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Abstract

Exponential families are widely used in machine learning, including many distributions
in continuous and discrete domains (e.g., Gaussian, Dirichlet, Poisson, and categorical
distributions via the softmax transformation). Distributions in each of these families have
fixed support. In contrast, for finite domains, recent work on sparse alternatives to softmax
(e.g., sparsemax, α-entmax, and fusedmax), has led to distributions with varying support.

This paper develops sparse alternatives to continuous distributions, based on several
technical contributions: First, we define Ω-regularized prediction maps and Fenchel-Young
losses for arbitrary domains (possibly countably infinite or continuous). For linearly
parametrized families, we show that minimization of Fenchel-Young losses is equivalent
to moment matching of the statistics, generalizing a fundamental property of exponential
families. When Ω is a Tsallis negentropy with parameter α, we obtain “deformed exponential
families,” which include α-entmax and sparsemax (α = 2) as particular cases. For quadratic
energy functions, the resulting densities are β-Gaussians, an instance of elliptical distributions
that contain as particular cases the Gaussian, biweight, triweight, and Epanechnikov
densities, and for which we derive closed-form expressions for the variance, Tsallis entropy,
and Fenchel-Young loss. When Ω is a total variation or Sobolev regularizer, we obtain a
continuous version of the fusedmax. Finally, we introduce continuous-domain attention
mechanisms, deriving efficient gradient backpropagation algorithms for α ∈ {1, 4/3, 3/2, 2}.
Using these algorithms, we demonstrate our sparse continuous distributions for attention-
based audio classification and visual question answering, showing that they allow attending
to time intervals and compact regions.
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1. Introduction

Exponential families (Brown, 1986; Barndorff-Nielsen, 2014) are ubiquitous in statistics and
machine learning. They include many common distributions, both in continuous (Gaussian,
exponential, Dirichlet, ...) and discrete (Poisson, Bernoulli, categorical, ...) domains. They
enjoy many useful properties, such as the existence of conjugate priors (crucial in Bayesian
inference) and the classical Pitman-Koopman-Darmois theorem (Pitman, 1936; Darmois,
1935; Koopman, 1936), which states that, among families with fixed support (independent
of the parameters), exponential families are the only having sufficient statistics of fixed
dimension for any number of i.i.d. samples.

There have been several efforts to further generalize exponential families. Grünwald
and Dawid (2004) introduced generalized exponential families as maximum entropy
distributions for generalized entropy functions. Based upon these results, Frongillo and Reid
(2014) studied these distributions from a convex duality perspective. Amari et al. (2012)
studied deformed exponential families, including their entropy and canonical divergence.

More recently, there has been work with a focus on distributions with varying and
sparse support over a finite domain. Examples include sparsemax (Martins and Astudillo,
2016), entmax (Peters et al., 2019; Correia et al., 2019), and fusedmax (Niculae and Blondel,
2017). They have been used for sparse differentiable dynamic programming (Mensch and
Blondel, 2018) and for improving the interpretability of attention mechanisms in neural
networks (Bahdanau et al., 2015).

A common task when it comes to probability distributions is to fit their parameters
to observed data. Unfortunately, unlike for exponential families, maximum likelihood for
generalized exponential families does not always lead to a convex objective with respect
to the parameters. Proper scoring rules, which can be seen as primal-space Bregman
divergences, have been widely studied (Gneiting and Raftery, 2007; Reid and Williamson,
2010; Williamson et al., 2016). Typically, proper scoring rules are composed with a link
function. However, when the link function is non-invertible, which is the case with sparse
distributions, the resulting composite loss function can be non-convex (Blondel et al., 2020).
Based on convex duality arguments, Blondel et al. (2020) introduced Fenchel-Young
losses, which can be seen as mixed-space Bregman divergences (Amari, 2016, Theorem 1.1).
Unlike with proper scoring rules, the link function, called regularized prediction map, is
not explicitly composed with the loss but instead kept implicit. This leads to convex loss
functions, even for distributions with sparse support.

This paper. We extend sparse probability distributions and Fenchel-Young losses to
infinite domains (continuous or countably infinite). Similarly to (and generalizing)
the free energy variational principle (Dayan et al., 1995), a convex regularizer Ω, which
can be regarded as a generalized negentropy, induces a mapping from energy functions to
probability densities. When Ω is a Tsallis negentropy (Tsallis, 1988), the resulting densities
are deformed exponential families. These families have been studied in statistical physics
and machine learning (Naudts, 2009; Sears, 2008; Ding and Vishwanathan, 2010) with most
focus given to heavy-tailed distributions. Our paper focuses instead on light and zero-tailed

2



Sparse Continuous Distributions and Fenchel-Young Losses

distributions, which can be regarded as continuous counterparts of sparsemax and entmax
transformations. We use this construction to obtain new density families, called α-sparse
families, with sparse and varying support, including the truncated parabola/paraboloid
distributions and the wider family of β-Gaussian distributions (see Figures 4 and 7). In
addition, we also provide a continuous counterpart for the discrete smoothing fusedmax
transformation (Niculae and Blondel, 2017) by designing a Ω that depends on the density
derivative, via Rudin-Osher-Fatemi and Sobolev regularization (Rudin et al., 1992).

We use our theoretical results above in two ways. First, we extend neural attention
mechanisms (Bahdanau et al., 2015) to continuous domains, making them able to attend to
continuous data streams and to domains that are inherently continuous, such as visual scenes.
Unlike traditional attention mechanisms, ours are suitable for selecting compact regions, such
as 1D-segments or 2D-ellipses, and we illustrate this fact on audio classification and visual
question answering tasks. Second, we demonstrate the usefulness of continuous-domain
Fenchel-Young losses in a simple heteroscedastic regression problem modeled with bounded
noise (d’Onofrio, 2013).

To encourage reproducibility and further experimentation by the research community,
we release an easy-to-use Python package alongside our paper: https://github.com/

deep-spin/sparse_continuous_distributions/.

Previous papers. This paper builds upon two previously published papers: a journal
paper (Blondel et al., 2020) and a shorter conference paper (Martins et al., 2020). The
former introduced and analyzed Fenchel-Young losses for finite and combinatorial domains,
with a focus on structured prediction, without considering non-finite probability spaces.
The latter focused on regularized prediction maps with Tsallis regularizers and sparse and
continuous attention mechanisms, but without considering Fenchel-Young losses. This paper
provides a comprehensive study of regularized prediction maps and Fenchel-Young losses
for arbitrary measure spaces, including continuous and countably infinite domains, being
a natural companion for Blondel et al. (2020). Besides a much more thorough treatment
of previously covered topics, this paper contributes entirely new sections, including §3 on
Fenchel-Young losses for arbitrary measure spaces and parametrized families, §6 on elliptical
distributions and β-Gaussians, and §7 on a continuous generalization of fusedmax. We
also provide additional properties of Tsallis regularized families in §4 (Propositions 10
and 11) and more examples of sparse families in §5, such as the sparse Poisson and the
truncated Gaussian. We derive closed form expressions for Fenchel-Young losses with several
continuous densities (including β-Gaussians, in Proposition 18) and demonstrate how to use
our framework to fit continuous densities on data by Fenchel-Young loss minimization, not
covered in the previous two papers.

Notation. Let (S,A, ν) be a measure space, where S is a set, A is a σ-algebra, and
ν is a measure. We denote by M1

+(S) the set of ν-absolutely continuous probability
measures. From the Radon-Nikodym theorem (Halmos, 2013, §31), each element of M1

+(S)
is identified (up to equivalence within measure zero) with a probability density function
p : S → R+, with

∫
S p(t) dν(t) = 1. For convenience, we often drop dν(t) from the integral.

We denote the measure of A ∈ A as |A| = ν(A) =
∫
A 1, and the support of a density

p ∈ M1
+(S) as supp(p) = {t ∈ S | p(t) > 0}. Given φ : S → Rm, we write expectations as

Ep[φ(t)] :=
∫
S p(t)φ(t). Finally, we define [a]+ := max{a, 0}.
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Figure 1: Non-sparse and sparse densities for S = R. Left: The density p(t) =
sin2(t)/(πt2) is non-sparse, since it has only a countable number of zeros and
therefore the set R \ supp(p) has null measure. Right: Univariate β-Gaussians
Nβ(t, 0, σ2) for several values of α = 2 − β (see §6 for details). We used σ2 = 1
except for α = 0, for which σ2 = (2π)−1 (Cauchy distribution). α = 1 corresponds
to a Gaussian, α < 1 to heavy-tail distributions (t-Student), and α > 1 to zero-tail
distributions, recovering scaled versions of the biweight (α = 3

2), triweight (α = 4
3),

and Epanechnikov kernels (α = 2, same as truncated parabola) used in density
estimation. For α > 1, the case of focus in our paper, all these densities are sparse.

Throughout the paper, we use the following definition of “sparse densities”,1 which
generalizes the notion of sparse vectors, recovered when S is finite and ν is the counting
measure. The concept is illustrated in Figure 1.

Definition 1 (Sparse density.) Let (S,A, ν) be a measure space. A density p : S → R is
called sparse if ν(S \ supp(p)) > 0. It is called dense otherwise.

Table of contents. The rest of the paper is organized as follows. Figure 2 helps navigating
through the different sections.

§2 Regularized Prediction Maps

§3 Continuous Fenchel-Young Losses

§4 Tsallis Regularizers and Deformed Exponential Families

§5 Infinite Sparsemax

§6 Elliptical Distributions and β-Gaussians

§7 Continuous Fusedmax

§8 Continuous Attention Mechanisms

§9 Experiments

§10 Related work.

1. This should not be confused with sparsity-inducing distributions (Figueiredo, 2001; Tipping, 2001).
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Figure 2: Diagram representing Ω-regularized prediction maps (§2–§3) and some
of its particular cases covered in this paper. β-Gaussian distributions
(§6) lie at the intersection of elliptical distributions and deformed exponential
families, corresponding to quadratic energies, and they include the Gaussian and
Truncated Paraboloid (TP) distributions as particular cases. Exponential families
and (infinite) sparsemax distributions (§5) are a particular case of deformed
exponential families (§4) for α ∈ {1, 2}; examples of such distributions for different
energy functions are given in Table 1. Fusedmax distributions (§7) extend 1-d
sparsemax by incorporating total variation or Sobolev regularizers.

2. Regularized Prediction Maps

The crux of this paper is the notion of Ω-regularized prediction maps, which have been
introduced by Blondel et al. (2020) for finite domains S, and which we generalize here to
arbitrary measure spaces. We will show in the sequel that these maps generalize the free
energy variational principle (Dayan et al., 1995).

2.1 Warm-up: Finite domains

Let us start with the finite case, S = [K] = {1, . . . ,K}. We consider the following problem:
given a vector of real numbers f ∈ RK , convert them into a probability vector p ∈ 4K ,
where 4K := {p ∈ RK | p ≥ 0, p>1 = 1} denotes the probability simplex. For example,
f could be a vector of label scores (or “logits”) computed by a neural network classifier,
and p the corresponding label probabilities. The idea behind regularized prediction maps is
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to smooth the argmax operator with a convex regularizer Ω : 4|S| → R which encourages
uniform distributions:

p̂Ω[f ] = arg max
p∈4|S|

p>f − Ω(p). (1)

This operator can be regarded as the gradient map of the smoothed max function maxΩ(f) :=
maxp∈4|S| p

>f −Ω(p) (Nesterov, 2005; Beck and Teboulle, 2012; Niculae and Blondel, 2017).
Without any regularization (Ω ≡ 0), we obtain the argmax transformation, where the
maximizer p? in (1) becomes a one-hot vector. Non-trivial choices of Ω recover well-known
transformations such as softmax (Bridle, 1990), and recently proposed ones, including
sparsemax (Martins and Astudillo, 2016), fusedmax (Niculae and Blondel, 2017), and
entmax (Peters et al., 2019). We will cover these transformations in this paper and we will
show in the subsequent sections how they can be extended to arbitrary infinite measure
spaces (countably infinite or continuous).

2.2 Extension to infinite domains

In several practical applications, the domain S is not finite: For example, it can be a
continuous space, such as R or RN , or a countably infinite set such as N. To accommodate
this in an unified manner, we need to consider the space of probability densities M1

+(S)
instead of the probability simplex 4|S|. Our definition below extends regularized prediction
maps to arbitrary measure spaces S. Instead of a finite vector f ∈ RK , we assume now a
scoring function f : S → R.

Definition 2 (Ω-regularized prediction map.) Let Ω : M1
+(S) → R be a lower semi-

continuous (l.s.c.), proper, and strictly convex function. The Ω-regularized prediction map
p̂Ω : F →M1

+(S) is defined as

p̂Ω[f ] = arg max
p∈M1

+(S)

Ep[f(t)]− Ω(p) = arg max
p∈M1

+(S)

∫
S
p(t) f(t) dν(t)− Ω(p), (2)

where F is the set of functions for which the maximizer above exists and is unique.

Figure 3 provides an illustration.

Properties. Ω-regularized prediction maps enjoy several important properties; see Blondel
et al. (2020, Proposition 1) for the finite S case. For example, they are insensitive to the
addition of constants, both to the regularizer Ω and to the function f . That is, p̂Ω ≡ p̂Ω+c

for any c ∈ R and p̂Ω[f ] = p̂Ω[g] if g(t) = f(t) + c. The former follows immediately from (2),
and the latter follows from the fact that Ep[f(t) + c] = Ep[f(t)] + c. For the continuous case
S = RN and if the regularizer Ω is separable (i.e. if it can be written as Ω(p) =

∫
S ψ(p(t))

for some function ψ : R+ → R) – which is always the case in this paper – we also have the
following equivariance property: if f̃(t) := f(At+ b) for a matrix A with determinant ±1,
then p̂Ω[f̃ ](t) = p̂Ω[f ](At+ b). This includes equivariance with respect to translations and
orthogonal transformations as particular cases. See Appendix A.1 for a proof.

Low temperature limit. It is often convenient to consider a “temperature parameter”
τ > 0, absorbed into Ω via Ω := τ Ω̃. If f has a unique global maximizer t?, the low-
temperature limit yields limτ→0 p̂τ Ω̃[f ] = δt? , a Dirac delta distribution at the maximizer
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Figure 3: Discrete and continuous Ω-regularized prediction maps. For each case, we
show the scoring function f (top) and corresponding distribution p̂Ω[f ] (bottom)
when Ω is the Shannon-Boltzmann-Gibbs entropy. Left: finite S. Right: S = R.

of f . For finite S, this is simply the argmax transformation. More interesting examples of
regularization functionals are shown in the next sections.

2.3 Examples

Shannon-Boltzmann-Gibbs entropy. If we interpret −f(t) as an energy function and
choose as regularizer the Shannon-Boltzmann-Gibbs negentropy2 Ω(p) =

∫
S p(t) log p(t)dν(t),

we recover the well-known free energy variational principle (Dayan et al., 1995). In
that case, the quantity −UΩ(p; f) := −Ep[f(t)] + Ω(p) corresponds to the Helmholtz free
energy, and p̂Ω is its minimizer (Hinton and Zemel, 1993). With this choice, the solution of
the optimization problem (2) is a Boltzmann-Gibbs distribution (Cover and Thomas 2012;
see Appendix A.2 for a proof):

p̂Ω[f ](t) =
exp(f(t))∫

S exp(f(t′))dν(t′)
= exp

(
f(t)−A(f)

)
, (3)

where A(f) := log
∫
S exp(f(t)) is the log-partition function. Some particular cases are:

• If S is finite and ν is the counting measure, the integral in (3) is a summation and we
can write f as a vector [f1, . . . , f|S|] ∈ R|S|. In this case, the Ω-regularized prediction
map is the softmax transformation,

p̂Ω[f ] = softmax(f) = exp(f)∑|S|
k=1 exp(fk)

∈ 4|S|.

The vector p̂Ω[f ] parameterizes a categorical distribution in this case.

2. This includes as particular cases the Shannon negentropy when ν is the counting measure for discrete S, and
the differential negentropy when ν is the Lebesgue measure for continuous S. Shannon-Boltzmann-Gibbs
negentropies are however more general and they can work with arbitrary measures.
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• If S = N, ν(A) the counting measure, and f(t) = t log λ − log(t!) for λ > 0, we

obtain a Poisson distribution, Pr{t = k} = p̂Ω[f ](k)
k! = λk exp(−λ)

k! , with Ω(p̂Ω[f ]) =

−λ(1− log λ)− exp(−λ)
∑∞

t=0
λt log(t!)

t! .3

• If S = RN , ν is the Lebesgue measure, and f(t) = −1
2(t − µ)>Σ−1(t − µ) for µ ∈

RN and Σ � 0, we obtain a multivariate Gaussian, p̂Ω[f ](t) = N (t;µ,Σ) =
(2π)−N/2|Σ|−1/2 exp(−1

2(t − µ)>Σ−1(t − µ)), with differential negentropy Ω(p̂Ω[f ]) =
−1

2 log det(2πeΣ). This becomes a univariate Gaussian N (t;µ, σ2) if N = 1.

• For S = R and defining f(t) = −|t−µ|/b for µ ∈ R and b > 0 we get a Laplace density,
p̂Ω[f ](t) = 1

2b exp (−|t− µ|/b), with differential negentropy Ω(p̂Ω[f ]) = − log(2be).

These distributions are summarized in Table 1 (rows with α = 1).

Sparsity-inducing regularizers. Other regularizers Ω have been considered for the finite
case. Choosing the Gini entropy Ω(p) = 1

2‖p‖
2
2 − 1

2 (equivalent to `2-regularization) leads to
the sparsemax transformation (Martins and Astudillo, 2016), and Tsallis entropy regular-
izers lead to entmax (Peters et al., 2019), covered later in this paper. These regularizers
are able to promote sparse probability mass functions. However, their development has
been limited so far to finite domains. In this paper, we generalize sparsemax and entmax to
continuous domains (§4–§5). For entmax, we draw a new connection with elliptical distribu-
tions (Fang et al., 1990) when f(t) is a quadratic scoring function (§6). In this case, the
Ω-regularized prediction map leads to a generalization of multivariate Gaussian distributions
called β-Gaussians, which can have bounded support and relate to some well-known density
estimation kernels (Epanechnikov, 1969; Silverman, 1986).

Total variation regularizer. Also for the finite case, Niculae and Blondel (2017) proposed

fusedmax, which corresponds to the regularizer Ω(p) = 1
2‖p‖

2
2 +
∑|S|−1

k=1 |pk+1−pk|, inspired
by the fused lasso (Tibshirani et al., 2005). Besides sparsity, this regularizer encourages
the same probability value in contiguous elements. We generalize fusedmax to continuous
domains in §7, by replacing the finite difference |pk+1−pk| by the derivative |p′(t)|, leading
to Rudin-Osher-Fatemi and Sobolev regularizers.

Linearly parametrized families of scoring functions. Definition 2 is fully general
concerning the class of functions F from which f can be chosen. In practice, it is often
useful to consider finite-dimensional parametrized function classes. The simplest way to do
this is via linear functions fθ(t) = θ>φ(t), where φ(t) ∈ RM is a vector of statistics and
θ ∈ Θ ⊆ RM is a vector of canonical parameters.4 A family of the form (3) parametrized
by θ ∈ Θ is called an exponential family (Barndorff-Nielsen, 2014). All the examples above
(the categorical distribution with the softmax transformation, the Poisson with parameter
λ, the Gaussian with parameters µ and Σ, and the Laplace with fixed µ and parameter b)

3. It is also possible to obtain a Poisson distribution by letting ν(A) =
∑
t∈A

1
t!

for A ⊆ N, f(t) = t log λ

for λ > 0, and Ω(p) =
∑∞
k=0

p(k) log p(k)
k!

. The formulation above, however, is more convenient for sparse
generalizations, as we shall see.

4. More generally, we can write fθ(t) = θ>φ(t) + c(θ) + d(t) where c and d are functions. However, these
extra terms can also be handled by absorbing c(θ) into the normalization constant or d(t) into the base
measure.
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Table 1: Distributions induced by Ωα-regularized prediction maps for several scoring func-
tions f for finite, countably infinite, and continuous domains. We show the cases
α ∈ {1, 2} (α = 1 corresponds to the Shannon-Boltzmann-Gibbs regularizer, cov-
ered in §2.3, whereas α = 2 corresponds to the Gini regularizer, covered in §5). We
denote by ‖t− µ‖2Σ−1 :=(t−µ)>Σ−1(t−µ) the squared Mahalanobis distance be-
tween t and µ. The sparse Poisson and truncated paraboloid are new distributions
presented in a unified manner with this framework.

Name S f(t) α p̂Ωα [f ] Ωα(p̂Ωα [f ])

Categorical (softmax)
[K] ft

1
exp(f)∑K
t=1 exp(ft)

∑K
t=1 pt log pt

Sparsemax 2 [ft − τ ]+
1
2

(∑K
t=1 p

2
t − 1

)
Poisson N t log µ+ log(1/t!)

1 µt exp(−µ)/t! −µ(1− log µ)− exp(−µ)
∑∞
t=0

µt log(t!)
t!

Sparse Poisson 2 [f(t)− τ ]+
1
2

(∑∞
t=0[f(t)− τ ]2+ − 1

)
Gaussian R − (t−µ)2

2σ2

1 N (t;µ, σ2) −1/2 log(2πeσ2)

Truncated Parabola 2 [f(t)− τ ]+ − 1
2

+ 1
5

(
3

2σ

)2/3
Laplace R − |t−µ|

b

1 1
2b

exp
(
− |t−µ|

b

)
− log(2be)

Triangular 2 [f(t)− τ ]+ − 1
2

+ 1

3
√
b

Multivariate Gaussian RN − 1
2
‖t− µ‖2

Σ−1

1 N (t;µ,Σ) −1/2 log det(2πeΣ)

Truncated Paraboloid 2 [f(t)− τ ]+ − 1
2

+ 2
N+4

(
Γ
(
N
2

+2
)

(2π)
N
2 |Σ|

1
2

) 2
2+N

Table 2: Linear parametrization fθ(t) = θ>φ(t) for the scoring function f(t) of common
distributions. We further require µ > 0 for the (sparse) Poisson distribution. For
the Laplace and Triangular distributions, we assume the location µ known (fixed).
As is standard, for Gaussians, f(t) is only linear in θ up to a constant. In §6, we
use the quadratic form directly.

Distribution S f(t) θ φ(t)

Categorical
[K] ft [f1, . . . , fK ] etSparsemax

Poisson, Sparse Poisson N t logµ+ log(1/t!) [logµ, 1] [t, log(1/t!)]

Gaussian R
− (t−µ)2

2σ2
[ µσ2 ,− 1

2σ2 ] [t, t2]Truncated Parabola R
Sparse Integer Gaussian Z

Laplace R − |t−µ|b
[− 1

b ] [|t− µ|]
Triangular

Multivariate Gaussian RN − 1
2‖t− µ‖

2
Σ−1 [Σ−1µ,− 1

2vec(Σ−1)] [t, vec(tt>)]
Truncated Paraboloid
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are instances of exponential families. Exponential families have many appealing properties,
such as the existence of conjugate priors and sufficient statistics, and a dually flat geometric
structure (Amari, 2016). A key property of exponential families is that the support is
constant within the same family and dictated by the base measure ν: this follows
immediately from the positiveness of the exp function in (3). In §4, we describe a more
general set of families – deformed exponential families – that relax this property.

3. Continuous Fenchel-Young Losses

We saw in §2 how to construct distributions p̂Ω[f ] from a scoring function f(t) via the Ω-
regularized prediction map (2). In practice, the scoring function will often be a parametrized
function, denoted fθ(t). In this section, we will address the reverse problem: given a true
data distribution p (or samples thereof), find an estimate θ such that p̂Ω[fθ] ≈ p. Many
statistical tasks can be formulated in terms of finding a good empirical approximation to p,
and loss functions are a flexible way of quantifying how good these approximations are. For
finite S, Blondel et al. (2020) introduced the notion of Fenchel-Young loss. Here, we extend
that notion to arbitrary domains.

3.1 Definition

The construction hinges on the notion of Fenchel dual, denoted Ω∗, of an l.s.c. proper convex
function Ω:M1

+(S)→ R (Bauschke and Combettes, 2011):5

Ω∗(f) := max
p∈M1

+(S)
Ep[f(t)]− Ω(p) = Ep̂Ω[f ][f(t)]− Ω(p̂Ω[f ]),

where, for the equality, we used the fact that p̂Ω[f ] is the solution of (2). We can now define
the Fenchel-Young loss for arbitrary domains.

Definition 3 (Fenchel-Young loss.) Given an l.s.c., proper, strictly convex function Ω :
M1

+(S)→ R, the Fenchel-Young loss LΩ : F ×M1
+(S)→ R is defined as

LΩ(f ; p) := Ω∗(f) + Ω(p)− Ep[f(t)].

For convenience, we also define the cross-Ω loss L×Ω : F ×M1
+(S)→ R as follows:

L×Ω(f ; p) := Ω∗(f)− Ep[f(t)].

Note that, when Ω(p) is finite, the Fenchel-Young loss LΩ differs from L×Ω only by a term
which is constant w.r.t. f . An interesting example is when p = δt is a Dirac delta, in which
case we obtain L×Ω(f ; δt) = Ω∗(f)− Eδt [f(t)] = Ω∗(f)− f(t).

The name “Fenchel-Young loss” stems from the Fenchel-Young inequality (Borwein and
Lewis, 2010, Proposition 3.3.4), which immediately implies the following property:

Proposition 4 (Non-negativity and condition for zero loss) With Ω as in Defini-
tion 3, we have (i) LΩ(f ; p) ≥ 0, and (ii) LΩ(f ; p) = 0⇔ p = p̂Ω[f ] almost everywhere.

5. Fenchel duality is taken in the (potentially infinite-dimensional) set F ⊆ RS , which endowed with the
inner product 〈f, g〉 =

∫
S
f(t)g(t)dν(t) forms a Hilbert space (Bauschke and Combettes, 2011).

10
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In fact, we can interpret the Fenchel-Young loss as the regret associated to the
generalized Helmholtz free energy −UΩ(p; f) := −Ep[f(t)] + Ω(p): indeed, we have
Ω∗(f) = maxp′∈M1

+(S) UΩ(p′; f) = UΩ(p̂Ω[f ]; f), and therefore LΩ(f ; p) = −UΩ(p; f) +

UΩ(p̂Ω[f ]; f).
Fenchel-Young losses are also tightly connected to Bregman divergences (Bregman, 1967),

as shown by Amari (2016, Theorem 1.1) and Blondel et al. (2020, §3.2). In particular,
when Ω is the Shannon-Boltzmann-Gibbs negentropy, the Fenchel-Young loss LΩ equals the
Kullback-Leibler divergence between p and p̂Ω[f ], and L×Ω becomes the cross-entropy
loss. This is commonly used as an objective to minimize in estimation problems, for example
when p̄ := 1

L

∑L
`=1 δt` is the empirical data distribution associated to a sample {t1, . . . , tL},

and the goal is to obtain an estimate f so that p̂Ω[f ] approximates p̄. In that case, the
minimization of the cross-entropy loss corresponds to maximum likelihood estimation.6

3.2 Properties

Proposition 4 shows that Fenchel-Young losses generalize a key property of the
Kullback-Leibler divergence and the cross-entropy loss, since the loss minimizers
are attained when p̂Ω[f ] = p. Indeed, one target use of Fenchel-Young losses is to obtain an
estimate f , given some empirical data distribution p̄, by minimizing LΩ(f ; p̄). To make this
practical, we need to assume a parametric family {fθ | θ ∈ Θ} ⊆ F , where θ is a vector of
parameters and Θ ⊆ RM is a convex set. The goal of estimation is to find θ̂ which minimizes
LΩ(fθ; p̄). The next proposition, proved in Appendix B, sheds light on this problem.

Proposition 5 (Stationary points of Fenchel-Young losses) Assume that fθ(t) is dif-
ferentiable with respect to θ ∈ Θ for any t ∈ S. Then, the following expression holds for the
gradient of LΩ(fθ; p) with respect to θ:

∇θLΩ(fθ; p) = Ep̂Ω[fθ][∇θfθ(t)]− Ep[∇θfθ(t)]. (4)

Therefore, θ̂ ∈ Θ is a stationary point of LΩ(fθ; p) iff it satisfies the equation

Ep̂Ω[fθ̂][∇θfθ(t)] = Ep[∇θfθ(t)]. (5)

Eqs. (4)–(5) resemble the familiar gradient expressions used to estimate energy-based models
with maximum likelihood (LeCun et al., 2006). Indeed, these expressions are recovered
when Ω is the Shannon-Boltzmann-Gibbs entropy, in which case the distribution p̂Ω[fθ] is
a Gibbs distribution, as seen in §2. Therefore, Fenchel-Young losses offer a more general
objective function to fit densities in energy-based models which can serve as an alternative
to maximum likelihood.

Convexity, moment matching, and sufficient statistics. If the parametric family is
linear, fθ(t) = θ>φ(t), then the gradient of f with respect to θ becomes simply∇θfθ(t) = φ(t),
and we obtain the following stronger properties, also proved in Appendix B:

Proposition 6 (Properties when fθ(t) is linear in θ) If fθ(t) = θ>φ(t), then the fol-
lowing holds:

6. Note that, for finite S, Ω(δt) = 0 and therefore L×Ω(f, δt) = LΩ(f, δt). This, however, does not happen in
general – for S = R, the differential negentropy explodes for Dirac distributions, Ω(δt) = +∞.
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2 0
2

1

0

1

Gaussian ( = 1)

0.01

0.0
30.10

0.30

2 0

Triweight ( = 4/3)

2 0

Biweight ( = 3/2)

2 0

Epanechnikov ( = 2)

0 2

1

0

1

2
Gaussian ( = 1)

0 2

Triweight ( = 4/3)

0 2

Biweight ( = 3/2)

0 2

Epanechnikov ( = 2)

Figure 4: Density and samples of two-dimensional β-Gaussian random variables, for the
isotropic (top) and anisotropic cases (bottom). These distributions are obtained by
applying (Tsallis) Ωα-regularized prediction maps to quadratic scoring functions,
with α = 2− β. Shown are the original density (solid lines) and the density fit to
samples by moment matching (dashed lines). All contour lines are at the same
absolute levels, and the complement of the support is shaded when appropriate.

1. ∇θLΩ(fθ; p) = Ep̂Ω[fθ][φ(t)]− Ep[φ(t)].

2. LΩ(fθ; p) is convex w.r.t. θ.

3. θ̂ ∈ arg minθ LΩ(fθ; p)⇔ Ep̂Ω[fθ̂][φ(t)] = v, where v = Ep[φ(t)].

The third point in Proposition 6 is particularly significant: If p = p̄ is an empirical data
distribution based on a sample {t1, . . . , tL}, then v = 1

L

∑L
`=1 φ(t`) is the empirical mean

of the statistics – the statement shows that estimating θ only depends on p̄ through v,
which generalizes the concept of sufficient statistics from exponential families.
The result shows that fitting a density from a linearly parametrized family to an empirical
distribution p̄ by matching the expected statistics is optimal in the Fenchel-Young loss
sense, generalizing the well-known result from exponential families that maximum likelihood
estimation is equivalent to moment matching of the sufficient statistics.

Figure 4 illustrates the result of fitting β-Gaussian distributions (to be introduced
in §5) to samples drawn from each of the distributions by minimizing the corresponding
Fenchel-Young losses, confirming adequate fitting.

3.3 Examples

We next provide some familiar examples, which will be generalized in the upcoming sections.

Examples 1 and 2: Squared and absolute losses. Let Ω be the Shannon-Boltzmann-
Gibbs negentropy. Let p = δt, i.e., the distribution contains a single sample t. For the
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Gaussian distribution, by identification with (3), we get Ω∗(f) = A(f) = log(σ
√

2π) and
therefore

L×Ω(f ; p) =
(t− µ)2

2σ2
+ log(σ

√
2π).

Similarly, for the Laplace distribution, we get Ω∗(f) = A(f) = log(2b) and therefore

L×Ω(f ; p) =
|t− µ|
b

+ log(2b).

Example 3: KL divergence between two Gaussian distributions. When Ω is
the Shannon-Boltzmann-Gibbs entropy, the Fenchel dual is the log-partition function (3),
Ω∗(f) = A(f), and the Fenchel-Young loss recovers the Kullback-Leibler divergence. For
example, if S = RN , p(t) = N (t;µ,Σ), and f(t) = −1

2(t − µf )>Σ−1
f (t − µf ), using the

expression for the entropy in §2, we obtain the well-known expression for the Kullback-
Leibler divergence between Gaussians:

LΩ(f ; p) =
1

2
(µ− µf )>Σ−1

f (µ− µf ) +
1

2

(
Tr(Σ−1

f Σ)−N + log
|Σf |
|Σ|

)
. (6)

In §6, we will generalize this result for a class of elliptical distributions called β-Gaussian
distributions, for which we will derive a closed-form expression for the Fenchel-Young loss.

4. Tsallis Regularizers and Deformed Exponential Families

We introduce in this section a broader set of regularizers Ω based on Tsallis entropies (Tsallis,
1988), which allow generalizing the examples in §3.3. Tsallis entropies are a generalization of
Shannon-Boltzmann-Gibbs entropies which are suitable to model several phenomena present
in natural, artificial and social complex systems (Lutz, 2003; Burlaga et al., 2005; Pickup
et al., 2009; Adare et al., 2011, inter alia) under the umbrella of nonextensive statistical
mechanics (Abe and Okamoto, 2001), a generalization of the Boltzmann-Gibbs theory. We
will see that using these regularizers in Definition 2 leads to “deformed exponential families,”
which may correspond to sparse density functions in the sense of Definition 1. This makes a
bridge between the entmax transformation, proposed for finite domains by Blondel et al.
(2020) and Peters et al. (2019), and new transformations which we will propose in §5 and §6
for the non-finite case.

4.1 Tsallis entropies

A central concept in Tsallis statistics is a generalization of the standard logarithm and
exponential functions, called β-logarithm, logβ : R≥0 → R (not to be confused with base-β
logarithm), and β-exponential, expβ : R→ R, defined as follows:

logβ(u) :=

{
u1−β−1

1−β , β 6= 1,

log u, β = 1;
expβ(u) :=

{
[1 + (1− β)u]

1/(1−β)
+ , β 6= 1,

expu, β = 1.
(7)

Note that limβ→1 logβ(u) = log u, limβ→1 expβ(u) = expu, and logβ(expβ(u)) = u for any β
and u ∈ R. Another important concept, which we will use in the sequel, is that of β-escort
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distribution (Tsallis, 1988): this is the distribution p̃β obtained by applying the following
“sharpness” operator:

p(t) 7→ p̃β(t) :=
p(t)β

‖p‖ββ
, where ‖p‖ββ =

∫
S
p(t′)βdν(t′). (8)

Note that we have p̃1(t) = p(t). β > 1 increases sharpness, whereas β < 1 decreases it,
producing more uniform distributions. β = 0 results in a uniform distribution.

We thus have the following definition (Havrda and Charvát, 1967; Tsallis, 1988):7

Definition 7 (Tsallis negentropies.) For α ≥ 0, the α-Tsallis negentropy is:

Ωα(p) := 1
αEp[log2−α(p(t))] =

{
1

α(α−1)

(∫
S p(t)

α − 1
)
, α 6= 1,∫

S p(t) log p(t), α = 1.
(9)

The family of Tsallis entropies is continuous in α, i.e., limα→1 Ωα(p) = Ω1(p), for any
p ∈ M1

+(S), with Ω1(p) recovering Shannon’s negentropy (see Appendix C for a proof).
Another notable case is Ω2(p) = 1/2

∫
S p(t)

2 − 1/2, the negative of which has several names,
e.g., Gini-Simpson index (Jost, 2006) or Rao’s quadratic entropy (Rao, 1982). We will come
back to the α = 2 case in §5.

4.2 Tsallis regularization: deformed exponential families and α-sparse families

For α > 0, the Tsallis negentropy Ωα is strictly convex, hence it can be plugged as the
regularizer in Definition 2. The next proposition is a reformulation of a result due to Naudts
(2009) in the statistical physics literature; we include a proof in Appendix C. This result
provides an expression for the Ωα-regularized prediction map:

Proposition 8 (Distribution and normalizing function expressions) For α > 0 and
f ∈ F , the Ωα-regularized prediction map has the following form:

p̂Ωα [f ](t) = exp2−α(f(t)−Aα(f)), (10)

where expβ is defined in (7) and Aα : F → R is a normalizing function (we write p(t) ≡
p̂Ωα [f ](t) for simplicity):

Aα(f) =
1

1−α +
∫
S p(t)

2−αf(t)∫
S p(t)

2−α − 1

1− α
.

It is interesting to contrast (10) with Boltzmann-Gibbs distributions (3), which are recovered
as a limit case when α → 1. One key aspect to note is that the (2 − α)-exponential, for
α > 1, can return zero values. Therefore, the distribution p̂Ωα [f ] in (10) might not
have full support, i.e., we may have supp(p̂Ωα [f ]) ( S. In particular, it may be a
sparse density function in the sense of Definition 1 (see Figure 3). This never happens
with Boltzmann-Gibbs distributions, which always have full support.

7. This entropy is normally defined up to a constant, often presented without the 1
α

factor. We use the
same definition as Blondel et al. (2020, §4.3) for convenience.
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Relation to sparsemax and entmax. Blondel et al. (2020) showed that, for finite
S, Ω2-regularized prediction map (i.e., picking α = 2) is the sparsemax transformation,
p̂Ω[f ] = sparsemax(f) = arg minp∈4|S| ‖p− f‖22 (Euclidean projection of f ∈ R|S| onto the

|S|-dimensional probability simplex 4|S|). Other values of α were studied by Peters et al.
(2019), under the name α-entmax transformation. For α > 1, these transformations have
a propensity for returning sparse distributions, where several entries have zero probability.
Proposition 8 shows that similar properties can be obtained when S is non-finite (countably
infinite or continuous).

Deformed exponential families. With a linear parametrization fθ(t) = θ>φ(t), distribu-
tions with the form (10) are called deformed exponential families (Naudts, 2009; Sears, 2008),
also referred to as t-exponential families (Ding and Vishwanathan, 2010) and q-exponential
families (Matsuzoe and Ohara, 2012). The geometry of these families induced by Tsallis
entropies was studied by Amari (2016, §4.3).8 They include for example t-Student and other
heavy tail distributions (heavy tails arise when α < 1). Unlike those prior works, in this
paper we are interested in the sparse, light tail scenario (α > 1), not in heavy tails. For
α > 1, we call these α-sparse families. When α→ 1, α-sparse families become exponential
families and they cease to be “sparse”, in the sense that all distributions in the same family
have the same support. Another interesting particular case is that of α = 2, which we will
see in detail in §5. From Proposition 8 and (7), we can see that a 2-sparse family takes the
form (writing pθ ≡ p̂Ωα [fθ]):

pθ(t) = [θ>φ(t)−A2(θ) + 1]+, with A2(θ) := A2(fθ) = 1 +
−1 +

∫
supp(pθ) θ

>φ(t)

|supp(pθ)|
. (11)

This generalizes the result of Martins and Astudillo (2016, Proposition 1), who derived a
similar expression for the finite case.

Gradient of Aα. A relevant problem is that of characterizing the normalizing function
Aα(θ) := Aα(fθ). When α = 1, A1(θ) = limα→1Aα(θ) = log

∫
S exp(θ>φ(t)) is the log-

partition function (see (3)), and its first and higher order derivatives are equal to the
moments of the sufficient statistics. The following proposition, stated in Theorem 5 of Amari
and Ohara (2011), and proved in our Appendix C.5, characterizes Aα(θ) for α 6= 1 in terms
of an expectation under the β-escort distribution, defined in (8), for β = 2− α.

Proposition 9 (Gradient of normalizing function Aα) Let β = 2− α with α ∈ [0, 2].

Let p̃βθ be the β-escort distribution (8). The normalizing function Aα : Θ→ R is convex and
its gradient coincides with the expectation under the β-escort distribution

∇θAα(θ) = E
p̃βθ

[φ(t)] =

∫
S pθ(t)

βφ(t)∫
S pθ(t)

β
.

8. Unfortunately, the literature is inconsistent in defining these coefficients. Our α matches that of Blondel
et al. (2020); Tsallis’ q in the context of deformed exponential families equals 2− α (which we call β in
our paper). This family is also related to Amari’s α-divergences, but their α equals 2q − 1. Inconsistent
definitions have also been proposed for q-exponential families regarding how they are normalized; for
example, the Tsallis maxent principle leads to a different definition. See Appendix C.4 for details.

15



Martins, Treviso, Farinhas, Aguiar, Figueiredo, Blondel, and Niculae

We use this result later in this section to derive the Hessian of Fenchel-Young losses and
in §8 to obtain the Jacobian of entmax attention mechanisms.

To close the loop, we present the following result, proved in Appendix C.6, which relates
Tsallis negentropies Ωα, their convex conjugates Ω∗α, normalizing functions Aα(θ), and
provides an expression for Ωα-Fenchel-Young losses for linearly parametrized families:

Proposition 10 (Key quantities in α-sparse families) Let pθ ≡ p̂Ωα [fθ], with fθ(t) =
θ>φ(t), and define as µ(θ) := Epθ [φ(t)] the “mean parameters” associated with θ ∈ Θ. Then
the Tsallis negentropy is given by

Ωα(pθ) =
1

α

(
θ>µ(θ)−Aα(θ)

)
, (12)

its convex conjugate is given by

Ω∗α(fθ) = (α− 1)Ωα(p̂Ωα [fθ]) +Aα(θ) =
1

α

(
(α− 1)θ>µ(θ) +Aα(θ)

)
, (13)

and the Ωα-Fenchel-Young loss between fθ and any p ∈M1
+(S) is given by

LΩα(fθ, p) = Ωα(p)− Ωα(p̂Ωα [fθ])− θ>(v − µ(θ)), (14)

where v := Ep[φ(t)] is the empirical expected statistics (see Proposition 6).

The expressions in Proposition 10 deserve some analysis. First, note that, when α = 1,
we recover the well-known duality relation between the Shannon-Boltzmann-Gibbs entropy
and the log-partition function (Wainwright and Jordan, 2008), in which case we get from
(13) that A1(θ) = Ω∗1(fθ). Second, these expressions are practically useful: (12) offers a
way of computing Tsallis negentropies for any α, provided we have a procedure to compute
the mean parameters µ(θ) and to evaluate the normalizing function Aα(θ) from θ. Finally,
the expression (14) for the Fenchel-Young loss puts in evidence its relation with Bregman
divergences. This expression can be evaluated for any density p (not necessarily in the
family), only depending on that density through its Tsallis negentropy Ωα(p) and the
expected statistics v = Ep[φ(t)] (cf. Proposition 6). In particular, it facilitates a procedure
to assess how well a density from a deformed exponential family fits empirical observations.
We will use these results to obtain closed-form expressions for the Tsallis entropies and
Fenchel-Young losses of several densities in §5 and §6.

Gradient and Hessian of Fenchel-Young losses. Finally, we show how to compute
the first and second-order derivatives of Fenchel-Young losses. The proof (in Appendix C.7)
invokes Propositions 6 and 9. To state this result, we need to define, for β ≥ 0, the
generalized β-covariance associated to a density p ∈M1

+, and statistics φ : S → RM and
ψ : S → RN :

covp,β[φ(t), ψ(t)] = ‖p‖ββ ×
(
Ep̃β
[
φ(t)ψ(t)>

]
− Ep̃β [φ(t)]Ep̃β [ψ(t)]>

)
, (15)

where p̃β is the β-escort distribution in (8). This can indeed be seen as a generalized
covariance: For β = 1, we have the usual covariance; for β = 0, we get a covariance taken
w.r.t. a uniform density on the support of p, scaled by |supp(p)|.
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Figure 5: Some location-scale distributions generated by the Ωα-regularized pre-
diction map for α ∈ {1, 2}, µ = 0 and σ2 = 1. Left: Gaussian and truncated
parabola. Middle: Laplace and triangular (bottom). Right: Truncated Gaussians
with κ ∈ {1, 1.5, 2, 5}.

Proposition 11 (Gradient and Hessian of Fenchel-Young losses) Let pθ ≡ p̂Ωα [fθ],
with fθ(t) = θ>φ(t), µ(θ) = Epθ [φ(t)], and v = Ep[φ(t)]. The gradient and Hessian of
LΩα(fθ, p) with respect to θ are given by:

∇θLΩα(fθ, p) = µ(θ)− v, ∇∇θLΩα(fθ, p) = covp,2−α[φ(t), φ(t)]. (16)

Note that the Hessian expression (16) involves a generalized self-covariance, which is still
a covariance matrix scaled by a positive constant, hence it is positive semi-definite. This
confirms the convexity of Fenchel-Young losses on linearly parametrized families stated in
Proposition 6.

5. Infinite Sparsemax

In this section, we focus on deformed exponential families with α = 2, i.e., 2-sparse families.
For the same choices of f(t) as in §2, we will obtain sparse counterparts of the softmax,
Poisson, Gaussian, and Laplace distributions, which we list in Table 1.

For finite S, the choice α = 2 corresponds to the sparsemax transfomation proposed by
Martins and Astudillo (2016), which has appealing theoretical and computational properties.
In the general case, as seen in (11), plugging α = 2 in (10) leads to the Ω2-regularized
prediction map,

p̂Ω2 [f ](t) = [f(t)− τ ]+, where τ = A2(f)− 1,

i.e., p̂Ω2 [f ] is obtained from f by subtracting a constant (which may be negative) and
truncating, where that constant τ must be such that

∫
S [f(t)− τ ]+ = 1.

If S is continuous and ν the Lebesgue measure, we call Ω2-regularized prediction map the
continuous sparsemax transformation, and for countably infinite S we call it the discrete
infinite sparsemax. Examples follow, where some correspond to novel distributions.

Truncated parabola. If f(t) = − (t−µ)2

2σ2 , we obtain the continuous sparsemax counterpart
of a Gaussian, which we dub a “truncated parabola”:

p̂Ω2 [f ](t) =
[
− (t−µ)2

2σ2 − τ
]

+
=: TP(t;µ, σ2), (17)
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where τ = −1
2

(
3/(2σ)

)2/3
, supp(p̂Ω2 [f ]) = [µ − 3

−4 τ , µ + 3
−4 τ ] and Ω2(p̂Ω2 [f ]) = −1

2 −
2τ
5

(see Appendix D.1). This function, depicted in Figure 5 (left), is widely used in density
estimation (Silverman, 1986). For µ = 0 and σ =

√
2/3, it is known as the “Epanechnikov

kernel” (Epanechnikov, 1969).

Truncated paraboloid. The previous example can be generalized to S = RN , with
f(t) = −1

2(t−µ)>Σ−1(t−µ), where Σ � 0, leading to a “multivariate truncated paraboloid,”
the sparsemax counterpart of the multivariate Gaussian,

p̂Ω2 [f ](t) =
[
−τ − 1

2(t−µ)Σ−1(t−µ)
]
+
, where τ = −

(
Γ
(
N
2 + 2

)
/
√

det(2πΣ)
) 2

2+N
, (18)

and where Γ(z) =
∫∞

0 xz−1 exp(−x)dx is the Gamma function, which extends the factorial
function to the continuous domain, Γ(n) = (n− 1)! for n ∈ N. The expression above, derived
in Appendix D.2, reduces to (17) for N = 1. Notice that (unlike in the Gaussian case) a
diagonal covariance matrix Σ does not lead to a product of independent truncated parabolas.
This distribution is an instance of an elliptical distribution and will be discussed further in
§6.

Triangular. Setting f(t) = −|t− µ|/b, with b > 0, yields the triangular distribution

p̂Ω2 [f ](t) =
[
−τ − |t−µ|b

]
+

=: Tri(t;µ, b), (19)

where τ = −1/
√
b, supp(p̂Ω2 [f ]) = [µ −

√
b, µ +

√
b], and Ω2(p̂Ω2 [f ]) = −1

2 + 1
3
√
b

(see

Appendix D.3). Figure 5 (middle) depicts this distribution alongside Laplace.

Truncated Gaussian. For f(t) = κN (t;µ, σ2) (a scaled Gaussian), with κ ≥ 1, we obtain
a truncated Gaussian distribution (Figure 5, right),

p̂Ω2 [f ](t) =
[
−τ + κN (t;µ, σ2)

]
+
,

where τ = κN (a; 0, σ2) and a is the solution of the equation 1
κ + 2 a√

2πσ
exp

(
− a2

2σ2

)
=

erf
(

a√
2σ

)
.

Location-scale families. More generally, let fµ,σ(t) := − 1
σg
′(|t − µ|/σ) for a location

µ ∈ R and a scale σ > 0, where g : R+ → R is convex and continuously differentiable. Then,
we have

p̂Ω2 [f ](t) =
[
−τ − 1

σg
′(|t− µ|/σ)

]
+
,

where τ = −g′(a)/σ and a is the solution of the equation ag′(a)−g(a)+g(0) = 1
2 (a sufficient

condition for such solution to exist is g being strongly convex; see Appendix D.4 for a proof).
The support of this distribution is supp(p̂Ω2 [fµ,σ]) = [(−a+ µ)/σ, (a+ µ)/σ]. This example
subsumes the truncated parabola (g(t) = t3/6), the triangular distribution (g(t) = t2/2),
and the truncated Gaussian (g(t) = −κ

2 erf (t/
√

2)).
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Figure 6: Sparse integer distributions. The first two plots show the probability mass
function (PMF) and the cumulative distribution function (CDF) of the distribu-
tions at µ = 3. Note that the lines between markers are shown for visual aid:
these distributions do not assign probability mass to non-integer values. The third
plot shows the mean value of the distributions when varying µ. The last plot
shows the Fenchel-Young loss when the target label is fixed to t = 3.

Sparse integer distributions. A popular distribution for natural integers is the Poisson
distribution, p(t) = µte−µ/t!, where µ > 0 is the mean parameter and t ∈ N. It is well-known
that the Poisson distribution can be written in exponential family form by setting S = N,
ν(A) =

∑
t∈A

1
t! for A ⊆ N, and f(t) = t logµ in (3). Alternatively, we can absorb the

measure in f(t) by setting f(t) = t logµ+log(1/t!) and letting ν(A) be the counting measure.
Choosing the latter formulation, we obtain a sparse counterpart of the Poisson distribution

p̂Ω2 [f ](t) = [t logµ+ log(1/t!)− τ ]+ =: SparsePoisson(t;µ).

This corresponds to setting θ = [logµ, 1] and φ(t) = [t, log(1/t!)], see Table 2. By Proposition
6, the associated Fenchel-Young loss is convex in θ. Since the exponential is monotonically
increasing, the loss is also convex in µ. A benefit of sparsity is that we can easily create new
distributions as long as the choice of f(t) guarantees that τ exists. For instance, inspired by
the univariate Gaussian, we can choose f(t) = −1

2(t− µ)2. By setting S = Z, we obtain a
sparse integer-restricted counterpart of the Gaussian distribution

p̂Ω2 [f ](t) =

[
−1

2
(t− µ)2 − τ

]
+

=: SparseIntegerGaussian(t;µ).

These distributions are illustrated in Figure 6. They share in common that they achieve
their mode near µ. Since they all have finite support, we compute τ by applying sparsemax
(Martins and Astudillo, 2016) at a window around the mode.

Exponential and sparse families. Whereas Poisson, Gaussian, and Laplace distribu-
tions (the latter with a fixed location) form exponential families, as seen in §2, likewise
the sparse Poisson, truncated paraboloid, and triangular distributions above form 2-sparse
families, with the same statistics φ(t) and canonical parameters θ. For example, the Gaussian
and truncated paraboloid cases both correspond to the statistics φ(t) = [t, vec(tt>)] and
canonical parameters θ = [Σ−1µ, vec(−1

2Σ−1)], as shown in Table 1. We will next see how
these two distributions are both a particular case of β-Gaussians.
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6. Elliptical Distributions and β-Gaussians

In this section, we extend the truncated parabola distribution to arbitrary dimensions and α.
This results in a family of tractable multivariate elliptical distributions, which for α > 1 have
bounded support. We show that this family, which we call β-Gaussians, are a multivariate
generalization of q-Gaussians (Naudts, 2009, §4.1), and correspond to a naturally-rescaled
variant of the Pearson Type-II distribution. Throughout this section, we will always assume
β = 2− α.

6.1 Definition and properties

Our construction relies on the standard concept of spherical and elliptical distributions,
studied by Cambanis et al. (1981), Owen and Rabinovitch (1983), Fang et al. (1990), inter
alia, which we define and characterize next. The next definition corresponds to Fang et al.
(1990, Definition 2.1 and 2.2). We denote by O(N) the orthogonal group, i.e., the set of
matrices U ∈ RN×N satisfying U>U = UU> = Id (called orthogonal matrices).

Definition 12 (Spherical and elliptical distributions.) Let z be a N -dimensional ran-
dom vector. We say that z has a spherically-contoured (or simply spherical) distribution if,
for any U ∈ O(N), Uz and z are identically distributed. We say that t has an elliptically-
contoured (or elliptical) distribution if t = Az + µ for a spherical random variable z,
non-singular 9 matrix A ∈ RN×N , and vector µ ∈ RN .

In other words, spherical distributions are rotationally symmetric around the origin, and
ellipticals are affine transformations thereof. Elliptical families parametrized by A and µ can
be regarded as multivariate generalizations of location-scale families. An important example
of a spherical distribution is the standard Gaussian distribution N (z; 0, Id); anisotropic
multivariate Gaussians are elliptical. The following result characterizes spherical and elliptical
densities.10

Proposition 13 (Characterization of spherical and elliptical densities) Let z be a
spherical random variable. If z has a density p(z), then the density must be of the form
p(z) = g(‖z‖2) for some g : R+ → R+. By extension, for elliptically-distributed t = Az + µ
with non-singular A, if z has a density as above, then the density of t is

p(t) = |Σ̃|−1/2g
(
(t− µ)>Σ̃−1(t− µ)

)
.

with Σ̃ = AA>.

Proof From Fang et al. (1990, Example 1.2) we have that ‖z‖2 is a maximal invariant
under the group O(N). Therefore, by Fang et al. (1990, Theorem 1.1), p(z) is invariant
w.r.t. O(N) iff p(z) = g(‖z‖2). The change of density formula yields the elliptical case.

This symmetry property allows us to characterize sphericals and ellipticals using a useful
stochastic representation. The following appears as a corollary in Fang et al. (1990).

9. This definition can be relaxed to singular A, in which case supp(p) ⊂ im(A), using the Lebesgue measure
on im(A) instead of the one on Rn (Gelbrich, 1990, Theorem 2.4).

10. Since not all distributions have a density function, a more general characterization of elliptical distributions
exists, based on characteristic functions (Fang et al., 1990, Theorem 2.1). Since β-Gaussians have densities,
this characterization is not necessary in this section, so we omit it.
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Proposition 14 (Reparametrization) Let SN := {u ∈ RN : u>u = 1} denote the (N −
1)-dimensional unit sphere. A spherical random variable z may be written as z = ru, where
u ∼ Uniform(SN ) and r ∈ R+ is a non-negative scalar random variable representing the
radius. For elliptical t with parameters (µ,A), we have t = µ+ r ·Au.

As a consequence, we may characterize the distribution of any spherical (and thus
any elliptical) in terms of the distribution of its radius r.

Sampling. The stochastic representation in Proposition 14 can be seen as a generative
story. It offers a simple procedure for sampling from any elliptical distribution in an efficient
two-step process: (1) draw a direction u uniformly on the unit sphere SN , and (2) draw a
radius r > 0 according to the univariate radius density (which differs from case to case).
This algorithm is used for drawing β-Gaussian distributions in Figure 4.

We may thus reduce generating multivariate elliptical random variates to generating
scalar variates with the distribution of the radius. In the sequel, we introduce a particular
family of elliptical distributions dubbed “β-Gaussians,” we derive expressions for their
essential quantities, and characterize the distribution over the radius r, enabling sampling.
We show that β-Gaussians are instances of α-sparse families (§4.2) for β = 2− α, and we
derive closed-form expressions for their corresponding Fenchel-Young losses.

6.2 β-Gaussians and α-sparse families

We proceed to the main result of this section, which shows that the α-sparse family induced
by a quadratic scoring function f(t) is elliptical, related to the Pearson Type-II distribution,
and the distribution of its radius is related to the Beta distribution. We start by defining
β-Gaussian distributions. This family generalizes the univariate q-Gaussians of Naudts
(2009, §4.1), for q = β = 2− α. We use β in this text for consistency.

Definition 15 (β-Gaussian.) Let Σ � 0 and β = 2 − α. The multivariate β-Gaussian
distribution Nβ(t;µ,Σ) is the distribution p̂Ωα [f ] induced by the quadratic scoring function

f(t) = −1

2
(t− µ)>Σ−1(t− µ).

From Proposition 8, the resulting density can be written as

p̂Ωα [f ](t) = expβ(f(t)−Aα(f)) = [(α− 1)(−τ + f(t))]
1

α−1
+ ,

where τ = Aα(f)− 1
α−1 is a normalizing constant.

Figure 7 shows examples of β-Gaussians in 1-d and 2-d; this includes several kernels frequently
used in density estimation (Silverman, 1986). The next result, proved in Appendix E.1,
shows that β-Gaussians are also elliptical distributions.

Proposition 16 (β-Gaussians are elliptical) The multivariate β-Gaussians form a fam-
ily of elliptical distributions induced by the spherical base corresponding to µ = 0,Σ = Id,
i.e., the distribution p̂Ωα [f0] induced by f0(z) = −1

2‖z‖
2. Moreover, t ∼ Nβ(t;µ,Σ) admits
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Figure 7: β-Gaussians Nβ for several values of α = 2 − β, in the univariate (left) and
bivariate (right) cases. In the univariate case, σ2 = 1 except for α = 0, where
σ2 = (2π)−1 (Cauchy distribution). In the bivariate case, Σ11 = .6, Σ22 = .48,
Σ12 = Σ21 = .4. The case α = 1 corresponds to a Gaussian, α < 1 to heavy-tail
distributions (t-Student), and α > 1 to zero-tail distributions, recovering scaled
versions of the biweight (α = 3

2), triweight (α = 4
3), and Epanechnikov kernels

(α = 2, same as truncated parabola) used in density estimation.

the stochastic representation t = µ+ r ·Au, where A = |Σ|
− 1

2N+ 4
α−1 Σ1/2, u ∼ Uniform(SN )

and r is a random variable distributed as

r2

R2
∼ Beta

(
N

2
,

α

α− 1

)
,

where R is the radius of the supporting sphere of the standard β-Gaussian Nβ(z; 0, I), with
value depending only on N and α,

R =

(
Γ(N/2 + α/α−1)

Γ(α/α−1)πN/2
·
(

2

α− 1

)1/α−1
) α−1

2+(α−1)N

(20)

Moreover, defining Σ̃ = |Σ|
− 1

N+ 2
α−1 Σ, the support of Nβ(t;µ,Σ) is the ellipsoid

supp(Nβ(t;µ,Σ)) = {t : (t− µ)>Σ̃−1(t− µ) < R2} ,
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and R relates to the normalizing constant τ in Definition 15 by

τ = −R
2

2
|Σ|
− 1

N+ 2
α−1 .

It is worth noting from (20) that the radius R does not depend on the β-Gaussian
parameters µ or Σ, being only a function of N and α = 2 − β. As α → 1+, R → ∞, and
z tends toward the Gaussian distribution. For α = 2, we get the multivariate truncated
paraboloid described in §5. The β-Gaussian family is related to the Pearson Type-II
distribution (Fang et al., 1990, Section 3.4), in which the base radius variable r2 is supported
on [0, 1] rather than [0, R2]. Our construction from the angle of regularized prediction maps
therefore reveals a novel connection and is particularly natural when learning the support is
part of the modeling task, as demonstrated in the experiments in §9.

6.3 Properties of β-Gaussians

Now that we have shown that β-Gaussians are instances of both elliptical and α-sparse
family distributions, we state several important properties of these distributions, linking to
the concepts introduced in the previous sections. We use several of these properties in our
code implementations for §9.

Proposition 17 (Mean, variance and α-negentropy.) Let t ∼ Nβ(t;µ,Σ). Then, E[t] =

µ and Var[t] = R2

N+
2α
α−1

Σ̃, with Σ̃ = |Σ|
− 1

N+ 2
α−1 Σ, and R defined as in (20).

Its Tsallis α-negentropy is

Ωα(p) = − 1

α(α− 1)
+

R2|Σ|
− 1

N+ 2
α−1

2α+N(α− 1)
.

Therefore, Var[t], Ωα(p), and Σ are related through the elegant formula

Var[t] =

(
1

α
+ (α− 1)Ωα(p)

)
Σ,

recovering Var[t] = Σ when α = 1 (Gaussian distribution).

Proof The variance result follows from the Beta distribution moments, combined with
Fang et al. (1990, Theorem 2.7). The negentropy follows from Proposition 10.

The variance expression allows us to further compute the 2-Wasserstein distance between
two β-Gaussians (Gelbrich 1990, see also Peyré and Cuturi 2019, Remark 2.32), as

W 2
2 (Nβ(·;µ1,Σ1),Nβ(·;µ2,Σ2)) = ‖µ1 − µ2‖2 +

R2

N + 2α
α−1

B2(Σ̃1, Σ̃2),

where B2(A,B) := Tr
(
A+B − 2

(
A1/2BA1/2

)1/2
)

is the squared Bures distance, and Σ̃{1,2}
is as in Proposition 17. As α→ 1+, the coefficient goes to 1 recovering the Fréchet distance;
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as α→∞, the coefficient goes toward 1
2+N , recovering the Wasserstein distance between

uniform distributions on ellipsoids.

Next, we provide a closed-form expression for the Fenchel-Young loss between a quadratic
scoring function and a β-Gaussian. This expression generalizes the KL divergence between
multivariate Gaussians (cf. (6)), recovered as a limit case when β = α = 1. We also provide
an expression for the cross-Ω loss (see Definition 3), which we will use in the heteroscedastic
regression experiments in §9. The full derivation is included in Appendix E.2 and makes use
of Proposition 10.

Proposition 18 (Fenchel-Young loss for β-Gaussians.) Let β = 2− α. The Fenchel-
Young loss induced by Ωα associated with a quadratic score function f(t) = −1

2(t −
µf )>Σ−1

f (t− µf ) and a β-Gaussian distribution p(t) = Nβ(t;µ,Σ) is:

LΩα(f, p) =
1

2
(µ− µf )>Σ−1

f (µ− µf ) +
R2

2α+N(α− 1)
·

·
(
|Σ|
− 1

N+ 2
α−1

(
1 +

α− 1

2
Tr(Σ−1

f Σ)

)
− |Σf |

− 1

N+ 2
α−1

(
1 +

N(α− 1)

2

))
.

The corresponding cross-Ω loss is

L×Ωα(fθ, p) =
1

2
(µ− µf )>Σ−1

f (µ− µf ) +
1

α(α− 1)
+

R2

2α+N(α− 1)
·

·
(
|Σ|
− 1

N+ 2
α−1

(
α− 1

2
Tr(Σ−1

f Σ)

)
− |Σf |

− 1

N+ 2
α−1

(
1 +

N(α− 1)

2

))
.

Much like the cross-entropy between 1-d Gaussians induces a hyperbolic geometry in
the [µ, σ] half-plane, the Fenchel-Young loss induces a similar curvature, discussed briefly in
§E.2. As maximum likelihood is not suitable for learning with distributions that may assign
zero probability to data, Fenchel-Young losses are of great value for learning and modelling
data with with β-Gaussian distributions, as we demonstrate in the experiments.

7. Continuous Fusedmax

We now switch gears to a different usage of regularized prediction maps, designed to induce
smoothness, focusing for simplicity on S = R. The reader that is interested in the proceeding
with applications of β-Gaussians may skip this section and jump straight to §8.

In discrete attention mechanisms, the regularizer Ω has been used to encode further prior
assumptions. In particular, Niculae and Blondel (2017) introduce fusedmax, a variant of
sparsemax that encourages adjacent items in a sequence to get assigned the same probability:

fusedmax : Rn →4n, fusedmax(f̃) := arg min
p̃∈4n

1

2
‖p̃− f̃‖2 + γ

n∑
i=2

|p̃i − p̃i−1| , (24)

where we use ·̃ to denote vectors, which we may interpret as discretized functions. For
example, if the sequence corresponds to English words, it makes sense to cluster the
probabilities of adjacent words, since they are more likely to form meaningful phrases. In
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this section, we extend fusedmax to the continuous case, highlight connections with
total variation denoising, and provide closed-form expressions for some common cases. As
we shall see, continuous generalizations involve penalizing the derivative of p.

The regularizers used so far in this paper, e.g., Ω2(p) = 1/2(−1 +
∫
S p(t)

2), are integral
functionals that only depend on p(t). We make use of functional Lp norms, defined as

‖f‖p :=

(∫
S
|f(t)|pdt

) 1
p

,

over a space of functions for which the integral of interest is finite. With this notation,
Ω2(p) = −1 + 1

2‖p‖
2
2. To induce smoothing, we must additionally regularize p′. In this

section, we derive two appropriate regularizers using the L1 and squared L2 norms of p′.
The resulting problems are closely related to operators from signal processing. We give
expressions for the regularized prediction map obtained in some tractable cases.

7.1 L1 gradient penalty and total variation

We first consider regularizing the total variation of p, a strategy motivated by classic
research in continuous signal denoising, commonly known as the Rudin-Osher-Fatemi (ROF)
denoising model (Rudin et al., 1992). If p is differentiable and its derivative is Riemann
integrable,11 the total variation of p takes the value TV(p) =

∫
S |p
′(t)| = ‖p′‖1. Define

ΩγROF(p) := Ω2(p) + γTV(p) .

The induced regularized prediction map is, up to a constant,

p̂ΩγROF
[f ] := arg min

p∈M1
+(S)

1

2

∫
S

(p(t)− f(t))2 + γTV(p) .

Without the M1
+(S) constraint, this optimization problem would be equivalent to the

standard ROF signal denoising model; adding the constraint ensures the solution is a
smoothed density. Since we are optimizing over a space of functions, general solutions are
not available for arbitrary f . We first show that Euler’s finite difference method, often used
to discretize calculus of variations problems, recovers exactly the discrete fusedmax problem.
Then, we derive exact solutions for a useful class of functions f .

Proposition 19 (Discretized ROF yields fusedmax.) Denote the n-dimensional h-simplex
as 4n

h = {p̃ ∈ Rn : p̃ ≥ 0,
∑

i p̃i = 1/h}. Applying Euler’s finite difference method with width
h on p̂ΩγROF

gives the discretized version of the ROF regularized prediction map

p̂
(h)
ΩγROF

[f̃ (h)] = arg min
p̃∈4nh

h

2
‖p̃− f̃ (h)‖2 + γ

n∑
i=1

|p̃i − p̃i−1| ,

where f̃ (h) ∈ Rn is a discretized (sampled) function.

11. Importantly, Definition 24 lets us assess total variation for non-differentiable functions. The ROF model
allows – and in fact often yields – non-differentiable solutions.
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Figure 8: Distributions induced by regularization of the derivative. Top: ROF regularization
γ‖p′‖1, bottom: squared L2 regularization γ‖p′‖22.

In particular, with h = 1, this yields the discrete fusedmax from (24), and for other choices
of h > 0 the problem can be transformed into fusedmax via scaling.

Using the discretized case as motivation, we now turn to exactly solving the continuous
case. For symmetric unimodal f , we obtain a direct, intuitive expression for p̂ΩγROF

[f ].

Proposition 20 (Form of ROF-smoothed solutions for unimodal scores.) Let f :
R→ R be even and unimodal, i.e., f(−t) = f(t), strictly increasing on (−∞, 0) and strictly
decreasing on (0,∞). We have

p̂ΩγROF
[f ](t) = [fa(t)− τ ]+, where fa(t) :=

{
f(a), t ∈ (−a, a),

f(t), otherwise.

The support is (−b, b) where τ = f(b) and a, b can be found by solving

−af(a) +

∫ a

0
f = γ , −bf(b) +

∫ b

0
f =

1

2
+ γ .

The proof, which we include in Appendix F.1, invokes the taut string algorithm for solving
the ROF optimization (Grasmair, 2006; Overgaard, 2019).

Example: capped triangular and capped truncated parabola distributions. For
the negative absolute value function f(t) = −|t|/σ, we get a =

√
2σγ, b =

√
σ(1 + 2γ),

and τ = −
√

1+2γ
σ . (Figure 8, left). For the parabola f(t) = −t2/2σ2 we get a = 3

√
3σ2γ,

b = 3
√

3σ2(1 + 2γ)/2, and τ = −1
2

(
3
2

1+2γ
σ

) 2
3

(Figure 8, right).
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7.2 L2 gradient penalty and smooth sparsemax

In contrast to the previous section, we now consider a quadratic penalty on the derivative,

Ω2,2(p) :=
1

2

∫
S
|p(t)|2 +

γ

2

∫
S

(p′(t))2 .

The corresponding regularized prediction map is

p̂Ω2,2 [f ] = arg min
p∈M1

+(S)

1

2

∫
S

(p(t)− f(t))2 +
γ

2

∫
S

(
p′(t)

)2
.

The quadratic regularization on the derivative of p ensures the solution is smooth. The
following result shows how to derive the regularized prediction map.

Proposition 21 (Form of L2-smoothed solutions for unimodal scores.) Assume f
is an even function, strictly decreasing and with continuous first derivative on (0,∞). The
Ω2,2-regularized prediction map is a continuously differentiable function

p̂Ω2,2 [f ](t) =

{
p̄(t) := C cosh

(
t√
γ

)
− (F (t) + F (−t))− τ, t ∈ [−b, b],

0, t 6∈ [−b, b] ,

where

F (t) :=
exp

(
t√
γ

)
2
√
γ

∫
f(t) exp

(
− t
√
γ

)
dt ,

and τ, b, and C are uniquely determined by continuity at b and the constraint
∫
S p = 1.

The proof is given in Appendix F.2. Below, we demonstrate a few examples.

Smooth truncated parabola. Let β = γ−1/2. For f(t) = −t2/2σ2, computation yields

p̄(t) = C cosh(βt)− t2

2σ2
− 1

β2σ2
− τ .

To solve for the unknown constants τ and C, we use the first and second order conditions
p̄(b) = 0 and p̄′(b) = 0, yielding, respectively,

τ = C cosh(βb)− b2

2σ2
− 1

β2σ2
and C =

b

βσ2 sinh(βb)
.

Finally, to find b we use the condition I(b) :=
∫ b
−b p̄(t) = 1. The integral has the closed-form

expression I(b) = 2b
σ2β2 − 2b2 coth(βb)

σ2β
+ 2b3

3σ2 , and we can solve I(b) = 1 using numerical root

finding methods. For example, the standard smooth parabola (σ = 1, γ = 1) yields the
equation 2b(1− b coth(b) + b2) = 1, with root b ≈ 1.98. This density is illustrated in Figure 8.
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Smooth triangular. For the triangular function f(t) = −|t|/σ, following the same steps
as for the parabola, we obtain

p̄(t) = C cosh(βt)− |t|
σ
− e−β|t|

βσ
− τ , where τ = C cosh(βb)− b

σ
− e−βb

βσ
,

and the integral equation to solve for b is

I(b) =
b2

σ
+

2be−Bβ

βσ
− 4b cosh (bβ)

βσ (ebβ + 1)
− 2

β2σ
+

2e−bβ

β2σ
+

4 sinh (bβ)

β2σ (ebβ + 1)
.

The standard smooth triangular is illustrated in Figure 8.

8. Continuous Attention Mechanisms

We now use some of the results obtained in the previous sections to develop attention
mechanisms on continuous spaces. We assume in this section S = RN .

Attention mechanisms have become a key component of neural networks (Bahdanau
et al., 2015; Sukhbaatar et al., 2015; Vaswani et al., 2017). They dynamically detect and
extract relevant input features (such as words in a text or regions of an image). So far,
attention has only been applied to discrete domains; we use our framework to generalize it
to continuous spaces.

Discrete attention. Assume an input object split in L = |S| pieces, e.g., a sequence with
L elements or an image with L regions. A vanilla attention mechanism works as follows: each
piece has as a D-dimensional representation (e.g., coming from an RNN or a CNN), yielding a
matrix V ∈ RD×L. These representations are compared against a query vector (e.g., by using
an additive model, Bahdanau et al. 2015), leading to a score vector f = [f1, . . . , fL] ∈ RL.
Intuitively, the relevant pieces that need attention should be assigned high scores. Then, a
transformation ρ : RL →4L (e.g., softmax or sparsemax) is applied to the score vector to
produce a probability vector p = ρ(f). We may see this as an Ω-regularized prediction map,
as shown in §2. The probability vector p is then used to compute a weighted average of the
input representations, via c = V p ∈ RD. This context vector c is finally used to produce the
network’s decision.

8.1 The continuous case: scoring and value functions

The extension of Ω-regularized prediction maps to arbitrary domains in Definition 2 opens
the door for constructing continuous attention mechanisms. The idea is simple: instead
of splitting the input object into a finite set of pieces, we assume an underlying continuous
domain: e.g., text or a speech signal may be represented as a function V : S → RD that maps
points in the real line (S ⊆ R, continuous time) onto a D-dimensional vector representation,
representing how the signal evolves over time; images (visual scenes) may be regarded as a
smooth function in 2D (S ⊆ R2), instead of being split into regions in a grid.

Instead of scores [f1, . . . , fL], we now have a scoring function f : S → R, which we
map to a probability density p ∈ M1

+(S). This density is used in tandem with the value
mapping V : S → RD to obtain a context vector c = Ep[V (t)] ∈ RD. This is illustrated in
Figure 9. Since M1

+(S) may be infinite dimensional, we need to parametrize f , p, and V to
be able to compute in a finite-dimensional parametric space.
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Figure 9: From discrete to continuous attention. Left: discrete attention maps a score
vector into a probability mass function (e.g. via a softmax transformation) and
returns a weighted average of the columns of a value matrix. Right: continuous
attention (i) replaces the score vector by a scoring function (shown in the top
right; an arbitrary scoring function is used in this figure for illustration), (ii) uses
a continuous Ω-regularized prediction map to map it to a probability density
(middle right), and (iii) returns an expectation over a value function (the value
function is shown in the bottom right). In both cases, the number of rows in the
matrix corresponds to the dimensionality D.

Building attention mechanisms. We represent f and V using basis functions, φ : S →
RM and ψ : S → RN , defining fθ(t) = θ>φ(t) and VB(t) = Bψ(t), where θ ∈ RM and
B ∈ RD×N . The scoring function fθ is mapped into a probability density p := p̂Ω[fθ], from
which we compute the context vector as c = Ep[VB(t)]. From the definition of VB(t), this is
equivalent to writing c = Br, where r = Ep[ψ(t)]. Summing up, we define general attention
mechanisms as follows.

Definition 22 (Attention mechanism.) Let 〈S,Ω, φ, ψ〉 be a tuple with Ω :M1
+(S)→ R,

φ : S → RM , and ψ : S → RN . An attention mechanism on 〈S,Ω, φ, ψ〉 is a mapping
ρ : Θ ⊆ RM → RN , defined as:

ρ(θ) = Ep[ψ(t)], (25)

with p = p̂Ω[fθ] and fθ(t) = θ>φ(t). If Ω = Ωα, we call this entmax attention, denoted as
ρα. The values α = 1 and α = 2 lead to softmax and sparsemax attention, respectively.
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Algorithm 1: Continuous softmax attention: S = RD, Ω = Ω1, Gaussian RBFs.

Parameters: Gaussian RBFs ψ(t) = [N (t;µj ,Σj)]
N
j=1, basis functions φ(t) = [t, vec(tt>)],

value function VB(t) = Bψ(t) with B ∈ RD×N , scoring function
fθ(t) = θ>φ(t) with θ ∈ RM

Function Forward(θ := [Σ−1µ,− 1
2Σ−1]):

rj ← Ep̂Ω[fθ][ψj(t)] = N (µ, µj ,Σ + Σj), ∀j ∈ [N ] // Eqs. (25), (59)
return c← Br (context vector)

Function Backward(∂L∂c , θ := [Σ−1µ,− 1
2Σ−1]):

for j ← 1 to N do

s̃← N (µ, µj ,Σ + Σj), Σ̃← (Σ−1 + Σ−1
j )−1, µ̃← Σ̃(Σ−1µ+ Σ−1

j µj)
∂rj
∂θ ← covp̂Ω[fθ](φ(t), ψj(t)) = [s̃(µ̃− µ); s̃(Σ̃ + µ̃µ̃> − Σ− µµ>)] // (26), (60)-(61)

return ∂L
∂θ ←

(
∂r
∂θ

)>
B> ∂L∂c

Example: Finite attention. By plugging S = {1, ..., L} and φ(k) = ψ(k) = ek (Eu-
clidean canonical basis) in our Definition 22, we recover the discrete attention of Bahdanau
et al. (2015). Still in the finite case, if φ(k) and ψ(k) are key and value vectors and θ is a
query vector, this recovers the key-value attention of Vaswani et al. (2017).

Example: Continuous attention with quadratic scoring function. On the other
hand, for S = RD and φ(t) = [t, vec(tt>)] – which leads to a quadratic scoring function
fθ(t) = θ>φ(t) – we obtain new attention mechanisms (assessed experimentally for the 1-d
and 2-d cases in §9): for α = 1, the underlying density p is a Gaussian, and for α = 2,
it is a truncated paraboloid (see Table 1 and §5). Intermediate cases encompass the
biweight (α = 1.5) and triweight (α = 4/3) cases, part of the elliptical family described
in §6. In all these cases, we show (Appendix G) that the expectation (25) is tractable (1-d)
or simple to approximate numerically (2-d) if ψ are Gaussian RBFs, and we use this fact in
§9. Algorithm 1 shows pseudo-code for the case α = 1.

Defining the value function VB(t). In many problems, the input is a discrete sequence
of observations (e.g., audio samples or text) or it was discretized (e.g., visual scenes), at
locations {t`}L`=1. To turn such an input into a continuous signal, we need to smooth and
interpolate these observations. If we start with a discrete encoder representing the input as a
matrix H ∈ RD×L, one way of obtaining a value mapping VB : S → RD is by “approximating”
H with multivariate ridge regression. With VB(t) = Bψ(t), where B ∈ RD×N , and packing
the basis vectors ψ(t`) as columns of matrix F ∈ RN×L, we obtain:

B? = arg min
B
‖BF −H‖2F + λ‖B‖2F = HF>(FF> + λIdN )−1 = HG,

where ‖ · ‖F is the Frobenius norm, and the L×N matrix G = F>(FF>+λIdN )−1 depends
only on the values of the basis functions at discrete time steps and can be obtained off-line for
different input lenghts L. The result is an expression for VB with ND coefficients, cheaper
than H if N � L.
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8.2 Gradient backpropagation with continuous attention

The next proposition, based on Proposition 9 and proved in Appendix E.3, allows backprop-
agating over continuous entmax attention mechanisms. It uses the definition of generalized
β-covariance presented in (15) and the proof is similar to that of Proposition 11.

Proposition 23 (Jacobian expression) Let p = p̂Ωα [fθ] with fθ(t) = θ>φ(t). The Jaco-
bian of the α-entmax transformation ρα (25) is:

Jρα(θ) =
∂ρα(θ)

∂θ
= covp,2−α(φ(t), ψ(t)). (26)

In the finite case, (26) reduces to the expressions for the Jacobian of softmax and sparsemax
derived by Martins and Astudillo (2016):

Jsoftmax(f) = Diag(p)− pp>, Jsparsemax(f) = Diag(s)− ss>/(1>s),

where p = softmax(f), and s is a binary vector whose `th entry is 1 iff ` ∈ supp(sparsemax(f)).

Example: Gaussian RBFs. As before, let S = RD, φ(t) = [t, vec(tt>)], and ψj(t) =
N (t;µj ,Σj). For α = 1, we obtain closed-form expressions for the expectation (25) and the
Jacobian (26), for any D ∈ N: p̂Ω[fθ] is a Gaussian, the expectation (25) is the integral of
a product of Gaussians, and the covariance (26) involves first- and second-order Gaussian
moments. Pseudo-code for the case α = 1 is shown as Algorithm 1. For α = 2, p̂Ω[fθ] is a
truncated paraboloid. In the 1-d case, both (25) and (26) can be expressed in closed form
in terms of the erf function. The same holds more generally if α is of the form α = n+1

n for
n ∈ N, which includes the biweight and triweight attention cases.12 In the 2-d case, we can
reduce the problem to 1-d integration by using the change of variables formula and working
with polar coordinates. Appendix G derives concrete expressions.

We use the facts above in the experimental section (§9), where we experiment with
β-Gaussian attention in audio classification and vision applications.

9. Experiments

We illustrate the usefulness of the theoretical results developed in the previous sections
by running experiments with continuous attention mechanisms with several choices of β-
Gaussian densities (§9.1), and on heteroscedastic regression with continuous Fenchel-Young
losses (§9.2).

9.1 Continuous attention mechanisms

We test our continuous attention mechanisms on two tasks: audio classification (1-d) and
visual question answering (2-d).13

12. This is shown in Appendix G by making use of closed-form expressions for
∫
tnN (t; 0, 1)dt for n ∈ N.

13. All dataset statistics, architecture details, and hyperparameters are described in Appendix H.
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Table 3: Results on UrbanSound8k in terms of accuracy. For continuous attention, we used
128 Gaussian RBFs N (t, µ̃, σ̃2), with µ̃ linearly spaced in [0, 1] and σ̃ ∈ {.1, .5}.

Attention α = 1.0 α = 4/3 α = 1.5 α = 2.0

Discrete 0.5967 ± 0.06 0.5946 ± 0.07 0.6032 ± 0.05 0.5903 ± 0.05
Continuous 0.6229 ± 0.06 0.6280 ± 0.06 0.6171 ± 0.05 0.6247 ± 0.06

1-d: Audio classification. We use the UrbanSound8k dataset,14 whose inputs are short
urban sound excerpts (≤ 4s) from 10 classes: air conditioner, car horn, children

playing, dog bark, drilling, engine idling, gun shot, jackhammer, siren, and street

music. We use a 16kHz sampling rate for all audios. We transform the input signal into a
sequence of vectors using short-time Fourier transform with 400 points, a window size of
25ms, and a hop size of 10ms. After this transformation, we extract 80 Mel-frequency filter
banks by applying equally-spaced triangular filters. Our baseline is a model with a single
convolutional 1-d layer followed by a discrete attention mechanism and an output layer.
For our continuous attention models, we normalize the input signal length L into the unit
interval [0, 1], and use f(t)= − (t− µ)2/2σ2 as the score function. Continuous attention models
obtain p ∈ 4L from discrete attention, compute µ = Ep[`/L] and σ2 = Ep[(`/L)2] − µ2,
apply the continuous attention transformation, and sum the two context vectors (this model
has the same number of parameters as the discrete attention baseline).

Since the dataset is officially split into 10 folds, we perform 10-fold cross-validation to
evaluate our models. Table 3 shows accuracies for different values of α and the standard
deviation across folds. The models with continuous attention perform better than the
baselines, suggesting that adding a continuous mechanism improves its discrete counterpart
without increasing the number of parameters. There is no clear winner among the different
choices of α, with all models performing similar. However, we notice that sparser choices
(α > 1) lead to more interpretable predictions, as shown in Figure 10.

2-d: Visual QA. We report experiments with 2-d continuous attention on visual question
answering, using the VQA-v2 dataset (Goyal et al., 2019) and a modular co-attention
network as a baseline (Yu et al., 2019). The discrete attention model attends over a 14×14
grid. For continuous attention, we normalize the image size into the unit square [0, 1]2. We
fit a 2-d Gaussian (α = 1) or truncated paraboloid (α = 2) as the attention density; both
correspond to f(t) = −1

2(t − µ)>Σ−1(t − µ), with Σ � 0. We use the mean and variance
according to the discrete attention probabilities and obtain µ and Σ with moment matching
(using the variance formula from Proposition 17). We use N = 100� 142 Gaussian RBFs,
with µ̃ linearly spaced in [0, 1]2 and Σ̃ = 0.001 · Id. Overall, the number of neural network
parameters is the same as in discrete attention.

The results in Table 4 show similar accuracies for all attention models, with a slight
advantage for continuous softmax. Figure 11 shows two examples (see Appendix H for
more examples and some failure cases): in both examples, the discrete attention is too

14. https://urbansounddataset.weebly.com/
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Figure 10: Attention densities and predictions made by models with different values of α on
two examples from UrbanSound8k. The spectrogram and the waveform on the
left represent an audio of a dog barking (around 0.2-0.7s) along with a constant
background noise made by a buzzer (every ∼0.1s). On the right we have an
example of a gun being fired (around 0.5-2.4s), showing a clear energy distinction
with the silent background.
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Figure 11: Attention maps for two examples in VQA-v2: the columns show the original
image, discrete attention, continuous softmax, and continuous sparsemax. The
latter encloses all probability mass within the outer ellipse.

scattered, possibly mistaking the lamp with a TV screen in the first example. The continuous
attention models focus on the right region and answer the questions correctly, with continuous
sparsemax enclosing all the relevant information in its supporting ellipse.
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Table 4: Accuracies of different models on the test-dev and test-standard splits of VQA-v2.

Attention Test-Dev Test-Standard
Yes/No Number Other Overall Yes/No Number Other Overall

Discrete softmax 83.40 43.59 55.91 65.83 83.47 42.99 56.33 66.13

2-d continuous softmax 83.40 44.80 55.88 65.96 83.79 44.33 56.04 66.27
2-d continuous sparsemax 83.10 44.12 55.95 65.79 83.38 43.91 56.14 66.10

9.2 Heteroscedastic regression with Fenchel-Young losses

Regression is often tackled using a squared loss, which is equivalent to assuming a one-
dimensional normal distribution for the target variable. In this experiment, we explore
replacing this normal distribution with a β-Gaussian, where not only the mean but also
the variance of the residuals is also allowed to depend on the features. We analyze the
Breast Cancer Mortality and Population dataset from Rice (2006, Problem 57), accessed via
statsmodels (Seabold and Perktold, 2010). The data covers 301 counties in southern US.
The single input variable x is the population of the county, and the target variable y is the
breast cancer mortality rate. As more populous counties display more variability, a standard
linear model fit on the full dataset shows strong signs of heteroscedasticity according to
a Breusch-Pagan test (LM = 537.4, p < 10−118).

Experimental setup. We leave out the 10% most populous counties as a test set, and fit
a linear model with β-Gaussian data-dependent noise,

y ∼ µf (x) +Nβ(0, σ2
f (x)), where

µf (x) := wµ · x+ bµ,
σ2
f (x) := (wσ · x+ bσ)2 .

(Note that σ2
f is not linear in x.) We first fit a baseline standard linear regression, i.e.,

y ∼ µf · x +N (0, 1), and initialize wµ and bµ in all subsequent models with the baseline
values. We apply 1000 iterations of L-BFGS with a step size of .01 to minimize the average
cross-Ω loss L×Ω against a target Dirac limit case p = δy (Definition 3, Proposition 18), which
in the 1-d case simplifies to:

L×Ωα(µf , σ
2
f , y) =

(µf − y)2

2σ2
f

− R2

2(σ2
f )

α−1
α+1

· α− 1

3α− 1
+

1

α(α− 1)
,

Results. We report explained variance (r2) in Table 5. Modeling σ2 improves over the
baseline, especially with α = 2. The fit is illustrated in Figure 12 alongside the Gaussian
(α = 1) case. The results demonstrate that the β-Gaussian family is useful in modeling, and
that L×Ω is an appropriate generalization of cross-entropy.
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Table 5: Heteroscedastic regression test r2: proportion of variance explained by β-Gaussian
regression models with learned variance.

Baseline α = 1.0 α = 4/3 α = 1.5 α = 2.0

0.56 0.67 0.68 0.69 0.72
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Figure 12: Heteroscedastic regression models with a β-Gaussian model. The truncated
parabola model achieves the best generalization out of the considered models in
terms of r2. For α > 1, the bounded support can be computed using Proposi-
tion 16. Note that, for α = 2, even though some points lie outside of the modeled
support, the likelihood of the model is zero but the cross-Ω Fenchel-Young loss
is finite and learns good regressors.

10. Related Work

Generalized exponential families and loss functions. Grünwald and Dawid (2004)
introduced generalized exponential families as maximum entropy distributions for generalized
entropy functions. Based upon these results, Frongillo and Reid (2014) study generalized
exponential families (possibly in infinite spaces) from a convex duality perspective. Their
main result is a generalization of the well-known bijection between Bregman divergences
and regular exponential families. Amari et al. (2012) study deformed exponential families,
including their entropy and canonical divergence. Fenchel-Young losses are closely related to
proper scoring rules (Gneiting and Raftery, 2007; Reid and Williamson, 2010; Williamson
et al., 2016). Proper scoring rules can be seen as primal-space Bregman divergences, while
Fenchel-Young losses can be seen as mixed-space Bregman divergences (Blondel et al., 2020).
Mensch et al. (2019) propose a Fenchel-Young loss in the continuous setting. Their focus,
however, is on a geometric notion of entropy called “Sinkhorn entropy”. Blondel (2019)
studies the consistency of a subset of Fenchel-Young losses. In this paper, we provide a
throrough study of generalized continuous distributions and losses from a convex duality
perspective with a particular focus on distributions with sparse support. In doing so, we
unify many continuous distributions and create new ones seamlessly. We also discuss their
Jacobian computation, enabling their use in a neural network trained by backpropagation.
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Nock and Nielsen (2009) proposed a binary classification loss construction based on the
Legendre transformation but their construction precludes non-invertible mappings. Duchi
et al. (2018, Proposition 3) derived a multi-class loss which is a special case of Fenchel-Young
loss over the probability simplex. Nowak-Vila et al. (2020) use Fenchel-Young losses to
construct a new loss with a max-min margin property. This loss corresponds to choosing
α→∞ in the Tsallis negentropy. Finally, Bao and Sugiyama (2021) used Fenchel-Young
losses to derive new losses for class-posterior probability estimation with unbalanced classes.
All these works are limited to the finite output domains.

The regularized prediction map presented in §2 is connected to proximal operators
(Moreau, 1965). Indeed, if Ω = 1

2‖ · ‖
2
2 + Φ, then p̂Ω[f ] = proxΦ (Blondel et al., 2020). At a

high level, the Fenchel-Young loss in §3 resembles formulations for structured prediction
(Taskar et al., 2005) which formulate learning as the problem of finding a saddle point
involving a game between the model parameters (corresponding to our fθ) and marginal
probabilities for structured outputs (corresponding to our p). The focus of our paper,
however, is on continuous domains rather than structured prediction.

Relation to the Tsallis maxent principle. Our paper unifies two lines of work: de-
formed exponential families from statistical physics (Tsallis, 1988; Naudts, 2009; Amari and
Ohara, 2011), and sparse alternatives to softmax recently proposed in the machine learning
literature (Martins and Astudillo, 2016; Peters et al., 2019; Blondel et al., 2020), herein
extended to continuous domains. This link may be fruitful for future research in both fields.
While most prior work is focused on heavy-tailed distributions (α < 1), we focus instead on
light-tailed, sparse distributions, the other side of the spectrum (α > 1). See Appendix C.4
for the relation to the Tsallis maxent principle.

Continuity in other architectures and dimensions. In our paper, we consider atten-
tion networks exhibiting temporal/spatial continuity in the input data, be it audio signals
(1-d) or visual scenes (2-d). Recent works propose continuous-domain CNNs for 3-d struc-
tures like point clouds and molecules (Wang et al., 2018; Schütt et al., 2017). The dynamics
of continuous-time RNNs have been studied in (Funahashi and Nakamura, 1993), and similar
ideas have been applied to irregularly sampled time series (Rubanova et al., 2019). Other
recently proposed frameworks produce continuous variants in other dimensions, such as
network depth (Chen et al., 2018), or in the target domain for machine translation tasks
(Kumar and Tsvetkov, 2018). Our continuous attention networks can be used in tandem
with these frameworks.

Gaussian attention probabilities. Cordonnier et al. (2019) analyze the relationship
between (discrete) attention and convolutional layers, and consider spherical Gaussian
attention probabilities as relative positional encodings. By contrast, our approach removes
the need for positional encodings: by converting the input to a function on a predefined
continuous space, positions are encoded implicitly, not requiring explicit positional encoding.
Gaussian attention has also been hard-coded as input-agnostic self-attention layers in
transformers for machine translation tasks by You et al. (2020). Finally, in their DRAW
architecture for image generation, Gregor et al. (2015, §3.1) propose a selective attention
component which is parametrized by a spherical Gaussian distribution.
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Sparse latent variables. Related to the sparse attention models developed in §8, several
works have presented models with sparse latent variables, mostly for the discrete (possibly
structured) case, both in deterministic (Correia et al., 2020; Guerreiro and Martins, 2021)
and stochastic settings (Bastings et al., 2019; Farinhas et al., 2022). Generalizing these
constructions to continuous latent variables with sparse support (in the sense of Definition 1)
is an interesting direction for future work.

11. Conclusions and Future Work

We extended Ω-regularized prediction maps and Fenchel-Young losses to arbitrary measure
spaces (§2, §3). A key result is that, for linearly parametrized families, Fenchel-Young loss
minimization is equivalent to moment matching of the statistics, generalizing the concept
of sufficient statistics from exponential families (Proposition 6). With Tsallis α-entropies
for α > 1, we obtain sparse families, whose members can have zero tails, such as triangular
or truncated parabola/paraboloid distributions on continuous domains or sparse integer
distributions in discrete but infinite domains, for α = 2 (§4, §5). We provided a general
characterization of the normalizing function Aα(f), its gradient and Hessian, and expressions
for the Fenchel-Young loss for arbitrary α (Propositions 8, 9, 10, and 11). We then studied the
particular case of β-Gaussian distributions, induced by Tsallis α-entropies (with β = 2− α)
and quadratic scoring functions, and we have shown that they are instances of elliptical
distributions (§6), containing as particular cases the Gaussian and truncated paraboloid,
as providing multivariate generalizations of distributions commonly used in kernel density
estimation (Epanechnikov, biweight, triweight). We have shown that these distributions
can be reparametrized by two independent random variables, a Beta distribution for the
radius, and a uniform spherical distribution (Proposition 16), and used this result to build
an efficient sampler. We also characterized key properties of these distributions: their mean,
variance, entropy, and a closed-form for the Fenchel-Young loss (Propositions 17–18). The
combination of the sampler and estimation with Fenchel-Young loss minimization using
these results is illustrated in Figure 4. Finally, we have shown that by considering total
variance and Sobolev regularizers Ω, regularized prediction maps allow building continuous
counterparts of the fusedmax transformation previously proposed in the discrete case (§7).

In a nutshell, the theoretical contributions of our paper unify two lines of work: deformed
exponential families from statistical physics (Tsallis, 1988; Naudts, 2009; Amari and Ohara,
2011), and sparse alternatives to softmax recently proposed in the machine learning literature
(Martins and Astudillo, 2016; Niculae and Blondel, 2017; Peters et al., 2019; Blondel et al.,
2020). We frame this unification in the scope of regularized prediction maps (a generalization
of the variational free energy principle) and Fenchel-Young losses (a generalization of
Kullback-Leibler divergences and Bregman divergences). We believe this link may be
fruitful for future research in both fields. While most prior work is focused on heavy-tailed
distributions (α < 1), we focus instead on light-tailed, sparse distributions, the other side of
the spectrum (α > 1).

We have also shown how Ω-regularized predictions maps can be used in neural network
models to construct continuous attention mechanisms (§8), generalizing finite attention
(Bahdanau et al., 2015) to continuous input data, such as 1-d spatial or temporal signals or
2-d images (visual scenes). We derived their Jacobians in terms of generalized covariances
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(Proposition 23), allowing for efficient forward and backward propagation. Experiments for
1-d and 2-d cases were shown on attention-based audio classification and visual question
answering (§9).

There are many avenues for future work. The sparse integer distributions presented in
§5 open up interesting questions, such as the efficient computation of key quantities (mean,
entropies, Fenchel-Young loss) and its applicability to problems that could benefit from
distributions with finite but varying support (ranges). Likewise, the β-Gaussian distributions
presented in §6 might be useful in embedding spaces, where objects (e.g., words) could
be modeled as compact sets. Our results concerning Ω-regularized prediction maps and
Fenchel-Young losses provided in §2–3 are very general, and it is plausible that regularizers
Ω other than Tsallis entropies, total variation or Sobolev regularizers might be useful. While
our paper focused on linearly parametrized energy functions, the non-linear case (e.g.,
where f(t) is obtained from a neural network) deserves further study—in fact, several of our
theoretical results can be easily extended to this case by replacing φ(t) by ∇θfθ(t). Regarding
sparse continuous attention mechanisms, while our paper focused on unimodal distributions,
there are applications in which multiple attention modes are desirable. This can be done
by considering mixtures of distributions, multiple attention heads, or sequential attention
steps. Initial work in that direction includes Farinhas et al. (2021). Another direction
concerns combining our continuous attention models with other spatial/temporal continuous
architectures for CNNs and RNNs (Wang et al., 2018; Schütt et al., 2017; Funahashi and
Nakamura, 1993) or with continuity in other dimensions, such as depth (Chen et al., 2018)
or output space (Kumar and Tsvetkov, 2018). Recent work using continuous attention
mechanisms to model long-term “sticky” memories in transformer architectures has been
done by Martins et al. (2022); some of the ideas above are applicable there, too.
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Appendix

Appendix A. Proofs for regularized prediction maps

A.1 Equivariance of distributions

Let S = RN and ν be the Lebesgue measure. We show that, if the regularizer Ω is separable
(i.e. if it can be written as Ω(p) =

∫
S ψ(p(t)) for some function ψ : R+ → R), the following

equivariance property holds:
p̂Ω[f̃ ](t) = p̂Ω[f ](At+ b),

where f̃(t) := f(At+ b), for any matrix A with determinant ±1 and any vector b ∈ RN .
By definition, we have

p̂Ω[f̃ ] = arg max
p∈M1

+(RN )

Ep[f̃(t)]− Ω(p) = arg max
p∈M1

+(RN )

∫
S

(p(t) f(At+ b)− ψ(p(t)) dt.

Making a change of variables s = At+ b, using the change of variables’ formula (noting that
|det(A)| = 1), and defining q(s) = p(A−1(s−b)) – noting that p ∈M1

+(RN ) iff q ∈M1
+(RN )

– we obtain:

p̂Ω[f̃ ](t) =

(
arg max
q∈M1

+(RN )

∫
S

(q(s) f(s)− ψ(q(s)) ds

)
(s) =

(
arg max
q∈M1

+(RN )

Eq[f(s)]− Ω(q)

)
(s)

= p̂Ω[f ](s),

which leads to the desired result.

A.2 Differential Negentropy and Boltzmann-Gibbs distributions

We adapt a proof from Cover and Thomas (2012). Let Ω be the Shannon negentropy,
which is proper, lower semi-continuous, and strictly convex (Bauschke and Combettes, 2011,
example 9.41), and let

KL(p‖q) :=

∫
S
p(t) log

p(t)

q(t)

be the Kullback-Leibler divergence between distributions p and q (which is always non-

negative and equals 0 iff p = q). Take q(t) = exp(f(t))∫
S exp(f(t′))dν(t′)

= exp(f(t)−A(f)) as in (3),

where A(f) is the log-partition function.
We have, for any p ∈M1

+(S):

0 ≤ KL(p‖q) =

∫
S
p(t) log

p(t)

q(t)
= Ω(p)−

∫
S
p(t) log q(t) = Ω(p)−

∫
S
p(t)(f(t)−A(f))

= Ω(p)− Ep[f(t)] +A(f).

Therefore, we have, for any p ∈M1
+(S), that

Ep[f(t)]− Ω(p) ≤ A(f),

with equality if and only if p = q. Since the right hand side is constant with respect to p, we
have that the posited q must be the maximizer of (2).
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Appendix B. Proofs for continuous Fenchel-Young losses

Proof of Propositions 4–6 The proof of Proposition 4 adapts that of Blondel et al.
(2020) when Fenchel duality is now taken in the infinite-dimensional set F ⊆ RS , which
endowed with the inner product 〈f, g〉 =

∫
S f(t)g(t)dν(t) forms a Hilbert space (Bauschke

and Combettes, 2011). The non-negativity of LΩ stems from the Fenchel-Young inequality
in Hilbert spaces. The loss is zero iff (fθ, p) is a dual pair, i.e., if p = p̂Ω[fθ] = ∇Ω∗(fθ).

To prove Proposition 5, note that the gradient of LΩ is

∇θLΩ(fθ; p) =

∫
S

∂LΩ(fθ; p)

∂fθ(t)
∇θfθ(t)dν(t) =

∫
S

(p̂Ω[fθ](t)− p(t))∇θfθ(t),

where we used the fact that ∂LΩ(fθ;p)
∂fθ(t) = [∇Ω∗(fθ)− p](t). This leads to the expression in (4).

The first point in Proposition 6 is a direct consequence of the last result. The convexity
of LΩ with respect to θ stems from the fact that LΩ(fθ, p) = Ω(p) + Ω∗(fθ) − Ep[fθ(t)] is
convex with respect to fθ (since it is the sum of an affine function with Ω∗(fθ), which, being
a Fenchel dual, is convex) and that LΩ, as a function of θ, is a composition of the linear
mapping θ 7→ fθ(·) = θ>φ(·) with the said convex function, hence it is convex. Finally, the
last statement is an immediate consequence of the two previous claims: Since LΩ is convex,
any stationary point is a global minimum, and, from the first claim, any stationary point θ̂
must satisfy Ep̂Ω[fθ̂][φ(t)] = Ep[φ(t)].

Appendix C. Proofs for Tsallis regularization and Deformed Exponential
Families

C.1 Shannon as a limit case of Tsallis when α→ 1

We show that limα→1 Ωα(p) = Ω1(p) for any p ∈M1
+(S). From (9), it suffices to show that

limβ→1 logβ(u) = log(u) for any u ≥ 0. Let g(β) := u1−β − 1, and h(β) := 1− β. Observe
that

lim
β→1

logβ(u) = lim
β→1

g(β)

h(β)
=
g(1)

h(1)
=

0

0
,

so we are in an indeterminate case. We take the derivatives of g and h:

g′(β) =
(

exp(log u1−β)
)′

= exp(log u1−β) · ((1− β) log u)′ = −u1−β log u,

and h′(β) = −1. From l’Hôpital’s rule,

lim
β→1

g(β)

h(β)
= lim

β→1

g′(β)

h′(β)
= log u.

C.2 Proof of Proposition 8

The proof of Proposition 8 is similar to the one in §A.2, replacing the KL divergence by the
Bregman divergence induced by Ωα, and using an additional bound. Let

BΩα(p, q) := Ωα(p)− Ωα(q)− 〈∇Ωα(q), p− q〉
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be the (functional) Bregman divergence between distributions p and q induced by Ωα, and
let

q(t) = exp2−α(f(t)−Aα(f)) = [1 + (α− 1)(f(t)−Aα(f))]
1

α−1
+ .

Note that, from (9),

(∇qΩα(q)) (t) =
q(t)α−1

α− 1
.

From the non-negativity of the Bregman divergence Bregman (1967), we have, for any
p ∈M1

+(S):

0 ≤(a) BΩα(p, q)

= Ωα(p)− Ωα(q)− 〈∇Ωα(q), p− q〉

= Ωα(p)− Ωα(q)−
∫
S

q(t)α−1

α− 1
(p(t)− q(t))

= Ωα(p)− Ωα(q)− Ep[[f(t)−Aα(f) + (α− 1)−1]+]︸ ︷︷ ︸
≥Ep[f(t)−Aα(f)+(α−1)−1]

+
1

α− 1

∫
S
q(t)α

≤(b) Ωα(p)− Ωα(q)− Ep[f(t)−Aα(f) + (α− 1)−1] +
1

α− 1

∫
S
q(t)α

= Ωα(p)− Ep[f(t)]− Ωα(q) +
1

α− 1

(∫
S
q(t)α − 1

)
︸ ︷︷ ︸

=αΩα(q)

+Aα(f)

= Ωα(p)− Ep[f(t)] + (α− 1)Ωα(q) +Aα(f).

Therefore, we have, for any p ∈M1
+(S),

Ep[f(t)]− Ωα(p) ≤ (α− 1)Ωα(q) +Aα(f), (30)

with equality iff p = q, which leads to zero Bregman divergence (i.e., a tight inequality
(a)) and to Ep[[f(t) − Aα(f) + (α − 1)−1]+] = Ep[f(t) − Aα(f) + (α − 1)−1] (i.e., a tight
inequality (b)).

We can use the equality above to obtain an expression for the Fenchel conjugate Ω∗α(f) =
Eq[f(t)]− Ωα(q) (i.e., the value of the maximum in (2) and the right hand side in (30)):

Ω∗α(f) = (α− 1)Ωα(q) +Aα(f). (31)

C.3 Normalizing function Aα(f)

Let p = p̂Ωα [f ]. The expression for Aα in Prop. 8 is obtained by inverting (10), yielding
Aα(f) = f(t)− log2−α(p(t)), and integrating with respect to p(t)2−αdν(t), leading to:∫

S
p(t)2−αAα(f) =

∫
S
p(t)2−αf(t)−

∫
S
p(t)2−α log2−α(p(t))

=

∫
S
p(t)2−αf(t)−

∫
S(p(t)− p(t)2−α)

α− 1

=

∫
S
p(t)2−αf(t)− 1

α− 1
+

∫
S p(t)

2−α

α− 1
,

from which the desired expression follows.
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C.4 Relation to the Tsallis Maxent Principle

We discuss here the relation between the (2 − α)-exponential family of distributions as
presented in Prop. 8 and the distributions arising from the Tsallis maxent principle (Tsallis,
1988). We put in perspective the related work in statistical physics (Abe, 2003; Naudts,
2009), information geometry (Amari and Ohara, 2011; Amari, 2016), and the discrete case
presented in the machine learning literature (Blondel et al., 2020; Peters et al., 2019).

We start by noting that our α parameter matches the α used in prior machine learning
literature related to the “α-entmax transformation” (Blondel et al., 2020; Peters et al., 2019).
In the definition of Tsallis entropies (9), our α corresponds to the entropic index q defined
by Tsallis (1988). However, our (2−α)-exponential families correspond to the q-exponential
families as defined by Naudts (2009), and to the t-exponential families described by Ding
and Vishwanathan (2010) (which include the t-Student distribution). The family of Amari’s
α-divergences relates to this q as α = 2q − 1 (Amari, 2016, §4.3).

These differences in notation have historical reasons, and they are explained by the
different ways in which Tsallis entropies relate to q-exponential families. In fact, the physics
literature has defined q-exponential distributions in two distinct ways, as we next describe.

Note first that the Ω-regularized prediction map in our Def. 2 is a generalization of the
free energy variational principle, if we see −fθ(t) = −θ>φ(t) as an energy function and Ω
the entropy scaled by a temperature. Let Ω = Ωα be the Tsallis α-entropy. An equivalent
constrained version of this problem is the maximum entropy (maxent) principle (Jaynes,
1957):

max
p∈M1

+(S)
−Ωα(p), s.t. Ep[φ(t)] = b. (33)

The solution of this problem corresponds to a distribution in the (2− α)-exponential family
(10):

p?(t) = exp2−α(θ>φ(t)−Aα(θ)), (34)

for some Lagrange multiplier θ.
However, this construction differs from the one by Tsallis (1988) and others, who use

escort distributions (8) in the expectation constraints. Namely, instead of (33), they consider
the problem:

max
p∈M1

+(S)
−Ωα(p), s.t. Ep̃α [φ(t)] = b. (35)

The solution of (35) is of the form

p?(t) = Bα(θ) expα(θ>(φ(t)− b)), (36)

where θ is again a Lagrange multiplier. This is derived, for example, in (Abe, 2003, Eq. 15).
There are two main differences between (34) and (36):

• While (34) involves the (2− α)-exponential, (36) involves the α-exponential.

• In (34), the normalizing term Aα(θ) is inside the (2− α)-exponential. In (36), there is
an normalizing factor Bα(θ) outside the α-exponential.

Naturally, when α = 1, these two problems become equivalent, since an additive term
inside the exponential is equivalent to a multiplicative term outside. However, this does
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not happen with β-exponentials (expβ(u + v) 6= expβ(u) expβ(v) in general, for β 6= 1),
and therefore these two alternative paths lead to two different definitions of q-exponential
families. Unfortunately, both have been considered in the physics literature, under the same
name, and this has been subject of debate. Quoting Naudts (2009, §1):

“An important question is then whether in the modification the normalization
should stand in front of the deformed exponential function, or whether it should
be included as lnZ(β) inside. From the general formalism mentioned above it
follows that the latter is the right way to go.”

Throughout our paper, we use the definition of (Naudts, 2009; Amari and Ohara, 2011),
equivalent to the maxent problem (33).

C.5 Proof of Proposition 9

We adapt the proof from Amari and Ohara (2011, Theorem 5). Note first that, for
t ∈ supp(pθ),

∇θpθ(t) = ∇θ[(α− 1)(θ>φ(t)−Aα(θ)) + 1]1/(α−1)

= [(α− 1)(θ>φ(t)−Aα(θ)) + 1](2−α)/(α−1)(φ(t)−∇θAα(θ))

= pθ(t)
2−α(φ(t)−∇θAα(θ)),

and

∇2
θpθ(t) = ∇θp2−α

θ (t)(φ(t)−∇θAα(θ))> − p2−α
θ (t)∇2

θAα(θ)

= (2− α)p1−α
θ (t)∇θpθ(t)(φ(t)−∇θAα(θ))> − p2−α

θ (t)∇2
θAα(θ)

= (2− α)pθ(t)
3−2α

(
φ(t)−∇θAα(θ)

)(
φ(t)−∇θAα(θ)

)>
−pθ(t)2−α∇2

θAα(θ).

Therefore we have:

0 = ∇θ
∫
S
pθ(t)︸ ︷︷ ︸
=1

=

∫
S
∇θpθ(t) =

∫
S
pθ(t)

2−α(φ(t)−∇θAα(θ)),

from which we obtain

∇θAα(θ) =

∫
S pθ(t)

2−αφ(t)∫
S pθ(t)

2−α .

To prove that Aα(θ) is convex, we will show that its Hessian is positive semidefinite.
Note that

0 = ∇2
θ

∫
S
pθ(t)︸ ︷︷ ︸
=1

=

∫
S
∇2
θpθ(t)

=

∫
S

(2− α)pθ(t)
3−2α

(
φ(t)−∇θAα(θ)

)(
φ(t)−∇θAα(θ)

)> − pθ(t)2−α∇2
θAα(θ)

= (2− α)

∫
S
pθ(t)

3−2α
(
φ(t)−∇θAα(θ)

)(
φ(t)−∇θAα(θ)

)>
−∇2

θAα(θ)

∫
S
pθ(t)

2−α,
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hence, for α ≤ 2,

∇2
θAα(θ) =

(2− α)
∫
S pθ(t)

3−2α

�0︷ ︸︸ ︷(
φ(t)−∇θAα(θ)

)(
φ(t)−∇θAα(θ)

)>∫
S pθ(t)

2−α � 0,

where we used the fact that pθ(t) ≥ 0 for t ∈ S and that integrals of positive semidefinite
functions are positive semidefinite.

C.6 Proof of Proposition 10

From Definition 7, we have

Ωα(pθ) =
1

α
Epθ [log2−α(p(t))] =

1

α
Epθ [θ

>φ(t)−Aα(θ)] =
1

α

(
θ>Epθ [φ(t)]−Aα(θ)

)
,

from which (12) follows. The expression (13) was obtained in Appendix C.2 (see (31)); the
second equality is a simple consequence of (12). Finally, using the two former results, we
have

LΩα(fθ, p) = Ωα(p) + Ω∗α(fθ)− Ep[fθ(t)]
= Ωα(p) + (α− 1)Ωα(p̂Ωα [fθ]) +Aα(θ)− Ep[θ>φ(t)]

= Ωα(p)− Ωα(p̂Ωα [fθ]) + θ>µ(θ)−Aα(θ) +Aα(θ)− θ>Ep[φ(t)],

which leads to (14).

C.7 Proof of Proposition 11

The expression for the gradient comes directly from Proposition 6. As for the Hessian:

∇∇θLΩα(fθ, p) = ∇θµ(θ)> = ∇θEpθ [φ(t)]> =

∫
S
∇θpθ(t)φ(t)>

=

∫
S
p2−α
θ (t)∇θ log2−α(pθ(t))φ(t)> =

∫
S
p2−α
θ (t)∇θ(θ>φ(t)−Aα(θ))φ(t)>

=

∫
S
p2−α
θ (t)(φ(t)−∇θAα(θ))φ(t)>.

Using the expression for ∇θAα(θ) from Proposition 9 yields the desired result.

Appendix D. Proofs for infinite sparsemax

D.1 Truncated parabola

Let p(t) =
[
−τ − (t−µ)2

2σ2

]
+

as in (17). Let us determine the constant τ that ensures this

distribution normalizes to 1. Note that τ does not depend on the location parameter µ,
hence we can assume µ = 0 without loss of generality. We must have τ = − a2

2σ2 and

1 =
∫ a
−a

(
−τ − x2

2σ2

)
= −2τa− a3

3σ2 = 2a3

3σ2 , hence a =
(

3
2σ

2
)1/3

, which finally gives:

τ = −1

2

(
3

2σ

)2/3

. (42)
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The Gini negentropy of this distribution is

Ω2(p̂Ω2 [f ]) = −1

2
+

1

2

∫
p̂2

Ω2
[f ](x) = −1

2
+

1

2

∫ a

−a

(
−λ− x2

2σ2

)2

= −1

2
− λ2a+

λa3

3σ2
+

a5

20σ4

= −1

2
+

a5

4σ4
− a5

6σ4
+

a5

20σ4
= −1

2
+

2a5

15σ4
= −1

2
+

1

5

(
3

2σ

)2/3

.

D.2 Multivariate truncated paraboloid

Let p(t) =
[
−τ − 1

2(t− µ)Σ−1(t− µ)
]
+

as in (18). Let us determine the constant τ that
ensures this distribution normalizes to 1, where we assume again µ = 0 without loss of
generality. To obtain τ , we start by invoking the formula for computing the volume of an
ellipsoid defined by the equation x>Σ−1x ≤ 1:

Vell(Σ) =
πn/2

Γ(n/2 + 1)
det(Σ)1/2,

where Γ(t) is the Gamma function. Since each slice of a paraboloid is an ellipsoid, we can
apply Cavalieri’s principle to obtain the volume of a paraboloid y = 1

2x
>Σ−1x of height

h = −τ as follows:

Vpar(h) =

∫ h

0
Vell(2Σy)dy =

(2π)n/2det(Σ)1/2

Γ(n2 + 1)

∫ h

0
y
n
2 dy =

(2π)n/2det(Σ)1/2

(n2 + 1)Γ(n2 + 1)
h
n
2

+1

=

√
(2π)ndet(Σ)

Γ(n2 + 2)
h
n
2

+1.

Equating the volume to 1, we obtain τ = −h as τ = −
(

Γ(n
2

+2)√
(2π)ndet(Σ)

) 2
2+n

.

D.3 Triangular

Let p(t) =
[
−τ − |t−µ|b

]
+

as in (19). Let us determine the constant τ that ensures this

distribution normalizes to 1. Assuming again µ = 0 without loss of generality, we must

have τ = −a
b and 1 =

∫ a
−a

(
−τ − |x|b

)
= −2τa− a2

b = a2

b , hence a =
√
b, which finally gives

τ = −b−1/2.
The negentropy of this distribution is

Ω2(p̂Ω2 [f ]) = −1

2
+

1

2

∫
p̂2

Ω2
[f ](x) = −1

2
+

1

2

∫ a

−a

(
−λ− |x|

b

)2

= −1

2
+

1

2

∫ a

−a

(
λ2 +

2λ|x|
b

+
x2

b2

)
= −1

2
+ λ2a+

λa2

b
+
λa3

3b2
= −1

2
+
a3

b2
− a3

b2
+

a3

3b2
= −1

2
+

1

3
√
b
.

D.4 Location-scale families

We first show that a is the solution of the equation ag′(a)− g(a) + g(0) = 1
2 . From symmetry

around µ, we must have

1

2
=

∫ µ+aσ

µ

(
1

σ
g′(a)− 1

σ
g′
(
t− µ
σ

))
dt =

∫ a

0

(
g′(a)− g′(s)

)
ds = ag′(a)− g(a) + g(0),
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where we made a variable substitution s = (t− µ)/σ, which proves the desired result. Now
we show that a solution always exists if g is strongly convex, i.e., if there is some γ > 0 such
that g(0) ≥ g(s)− sg′(s) + γ

2s
2 for any s ≥ 0. Let F (s) := sg′(s)− g(s) + g(0). We want to

show that the equation F (a) = 1
2 has a solution. Since g is continuously differentiable, F is

continuous. From the strong convexity of g, we have that F (s) ≥ γ
2s

2 for any s ≥ 0, which
implies that lims→+∞ F (s) = +∞. Therefore, since F (0) = 0, we have by the intermediate
value theorem that there must be some a such that F (a) = 1

2 .

Appendix E. Proofs for β-Gaussian distributions

E.1 Proof of Proposition 16

First, we note that the standard parabola f0(z) = −1
2‖z‖

2 indeed induces a spherical
distribution, since it has density

p0(z) = p̂Ωα [f0](z) =

[
(α− 1)

(
−τ − 1

2
‖z‖2

)]1/α−1

+

= g(‖z‖2) (47)

where g(r2) = [(α− 1)(−τ − r2/2]
1/α−1

+ . The density of t = µ+Az, where AA> = Σ̃, is

p(t) =

[
(α− 1)

(
−τ − 1

2
(t− µ)>Σ̃−1(t− µ)

)] 1
α−1

+

|Σ̃|−1/2

=

[
(α− 1)

(
−τ |Σ̃|−

α−1
2 − 1

2
|Σ̃|−

α−1
2 (t− µ)>Σ̃−1(t− µ)

)] 1
α−1

+

= p̂Ωα [f ](t),

with f(t) = −1
2(t − µ)>Σ−1(t − µ) and Σ = |Σ̃|

α−1
2 Σ̃. The expression for A is obtained

by solving Σ̃ = AA> and Σ = |Σ̃|
α−1

2 Σ̃, which leads to Σ̃ = |Σ|
− 1

N+ 2
α−1 Σ and A = Σ̃1/2 =

|Σ|
− 1

2N+ 4
α−1 Σ1/2. This allows us to focus our study on the standard β-Gaussian from

Equation (47). This is a spherical distribution, and thus has stochastic characterization
z = ru, for some radius random variable r.

First, we establish the support and normalizing constants. From Equation (47), p0(z) > 0

iff 1/2‖z‖2 > τ . The support is therefore the open sphere ‖z‖ < R, with radius R = (−2τ)
1
2 .

Next, we characterize the density of the random variable r. By (Fang et al., 1990,
Theorem 2.9), the density of r is

q(r) =
2πN/2

Γ(N/2)
rN−1g(r2) =

2πN/2

Γ(N/2)
rN−1

[
(α− 1)

(
−τ − r2

2

)]1/α−1

+

.

Substituting R for τ and rearranging, we have

q(r) =
2πN/2

Γ(N/2)
rN−1

(
α− 1

2

) 1
α−1 [

R2 − r2
]1/α−1

+

=
2πN/2

Γ(N/2)
rN−1

(
α− 1

2

) 1
α−1

R
2

α−1
[
1− (r/R)2

]1/α−1

+
,
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and notice that q(r) > 0 iff r ∈ [0, R), thus, the radius has bounded support. The CDF is

Q(γ) =

∫ γ

0
q(r)dr =

2πN/2

Γ(N/2)

(
α− 1

2

) 1
α−1

R
2

α−1

∫ γ

0
rN−1

(
1− (r/R)2

)1/α−1
dr .

The integral satisfies∫ γ

0
rN−1

(
1− (r/R)2

)1/α−1
dr =

R2

2

∫ γ

0
rN−2

(
1− (r/R)2

)1/α−1 2r

R2
dr

=
RN

2

∫ γ

0
(r/R)N−2

(
1− (r/R)2

)1/α−1 2r

R2
dr

=
RN

2

∫ γ2/R2

0
u
N
2 −1 (1− u)

1/α−1 du

=
RN

2
B
(
N
2 ,

α
α−1

)
I γ2

R2

(
N
2 ,

α
α−1

)
,

where B is the Beta function and Iz is the incomplete regularized Beta function, satisfying
I1(·, ·) = 1. In other words, we have Q(γ) = cIγ2/R2(N/2, α/(α− 1)), with c not depending
on γ. All the mass must be contained within radius R, i.e., Q(R) = 1, thus c = 1 and

Q(γ) = I γ2

R2

(
N
2 ,

α
α−1

)
.

Since Iz is the CDF of the Beta distribution, we have r2

R2 ∼ Beta
(
N
2 ,

α
α−1

)
. Solving for R

in c = 1 gives the desired value.
To establish the relationship between R and τ for a general β-Gaussian Nβ(t, µ,Σ), write

f(t) = −1

2
(t−µ)>Σ−1(t−µ) = −1

2
‖Σ‖

− 1

N+ 2
α−1 (t−µ)>Σ̃−1(t−µ) = −1

2
‖Σ‖

− 1

N+ 2
α−1 ‖z‖2 ,

therefore ‖z‖ < R is equivalent to f(t) > τ = −R2

2 ‖Σ‖
− 1

N+ 2
α−1 .

E.2 Fenchel-Young Loss for β-Gaussian Distributions: Proof of Proposition 18

First, note that, up to a constant term which does not affect the Fenchel-Young loss, we can
write fθ(t) = −1

2(t− µf )>Σ−1
f (t− µf ) + 1

2µ
>
f Σ−1

f µf = θ>φ(t), with φ(t) = [t, vec(tt>)] and

θ = [Σ−1
f µf ,−1

2vec(Σ−1
f )]. Let pθ ≡ p̂Ωα [fθ]. From Prop. 10 we have

LΩα(fθ, p) = Ωα(p)− Ωα(pθ)− θ>(Ep[φ(t)]− Epθ [φ(t)]). (49)

From Prop. 17 we have

Ep[φ(t)] = [µ, vec(Var(t) + µµ>)] =

[
µ, vec

((
1

α
+ (α− 1)Ωα(p)

)
Σ + µµ>

)]
and

Epθ [φ(t)] = [µf , vec(Var(t) + µfµ
>
f )] =

[
µf , vec

((
1

α
+ (α− 1)Ωα(pθ)

)
Σf + µfµ

>
f

)]
.
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Plugging in Equation (49), we get

LΩα(fθ, p) = Ωα(p)− Ωα(pθ)− µ>f Σ−1
f (µ− µf ) +

1

2
vec(Σ−1

f )> ·

vec

((
1

α
+ (α− 1)Ωα(p)

)
Σ−

(
1

α
+ (α− 1)Ωα(pθ)

)
Σf + µµ> − µfµ>f

)
= Ωα(p)− Ωα(pθ)− µ>f Σ−1

f (µ− µf ) +
1

2
(µ>Σ−1

f µ− µ>f Σ−1
f µf ) +

1

2
vec(Σ−1

f )>vec

((
1

α
+ (α− 1)Ωα(p)

)
Σ−

(
1

α
+ (α− 1)Ωα(pθ)

)
Σf

)
= Ωα(p)− Ωα(pθ) +

1

2
(µ− µf )>Σ−1

f (µ− µf ) +

1

2

(
1

α
+ (α− 1)Ωα(p)

)
Tr(Σ−1

f Σ)− N

2

(
1

α
+ (α− 1)Ωα(pθ)

)
.

Using the expression for the entropy in Prop. 17, we get

Ωα(p)− Ωα(pθ) =
R2

2α+N(α− 1)

(
|Σ|
− 1

N+ 2
α−1 − |Σf |

− 1

N+ 2
α−1

)
and

1

α
+ (α− 1)Ωα(p) =

(α− 1)R2

2α+N(α− 1)
|Σ|
− 1

N+ 2
α−1 .

Plugging this in (50) leads to the expression in Prop. 18.

As for the cross-Ω loss L×Ωα(fθ, p), we have from Definition 3 and Prop. 17:

L×Ωα(fθ, p) = LΩα(fθ, p)− Ωα(p)

= LΩα(fθ, p) +
1

α(α− 1)
− R2|Σ|

− 1

N+ 2
α−1

2α+N(α− 1)

=
1

2
(µ− µf )>Σ−1

f (µ− µf ) +
1

α(α− 1)
+

R2

2α+N(α− 1)
·

·
(
|Σ|
− 1

N+ 2
α−1

(
α− 1

2
Tr(Σ−1

f Σ)

)
− |Σf |

− 1

N+ 2
α−1

(
1 +

N(α− 1)

2

))
.

In the univariate case (N = 1) this becomes:

L×Ωα(fθ, p) =
(µ− µf )2

2σ2
f

+
1

α(α− 1)
+

R2

3α− 1
·

(
α− 1

2
σ

2(1−α)
1+α

σ2

σ2
f

− α+ 1

2
σ

2(1−α)
1+α

f

)

=
(µ− µf )2

2σ2
f

+
1

α(α− 1)
+

R2

3α− 1
·

(
α− 1

2

σ
2

1+α

σ2
f

− α+ 1

2
σ

2(1−α)
1+α

f

)
.

Geometry. In the case of 1-d Gaussian distributions, the KL divergence induces a hy-
perbolic geometry on the [µ, σ] half-space, isomorphic to the Poincaré half-space model:
geodesics and interpolating points in this space correspond to half-circles, e.g., the midpoint
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Figure 13: Geodesics of the β-Gaussian Fenchel-Young loss in the [µ, σ] half-plane between
two Dirac limit cases with means ±0.5. For α = 1, the FY loss (equivalent to
the Kullback-Leibler divergence) induces the Poincaré half-plane geometry, and
geodesics are half-circles.

between two 1-d Gaussians has larger standard deviation than each (Peyré and Cuturi, 2019,
Remark 8.2). The Fenchel-Young loss between a β-Gaussian and a parabola f reduces to the
KL divergence for α = 1, suggesting a similarly interesting induced geometry. Considering the
[µ, σ] space as a manifold, its geometry is captured by the metric tensor, which in the Gaussian
case is F1 = diag([σ−2, 2σ−2]). Taking a second-order Taylor expansion of the Fenchel-Young

loss15 yields the Riemannian metric tensor Fα = diag([σ−2, 4R2(α−1)
(α+1)(3α−1)σ

− 4α
α+1 ]). Figure 13

shows geodesics in this space for different values of α.

E.3 Proof of Proposition 23

We have

∇θEp[ψi(t)] = ∇θ
∫
S
pθ(t)ψi(t) =

∫
S
∇θpθ(t)ψi(t)

=

∫
S
p2−α
θ (t)∇θ log2−α(pθ(t))ψi(t)

=

∫
S
p2−α
θ (t)∇θ(θ>φ(t)−Aα(θ))ψi(t)

=

∫
S
p2−α
θ (t)(φ(t)−∇θAα(θ))ψi(t).

Using the expression for ∇θAα(θ) from Proposition 9 yields the desired result.

15. Despite the asymmetry, the result is the same regardless which pair of parameters are varied.
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Appendix F. Proofs for continuous fusedmax

F.1 Proof of Proposition 20

We split this proof into two parts. First, we show that p̂ΩγROF
(t) = [û[f ](t)− τ ]+ where û[f ]

is the solution of the unconstrained ROF optimization:

arg min
u∈H1

∫
S

(f − u)2 + γ TV(u) .

Then, we invoke the taut string algorithm to solve the ROF optimization for signals of the
given form, yielding the desired result.

Definition 24 (Total variation.) The total variation of a function f ∈ L1(S) is defined
as

TV(u) = sup

{∫
S
u(t)ξ′(t) : ξ ∈ C1

0 (S), ‖ξ‖ ≤ 1

}
,

where C1
0 denotes the set of continuously differentiable functions with compact support over

S.

Indeed, when u′ exists, this definition leads to TV(u) =
∫
S |u

′|.

Decomposition of constrained ROF optimization. Let L2(S) denote the standard
Hilbert space of Lebesgue-measurable, square-integrable functions over an interval S, and
L2

+(S) the cone of non-negative functions. We can identify densities in M1
+(S) with

probability density functions in L2
+(S)∩{p :

∫
S p = 1}. We shall use 〈·, ·〉 to denote the inner

product in L2(S), and ‖ · ‖ the corresponding norm.

Proposition 25 Assume that f is chosen such that the ROF objective is bounded, i.e.,

inf
u∈L2

1

2
‖f − u‖2 + γ TV(u) <∞ ,

and let û[f ] denote the maximizer above. Then,

p̂ΩγROF
[f ] = arg min

p∈M1
+

1

2
‖f − p‖2 + γ TV(p)

exists and is given by

p̂ΩγROF
[f ](t) = [û[f ]− τ ]+ ,

for some τ that can be found by solving
∫
S p̂ΩγROF

[f ] = 1.

Proof The proof proceeds in two parts. First, we eliminate the normalization constraint
by showing it can be absorbed into the function f . Then, we show that the non-negativity
constraint can be obtained via clipping. We remark that in the discrete case this result is
well-known (Yu, 2013), but the proof therein does not readily apply in the continuous case.
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Using the method of Lagrange multipliers, we move the normalization constraint into
the objective, yielding

p̂ΩγROF
[f ] = arg min

p∈L2
+

1

2
‖f − p‖2 + γ TV(p) + τ

∫
S
p

= arg min
p∈L2

+

1

2
‖p‖2 +

1

2
‖f‖2 − 〈p, f − τ〉+ γ TV(p).

Assuming τ fixed at its (unknown) optimal value, this is equivalent to

= arg min
p∈L2

+

1

2
‖p− (f − τ)‖2 + γ TV(p).

Using the invariance of TV to a constant, we then get

= arg min
p∈L2

+

1

2
‖(p+ τ)− f‖2 + γ TV(p+ τ).

Choosing p = û[f ] − τ would minimize the above objective, but might not satisfy the
non-negativity constraints. We next show that [û[f ] − τ ]+ is optimal for the constrained
problem. Without loss of generality, we may assume τ = 0, so it suffices to show that:

arg min
u∈L2

+

1

2
‖u− f‖2 + γ TV(u) = [û[f ]]+ .

The rest of the proof closely follows (Overgaard, 2019, Theorem 5), replacing ‖u‖1 with
ιL2

+
(u), and thus replacing the soft threshold map with the clipping map at zero, and the

dual set B, instead of the L∞ unit ball, is the polar cone (L2
+)◦ = {f ∈ L2 : f(t) ≤ 0} = L2

−.
Specifically, since

ιL2
+

(f) = (σ∗L2
+

)(f) = σ(L2
+)◦(f) = sup

η∈L2
−

〈u, η〉,

we have

Eγ(u) = sup
ξ∈K,η∈L2

−

1

2
‖f − u‖2 + γ〈u, ξ′〉+ 〈u, η〉 = sup

ζ∈C

1

2
‖f − u‖2 + 〈u, ζ〉

where L2
− is a polar cone in L2(S) and thus closed and convex (Bauschke and Combettes,

2011, Proposition 6.24), K is a set of test functions, closed and convex in H1(S) per
(Overgaard, 2019, Lemma 2) implying K ′ = {ξ′ : ξ ∈ K} is convex and closed in L2(S). We
define C = γK ′ + L2

−, which has the same structure as in the proof of (Overgaard, 2019,
Theorem 5), so it is also a closed convex set. Following (Overgaard, 2019, Theorem 3) we
have that

minEγ(u) = max
ζ∈C
‖f‖2 − ‖f − ζ‖2

with an optimal primal-dual pair satisfying

u? = f − ζ?
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alongside the necessary and sufficient optimality condition

〈f − ζ?, ζ − ζ?〉 ≤ 0 for all ζ ∈ C .

Setting ζ = γξ?′ − η we get the condition

〈f − γξ?′ − η?, η − η?〉 ≤ 0 for all η ∈ L2
− ,

which implies by the projection theorem that

η? = [f − γξ?′]−

and thus

u? = f − γξ?′ − η? = f − γξ?′ − [f − γξ?′]− = [f − γξ?′]+ .

It remains to show that ξ? can be taken to be the optimal dual variable from the unconstrained
model, i.e., that γξ?′ = f − û[f ], then, it follows that u? = [û[f ]]+. To show this, we set
ζ = γξ − η?, giving

〈f − γξ?′ − η?, ξ′ − ξ?′〉 ≤ 0 for all ξ ∈ K ,

and since η? = [f − γξ?′]−, ξ? must satisfy

〈[f − γξ?′]+, ξ′ − ξ?′〉 ≤ 0 for all ξ ∈ K , (55)

We define H(t) = 1
2 [t]2+, chosen such that H ′(t) = [t]+. By (Overgaard, 2019, Lemma 1), we

have that the ROF taut-string solution ξ̂[f ] is also a solution to

inf
ξ∈K

LH(f − γξ′) where LH(W ) =

∫
S
H(W ′) .

But this problem has optimality condition

〈H ′(f − γξ?′), ξ′ − ξ?′〉 ≤ 0

which is exactly Equation (55). This shows that the choice ξ? = ξ̂ and η? = [f − γξ̂′]−
satisfies the optimality conditions, so [û]+ is optimal for the constrained problem.

Application of the taut string algorithm. In this section, we prove Proposition 20,
using Proposition 25 and the taut string algorithm (Overgaard, 2019).

Specifically, we assume f is even and unimodal, strictly decreasing on (0,∞), and show
that

p̂ΩγROF
[f ](t) = [fa(t)− τ ]+, where fa(t) :=

{
f(a), t ∈ (−a, a),

f(t), otherwise.

We make the technical assumption that S = [−B,B], to ensure that all subproblems are
computable and bounded. We shall see that the end result does not depend on B as long as
B is large enough, and therefore holds for S = (−∞,∞).
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Figure 14: Taut string interpretation. For unimodal even potential, the solution is symmetric
and the contact set has the form (−B0,−a) ∪ (a,B0). Left: f(t) = −|t|/σ, right:
f(t) = −t2/2σ2.

We begin by computing the cumulative signal

F (x) =

∫ x

−B
f,

which, from the monotonicity of f , is concave on [−B, 0] and convex on [0, B]. We must
compute the trajectory of a taut string between the ends of F through a tube of radius γ,
i.e.,

min
W∈Tγ

J [W ] :=
1

2

∫ B

−B
(W ′(x))2dx.

where Tγ :=
{
W ∈ H1(S) : W (−B) = F (−B),W (B) = F (B), F − γ ≤W ≤ F + γ

}
. Then,

by (Overgaard, 2019, Theorem 1), we have û[f ] = W ′.
The functional J [W ] is equivalent to the arc length functional, so this corresponds to

finding the shortest path between the end points. The problem is illustrated in Figure 14.
First, since f is symmetric around the origin, it is sufficient to consider the interval [0, B].

This will greatly simplify the derivation. Then, observe that on [0, B], the “top” part of the
tube is never an active constraint. To show this, note that F itself is feasible. It suffices
to show that any solution above F has higher objective value. Consider a perturbation
ξ ∈ H1(S) such that ξ(0) = ξ(B) = 0 and ξ ≥ 0. Calculate

J [F + ξ]− J [F ] = ‖f + ξ′‖2 − ‖f‖2

= ‖f‖2 + ‖ξ′‖2 + 2〈f, ξ′〉 − ‖f‖2 = ‖ξ′‖2 + 2〈f, ξ′〉.

Using integration by parts, we have

〈f, ξ′〉 = fξ|B0 − 〈f ′, ξ〉 = 〈−f ′, ξ〉.

Since f is decreasing on [0, B], −f ′ ≥ 0, therefore

J [F + ξ]− J [F ] = ‖ξ′‖2 + 2〈−f ′, ξ〉 ≥ 0.
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We have thus shown we may ignore the top part of the tube, leaving the simpler variational
problem

min
W

J [W ] s.t. W (0) = F (0),W (B) = F (B), and W ≥ F − γ.

To handle the inequality constraint, we introduce a slack function Z,

W = F − γ + 1/2Z2.

such that W ′ = f + ZZ ′, and the Lagrangian can be written in terms of Z and Z ′ as

L(x,W,W ′) = 1/2(f + ZZ ′)2.

The solution must satisfy the Euler-Lagrange equations,

d

dx

∂L
∂Z ′
− ∂L
∂Z

= 0.

By the chain rule,
∂L
∂Z ′

= Z(f + ZZ ′) = ZW ′,

∂L
∂Z

= Z ′(f + ZZ ′) = Z ′W ′.

Then, using the product rule, we have

d

dx
(ZW ′)−W ′Z ′ = ZW ′′ +W ′Z ′ −W ′Z ′ = ZW ′′

!
= 0.

This means that for any x ∈ [0, B], either Z(x) = 0 (in which case W = F − γ, so the path
follows the path of the tube), or Z(x) > 0 in which case W ′′(t) = 0 so the solution must be
locally linear.

We may safely assume γ > 0, otherwise, there is no ROF regularization and the solution
is W = F . Therefore, in a small enough ball around the end points F (0) and F (B), the
solution must be locally linear. It remains to show that the set of points on which Z = 0 is
an interval (a,B0). Assume there exist c < d such that Z(c) = Z(d) = 0, but Z(x) > 0 for
c < x < d. We must have W (c) = F (c)−γ and W (d) = F (d)−γ, but, since W ′′ = 0 on (c, d),
W must be a straight line in between, therefore W

(
(1−α)c+αd) = (1−α)F (c) +αF (d)−γ

for α ∈ [0, 1]. But since f is decreasing, F is concave thus

(1− α)F (c) + αF (d)− γ ≤ F
(
(1− α)c+ αd)− γ,

therefore the choice of W violates the tube constraints and is infeasible, so the optimal W
must be stuck to the tube for a contiguous interval of the form (a,B0). Taking û[f ] = W ′

and extending by symmetry to [−B,B] leads to the general form of the ROF transform of a
denoised unimodal potential:

û[f ](t) =



f(B0), t ∈ (−B,−B0),

f(t), t ∈ (−B0,−a),

f(a), t ∈ (−a, a),

f(t), t ∈ (a,B0),

f(B0), t ∈ (B0, B),

(56)
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for some a and B0. To find these values, we turn to the ROF objective, which evaluates to

V [û] = .5

∫ B

0
(û− f)2 + γ

∫ B

0
|û′|

= .5
(∫ a

0
(f(a)− f(t))2 +

∫ B

B0

(f(B0)− f(t))2
)
− γ
(
f(B0)− f(a)

)
.

Note that V [û] separates into two independent terms. To solve for a, we evaluate

∂

∂a
V [û] = f ′(a)

(
af(a)−

∫ a

0
f + γ

) !
= 0 .

Since f is strictly decreasing, f ′(a) 6= 0, leaving the identity

af(a)−
∫ a

0
f + γ = 0 . (57)

Sparse projection. For the purposes of computing p̂ΩγROF
on S = R, the specific value

of B0 is not important. We next show that B0 is increasing as a function of B, therefore we
may always set B to a large enough finite value to yield a sufficiently large B0.

Lemma 26 As a function of B, B0 is strictly increasing.

Proof As f is strictly decreasing (non-constant), f ′ < 0, thus the relationship between B0

and B is given by ∂V [û]
∂B0

= 0 as

M(B,B0) = (B −B0)f(B0)−
∫ B

B0

f − γ = 0.

The partial derivatives with respect to each variable are

∂

∂B
M = f(B0)− f(B),

∂

∂B0
M = Bf ′(B0)− f(B0)−B0f

′(B0) + f(B0) = (B −B0)f ′(B0).

The implicit function theorem applies, yielding

∂B0

∂B
= −

(
∂

∂B0
M

)−1( ∂

∂B
M

)
=

f(B)− f(B0)

(B −B0)f ′(B0)
> 0,

where we used the monotonicity of f and the fact that B > B0.

Putting things together: form of the fusedmax solution. The form of û was estab-
lished in Equation (56): it matches the form of f on (a,B0) ∪ (−B0,−a) and is constant
everywhere else. From Proposition 25, we have that

p̂Ω2 [f ](t) = [û[f ](t)− τ ]+ ,
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so p̂Ω2 corresponds to a shift of û followed by a clipping to zero. The lemma we just proved
allows us to ignore B and B0 and solve fusedmax directly for S = R for unimodal potentials,
by choosing a large enough (but still finite) B for the inner ROF problem, so that B0 lie
outside of the support. For arbitrarily large B and thus B0, p̂ has support on an interval
[−b, b], where b satisfies û(b) = τ . We must now find b such that

∫
S p̂ = 1. First, we see that

we must have b > a, because otherwise p̂ ≡ 0 contradicting
∫
S p̂ = 1. Thus, a < b < B0,

giving

1
!

= 2

∫ a

0
f(a) + 2

∫ b

a
f(t)− 2

∫ b

0
τ

= 2

(
af(a)− bf(b) +

∫ b

a
f(t)

)
.

From Equation (57), we have af(a)−
∫ a

0 f(t) = −γ. Subtracting from the above gives∫ b

0
f(t)− bf(b) = 1/2 + γ. (58)

If we have access to f and its antiderivative, we can therefore compute both a and b from
Equations (57) and (58) respectively. This completes the proof of the proposition.

F.2 Sobolev regularization: smooth sparsemax.

We recall the definition of the optimization problem to be solved,

p̂Ω2,2 [f ] := arg min
p∈M1

+

1

2

∫
S

(p(t)− f(t))2 +
γ

2

∫
S

(
p′(t)

)2
.

This problem falls within the framework of calculus of variations. We first remark that since
f is even, so is p: to see this, consider q(t) = p(−t) and observe that J [p] = J [q]. Since the
solution is unique we must have evenness in the optimum. We can therefore restrict the
optimization to (0,∞), where f is strictly decreasing and continuously differentiable.

Rewriting the problem in more standard notation, we have

arg min
p∈H1(0,∞)

∫
S
F (t, p, p′) subject to

∫
S
G(t, p, p′) = 1, g(t, p, p′) ≥ 0 ,

where F (t, p, q) = 1/2(f − p)2 + γ/2 q2, G(t, p, q) = p, and g(t, p, q) = p. To handle the
equality constraint, we introduce the dual scalar λ for the equality constraint, leading to the
lagrangian

L[p] =

∫
S
F + τG .

To handle the inequality constraint, we make the change of variable p(t) = 1
2z(t)2. We have

F (t, p, p′) = 1/2 (p− f)2 + γ/2
(
p′
)2

= 1/2

(
z2

2
− f

)2

+ γ/2
(
zz′
)2

= F̄ (t, z, z′) ,

where F̄ (t, z, z′) := 1/2

(
z2

2 − f
)2

+ γ/2 (zr)2 , and similarly

G(t, p, p′) = p =
z2

2
= Ḡ(t, z, z′)
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where Ḡ(t, z, r) = 1
2z

2. Now, consider the functional in terms of z,

L̄[z] =

∫
S
F̄ + τḠ .

The associated Euler-Lagrange equation is

F̄z −
d

dt
F̄r + τḠz = 0 .

The partial derivatives of the functionals above are

F̄z(t, z, z
′) = z(p− f) + γz(z′)2, F̄r(t, z, z

′) = γz2z′, Ḡz(t, z, z
′) = z .

Taking the total derivative of F̄r we get

d

dt
(z2z′) = 2γz(z′)2 + γz2z′′ .

Substituting everything into the Euler-Lagrange equation, we get

z
(
p− f − γ

(
(z′)2 + zz′′

)
+ τ
)

= 0 .

Remarking that p′′ = (z′)2 + zz′′, we rewrite in terms of p:

z(p− γp′′ − f + τ) = 0 .

Note that z(t) = 0 implies p(t) = 0. Let p̄ denote a solution of the differential equation

p− γp′′ = f − τ .

Then, our regularized prediction map is

p(t) =

{
p̄(t), t ∈ S̄,
0, t ∈ S \ S̄.

It remains to figure out S̄ and a suitable p̄.

Form of the support. We show that S̄ takes the form [0, b]. Surely we cannot have b = 0,
due to the constraint that p must integrate to 1. We then show that for any 0 < c1 < c2

with p(c1) = p(c2) = 0, we must have p(t) = 0 for all t ∈ (c1, c2). To show this, we first
argue that the optimal p must be non-increasing on (0,∞). Let (d1, d2) be some interval on
which p is non-decreasing. According to (Anevski and Soulier, 2011, lemma 2) (after flipping

the constraint), the minimizer of min
∫ d2

d1
(f − q)2 over the set of non-decreasing functions

is the (left-)derivative of the greatest convex minorant of F (x) :=
∫ t
d1
f(t). But since f is

strictly decreasing, F is concave, so its greatest convex minorant is linear. Therefore, in
terms of the L2 norm, no non-decreasing function is a better approximator of a decreasing
f than a constant function. Moreover, the constant function is also optimal in terms of
Ω2,2. Therefore, p must be constant on any interval on which it is non-decreasing; Since
p is continuous, it is non-increasing. But the only non-increasing function on (c1, c2) with
p(c1) = p(c2) = 0 must be equal to 0 on the entire interval. Therefore, the support takes the
form [0, b].

57



Martins, Treviso, Farinhas, Aguiar, Figueiredo, Blondel, and Niculae

Form of the function. The corresponding homogeneous differential equation, p−γp′′ = 0,
has characteristic polynomyal 1− γr2 = (1− r)(1 + r), with roots ±γ−1/2. For brevity of
notation let β = γ−1/2. This are p1 = e−βt, p2 = eβt. To find a particular solution for any
f , we apply the method of variation of parameters. Rewrite the equation as p′′ − β2p = g,
where g = −β2(f − τ). The Wronskian is W = p1p

′
2 − p′1p2 = 2β. A particular solution is

P = −p1

∫
gp2

2β
+ p2

∫
gp1

2β

=
βe−βt

2

∫
(f − τ)eβt − βeβt

2

∫
(f − τ)e−βt

=
βe−βt

2

(∫
feβt − τ

β
eβt
)
− βeβt

2

(∫
fe−βt +

τ

β
e−βt

)
=
βe−βt

2

∫
feβt − βeβt

2

∫
fe−βt − τ .

Solutions take the form C1p1 + C2p2 + P , giving the general form

p̄ = eβt
(
C2 −

β

2

∫
fe−βt

)
+ e−βt

(
C1 +

β

2

∫
feβt

)
− τ .

We now make use of the assumption that f(−t) = f(t). Letting F (t) = β exp(βt)
2

∫
f(t) exp(−βt)dt,

a change of variable yields

p̄(t) = C2 exp(βt) + C1 exp(−βt)− (F (t) + F (−t))− τ .

Since by symmetry p̄(t) = p̄(−t), we must have C2 = C1 = C and thus

p̄(t) = C cosh(βt)− (F (t) + F (−t))− τ .

Appendix G. Proofs for continuous attention with Gaussian RBFs

We derive expressions for the evaluation and gradient computation of continuous attention
mechanisms where ψ(t) are Gaussian radial basis functions and f(t) is a quadratic function,
both for the softmax (α = 1) and sparsemax (α = 2) cases. For softmax, we show closed-form
expressions for any number of dimensions (including the 1-d and 2-d cases). For sparsemax,
we derive closed-form expressions for the 1-d case, and we reduce the 2-d case to a univariate
integral on an interval, easy to compute numerically. More generally, we show how closed-
form expressions can be obtained for the 1-d case when α is of the form α = n+1

n with
n ∈ N (including α ∈ {4/3, 3/2, 2} as particular cases, corresponding to triweight, biweight,
and sparsemax).

This makes it possible to plug both continuous attention mechanisms in neural networks
and learn them end-to-end with the gradient backpropagation algorithm.

G.1 Continuous softmax (α = 1)

We derive expressions for continuous softmax for multivariate Gaussians in RD. This includes
the 1-d and 2-d cases, where D ∈ {1, 2}.

58



Sparse Continuous Distributions and Fenchel-Young Losses

If S = RD, for φ(t) = [t, tt>], the distribution p = p̂Ω1 [fθ], with fθ(t) = θ>φ(t), is a
multivariate Gaussian where the mean µ and the covariance matrix Σ are related to the
canonical parameters as θ = [Σ−1µ,−1

2Σ−1].

We derive closed form expressions for the attention mechanism output ρ1(θ) = Ep[ψ(t)]
in (25) and for its Jacobian Jρ1(θ) = covp,1(φ(t), ψ(t)) in (26), when ψ(t) are Gaussian
RBFs, i.e., each ψj is of the form ψj(t) = N (t;µj ,Σj).

Forward pass. Each coordinate of the attention mechanism output becomes the integral
of a product of Gaussians,

Ep[ψj(t)] =

∫
RD
N (t;µ,Σ)N (t;µj ,Σj).

We use the fact that the product of two Gaussians is a scaled Gaussian,N (t;µ,Σ)N (t;µj ,Σj) =
s̃N (t; µ̃, Σ̃), with

s̃ = N (µ;µj ,Σ + Σj), Σ̃ = (Σ−1 + Σ−1
j )−1, µ̃ = Σ̃(Σ−1µ+ Σ−1

j µj).

Therefore, the forward pass can be computed as:

Ep[ψj(t)] = s̃

∫
RD
N (t; µ̃, Σ̃) = s̃ = N (µ;µj ,Σ + Σj). (59)

Backward pass. To compute the backward pass, we have that each row of the Jacobian
Jρ1(θ) becomes a first or second moment under the resulting Gaussian:

covp,1(t, ψj(t)) = Ep[tψj(t)]− Ep[t]Ep[ψj(t)] =

∫
RD

tN (t;µ,Σ)N (t;µj ,Σj)− s̃µ

= s̃

∫
RD

tN (t; µ̃, Σ̃)− s̃µ = s̃(µ̃− µ),

(60)

and, noting that Σ = E[(t− µ)(t− µ)>] = E[tt>]− µµ>,

covp,1(tt>, ψj(t)) = Ep[tt>ψj(t)]− Ep[tt>]Ep[ψj(t)]

=

∫
RD

tt>N (t;µ,Σ)N (t;µj ,Σj)− s̃(Σ + µµ>)

= s̃

∫
RD

tt>N (t; µ̃, Σ̃)− s̃(Σ + µµ>) = s̃(Σ̃ + µ̃µ̃>)− s̃(Σ + µµ>)

= s̃(Σ̃ + µ̃µ̃> − Σ− µµ>).

(61)

G.2 Continuous sparsemax in 1-d (α = 2, D = 1)

With φ(t) = [t, t2], the distribution p = p̂Ω2 [fθ], with fθ(t) = θ>φ(t), becomes a truncated
parabola where µ and σ2 are related to the canonical parameters as above, i.e., θ = [ µ

σ2 ,− 1
2σ2 ].

We derive closed form expressions for the attention mechanism output ρ2(θ) = Ep[ψ(t)] in

(25) and its Jacobian Jρ2(θ) = ∂ρ2(θ)
∂θ = covp,2(φ(t), ψ(t)) in (26) when ψ(t) and Gaussian

RBFs, i.e., each ψj is of the form ψj(t) = N (t;µj , σ
2
j ).
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Forward pass. Each coordinate of the attention mechanism output becomes:

Ep[ψj(t)] =

∫ µ+a

µ−a

(
−τ − (t− µ)2

2σ2

)
N (t;µj , σ

2
j )

=

∫ µ−µj+a

σj

µ−µj−a
σj

1

σj

(
−τ − (σjs+ µj − µ)2

2σ2

)
N (s; 0, 1)σjds,

where a = (3
2σ

2)1/3 and τ = − a2

2σ2 = −1
2( 3

2σ )2/3, as stated in (42), and we made the

substitution s =
t−µj
σj

. We use the fact that, for any u, v ∈ R such that u ≤ v:

∫ v

u
N (t; 0, 1) =

1

2

(
erf

(
v√
2

)
− erf

(
u√
2

))
,∫ v

u
tN (t; 0, 1) = −N (v; 0, 1) +N (u; 0, 1),∫ v

u
t2N (t; 0, 1) =

1

2

(
erf

(
v√
2

)
− erf

(
u√
2

))
− vN (v; 0, 1) + uN (u; 0, 1),

from which the expectation (62) can be computed directly.

Backward pass. Since |supp(p)| = 2a, we have from (15) and (63) that each row of the
Jacobian Jρ2(θ) becomes:

covp,2(t, ψj(t)) =∫ µ+a

µ−a
tN (t;µj , σ

2
j )−

1

2a

(∫ µ+a

µ−a
t

)(∫ µ+a

µ−a
N (t;µj , σ

2
j )

)

=

∫ µ−µj+a

σj

µ−µj−a
σj

(µj + σjs)N (s; 0, 1)− 1

2a

(
(µ+ a)2

2
− (µ− a)2

2

)
︸ ︷︷ ︸

=µ

∫ µ−µj+a

σj

µ−µj−a
σj

N (s; 0, 1)



= (µj − µ)

∫ µ−µj+a

σj

µ−µj−a
σj

N (s; 0, 1) + σj

∫ µ−µj+a

σj

µ−µj−a
σj

sN (s; 0, 1)

=
µj − µ

2

(
erf

(
µ− µj + a√

2σj

)
− erf

(
µ− µj − a√

2σj

))

−σj
(
N
(
µ− µj + a

σj
; 0, 1

)
−N

(
µ− µj − a

σj
; 0, 1

))
,
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and

covp,2(t2, ψj(t)) =∫ µ+a

µ−a
t2N (t;µj , σ

2
j )−

1

2a

(∫ µ+a

µ−a
t2
)(∫ µ+a

µ−a
N (t;µj , σ

2
j )

)

=

∫ µ−µj+a

σj

µ−µj−a
σj

(µj + σjs)
2N (s; 0, 1)− 1

2a

(
(µ+ a)3

3
− (µ− a)3

3

)
︸ ︷︷ ︸

=a2

3
+µ2

∫ µ−µj+a

σj

µ−µj−a
σj

N (s; 0, 1)



=

(
µ2
j − µ2 − a2

3

)∫ µ−µj+a

σj

µ−µj−a
σj

N (s; 0, 1) + 2µjσj

∫ µ−µj+a

σj

µ−µj−a
σj

sN (s; 0, 1) + σ2
j

∫ µ−µj+a

σj

µ−µj−a
σj

s2N (s; 0, 1)

=

(
µ2
j − µ2 + σ2

j −
a2

3

)(
erf

(
µ− µj + a√

2σj

)
− erf

(
µ− µj − a√

2σj

))

−σj(µ+ µj + a)N
(
µ− µj + a

σj
; 0, 1

)
+ σj(µ+ µj − a)N

(
µ− µj − a

σj
; 0, 1

)
.

G.3 Continuous entmax in 1-d (α = n+1
n , D = 1)

The above procedure can be extended to the case where α = n+1
n with n ∈ N, which includes

the biweight (α = 3/2) and triweight (α = 4/3) as particular cases.

Forward pass. Each coordinate of the attention mechanism output becomes:

Ep[ψj(t)] =

∫ µ+a

µ−a

(
(α− 1)

(
−τ − (t− µ)2

2σ2

)) 1
α−1

N (t;µj , σ
2
j )

=

∫ µ+a

µ−a

(
1

n

(
−τ − (t− µ)2

2σ2

))n
N (t;µj , σ

2
j ),

where τ and a can be computed via Proposition 16. With n ∈ N, the integrand in (66)
becomes the product of a polynomial function of t and a Gaussian, and the integral admits
a closed form expression obtainable through the following formulas:

∫
t2k+1N (t; 0, 1)dt = −N (t; 0, 1)

k∑
j=0

(2k)!!

(2j)!!
t2j + const.

∫
t2k+2N (t; 0, 1)dt = −N (t; 0, 1)

k∑
j=0

(2k + 1)!!

(2j + 1)!!
t2j+1 + (2k + 1)!!Φ(t) + const.,

where Φ(t) = 1
2

(
1 + erf

(
t√
2

))
is the cumulative standard normal distribution, and n!!

denotes the double factorial.
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Backward pass. From (15) and the fact that, with β = 2− α = n−1
n , we have

‖p‖ββ =

∫ µ+a

µ−a

(
(α− 1)

(
−τ − (t− µ)2

2σ2

)) 2−α
α−1

=

∫ µ+a

µ−a

(
(α− 1)

(
−τ − (t− µ)2

2σ2

))n−1

,

and all the integrands necessary for the computation of covp,α(t, ψj(t)) and covp,α(t2, ψj(t))
become either polynomial functions of t (up to degree 2(n − 1) + 2 = 2n) or products of
polynomial functions of t and a Gaussian, hence admit closed-form expressions as above.
For the biweight density (n = 2), we need polynomials up to degree 4, and for the triweight
(n = 3), we need polynomials up to degree 6.

G.4 Continuous sparsemax in 2-d (α = 2, D = 2)

Let us now consider the case where D = 2. For φ(t) = [t, tt>], the distribution p = p̂Ω2 [fθ],
with fθ(t) = θ>φ(t), becomes a bivariate truncated paraboloid where µ and Σ are related
to the canonical parameters as before, θ = [Σ−1µ,−1

2Σ−1]. We obtain expressions for the
attention mechanism output ρ2(θ) = Ep[ψ(t)] and its Jacobian Jρ2(θ) = covp,2(φ(t), ψ(t))
that include 1-d integrals (simple to integrate numerically), when ψ(t) are Gaussian RBFs,
i.e., when each ψj is of the form ψj(t) = N (t;µj ,Σj).

We start with the following lemma:

Lemma 27 Let N (t, µ,Σ) be a D-dimensional multivariate Gaussian, Let A ∈ RD×R be
a full column rank matrix (with R ≤ D), and b ∈ RD. Then we have N (Au + b;µ,Σ) =
s̃N (u; µ̃, Σ̃) with:

Σ̃ = (A>Σ−1A)−1, µ̃ = Σ̃A>Σ−1(µ− b)

s̃ = (2π)
R−D

2
|Σ̃|1/2

|Σ|1/2
exp

(
−1

2
(µ− b)>P (µ− b)

)
, P = Σ−1 − Σ−1AΣ̃A>Σ−1.

If R = D, then A is invertible and the expressions above can be simplified to:

Σ̃ = A−1ΣA−>, µ̃ = A−1(µ− b), s̃ = |A|−1.

Proof The result can be derived by writingN (Au+b;µ,Σ) = (2π)−
R
2 |Σ|−

1
2 exp(−1

2(Au+b−
µ)>Σ−1(Au+b−µ)) and splitting the exponential of the sum as a product of exponentials.

Forward pass. For the forward pass, we need to compute

Ep[ψj(t)] =

∫∫
R2

[
−τ − 1

2
(t− µ)>Σ−1(t− µ)

]
+

N (t;µj ,Σj)dt,

with (from (18)) τ = −
(

1

π
√

det(Σ)

) 1
2

. Using Lemma 27 and the change of variable formula

(which makes the determinants cancel), we can reparametrize u = (−2τ)−
1
2 Σ−

1
2 (t− µ) and
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write this as an integral over the unit circle:

Ep[ψj(t)] =

∫∫
‖u‖≤1

−τ(1− ‖u‖2)N (u; µ̃, Σ̃)du,

with µ̃ = (−2τ)−
1
2 Σ−

1
2 (µj − µ), Σ̃ = (−2τ)−1Σ−

1
2 ΣjΣ

− 1
2 . We now do a change to polar

coordinates, u = (r cos θ, r sin θ) = ar, where a = [cos θ, sin θ]> ∈ R2×1. The integral
becomes:

Ep[ψj(t)] =

∫ 2π

0

∫ 1

0
−τ(1− r2)N (ar; µ̃, Σ̃)r dr dθ

=

∫ 2π

0

∫ 1

0
−τr(1− r2)s̃N (r; r0, σ

2) dr dθ,

where in the second line we applied again Lemma 27, resulting in

σ2(θ) ≡ σ2 = (a>Σ̃−1a)−1

r0(θ) ≡ r0 = σ2a>Σ̃−1µ̃

s̃(θ) ≡ s̃ =
1√
2π

σ

|Σ̃|1/2
exp

(
−1

2
µ̃>Pµ̃

)
, P = Σ̃−1 − σ2Σ̃−1aa>Σ̃−1.

Applying Fubini’s theorem, we fix θ and integrate with respect to r. We use the formulas
(63) and the fact that, for any u, v ∈ R such that u ≤ v:∫ v

u
t3N (t; 0, 1) = −N (v; 0, 1)(2 + v2) +N (u; 0, 1)(2 + u2).

We obtain a closed from expression for the inner integral:

F (θ) =

∫ 1

0
r(1− r2)N (r; r0, σ

2) dr

= (2σ3 + r2
0σ + r0σ)N

(
1− r0

σ
; 0, 1

)
− (2σ3 + r2

0σ − σ)N
(
−r0

σ
; 0, 1

)
−r

3
0 + (3σ2 − 1)r0

2

[
erf

(
1− r0√

2σ

)
− erf

(
− r0√

2σ

)]
.

The desired integral can then be expressed in a single dimension as

Ep[ψj(t)] = −τ
∫ 2π

0
s̃(θ)F (θ),

which may be integrated numerically.

Backward pass. For the backward pass we need to solve

covp,2(t, ψj(t)) =

∫∫
E
tN (t;µj ,Σj)−

1

|E|

(∫∫
E
t

)(∫∫
E
N (t;µj ,Σj)

)
(72)

and

covp,2(tt>, ψj(t)) =

∫∫
E
tt>N (t;µj ,Σj)−

1

|E|

(∫∫
E
tt>
)(∫∫

E
N (t;µj ,Σj)

)
(73)
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where E = supp(p) = {t ∈ R2 | 1
2(t − µ)>Σ−1(t − µ) ≤ −τ} denotes the support of the

density p, a region bounded by an ellipse. Note that these expressions include integrals of
vector-valued functions and that (72) and (73) correspond to the first to second and the
third to sixth row of the Jacobian, respectively. The integrals that do not include Gaussians
have closed form expressions and can be computed as

1

|E|

(∫∫
E
t

)
= µ and

1

|E|

(∫∫
E
tt>
)

= µµ> +
Σ

|E|
,

where |E| is the area of the region E given by |E| = π√
det( 1

−2τ
Σ−1)

.

All the other integrals are solved using the same affine transformation and change to
polar coordinates as in the forward pass. Given this, µ̃, Σ̃, a, σ2, r0 and s̃ are the same as
before. To solve (72) we write∫∫

E
tN (t;µj ,Σj) =

∫∫
‖u‖≤1

(
(−2τ)

1
2 Σ

1
2u+ µ

)
N (u; µ̃, Σ̃)du

in polar coordinates, ∫ 2π

0

∫ 1

0
r
(

(−2τ)
1
2 Σ

1
2ar + µ

)
s̃N (r; r0, σ

2)dr dθ,

which can be then expressed in a single dimension as∫∫
E
tN (t;µj ,Σj) =

∫ 2π

0
s̃(θ)G(θ)dθ,

with

G(θ) =

∫ 1

0
r
(

(−2τ)
1
2 Σ

1
2ar + µ

)
N (r; r0, σ

2) dr

=

∫ 1−r0
σ

− r0
σ

(sσ + r0)
(

(−2τ)
1
2 Σ

1
2a(sσ + r0) + µ

)
N (r; r0, σ

2) ds

=
(

(−2τ)
1
2 Σ

1
2aσ(r0) + µσ

)
N
(
−r0

σ
; 0, 1

)
−
(

(−2τ)
1
2 Σ

1
2aσ(1 + r0) + µσ

)
N
(

1− r0

σ
; 0, 1

)
+

1

2

(
(−2τ)

1
2 Σ

1
2a(σ2 + r2

0) + µr0

)[
erf

(
1− r0√

2σ

)
− erf

(
− r0√

2σ

)]
.

We do the same for∫∫
E
N (t;µj ,Σj) =

∫∫
‖u‖≤1

N (u; µ̃, Σ̃)du =

∫ 2π

0

∫ 1

0
rs̃N (r; r0, σ

2)dr dθ,

which can then be expressed in a single dimension as∫∫
E
N (t;µj ,Σj) =

∫ 2π

0
s̃(θ)H(θ)dθ,
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with

H(θ) =

∫ 1

0
rN (r; r0, σ

2) dr =

∫ 1−r0
σ

− r0
σ

(sσ + r0)N (r; r0, σ
2) ds

= σ

[
N
(
−r0

σ
; 0, 1

)
−N

(
1− r0

σ
; 0, 1

)]
+
r0

2

[
erf

(
1− r0√

2σ

)
− erf

(
− r0√

2σ

)]
.

Finally, to solve (73) we simplify the integral∫∫
E
tt>N (t;µj ,Σj) =

∫∫
‖u‖≤1

(
(−2τ)

1
2 Σ

1
2u+ µ

)(
(−2τ)

1
2 Σ

1
2u+ µ

)>
N (u; µ̃, Σ̃)du

=

∫ 2π

0

∫ 1

0
r(r2A+ rB + C)s̃N (r; r0, σ

2)dr dθ

with

A = (−2τ)Σ
1
2aa>(Σ

1
2 )>, B = (−2τ)

1
2

(
Σ

1
2aµ> + µa>(Σ

1
2 )>
)
, C = µµ>.

The integral can then be expressed in a single dimension as∫∫
E
tt>N (t;µj ,Σj) =

∫ 2π

0
s̃(θ)M(θ)dθ,

with

M(θ) =

∫ 1

0
(r3A+ r2B + rC)N (r; r0, σ

2)dr

=

∫ 1−r0
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− r0
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1

2

(
B̃ + D̃
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where

Ã = σ3A, B̃ = σ2(3r0A+B), C̃ = σ(3r2
0 A+2r0B+C), D̃ = r3

0 A+r2
0 B+r0C.

Appendix H. Experimental details

H.1 Audio classification

We used the UrbanSound8k dataset (Salamon et al., 2014), which contains 8732 labeled
sound excerpts (≤ 4s) from 10 urban classes. We set the sampling rate to 16kHz for all
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Table 6: Hyperparmeters for audio classification.

Hyperparameter Value

Batch size 16
Number of epochs 20
Optimizer Adam
`2 regularization 0.000002
Learning rate 0.001
Conv. filters 128
Conv. kernel size 5
Conv. activation ReLU
Conv. dropout 0.15
Max-pooling size 3
Gaussian RBFs (§8.1) 128� L with µ linearly spaced in [0, 1] and Σ = [0.1, 0.5]
Ridge penalty λ 0.1
Discrete attention (Bahdanau et al., 2015)

audios. The audios were transformed into a sequence of vectors by using short-time Fourier
transform (STFT) with 400 points, a window size of 25ms, and a hop size of 10ms. After this
transformation, we extract 80 Mel-frequency filter banks. We used SpeechBrain (Ravanelli
et al., 2021) to implement the input pipeline and the model, following the standard recipe for
UrbanSound8k.16 Our model consists of a convolutional 1-d layer followed by an attention
mechanism and an output layer. Table 6 shows the hyperparameters used for all audio
classification experiments.

H.2 Visual question answering

We used the VQA-v2 dataset (Goyal et al., 2019) with the standard splits (443K, 214K,
and 453K question-image pairs for train/dev/test, the latter subdivided into test-dev, test-
standard, test-challenge and test-reserve). We adapted the implementation of Yu et al.
(2019),17 consisting of a Modular Co-Attention Network (MCAN). Our architecture is the
same as Yu et al. (2019) except that we represent the image input with grid features generated
by a ResNet (He et al., 2016) pretrained on ImageNet (Russakovsky et al., 2015), instead of
bounding-box features (Anderson et al., 2018). The images are resized to 448× 448 before
going through the ResNet that outputs a feature map of size 14× 14× 2048. To represent
the input question words we use 300-dimensional GloVe word embeddings (Pennington et al.,
2014), yielding a question feature matrix representation. Table 7 shows the hyperparameters
used for all the VQA experiments presented.

All the models we experimented with use the same features and were trained only on
the train set without data augmentation.

Examples. Figure 15 illustrates the difficulties that continuous attention models may
face when trying to focus on objects that are too far from each other or that seem to have
different relative importance to answer the question. Intuitively, in VQA, this becomes a

16. https://github.com/speechbrain/speechbrain/tree/develop/recipes/UrbanSound8k

17. https://github.com/MILVLG/mcan-vqa
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Table 7: Hyperparmeters for VQA.

Hyperparameter Value

Batch size 64
Word embeddings size 300
Input image features size 2048
Input question features size 512
Fused multimodal features size 1024
Multi-head attention hidden size 512
Number of MCA layers 6
Number of attention heads 8
Dropout rate 0.1
MLP size in flatten layers 512
Optimizer Adam
Base learning rate at epoch t starting from 1 min(2.5t · 10−5, 1 · 10−4)
Learning rate decay ratio at epoch t ∈ {10, 12} 0.2
Number of epochs 13

How many men are seen in this picture? 2

1E
-14

1E
-08

1E
-01

1E
+01

1

0

9

13
15

1

Figure 15: Attention maps for an example in VQA-v2: original image, discrete attention,
continuous softmax, and continuous sparsemax.

problem when counting objects in those conditions. On the other side, in counting questions
that require the understanding of a contiguous region of the image only, continuous attention
may perform better (see Figure 16). Figure 17 shows another example where continuous
attention focus on the right region of the image and answers the question correctly. For this
case, discrete attention is more diffuse than its continuous counterpart: it attends to two
different regions in the image, leading to incorrect answers.
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Figure 17: Attention maps for an example in VQA-v2: original image, discrete attention,
continuous softmax, and continuous sparsemax.
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