ obtained for the previous context and goal (g1, c1) most similar (Euclidean distance) to (g, c):
ri “ fgpτq ´ fgpτ

1q. Finally, Γ implements a non-stationary bandit algorithm to sample goal spaces.
The bandit keeps track of a running average rki of the intrinsic rewards ri associated to the current
goal space Gk. With probability 20%, it samples a random space Gk, and with probability 80%, the
probability to sample Gk is proportional to rki in the 2D Simulated and Minecraft environments, or
exp

` rki
ř

k r
k
i

˘

if rki ą 0 and 0 otherwise, in the Robotic environment.

15

Forestier, Portelas, Mollard and Oudeyer

4.2.4 Control Conditions

We design several control conditions.In the Random Model Babbling (RMB) condition, the choice of
goal space is random: Γpk | cq, and γkpg | cq for each k are always uniform distributions. Agents in
the Single Goal Space (SGS) condition always choose the same goal space, of high interest to the
engineer: the magnet toy in the 2D Simulated environment, and the ball in the robotic environment.
The Fixed Curriculum (FC) condition defines Γ as a curriculum sequence engineered by hand: the
agents explore objects in a sequence from the easiest to discover to the most complex object while
ignoring distractors. The conditions SGS and FC are thus extrinsically motivated controls. We define
the Flat Random Goal Babbling (FRGB) condition with a single outcome/goal space containing all
the variables of all objects, to compare modular and non-modular representations of the environment.
The agents in this condition choose random goals in this space, and use the FullMutation operator.
Finally, agents in the Random condition always choose random motor policies θ.

4.3 Results

In this section we show the results of several experiments with the three environments and the
different learning conditions. We first study in details the Active Model Babbling (AMB) learning
algorithm, a modular implementation of the IMGEP architecture. Then, in order to understand the
contribution of the different components of this learning algorithm, we compare it to several controls
(or ablations): without a modular representation of goals, without the goal sampling based on learning
progress, or without the stepping-stone preserving mutation operator. In those experiments, goals
are sampled in spaces representing the sensory feedback from the environment. We thus compare
several possible encodings of the feedback: with the trajectory of each object or with only the end
point of the trajectories. We included distractors that cannot be controlled by the learning agent in
the three tool-use environments. We also test the learning conditions with and without distractors to
evaluate their robustness to distractors.

4.3.1 Exploration Measure and Summary Results

Table 1 shows a summary of the exploration results at the end of the runs, in all conditions in all
spaces of all environments, We give the 25, 50 and 75 percentiles of the exploration results of all
seeds. Exploration measures the percentage of reached cells in a discretization of each goal space.
The best condition in each space is highlighted in bold, based on Welch’s t-tests (with threshold
p ă 0.05): if several conditions are not significantly different, they are all highlighted. In the 2D
Simulated environment, there are 100 seeds for each condition, and the exploration measures the
number of cells reached in a discretization of the 2D space of the end position of each object with
100 bins on each dimension. In the Minecraft environment, there are 20 runs for conditions Random,
SGS, FRGB, FC and 42 for AMB and RMB. The exploration metric for the agent, pickaxe and
shovel spaces is the number of reached cells in a discretization of the 2D space in 450 bins (15 on
the x axis, 30 on the y axis). The same measure is used for the block space, which is discrete with
32 possible combinations. For the cart space we measure exploration as the number of different
outcomes reached. In the Robotic environment, there are 6 runs with different seeds for condition
SGS, 8 for FRGB, 16 for RMB, 23 for AMB, 12 for FC and 6 for Random, and the exploration also
measures the number of cells reached in a discretization of the space of the end position of each
object with 1000 bins in 1D, 100 bins on each dimension in 2D, and 20 bins in 3D.

16

Intrinsically Motivated Goal Exploration Processes

(a) 2D Simulated Environment (b) Minecraft Mountain Cart (c) Robotic Environment

Figure 7: Examples of exploration map of one IMGEP agent in each environment. (a) in the 2D
Simulated Environment, we plot the position of the reachable magnet toy at the end of
each iteration with a blue point, and the Velcro toy in green. (b) in Minecraft Mountain
Cart we plot the end position of the agent, the agent with pickaxe, the agent with shovel,
and the cart. (c) in the Robotic environment, the position of the ball is plotted when it
moved in the arena.

Env, Space \ Condition Rdm SGS Flat RMB AMB FC
2D Simulated
Environment

Magnet Tool 0,0,0 0,0,0 8.0,11,13 33,36,39 57,61,65 61,67,70
Magnet Toy 0,0,0 0,0,0 0,0,0 0,0,5.0 0,3.0,16 0,3.0,19

Minecraft
Mountain

Cart

Agent Pos. 28,29,30 29,29,30 34,36,40 48,50,54 55,58,61 59,63,67
Shovel 5,5,6 5,6,7 8,11,13 25,27,30 32,34,37 34,37,42
Pickaxe 6,6,7 6,7,8 11,15,19 33,35,39 41,45,48 43,51,61
Blocks 3,3,3 3,3,3 3,11,19 69,77,84 73,84,93 100,100,100
Cart 0,0,0 0,0,0 0,0,1 5,162,409 56,360,886 386,787,1207

Robotic
Environment

Hand 24,24,25 18,19,20 20,21,22 22,24,25 22,23,24 21,22,23
L. Joystick 4.2,4.7,5.9 1.9,3.3,4.6 0.1,0.1,0.3 15,18,19 20,22,26 23,26,29
R. Joystick 0.6,0.9,1.0 0.3,0.4,0.5 0,0,0 10,11,13 16,18,22 15,17,18

Ergo 0.2,0.3,0.4 0.1,0.1,0.2 0,0,0 1.2,1.5,1.7 1.5,1.7,1.8 1.7,1.7,1.9
Ball 0,0,0.1 0,0,0 0,0,0 0.8,1.0,1.0 0.9,1.1,1.2 0.9,0.9,1.0
Light 0.1,0.1,0.1 0.1,0.2,0.2 0.1,0.1,0.1 0.8,1.8,3.0 2.0,3.6,4.9 1.8,2.2,3.7
Sound 0.1,0.1,0.1 0.1,0.1,0.1 0.1,0.1,0.1 0.8,1.1,2.6 1.7,2.8,3.6 1.2,1.6,2.3

Table 1: Exploration results in all environments and conditions.

4.3.2 Intrinsically Motivated Goal Exploration

Here we study in detail the Active Model Babbling (AMB) learning algorithm. AMB agents encode
the sensory feedback about objects with a modular representation: each object is associated with
one independent learning module. At each iteration, they first select an object to explore, then a
particular goal to reach for this object. They execute a motor policy to reach this goal, and observe

17

Forestier, Portelas, Mollard and Oudeyer

the outcome. The selection of the object to explore is based on a self-estimation of the learning
progress made to move each object according to chosen goals. The AMB algorithm is thus a modular
implementation of the IMGEP architecture.

Exploration Maps — We first plot examples of exploration results as cumulative exploration maps,
one per environment. Those maps show all the positions where one AMB agent succeeded to move
objects.

Fig. 7(a) shows the position of the reachable toys of the 2D simulated environment at the end of
each iteration in one trial of intrinsically motivated goal exploration. The reachable area for those
two toys is the inside the circle of radius 1.5 and center 0. We can see that in 100k iterations, the
agent succeeded to transport the toys in many places in this area. The experiments with other seeds
are very similar. Fig. 7(b) shows an exploration map of a typical run in Minecraft Mountain Cart
after 40k iterations. As you can see the agent successfully managed to (1) navigate within the arena
boundaries, (2) move the pickaxe and shovel, (3) use the pickaxe to break blocks and (4) move the
cart located behind these blocks. An example in the robotic environment is shown in Fig. 7(c) where
we plot the position of the ball when it moved in the first 10k iterations of the exploration of one
agent.

Overall, they show that IMGEP agents discovered how to use the different tools in each environment
within the time limit: the sticks to grab the toys in the 2D simulated environment, the pickaxe to
mine blocks to reach the cart in Minecraft Mountain Cart, the joysticks to move the toy and push
the ball in the robotic experiment.

Discoveries — In order to understand the tool-use structure of the exploration problem in each
environment, we can look in more details how agents succeeded to move objects while exploring
other objects. Indeed, to the agents starting to explore, tools are objects like any other object (e.g.
the hand, the stick and the ball have the same status). However, if a tool needs to be used to move
another object, then this tool will be discovered before that object, so the exploration of this tool is
a stepping-stone giving more chances to discover novelty with that object than the exploration of
any other object. To quantify these dependencies between objects in our tool-use environments, we
show the proportion of movements where an object of interest has been moved depending on the
currently explored object.

Concerning the 2D simulated environment, Fig. 8 shows the proportion of the iterations with
a goal in a given space that allowed to move (a) the magnet tool, (b) the magnet toy, in 10 runs
with different seeds. First, random movements of the arm have almost zero chances to reach the
magnet tool or toy. Exploring movements of the hand however have about 1.5% chances to move
the magnet tool, but still almost zero chances to reach the toy. Exploring the magnet tool makes
this tool move in about 93% of the iterations, and makes the toy move in about 0.1% of movements.
Finally, exploring the toy makes the tool and the toy move with a high probability as soon as the toy
was discovered. Those results illustrate the stepping-stone structure of this environment, where each
object must be well explored in order to discover the next step in complexity (Hand Ñ Tool Ñ Toy).

In Minecraft Mountain Cart (see Fig. 8(c,d,e)), random exploration with neural networks in this
environment is extremely challenging. An agent following random policies has 0.04% chances to
discover the pickaxe, 0.00025% chances to break a single block and it never managed to move the cart
(over 800k episodes). IMGEP agents reach better performances by leveraging the sequential nature
of the environment: when exploring the agent space there is around 10% chances to discover the
pickaxe, and exploring the pickaxe space has around 1% chances to break blocks. Finally, exploring
the block space has about 8% chances to lead an agent to discover the cart.

In the Robotic environment, a similar stepping-stone exploration structure is displayed (see Fig.
8(f,g,h)): in order to discover the left joystick, the robots needs to do random movements with its
arm, which have about 2.9% chances to makes the left joystick move, or explore its hand (0.2%
chance). To discover the right joystick, the agent has to explore the left joystick, which gives a
probability of 3.3% to reach the right one. To discover the Ergo (the white robotic toy in the center

18

Intrinsically Motivated Goal Exploration Processes

20000 40000 60000 80000 100000

Iterations

0

20

40

60

80

100
M

ov
in

g
%

(a) Magnet Tool

20000 40000 60000 80000 100000

Iterations

0

20

40

60

80

100

M
ov

in
g

%

Random

Hand

Tool

Toy

(b) Magnet Toy

0 10000 20000 30000 40000

Iterations

0

20

40

60

80

100

M
ov

in
g

%

(c) Pickaxe

0 10000 20000 30000 40000

Iterations

0

20

40

60

80

100

M
ov

in
g

%

(d) Blocks

0 10000 20000 30000 40000

Iterations

0

20

40

60

80

100

M
ov

in
g

%

Random

Agent

Pickaxe

Blocks

Cart

(e) Cart

5000 10000 15000 20000
Iterations

0

20

40

60

80

100

M
ov

in
g

%

(f) Left Joystick

5000 10000 15000 20000
Iterations

0

20

40

60

80

100

M
ov

in
g

%

(g) Right Joystick

5000 10000 15000 20000
Iterations

0

20

40

60

80

100
M

ov
in

g
%

Random

Hand

Left J.

Right J.

Ergo

Ball

Light

Sound

(h) Ergo

Figure 8: Stepping-stone structure of the three environments. In the 2D Simulated environment,
we show the proportion of iterations that allowed to (a) move the magnet tool, (b) move
the magnet toy, depending on the currently explored goal space (or random movements),
for 10 IMGEP agents. The fastest way to discover the tool is to explore the hand and to
discover the toy is to explore the tool. In the Minecraft Mountain Cart environment, we
show the proportion of iterations that allowed to (c) move the pickaxe, (d) mine diamond
blocks, and (e) move the cart, depending on the currently explored goal space (or random
movements), for 10 agents with different seeds. Exploring the agent space helps discover
the pickaxe, exploring the pickaxe helps discover the blocks, and exploring the blocks helps
discover the cart. In the Robotic environment, we show the proportion of iterations that
allowed to (f) reach the left joystick, (g) reach the right joystick, and (h) move the Ergo
robot, depending on the currently explored goal space (or random movements), averaged
for 11 IMGEP agents with different seeds. Exploring random movements or the Hand
space helps discover the left joystick, exploring the left joystick helps discover the right
one, which helps discover the Ergo toy.

19

Forestier, Portelas, Mollard and Oudeyer

(a) Agent moving the cart

Railtrack
Goal
Outcome

(b) 5 cart goals

Figure 9: Example of learned skills in the Minecraft Mountain Cart. (a) One AMB agent’s trajectory
for a single cart goal. (b) Five final cart positions reached by an AMB agent when tasked
to reach five different targets. This agent successfully learned to push the cart along the
track.

of the blue arena), the exploration of the right joystick gives 23% chances to move it, whereas the
exploration of the Hand, the left joystick or random movements has a very low probability to make
it move.

4.3.3 Learned Skills

In Minecraft Mountain Cart we performed post-training tests of competence in addition of exploration
measures. Using modular approaches allows to easily test competence on specific objects of the
environment. Fig. 9(b) shows an example in the cart space for an AMB agent. This agent successfully
learned to move the cart close to the 5 queried locations.

For each of the RMB, AMB and FC runs we performed a statistical analysis of competence in
the cart and pickaxe spaces using 1000 and 800 uniformly generated goals, respectively. We were
also able to test SGS trials for cart competence as this condition has the cart as goal space. A
goal is considered reached if the Euclidean distance between the outcome and the goal is lower
than 0.05 in the normalized space (in range r´1, 1s) for each object. Since the pickaxe goal space is
loosely defined as a rectangular area around the environment’s arena, many goals are not reachable.
Results are shown in Table 2. SGS agents never managed to move the cart for any of the given
goals. AMB appears to be significantly better than RMB on the pickaxe space (p ă 0.01 on Welch’s
t-tests). However it is not in the cart space (p “ 0.09), which might be due to the stochasticity of
the environment. FC is not significantly better than AMB on the cart and pickaxe spaces.

Intrinsic Rewards based on Learning Progress — The IMGEP agents self-evaluate their learning
progress to control each object. When they choose a goal for an object, they monitor what is the
actual movement given to the object and compare it to the goal. If the distance between the goals

20

Intrinsically Motivated Goal Exploration Processes

Pickaxe goals Cart goals
FC 39,49,55 12,17,25
AMB 41,45,49 8,11,18
RMB 37,40,43 6,9,15
SGS N/A 0,0,0

Table 2: Competence results in Minecraft Mountain Cart. We give the 25, 50 and 75 percentiles of
the competence results of all seeds.

and the actual reached movements decrease over time on average, this tells the agents it is making
progress to control this object. This signal is used as an intrinsic reward signal that the agent will
seek to maximize by choosing to explore objects that yield a high learning progress. We can analyze
this signal to understand at which point the agent perceived progress to control each object and how
its exploration behavior changed over time.

Fig. 10 (top) shows the intrinsic rewards of two agents (different seeds) to explore each object in
the 2D simulated environment, computed by the agents as the average of intrinsic rewards based on
learning progress to move each object. We can see that the intrinsic reward of the hand increases first
as it is the easiest object to move. Then, when the sticks are discovered, the agents start to make
progress to move them in many directions. Similarly, while exploring the sticks, they discover the
reachable toys, so they start making progress in moving those toys. However, the static objects can’t
be moved so their learning progress is strictly zero, and the objects moving randomly independently
of the agent (cat and dog) have a very low progress.

Fig. 10 (middle) shows the intrinsic reward of two agents in the Minecraft Mountain Cart environ-
ment. Both agents first explore the simpler agent space and then quickly improves on the shovel and
pickaxe spaces. Exploring the pickaxe space leads to discover how to progress in the block space.
Finally, after some progress in the block space, the cart is discovered after 14k episodes for the first
agent (left figure) and 26k episodes for the other (right figure). The 3 distracting flowers have an
interest strictly equal to zero in both runs.

Fig. 10 (bottom) shows the intrinsic reward of two agents in the Robotic environment. The first
interesting object is the robot’s hand, followed by the left joystick and then the right joystick. The
left joystick is the easiest to reach and move so it gets interesting before the right one in most runs,
but then they have similar learning progress curves. However, the right joystick can be used as a tool
to control other objects, so that one will be touched more often. Then, the agent can discover the
Ergo and Ball while exploring the joysticks. Finally, some agents also discover that the ball can be
used to make light or sound. Here also, the progress of static objects is zero and the one of random
objects is low. Note that, unlike in the 2D simulation and in the Minecraft environment, the intrinsic
reward for exploring the robot’s hand remains high. This phenomenon is most likely due to the use
of full trajectories as goals in the Robotic environment, which creates large goal spaces (compared to
when using end-positions as goals). Additionally, the hand space is quite homogeneous: there are
many trajectories that are equally learnable, so the hand space remains for a very long time a source
of learning progress. For more difficult objects, the space is also large, but the subspace of learnable
trajectories is much smaller, thus the decrease in LP can be seen.

Overall, the evolution of those interests show that evaluating the learning progress to move objects
allows agents to self-organize a learning curriculum focusing on the objects currently yielding the
most progress and to discover stepping stones one after the other.

21

Forestier, Portelas, Mollard and Oudeyer

0 20000 40000 60000 80000 100000

Iterations

0.0

0.1

0.2

0.3

In
tr

in
si

c
R

ew
ar

d
s

Hand

Stick1

Stick2

Toy1

Toy2

Cat

0 20000 40000 60000 80000 100000

Iterations

0.00

0.05

0.10

0.15

In
tr

in
si

c
R

ew
ar

d
s

0 10000 20000 30000 40000

Iterations

0.00

0.05

0.10

In
tr

in
si

c
R

ew
ar

d
s

Agent

Shovel

Pickaxe

Blocks

Cart

0 10000 20000 30000 40000

Iterations

0.00

0.05

0.10

In
tr

in
si

c
R

ew
ar

d
s

0 5000 10000 15000 20000

Iterations

0.0

0.1

0.2

In
tr

in
si

c
R

ew
ar

d
s

Hand

Joystick L

Joystick R

Ergo

Ball

Light

Sound

Rdm Distr.

0 5000 10000 15000 20000

Iterations

0.00

0.05

0.10

0.15

0.20

In
tr

in
si

c
R

ew
ar

d
s

Figure 10: Examples of intrinsic rewards in the three environments. In the 2D Simulated environment
(top), agents are first interested in exploring their hand as this is the only object they
manage to move, until they discover one of the sticks. Then they make progress to move
the stick, so the intrinsic reward for moving the stick increases and they focus on it, and
then on the other objects they discover: the other stick and the two toys. They make
no progress to move the distractors so those intrinsic reward are always zero. In the
Robotic environment (middle), agents first succeed to move their hand, so they focus
on this object at the beginning, until they discover the joysticks. The exploration of
the right joystick makes them discover the Ergo toy, which can push the Ball. Some
agents also discover how to produce light and sound with the Ball. Agents have a low
intrinsic reward for exploring random distractors. In Minecraft Mountain Cart (bottom),
agents first focus on exploring the space of their position until they discover the shovel or
the pickaxe and start making progress to move them. When they discover how to mine
blocks with the pickaxe and to push the cart, they make progress in those goal spaces,
get intrinsic rewards and thus focus more on these.

22

Intrinsically Motivated Goal Exploration Processes

20000 40000 60000 80000 100000

Iterations

0

10

20

30

40

50

60

70

E
x
p

lo
ra

ti
on

AMB

FRGB

Random

(a) Magnet Tool

20000 40000 60000 80000 100000

Iterations

0

10

20

30

40

50

60

E
x
p

lo
ra

ti
on

AMB

FRGB

Random

(b) Magnet Toy

Figure 11: Influence of Goal Modularity on exploration in the 2D simulated environment. The agents
using a modular representation (Active Model Babbling) explore much better the tool and
toy spaces than agents with a flat representation (Flat Random Goal Babbling). Control
agents always choosing completely random actions do not manage to touch a toy with
the stick.

4.3.4 Influence of Goal Modularity

In this section, we study several algorithms with a different goal space structure in order to evaluate
the influence of the modularity of the goal space. We compare the Active Model Babbling condition
to other conditions. In the Flat Random Goal Babbling (FRGB) condition, the goal space is not
modular and contains all variables of all objects. With this non-modular sensory representation,
agents choose goals in the whole sensory space, which corresponds to all objects: a goal could mean
for instance push toy1 to the left and toy2 to the right at the same time, which might be unfeasible.
This exploration dynamics results in exploring the most diverse global sensory states, which is akin
to novelty search algorithms (Lehman and Stanley, 2011a). We also test the Random control where
agents always choose random actions.

In the 2D simulated environment, we run 100 trials of each condition with different random
seeds. We measure the exploration of one stick and its corresponding toy as the cumulative number
of reached cells in a discretization of the 2D space of the position of each objects at the end of
movements. Fig. 11 shows the evolution of the exploration of the stick and the toy in the 100 trials
of each condition. We plot in bold the median over the 100 trials in each condition. We can see that
the modularity of the goal space helps exploration: the median exploration after 100k iterations is
about 60% of the magnet tool space for condition AMB vs about 10% for condition FRGB. The
agents in condition AMB succeeded to reach the magnet toy, with a substantial variance between the
100 trials. Some AMB agents explored very well the magnet toy (up to 60%) and some did not (very
low exploration). Finally, completely random agents did not even manage to explore the magnet tool.

Fig. 13 shows exploration results in the Minecraft Mountain Cart environment for 20 trials of
all conditions except for AMB and RMB which were run 42 times. When looking at the median
exploration in the pickaxe space, FRGB does not manage to reach more than 15% exploration when
AMB and RMB reached 45% and 35%, respectively. Modular approaches significantly outperform
FRGB across all goal spaces (Welch’s t-tests at 40k iterations, p ă 0.001). Random agents did not
manage to explore the block and cart spaces.

In the robotic environment (see Fig. 14), agents with the flat (intricate) representation of the
sensory feedback (FRGB) do not explore objects other than the hand.

23

Forestier, Portelas, Mollard and Oudeyer

20000 40000 60000 80000 100000
Iterations

0

10

20

30

40

50

60

70

80
Ex

pl
or

at
io

n
%

FC
AMB
RMB
SGS

(a) Magnet Tool

20000 40000 60000 80000 100000
Iterations

0

10

20

30

40

50

60

70

Ex
pl

or
at

io
n

%

FC
AMB
RMB
SGS

(b) Magnet Toy

Figure 12: Influence of curriculum learning on exploration in the 2D Simulated environment. Agents
self-organizing their curriculum (Active Model Babbling) based on their learning progress
explore better than agents choosing to explore random objects (Random Model Babbling)
or agents choosing always to explore the magnet toy (Single Goal Space). Agents with a
hard-coded curriculum learning sequence from the simpler objects to the most complex
have similar exploration results than autonomous AMB agents after 100k iterations.

The modular representation of the sensory space thus greatly improves exploration efficiency
compared to a flat intricate representation of the whole sensory feedback, as it allows to consider the
different objects independently to monitor their behavior and select disentangled goals.

4.3.5 Curriculum Learning

A modular sensory representation based on objects allows AMB agents to self-monitor their learning
progress to control each object, and to accordingly explore objects with high learning progress. Here,
we compare several variants of agents with a modular sensory representation based on objects, but
with a different choice of object to explore. To evaluate the efficiency of the sampling based on
learning progress, we define condition Random Model Babbling (RMB), where agents always choose
objects to explore at random. The sampling based on learning progress of AMB agents makes agents
explore any object that shows learning progress, and ignore objects that do not move, are fully
predictable, or move independently of the agent. However if we are only interested in a particular
complex skill that we want the agent to learn, such as moving the ball in the robotic environment,
then it is not obvious if supervising learning by specifying a curriculum targeted at this skill can
accelerate the learning of this skill. We thus define two control conditions with a hand-designed
curriculum. In condition Single Goal Space (SGS), agents always choose goals for the same complex
target object: the magnet toy in the 2D simulated environment, the cart in Minecraft Mountain Cart,
or the ball in the robotic environment. In condition Fixed Curriculum (FC), a particular sequence
of exploration is specified, from the easier stepping-stones to the more complex ones. In the 2D
simulated environment, the agent samples goals for 20k iterations on each object in this order: hand,
magnet tool, magnet toy, Velcro tool, Velcro toy. In the robotic environment, we define the sequence
as the following: hand, left joystick, right joystick, ergo, ball, light and sound.

Fig. 12 shows the exploration evolution in the 2D simulated environment. First, we can see that
the sampling based on learning progress (AMB) helps exploration of the tool and the toy compared
to the random choice of object to explore (RMB): 62% vs 37% for the tool and 3.3% vs 0.5% for the
toy. Agents in the SGS condition did not manage to explore the tool and the toy. Agents with a

24

Intrinsically Motivated Goal Exploration Processes

0 10000 20000 30000 40000
Iterations

0

20

40

60

80
Ex

pl
or

at
io

n
%

(a) Agent

0 10000 20000 30000 40000
Iterations

0

10

20

30

40

50

Ex
pl

or
at

io
n

%

(b) Shovel

0 10000 20000 30000 40000
Iterations

0

20

40

60

Ex
pl

or
at

io
n

%

(c) Pickaxe

0 10000 20000 30000 40000
Iterations

0

20

40

60

80

100

Ex
pl

or
at

io
n

%

(d) Blocks

0 10000 20000 30000 40000
Iterations

0

500

1000

1500

2000

2500
Ex

pl
or

at
io

n

(e) Cart

FC
AMB
RMB
F-RGB
SGS
RANDOM

Figure 13: Exploration results in Minecraft Mountain Cart. Modular approaches (AMB and RMB)
performs significantly better than the flat (F-RGB) approach. Agents actively generating
their curriculum (AMB) perform better overall than agents choosing goal spaces randomly
(RMB). Focusing on the cart space (SGS) is equivalent to performing random policies
(Random). For the agent, pickaxe and shovel spaces, exploration is measured as the
cumulative number of reached cells in a discretization of the 2D space. For the block and
cart spaces we measure the number of unique outcomes reached.

predefined curriculum succeeded to explore the tool and the toy very well, the tool between 20k and
40k iterations and the toy between 40k and 60k iterations, with a median slightly better than in
AMB.

Fig. 13 shows the evolution of exploration in Minecraft Mountain Cart. Agents focusing their
goal sampling on the cart space (SGS) have low performances across all goal spaces, especially for the
cart and block spaces which are never discovered. Agents using learning progress sampling (AMB)
explored significantly more than random sampling agents (RMB) across all goal spaces (Welch’s
t-tests at 40k iterations, p ă 0.04). Agents following a hard-coded curriculum (FC) reached higher
median performances than AMB agents on every goal spaces.

Fig. 14 shows exploration results in the robotic environment. Agents self-organizing their
curriculum (Active Model Babbling) based on their learning progress explore better than agents
choosing random objects (Random Model Babbling) in the joysticks, ball, light and sound spaces
(Welch’s t-tests at 100k iterations, p ă 0.05), and better than agents with a hard-coded curriculum
sequence (FC) in the right joystick and sound spaces. Agents always choosing to explore the ball
(SGS) and agents without a modular representation of goals (FRGB) have low exploration results in
all spaces.

Overall, the goal sampling based on learning progress (AMB) improves exploration of most objects
of each environment compared to a random choice of object (RMB), as those agents focus on objects
that are learnable, ignore the distractor objects and reduce the relative interest of objects already

25

Forestier, Portelas, Mollard and Oudeyer

0 5000 10000 15000 20000
Iterations

0

5

10

15

20

25

E
xp

lo
ra

ti
on

%

FC

AMB

RMB

SGS

FRGB

Random

(a) Hand

0 5000 10000 15000 20000
Iterations

0

5

10

15

20

25

30

35

E
xp

lo
ra

ti
on

%

(b) Joystick Left

0 5000 10000 15000 20000
Iterations

0

5

10

15

20

25

30

E
xp

lo
ra

ti
on

%

(c) Joystick Right

0 5000 10000 15000 20000
Iterations

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

E
xp

lo
ra

ti
on

%

(d) Ergo

0 5000 10000 15000 20000
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

E
xp

lo
ra

ti
on

%

(e) Ball

0 5000 10000 15000 20000
Iterations

0

2

4

6

8

10

E
xp

lo
ra

ti
on

%

(f) Light

0 5000 10000 15000 20000
Iterations

0

2

4

6

8

10

12

E
xp

lo
ra

ti
on

%

(g) Sound

Figure 14: Exploration results in the Robotic environment. Agents self-organizing their curriculum
(Active Model Babbling) based on their learning progress explore better than agents
choosing random objects (Random Model Babbling) in the joysticks, ball, light and sound
spaces, and better than agents with a hard-coded curriculum sequence (FC) in the right
joystick and sound spaces. Agents always choosing to explore the ball (Single Goal Space)
and agents without a modular representation of goals (FRGB) have low exploration
results in all spaces.

26

Intrinsically Motivated Goal Exploration Processes

1.5 1.0 0.5 0.0 0.5 1.0 1.5

1.5

1.0

0.5

0.0

0.5

1.0

1.5
Gripper traces Tool traces

Gripper

 closes

(a) SSPMutation

1.5
1.0 0.5 0.0 0.5 1.0 1.5

1.5

1.0

0.5

0.0

0.5

1.0

1.5
Gripper traces Tool traces

Gripper

 closes

Gripper

 opens

(b) FullMutation

Figure 15: Example of a mutation of a movement reaching the tool, for each mutation operator.
With the SSPMutation operator, the two gripper trajectories start to diverge only when
the stick is grasped such that the mutated movement also grasps the stick, whereas with
the FullMutation, the mutation starts right from the beginning of the movement, which
in this case makes the mutated movement miss the stick.

explored for some time. Specifying the curriculum by hand results in a very bad exploration if
the agent always directly focuses on an object hard to discover, however if we carefully design the
learning sequence given our knowledge of the task, then the final exploration results are similar to
autonomous AMB agents.

4.3.6 Influence of the Modularity of Exploration Mutations

The efficiency of the Stepping-Stone Preserving Mutation operator (SSPMutation, see Sec. 3.3) relies
on its ability to preserve the part of the movement that reaches a stepping-stone in the environment,
and explore only after the target object started to move in the previous movement being mutated.
For instance, the movement would grab the tool without modification, and explore once the controlled
toy started to move. To illustrate this mechanism, let us look at actual mutations depending on the
mutation operator. Fig. 15 shows one movement that reached the magnet tool together with one
mutation of this movement, for each mutation operator. The red trajectories are the traces of the
gripper (with a circle when open and a point when closed), and the blue trajectories are the traces of
the magnet stick. We also plot the initial position of the arm and the magnet stick. We see that in
the case of the SSPMutation operator, the two red trajectories start to diverge only when the stick is
grasped such that the mutated movement also grasps the stick, whereas with the FullMutation, the
mutation starts right from the beginning of the movement, which in this case makes the mutated
movement miss the stick.

We measure how many times the agents succeed to move a tool when they are exploring it, or to
move a toy when they are exploring the toy, depending on the mutation operator. Fig. 16 shows the
proportion of the iterations that allowed to (a) move the magnet tool when this tool is the goal object,
(b) move the magnet toy when this toy is the target object, with 50 different runs in the 2D simulated
environment (individual runs and median). We can see that with the FullMutation operator, at

27

Forestier, Portelas, Mollard and Oudeyer

20000 40000 60000 80000 100000

Iterations

0.0

0.2

0.4

0.6

0.8

1.0

M
ov

in
g

%

(a) Magnet Tool

20000 40000 60000 80000 100000

Iterations

0.0

0.2

0.4

0.6

0.8

1.0

M
ov

in
g

%

SSPMutation

FullMutation

(b) Magnet Toy

Figure 16: Comparison of the SSPMutation and FullMutation mutation operators. We show the
proportion of iterations that allowed to (a) move the magnet tool while exploring this
tool, and (b) move the magnet toy while exploring this toy, with 50 different seeds and
median. With the FullMutation operator, at the end of the runs agents succeed to move
the tool in 7% of iterations versus 95% for the SSPMutation operator, and to move the
toy in 0.9% of iterations versus 53%.

20000 40000 60000 80000 100000
Iterations

0

10

20

30

40

50

60

70

Ex
pl

or
at

io
n

%

(a) Magnet Tool

20000 40000 60000 80000 100000
Iterations

0

10

20

30

40

50

60

Ex
pl

or
at

io
n

%

SSPMutation
FullMutation

(b) Magnet Toy

Figure 17: Exploration efficiency depending on the mutation operator. FullMutation results in
a much lower exploration for the magnet tool and toy compared to the stepping-stone
preserving operator.

the end of the runs agents succeed to move the tool in 7% of iterations targeted at exploring this
tool, versus 95% for the SSPMutation operator, and to move the toy in 0.9% of iterations targeted
at exploring this toy versus 53%.

The ability of SSPMutation to explore while still moving the target object with a high probability
directly improves exploration. Fig. 17 shows the exploration results of AMB agents with the
SSPMutation or FullMutation operators in the 2D simulated environment in 100 runs with different
seeds. The exploration results of the FullMutation operator are much lower for the magnet tool
(median 13% vs 62%) and magnet toy (median 0% vs 3%, max 0.5% vs 60%).

28

Intrinsically Motivated Goal Exploration Processes

20000 40000 60000 80000 100000
Iterations

0

10

20

30

40

50

60

70

Ex
pl

or
at

io
n

%

(a) Magnet Tool

20000 40000 60000 80000 100000
Iterations

0

10

20

30

40

50

60

Ex
pl

or
at

io
n

%

End Point
Trajectories

(b) Magnet Toy

Figure 18: Exploration in 2D simulated environment depending on the goal encoding. The encoding
with the end position of objects resulted in a slightly better exploration than with
trajectories for the magnet tool, and a similar median for the magnet toy but with more
variance: standard deviation of 17% vs 8.6% at 100k iterations for the magnet toy.

4.3.7 Encoding of Goals

After executing a movement, the agent receives a sensory feedback containing information about the
movement of objects in the environment. The agent then uses the sensory space as an encoding for
sampling new goals to reach. In the 2D simulated environment, we defined the sensory feedback as
the position of each object at the end of the movement. In the robotic environment, as the joysticks
may move during the movement but come back by themselves at their rest position, we used a
sensory feedback containing information about the whole trajectory of objects as the sequence of
their position at 5 time steps during the movement. In this section, we study the influence of the
goal encoding on exploration efficiency in the 2D simulated environment.

Fig. 18 shows the exploration evolution of AMB agents depending on the encoding of goals: with
object trajectories or end points, in the 2D simulated environment. The exploration is a measure
of the proportion of cells reached in a discretization of the space of the last position of each object.
The encoding with the end position of each object resulted in a slightly better exploration than with
trajectories for the magnet tool, and a similar median for the magnet toy but with more variance:
with standard deviation of 17% vs 8.6% at 100k iterations for the magnet toy. The trajectory
encoding represents the whole trajectory of each object instead of the final point only. This is not
strictly needed to represent if a tool or a toy has moved in this environment so the end point encoding
may be more efficient once the objects are discovered, however the trajectory encoding helps to
explore trajectories with more diversity, for the hand or other objects, and thus to discover hard
objects in the first hand. With the trajectory encoding, the exploration of objects difficult to move
the first time is thus slower once discovered, but they are more often discovered.

Fig. 19 shows examples of interest curves with the goal encoding using trajectories of objects. As
the goal spaces are of much larger dimensionality using the object trajectories than with the end
position, it takes a longer time to cover the whole sensory space with reached trajectories such that
the self-computed interest to explore the hand is higher than with end positions (comparing with Fig.
10(top)) and the interest in all spaces takes more time to decrease.

The trajectory encoding is more interesting in environments where the full trajectory of a tool is
of importance to control an object, such as in our robotic environment where joysticks come back at
their rest position by themselves such that their end position is not informative to predict the end

29

Forestier, Portelas, Mollard and Oudeyer

0 20000 40000 60000 80000 100000

Iterations

0.0

0.1

0.2

In
tr

in
si

c
R

ew
ar

d
s

Hand

Stick1

Stick2

Toy1

Toy2

Cat

0 20000 40000 60000 80000 100000

Iterations

0.00

0.05

0.10

0.15

In
tr

in
si

c
R

ew
ar

d
s

Figure 19: Examples of intrinsic rewards in the 2D simulated environment, with an encoding of goals
as object trajectories. The sensory spaces are higher-dimensional and take more iterations
to be well covered such that the learning progress decreases.

20000 40000 60000 80000 100000
Iterations

0

10

20

30

40

50

60

70

Ex
pl

or
at

io
n

%

(a) Magnet Tool

20000 40000 60000 80000 100000
Iterations

0

5

10

15

20
Ex

pl
or

at
io

n
%

RMB, No Distractors
AMB, No Distractors
RMB, Distractors
AMB, Distractors

(b) Magnet Toy

Figure 20: Exploration efficiency of Active Model Babbling and Random Model Babbling depending
on the presence of distractors in the 2D Simulated environment. The median of 100 runs
is plotted together with a shaded area representing the 25-75 percentiles. The efficiency
of RMB agents decreases when we add distractors, whereas AMB agents, through their
self-estimation of their learning progress to move each object, focus on learnable objects
despite having distractors in the environment.

position of the controlled object. We thus use this trajectory encoding in the robotic environment,
but we use the end point encoding in the Minecraft Mountain Cart environment.

4.3.8 Static and Random Distractors

In the three tool-use environments, we included distractor objects to harden exploration as those
objects can’t be controlled by the agent but are however part of their sensory feedback: some of
them are static, and some of them move independently of the agent. The Active Model Babbling
agents monitor their learning progress to move objects, such that their estimation of their progress to
move static object is zero, and to move other uncontrollable objects is low compared to controllable

30

Intrinsically Motivated Goal Exploration Processes

objects. Here we evaluate the exploration efficiency of AMB and RMB agents in the 2D simulated
environment in the presence and absence of distractors to evaluate their robustness to distractors.

Fig 20 shows the exploration results depending on the learning condition (RMB vs AMB) and
environment condition: with 2 random distractors and 8 static distractors (Distractors) vs without
distractors (No Distractors), in the magnet tool and toy spaces (median and 25/75 percentiles of
100 seeds). The RMB agents show a similar exploration without distractors compared to AMB
agents. However, we can see that the RMB agents do not cope with distractors while AMB agents
do not show a significant decrease in exploration when distractors are added. The learning progress
monitoring is thus an efficient mean to discriminate learnable objects from other objects and thus to
focus exploration by choosing most goals for learnable objects.

5. Related Work

Early models of intrinsically motivated reinforcement learning (also called curiosity-driven learning)
have been used to drive efficient exploration in the context of target tasks with rare or deceptive
rewards (Schmidhuber, 1991; Barto, 2013) or in the context of computational modeling of open-ended
unsupervised autonomous learning in humans (Kaplan and Oudeyer, 2004; Oudeyer et al., 2007).
Reviews of the historical development of these methods and their links with cognitive sciences and
neuroscience can be found in Baldassarre and Mirolli (2013); Gottlieb et al. (2013); Oudeyer et al.
(2016).

Several lines of results have shown that intrinsically motivated exploration and learning mechanisms
are particularly useful in the context of learning to solve reinforcement learning problems with sparse
or deceptive rewards. For example, several state-of-the-art performances of Deep Reinforcement
Learning algorithms, such as letting a machine learn how to solve complex video games, have been
achieved by complementing the extrinsic rewards (number of points won) with an intrinsic reward
pushing the learner to explore for improving its predictions of the world dynamics (Bellemare et al.,
2016; Houthooft et al., 2016). An even more radical approach for solving problems with rare or
deceptive extrinsic rewards has been to completely ignore extrinsic rewards, and let the machine
explore the environment for the sole purpose of learning to predict the consequences of its actions
(Schmidhuber, 1991; Oudeyer et al., 2007), to achieve self-generated goals (Baranes and Oudeyer,
2013; Oudeyer and Kaplan, 2007), or to generate novel behavioral features (Lehman and Stanley,
2011a). This was shown for example to allow agents to learn to play some video games without ever
observing the extrinsic reward (Pathak et al., 2017).

Some approaches to intrinsically motivated exploration have used intrinsic rewards to value visited
actions and states through measuring their novelty or the improvement of predictions that they
provide, e.g. Sutton (1990); Dayan and Sejnowski (1996); Schmidhuber (1991); Oudeyer et al. (2007)
or more recently Bellemare et al. (2016); Houthooft et al. (2016); Pathak et al. (2017). However,
organizing intrinsically motivated exploration at the higher level of goals, by sampling goals according
to measures such as competence progress (Oudeyer and Kaplan, 2007), has been proposed and shown
to be more efficient in contexts with high-dimensional continuous action spaces and strong time
constraints for interaction with the environment (Baranes and Oudeyer, 2013).

Several proposed methods are related to IMGEP, including Gregor et al. (2017), Dosovitskiy and
Koltun (2017) and Kulkarni et al. (2016), however they have considered notions of goals restricted to
the reaching of states or direct sensory measurements, did not consider goal-parameterized rewards
that can be computed for any goal, used different intrinsic rewards, and did not evaluate these
algorithms in robotic setups. The notion of auxiliary tasks is also related to IMGEP in the sense that
it allows a learner to acquire tasks with rare rewards by adding several other objectives which increase
the density of information obtained from the environment (Jaderberg et al., 2017; Riedmiller et al.,
2018). Another line of related work (Srivastava et al., 2013) proposed a theoretical framework for
automatic generation of problem sequences for machine learners, however it has focused on theoretical
considerations and experiments on abstract problems.

31

Forestier, Portelas, Mollard and Oudeyer

The present work focused on proposing AMB, an IMGEP instantiation able to deal with modular
goal spaces. Another interesting and parallel perspective is to focus on designing intrinsically
motivated agents able to learn modular skills, e.g. hierarchical RL agents able to combine atomic
skills. For instance, in a simulated end-effector positioning environment, Santucci et al. (2019) used
intrinsic signals to generate sub-goals allowing their agent to derive skill-chains towards end-effector
goals. In Blaes et al. (2019), authors combine a learning progress signal with planning strategies to
learn modular skills in a simulated tool use environment. Closely related to our work, Forestier and
Oudeyer (2016a) extends a former version of our AMB agent in a simulated tool use environment
with hierarchical goal spaces, enabling to decompose explicitly trajectory generation. Note that
such aforementioned hierarchical learners can be formalized as specific forms of IMGEPs featuring
multistep goal sampling policies.

Several strands of research in robotics have presented algorithms that instantiate such intrinsically
motivated goal exploration processes (Baranes and Oudeyer, 2010a; Rolf et al., 2010), using different
terminologies such as contextual policy search (Kupcsik et al., 2017; Queißer et al., 2016), or
formulated within an evolutionary computation perspective such as Novelty Search (Lehman and
Stanley, 2011a) or Quality Diversity (Cully et al., 2015; Cully and Demiris, 2017) (see next sections).
In Forestier and Oudeyer (2016b), the implemented modular population-based version of IMGEP was
called Model Babbling. Several variants of Model Babbling were evaluated: Random Model Babbling
is a variant where the goal space is chosen randomly and goals are chosen randomly in the goal space
and Active Model Babbling one where the goal space is chosen based on the learning progress to
control each object. Both implementations are instances of IMGEP as the goal spaces are generated
autonomously from the sensory spaces and no “expert knowledge” has been given to the algorithm.

In machine learning, the concept of curriculum learning (Bengio et al., 2009) has most often
been used in the context of training neural networks to solve prediction problems. Many approaches
have used hand-designed learning curriculum (Sutskever, 2014), but recently it was shown how
learning progress could be used to automate intrinsically motivated curriculum learning in LSTMs
(Graves et al., 2017). However, these approaches have not considered a curriculum learning of sets of
reinforcement learning problems, which is central in the IMGEP framework formulated with goals as
fitness functions, and assumed the pre-existence of a database with learning exemplars to sample from.
In recent related work, (Matiisen et al., 2017; Portelas et al., 2019) studied how intrinsic rewards based
on learning progress could also be used to automatically generate a learning curriculum with discrete
and continuous sets of reinforcement learning problems, respectively. In contrast to the present
study, both works did not consider high-dimensional modular problem spaces. See Portelas et al.
(2020) for a review of other recent curriculum learning methods applied to reinforcement learning
scenarios. The concept of “curriculum learning” has also been called “developmental trajectories” in
prior work on computational modeling of intrinsically motivated exploration (Oudeyer et al., 2007),
and in particular on the topic of intrinsically motivated goal exploration (Baranes and Oudeyer, 2013;
Forestier and Oudeyer, 2017).

The concepts of goals and of learning across goals have been introduced in machine learning in
Kaelbling (1993) with a finite set of goals. Continuous goals were used in Universal Value Function
Approximators (Schaul et al., 2015), where a vector describing the goal is provided as input together
with the state to the neural network of the policy and of the value function. In Andrychowicz et al.
(2017), authors drastically improve the sample efficiency of such goal-conditioned RL learners using
the Hindsight Experience Replay (HER) algorithm, which implements a form of hindsight learning
related to ours. HER is a passive and offline mechanism. It reinterprets trajectories collected with
a given target goal with respect to a different goal, in order to retrospectively generate positive
rewards used to compute meaningful learning gradients for the policy. In contrast, we consider
an active and online form of hindsight learning used for exploration. Given a new goal, IMGEP
agents condition their exploration policy based on a retrospective analysis of previous goal attempts,
whose corresponding policies can potentially be fitting for the new goal. In classical goal-conditioned
works (Andrychowicz et al., 2017; Schaul et al., 2015), goals are not modular, and are considered

32

Intrinsically Motivated Goal Exploration Processes

extrinsic to the agent, with extrinsic rewards that can contain expert knowledge about the tasks
being learned. The learning problem is not formulated as an autonomous learning problem where the
agent has to explore the most diverse set of states and skills on its own. Although not modular and
population-based, other recent works do consider goal-conditioned mechanisms to control exploration
for autotelic deep reinforcement learning agents, e.g. (Pong et al., 2020; Pitis et al., 2020; Choi et al.,
2021), in a variant of the IMGEP framework called RL-IMGEP Colas et al. (2022). Most related to
the present work is the CURIOUS system (Colas et al., 2019), building on an early version of this
paper to transpose the population-based IMGEP algorithms we introduced within the reinforcement
learning framework, leveraging an extension of Universal Value Function Approximators (Schaul
et al., 2015). This is a particular implementation of the IMGEP architecture using reinforcement
learning techniques, using a unique monolithic (multi-task multi-goal) policy network, that learns
from on a replay buffer filled with rollouts on task and goals of high learning progress. Also, using
a population-based IMGEP architecture can help bootstrap a deep RL agent (Colas et al., 2018).
Filling the replay buffer of a deep RL agent with exploratory trajectories collected by an IMGEP
algorithm kick-starts the RL agent by enhancing its exploratory abilities. It combines the efficient
exploration of population-based IMGEP agents with the efficient fine tuning of policies offered by
deep RL agents with a function approximator based on gradient descent.

5.1 IMGEP and Novelty Search

In Novelty Search evolutionary algorithms, no objective is given to the optimization process, which
is driven by the novelty or diversity of the discovered individuals (Lehman and Stanley, 2011a). In
this implementation, an archive of novel individuals is built and used to compute the novelty of the
individuals of the current generation of the evolutionary algorithm. If the novelty of a new individual
is above a threshold, it is added to the archive. Different measures of novelty can be used, a simple
one being the average distance of the individual to its closest neighbors in the archive, the distance
being measured in a behavioral space defined by the user. Then, to generate the population of the
next generation, the individuals with a high measured novelty are reused, mutated or built upon.

Although designed in an evolutionary framework, the Novelty Search (NS) algorithm can be
framed as a population-based IMGEP implementation, assuming that the behavioral space and its
distance measure can be self-generated by the algorithm. Indeed, we can define an IMGEP goal space
based on the NS behavioral space, with each behavior in that space generating the corresponding goal
of reaching that behavior, with a fitness function defined as the negative distance between the target
behavior and the reached behavior. In IMGEP, if the goal g (defining the target behavior) is chosen
randomly, the algorithm can then reuse the previous reached behaviors that give the highest fitness
to reach the current goal g, which are the closest reached points in the behavioral space. The key
similarity between our population-based implementations of IMGEP and Novelty Search is that the
previous behavior the closest to the current random target behavior is a behavior with high novelty
on average. Indeed, a random point in a space is more often closer to a point at the frontier of the
explored regions of that space which is thus a high-novelty point. Randomly exploring behaviors or
mutating high-novelty behaviors are therefore efficient for the same reasons.

Abandoning the external objectives and focusing on the novelty of the behaviors in Lehman and
Stanley (2011a) can be seen in the lens of the IMGEP framework as embracing all self-generated
objectives.

5.2 IMGEP and Quality Diversity

The Novelty Search approach stems from the fact that in many complex optimization problems,
using a fitness function to define a particular objective and relying only on the optimization of this
function may not be efficient: indeed, there may be unknown complex successive stepping-stones
that need to be reached before the final objective can be approached Stanley and Lehman (2015).

33

Forestier, Portelas, Mollard and Oudeyer

Relying on novelty allows to reach stepping-stones and build upon them to explore new behaviors
even if the objective does not get closer. However, when the behavioral space is high-dimensional,
pursuing the final objective is still useful to drive exploration together with the search for novelty
(Cuccu and Gomez, 2011). The Quality Diversity approach combines the search for diversity from
Novelty Search approaches and the use of an external objective function to ensure the Quality of the
explored individuals (Cully and Demiris, 2017; Lehman and Stanley, 2011b; Cully et al., 2015).

In the MAP-Elites algorithm (Cully et al., 2015), the behavioral space is discretized into a grid of
possible behaviors, and a fitness function is provided to assess the quality of individuals according to a
global objective. Each new individual is assigned to a behavioral cell in this grid and is given a quality
value with the quality function. The population of the next generation of the evolutionary algorithm
is mutated, in its simplest version, from a random sample of the set of the best quality individual
of all cells. In more sophisticated versions, the parents used for evolving the next generation are
selected based on their quality, the novelty of the cells, or a tradeoff between quality and novelty.

In the applications of this algorithm, the fitness function is an extrinsic objective. For instance, in
Cully et al. (2015) robot controllers are evolved to find efficient robot walking behaviors. The fitness
function given to the algorithm is the speed of the robot, while the descriptors of a behavior can
be the orientation, displacement, energy used, deviation from a straight line, joint angles, etc. The
algorithm thus tries to find efficient walking behaviors for a diverse set of of behavioural constraints.

The concept of Quality Diversity algorithms is thus different from the concept of intrinsically
motivated exploration. However Quality Diversity algorithms could be used with a fitness function
that is intrinsically generated by the algorithm. The functioning of the algorithm given this fitness
function can then be seen as a population-based instantiation of the IMGEP framework. Indeed,
each cell of the behavioral grid can generate one different IMGEP goal with a particular fitness
function returning the quality of the individual if its behavior falls into that cell and zero otherwise.
In MAP-Elites (Cully et al., 2015), the next generation of individuals is mutated from a random
sample of elites (the best quality individual of each non-void cell). In an IMGEP settings with those
goals, the MAP-Elites sampling is equivalent to selecting a random goal from the set of goals that
had a non-zero fitness in the past. When such a goal is selected, the next IMGEP exploration loop
then reuses, in its simplest version, the sample with the best fitness for that goal, which corresponds
to the elite, and also mutates it.

A common process among Novelty Search, Quality Diversity and IMGEP approaches is that
exploration is made efficient by leveraging two principles: 1) a diversity of solutions continues to be
explored even if they are non-optimal, and 2) when exploring solutions to a given region/cell/goal, the
algorithm can find solutions to other regions/cells/goals, which are registered and can be leveraged
later.

5.3 IMGEP and Reinforcement Learning

In our setting, the fitness functions fg have two particularities in comparison with the concept of
“reward function” as often used in the RL literature. The first particularity is that these fitness
functions are computed based on the trajectory τ resulting from the execution of policy Π, and thus
consider the whole interaction of the agent and its environment during the execution of the policy, for
instance taking into account the energy used by the agent or the trajectory of an object. Therefore
they are not necessarily Markovian if one considers them from the perspective of the level of state
transitions st.

The second particularity is that since the computation of the fitness fgpτq is internal to the
agent, it can be computed any time after the experiment and for any goal g P G, not only the
particular goal that the agent was trying to achieve. Consequently, if the agent stores the observation
τ resulting from the exploration of a goal p1, then when later on it self-generates goals g2, g3, ..., gi
it can compute, without further actions in the environment, the associated fitness fgipτq and use
this information to improve over these goals gi. This property is essential as it enables direct reuse

34

Intrinsically Motivated Goal Exploration Processes

of data collected when trying to achieve a goal for later exploring other goals. It is leveraged for
curriculum learning in Intrinsically Motivated Goal Exploration Processes.

6. Discussion

This paper provides a formal framework for an algorithmic architecture called Intrinsically Motivated
Goal Exploration Processes (IMGEP), enabling to build autotelic agents. This framework enables a
unified description of various related algorithms that share several principles: exploration is driven
by self-generated goals, exploring towards a goal gives information that can be reused to improve
solutions for other goals, and intrinsic rewards can help the construction and selection of goals.

The IMGEP framework is both compact and general. The goals are defined through parameterized
fitness functions and therefore can represent any kind of objective that can be computed from the
information stored and available to the agent. The policies can be implemented by any algorithm
that can learn a function that takes a goal as input and outputs actions to explore this goal, such as
a monolithic neural network (Colas et al., 2019) or a population-based policy (Forestier and Oudeyer,
2016b).

We presented a particular type of modular IMGEP architecture (AMB) that formalizes the Model
Babbling approach described in Forestier and Oudeyer (2016b). It leverages population-based policies
and a goal sampling process that uses learning-progress and is modular: spatial modularity (the
agent generates one goal space for each object in the environment), and temporal modularity (the
temporal structure of objects’ movements is leveraged for a more efficient goal exploration).

The IMGEP framework is well suited to organize exploration in environments where, in order to
avoid local optima and find advanced behaviors or phenotypes, enough time should be allocated to
the continued search for diverse non-optimal solutions. Interesting unexpected stepping-stones can
be discovered in the exploration process and built upon afterwards. The framework is most useful
when the stepping-stones or the targets are unknown to the expert user or too complex such that
they cannot easily be directly represented and optimized. In that case the use of intrinsic motivations
for the exploration of goals can help to discover and build upon a diverse set of stepping-stones.
Furthermore, the use of intrinsic rewards, e.g. based on the monitoring of the learning progress in
achieving goals, can further improve the efficiency of exploration by focusing on the most interesting
problems and avoiding the ones that bring no more information.

We studied IMGEP implementations in different tool-use environments. We designed the first
robotic experiment where an intrinsically-motivated humanoid robot discovers a complex continuous
high-dimensional environment and succeeds to explore and learn from scratch that some objects can
be used as tools to act on other objects. We also created the Minecraft Mountain Cart environment,
where an intrinsically motivated Minecraft agent discovered various tool use skills, and chaining them
to further discover more complex skills.

We evaluated different variants of Intrinsically Motivated Goal Exploration Processes and showed
the efficiency of variants that do not use a hand-designed learning (RMB and AMB conditions)
for discovery of the most complex affordances. Furthermore, when the agent monitors its learning
progress with intrinsic rewards (AMB), it autonomously develops a learning sequence, or curriculum,
from the easiest to the most complex tasks, and explores more efficiently than without those intrinsic
rewards. Also, the comparison between agents only exploring one interesting problem space (SGS)
versus all spaces (AMB) shows that if an engineer were to specify the target problems to solve (e.g.
move the ball), then it would be more efficient to also explore all other possible intrinsic goals to
develop new skills that can serve as stepping-stones to solve the target problem.

Compared to other approaches, our approach to implement population-based IMGEPs is sample-
efficient, with a number of iterations of 20k in the real robotic setup, 40k in the Minecraft environment,
and 100k in the 2D simulated one. Approaches such as Quality Diversity need 40M iterations for
example for the learning of a hexapod’s locomotion (Cully et al., 2015), and deep reinforcement
learning agents also require millions of training steps, e.g. 2M steps in the Atari game Montezuma’s

35

Forestier, Portelas, Mollard and Oudeyer

Revenge (Kulkarni et al., 2016), or 50M in a Doom-like first-person shooter (Dosovitskiy and Koltun,
2017), including for RL-based IMGEPs Colas et al. (2019); Pong et al. (2020). The population-based
IMGEP implementation in its simplest form, with a Nearest Neighbor look-up used as inverse models,
is also computationally efficient, as we have run the 20k iterations of the real robotic experiment on
a raspberry Pi 3.

A limitation of IMGEP algorithms presented in this paper is that we suppose agents already
have a perceptual system allowing them to see and track objects, as well as associated handcrafted
modular spaces of representations to encode goals. Recent works studied in simulation how the
learning of a representation of objects from pixels and its use as a goal space could be achieved for
population-based intrinsically motivated agents (Péré et al., 2018), including modular goal space
representations Laversanne-Finot et al. (2018). Population-based IMGEPs also inspired subsequent
works on learning goal spaces from pixels for monolithic deep reinforcement learning agents in
real-world robotic manipulation scenarios (Nair et al., 2018; Pong et al., 2020).

Another limitation of our approach originates from adopting a population-based policy generation
system – i.e. a set of frozen task-experts – which hinders generalization abilities compared to when
training a single multi-purpose DRL policy through backpropagation. Although our experiments
showcased that our agents were able to operate on varying initial contexts, considering more complex
initial state distributions, in which only a small subset of goals (or goal spaces) are achievable in
each episode would impair the performances of our current agents. An interesting avenue would be
to find ways to integrate context in goal selection, e.g. using a neural network based goal selection as
in the Setter-Solver architecture (Racaniere et al., 2019).

The IMGEP framework has also been applied to the exploration of very different setups in
other scientific domains. In Grizou et al. (2020), an IMGEP implementation allowed to discover a
variety of droplet behaviors in a chemical system of self-propelling oil droplets in water, where the
exploration parameters were the concentrations of the different components of the oil droplet among
others. In yet another domain, Reinke et al. (2020) showed that the IMGEP framework with a goal
representation learned online could find self-organized patterns in the complex morphogenetic system
Lenia, a continuous game-of-life cellular automaton.

Acknowledgments

We would like to thank Alexandre Péré, Cédric Colas, Adrien Laversanne-Finot and Olivier Sigaud
for their valuable comments on an earlier version of this manuscript and Damien Caselli for his
technical help.

References

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay.
In NeurIPS, 2017.

Gianluca Baldassarre and Marco Mirolli. Intrinsically Motivated Learning in Natural and Artificial
Systems. Springer, 2013.

Adrien Baranes and Pierre-Yves Oudeyer. Intrinsically motivated goal exploration for active motor
learning in robots: A case study. In 2010 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2010a.

Adrien Baranes and Pierre-Yves Oudeyer. Maturationally-constrained competence-based intrinsically
motivated learning. In 2010 IEEE 9th International Conference on Development and Learning,
pages 197–203. IEEE, 2010b.

36

Intrinsically Motivated Goal Exploration Processes

Adrien Baranes and Pierre-Yves Oudeyer. Active learning of inverse models with intrinsically
motivated goal exploration in robots. Robotics and Autonomous Systems, 61(1), 2013.

Andrew G Barto. Intrinsic motivation and reinforcement learning. In Intrinsically motivated learning
in natural and artificial systems, pages 17–47. Springer, 2013.

Marina Bazhydai, Katherine Twomey, and Gert Westermann. Curiosity and exploration. In
Janette B. Benson, editor, Encyclopedia of Infant and Early Childhood Development (Second
Edition), pages 370 – 378. Elsevier, Oxford, second edition edition, 2020. ISBN 978-0-12-816511-9.
doi: https://doi.org/10.1016/B978-0-12-809324-5.05804-1.

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos.
Unifying count-based exploration and intrinsic motivation. In Advances in Neural Information
Processing Systems, pages 1471–1479, 2016.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
Proceedings of the 26th annual international conference on machine learning, pages 41–48. ACM,
2009.

Jon Louis Bentley. Multidimensional binary search trees used for associative searching. Commun.
ACM, 18(9):509–517, 1975. doi: 10.1145/361002.361007.

Daniel E Berlyne. Curiosity and exploration. Science, 153(3731):25–33, 1966.

Sebastian Blaes, Marin Vlastelica Pogančić, Jiajie Zhu, and Georg Martius. Control what you can:
Intrinsically motivated task-planning agent. Advances in Neural Information Processing Systems,
32, 2019.

Jongwook Choi, Archit Sharma, Honglak Lee, Sergey Levine, and Shixiang Shane Gu. Variational
Empowerment as Representation Learning for Goal-Based Reinforcement Learning, 2021.

Cédric Colas, Olivier Sigaud, and Pierre-Yves Oudeyer. GEP-PG: Decoupling exploration and
exploitation in deep reinforcement learning algorithms. In Jennifer Dy and Andreas Krause, editors,
Proceedings of the 35th International Conference on Machine Learning, volume 80 of Proceedings
of Machine Learning Research, pages 1039–1048, Stockholmsmässan, Stockholm Sweden, 10–15 Jul
2018. PMLR.

Cédric Colas, Pierre-Yves Oudeyer, Olivier Sigaud, Pierre Fournier, and Mohamed Chetouani.
CURIOUS: Intrinsically motivated modular multi-goal reinforcement learning. In ICML, 2019.

Cédric Colas, Tristan Karch, Olivier Sigaud, and Pierre-Yves Oudeyer. Autotelic agents with
intrinsically motivated goal-conditioned reinforcement learning: a short survey. Journal of Artificial
Intelligence Research, 2022.

Giuseppe Cuccu and Faustino Gomez. When novelty is not enough. In European Conference on the
Applications of Evolutionary Computation, pages 234–243. Springer, 2011.

Antoine Cully and Yiannis Demiris. Quality and diversity optimization: A unifying modular
framework. IEEE Transactions on Evolutionary Computation, 22(2):245–259, 2017.

Antoine Cully, Jeff Clune, Danesh Tarapore, and Jean-Baptiste Mouret. Robots that can adapt like
animals. Nature, 521(7553):503–507, 2015.

Peter Dayan and Terrence J Sejnowski. Exploration bonuses and dual control. Machine Learning, 25
(1):5–22, 1996.

37

Forestier, Portelas, Mollard and Oudeyer

Alexey Dosovitskiy and Vladlen Koltun. Learning to act by predicting the future. In 5th International
Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference
Track Proceedings. OpenReview.net, 2017.

Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff Clune. First return, then
explore. Nature, 590(7847):580–586, 2021.

Manfred Eppe and Pierre-Yves Oudeyer. Intelligent behavior depends on the ecological niche.
KI-Künstliche Intelligenz, 35(1):103–108, 2021.

Sébastien Forestier and Pierre-Yves Oudeyer. Curiosity-driven development of tool use precursors: a
computational model. In Proceedings of the 38th Annual Meeting of the Cognitive Science Society,
2016a.

Sébastien Forestier and Pierre-Yves Oudeyer. Modular active curiosity-driven discovery of tool use.
In Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ International Conference on, pages
3965–3972. IEEE, 2016b.

Sébastien Forestier and Pierre-Yves Oudeyer. Overlapping waves in tool use development: a curiosity-
driven computational model. In Sixth Joint IEEE International Conference on Development and
Learning and Epigenetic Robotics (ICDL-EpiRob), 2016c.

Sébastien Forestier and Pierre-Yves Oudeyer. A unified model of speech and tool use early development.
In Proceedings of the 39th Annual Meeting of the Cognitive Science Society, 2017.

Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Matteo Hessel, Ian Osband,
Alex Graves, Volodymyr Mnih, Rémi Munos, Demis Hassabis, Olivier Pietquin, Charles Blundell,
and Shane Legg. Noisy networks for exploration. In 6th International Conference on Learning
Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track
Proceedings. OpenReview.net, 2018.

Alison Gopnik, Andrew N Meltzoff, and Patricia K Kuhl. The scientist in the crib: Minds, brains,
and how children learn. William Morrow & Co, 1999.

Jacqueline Gottlieb and Pierre-Yves Oudeyer. Towards a neuroscience of active sampling and curiosity.
Nature Reviews Neuroscience, 19(12):758–770, 2018.

Jacqueline Gottlieb, Pierre-Yves Oudeyer, Manuel Lopes, and Adrien Baranes. Information-seeking,
curiosity, and attention: computational and neural mechanisms. Trends in Cognitive Sciences, 17
(11), November 2013. ISSN 13646613.

Alex Graves, Marc G. Bellemare, Jacob Menick, Rémi Munos, and Koray Kavukcuoglu. Automated
curriculum learning for neural networks. In Doina Precup and Yee Whye Teh, editors, Proceedings
of the 34th International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia,
6-11 August 2017, volume 70 of Proceedings of Machine Learning Research, pages 1311–1320.
PMLR, 2017.

Karol Gregor, Danilo Jimenez Rezende, and Daan Wierstra. Variational intrinsic control. In 5th
International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Workshop Track Proceedings. OpenReview.net, 2017.

Jonathan Grizou, Laurie J. Points, Abhishek Sharma, and Leroy Cronin. A curious formulation
robot enables the discovery of a novel protocell behavior. Science Advances, 6(5):eaay4237, 2020.
doi: 10.1126/sciadv.aay4237.

38

Intrinsically Motivated Goal Exploration Processes

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In The IEEE International Conference on
Computer Vision (ICCV), December 2015.

Rein Houthooft, Xi Chen, Yan Duan, John Schulman, Filip De Turck, and Pieter Abbeel. Vime:
Variational information maximizing exploration. In Advances in Neural Information Processing
Systems, pages 1109–1117, 2016.

Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z. Leibo, David
Silver, and Koray Kavukcuoglu. Reinforcement learning with unsupervised auxiliary tasks. In 5th
International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings. OpenReview.net, 2017.

Leslie Pack Kaelbling. Learning to achieve goals. In IJCAI, pages 1094–1099. Citeseer, 1993.

Frédéric Kaplan and Pierre-Yves Oudeyer. Maximizing learning progress: an internal reward system
for development. In Embodied artificial intelligence, pages 259–270. Springer, 2004.

Celeste Kidd and Benjamin Y Hayden. The psychology and neuroscience of curiosity. Neuron, 88(3):
449–460, 2015.

Tejas D Kulkarni, Karthik Narasimhan, Ardavan Saeedi, and Josh Tenenbaum. Hierarchical deep
reinforcement learning: Integrating temporal abstraction and intrinsic motivation. In Advances in
Neural Information Processing Systems, pages 3675–3683, 2016.

Dharshan Kumaran, Demis Hassabis, and James L McClelland. What learning systems do intelligent
agents need? complementary learning systems theory updated. Trends in cognitive sciences, 20(7):
512–534, 2016.

Andras Kupcsik, Marc Peter Deisenroth, Jan Peters, Ai Poh Loh, Prahlad Vadakkepat, and Gerhard
Neumann. Model-based contextual policy search for data-efficient generalization of robot skills.
Artificial Intelligence, 247:415–439, 2017.

Matthieu Lapeyre, Pierre Rouanet, Jonathan Grizou, Steve Nguyen, Fabien Depraetre, Alexandre
Le Falher, and Pierre-Yves Oudeyer. Poppy Project: Open-Source Fabrication of 3D Printed
Humanoid Robot for Science, Education and Art. In Digital Intelligence 2014, Nantes, France,
September 2014.

Adrien Laversanne-Finot, Alexandre Pere, and Pierre-Yves Oudeyer. Curiosity driven exploration of
learned disentangled goal spaces. In Aude Billard, Anca Dragan, Jan Peters, and Jun Morimoto,
editors, Proceedings of The 2nd Conference on Robot Learning, volume 87 of Proceedings of Machine
Learning Research, pages 487–504. PMLR, 29–31 Oct 2018.

Joel Lehman and Kenneth O Stanley. Abandoning objectives: Evolution through the search for
novelty alone. Evolutionary computation, 19(2):189–223, 2011a.

Joel Lehman and Kenneth O Stanley. Evolving a diversity of virtual creatures through novelty search
and local competition. In Proceedings of the 13th annual conference on Genetic and evolutionary
computation, pages 211–218. ACM, 2011b.

Tambet Matiisen, Avital Oliver, Taco Cohen, and John Schulman. Teacher-student curriculum
learning. IEEE TNNLS, 2017.

Clément Moulin-Frier, Sao M. Nguyen, and Pierre-Yves Oudeyer. Self-organization of early vocal
development in infants and machines: the role of intrinsic motivation. Frontiers in Psychology, 4,
2014. ISSN 1664-1078.

39

Forestier, Portelas, Mollard and Oudeyer

Ashvin Nair, Vitchyr Pong, Murtaza Dalal, Shikhar Bahl, Steven Lin, and Sergey Levine. Visual
reinforcement learning with imagined goals. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle,
Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett, editors, Advances in Neural Informa-
tion Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018,
NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pages 9209–9220, 2018.

Pierre-Yves. Oudeyer and F. Kaplan. What is intrinsic motivation? A typology of computational
approaches. Frontiers in Neurorobotics, 1, 2007. ISSN 1662-5218.

Pierre-Yves Oudeyer and Linda B Smith. How evolution may work through curiosity-driven develop-
mental process. Topics in Cognitive Science, 8(2):492–502, 2016.

Pierre-Yves Oudeyer, Frdric Kaplan, and Verena V. Hafner. Intrinsic Motivation Systems for
Autonomous Mental Development. IEEE Transactions on Evolutionary Computation, 11(2), April
2007. ISSN 1089-778X.

Pierre-Yves Oudeyer, Jacqueline Gottlieb, and Manuel Lopes. Intrinsic motivation, curiosity, and
learning: Theory and applications in educational technologies. Progress in brain research, 229:
257–284, 2016.

Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th
International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August
2017, volume 70 of Proceedings of Machine Learning Research, pages 2778–2787. PMLR, 2017.

Silviu Pitis, Harris Chan, Stephen Zhao, Bradly C. Stadie, and Jimmy Ba. Maximum entropy
gain exploration for long horizon multi-goal reinforcement learning. In Proceedings of the 37th
International Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event,
volume 119 of Proceedings of Machine Learning Research, pages 7750–7761. PMLR, 2020.

Matthias Plappert, Rein Houthooft, Prafulla Dhariwal, Szymon Sidor, Richard Y. Chen, Xi Chen,
Tamim Asfour, Pieter Abbeel, and Marcin Andrychowicz. Parameter space noise for exploration.
In 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada,
April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net, 2018.

Vitchyr Pong, Murtaza Dalal, Steven Lin, Ashvin Nair, Shikhar Bahl, and Sergey Levine. Skew-fit:
State-covering self-supervised reinforcement learning. In Proceedings of the 37th International
Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of
Proceedings of Machine Learning Research, pages 7783–7792. PMLR, 2020.

Rémy Portelas, Cédric Colas, Lilian Weng, Katja Hofmann, and Pierre-Yves Oudeyer. Automatic
curriculum learning for deep RL: A short survey. In Christian Bessiere, editor, Proceedings of
the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI 2020, pages
4819–4825. ijcai.org, 2020. doi: 10.24963/ijcai.2020/671.

Rémy Portelas, Cédric Colas, Katja Hofmann, and Pierre-Yves Oudeyer. Teacher algorithms for
curriculum learning of deep rl in continuously parameterized environments. 3rd Conference on
Robot Learning (CoRL), 2019.

Justin K Pugh, Lisa B Soros, and Kenneth O Stanley. Quality diversity: A new frontier for
evolutionary computation. Frontiers in Robotics and AI, 3:40, 2016.

Alexandre Péré, Sébastien Forestier, Olivier Sigaud, and Pierre-Yves Oudeyer. Unsupervised learning
of goal spaces for intrinsically motivated goal exploration. In International Conference on Learning
Representations, 2018.

40

Intrinsically Motivated Goal Exploration Processes

Jeffrey Frederic Queißer, René Felix Reinhart, and Jochen Jakob Steil. Incremental bootstrapping
of parameterized motor skills. In 2016 IEEE-RAS 16th International Conference on Humanoid
Robots (Humanoids), pages 223–229. IEEE, 2016.

Sebastien Racaniere, Andrew Lampinen, Adam Santoro, David Reichert, Vlad Firoiu, and Timothy
Lillicrap. Automated curriculum generation through setter-solver interactions. In International
conference on learning representations, 2019.

Chris Reinke, Mayalen Etcheverry, and Pierre-Yves Oudeyer. Intrinsically motivated exploration for
automated discovery of patterns in morphogenetic systems. ICML, 2020.

Martin A Riedmiller, Roland Hafner, Thomas Lampe, Michael Neunert, Jonas Degrave, Tom Van
de Wiele, Vlad Mnih, Nicolas Heess, and Jost Tobias Springenberg. Learning by playing solving
sparse reward tasks from scratch. In Jennifer G Dy and Andreas Krause, editors, Proceedings of the
35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm,
Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine Learning Research, pages 4341–4350.
PMLR, 2018.

Matthias Rolf, Jochen J Steil, and Michael Gienger. Goal babbling permits direct learning of inverse
kinematics. IEEE Trans. Auton. Ment. Dev., 2(3):216–229, 2010. doi: 10.1109/TAMD.2010.
2062511.

Vieri Giuliano Santucci, Gianluca Baldassarre, and Emilio Cartoni. Autonomous reinforcement
learning of multiple interrelated tasks. In 2019 Joint IEEE 9th international conference on
development and learning and epigenetic robotics (ICDL-EpiRob), pages 221–227. IEEE, 2019.

Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value function approximators.
In International Conference on Machine Learning, pages 1312–1320, 2015.

Jürgen Schmidhuber. A possibility for implementing curiosity and boredom in model-building neural
controllers. In From animals to animats: Proceedings of the first international conference on
simulation of adaptive behavior, pages 15–21, 1991.

Rupesh Kumar Srivastava, Bas R Steunebrink, and Jürgen Schmidhuber. First experiments with
powerplay. Neural Networks, 41:130–136, 2013.

Kenneth O Stanley and Joel Lehman. Why greatness cannot be planned: The myth of the objective.
Springer, 2015.

Kenneth O Stanley, Jeff Clune, Joel Lehman, and Risto Miikkulainen. Designing neural networks
through neuroevolution. Nature Machine Intelligence, 1(1):24–35, 2019.

Wojciech Sutskever, Ilya Zaremba. Learning to execute. arXiv preprint arXiv:1410.4615, 2014.

Richard S Sutton. Integrated architectures for learning, planning, and reacting based on approximating
dynamic programming. In Proceedings of the seventh international conference on machine learning,
pages 216–224, 1990.

Esther Thelen and Linda B Smith. A dynamic systems approach to the development of cognition and
action. MIT press, 1996.

41

	Introduction
	Intrinsically Motivated Goal Exploration Processes
	Notations and Assumptions
	Algorithmic Architecture
	Goal Exploration
	Intrinsic Rewards

	Modular Population-Based IMGEP Architecture
	Population-Based Meta-Policies Pi and Pi_epsilon
	Object-Centered Modular Goal Construction
	Object-Centered Temporal Modularity: Stepping-Stone Preserving Mutations
	Active Model Babbling (AMB) and Random Model Babbling (RMB)

	Experiments
	Tool-Use Environments
	2D Simulated Tool-Use Environment
	Minecraft Mountain Cart
	Robotic Tool-Use Environment

	Implementation of the Modular Population-Based IMGEP Architecture
	Motor Policy pi_theta
	Stepping-Stone Preserving Mutations
	Goal Space Policy Gamma
	Control Conditions

	Results
	Exploration Measure and Summary Results
	Intrinsically Motivated Goal Exploration
	Learned Skills
	Influence of Goal Modularity
	Curriculum Learning
	Influence of the Modularity of Exploration Mutations
	Encoding of Goals
	Static and Random Distractors

	Related Work
	IMGEP and Novelty Search
	IMGEP and Quality Diversity
	IMGEP and Reinforcement Learning

	Discussion

