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Abstract
Despite the ubiquity of U-statistics in modern Probability and Statistics, their non-
asymptotic analysis in a dependent framework may have been overlooked. In a recent
work, a new concentration inequality for U-statistics of order two for uniformly ergodic
discrete time Markov chains has been proved. In this paper, we put this theoretical break-
through into action by pushing further the current state of knowledge in three different
active fields of research. First, we establish a new exponential inequality for the estimation
of spectra of integral operators with MCMC methods. The novelty is that this result holds
for kernels with positive and negative eigenvalues, which is new as far as we know.

In addition, we investigate generalization performance of online algorithms working
with pairwise loss functions and Markov chain samples. We provide an online-to-batch
conversion result by showing how we can extract a low risk hypothesis from the sequence of
hypotheses generated by any online learner.

We finally give a non-asymptotic analysis of a goodness-of-fit test on the density of the
stationary measure of a Markov chain. We identify some classes of alternatives over which
our test based on the L2 distance has a prescribed power.
Keywords: U-statistics, Markov chains, Concentration inequality, Integral operators,
Online learning, Non-parametric hypothesis testing

1. Introduction

For the last twenty years, the phenomenon of the concentration of measure has received
much attention. The main interesting feature of concentration inequalities is that, unlike
central limit theorems or large deviations inequalities, they are nonasymptotic. Among
others, Pascal Massart, Michel Ledoux and Gabor Lugosi produced a series of works that
led to a large span of powerful inequalities. Their results have found application in model
selection (cf. Massart, 2007; Lerasle et al., 2016), statistical learning (cf. Clémençon et al.,
2020), online learning (cf. Wang et al., 2012) or random graphs (cf. De Castro et al., 2019;
Duchemin and De Castro, 2022). Most of the concentration inequalities are formulated for
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U-statistics of order m (cf. Van der Vaart, 2000, Chapter 12), which are defined as a sum of
the form ∑

1≤i1<···<im≤n
hi1,...,im(Xi1 , . . . , Xim),

where X1, . . . , Xn are random variables taking values in a measurable space (E,Σ) (with E
Polish) and where hi1,...,im are measurable functions of m variables hi1,...,im : Em → R. The
pioneering works considered independent random variables (Xi)i≥1, an assumption that can
be prohibitive for practical applications which often involve some dependence structure. To
cope with this issue, some researchers left the independent setting by working with Markov
chains or by adopting some mixing conditions and we refer for example to Fan et al. (2021);
Jiang et al. (2018); Paulin (2015); Adamczak (2008); Clémençon et al. (2020). The previous
mentioned papers considered U-statistics of order m = 1 and the non-asymptotic behaviour
of tails of U-statistics of order m ≥ 2 in a dependent framework remains so far understudied.
Recently, the two papers Duchemin et al. (2022) and Shen et al. (2020) made a first step to
fill this gap. While Shen et al. (2020) consider U-statistics of arbitrary order with smooth
and symmetric kernels and work with mixing conditions, Duchemin et al. (2022) are focused
on U-statistics of order two for uniformly ergodic discrete time Markov chains and bounded
kernels. Let us highlight that we work with the result of the former paper rather than the
one from Shen et al. (2020) since we need a concentration inequality valid for any initial
distribution of the chain. We give further details at the beginning of Section 2.2.

Our paper is in the line of work of Massart (2000) where concentration of measure is
applied to tackle problems arising from model selection. In this work, we shed light on the
large number of potential theoretical breakthroughs allowed by a better understanding of
the non-asymptotic tail behavior of U-statistics of order two in a dependent framework. We
present new theoretical results in three different branches of Statistics ranging from online
learning to goodness-of-fit tests. In Section 1.1 we describe in details our three contributions,
highlighting their applications to learning theory and the proof innovations.

1.1 Our contributions

Our new results - that we referred to as applications for brevity - push further the current
state of knowledge in three different active areas of research in Probability, Statistics and
Machine Learning. Although the recent progress in concentration inequality for U-statistics
with dependent random variables is a key element in our proofs, our contributions are not a
direct consequence of it. The purpose of this section is threefold: (i) we present concisely our
main results, (ii) we highlight the proof innovations of our approach compared to previous
works and (iii) we propose relevant connections between our work and other important topics
in learning theory and Statistics.

• Estimation of spectra of signed integral operator with MCMC algorithms
(Section 3)
We study the convergence of sequence of spectra of kernel matrices towards the
spectrum of some integral operator. Previous important works may include Adamczak
and Bednorz (2015a) and, as far as we know, they all assume that the kernel is of
positive-type (i.e. giving an integral operator with non-negative eigenvalues). Getting
counterpart of those results for signed integral operators is of great interest since they
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arise for example in random graphs with latent space (cf. De Castro et al., 2019) which
can be characterized by the so-called graphon (cf. Lovász, 2012). For the first time,
this paper proves a non-asymptotic result of convergence of spectra for kernels that are
not of positive-type. We further prove that independent Hastings algorithms are valid
sampling schemes to apply our result.
Proof innovations. In Section 3.2, we propose a comparison between our result
and the one from Adamczak and Bednorz (2015a). We explain why working with
integral operators of positive-type allows Adamczak and Berdnorz to make use of a
powerful decoupling technique. Thanks to this elegant argument, they are reduced to
prove a concentration inequality for a sum of Banach space valued random variables
where the i-th summand depends only on the i-th visited state of the Markov chain.
By considering signed integral operators, the approach of the former paper cannot
be adapted. Our proof relies on a low rank approximation of the kernel and on a
concentration result for U-statistics with dependent random variables.
Application to learning theory. A large number of learning algorithms aim at
estimating the eigenvalues and/or the eigenvectors of data-dependent matrices. This
is for example the case for Principal Component Analysis (PCA) or some manifold
methods (cf. Rosasco et al., 2010). It appears that these matrices can often be
interpreted as the empirical versions of continuous objects such as integral operators.
As highlighted in Rosasco et al. (2010), the theoretical analysis of the above mentioned
learning algorithms requires to quantify the difference between the eigen-structure of the
empirical operators and their continuous counterparts. Specific examples coming from
the Machine Learning and the Statistics communities where our result may find an echo
include the estimation of the entire spectrum of a Markov operator (cf. Chakraborty
and Khare, 2019), estimation procedures in random graphs (cf. Duchemin and De
Castro, 2022) or the analysis of the generalization properties of neural networks (cf.
Zhang et al., 2021).

• Online learning with pairwise loss functions (Section 4)
In Machine Learning, several important problems involve a pairwise loss function, i.e. a
loss function which depends on a pair of examples. One typical example is the problem
of metric learning (cf. Jin et al., 2009) where one aims to learn a metric so that instances
with the same labels are close while ones with different labels are far away from each
other. Other pairwise learning tasks include preference learning (cf. Xing et al., 2002),
ranking (cf. Agarwal and Duchi, 2012), gradient learning (cf. Meir and Zhang, 2003)
and AUC maximization (cf. Zhao et al., 2011). Batch learning algorithms with pairwise
loss functions have been extensively studied and their generalization properties have
been well established. However, batch algorithms have some limitations especially when
data becomes available in a sequential order or for large scale learning problems where
their computational cost can be prohibitive. Online algorithms have been designed to
efficiently solve learning problems in such situations: they deal with data coming on
fly and try to improve the learned model along time based on the new observations.
The performance of online learning algorithms is typically analyzed through the notion
of regret which compares the payoff obtained by the algorithm along time with the one
that would have been obtained by taking the optimal decision at each time step (cf.
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Bubeck and Cesa-Bianchi, 2012). The regret quantifies the number of mistakes made
by the algorithm without requiring assumptions on the way the training sequence is
generated. When the sequence of observations is the realization of some stochastic
process, one can analyze online algorithms through a different lens by wondering how
they generalize on future examples. More precisely, we would like to convert a regret
bound of an online learner into a control of the excess risk. In the online learning
research community, these types of results are called online-to-batch conversion and we
refer to (Hoi et al., 2021, Section 3.7) for a comprehensive introduction to this topic.
Online-to-batch conversion results for online learning with univariate or pairwise loss
functions working with i.i.d. samples have been considered for quite a while in both
Machine Learning and Statistics literature (cf. Wang et al., 2012; Ying and Zhou, 2017;
Guo et al., 2017; Chen and Lei, 2018). For dependent data sequences, generalization
bounds for online algorithms have also been proved in the last decades with univariate
loss functions (cf. Agarwal and Duchi, 2012). However, theoretical guarantees for the
generalization performance of online algorithms with pairwise loss functions with non
i.i.d. data have been so far little studied. Inspired by Wang et al. (2012), our work is
one of the first to bring results regarding this problem. In Section 4.1.4, we establish
clear connections with the existing literature.
Proof innovations. Wang et al. (2012) was a pioneering work for the study of
generalization performance of online learning algorithms with pairwise loss functions
and worked with i.i.d. observations. In this paper, we extend the result of Wang et al.
(2012) by considering a dependent framework that makes the theoretical analysis more
challenging. In our proofs, we bypass the additional issues arising from data dependency
using properties of uniformly ergodic Markov chains, concentration inequalities for
U-statistics (of order one and two) of dependent random variables and reversibility of
Markov chains by considering the time-reversed sequence. Using the marker �, we
shed light in Section B on the specific parts of the proof where the arguments used in
the i.i.d. framework fail, requiring a specific theoretical work handling a sequence of
dependent observations.

• Adaptive goodness-of-fit tests in a density model (Section 5)
Several works have already proposed goodness-of-fit tests for the density of the stationary
distribution of a sequence of dependent random variables. In Li and Tkacz (2001), a
test based on an L2-type distance between the nonparametrically estimated conditional
density and its model-based parametric counterpart is proposed. In Bai (2003) a
Kolmogorov-type test is considered. Chwialkowski et al. (2016) derive a test procedure
for τ -mixing sequences using Stein discrepancy computed in a reproducing kernel
Hilbert space. In all the above mentioned papers, asymptotic properties of the test
statistic are derived but no non-asymptotic analysis of the methods is conducted. As
far as we know, this paper is the first to provide a non-asymptotic condition on the
classes of alternatives ensuring that the statistical test reaches a prescribed power
working in a dependent framework.
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1.2 Outline

In Section 2, we introduce useful notations for our paper and we present the concentration
inequality for U-statistics that is an important argument of our proofs. The next three
sections are dedicated to our main results. We start by providing a convergence result for
the estimation of spectra of integral operators with MCMC algorithms (see Section 3). We
show that independent Hastings algorithms satisfy under mild conditions the assumptions of
Section 2.2 and we illustrate our result with the estimation of the spectra of some Mercer
kernels. For the second application of our concentration inequality, we investigate the
generalization performance of online algorithms with pairwise loss functions in a Markovian
framework (see Section 4). We motivate the study of such problems and we provide an
online-to-batch conversion result. In a third and final application, we propose a goodness-of-fit
test for the density of the stationary measure of a Markov chain (see Section 5). We give an
explicit condition on the set of alternatives to ensure that the statistical test proposed reaches
a prescribed power. The proofs related to the three applications are given in Section A,
Section B and Sections C.1-C.3 respectively.

2. Notations and Concentration inequality for U-statistics with
dependent random variables

2.1 Notations

Let us consider an arbitrary measurable space (F,F). For any measure ω on (F,F), the total
variation norm of ω is defined by ‖ω‖TV := supA∈F |ω(A)|. The space of square summable
functions on F with respect to the measure ω defined by

L2(ω) := {f : F → R measurable |
∫
F
f(x)2dω(x) <∞},

endowed with the inner product

(f, g) ∈ L2(ω)× L2(ω) 7→ 〈f, g〉 :=

∫
F
f(x)g(x)dω(x),

is a Hilbert space and we denote by ‖ · ‖2 the norm induced by 〈·, ·〉. For any function
h : F → R, we define the supremum norm of h by ‖h‖∞ := supx∈F |h(x)|. We denote
by B(R) the Borel algebra on R and we set N∗ := N\{0}. For any x ∈ R+, we denote
by bxc (resp. dxe) the largest integer that is less than or equal to x (resp. the smallest
integer greater than or equal to x). For any x, y ∈ R, we set x ∨ y := max(x, y) and
x∧y := min(x, y). Given a sequence of real valued random variables (Xn)n∈N and a sequence
of positive reals (an)n∈N, the notation Xn = OP(an) means that (Xn/an)n∈N converges to
zero in probability as n→∞.

2.2 Concentration inequality for U-statistics of uniformly ergodic Markov
chains

In this section, we present the concentration result from Duchemin et al. (2022) for U-statistics
of uniformly ergodic discrete time Markov chains that will be an essential tool in our proofs.
Let us mention that we do not work with the concentration inequality from Shen et al. (2020)
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since it only holds for stationary chains if the kernel h is π-canonical (see Assumption 3).
Stationarity may be seen as a strong assumption which would make our main results from
Section 3 of little interest since MCMC methods are used when we are not able to directly
sample from the distribution π. Regarding Sections 4 and 5, the concentration inequality for
U-statistics used in the proofs of our results needs to hold for any initial distribution of the
chain.

Let (E,Σ) be a measurable space. We consider a Markov chain (Xi)i≥1 on (E,Σ) with
transition kernel P : E×E → [0, 1] and with a unique stationary distribution π. We consider
a measurable function h : (E ×E,Σ⊗Σ)→ (R,B(R)) and we are interested in the following
U-statistic

Ustat(n) :=
∑

1≤i 6=j≤n

(
h(Xi, Xj)− E(X,Y )∼π⊗π[h(X,Y )]

)
.

We will work under the following set of assumptions.

Assumption 1 The Markov chain (Xi)i≥1 is ψ-irreducible (cf. Meyn and Tweedie, 1993,
Section 4.2) for some maximal irreducibility measure ψ on Σ. Moreover, there exist some
natural number m and a constant δm > 0 such that

∀x ∈ E, ∀A ∈ Σ, δmµ(A) ≤ Pm(x,A). (1)

for some probability measure µ.

AMarkov chain satisfying Assumption 1 is called uniformly ergodic (cf. Meyn and Tweedie,
1993, Chapter 16) and admits a unique stationary distribution denoted by π. Assumption 1
also implies that the regeneration times associated to the split chain are exponentially
integrable, meaning that their Orlicz norm with respect to the function ψ1(x) = exp(x)− 1
are bounded by some constant τ > 0. We refer to (Duchemin et al., 2022, Section 2.3) for
details.

Assumption 2 can be read as a reverse Doeblin’s condition and is used in Duchemin et al.
(2022) as a decoupling tool. In their paper, the authors give several natural examples for
which this condition holds.

Assumption 2 There exist δM > 0 and some probability measure ν such that

∀x ∈ E, ∀A ∈ Σ, P (x,A) ≤ δMν(A).

The last assumption introduces the notion of π-canonical kernel, which is the counterpart
in the Markovian setting of the canonical (or degenerate) property of the independent
framework.

Assumption 3 Denoting by π the stationary distribution of the Markov chain (Xi)i≥1, we
assume that h : (E × E,Σ ⊗ Σ) → (R,B(R)) is measurable, bounded and is π-canonical,
namely

∀x, y ∈ E, Eπ[h(X,x)] = Eπ[h(X, y)] = Eπ[h(x,X)] = Eπ[h(y,X)].

This common expectation will be denoted Eπ[h].
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Let us mention that several important kernels are π-canonical. This is the case of translation-
invariant kernels which have been widely studied in the Machine Learning community (cf.
Lerasle et al. (2016)). Another example of π-canonical kernel is a rotation invariant kernel
when E = Sd−1 := {x ∈ Rd : ‖x‖2 = 1} with π also rotation invariant (cf. De Castro et al.,
2019; Duchemin and De Castro, 2022). Note also that if the kernel h is not π-canonical, the
U-statistic decomposes into a linear term and a π-canonical U-statistic. This is called the
Hoeffding decomposition (cf. Giné and Nickl, 2016, p.176) and takes the following form∑

i 6=j

(
h(Xi, Xj)− E(X,Y )∼π⊗π[h(X,Y )]

)
=
∑
i 6=j

(
h̃(Xi, Xj)− Eπ

[
h̃(X, ·)

])
+
∑
i 6=j

(
EX∼π [h(X,Xj)]− E(X,Y )∼π⊗π [h(X,Y )]

)
+
∑
i 6=j

(
EX∼π [h(Xi, X)]− E(X,Y )∼π⊗π [h(X,Y )]

)
,

where the kernel h̃ is π-canonical with

∀x, y ∈ E, h̃(x, y) = h(x, y)− EX∼π [h(x,X)]− EX∼π [h(X, y)] .

We will use this method several times in our proofs (for example in Eq.(19)).
We are now ready to state the result from Duchemin et al. (2022) that is one key

theoretical tool to derive our three contributions presented in the next section.

Theorem 1 Suppose that Assumptions 1, 2 and 3 are satisfied. Then there exist con-
stants β, κ > 0 (depending on the Markov chain (Xi)i≥1) such that for any u ≥ 1 and
any n ≥ 2, with probability at least 1− βe−u log n,

2

n(n− 1)
Ustat(n) ≤ κ‖h‖∞ log n

{
u

n
+
(u
n

)2}
.

3. Estimation of spectra of signed integral operator with MCMC
algorithms

3.1 MCMC estimation of spectra of signed integral operators

Let us consider a Markov chain (Xn)n≥1 on E satisfying the assumptions of Theorem 1 with
stationary distribution π, and some symmetric kernel h : E×E → R such that h ∈ L2(π⊗π).
We can associate to h the kernel of a linear operator H defined by

Hf(x) :=

∫
E
h(x, y)f(y)dπ(y). (2)

This is a Hilbert-Schmidt operator on L2(π) and thus it has a real spectrum consisting
of a square summable sequence of eigenvalues (cf. Conway, 2019, p.267). In the following, we
will denote the eigenvalues of H by λ(H) := (λ1, λ2, . . . ). For some n ∈ N∗, we consider

H̃n :=
1

n
(h(Xi, Xj))1≤i,j≤n and Hn :=

1

n
((1− δi,j)h(Xi, Xj))1≤i,j≤n , (3)

7



Duchemin, De Castro and Lacour

with respective eigenvalues λ(H̃n) and λ(Hn). Following (Koltchinskii and Giné, 2000,
Section 2), we introduce in Definition 1 the rearrangement distance δ2 which measures
closeness of spectra.

Definition 1 Given two sequences x, y of reals – completing finite sequences by zeros – such
that ∑

i

x2i + y2i <∞ ,

we define the `2 rearrangement distance δ2(x, y) as

δ22(x, y) := inf
σ∈S

∑
i

(xi − yσ(i))2 ,

where S is the set of permutations of natural numbers. δ2 is a pseudometric on `2, where `2
is the Hilbert space of all square summable sequences.

Theorem 2 gives conditions ensuring that both the spectrum of Hn and the one of H̃n

converge towards the spectrum of the integral operator H as n→∞. Theorem 2 holds under
Assumption 4 that we discuss in details in Section 3.2. The proof of Theorem 2 is postponed
to Section A.

Assumption 4 h : E × E → R is a bounded and symmetric function square integrable with
respect to π ⊗ π. Moreover there exist continuous functions ϕr : E → R, r ∈ I (where I = N

or I = 1, . . . , N) that form an orthonormal basis of L2(π) and a sequence of real numbers
(λr)r∈I ∈ `2 such that we have pointwise

h(x, y) =
∑
r∈I

λrϕr(x)ϕr(y),

with Υ := sup
r∈I
‖ϕr‖2∞ <∞ and S := supx∈E

∑
r∈I |λr|ϕr(x)2 <∞.

We further denote Λ := sup
r∈I
|λr|.

Theorem 2 Let (Xi)i≥1 be a Markov chain on E satisfying Assumptions 1 and 2 described
in Section 2.2 with stationary distribution π. Suppose that Assumption 4 is satisfied. Then
for any t > 0,

P

1

4
δ2(λ(H), λ(Hn))2 ≥ S2(1 + κ) log n

n
+ 2

∑
i>dn1/4e,i∈I

λ2i + t


≤ 32

√
n exp

(
−Cmin

(
nt2,
√
nt
))

+ β log(n) exp

(
− n

log n
min

(
Bt, (Bt)1/2

))
,

where for some universal constant K > 0, we have B = (KκS)−1, C =
(
K1/2mτ(S + ΛΥ)

)−2.
κ > 0 and β > 0 are the constants from Theorem 1 and depend on the Markov chain. We
refer to Assumption 1 and the following remark for the definitions of the constants m and τ .

Remark The same bound holds for δ2(λ(H), λ(H̃n))2.
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3.2 Comparison with the existing literature

Previous works. In Adamczak and Bednorz (2015a), the authors studied the convergence
properties of MCMC methods to estimate the spectrum of integral operators with bounded
positive kernels (i.e. such that H has non-negative eigenvalues). They show a sub-exponential
tail behavior for the δ2 distance between the spectrum of H and the one of the random
matrix Hn. Their result has the merit to hold for geometrically ergodic Markov chains, but
they work with the restrictive assumption that the eigenvalues of H are non-negative. This
makes their kernel of positive-type (cf. Eq.(14) Adamczak and Bednorz, 2015a), allowing
them to use of powerful decoupling argument. They are reduced to study a sum of rank one
operators on L2(π) and the proof is concluded by using the splitting technique (cf. Meyn
and Tweedie, 1993, Section 5.1) with a Bernstein-type inequality for sums of independent
Banach space valued random variables.

Comparing Theorem 2 with previous works. In this paper we consider signed integral
operators and we cannot adapt the proof proposed by Adamczak and Bednorz (2015a).
Working with stronger conditions on the Markov chain (Xi)i≥1 compared to the former
paper, Theorem 2 proves a new concentration inequality for the δ2 distance between λ(H)
and λ(Hn) that holds for arbitrary signs of the eigenvalues of H.We provide a synthetic
description of our proof at the beginning of Section A . Note that the set of operators handled
by Theorem 2 is not a superset of the ones handled by (Adamczak and Bednorz, 2015a,
Theorem 2.2). The difference lies in the fact that we ask the family of functions (ϕr)r∈I
to be uniformly bounded (cf. Assumption 4). Let us mention that the set of assumptions
considered in Adamczak and Bednorz (2015a) implies that S < ∞. In the following, we
comment our extra assumption Υ <∞ with more details.

1. The basis functions (ϕr)r∈I are continuous and Assumption 2 typically holds for a
compact space E. Hence, by considering that E is compact and that the sequence
(λr)r∈I has finite support (i.e. I = [N ] for some natural number N), it holds Υ <∞.

2. Asking for Υ < ∞ is only useful to apply a concentration inequality for Markov
chains at one specific step of our proof (cf. Eq.(15)). Hence this assumption might be
weakened by applying other exponential tail control for empirical processes of Markov
chains. Nevertheless we point out that Theorem 2 holds for uniformly ergodic Markov
chains which is equivalent to the standard drift condition where the drift function V
is bounded (cf. Meyn and Tweedie, 1993, Chap.16). Hence, the assumptions needed
for the exponential inequality from (Adamczak and Bednorz, 2015b, Theorem 1.1) or
the one from (Durmus et al., 2021, Theorem 5) imply that Υ <∞. Hence, weakening
the condition Υ <∞ seems challenging but we believe that it might be done in some
specific settings using for instance the work from (Ciolek and Bertail, 2019, Section 3.2).

3.3 Admissible sampling schemes: Independent Hastings algorithm

One can use the previous result to estimate the spectrum of the integral operator H using
MCMC methods. To do so, we need to make sure that the Markov chain used for the MCMC
method satisfies the conditions of Theorem 1. It is for example well known that Metropolis
random walks on R are not uniformly ergodic (cf. Meyn and Tweedie, 1993). In the following,
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we show that an independent Hastings algorithm can be used on bounded state space to
generate a uniformly ergodic chain with the desired stationary distribution.

3.3.1 Independent Hastings algorithm on bounded state space.

Let E ⊂ Rk be a bounded subset of Rk equipped with the Borel σ-algebra B(E). We consider
a density π which is only known up to a factor and a probability density q with respect to
the Lebesgue measure λLeb on E, satisfying π(y), q(y) > 0 for all y ∈ E. In the independent
Hastings algorithm, a candidate transition generated according to the law qλLeb is then
accepted with probability α(x, y) given by

α(x, y) = min

(
1,
π(y)q(x)

π(x)q(y)

)
.

With an approach similar to Theorem 2.1 from Mengersen and Tweedie (1996), Proposition 2
shows that under some conditions on the densities π and q, the independent Hastings
algorithm satisfies the Assumptions 1 and 2.

Proposition 2 Let us assume that sup
x∈E

q(x) <∞ and that there exists β > 0 such that

q(y)

π(y)
> β, ∀y ∈ E.

Then, the independent Hastings algorithm satisfies the Assumptions 1 and 2.

Proof We denote P the transition kernel of the Markov chain generated with the in-
dependent Hastings algorithm. For any x ∈ E, the density with respect to λLeb of the
absolutely continuous part of P (x, dy) is p(x, ·) = q(·)α(x, ·), while the singular part is given
by 1x(·)

(∫
z∈E q(z)α(x, z)dλLeb(z)

)
. For fixed x ∈ E, we have either α(x, y) = 1 in which

case p(x, y) = q(y) ≥ βπ(y), or else

p(x, y) = q(y)
π(y)q(x)

π(x)q(y)
= q(x)

π(y)

π(x)
≥ βπ(y).

We deduce that for any x ∈ E, it holds

P (x,A) ≥ β
∫
y∈A

π(y)dλLeb(y),

which proves that the chain is uniformly ergodic (cf. Eq.(1)). Hence Assumption 1 is satisfied.
Assumption 2 trivially holds since E is bounded and supy∈E q(y) <∞.

From Proposition 2 and Theorem 2, we deduce that one can use a MCMC approach
to estimate the spectrum of a signed integral operator H (that satisfies Assumption 4) as
defined in Eq.(2) where E is a bounded subset of Rk. More precisely, if the density π of
Eq.(2) is known up to a factor and if there exists some probability density q with respect
to λLeb satisfying the assumptions of Proposition 2, the Independent Hastings algorithm
provides a Markov chain that satisfies Assumptions 1 and 2. Hence the non-asymptotic
bound from Theorem 2 holds. We put this methodology into action in the new section by
estimating the spectrum of some Mercer kernels on the d-dimensional sphere.
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3.4 Estimation of the spectrum of Mercer kernels

In this example, we illustrate Theorem 2 by computing the eigenvalues of an integral operator
naturally associated with a Mercer kernel using a MCMC algorithm. A function h : E×E → R

is called a Mercer kernel if E is a compact metric space and h : E × E → R is a continuous
symmetric and positive definite function. It is well known that if h is a Mercer kernel,
then the integral operator Lh associated with h is a compact and bounded linear operator,
self-adjoint and semi-definite positive. The spectral theorem implies that if h is a Mercer
kernel, then there is a complete orthonormal system (ϕ1, ϕ2, . . . ) of eigenvectors of Lh. The
eigenvalues (λ1, λ2, . . . ) are real and non-negative. The Mercer Theorem (see e.g. Christmann
and Steinwart, 2008, Theorem 4.49) shows that the eigen-structure of Lh can be used to
get a representation of the Mercer kernel h as a sum of a convergent sequence of product
functions for the uniform norm. In this context, Theorem 2 allows to derive the convergence
rate in the δ2 metric of the estimated spectrum towards the one of the integral operator H
as presented in Proposition 3.

Proposition 3 We keep the notations and the assumptions of Theorem 2. We assume
further that there exists s > 0, a (Sobolev) regularity parameter, such that for some constant
C(s) > 0,

∀R > 1,
∑
i>R

λ2i ≤ C(s)R−2s.

Then it holds

δ2(λ(H), λ(Hn))2 =

 OP
(√

logn
n

)
if s ≥ 1

OP
(

1
ns/2

)
if s ∈ (0, 1)

.

Proof Proposition 3 directly follows from Theorem 2 by choosing t =
√

logn
n .

To illustrate our purpose, we consider the d-dimensional sphere Sd−1 = {x ∈ Rd : ‖x‖2 = 1}.
We consider a positive definite kernel on Sd−1 defined by ∀x, y ∈ Sd−1, h(x, y) = ψ(x>y)
where ψ : [−1, 1]→ R is continuous. From the Funk-Hecke Theorem (see e.g. Müller, 2012,
p.30), we know that the eigenvalues of the Mercer kernel h are

λk = |Sd−2|
∫ 1

−1
ψ(t)Pk(d; t)

(
1− t2

) d−3
2 dt, (4)

where |Sd−2| is the surface area of Sd−2 and Pk(d; t) is the Legendre polynomial of degree k
in dimension d. For any k ∈ N, the multiplicity of the eigenvalue λk is the dimension of the
space of spherical harmonics of degree k. To build the Markov chain (Xi)i≥1, we start by
sampling randomly X1 on Sd−1. Then, for any i ∈ {2, . . . , n}, we sample

• a unit vector Yi ∈ Sd−1 uniformly, orthogonal to Xi−1.

• a real ri ∈ [−1, 1] encoding the distance between Xi−1 and Xi. ri is sampled from a
distribution fL : [−1, 1]→ [0, 1].

11
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then Xi is defined by

Xi = ri ×Xi−1 +
√

1− r2i × Yi .

By assuming that minr∈[−1,1] fL(r) > 0 and ‖fL‖∞ <∞, Assumptions 1 and 2 hold and the
stationary distribution of the chain (Xi)i≥1 is the Haar measure on Sd−1 (cf. Duchemin and
De Castro, 2022).

In Figure 1, we plot the non-zero eigenvalues using function ψ : t 7→ (1+ t)2 and taking fL
proportional to r 7→ f(5,1)(

r+2
4 ) where f(5,1) is the pdf of the Beta distribution with parame-

ter (5, 1). We plot both the true eigenvalues and the ones computed using a MCMC approach.
Figure 1: Consider function ψ : t 7→ (1 + t)2,
d = 2 and n = 1000. The true eigen-
values can be computed using (4), but in
this case, we know the exact values of the
three non-zero eigenvalues namely λ0 = 3π,
λ1 = 2π and λ2 = π/2. Their respec-
tive multiplicities are 1, 2 and 2. The esti-
mated eigenvalues are the eigenvalues of the
matrix Hn = 1

n

(
(1− δi,j)ψ(X>i Xj)

)
1≤i,j≤n

where the n points X1, X2, . . . , Xn are sam-
pled on the Euclidean sphere Sd−1 using a
Markovian dynamic.

4. Online Learning with Pairwise Loss Functions

4.1 Brief introduction to online learning and motivations

4.1.1 Presentation of the traditional online learning setting

Online learning is an active field of research in Machine Learning in which data becomes
available in a sequential order and is used to update the best predictor for future data
at each step. This method aims at learning some function f : E → Y where E is the
space of inputs and Y is the space of outputs. At each time step t, we observe a new
example (xt, yt) ∈ E × Y. Traditionally, the random variables (xt, yt) are supposed i.i.d.
with common joint probability distribution (x, y) 7→ p(x, y) on E × Y. In this setting,
the loss function is given as ` : Y × Y → R, such that `(f(x), y) measures the difference
between the predicted value f(x) and true value y. The goal is to select at each time
step t a function ht : E → Y in a fixed set H based on the observed examples until time t
(namely (xi, yi)1≤i≤t) such that ht has “small” risk R defined by

R(h) = E(X,Y )∼p
[
`(h(X), Y )

]
,

where h is any measurable mapping from E to Y.
Online learning is used when data is coming on the fly and we do not want to wait for

the acquisition of the complete dataset to take a decision. In such cases, online learning
algorithms allow to dynamically adapt to new patterns in the data.

12
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4.1.2 Online learning with pairwise loss functions

In some cases, the framework provided in the previous paragraph is not appropriated to
solve the task at stake. Consider the example of ranking problems. The state space is E
and there exists a function f : E → R which assigns to each state x ∈ E a label f(x) ∈ R. f
naturally defines a partial order on E. At each time step t, we observe an example xt ∈ E
together with its label f(xt) and we suppose that the random variables (xt)t are i.i.d. with
common distribution p. Our goal is to learn the partial order of the items in E induced by
the function f . More precisely, we consider a space H ⊂ {h : E × E → R}, called the set of
hypotheses. An ideal hypothesis h ∈ H would satisfy

∀x, u ∈ E, f(x) ≥ f(u)⇔ (h(x, u) ≥ 0 and h(u, x) ≤ 0) .

We consider a loss function ` : H × E × E → R such that `(h, x, u) measures the ranking
error induced by h and a typical choice is the 0-1 loss

`(h, x, u) = 1{(f(x)−f(u))h(x,u)<0}.

U-statistics naturally arise in such settings as for example in Clémençon et al. (2008) where
Clémençon and al. study the consistency of the empirical risk minimizer of ranking problems
using the theory of U-processes in an i.i.d. framework.

Example: Bipartite ranking problems
We describe the concrete problem of bipartite ranking. We consider that we have as input

a training set of examples. Each example is described by some feature vector and is associated
with a binary label. Typically one can consider that we have access to health data of an
individual along time. We know at each time step her/his health status xt and her/his label
which is 0 if the individual is healthy and 1 if she/he is sick. In the bipartite ranking problem,
we want to learn a scorer which maps any feature vector describing the health status of
the individual to a real number such that sick states have a higher score than healthy ones.
Following the health status of individuals is time-consuming and we cannot afford to wait
for the end of the data acquisition process to understand the relationship between the feature
vector describing the health status of the individual and her/his sickness. In such settings
where data is coming on the fly, online algorithms are common tools that allow to learn a
scorer function along time. At each time step the scorer function is updated based on the new
measurement provided.

4.1.3 Generalization bounds for online learning

The performance of online learning algorithms is often analyzed with the notion of regret
which compares the payoff obtained by the algorithm along time with the one that would
have been obtained by taking the optimal decision at each time step (cf. Hoi et al., 2021;
Bubeck and Cesa-Bianchi, 2012). It is natural to wonder if stronger theoretical guarantees
can be obtained when some probabilistic structure underlies the sequence of examples, or
loss functions, presented to the online algorithm. As asked in Agarwal and Duchi (2012),
‘if the sequence of examples are generated by a stochastic process, can the online learning
algorithm output a good predictor for future samples from the same process?’ In other words,
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we want to study the generalization ability of some online learner that generates a sequence
of hypothesis (ht)t≥1 by bounding with high probability the excess risk defined as

1

n

n∑
t=1

R(ht)−min
h∈H
R(h).

Generalization bounds for online learning with pairwise loss functions working with i.i.d.
samples have been considered for quite a while in both Machine Learning and Statistics
literature (cf. Kar et al., 2013; Ying and Zhou, 2017; Guo et al., 2017; Chen and Lei, 2018). For
dependent data sequences, generalization bounds for online algorithms have also been proved
in the last decades with univariate loss functions (cf. Zhang, 2005; Xu et al., 2014; Agarwal
and Duchi, 2012). However, theoretical guarantees for the generalization performance of
online algorithms with pairwise loss functions with non i.i.d. data have been so far little
studied. A quick and incomplete review of the literature is presented in Table 1.

Univariate loss function Pairwise loss function

i.i.d. data Hoi et al., Section 3.7 and
references therein

Kar et al.; Ying and Zhou;
Guo et al.; Chen and Lei

Dependent data Zhang; Xu et al.; Agarwal and
Duchi Our work

Table 1: Overview of the literature providing generalization bounds for online learning
algorithms.

4.1.4 Generalization bounds for pairwise online learning with dependent
data

Connection with the existing literature. As far as we know, the few papers that
investigate the generalization performance of pairwise online learning algorithms with non
i.i.d. data have studied specific algorithms and/or specific learning tasks (cf. Qin et al., 2021;
Zeng et al., 2021). In Zeng et al. (2021), the authors analyze online pairwise support vector
machine while the work Qin et al. (2021) is focused on online regularized pairwise learning
algorithm with least squares loss function. One possible reason explaining this gap in the
literature is that ‘for pairwise learning [where] pairs of training examples are not i.i.d., [...]
standard techniques can not be directly applied.’ (cf. Zeng et al., 2021).

With the upcoming application, we are the first - as far as we know - to provide a
generalization bounds for online algorithms with pairwise loss functions and Markov chain
samples that hold for an arbitrary online learner, covering a large span of settings.

Online learning with a Markovian dynamic. The theoretical analysis of Machine
Learning algorithms with an underlying Markovian distribution of the data has become a
very active field of research. The first papers to study online learning with samples drawn
from non-identical distributions were Smale and Zhou (2009) and Steinwart et al. (2009)
where online learning for least square regression and off-line support vector machines are
investigated. In Zou et al. (2009), the generalization performance of the empirical risk
minimization algorithm is studied with uniformly ergodic Markov chain samples. Hence
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the analysis of online algorithms with dependent samples is recent and several works make
the assumption that the sequence is a uniformly ergodic Markov chain. We motivate the
Markovian assumption on the example of the previous paragraph.

Example (continued): Interest in online algorithms with Markovian dynamic
The health status of the individual at time n+ 1 is not independent from the past and a

simple way to model this time evolution would be to consider that it only depends on the last
measured health status namely the feature vector xn. This is a Markovian assumption on the
sequence of observed health status of the individual.

We have explained why pairwise loss functions capture ranking problems and naturally
arise in several Machine Learning problems such as metric learning or bipartite ranking (cf.
Clémençon et al. (2008)). We have shown the interest to provide a generalization bounds for
online learning with pairwise loss functions with a Markovian assumption on the distribution
of the sequence of examples and this is the goal of the next section.

4.2 Online-to-batch conversion for pairwise loss functions with Markov chains

We consider a reversible Markov chain (Xi)i≥1 with state space E satisfying Assumption 1
with stationary distribution π. Using (Meyn and Tweedie, 1993, Theorem 16.0.2), we deduce
that there exist constants 0 < ρ < 1 and L > 0 such that

‖Pn(x, ·)− π‖TV ≤ Lρn, ∀n ≥ 0, π−a.e x ∈ E. (5)

We assume that we have a function f : E → R which defines the ordering of the objects in E.
We aim at finding a relevant approximation of the ordering of the objects in E by selecting a
function h (called a hypothesis function) in a space H based on the observation of the random
sequence (Xi, f(Xi))1≤i≤n. To measure the performance of a given hypothesis h : E×E → R,
we use a pairwise loss function of the form `(h,X,U). Typically, one could use the misranking
loss defined by

`(h, x, u) = 1{(f(x)−f(u))h(x,u)<0},

which is 1 if the examples are ranked in the wrong order and 0 otherwise. The goal of the
learning problem is to find a hypothesis h which minimizes the expected misranking risk

R(h) := E(X,X′)∼π⊗π
[
`(h,X,X ′)

]
.

We show that the investigation of the generalization performance of online algorithms
with pairwise loss functions provided by Wang et al. (2012) can be extended to a Markovian
framework. Our contribution is two-fold.

• Firstly, we prove that with high probability, the average risk of the sequence of hypothe-
ses generated by an arbitrary online learner is bounded by some easily computable
statistic.

• This first technical result is then used to show how we can extract a low risk hypothesis
from a given sequence of hypotheses selected by an online learner. This is an online-
to-batch conversion for pairwise loss functions with a Markovian assumption on the
distribution of the observed states.
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Given a sequence of hypotheses (hi)1≤i≤n ∈ Hn generated by any online algorithm, we define
the average paired empirical risk Mn(h1, . . . , hn−1−bn) (see Eq.(6)) averaging the paired
empirical risks Mt (see Eq.(7)) of hypotheses ht−bn when paired with Xt as follows

Mn(h1, . . . , hn−1−bn) :=
1

n− cn

n−1∑
t=cn

Mt, (6)

and Mt :=
1

t− bn

t−bn∑
i=1

`(ht−bn , Xt, Xi), (7)

where
cn = dc× ne for some c ∈ (0, 1) and bn = bq log(n)c, (8)

for an arbitrarily chosen q > 1
log(1/ρ) where ρ is a constant related to the uniform ergodicity

of the Markov chain, see Eq.(5). In the following, we will simply denoteMn(h1, . . . , hn−1−bn)
byMn when the sequence of considered hypotheses is clear from the context.

Mt is the paired empirical risk of hypothesis ht−bn with Xt. It measures the performance
of the hypothesis ht−bn on the example Xt when paired with examples seen before time t− bn.
Mn is the mean value of a proportion 1 − c of these paired empirical risks. Hence the
parameter c ∈ (0, 1) controls the proportion of hypotheses ht−bn whose paired empirical
risk Mt does not appear in the average paired empirical risk valueMn. The parameter bn
controls the time gaps between elements of pairs (Xt, Xi) appearing in Eq.(7) in such way
that their joint law is close to the product law π ⊗ π (mixing of the chain is met). The use
of the burning parameter bn is the main difference with the work Wang et al. (2012) when
definingMn and Mt in Eq.(6) and Eq.(7). From a pragmatic point of view,

• we discard the first hypotheses that are not reliable, namely we do not consider
hypothesis hi for i ≤ cn− bn. These first hypotheses are considered as not reliable since
the online learner selected them based on a too small number of observed examples.

• since ht−bn is learned from X1, . . . , Xt−bn , we test the performance of ht−bn on Xt

(and not on some Xi with t − bn + 1 ≤ i < t ) to ensure that the distribution of Xt

conditionally on σ(X1, . . . , Xt−bn) is approximately the stationary distribution of the
chain π (see Assumption 1 and Equation (5)). Stated otherwise, this ensures that
sufficient mixing has occurred.

Note that we assume n large enough to ensure that cn − bn ≥ 1. For any η > 0, we
denote N (H, η) the L∞ η-covering number for the hypothesis class H (see Definition 4).

Definition 4 (cf. Wainwright, 2019, Chapter 5.1) Let us consider some η > 0. A L∞ η-
cover of a set H is a set {g1, . . . , gN} ⊂ H such that for any h ∈ H, there exists some
i ∈ {1, . . . , N} such that ‖gi−h‖∞ ≤ η. The L∞ η-covering number N (H, η) is the cardinality
of the smallest L∞ η-cover of the set H.

Theorem 3 bounds the average risk of the sequence of hypotheses in terms of its empirical
counterpartMn and is proved in Section B.1.
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Theorem 3 Assume that the Markov chain (Xi)i≥1 is reversible and satisfies Assumption 1.
Assume the hypothesis space (H, ‖ ·‖∞) is compact. Let h0, h1, . . . , hn ∈ H be the ensemble of
hypotheses generated by an arbitrary online algorithm working with a pairwise loss function `
such that,

`(h, x1, x2) = ϕ(f(x1)− f(x2), h(x1, x2)),

where ϕ : R×R→ [0, 1] is a Lipschitz function w.r.t. the second variable with a finite Lipschitz
constant Lip(ϕ). Let ξ > 0 be an arbitrary positive number and let us consider q = ξ+1

log(1/ρ) for
the definition of bn (see Eq.(8)). Then for all c > 0 and for all ε > 0 such that ε =

n→∞
o
(
nξ
)
,

we have for sufficiently large n

P

(∣∣∣ 1

n− cn

n−1∑
t=cn

R(ht−bn)−Mn
∣∣∣ ≥ ε) ≤2

[
32N

(
H, ε

8Lip(ϕ)

)
+ 1

]
bn

× exp

(
−(cn − bn)C(m, τ)ε2

16b2n

)
,

where C(m, τ)−1 = 7× 103 ×m2τ2. We refer to Assumption 1 and the following remark (or
to Duchemin et al., 2022, Section 2) for the definitions of the constants m and τ that depend
on the Markov chain (Xi)i≥1.

Theorem 3 shows that average paired empirical riskMn (see Eq.(6)) is close to average
risk given by

1

n− cn

n−1∑
t=cn

R(ht−bn) .

Quantitative errors bounds can be given assuming that the L∞-metric entropy (l.h.s of the
next equation) satisfies

logN (H, η) = O(η−θ) , (9)

where θ > 0 is an exponent, depending on the dimension of state space E and the regularity
of hypotheses of H, that can be computed in some situations (Lipschitz function, higher
order smoothness classes, see (Wainwright, 2019, Chapter 5.1) for instance). Theorem 4
made this statement rigorous (cf. Eq.(10)).

As previously mentioned, online learning algorithms are often studied through the lens of
regret. The definition of a regret bound in our context is provided in Definition 5.

Definition 5 An online learning algorithm will be said to have a regret bound Rn if it
presents an ensemble h1, . . . , hn−1 such that

Mn ≤ min
h∈H

{
Mn(h, . . . , h)

}
+ Rn.

In the literature of learning theory Cucker and Zhou (2007), we are often interested in the
averaged excess generalization error

1

n− cn

n−1∑
t=cn

R(ht−bn)−R(h∗),

where h∗ is the population risk minimizer and is given by h∗ ∈ arg min
h∈H

R(h).
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As a consequence, most of works focused on online-to-batch conversion are interested
in the overall convergence rate of the excess generalization error for online learners that
achieve a given regret bound. Examples can be found with (Guo et al., 2017, Corollary 4) or
with (Kar et al., 2013, Theorem 5) where both papers work with pairwise loss functions with
i.i.d. observations. In Theorem 4 (cf. Eq.(11)) we provide the overall rate for the averaged
excess generalization error for an online learning satisfying a given regret bound. Theorem 4
is proved in Section B.2 and should be understood as an extension of the above mentioned
results from Kar et al. (2013) and Guo et al. (2017).

Theorem 4 We keep the notations and assumptions of Theorem 3. Assume further that H
satisfies Eq.(9). Then it holds∣∣∣∣∣ 1

n− cn

n−1∑
t=cn

R(ht−bn)−Mn

∣∣∣∣∣ = OP

[
log(n) log(log n)

n
1

2+θ

]
. (10)

Moreover, if the online learner has a regret bound Rn (cf. Definition 5), it holds

1

n− cn

n−1∑
t=cn

R(ht−bn)−R(h∗) = OP

[
log(n) log(logn)

n
1

2+θ

+ Rn

]
. (11)

4.3 Batch hypothesis selection

Theorems 3 and 4 are results on the performance of online learning algorithms. We will use
these results to study the generalization performance of such online algorithms in the batch
setting (see Theorem 5). Hence we are now interested in selecting a good hypothesis from the
ensemble of hypotheses generated by the online learner namely that has a small empirical risk.

We measure the risk for ht−bn on the last n − t examples of the sequence X1, . . . , Xn,
and penalize each ht−bn based on the number of examples on which it is evaluated. More
precisely, let us define the empirical risk of hypothesis ht−bn on {Xt+1, . . . , Xn} as

R̂(ht−bn , t+ 1) :=

(
n− t

2

)−1 n∑
k>i,i≥t+1

`(ht−bn , Xi, Xk).

For a confidence parameter γ ∈ (0, 1) that will be specified in Theorem 5, the hypothesis ĥ
is chosen to minimize the following penalized empirical risk,

ĥ = ht̂−bn and t̂ ∈ arg min
cn≤t≤n−1

(
R̂(ht−bn , t+ 1) + cγ(n− t)

)
, (12)

where

cγ(x) =

√
C(m, τ)−1

x
log

64(n− cn)(n− cn + 1)

γ
,

with C(m, τ)−1 = 7× 103 ×m2τ2.
Theorem 5 proves that the model selection mechanism previously described select a

hypothesis ĥ from the hypotheses of an arbitrary online learner whose risk is bounded relative
toMn. The proof of Theorem 5 is postponed to Section B.3.
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Theorem 5 Assume that the Markov chain (Xi)i≥1 is reversible and satisfies Assumptions 1
and 2. Let h0, . . . , hn be the set of hypotheses generated by an arbitrary online algorithm A
working with a pairwise loss ` which satisfies the conditions given in Theorem 3. Let ξ > 0
be an arbitrary positive number and let us consider q = ξ+1

log(1/ρ) for the definition of bn (see
Eq.(8)). For all ε > 0 such that ε =

n→∞
o
(
nξ
)
, if the hypothesis is selected via Eq.(12) with

the confidence γ chosen as

γ = 64(n− cn + 1) exp
(
−(n− cn)ε2C(m, τ)/128

)
,

then, when n is sufficiently large, we have

P
(
R(ĥ) ≥Mn + ε

)
≤ 32

[
N
(
H, ε

16Lip(ϕ)

)
+ 1

]
exp

(
−(cn − bn)C(m, τ)ε2

(16bn)2
+ 2 log n

)
.

Analogously to the previous section, we can derive from Theorem 5 a bound for the
excess risk of the selected hypothesis ĥ.

Corollary 1 We keep the notations and assumptions of Theorem 5. Assume further that H
satisfies Eq.(9). Then it holds ∣∣∣∣∣R(ĥ)−Mn

∣∣∣∣∣ = OP

[
log2 n

n
1

2+θ

]
.

Moreover, if the online learner has a regret bound Rn (cf. Definition 5), it holds

R(ĥ)−R(h∗) = OP

[
log2 n

n
1

2+θ

+ Rn

]
.

5. Adaptive goodness-of-fit tests in a density model

5.1 Goodness-of-fit tests and review of the literature

In its original formulation, the goodness-of-fit test aims at determining if a given distribution q
matches some unknown distribution p from samples (Xi)i≥1 drawn independently from p.
Classical approaches to solve the goodness-of-fit problem use the empirical process theory.
Most of the popular tests such as the Kolmogorov-Smirnov, Cramer-von Mises, and Anderson-
Darling statistics are based on the empirical distribution function of the samples. Other
traditional approaches may require space partitioning or closed-form integrals Baringhaus
and Henze (1988), Beirlant et al. (2008). In Rudzkis and Bakshaev (2013), a non-parametric
method is proposed with a test based on a kernel density estimator. In the last decade, a lot
of effort has been put into finding more efficient goodness-of-fit tests. The motivation was
mainly coming from graphical models where the distributions are known up to a normalization
factor that is often computationally intractable. To address this problem, several tests have
been proposed based on Reproducing Kernel Hilbert Space (RKHS) embedding. A large
span of them use classes of Stein transformed RKHS functions (Liu et al., 2016; Gorham and
Mackey, 2017). For example in Chwialkowski et al. (2016), a goodness-of-fit test is proposed
for both i.i.d or non i.i.d samples. The test statistic uses the squared Stein discrepancy,
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which is naturally estimated by a V-statistic. One drawback of such approach is that the
theoretical results provided are only asymptotic. This paper is part of a large list of works
that proposed a goodness-of-fit test and where the use of U-statistics naturally emerge
(cf. Liu et al., 2016; Fan, 1997; Butucea et al., 2007; Fan and Ullah, 1999; Fernández and
Gretton, 2019; Fromont and Laurent, 2006). To conduct a non-asymptotic analysis of the
goodness-of-fit tests proposed for non i.i.d samples, a concentration result for U-statistics
with dependent random variables is much needed.

5.2 Goodness-of-fit test for the density of the stationary measure of a Markov
chain

In this section, we provide a goodness-of-fit test for Markov chains whose stationary distribu-
tion has density with respect to the Lebesgue measure λLeb on R. Our work is inspired from
Fromont and Laurent (2006) where Fromont and Laurent tackled the goodness-of-fit test
with i.i.d samples. Conducting a non-asymptotic theoretical study of our test, we are able to
identify the classes of alternatives over which our method has a prescribed power.

Let X1, . . . , Xn be a Markov chain with stationary distribution π with density f with
respect to the Lebesgue measure on R. Let f0 be some given density in L2(λLeb) and let α
be in ]0, 1[. Assuming that f belongs to L2(λLeb), we construct a level α test of the null
hypothesis ”f = f0” against the alternative ”f 6= f0” from the observation (X1, . . . , Xn).
The test is based on the estimation of ‖f − f0‖22 that is ‖f‖22 + ‖f0‖22 − 2〈f, f0〉. 〈f, f0〉 is
usually estimated by the empirical estimator

∑n
i=1 f0(Xi)/n and the cornerstone of our

approach is to find a way to estimate ‖f‖22. We follow the work of Fromont and Laurent
(2006) and we introduce a set {Sm,m ∈M} of linear subspaces of L2(λLeb). For all m inM,
let {pl, l ∈ Lm} be some orthonormal basis of Sm. The variable

θ̂m =
1

n(n− 1)

∑
l∈Lm

n∑
i 6=j=1

pl(Xi)pl(Xj)

estimates ‖ΠSm(f)‖22 where ΠSm denotes the orthogonal projection onto Sm. Then ‖f − f0‖22
can be approximated by

T̂m = θ̂m + ‖f0‖22 −
2

n

n∑
i=1

f0(Xi),

for any m in M. Denoting by tm(u) the (1 − u) quantile of the law of T̂m under the
hypothesis ”f = f0” and considering

uα = sup
u∈]0,1[

Pf0

(
sup
m∈M

(T̂m − tm(u)) > 0

)
≤ α,

we introduce the test statistic Tα defined by

Tα = sup
m∈M

(T̂m − tm(uα)). (13)

The test consists in rejecting the null hypothesis if Tα is positive. This approach can be
read as a multiple testing procedure. Indeed, for each m inM, we construct a level uα test
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of the null hypothesis ”f = f0” by rejecting this hypothesis if T̂m is larger than its (1− uα)
quantile under the hypothesis ”f = f0”. We thus obtain a collection of tests and we decide to
reject the null hypothesis if for some of the tests of the collection this hypothesis is rejected.

Now we define the different collection of linear subspaces {Sm,m ∈M} that we will use
in the following. We will focus on constant piecewise functions, scaling functions and, in the
case of compactly supported densities, trigonometric polynomials.

• For all D in N∗ and k ∈ Z, let

ID,k =
√
D1[k/D,(k+1)/D[.

For all D ∈ N∗, we define S(1,D) as the space generated by the functions {ID,k, k ∈ Z}
and

θ̂(1,D) =
1

n(n− 1)

∑
k∈Z

n∑
i 6=j=1

ID,k(Xi)ID,k(Xj).

• Let us consider a pair of compactly supported orthonormal wavelets (ϕ,ψ) such that for
all J ∈ N, {ϕJ,k = 2J/2ϕ(2J ·−k), k ∈ Z}∪{ψj,k = 2j/2ψ(2j ·−k), j ∈ N, j ≥ J, k ∈ Z}
is an orthonormal basis of L2(λLeb). For all J ∈ N and D = 2J , we define S(2,D) as
the space generated by the scaling functions {ϕJ,k, k ∈ Z} and

θ̂(2,D) =
1

n(n− 1)

∑
k∈Z

n∑
i 6=j=1

ϕJ,k(Xi)ϕJ,k(Xj).

• Let us consider the Fourier basis of L2([0, 1]) given by

g0(x) = 1[0,1](x),

g2p−1(x) =
√

2 cos(2πpx)1[0,1](x) ∀p ≥ 1,

g2p(x) =
√

2 sin(2πpx)1[0,1](x) ∀p ≥ 1.

For all D ∈ N∗, we define S(3,D) as the space generated by the functions {gl, l =
0, . . . , D} and

θ̂(3,D) =
1

n(n− 1)

D∑
l=0

n∑
i 6=j=1

gl(Xi)gl(Xj).

We denote D1 = D3 = N∗ and D2 = {2J , J ∈ N}. For l in {1, 2, 3}, D in Dl, ΠS(l,D)

denotes the orthogonal projection onto S(l,D) in L2(λLeb). For all l in {1, 2, 3}, we take Dl ⊂
Dl with ∪l∈{1,2,3}Dl 6= ∅ and D3 = ∅ if the Xi’s are not included in [0, 1]. Let M =
{(l,D), l ∈ {1, 2, 3}, D ∈ Dl} .

Theorem 6 describes classes of alternatives over which the corresponding test has a
prescribed power. We work under the additional Assumption 5. We refer to Section C.1 for
the proof of Theorem 6.
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Assumption 5 The initial distribution of the Markov chain (Xi)i≥1, denoted χ, is absolutely
continuous with respect to the stationary measure π and its density, denoted by dχ

dπ , has finite p-
moment for some p ∈ (1,∞], i.e

∞ >

∥∥∥∥dχdπ
∥∥∥∥
π,p

:=


[∫ ∣∣∣dχdπ ∣∣∣p dπ]1/p if p <∞,

ess sup
∣∣∣dχdπ ∣∣∣ if p =∞.

In the following, denote q = p
p−1 ∈ [1,∞) (with q = 1 if p = +∞) which satisfies 1

p + 1
q = 1.

Theorem 6 Let X1, . . . , Xn a Markov chain on R satisfying the Assumptions 1, 2 and 5
with stationary measure π. We assume that π has density f with respect the Lebesgue measure
on R and let f0 be some given density. Let Tα be the test statistic defined by Eq.(13). Assume
that f0 and f belong to L∞(R) (the space of essentially bounded measurable functions on R)
and that there exist p1, p2 ∈ (1,+∞] such that

Cχ :=

∥∥∥∥ 1

f

dχ

dλLeb

∥∥∥∥
fλLeb,p1

∨
∥∥∥∥ 1

f0

dχ

dλLeb

∥∥∥∥
f0λLeb,p2

<∞,

where we used the notations of Assumption 5. We fix some γ in ]0, 1[. For any ε ∈]0, 2[,
there exist some positive constants C1, C2, C3 such that, setting for all m = (l,D) inM,

Vm(γ) = C1‖f‖∞
log(3Cχ/γ)

εn
+ C2 (‖f‖∞ log(D + 1) + ‖f0‖∞)

log(3Cχ/γ)

n

+ C3 (‖f‖∞ + 1)DR

(
n, log

{
3β log n

γ

})
,

with
R(n, u) = logn

{
u

n
+
(u
n

)2}
,

if f satisfies

‖f − f0‖22 > (1 + ε) inf
m∈M

{
‖f −ΠSm(f)‖22 + tm(uα) + Vm(γ)

}
, (14)

then
Pf (Tα ≤ 0) ≤ γ.

In order to make the condition (14) more explicit and to study its sharpness, we define
the uniform separation rate which provides for any γ ∈ (0, 1) the smallest distance between
the set of null hypotheses and the set of alternatives to ensure that the power of our statistic
test with level α is at least 1− γ.

Definition 6 Given γ ∈]0, 1[ and a class of functions B ⊂ L2(λLeb), we define the uniform
separation rate ρ(Φα,B, γ) of a level α test Φα of the null hypothesis ”f ∈ F” over the
class B as the smallest number ρ such that the test guarantees a power at least equal to (1−γ)
for all alternatives f ∈ B at a distance ρ from F . Stated otherwise, denoting by d2(f,F)
the L2-distance between f and F and by Pf the distribution of the observation (X1, . . . , Xn),

ρ(Φα,B, γ) = inf {ρ > 0,∀f ∈ B, d2(f,F) ≥ ρ =⇒ Pf (Φα rejects) ≥ 1− γ} .
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In the following, we derive on explicit upper bound on the uniform separation rates of the test
proposed above over several classes of alternatives. For s > 0, P > 0,M > 0 and l ∈ {1, 2, 3},
we introduce

B(l)s (P,M) =
{
f ∈ L2(λLeb) | ∀D ∈ Dl, ‖f −ΠS(l,D)

(f)‖22 ≤ P 2D−2s, ‖f‖∞ ≤M
}
.

These sets of functions include some Hölder balls or Besov bodies with smoothness s, as
highlighted in Fromont and Laurent (2006, Section 2.3). Corollary 2 gives an upper bound
for the uniform separation rate of our testing procedure over the classes B(l)s (P,M) and is
proved in Section C.3.

Corollary 2 Let Tα be the test statistic defined by (13). Assume that for l ∈ {1, 2, 3}, Dl
is {2J , 0 ≤ J ≤ log2

(
n/(log(n) log log n)2

)
} or ∅. For all s > 0, M > 0, P > 0 and l ∈

{1, 2, 3} such that Dl 6= ∅, there exists some positive constant C = C(s, α, γ,M, ‖f0‖∞) such
that the uniform separation rate of the test 1Tα>0 over B(l)s (P,M) satisfies for n large enough

ρ
(
1Tα>0,B(l)s (P,M), γ

)
≤ C ′P

1
2s+1

(
log(n) log log n

n

) s
2s+1

.

Remark In Corollary 2, the condition n large enough corresponds to(
log(n)

log log n

n

)1/2

≤ P ≤ ns

(log(n) log log n)2s+1/2
.

For the problem of testing the null hypothesis ”f = 1[0,1]” against the alternative f = 1[0,1]+g
with g 6= 0 and g ∈ Bs(P ) where Bs(P ) is a class of smooth functions (like some Hölder,
Sobolev or Besov ball in L2([0, 1])) with unknown smoothness parameter s, Ingster in Ingster
(1993) established in the case where the random variables (Xi)i≥1 are i.i.d. that the adaptive
minimax rate of testing is of order (

√
log log n/n)2s/(4s+1). From Corollary 2, we see that our

procedure leads to a rate which is close (at least for sufficiently large smoothness parameter s)
to the one derived by Ingster in the i.i.d. framework since the upper bound on the uniform
separation rate from Corollary 2 can be read (up to a log factor) as ([log log n]/n)

2s
4s+2 .

5.3 Simulations

We propose to test our method on three practical examples.1 In all our simulations, we use
Markov chains of length n = 100. We choose different alternatives to test our method and we
use i.i.d. samples from these distributions. We chose a level α = 5% for all our experiments.
All tests are conducted as follows.

1. We start by the estimation of the (1 − u) quantiles tm(u) of the variables T̂m =
θ̂m + ‖f0‖22 − 2

n

∑n
i=1 f0(Xi) under the hypothesis ”f = f0” for u varying on a regular

grid of ]0, α[. We sample 5, 000 sequences of length n = 100 with i.i.d. random variables
with distribution f0. We end up with an estimation t̂m(u) of tm(u) for any u in the
grid and any m ∈M.

1. The code is available at https://github.com/quentin-duchemin/goodness-of-fit-MC.

23



Duchemin, De Castro and Lacour

2. Then, we estimate the value of uα. We sample again 5, 000 sequences of length n = 100
with i.i.d. random variables with distribution f0. We use them to estimate the
probabilities Pf0(supm∈M(T̂m− t̂m(u)) > 0) for any u in the grid and we keep the larger
value of u such that the corresponding probability is still larger than α. The selected
value of the grid is called uα. Thanks to the first step, we have the estimates t̂m(uα)
of tm(uα) for any m ∈M.

3. Finally, we sample 5, 000 Markov chains with length n = 100 with stationary distri-
bution f . For each sequence, we can compute T̂m. Dividing by 5, 000 the number of
sequences for which supm∈M(T̂m − t̂m(uα)) > 0, we get an estimation of the power of
the test.

To define comparison points, we compare the power of our test with the classical
Kolmogorov-Smirnov test (KS test) and the Chi-squared test (χ2 test). The rejection
region associated with a test of level 5% is set by sampling under the null for both the
KS test and the χ2 test. With Figure 2, we provide a visualization of the density of the
stationary distribution of the Markov chain and of the density of the alternative that gives
the smaller power on our experiments.

5.3.1 Example 1: AR(1) process

Let us consider some θ ∈ (0, 1). Then, we define the AR(1) process (Xi)i≥1 starting
from X1 = 0 with for any n ≥ 1,

Xn+1 = θXn + ξn+1,

where (ξn)n are i.i.d. random variables with distribution N (0, τ2) with τ > 0. From Example
1 of Duchemin et al. (2022, Section 2.6), we know that Assumptions 1 and 2 hold. The
stationary measure π of the Markov chain (Xi)i≥1 is N

(
0, τ2

1−θ2

)
, i.e. π has density f with

respect to the Lebesgue measure on R with

∀y ∈ R, f(y) =

√
1− θ2√
2πτ2

exp

(
−(1− θ2)y2

2τ2

)
.

We focus on the following alternatives

fµ,σ2(x) =
1√

2πσ2
exp

(
−(x− µ)2

2σ2

)
.

Table 2 shows the estimated powers for our test, the KS test and the χ2 test.

5.3.2 Example 2: Markov chain generated from independent Metropolis
Hasting algorithm

Let us consider the probability measure π with density f with respect to the Lebesgue
measure on [−3, 3] where

∀x ∈ [−3, 3], f(x) =
1

Z
e−x

2
(3 + sin(5x) + sin(2x)) ,
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(µ, σ2) Our test χ2 test KS test ‖f − fµ,σ2‖2
(2, 1.5) 0.99 0.85 0.98 0.39
(0, 1) 0.97 0.9 0.8 0.2

(−0.2, 1.2) 0.86 0.63 0.84 0.17
(0, 1.2) 0.81 0.64 0.82 0.16
(0, 2) 0.1 0.03 0.29 0.06

Table 2: Estimated powers of the tests for Markov chains with size n = 100. We worked
with τ = 1, θ = 0.8 andM = {(1, i) : i ∈ {1, . . . , 10}} . Hence, the stationary distribution
of the chain is approximately N (0, 2.8). For the χ2 test, we work on the interval [−5, 5] that
we split into 20 regular parts.

with Z a normalization constant such that
∫ 3
−3 f(x)dx = 1. To construct a Markov chain with

stationary measure π, we use an independent Metropolis-Hasting algorithm with proposal
density q(x) ∝ exp(−x2/6). Using Proposition 2, we get that the above built Markov
chain (Xi)i≥1 satisfies Assumptions 1 and 2. We focus on the following alternatives

gµ,σ2(x) =
1

Z(µ, σ2)
exp

(
−(x− µ)2

2σ2

)
1[−3,3](x),

where Z(µ, σ2) is a normalization constant such that
∫
gµ,σ2(x)dx = 1. Table 3 shows the

estimated powers for our test, the KS test and the χ2 test.

(µ, σ2) Our test χ2 test KS test ‖f − gµ,σ2‖2
(0, 1) 0.96 0.91 0.9 0.29

(0, 0.72) 0.95 0.84 0.93 0.23
(0.3, 0.72) 0.92 0.87 0.93 0.19

Table 3: Estimated powers of the tests for Markov chains with size n = 100. We usedM =
{(1, i) : i ∈ {1, . . . , 10}} . For the χ2 test, we work on the interval [−3, 3] that we split
into 20 regular parts.

5.3.3 Example 3: ARCH process

Let us consider some θ ∈ (−1, 1). We are interested in the simple threshold auto-regressive
model (Xn)n≥1 defined by X1 = 0 and for any n ≥ 1,

Xn+1 = θ|Xn|+ (1− θ2)1/2ξn+1,

where the random variables (ξn)n≥2 are i.i.d. with standard Gaussian distribution. From
Example 3 of Duchemin et al. (2022, Section 2.6), we know that Assumptions 1 and 2 hold.
The transition kernel of the Markov chain (Xi)i≥1 is

∀x, y ∈ R, P (x, y) =
1√
2π

exp

(
−(y − θ|x|)2

2(1− θ2)

)
.
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The stationary distribution π of the Markov chain has density f with respect to the Lebesgue
measure on R with

∀y ∈ R, f(y) =
1√
2π

exp

(
−y

2

2

)
Φ

(
θy

(1− θ2)1/2

)
,

where Φ is the standard normal cumulative distribution function. We focus on the following
alternatives

fµ,σ2(x) =
1√

2πσ2
exp

(
−(x− µ)2

2σ2

)
.

Table 4 shows the estimated powers for our test, the KS test and the χ2 test.

(µ, σ2) Our test χ2 test KS test ‖f − fµ,σ2‖2
(0, 1) 0.98 0.85 0.95 0.3

(1, 0.82) 0.95 0.79 0.88 0.22
(0.5, 1) 0.3 0.07 0.5 0.14

(0.6, 0.82) 0.35 0.16 0.4 0.036

Table 4: Estimated powers of the tests for Markov chains with size n = 100. We used θ = 0.8
andM = {(1, i) : i ∈ {1, . . . , 10}} . For the χ2 test, we work on the interval [−20, 20] that
we split into 20 regular parts.

(a) Example 1 (b) Example 2 (c) Example 3

Figure 2: In solid line, we plot the density of the stationary measure of the Markov chain for
the three examples of our simulations. In dotted line, we plot the density of the alternative
that gives the smaller power on our experiments.

5.3.4 Comments on our numerical experiments

Our experiments show that the χ2 goodness-of-fit test give in general the smaller power
compared to our method and to the KS test. The χ2 test is better suited to deal with
discrete probability distributions and it seems to suffer to small power in our continuous
setting. Note that using the χ2 test with continuous densities on R require to specify some
hyperparameters (such as a compact interval and the number of bins to discretize it). In
practice, the test results can change drastically by modifying these hyperparameters, making
the test unreliable. Our experiments also show that when the L2 norm between the true
density f and the alternative one f0 is large enough, our method reaches higher power
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compared to the two other procedures considered. Nevertheless, our approach seems less
powerful compared to the KS test when the L2 norm ‖f − f0‖2 is getting smaller. This
is not surprising since our testing procedure is based on the L2 norm while the KS test
relies on the sup norm between cumulative distribution functions (CDFs). We conduct a
final experiment to better stress this distinction between our procedure and the KS test.
We consider the notations and the framework of the example from Section 5.3.1 with the
following alternatives

f (L,δ)(x) =


f
0, τ2

1−θ2
(x) if |x| ≥ δ

f
0, τ2

1−θ2
(x)− L if − δ < x ≤ 0

f
0, τ2

1−θ2
(x) + L if 0 < x < δ

,

where L, δ > 0 are chosen so that f (L,δ)(x) ≥ 0 for any x ∈ R. We work with τ = 1, θ = 0.8
and M = {(1, i) : i ∈ {1, . . . , 10}} . Figure 3 shows the alternatives considered. The sup
norm between the CDFs of f and f (L,δ) is equal to Lδ while the squared L2 norm between f
and f (L,δ) is 2L2δ3/3. Hence, we expect that powers will increase for both tests when L
and/or δ are increasing. Moreover, we expect the power of our method to be more sensitive
to the parameters L and δ. Those intuitions are confirmed with the numerical experiments
presented in Table 5.

Figure 3: Alternative considered.

(L, δ) 0.25 0.5 0.75 1

0.05
0.06 0.12 0.2 0.21
0.1 0.15 0.2 0.22

0.05
0.16 0.33 0.36 0.4
0.23 0.26 0.33 0.37

0.1
0.33 0.66 0.8 0.83
0.26 0.35 0.46 0.48

0.15
0.82 0.87 0.9 0.95
0.35 0.45 0.55 0.67

0.2
0.9 0.93 0.95 0.98
0.46 0.54 0.72 0.87

Table 5: Estimated powers of the tests for Markov
chains with size n = 100. Gray cells are the powers
of our method while blank cells are the ones obtained
with the KS test.
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Appendices
Guidelines for the supplementary material.

• Sections A, B and C: Proofs
Sections A, B and C provide respectively the proofs of our main results from Sections 3,
4 and 5.

• Section D: Technical Lemmas
This section contains some Lemmas useful for our proofs.

A. Proofs for Section 3

Let us explain in a nutshell the structure of our proof. For any natural number R, we
denote HR the integral operator with kernel function hR at resolution R, namely

hR(x, y) :=
∑

r∈I,r≤R
λrϕr(x)ϕr(y), HRf(x) :=

∫
E
hR(x, y)f(y)dπ(y).

We define H̃R
n and HR

n analogously by using the kernel hR in Eq.(3). Using the triangle
inequality, we split the distance δ2(λ(H), λ(Hn)) into four terms.

1. δ2(λ(H), λ(HR)) is a bias term induced by working at resolution R.

2. A non-trivial preliminary work allows to prove that δ2(λ(HR), λ(H̃R
n )) can be written

as an empirical process of the Markov chain (Xi)i≥1 whose tail can be controlled by
applying concentration inequalities for sums of functions of uniformly ergodic Markov
chains (this is where we use the assumption that Υ is finite). We refer to Eq.(15).

3. Since the matrices HR
n and H̃R

n only differ at diagonal elements, δ2(λ(H̃R
n ), λ(HR

n )) can
be coarsely bounded by n−1/2‖hR‖∞ (cf. Eq.(16)).

4. Applying the Hoffman-Wielandt inequality, one can notice that δ2(λ(HR
n ), λ(Hn))

can be upper-bounded by a U-statistic of order two of the Markov chain (Xi)i≥1 (cf.
Eq.(17)). We control the tail behaviour of this U-statistic by applying Theorem 1.

The proof is then concluded by choosing the resolution level R so that R2 = d
√
ne.

A.1 Deviation inequality for the spectrum of signed integral operators

As shown in Section A.2, Theorem 2 is a direct consequence of the concentration result
provided by Theorem 7.

Theorem 7 We keep notations of Section 3. Assume that (Xn)n≥1 is a Markov chain on E
satisfying Assumptions 1 and 2 described in Section 2.2 with stationary distribution π. Let us
consider some symmetric kernel h : E×E → R, square integrable with respect to π⊗π. Let us
consider some R ∈ N∗. We assume that there exist continuous functions ϕr : E → R, r ∈ I
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(where I = N or I = 1, . . . , N) that form an orthonormal basis of L2(π) such that it holds
pointwise

h(x, y) =
∑
r∈I

λrϕr(x)ϕr(y),

with
ΛR := sup

r∈I, r≤R
|λr| and ΥR := sup

r∈I, r≤R
‖ϕr‖2∞.

We define hR(x, y) =
∑

r∈I, r≤R λrϕr(x)ϕr(y) and we assume that ‖hR‖∞, ‖h− hR‖∞ <∞.
Then there exists a universal constant K > 0 such that for any t > 0, it holds

P

1

4
δ2(λ(H), λ(Hn))2 ≥

(
‖hR‖2∞ + κ‖h− hR‖2∞

) log n

n
+ 2

∑
i>R,i∈I

λ2i + t


≤ 16 exp

(
−n t2

Km2τ2‖h− hR‖2∞

)
+ β log(n) exp

(
− n

16 log n

{[
t

c

]
∧
[
t

c

]1/2})

+ 16R2 exp

(
− nt

Km2τ2R2Λ2
RΥ2

R

)
.

where c = κ‖h− hR‖∞ with κ > 0 depending on δM , τ, L,m and ρ. β depends only on ρ.

Proof of Theorem 7. For any integer R ≥ 1, we denote

Xn,R :=
1√
n

(ϕr(Xi))1≤i≤n, 1≤r≤R ∈ R
n×R

An,R :=
(
X>n,RXn,R

)1/2
∈ RR×R

KR := Diag(λ1, . . . , λR)

H̃R
n := Xn,RKRX

>
n,R

HR
n :=

(
(1− δi,j)

(
H̃R
n

)
i,j

)
1≤i,j≤n

.

We remark that A2
n,R = IR + ER,n where (ER,n)r,s = (1/n)

∑n
i=1 (ϕr(Xi)ϕs(Xi)− δr,s) for

all r, s ∈ [R]. Denoting λ(HR) = (λ1, . . . , λR), we have

δ2(λ(H), λ(Hn))2 ≤ 4
[
δ2(λ(H), λ(HR))2 + δ2(λ(HR), λ(H̃R

n ))2 + δ2(λ(H̃R
n ), λ(HR

n ))2 + δ2(λ(HR
n ), λ(Hn))2

]
.

Bounding δ2
(
λ(HR), λ(H̃R

n )
)2.

Let us consider some ε > 0.
Using a singular value decomposition of Xn,R, one can show that λ(Xn,RKRX

>
n,R) =

λ(An,RKRAn,R) which leads to

δ2

(
λ(HR), λ(H̃R

n )
)

= δ2

(
λ(KR), λ(Xn,RKRX

>
n,R)

)
= δ2 (λ(KR), λ(An,RKRAn,R))

≤ ‖KR −An,RKRAn,R‖F ,
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Using Equation (4.8) from Koltchinskii and Giné (2000, page 127), we get

δ2

(
λ(HR), λ(H̃R

n )
)2
≤ 2‖KRER,n‖2F = 2

∑
1≤r,s≤R

λ2s

(
1

n

n∑
i=1

ϕr(Xi)ϕs(Xi)− δr,s

)2

. (15)

Hence,

P

(
δ2

(
λ(HR), λ(H̃R

n )
)2
≥ t
)

≤
∑

1≤s,r≤R
P

(
√

2|λs|

∣∣∣∣∣ 1n
n∑
i=1

ϕr(Xi)ϕs(Xi)− δr,s

∣∣∣∣∣ ≥ √t/R
)

≤
∑

1≤s,r≤R,λs 6=0

P

(∣∣∣∣∣ 1n
n∑
i=1

ϕr(Xi)ϕs(Xi)− δr,s

∣∣∣∣∣ ≥ √t/(√2R|λs|)

)

≤
∑

1≤s,r≤R,λs 6=0

16 exp

(
−
(
Km2τ2

)−1 nt

R2|λs|2Υ4
R

)

= 16R2 exp

(
−
(
Km2τ2

)−1 nt

R2Λ2
RΥ4

R

)
,

where the last inequality follows from Proposition 7 and where K > 0 is a universal constant.
Bounding δ2(λ(H̃R

n ), λ(HR
n ))2.

δ2(λ(H̃R
n ), λ(HR

n ))2 ≤ ‖H̃R
n −HR

n ‖2F =
1

n2

(
n∑
i=1

h2R(Xi, Xi)

)
≤ ‖hR‖

2
∞

n
. (16)

Bounding δ2(λ(HR
n ), λ(Hn))2.

δ2(λ(HR
n ), λ(Hn))2 ≤ ‖H̃R

n − H̃n‖2F =
1

n2

 ∑
1≤i,j≤n, i 6=j

(h− hR)(Xi, Xj)
2

 . (17)

Let us consider,

∀x, y ∈ E, mR(x, y) := (h− hR)2(x, y)− sR(x)− sR(y)− Eπ⊗π[(h− hR)2(X,Y )],

where sR(x) = Eπ[(h − hR)2(x,X)] − Eπ⊗π[(h − hR)2(X,Y )]. One can check that for
any x ∈ E, Eπ[mR(x,X)] = Eπ[mR(X,x)] = 0. Hence, mR is π-canonical.

1

n(n− 1)

 ∑
1≤i,j≤n, i 6=j

(h− hR)(Xi, Xj)
2

 (18)

=
1

n(n− 1)

∑
1≤i,j≤n, i 6=j

mR(Xi, Xj) +
2

n

n∑
i=1

sR(Xi) + Eπ⊗π[(h− hR)2(X,Y )]. (19)
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Using Theorem 1, we get that there exist two constants β, κ > 0 such that for any u ≥ 1, it
holds with probability at least 1− βe−u log(n),

1

n(n− 1)

∑
1≤i,j≤n, i 6=j

mR(Xi, Xj) ≤ κ‖h− hR‖∞ log n

{
u

n
∨
(u
n

)2}
.

Let us now consider some t > 0 such that

κ‖h− hR‖∞ log n

{
u

n
∨
(u
n

)2}
≤ t. (20)

The condition (20) is equivalent to

u ≤ n

{
t

κ‖h− hR‖∞ log n
∧
(

t

κ‖h− hR‖∞ log n

)1/2
}
,

which is satisfied in particular if t and u are such that

u =
n

log n

{[
t

c

]
∧
[
t

c

]1/2}
,

where c = κ‖h− hR‖∞. One can finally notice that for this choice of u, the condition u ≥ 1
holds in particular for n large enough in order to have n/ log n ≥ κ‖h− hR‖∞t−1.
We deduce from this analysis that for any t > 0, we have for n large enough to sat-
isfy n/ log n ≥ κ‖h− hR‖∞t−1,

P

 1

n(n− 1)

∑
1≤i,j≤n, i 6=j

mR(Xi, Xj) ≥ t

 ≤ β log(n) exp

(
− n

log n

{[
t

c

]
∧
[
t

c

]1/2})
.

Using Proposition 7, we get that for some universal constant K > 0,

P

(
2

n

∣∣∣∣∣
n∑
i=1

sR(Xi)

∣∣∣∣∣ ≥ t
)
≤ 16 exp

(
−n t2

Km2τ2‖h− hR‖2∞

)
.

We deduce that for some universal constant K > 0 it holds

P

 1

n2

 ∑
1≤i,j≤n, i 6=j

(h− hR)(Xi, Xj)
2

− Eπ⊗π [(h− hR)2
]
≥ t


≤ 16 exp

(
−n t2

Km2τ2‖h− hR‖2∞

)
+ β log(n) exp

(
− n

4 log n

{[
t

c

]
∧
[
t

c

]1/2})
.

Since Eπ⊗π
[
(h− hR)2(X,Y )

]
=
∑

i>R,i∈I λ
2
i , we deduce that

P

δ2(λ(HR
n ), λ(Hn))2 −

∑
i>R,i∈I

λ2i ≥ t


≤ 16 exp

(
−n t2

Km2τ2‖h− hR‖2∞

)
+ β log(n) exp

(
− n

4 log n

{[
t

c

]
∧
[
t

c

]1/2})
.
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Hence we proved that for any u > 0 such that n/ log n ≥ κ‖h− hR‖∞u−1,

P

1

4
δ2(λ(H), λ(Hn))2 ≥ ‖hR‖

2
∞

n
+ 2

∑
i>R,i∈I

λ2i + u


≤ 16 exp

(
−n u2

Km2τ2‖h− hR‖2∞

)
+ β log(n) exp

(
− n

16 log n

{[u
c

]
∧
[u
c

]1/2})
+ 16R2 exp

(
− nu

Km2τ2R2Λ2
RΥ2

R

)
.

Considering t > 0 and applying the previous inequality with u = t+ κ‖h−hR‖∞ logn
n , we get

P

1

4
δ2(λ(H), λ(Hn))2 ≥

(
‖hR‖2∞ + κ‖h− hR‖2∞

) log n

n
+ 2

∑
i>R,i∈I

λ2i + t


≤ 16 exp

(
−n t2

Km2τ2‖h− hR‖2∞

)
+ β log(n) exp

(
− n

16 log n

{[
t

c

]
∧
[
t

c

]1/2})

+ 16R2 exp

(
− nt

Km2τ2R2Λ2
RΥ2

R

)
.

This concludes the proof of Theorem 7.

A.2 Proof of Theorem 2.

We consider any R ∈ N∗. We remark that for any x, y ∈ E,

|hR(x, y)| =

∣∣∣∣∣
R∑
r=1

λrϕr(x)ϕr(y)

∣∣∣∣∣
≤

(
R∑
r=1

|λr|ϕr(x)2

)1/2

×

(
R∑
r=1

|λr|ϕr(y)2

)1/2

(Using Cauchy-Schwarz inequality)

≤ S,

which proves that ‖hR‖∞ ≤ S. Similar computations lead to ‖h− hR‖∞ ≤ S.
Using Theorem 7 we get for any t > 0,

P

1

4
δ2(λ(H), λ(Hn))2 ≥ S2(1 + κ) log n

n
+ 2

∑
i>R,i∈I

λ2i + t


≤ 16 exp

(
−n t2

Km2τ2S2

)
+ β log(n) exp

(
− n

16 log n

{[
t

κS

]
∧
[
t

κS

]1/2})

+ 16R2 exp

(
− nt

Km2τ2R2Λ2Υ2

)
,

where Λ := sup
r≥1
|λr| <∞. Choosing R2 = d

√
ne, we get
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P

1

4
δ2(λ(H), λ(Hn))2 ≥ S2(1 + κ) log n

n
+ 2

∑
i>dn1/4e,i∈I

λ2i + t


≤ 32

√
n exp

(
−Cmin

(
nt2,
√
nt
))

+ β log(n) exp

(
− n

log n
min

(
Bt, (Bt)1/2

))
,

where B = (KκS)−1 and C = K−1
(
m2τ2(S + ΛΥ)

)−2.
B. Proofs for Section 4

In this section, for any k ≥ 0 we denote Ek the conditional expectation with respect to
the σ-algebra σ(X1, . . . , Xk).

B.1 Proof of Theorem 3

By definition ofMn, we want to bound

P

(
1

n− cn

n−1∑
t=cn

R(ht−bn)− 1

n− cn

n−1∑
t=cn

Mt ≥ ε

)
,

which takes the form

P

(
1

n− cn

n−1∑
t=cn

[R(ht−bn)− Et−bn [Mt]]−
1

n− cn

n−1∑
t=cn

[Mt − Et−bn [Mt]] ≥ ε

)

≤ P

(
1

n− cn

n−1∑
t=cn

[R(ht−bn)− Et−bn [Mt]] ≥ ε/2

)
+ P

(
1

n− cn

n−1∑
t=cn

[Et−bn [Mt]−Mt] ≥ ε/2

)
.

(21)

B.1.1 Step 1: Martingale difference

We first deal with the second term of Eq.(21). Note that we can write

n−1∑
t=cn

[Et−bn [Mt]−Mt] =

n−1∑
t=cn

bn∑
k=1

[Et−k[Mt]− Et−k+1[Mt]] =

bn∑
k=1

n−1∑
t=cn

[Et−k[Mt]− Et−k+1[Mt]] .

Let us consider some k ∈ {1, . . . , bn}, then we have that V (k)
t = (Et−k[Mt]−Et−k+1[Mt])/(n−

cn) is a martingale difference sequence, i.e. Et−k[V
(k)
t ] = 0. Since the loss function is bounded

in [0, 1], we have |V (k)
t | ≤ 2/(n − cn), t = 1, . . . , n. Therefore by the Hoeffding-Azuma

inequality,
∑

t V
(k)
t can be bounded such that

P

(
1

n− cn

n−1∑
t=cn

[Et−k[Mt]− Et−k+1[Mt]] ≥
ε

2bn

)
≤ exp

(
−(1− c)nε2

8b2n

)
.
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We deduce that

P

(
1

n− cn

n−1∑
t=cn

[Et−bn [Mt]−Mt] ≥ ε/2

)
≤ bn exp

(
−(1− c)nε2

8b2n

)
. (22)

B.1.2 Step 2: Symmetrization by a ghost sample

In this step we bound the first term in Eq.(21). Let us start by introducing a ghost
sample {ξj}1≤j≤n, where the random variables ξj i.i.d with distribution π. Recall the
definition of Mt and define M̃t as

Mt =
1

t− bn

t−bn∑
i=1

`(ht−bn , Xt, Xi), M̃t =
1

t− bn

t−bn∑
i=1

`(ht−bn , Xt, ξi).

The difference between M̃t and Mt is that Mt is the sum of the loss incurred by ht−bn on the
current instance Xt and all the previous examples Xj , j = 1, . . . , t− bn on which ht−bn is
trained, while M̃t is the loss incurred by the same hypothesis ht−bn on the current instance Xt

and an independent set of examples ξj , j = 1, . . . , t− bn.
First remark that we have

1

n− cn

n−1∑
t=cn

[R(ht−bn)− Et−bn [Mt]]

=
1

n− cn

n−1∑
t=cn

[
R(ht−bn)− Et−bn [M̃t]

]
+

1

n− cn

n−1∑
t=cn

[
Et−bn [M̃t]− Et−bn [Mt]

]
. (23)

�

The first term of Eq.(23) is handled in Wang et al. (2012) by relying heavily on
the assumption that samples are i.i.d (see Wang et al., 2012, Claim 1). Hence,
the approach of Wang and al. cannot adapted in our framework. To overcome
this difficulty, we use the uniform ergodicity of the Markov chain. This is where
the use of the burning parameter bn is essential.

Since ` is in [0, 1], the first term can be bounded directly using the uniform ergodicity of the
Markov chain (Xi)i as follows

1

n− cn

n−1∑
t=cn

[
R(ht−bn)− Et−bn [M̃t]

]
=

1

n− cn

n−1∑
t=cn

∫
x∈E

(
dπ(x)EX∼π[`(ht−bn , x,X)]− P bn(Xt−bn , dx)EX∼π[`(ht−bn , x,X)]

)
=

1

n− cn

n−1∑
t=cn

∫
x∈E

EX∼π[`(ht−bn , x,X)]
(
dπ(x)− P bn(Xt−bn , dx)

)
≤ 1

n− cn

n−1∑
t=cn

∫
x∈E

∣∣∣dπ(x)− P bn(Xt−bn , dx)
∣∣∣

≤ Lρbn ,
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where we used Eq.(5).
It remains to control

1

n− cn

n−1∑
t=cn

[
Et−bn [M̃t]− Et−bn [Mt]

]
,

and we follow an approach similar to Wang et al. (2012). Let us remind that Mt and M̃t

depend on the hypothesis ht−bn and let us define Lt(ht−bn) =
[
Et−bn [M̃t]− Et−bn [Mt]

]
. We

have

P

(
1

n− cn

n−1∑
t=cn

Lt(ht−bn) ≥ ε

)

≤ P

(
sup

ĥcn−bn ,...,ĥn−1−bn

1

n− cn

n−1∑
t=cn

Lt(ĥt−bn) ≥ ε

)

≤
n−1∑
t=cn

P

(
sup
ĥ∈H

Lt(ĥ) ≥ ε

)
. (24)

To bound the right hand side of Eq.(24) we give first the following Lemma.

Lemma 1 Given any function f ∈ H and any t ≥ cn,

∀ε > 0, P (Lt(f) ≥ ε) ≤ 16 exp
(
−(t− bn)C(m, τ)ε2

)
.

�

In the i.i.d. framework, the counterpart of Lemma 1 follows from a straightforward
application of McDiarmid’s inequality (see Wang et al., 2012, Lemma 5). In our
work, we consider uniformly ergodic Markov chains and the proof of Lemma 1
requires extra work. We apply a concentration inequality for Markov chains
(see Proposition 7) which needs to hold for any initial distribution. We apply
Proposition 7 by considering the time-reversed sequence and this is where we
use the reversibility of the chain.

Proof of Lemma 1.
Note that

Lt(f) = Et−bn [M̃t]− Et−bn [Mt]

=
1

t− bn

t−bn∑
i=1

(Et−bn [`(f,Xt, ξi)]− Et−bn [`(f,Xt, Xi)])

=
1

t− bn

t−bn∑
i=1

Eξ∼π

[
EXt∼P bn (Xt−bn ,·){`(f,Xt, ξ)}

]
− EXt∼P bn (Xt−bn ,·){`(f,Xt, Xi)}.

Hence, denoting m(f,Xt−bn , x) = EXt∼P bn (Xt−bn ,·){`(f,Xt, x)} , we get

Lt(f) ≤ 1

t− bn

t−bn∑
i=1

{Eξ∼π [m(f,Xt−bn , ξ)]−m(f,Xt−bn , Xi)} .
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By the reversibility of the chain (Xi)i≥1, we know that the sequence (Xt−bn , Xt−bn−1, . . . , X1)
conditionally on Xt−bn is a Markov chain with stationary distribution π. Applying Proposi-
tion 7 (see Section D) we get that

P (Lt(f) ≥ ε | Xt−bn)

≤ P

(
1

t− bn

t−bn∑
i=1

{Eξi∼π [m(f,Xt−bn , ξi)]−m(f,Xt−bn , Xi)} ≥ ε | Xt−bn

)
≤ 16 exp

(
−(t− bn)C(m, τ)ε2

)
,

for some constant C(m, τ) > 0 depending only on m and τ . Then we deduce that

P (Lt(f) ≥ ε) = E
[
E
{
1Lt(f)≥ε | Xt−bn

}]
= E [P {Lt(f) ≥ ε | Xt−bn}]
≤ 16 exp

(
−(t− bn)C(m, τ)ε2

)
,

which concludes the proof of Lemma 1. �

The following two Lemmas are key elements to prove Lemma 4. Their proofs are strictly
analogous to the proofs of Lemmas 6, 7 and 8 from Wang et al. (2012).

Lemma 2 (cf. Wang et al., 2012, Lemma 6) For any two functions h1, h2 ∈ H, the following
equation holds

|Lt(h1)− Lt(h2)| ≤ 2Lip(ϕ)‖h1 − h2‖∞.

Lemma 3 Let H = S1 ∪ · · · ∪ Sl and ε > 0. Then

P

(
sup
h∈H

Lt(h) ≥ ε
)
≤

l∑
j=1

P

(
sup
h∈Sj

Lt(h) ≥ ε

)
.

Lemma 4 (cf. Wang et al., 2012, Lemma 6) For any cn ≤ t ≤ n, it holds

P

(
sup
h∈H

Lt(h) ≥ ε
)
≤ 16N

(
H, ε

4Lip(ϕ)

)
exp

(
−(t− bn)C(m, τ)ε2

4

)
.

Combining Lemma 4 and Eq.(24), we have

P

(
1

n− cn

n−1∑
t=cn

Lt(ht−bn) ≥ ε

)
≤ 16N

(
H, ε

4Lip(ϕ)

)
n exp

(
−(cn − bn)C(m, τ)ε2

4

)
.

We deduce that

P

(
1

n− cn

n−1∑
t=cn

[R(ht−bn)− Et−bn [Mt]] ≥ ε/2

)

≤ P

(
Lρbn +

1

n− cn

n−1∑
t=cn

[
Et−bn [M̃t]− Et−bn [Mt]

]
≥ ε/2

)

≤ 16N
(
H, ε

8Lip(ϕ)

)
n exp

(
−

(cn − bn)C(m, τ)
(
ε/2− Lρbn

)2
4

)
.
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B.1.3 Step 3: Conclusion of the proof

�
By considering dependent random variables, we needed the introduction of the
burning parameter bn (see Eq.(23)). This situation brings extra technicalities to
conclude the proof.

From the previous inequality and (22), we get

P

(
1

n− cn

n−1∑
t=cn

R(ht−bn)− 1

n− cn

n−1∑
t=cn

Mt ≥ ε

)

≤ bn exp

(
−(1− c)nε2

8b2n

)
+ 16N

(
H, ε

8Lip(ϕ)

)
n exp

(
−

(cn − bn)C(m, τ)
(
ε/2− Lρbn

)2
4

)
.

Note that (cn − bn)ερbn =
n→∞

o
(
nεnq log(ρ)

)
=

n→∞
o
(
n1+ξ+q log(ρ)

)
because by assump-

tion ε =
n→∞

o
(
nξ
)
. However, by choice of q we have

1 + ξ + q log(ρ) = 1 + ξ +
1 + ξ

log(1/ρ)
log(ρ) = 0,

and we finally get that (cn − bn)ερbn =
n→∞

o (1). We deduce that for n large enough it holds

exp

(
−

(cn − bn)C(m, τ)
(
ε/2− Lρbn

)2
4

)
≤ 2 exp

(
−(cn − bn)C(m, τ)ε2

16

)
.

Then, noticing that

exp

(
−(1− c)nε2

8b2n

)
=

n→∞
O
(

exp

(
−(cn − bn)C(m, τ)ε2

16b2n

))
,

we finally get for n large enough

P

(
1

n− cn

n−1∑
t=cn

R(ht−bn)− 1

n− cn

n−1∑
t=cn

Mt ≥ ε

)

≤
[
32N

(
H, ε

8Lip(ϕ)

)
+ 1

]
bn exp

(
−(cn − bn)C(m, τ)ε2

16b2n

)
.

B.2 Proof of Theorem 4

Theorem 3 shows that

P

(∣∣∣∣∣ 1

n− cn

n−1∑
t=cn

R(ht−bn)−Mn

∣∣∣∣∣ ≥ ε
)

≤
[
32N

(
H, ε

8Lip(ϕ)

)
+ 1

]
bn exp

(
−(cn − bn)C(m, τ)ε2

16b2n

)
, (25)
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and the assumption on the space H gives that for some θ > 0, it holds for any η > 0,
logN (H, η) = O(η−θ). By taking ε = log(n) log(logn)

n
1

2+θ
it is straightforward to prove that the

logarithm of the right hand side of Eq.(25) goes to −∞ as n → +∞. This concludes the
proof of the first part of Theorem 4.
Since the result from Theorem 3 trivially holds by considering h1 = · · · = hn−1 = h∗, the
previous computations show that for any δ > 0 there exists some N ∈ N such that for
any n ≥ N it holds with probability at least 1− δ,∣∣∣∣∣ 1

n− cn

n−1∑
t=cn

R(ht−bn)−Mn

∣∣∣∣∣ ∨ |Mn(h∗, . . . , h∗)−Mn| ≤ log(n) log(logn)

n
1

2+θ

.

Hence, by considering that the online learner has a regret bound Rn (cf. Definition 5), we
get that for any δ > 0 there exists some N ∈ N such that for any n ≥ N it holds with
probability at least 1− δ,

1

n− cn

n−1∑
t=cn

R(ht−bn)−R(h∗)

≤ 1

n− cn

n−1∑
t=cn

R(ht−bn)−Mn +Mn −Mn(h∗, . . . , h∗) +Mn(h∗, . . . , h∗)−R(h∗)

≤ 2
log(n) log(log n)

n
1

2+θ

+Mn − inf
h∈H
Mn(h, . . . , h) ≤ 2

log(n) log(logn)

n
1

2+θ

+ Rn,

which concludes the proof of Theorem 4.

B.3 Proof of Theorem 5

�

The proof of Theorem 5 has two main steps. First, we show that R(ĥ) is close
to min

cn≤t≤n−1
R(ht−bn) + 2cγ(n − t) with high probability. Then we show that

min
cn≤t≤n−1

R(ht−bn) + 2cγ(n− t) is close toMn with high probability. The second

step is similar to the proof of Wang et al. (2012). For the first step, we need
a concentration inequality for U-statistics of order two for uniformly ergodic
Markov chains. This is where we use the Hoeffding decomposition and Theorem 1
(see Section 2.2).

Let us recall that for any 1 ≤ t ≤ n−2, R̂(ht−bn , t+1) =
(
n−t
2

)−1∑n
k>i,i≥t+1 `(ht−bn , Xi, Xk).

We define

`(h, x) := Eπ[`(h,X, x)]−R(h), and ˜̀(h, x, y) = `(h, x, y)− `(h, x)− `(h, y)−R(h).

Then for any t ∈ {bn + 1, . . . , n− 2} we have the following decomposition

R̂(ht−bn , t+ 1)−R(ht−bn) =

(
n− t

2

)−1 n∑
k>i,i≥t+1

˜̀(ht−bn , Xi, Xk) +
2

n− t

n∑
i=t+1

`(ht−bn , Xi).

(26)
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One can check that for any x ∈ E, Eπ
[˜̀(h,X, x)

]
= Eπ

[˜̀(h, x,X)
]

= 0. Moreover, for

any hypothesis h ∈ H, ‖˜̀(h, ·, ·)‖∞ ≤ 4 (because the loss function ` takes its value in [0, 1]).
Hence, for any fixed hypothesis h ∈ H, the kernel ˜̀(h, ·, ·) satisfies Assumption 3. Applying
Theorem 1, we know that there exist constants β, κ > 0 such that for any t ∈ {bn+1, . . . , n−2}
and for any γ ∈ (0, 1), it holds with probability at least 1− γ,∣∣∣∣∣∣
(
n− t

2

)−1 n∑
k>i,i≥t+1

˜̀(ht−bn , Xi, Xk)

∣∣∣∣∣∣ ≤ κ log(n− t− 1)

n− t− 1
log((β ∨ e1) log(n− t+ 1)/γ)2.

Note that we used that for u = log
(
(β ∨ e1) log(n− t+ 1)/γ

)
≥ 1 it holds

log n

{
u

n
∨
(u
n

)2}
≤ log n

n
u2.

Using Proposition 7, we also have that for any t ∈ {bn + 1, . . . , n− 2} and any ε > 0 ,

P

(∣∣∣∣∣ 2

n− t

n∑
i=t+1

`(ht−bn , Xi)

∣∣∣∣∣ > ε

)
≤ 32 exp

(
−C(m, τ)(n− t)ε2

)
,

where C(m, τ) = (Km2τ2)−1 > 0 for some universal constant K (one can check from the
proof of Proposition 7 that K = 7× 103 fits). We get that for any t ∈ {bn + 1, . . . , n− 2}
and any γ ∈ (0, 1), it holds with probability at least 1− γ,∣∣∣∣∣ 2

n− t

n∑
i=t+1

`(ht−bn , Xi)

∣∣∣∣∣ ≤ log(32/γ)1/2C(m, τ)−1/2√
n− t

.

We deduce that for any t ∈ {bn + 1, . . . , n − 2} and any fixed γ ∈ (0, 1), it holds with
probability at least 1− γ,∣∣∣R̂(ht−bn , t+ 1)−R(ht−bn)

∣∣∣ ≤ C(m, τ)−1/2
√

log(64/γ)

n− t
,

i.e.
P
(∣∣∣R̂(ht−bn , t+ 1)−R(ht−bn)

∣∣∣ ≥ cγ(n− t)
)
≤ γ

(n− cn)(n− cn + 1)
. (27)

Based on the selection procedure of the hypothesis ĥ defined in Eq.(12), the concentration
result Eq.(27) allows us to show that R(ĥ) is close to min

cn≤t≤n−1
R(ht−bn) + 2cγ(n− t) with

high probability. This is stated by Lemma 5 which is proved in Section B.4.

Lemma 5 Let h0, . . . , hn−1 be the set of hypotheses generated by an arbitrary online algo-
rithm A working with a pairwise loss ` which satisfies the conditions given in Theorem 3.
Then for any γ ∈ (0, 1), we have

P

(
R(ĥ) > min

cn≤t<n−1
(R(ht−bn) + 2cγ(n− t))

)
≤ γ.
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To conclude the proof, we need to show that min
cn≤t≤n−1

R(ht−bn) + 2cγ(n− t) is close toMn.

First we remark that

min
cn≤t≤n−1

R(ht−bn) + 2cγ(n− t)

= min
cn≤t≤n−1

min
t≤i≤n−1

R(hi−bn) + 2cγ(n− i)

≤ min
cn≤t≤n−1

1

n− t

n−1∑
i=t

(R(hi−bn) + 2cγ(n− i))

≤ min
cn≤t≤n−1

(
1

n− t

n−1∑
i=t

R(hi−bn) +
2

n− t

n−1∑
i=t

√
C(m, τ)−1

n− i
log

64(n− cn)(n− cn + 1)

γ

)

≤ min
cn≤t≤n−1

(
1

n− t

n−1∑
i=t

R(hi−bn) +
2

n− t

n−1∑
i=t

√
2C(m, τ)−1

n− i
log

64(n− cn + 1)

γ

)

≤ min
cn≤t≤n−1

(
1

n− t

n−1∑
i=t

R(hi−bn) + 4

√
2C(m, τ)−1

n− t
log

64(n− cn + 1)

γ

)
,

where the last inequality holds because
∑n−t

i=1

√
1/i ≤ 2

√
n− t. Indeed, x 7→ 1/

√
x is a

decreasing and continuous function and a classical serie/integral approach leads to

n−t∑
i=1

√
1/i ≤ 1 +

∫ n−t

1

1√
x
dx = 1 +

[
2
√
x
]n−t
1
≤ 2
√
n− t.

We defineMn
t := 1

n−t
∑n−1

m=tMm. From Theorem 3, one can see that for each t = cn, . . . , n−1,

P

(
1

n− t

n−1∑
i=t

R(hi−bn) ≥Mn
t + ε

)
≤
[
32N

(
H, ε

8Lip(ϕ)

)
+ 1

]
bn exp

(
−(t− bn)C(m, τ)ε2

16b2n

)
.

Let us set

Kt =Mn
t + 4

√
2C(m, τ)−1

n− t
log

64(n− cn + 1)

γ
+ ε.

Using the fact that if min(a1, a2) ≤ min(b1, b2) then either a1 ≤ b1 or a2 ≤ b2, we can write
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P

(
min

cn≤t≤n−1
R(ht−bn) + 2cγ(n− t) ≥ min

cn≤t≤n−1
Kt

)
≤ P

(
min

cn≤t≤n−1

(
1

n− t

n−1∑
i=t

R(hi−bn) + 4

√
2C(m, τ)−1

n− t
log

64(n− cn + 1)

γ

)
≥ min

cn≤t≤n−1
Kt

)

≤
n−1∑
t=cn

P

(
1

n− t

n−1∑
i=t

R(hi−bn) + 4

√
2C(m, τ)−1

n− t
log

64(n− cn + 1)

γ
≥ Kt

)

=
n−1∑
t=cn

P

(
1

n− t

n−1∑
i=t

R(hi−bn) ≥Mn
t + ε

)

≤ (n− cn)

[
32N

(
H, ε

8Lip(ϕ)

)
+ 1

]
bn exp

(
−(cn − bn)C(m, τ)ε2

16b2n

)
≤

[
32N

(
H, ε

8Lip(ϕ)

)
+ 1

]
exp

(
−(cn − bn)C(m, τ)ε2

16b2n
+ 2 log n

)
.

Using Lemma 5, we get

P

(
R(ĥ) ≥ min

cn≤t≤n−1
Mn

t + 4

√
2C(m, τ)−1

n− t
log

64(n− cn + 1)

γ
+ ε

)

≤ γ +

[
32N

(
H, ε

8Lip(ϕ)

)
+ 1

]
exp

(
−(cn − bn)C(m, τ)ε2

16b2n
+ 2 log n

)
,

which gives in particular

P

(
R(ĥ) ≥Mn + 4

√
2C(m, τ)−1

n− cn
log

64(n− cn + 1)

γ
+ ε

)

≤ γ +

[
32N

(
H, ε

8Lip(ϕ)

)
+ 1

]
exp

(
−(cn − bn)C(m, τ)ε2

16b2n
+ 2 log n

)
.

We substitute ε with ε/2 and we choose γ such that 4
√

2C(m,τ)−1

n−cn log 64(n−cn+1)
γ = ε/2 with n

large enough to ensure that γ < 1. We have for any c > 0,

P

(
R(ĥ) ≥Mn + 4

√
2C(m, τ)−1

n− cn
log

64(n− cn + 1)

γ
+
ε

2

)

≤ 64(n− cn + 1) exp

(
−(n− cn)C(m, τ)ε2

128

)
+

[
32N

(
H, ε

16Lip(ϕ)

)
+ 1

]
×

exp

(
−(cn − bn)C(m, τ)ε2

(16bn)2
+ 2 log n

)
≤ 32

[
N
(
H, ε

16Lip(ϕ)

)
+ 1

]
exp

(
−(cn − bn)C(m, τ)ε2

(16bn)2
+ 2 log n

)
,

where these inequalities hold for n large enough.
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B.4 Proof of Lemma 5

Let
T ∗ := arg min

cn≤t<n−1
(R(ht−bn) + 2cγ(n− t)),

and h∗ = hT ∗−bn is the corresponding hypothesis that minimizes the penalized true risk and
let R̂∗ = R̂(h∗, T ∗ + 1) to be the penalized empirical risk of hT ∗−bn . Set, for brevity

R̂t−bn = R̂(ht−bn , t+ 1),

and let
T̂ := arg min

cn≤t<n−1
(R̂t−bn + cγ(n− t)),

where ĥ coincides with h
T̂−bn . Using this notation and since

R̂
T̂−bn + cγ(n− T̂ ) ≤ R̂∗ + cγ(n− T ∗),

holds with certainty, we have

P
(
R(ĥ) > R(h∗) + E

)
= P

(
R(ĥ) > R(h∗) + E , R̂

T̂−bn + cγ(n− T̂ ) ≤ R̂∗ + cγ(n− T ∗)
)

≤ P

 ⋃
cn≤t≤n−1

{
R(ht−bn) > R(h∗) + E , R̂t−bn + cγ(n− t) ≤ R̂∗ + cγ(n− T ∗)

}
≤

n−1∑
t=cn

P
(
R(ht−bn) > R(h∗) + E , R̂t−bn + cγ(n− t) ≤ R̂∗ + cγ(n− T ∗)

)
,

where E is a positive-valued random variable to be specified. Now we remark that if

R̂t−bn + cγ(n− t) ≤ R̂∗ + cγ(n− T ∗), (28)

holds, then at least one of the following three conditions must hold

(i) R̂t−bn ≤ R(ht−bn)− cγ(n− t)
(ii) R̂∗ > R(h∗) + cγ(n− T ∗)

(iii) R(ht−bn)−R(h∗) ≤ 2cγ(n− T ∗).

Stated otherwise, if Eq.(28) holds for some t ∈ {cn, . . . , n− 1} then

• either t = T ∗ and (iii) holds trivially.

• or t 6= T ∗ which can occur because

– R̂t−bn underestimates R(ht−bn) and (i) holds.

– R̂∗ overestimates R(h∗) and (ii) holds.

– n is too small to statistically distinguish R(ht−bn) and R(h∗), and (iii) holds.
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Therefore, for any fixed t, we have

P
(
R(ht−bn) > R(h∗) + E , R̂t−bn + cγ(n− t) ≤ R̂∗ + cγ(n− T ∗)

)
≤ P

(
R̂t−bn ≤ R(ht−bn)− cγ(n− t)

)
+ P

(
R̂∗ > R(h∗) + cγ(n− T ∗)

)
+ P (R(ht−bn)−R(h∗) ≤ 2cγ(n− T ∗) , R(ht−bn) > R(h∗) + E) .

By choosing E = 2cγ(n− T ∗), the last term in the previous inequality is zero and we can
write

P
(
R(ĥ) > R(h∗) + 2cγ(n− T ∗)

)
≤

n−1∑
t=cn

P
(
R̂t−bn ≤ R(ht−bn)− cγ(n− t)

)
+ (n− cn)P

(
R̂∗ > R(h∗) + cγ(n− T ∗)

)
≤ (n− cn)

γ

(n− cn)(n− cn + 1)
+ (n− cn)

{
n−1∑
t=cn

P
(
R̂t−bn > R(ht−bn) + cγ(n− t)

)}
(Using (27))

≤ γ

n− cn + 1
+ (n− cn)2

γ

(n− cn)(n− cn + 1)
(Using Eq.(27))

≤ γ

n− cn + 1
+ (n− cn)

γ

n− cn + 1
= γ.

B.5 Proof of Corollary 1

The proof of Corollary 1 is analogous to the proof of Theorem 4 by applying Theorem 5
(instead of Theorem 3) and by choosing ε = log2 n

n
1

2+θ
.

C. Proofs for Section 5

C.1 Proof of Theorem 6

In the following, Pg will denote the distribution of the Markov chain if the stationary
distribution of the chain is assumed to have a density g with respect to the Lebesgue measure
on R. We consider q = q1∨q2 where q1, q2 ∈ [1,∞) are such that 1

p1
+ 1
q1

= 1 and 1
p2

+ 1
q2

= 1.
The main tool of the proof is the Hoeffding (also called canonical) decomposition of the U-
statistics θ̂m. We introduce the processes Un and Pn defined by

Un(h) =
1

n(n− 1)

n∑
i 6=j=1

h(Xi, Xj), Pn(h) =
1

n

n∑
i=1

h(Xi).

We also define P (h) = 〈h, f〉. By setting, for all m ∈M,

Hm(x, y) =
∑
l∈Lm

(pl(x)− al)(pl(y)− al),

with al = 〈f, pl〉, we obtain the decomposition

θ̂m = Un(Hm) + (Pn − P )(2ΠSm(f)) + ‖ΠSm(f)‖22.
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Let us consider β in ]0, 1[. Since

Pf (Tα ≤ 0) = Pf

(
sup
m∈M

(θ̂m + ‖f0‖22 −
2

n

n∑
i=1

f0(Xi)− tm(uα)) ≤ 0

)
,

we have

Pf (Tα ≤ 0) ≤ inf
m∈M

Pf

(
θ̂m + ‖f0‖22 −

2

n

n∑
i=1

f0(Xi)− tm(uα) ≤ 0

)
.

Since ‖f −ΠSm(f)‖22 = ‖f‖22 − ‖ΠSm(f)‖22, it holds

θ̂m + ‖f0‖22 −
2

n

n∑
i=1

f0(Xi)

= Un(Hm) + (Pn − P )(2ΠSm(f))− ‖f −ΠSm(f)‖22 + ‖f‖22 + ‖f0‖22 − 2Pn(f0)

= Un(Hm) + (Pn − P )(2ΠSm(f))− ‖f −ΠSm(f)‖22 + ‖f − f0‖22 + 2P (f0)− 2Pn(f0),

which leads to

Pf (Tα ≤ 0) ≤ inf
m∈M

Pf

(
Un(Hm) + (Pn − P )(2ΠSm(f)− 2f) + (Pn − P )(2f − 2f0) + ‖f − f0‖22

≤ ‖f −ΠSm(f)‖22 + tm(uα)

)
. (29)

We then need to control Un(Hm), (Pn−P )(2ΠSm(f)−2f), (Pn−P )(2f−2f0) for everym ∈M.
Control of Un(Hm).
Hm is π-canonical and a direct application of Theorem 1 leads to the following Lemma (the
proof of Lemma 6 is postponed to Section C.2).

Lemma 6 Let us assume that the stationary distribution of the Markov chain (Xi)i≥1 has den-
sity f with respect to the Lebesgue measure on R. For all m = (l,D) with l ∈ {1, 2, 3} and D ∈
Dl, introduce {pl, l ∈ Lm} defined as in page 21 and Zm = 1

n(n−1)
∑n

i 6=j=1Hm(Xi, Xj),

with Hm(x, y) =
∑

l∈Lm(pl(x)− 〈f, pl〉)(pl(y)− 〈f, pl〉). There exist some constants C, β > 0
(both depending on the Markov chain (Xi)i≥1 while C also depends on ϕ) such that, for
all l ∈ {1, 2, 3}, D ∈ Dl and u ≥ 1, it holds with probability at least 1− βe−u log n,

|Z(l,D)| ≤ C (‖f‖∞ + 1)DR(n, u),

where R(n, u) = log n
{
u
n +

(
u
n

)2}
.

We deduce that there exist C, β > 0 such that for any γ ∈ (0, 1 ∧ (e−13β log n)) and
any m = (l,D) ∈M,

Pf

(
Un(Hm) ≤ −C (‖f‖∞ + 1)DR

(
n, log

{
3β log n

γ

}))
≤ γ/3. (30)
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From Eq.(29) and Eq.(30) we get that

Pf (Tα ≤ 0) ≤ γ

3
+ inf
m∈M

Pf

(
(Pn − P )(2ΠSm(f)− 2f) + (Pn − P )(2f − 2f0) + ‖f − f0‖22

≤ ‖f −ΠSm(f)‖22 + tm(uα) + C (‖f‖∞ + 1)DR

(
n, log

{
3β log n

γ

}))
.

(31)

Control of (Pn − P )(2ΠSm(f)− 2f).
It is easy to check that there exists some constant C ′ > 0 such that for all l in {1, 2}, D
in Dl, ∣∣∣2ΠS(l,D)

(f)(Xi)− 2f(Xi)
∣∣∣ ≤ C ′‖f‖∞.

Indeed,

• when l = 1, for any k ∈ Z,

〈
√
D1[k/D,(k+1)/D[, f〉 =

∫ √
D1[k/D,(k+1)/D[(x)f(x)dx ≤ D−1/2‖f‖∞.

Hence,

sup
x
|ΠS(1,D)

(f)(x)| ≤ sup
x

∑
k∈Z

∣∣∣〈√D1[k/D,(k+1)/D[, f〉
∣∣∣√D1[k/D,(k+1)/D[(x)

≤ D−1/2‖f‖∞ sup
x

∑
k∈Z

√
D1[k/D,(k+1)/D[(x) = ‖f‖∞.

• when l = 2, D = 2J for some J ∈ N and we have for any k ∈ Z,

〈ϕJ,k, f〉 =

∫
2J/2ϕ(2Jx− k)f(x)dx ≤ ‖f‖∞

∫
2J/2|ϕ(2Jx)|dx ≤ 2−J/2‖f‖∞‖ϕ‖1.

Hence,

sup
x
|ΠS(2,D)

(f)(x)| ≤ sup
x

∑
k∈Z
|〈ϕJ,k, f〉| × |ϕJ,k(x)|

≤ 2−J/2‖f‖∞‖ϕ‖1 sup
x

∑
k∈Z
|2J/2ϕ(2Jx− k)| ≤ c‖f‖∞‖ϕ‖1,

where c > 0 is a constant depending only on ϕ since ϕ is bounded and compactly
supported. Stated otherwise, there is only a finite number of integers k ∈ Z (which is
independent of x and J) such that for any x ∈ R and any J ∈ Z, 2Jx− k falls into the
support of ϕ.

Moreover, it is proved in DeVore and Lorentz (1993, Page 269), that one can take C ′ such
that for all D in D3,

|2ΠS(3,D)
(f)(Xi)− 2f(Xi)| ≤ C ′‖f‖∞ log(D + 1).
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Since
EX∼π (2ΠSm(f)(X)− 2f(X))2 ≤ 4‖f‖∞‖ΠSm(f)− f‖22,

we can deduce using Proposition 11 (see Section D.2) that for all m = (l,D) ∈M,

Pf

(
(Pn − P )(2ΠSm(f)− 2f) < −2C ′ log(3Cχ/γ)qA1‖f‖∞ log(D + 1)

n

− 2

√
2 log(3Cχ/γ)qA2‖f‖∞

n
‖ΠSm(f)− f‖2

)
≤ γ

3
.

Considering some ε ∈]0, 2[, we use the inequality ∀a, b ∈ R, 2ab ≤ 4a2/ε + εb2/4 and we
obtain that for any m = (l,D) ∈M,

Pf

(
(Pn − P )(2ΠSm(f)− 2f) +

ε

4
‖ΠSm(f)− f‖22 < −

2C ′ log(3Cχ/γ)qA1‖f‖∞ log(D + 1)

n

− 8 log(3Cχ/γ)qA2‖f‖∞
εn

)
≤ γ

3
. (32)

The control of (Pn − P )(2f − 2f0) is computed in the same way and we get

Pf

(
(Pn − P )(2f − 2f0) +

ε

4
‖f − f0‖22 < −

4 log(3Cχ/γ)qA1(‖f‖∞ + ‖f0‖∞)

n

− 8 log(3Cχ/γ)qA2‖f‖∞
εn

)
≤ γ

3
. (33)

Finally, we deduce from Eq.(31), Eq.(32) and Eq.(33) that if there exists some m = (l,D)
inM such that(

1− ε

4

)
‖f − f0‖22 >

(
1 +

ε

4

)
‖f −ΠSm(f)‖22 +

8 log(3Cχ/γ)qA2‖f‖∞
εn

+
4 log(3Cχ/γ)qA1(‖f‖∞ + ‖f0‖∞)

n

+
8 log(3Cχ/γ)qA2‖f‖∞

εn
+

2C ′ log(3Cχ/γ)qA1‖f‖∞ log(D + 1)

n

+ tm(uα) + C (‖f‖∞ + 1)DR

(
n, log

{
3β log n

γ

})
,

i.e. such that(
1− ε

4

)
‖f − f0‖22 >

(
1 +

ε

4

)
‖f −ΠSm(f)‖22 +

16 log(3Cχ/γ)qA2‖f‖∞
εn

+ 4
(
‖f‖∞(C ′ log(D + 1) + 1) + ‖f0‖∞

) log(3Cχ/γ)qA1

n

+ tm(uα) + C (‖f‖∞ + 1)DR

(
n, log

{
3β log n

γ

})
,

46



Three Rates of Convergence or Separation via U-Statistics

then
Pf (Tα ≤ 0) ≤ γ.

To conclude the proof of Theorem 6, it suffices to notice that for any ε ∈]0, 2[, choosing η > 0

such that 1+η =
1+ ε

4
1− ε

4
leads to ε = 4η

2+η . One can immediately check that the condition ε ∈]0, 2[

is equivalent to η ∈]0, 2[. Noticing further that 1
ε = 2+η

4η < 2+2
4η = 1

η , we deduce that for
any η ∈]0, 2[, if

‖f − f0‖22 > (1 + η)

{
‖f −ΠSm(f)‖22 +

16 log(3Cχ/γ)qA2‖f‖∞
ηn

+ 4
(
‖f‖∞(C ′ log(D + 1) + 1) + ‖f0‖∞

) log(3Cχ/γ)qA1

n

+ tm(uα) + C (‖f‖∞ + 1)DR

(
n, log

{
3β log n

γ

})}
,

then
Pf (Tα ≤ 0) ≤ γ.

C.2 Proof of Lemma 6

Lemma 6 will follow from Theorem 1 if we can show that the function Hm is bounded. Let
us denote m = (l,D) for some l ∈ {1, 2, 3} and D ∈ Dl. Let us first remark that the Bessel’s
inequality states that ∑

k∈Lm

|〈pk, f〉|2 ≤ ‖f‖22 =

∫
f(x)f(x)dx ≤ ‖f‖∞, (34)

since
∫
f(x)dx = 1 and f(x) ≥ 0, ∀x.

• If l = 1, then we notice that for any k ∈ Z,

|〈
√
D1]k/D,(k+1)/D[, f〉| =

∣∣∣∣∫ √D1]k/D,(k+1)/D[(x)f(x)dx

∣∣∣∣
≤ ‖f‖∞

√
D

∫
1]k/D,(k+1)/D[(x)dx

≤ D−1/2‖f‖∞.

Then for any x, y ∈ R it holds

|Hm(x, y)| ≤
∑
k∈Lm

|pk(x)pk(y)|+
∑
k∈Lm

|pk(x)〈pk, f〉|+
∑
k∈Lm

|pk(y)〈pk, f〉|+
∑
k∈Lm

|〈pk, f〉|2

≤
∑
k∈Z

D1]k/D,(k+1)/D[(x)1]k/D,(k+1)/D[(y)

+ 2 sup
z

∑
k∈Z

√
D|1]k/D,(k+1)/D[(z)| × |〈

√
D1]k/D,(k+1)/D[, f〉|+

∑
k∈Lm

|〈pk, f〉|2

≤ D + 2‖f‖∞ + ‖f‖∞,
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where in the last inequality we used Eq.(34).
• If l = 2 then D = 2J for some J ∈ N and we have for any k ∈ Z,

〈ϕJ,k, f〉 =

∫
2J/2ϕ(2Jx− k)f(x)dx ≤ ‖f‖∞

∫
2J/2|ϕ(2Jx)|dx ≤ 2−J/2‖f‖∞‖ϕ‖1.

We get that for any x, y ∈ R,

|Hm(x, y)| ≤
∑
k∈Lm

|pk(x)pk(y)|+
∑
k∈Lm

|pk(x)〈pk, f〉|+
∑
k∈Lm

|pk(y)〈pk, f〉|+
∑
k∈Lm

|〈pk, f〉|2

≤
∑
k∈Z

2Jϕ(2Jx− k)ϕ(2Jy − k) + 2 sup
z

∑
k∈Z

2−J/2‖f‖∞‖ϕ‖12J/2|ϕ(2J/2z − k)|+
∑
k∈Lm

|〈pk, f〉|2

≤ c2J + c′‖ϕ‖1‖f‖∞ + ‖f‖∞
= cD + c′‖ϕ‖1‖f‖∞ + ‖f‖∞,

for some constants c, c′ > 0. In the last inequality we used Eq.(34) and the fact ϕ is
bounded and compactly supported. Indeed, this implies that there is only a finite number
of integers k ∈ Z (which is independent of x and J) such that for any x ∈ R and any J ∈
Z, 2Jx− k falls into the support of ϕ.
• If l = 3 then we easily get for any x, y ∈ [0, 1],

|Hm(x, y)| ≤
∑
k∈Lm

|pk(x)pk(y)|+
∑
k∈Lm

|pk(x)〈pk, f〉|+
∑
k∈Lm

|pk(y)〈pk, f〉|+
∑
k∈Lm

|〈pk, f〉|2

≤ 2D + 4D‖f‖∞ + ‖f‖∞.

We deduce that in any case, Hm is bounded c(1+‖f‖∞)D for some constant c > 0 (depending
only on ϕ) which concludes the proof of Lemma 6.

C.3 Proof of Corollary 2

Step 1: We start by providing an upper bound on tm(uα) with Lemma 7.

Lemma 7 There exists a constant C(α) > 0 such that for any m = (l,D) ∈M it holds,

tm(uα) ≤Wm(α),

where
Wm(α) = C(α) (‖f0‖∞ + 1)

[
DR (n, log log n) +

log logn

n

]
.

Proof of Lemma 7.
Let us recall that tm(u) denotes the (1− u) quantile of the distribution of T̂m under the null
hypothesis. One can easily see that |M| ≤ 3(1 + log2 n). So, setting αn = α/(3(1 + log2 n)),

Pf0( sup
m∈M

(T̂m − tm(αn)) > 0) ≤
∑
m∈M

Pf0(T̂m − tm(αn) > 0)

≤
∑
m∈M

α/(3(1 + log2 n))

≤ α.
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By definition of uα, this implies that αn ≤ uα and for all m ∈M,

tm(uα) ≤ tm(αn).

Hence it suffices to upper bound tm(αn). Let m = (l,D) ∈M. We use the same notation as
in the proof of Theorem 6 to obtain that

T̂m = Un(Hm) + (Pn − P )(2ΠSm(f))− 2Pn(f0) + ‖f0‖22 + ‖ΠSm(f)‖22.

Under the null hypothesis, this reads as

T̂m = Un(Hm) + (Pn − P )(2ΠSm(f0)− 2f0)− ‖f0‖22 + ‖ΠSm(f0)‖22
= Un(Hm) + (Pn − P )(2ΠSm(f0)− 2f0)− ‖f0 −ΠSm(f0)‖22.

We control Un(Hm) and (Pn − P )(2ΠSm(f0)− 2f0) exactly like in the proof of Theorem 6.
From Lemma 6, there exist C, β > 0 such that for any m = (l,D) ∈M, it holds

Pf0

(
Un(Hm) ≤ C (‖f0‖∞ + 1)DR

(
n, log

{
2β log n

αn

}))
≤ αn/2. (35)

Moreover, since

|2ΠS(l,D)
(f0)(Xi)− 2f0(Xi)| ≤ C ′‖f0‖∞ log(D + 1),

and
EX∼π (2ΠSm(f0)(X)− 2f0(X))2 ≤ 4‖f0‖∞‖ΠSm(f0)− f0‖22,

we get using Proposition 11 (see Section D.2) that for all m = (l,D) ∈M,

Pf0

(
(Pn − P )(2ΠSm(f0)− 2f0) >

2C ′ log(2Cχ/αn)qA1‖f0‖∞ log(D + 1)

n

+ 2

√
2 log(2Cχ/αn)qA2‖f0‖∞

n
‖ΠSm(f0)− f0‖2

)
≤ αn

2
.

Using the inequality ∀a, b ∈ R, 2ab ≤ a2 + b2, and the fact that for n ≥ 16, log(D + 1) ≤
log(n2 + 1), we obtain that there exists C ′′ > 0 such that

Pf0

(
(Pn − P )(2ΠSm(f0)− 2f0)− ‖ΠSm(f0)− f0‖22 >

C ′′‖f0‖∞ log(2Cχ/αn) log(n)

n

)
≤ αn

2
.

We deduce that it holds

Pf0

(
T̂m > C (‖f0‖∞ + 1)DR

(
n, log

{
2β log n

αn

})
+
C ′′‖f0‖∞ log(2Cχ/αn) log(n)

n

)
≤ αn.

Noticing that there exists some constant c(α) > 0 such that

log

{
2β log n

αn

}
∨ log(2Cχ/αn) ≤ c(α) log log n,
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we deduce by definition of tm(αn) that for some c(α) > 0,

tm(αn) ≤ c(α)C (‖f0‖∞ + 1)DR (n, log logn) + c(α)
C ′′‖f0‖∞ log log n

n
.

�
Step 2: Proof of Corollary 2.
Let us fix γ ∈]0, 1[ and l ∈ {1, 2, 3}. From Theorem 6 and Lemma 7, we deduce that if f
satisfies

‖f − f0‖22 > (1 + ε) inf
D∈Dl

‖f −ΠS(l,D)
(f)‖22 +W(l,D)(α) + V (l,D)(γ),

then
Pf (Tα ≤ 0) ≤ γ.

It is thus a matter of giving an upper bound for

inf
D∈Dl

{
‖f −ΠS(l,D)

(f)‖22 +W(l,D)(α) + V(l,D)(γ)
}
,

when f belongs to some specified classes of functions. Recall that

B(l)s (P,M) = {f ∈ L2(R) | ∀D ∈ Dl, ‖f −ΠS(l,D)
(f)‖22 ≤ P 2D−2s, ‖f‖∞ ≤M}.

We now assume that f belongs to B(l)s (P,M). Since ‖f −ΠS(l,D)
(f)‖22 ≤ P 2D−2s, we only

need an upper bound for

inf
D∈Dl

{
P 2D−2s + C(α) (‖f0‖∞ + 1)

[
DR (n, log log n) +

log logn

n

]
+ C1‖f‖∞

log(3Cχ/γ)

εn

+ C2 (‖f‖∞ log(D + 1) + ‖f0‖∞)
log(3Cχ/γ)

n
+ C3 (‖f‖∞ + 1)DR

(
n, log

{
3β log n

γ

})}
.

Using that f belongs to B(l)s (P,M) and the fact that

R (n, log log n) ∨R
(
n, log

{
3β log n

γ

})
. log(n)

log log n

n
,

where . states that the inequality holds up to some multiplicative constant independent
of n, D and P , we deduce that we want to upper bound

inf
D∈Dl

{
P 2D−2s +D log(n)

log logn

n
+

log logn

n
+

log(D + 1)

n

}
.

Since log(D + 1) ≤ D for all D ∈ Dl, we only need to focus on

inf
D∈Dl

{
P 2D−2s +D log(n)

log log n

n

}
.
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P 2D−2s < D log(n) log lognn if and only if D >
(

P 4n2

log2(n)(log logn)2

) 1
4s+2 . Hence we define D∗ by

log2(D∗) := blog2

((
P 4n2

log2(n)(log log n)2

) 1
4s+2

)
c+ 1.

We consider three cases.

• If D∗ < 1, then P 2D−2s < D log(n) log lognn for any D ∈ Dl and by choosing D0 = 1 to
upper bound the infimum we get

inf
D∈Dl

{
‖f −ΠS(l,D)

(f)‖22 +W(l,D)(α) + V(l,D)(γ)
}
≤ log(n)

log logn

n
.

• If D∗ > 2blog2(n/(log(n) log logn)
2)c, then P 2D−2s > D log(n) log lognn for any D ∈ Dl and

by choosing D0 = 2log2(bn/(log(n) log logn)
2)c) to upper bound the infimum we get

inf
D∈Dl

{
‖f −ΠS(l,D)

(f)‖22 +W(l,D)(α) + V(l,D)(γ)
}
. 2P 2D−2s0 ≤ 22s+1P 2

(
(log(n) log log n)2

n

)2s

.

• Otherwise D∗ belongs to Dl and we upper bound the infimum by choosing D0 = D∗
and we get

inf
D∈Dl

{
‖f −ΠS(l,D)

(f)‖22 +W(l,D)(α) + V(l,D)(γ)
}
. 4P

2
2s+1

(
log(n) log log n

n

) 2s
2s+1

.

The proof of Corollary 2 ends with simple computations that we provide below for the sake
of completeness. Since

log(n)
log logn

n
≤ P

2
2s+1

(
log(n) log log n

n

) 2s
2s+1

⇔
(

log(n)
log logn

n

)1/2

≤ P.

and since

P 2

(
(log(n) log log n)2

n

)2s

≤ P
2

2s+1

(
log(n) log log n

n

) 2s
2s+1

⇔ P

(
(log(n) log log n)2

n

)s
≤ P

1
2s+1

(
log(n) log log n

n

) s
2s+1

⇔ P 2s

(
(log(n) log log n)2

n

)s(2s+1)

≤
(

log(n) log log n

n

)s
⇔ P

(
(log(n) log log n)2

n

)s+1/2

≤
(

log(n) log log n

n

)1/2

⇔ P ≤ ns

(log(n) log log n)2s+1/2
,
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we deduce that if P is chosen such that(
log(n)

log log n

n

)1/2

≤ P ≤ ns

(log(n) log log n)2s+1/2
, (36)

then the uniform separation rate of the test 1Tα>0 over B(l)s (P,M) satisfies

ρ
(
1Tα>0,B(l)s (P,M), γ

)
≤ C ′P

1
2s+1

(
log(n) log log n

n

) s
2s+1

. (37)

Remark This final statement can allow the reader to understand our choice for the size
of the model |M| that we considered. Indeed, we chose for any l ∈ {1, 2, 3}, Dl = {2J , 0 ≤
J ≤ log2

(
n/(log(n) log log n)2

)
} in order to ensure that for values of P saturing the right

inequality in (36) (i.e. for P ≈ ns

(log(n) log logn)2s+1/2 ), the upper-bound in Eq.(37) still tends
to zero as n goes to +∞ for any possible values of the smoothness parameter s.

D. Concentration Lemmas for Markov chains

D.1 Hoeffding inequality for uniformly ergodic Markov chains

Proposition 7 is an Hoeffding bound for uniformly ergodic Markov chains.

Proposition 7 Let (Xi)i≥1 be a Markov chain on E uniformly ergodic (namely satisfying
Assumption 1) with stationary distribution π and let us consider some function f : E → R

such that EX∼π[f(X)] = 0. Then it holds for any t ≥ 0

P

(∣∣∣∣∣
n∑
i=1

f(Xi)

∣∣∣∣∣ ≥ t
)
≤ 16 exp

(
− 1

K(m, τ)

t2

n‖f‖2∞

)
,

where K(m, τ) = 2Km2τ2 for some universal constant K > 0. We refer to Assumption 1
and the following remark (or to (Duchemin et al., 2022, Section 2)) for the definitions of the
constants m and τ .

Proof of Proposition 7. Let us first recall that under Assumption 1, the 1-Orlicz norm of the
regeneration times of the split chain are bounded by some finite constant τ > 0 (see the
remark after Assumption 1). In this proof, we will use the notations introduced in (Duchemin
et al., 2022, Section 2.3). Since the chain (X̃n)n is distributed as (Xi)i≥1, we will identify
(X̃i)i≥1 and (Xi)i≥1 in the proof.
Let us consider N = sup{i ∈ N : mSi+1 +m− 1 ≤ n}. Then,

∣∣ n∑
i=1

f(Xi)
∣∣ =

∣∣ N∑
l=0

Zl +

n∑
i=m(SN+1)

f(Xi)
∣∣ ≤ ∣∣ bN/2c∑

l=0

Z2l

∣∣+
∣∣ b(N−1)/2c∑

l=0

Z2l+1

∣∣+
∣∣ n∑
i=m(SN+1)

f(Xi)
∣∣.

(38)
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We have |
∑n

i=m(SN+1) f(Xi)| ≤ AmTN+1. So using the definition of the Orlicz norm and
the fact that the random variables (Ti)i≥2 are i.i.d., it holds for any t ≥ 0,

P
(∣∣ n∑
i=m(SN+1)

f(Xi)
∣∣ ≥ t) ≤ P(TN+1 ≥

t

Am
) ≤ P(max(T1, T2) ≥

t

Am
) ≤ 4 exp

(
− t

Amτ

)
.

In order to control the first two terms in (38), we need to describe the tail behaviour of the
random variable N with Lemma 8.

Lemma 8 (cf. Adamczak, 2008, Lemma 5)
We denote R = b3n/(ET2)c. If ‖T1‖ψ1 , ‖T2‖ψ1 ≤ τ , then P(N > R) ≤ 2 exp

(
−nET2

8τ2

)
.

The random variable Z2l is σ(Xm(S2l+1), . . . , Xm(S2l+1+1)−1)-measurable. Hence the random
variables (Z2l)l are independent (see Duchemin et al., 2022, Section 2.3). Moreover, one
has that for any l, E[Z2l] = 0. This is due to (Meyn and Tweedie, 1993, Eq.(17.23)
Theorem 17.3.1) together with the assumption that EX∼π[f(X)] = 0. Let us finally notice
for any l ≥ 0, |Z2l| ≤ AmT2l+1, so ‖Z2l‖ψ1 ≤ Ammax(‖T1‖ψ1 , ‖T2‖ψ1) ≤ Amτ . One can
similarly get that (Z2l+1)l are independent with E[Z2l+1] = 0 and ‖Z2l+1‖ψ1 ≤ Amτ for
all l ∈ N. Using these facts we have for any t ≥ 0,

P
(∣∣ bN/2c∑

l=0

Z2l

∣∣+
∣∣ b(N−1)/2c∑

l=0

Z2l+1

∣∣ ≥ t)
≤ P

(∣∣ bN/2c∑
l=0

Z2l

∣∣+
∣∣ b(N−1)/2c∑

l=0

Z2l+1

∣∣ ≥ t ,N ≤ R)+ 2 exp
(
− nET2

8τ2
)

≤ P
(

max
0≤s≤bR/2c

∣∣ s∑
l=0

Z2l

∣∣ ≥ t/2)+ P
(

max
0≤s≤b(R−1)/2c

∣∣ s∑
l=0

Z2l+1

∣∣ ≥ t/2)+ 2 exp
(
− nET2

8τ2
)

≤ 3P
(∣∣ bR/2c∑

l=0

Z2l

∣∣ ≥ t/6)+ 3P
(∣∣ b(R−1)/2c∑

l=0

Z2l+1

∣∣ ≥ t/6)+ 2 exp
(
− nET2

8τ2
)

(Using Lemma 10)

≤ 12 exp
(
− 1

8
min

( t2

36RA2m2τ2
,

t

6Amτ

))
+ 2 exp

(
− nET2

8τ2
)
,

where we used Lemma 9 in the last inequality.

Lemma 9 (Bernstein’s ψ1 inequality, (Van Der Vaart and Wellner, 2013, Lemma 2.2.11)
and the subsequent remark).
If Y1, . . . , Yn are independent random variables such that EYi = 0 and ‖Yi‖ψ1 ≤ τ , then for
every t > 0,

P

(∣∣∣∣∣
n∑
i=1

Yi

∣∣∣∣∣ > t

)
≤ 2 exp

(
− 1

K
min

(
t2

nτ2
,
t

τ

))
,

for some universal constant K > 0 (K = 8 fits).
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Lemma 10 (cf. Kwapień and Woyczyński, 1992, Proposition 1.1.1) If X1, X2, . . . are inde-
pendent Banach space valued random variables (not necessarily identically distributed), and
if Sk =

∑k
i=1Xi, then

P

(
max
1≤j≤k

‖Sj‖ > t

)
≤ 3 max

1≤j≤k
P (‖Sj‖ > t/3) .

Gathering the previous results, we obtain that for any t ≥ 0

P
(∣∣ n∑

i=1

f(Xi)
∣∣ ≥ t) ≤ 12 exp

(
− 1

8
min

( t2
(
ET2

)
36× 12× nA2m2τ2

,
t

12Amτ

))
+ 2 exp

(
− nET2

8τ2
)

+ 4 exp
(
− t

2Amτ

)
.

Since the left hand side of the previous inequality is zero for t ≥ nA, and since m ≥ 1, we
obtain Proposition 7.

D.2 Bernstein’s inequality for non-stationary Markov chains

Proposition 11 is an extension of the Bernstein type concentration inequality from Jiang
et al. (2018) to non-stationary Markov chains. A proof can be found in the Appendix of
Duchemin et al. (2022). Let us highlight that Proposition 11 is only used in the proofs of
the main results from Section 5. One could have used other concentration results such as the
one from Paulin (2015) (by using jointly Theorem 3.4 and Proposition 3.10) which would
give strictly analogous results.

Proposition 11 Suppose that the sequence (Xi)i≥1 is a Markov chain satisfying Assump-
tions 1 and 5 with stationary distribution π and with an absolute spectral gap 1−λ > 0. Let us
consider some n ∈ N\{0} and bounded real valued functions (fi)1≤i≤n such that for any i ∈
{1, . . . , n},

∫
fi(x)dπ(x) = 0 and ‖fi‖∞ ≤ c for some c > 0. Let σ2 =

∑n
i=1

∫
f2i (x)dπ(x)/n.

Then for any ε ≥ 0 it holds

P

(
n∑
i=1

fi(Xi) ≥ ε

)
≤
∥∥∥∥dχdπ

∥∥∥∥
π,p

exp

(
− ε2/(2q)

A2σ2 +A1cε

)
,

where A2 := 1+λ
1−λ and A1 := 1

31λ=0 + 5
1−λ1λ>0. q is the constant introduced in Assumption 5.

Stated otherwise, for any u > 0 it holds

P

(
1

n

n∑
i=1

fi(Xi) >
2quA1c

n
+

√
2quA2σ2

n

)
≤
∥∥∥∥dχdπ

∥∥∥∥
π,p

e−u.
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