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Abstract

Gradient descent (GD) type optimization methods are the standard instrument to train
artificial neural networks (ANNs) with rectified linear unit (ReLU) activation. Despite the
great success of GD type optimization methods in numerical simulations for the training of
ANNs with ReLU activation, it remains – even in the simplest situation of the plain vanilla
GD optimization method and ANNs with one hidden layer – an open problem to prove
(or disprove) the conjecture that the risk of the GD optimization method converges in the
training of such ANNs to zero. In this article we establish in the situation where the proba-
bility distribution of the input data is equivalent to the continuous uniform distribution on
a compact interval, where the probability distribution for the random initialization of the
ANN parameters is the standard normal distribution, and where the target function under
consideration is continuous and piecewise affine linear that the risk of the considered GD
process converges exponentially fast to zero with a positive probability. Roughly speaking,
the key ingredients in our mathematical convergence analysis are (i) to prove that suitable
sets of global minima of the risk functions are twice continuously differentiable submanifolds
of the ANN parameter spaces, (ii) to prove that the Hessians of the risk functions on these
sets of global minima satisfy an appropriate maximal rank condition, and, thereafter, (iii)
to apply the machinery in [Fehrman, B., Gess, B., Jentzen, A., Convergence rates for the
stochastic gradient descent method for non-convex objective functions. J. Mach. Learn.
Res. 21(136): 1–48, 2020] to establish local convergence of the GD optimization method.
As a consequence, we obtain convergence of the risk to zero as the width of the ANNs,
the number of independent random initializations, and the number of GD steps increase to
infinity.

Keywords: Gradient descent, artificial neural networks, non-convex optimization

©2022 Arnulf Jentzen and Adrian Riekert.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v23/21-0962.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v23/21-0962.html


Jentzen and Riekert

1. Introduction

Gradient descent (GD) type optimization methods are the standard schemes to train artifi-
cial neural networks (ANNs) with rectified linear unit (ReLU) activation; cf., e.g., (Goodfel-
low et al., 2016, Chapter 5). Even though GD type optimization methods seem to perform
very effectively in numerical simulations, until today in general there is no mathemati-
cal convergence analysis in the literature which explains the success of GD optimization
methods in the training of ANNs with ReLU activation.

There are, however, several promising mathematical analysis approaches for GD opti-
mization methods in the scientific literature. In the case of convex objective functions, the
convergence of GD type optimizations methods to the global minimum in different settings
was shown, e.g., in Bach and Moulines (2013); Jentzen et al. (2021); Moulines and Bach
(2011); Nesterov (2015, 2004); Rakhlin et al. (2012); Schmidt and Roux (2013).

Typically, the objective functions occurring in the training of ANNs with ReLU activa-
tion are non-convex and, instead, admit infinitely many non-global local minima and saddle
points. In view of this, it becomes important to study the landscapes of the risk functions in
the training of ANNs and to develop an understanding of the appearance of critical points
(such as non-global local extrema and saddle points) of the risk functions. Recently, in the
article Cheridito et al. (2022b) a characterization of the saddle points and non-global local
minima of the risk function was obtained for the case of affine target functions. Sufficient
conditions which ensure that the convergence of GD type optimization methods to saddle
points can be excluded have been revealed, e.g., in Ge et al. (2015); Lee et al. (2019, 2016);
Panageas and Piliouras (2017); Panageas et al. (2019).

Another promising direction of research is to study the convergence of GD type opti-
mization methods for the training of ANNs in the so-called overparametrized regime, where
the number of ANN parameters has to be sufficiently large when compared to the number of
used input-output data pairs. In this situation the risks of GD type optimization methods
can be shown to converge to zero with high probability; see, e.g., Arora et al. (2019); Du
et al. (2019b); E et al. (2020b); Jentzen and Kröger (2021); Li and Liang (2018); Rotskoff
and Vanden-Eijnden (2018); Zhang et al. (2019) for the case of ANNs with one hidden layer
and see, e.g., Allen-Zhu et al. (2019a,b); Du et al. (2019a); Sankararaman et al. (2020);
Zou et al. (2020) for the case of ANNs with more than one hidden layer. The results in
these articles apply to the empirical risk, which is measured with respect to a finite set of
input-output data pairs.

For convergence results for GD type optimization schemes without convexity but under
 Lojasiewicz type assumptions we point, e.g., to Absil et al. (2005); Attouch and Bolte (2009);
Dereich and Kassing (2021); Karimi et al. (2020); Lei et al. (2020); Wojtowytsch (2021);
Xu and Yin (2013). Further abstract convergence results for GD type optimization schemes
in the non-convex setting can be found, e.g., in Akyildiz and Sabanis (2021); Bertsekas
and Tsitsiklis (2000); Dereich and Müller-Gronbach (2019); Fehrman et al. (2020); Lovas
et al. (2020); Patel (2021) and the references mentioned therein. In particular, the article
Fehrman et al. (2020) shows convergence towards the global minimum value of some GD
type optimization algorithms with random initializations, provided that the set of global
minima of the objective function is locally a suitable submanifold of the parameter space
and provided that the Hessian of the objective function satisfies a certain maximal rank
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Convergence of GD in the training of ANNs for piecewise linear target functions

condition at these global minima. A key contribution of this work is to demonstrate that
these regularity assumptions are satisfied in the training of ANNs with one hidden layer
and ReLU activation provided that the target function is piecewise affine linear.

We also refer, e.g., to Cheridito et al. (2020); Jentzen and von Wurstemberger (2020); Lu
et al. (2020); Shamir (2019) for lower bounds and divergence results for GD type optimiza-
tion methods. For more detailed overviews and further literature on GD type optimization
schemes we point, e.g., to Bercu and Fort (2013), Bottou et al. (2018), E et al. (2020a),
(Fehrman et al., 2020, Section 1.1), (Jentzen et al., 2021, Section 1), and Ruder (2017).

There are different variants of GD type optimization methods in the scientific literature,
such as the plain vanilla GD optimization method, GD optimization methods with momen-
tum, and adaptive GD optimization methods (cf., e.g., Ruder (2017)), and the plain vanilla
GD optimization method with independent random initializations is maybe the GD based
ANN training scheme which is most accessible for a mathematical convergence analysis.
Despite the above mentioned promising mathematical analysis approaches in the literature,
it remains – even in the simple situation of the plain vanilla GD optimization method with
independent random initializations and ANNs with one hidden layer and ReLU activation –
an open problem to prove (or disprove) the conjecture that the risk of the GD optimization
method converges to the risk of the global minima of the risk function in the training of
such ANNs. It is one of the key contributions of this article to establish convergence of the
plain vanilla GD optimization method with multiple independent random initializations for
ANNs with one hidden layer and ReLU activation in the situation where the probability
distribution of the input data is equivalent to the continuous uniform distribution on a
compact interval with a Lipschitz continuous density, where the probability distributions
for the random initializations of the ANN parameters are standard normal distributions,
and where the target function under consideration is continuous and piecewise affine linear.
Specifically, we obtain convergence of the risk to zero as the width of the ANNs, the number
of independent random initializations, and the number of GD steps increase to infinity. The
precise formulation of this statement is given in Theorem 2 below within this introductory
section.

Theorem 2 is a consequence of the first main result of this article, Theorem 1 below,
which establishes a local convergence result for the plain vanilla GD optimization method
with a single random initialization. Specifically, in Theorem 1 we prove in the case of
ANNs with three layers (1-dimensional input layer, H-dimensional hidden layer, and 1-
dimensional output layer) and in the case of a continuous and piecewise affine linear target
function f : [a, b] → R with N ∈ N ∩ [1, H] grid points that for every sufficiently small
learning rate γ we have that the risk of the considered GD process with learning rate γ
and standard normal random initialization (see (1.2) in Theorem 1) converges exponentially
to zero with a positive probability (see (1.3) in Theorem 1). We now present the precise
statement of Theorem 1 in a self-contained style and, thereafter, we provide some additional
explanations regarding the mathematical objects in Theorem 1.

Theorem 1 Let H, d ∈ N, N ∈ N ∩ [1, H], x0,x1, . . . ,xN , a ∈ R, b ∈ (a,∞), f ∈
C([a, b],R) satisfy d = 3H + 1 and a = x0 < x1 < · · · < xN = b, assume for all
i ∈ {1, 2, . . . , N} that f |[xi−1,xi] is affine linear, let p : [a, b] → (0,∞) be Lipschitz con-
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tinuous, let L : Rd → R satisfy for all θ = (θ1, . . . , θd) ∈ Rd that

L(θ) =

∫ b

a

(
f(x)− θd −

∑H
j=1 θ2H+j [max{θjx+ θH+j , 0}]

)2
p(x) dx, (1.1)

let (Ω,F ,P) be a probability space, let Θγ
n : Ω → Rd, γ ∈ R, n ∈ N0, be random variables,

assume for every γ ∈ R that Θγ
0 is standard normally distributed, let G : Rd → Rd satisfy for

all θ ∈ {ϑ ∈ Rd : L is differentiable at ϑ} that G(θ) = (∇L)(θ), and assume for all γ ∈ R,
n ∈ N0, ω ∈ Ω that

Θγ
n+1(ω) = Θγ

n(ω)− γG(Θγ
n(ω)). (1.2)

Then there exist c,C ∈ (0,∞) such that for all γ ∈ (0, c] it holds that

P
(
lim supn→∞ L(Θγ

n) = 0
)
≥ P

(
∀n ∈ N0 : L(Θγ

n) ≤ C exp(−cγn)
)
≥ c > 0. (1.3)

Theorem 1 is an immediate consequence of Corollary 49 below (applied with ρ x 0 in
the notation of Corollary 49). Corollary 49, in turn, is a direct consequence of Theorem 48
in Subsection 5.2 below, which is the main result of this article.

In Theorem 1 the target function (the function which describes the relationship between
the input and the output data in the considered supervised learning problem) is described
through the continuous function f ∈ C([a, b],R) from the compact interval [a, b] to the real
numbers R. In Theorem 1 this target function f : [a, b] → R is assumed to be piecewise
affine linear in the sense that there exist N ∈ N, x0,x1, . . . ,xN ∈ R with

a = x0 < x1 < ... < xN = b (1.4)

so that for all i ∈ {1, 2, . . . , N} we have that the target function [xi−1,xi] 3 x 7→ f(x) ∈ R
restricted to the sub-interval [xi−1,xi] is affine linear; see above (1.1) in Theorem 1.

In Theorem 1 we also assume that the probability distribution of the input data in the
considered supervised learning problem is absolutely continuous with respect to the standard
uniform distribution on [a, b] with a Lipschitz continuous, strictly positive density. More
specifically, the Lipschitz continuous function p : [a, b]→ (0,∞) in Theorem 1 is assumed to
be an unnormalized density of the probability distribution of the input data with respect
to the Lebesgue measure restricted to [a, b].

In (1.1) in Theorem 1 we consider fully connected feedforward ANNs with the ReLU
activation R 3 x 7→ max{x, 0} ∈ R and three layers: one input layer with 1 neuron on
the input layer (1-dimensional input), one hidden layer with H ∈ N neurons on the hidden
layer (H-dimensional hidden layer), and one output layer with 1 neuron on the output layer
(1-dimensional output). In particular, we describe in (1.1) the risk function L : R3H+1 → R
associated to the supervised learning problem considered in Theorem 1.

The risk function L : R3H+1 → R fails to be continuously differentiable due to the
lack of differentiability of the ReLU activation function R 3 x 7→ max{x, 0} ∈ R and, in
view of this, one needs to introduce appropriate generalized gradients of the risk function
which mathematically describe the behavior of GD steps in implementations in numerical
simulations to mathematically formulate the GD optimization method for the training of
ANNs with ReLU activation. The function G : R3H+1 → R3H+1 in Theorem 1 describes a
generalized gradient function of the risk function L : R3H+1 → R in (1.1). We assume for
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every θ ∈ R3H+1 at which L is differentiable that G(θ) = (∇L)(θ), while the value of G(θ)
at the remaining points θ ∈ R3H+1 is not specified. In Proposition 11 below we identify
a suitable open set V ⊆ R3H+1 with full Lebesgue measure on which L is continuously
differentiable, and we also derive an explicit representation for G(θ) for every θ ∈ V.

For every learning rate γ ∈ R the random variables Θn : Ω → R3H+1, n ∈ N0, in (1.2)
describe the GD process with learning rate γ and standard normal initialization Θγ

0 : Ω →
R3H+1. The conclusion of Theorem 1 in (1.3) demonstrates for every sufficiently small
positive learning rate γ ∈ (0, c] that the risk of the GD process converges exponentially fast
to zero with a strictly positive probability.

Roughly speaking, we prove Theorem 1 and Theorem 48, respectively, (i) by showing
that for every number H ∈ N ∩ [N,∞) of neurons on the hidden layer there exists a
natural number k ∈ N ∩ [1, d) such that a suitable subset of the set of global minima of
the risk function L : Rd → R in (1.1) is a twice continuously differentiable k-dimensional
submanifold of the ANN parameter space Rd = R3H+1 (cf. Lemma 21 and Corollary 29 in
Section 3 below), (ii) by proving that the ranks of the Hessian matrices of the risk function
on this suitable set of global minima of the risk function L : Rd → R in (1.1) are equal to
d− k, and, thereafter, (iii) by applying the machinery in Fehrman et al. (2020) to establish
convergence of the GD optimization method provided that the initial value is contained in
a suitable open neighborhood of certain global minima.

As a consequence of Theorem 1, we obtain in Theorem 2 below that the plain vanilla
GD optimization method with multiple independent random initializations converges in the
training of ANNs with one hidden layer and ReLU activation (under the same assumptions
on the target function and the probability distribution of the input data as in Theorem 1).
We now present the precise statement of Theorem 2.

Theorem 2 Let N ∈ N, x0,x1, . . . ,xN , a ∈ R, b ∈ (a,∞), f ∈ C([a, b],R) satisfy a =
x0 < x1 < · · · < xN = b, assume for all i ∈ {1, 2, . . . , N} that f |[xi−1,xi] is affine linear,

let p : [a, b] → (0,∞) be Lipschitz continuous, let LH : R3H+1 → R, H ∈ N, satisfy for all
H ∈ N, θ = (θ1, . . . , θ3H+1) ∈ R3H+1 that

LH(θ) =

∫ b

a

(
f(x)− θd −

∑H
j=1 θ2H+j [max{θjx+ θH+j , 0}]

)2
p(x) dx, (1.5)

let GH : R3H+1 → R3H+1, H ∈ N, satisfy for all H ∈ N, θ ∈ {ϑ ∈ R3H+1 : LH is

differentiable at ϑ} that GH(θ) = (∇LH)(θ), let (Ω,F ,P) be a probability space, let ΘH,k,γ
n : Ω→

R3H+1, H, k ∈ N, γ ∈ R, n ∈ N0, and kH,k,γn : Ω→ N, H, k ∈ N, γ ∈ R, n ∈ N0, be random
variables, assume for all H ∈ N, γ ∈ R that ΘH,k,γ

0 , k ∈ N, are independent standard normal
random vectors, and assume for all H, k ∈ N, γ ∈ R, n ∈ N0, ω ∈ Ω that

ΘH,k,γ
n+1 (ω) = ΘH,k,γ

n (ω)− γGH(ΘH,k,γ
n (ω)) (1.6)

and
kH,k,γn (ω) ∈ arg min`∈{1,2,...,k} LH(ΘH,`,γ

n (ω)). (1.7)

Then there exists g ∈ (0,∞) such that for all γ ∈ (0, g] it holds that

lim infH→∞ lim infK→∞ P
(

lim supn→∞ LH
(
ΘH,kH,K,γn ,γ
n

)
= 0
)

= 1. (1.8)
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Theorem 2 is a direct consequence of Corollary 50 below. Corollary 50, in turn, follows
from Theorem 48 (see Subsection 5.3 below for details).

In Theorem 2 we have for every number H ∈ N of neurons on the hidden layer, every
natural number k ∈ N, and every learning rate γ ∈ R that the random variables ΘH,k,γ

n : Ω→
R3H+1, n ∈ N0, in (1.6) describe the GD process with learning rate γ. Note that the natural
number k ∈ N counts the number of random initializations, while the index n ∈ N0 specifies
the current gradient step. Observe that the assumption in Theorem 2 that for all H ∈ N,
γ ∈ R it holds that ΘH,k,γ

0 : Ω → R3H+1, k ∈ N, are i.i.d. random variables ensures for

all H ∈ N, n ∈ N0, γ ∈ R that the random variables ΘH,k,γ
n : Ω → R3H+1, k ∈ N, are

i.i.d. Loosely speaking, for every number H ∈ N of neurons on the hidden layer, every
natural number k ∈ N, every learning rate γ ∈ R, and every number n ∈ N of GD steps
we have that the random variable kH,k,γn : Ω → N in (1.7) selects an independent random
initialization with the smallest risk. The conclusion of Theorem 2, equation (1.8), reveals
that there exists a sufficiently small strictly positive real number g ∈ (0,∞) such that
for every learning rate γ ∈ (0, g] we have as the number K ∈ N of independent random
realizations and the number H ∈ N of neurons on the hidden layer increase to infinity
convergence to one of the probability that the risk of the GD optimization method with
independent standard normal random initializations converges to zero.

The remainder of this article is organized as follows. In Section 2 we establish several
regularity properties for the Hessian matrix of the risk function of the considered supervised
learning problem. In Section 3 we employ the findings from Section 2 to establish that a
suitable subset of the set of global minima of the risk function constitutes a C∞-submanifold
of the ANN parameter space Rd = R3H+1 on which the Hessian matrix of the risk function
has maximal rank. In Section 4 we engage the findings from Section 3 to establish that
the risk of certain solutions of GF differential equations converges exponentially quick to
zero. Finally, in Section 5 we establish that the risk of certain GD processes converges
exponentially quick to zero and, thereby, we also prove Theorems 1 and 2 above.

2. Second order differentiability properties of the risk function

In this section we establish in Lemma 14 in Subsection 2.4 below an explicit representa-
tion result for the Hessian matrix of the risk function of the considered supervised learning
problem. In particular, in Lemma 14 we identify a suitable open subset of the ANN pa-
rameter space with full Lebesgue measure on which the risk function is twice continuously
differentiable (see (2.3) below for details). This is nontrivial due to the fact that the ReLU
activation function R 3 x 7→ max{x, 0} ∈ R is not everywhere differentiable. Results related
to Lemma 14 have been shown in (Cheridito et al., 2022b, Lemma 3.8).

Corollary 16 in Subsection 2.4 specializes Lemma 14 to the specific situation where
the ANN parameter represents a global minima of the risk function. In Lemma 15 in
Subsection 2.4 we employ Lemma 14 to conclude under the assumption that the target
function is locally Lipschitz continuous that the second derivative of the risk function is
locally Lipschitz continuous. In Lemma 17, Lemma 18, and Corollary 19 in Subsection 2.5
below we use Lemma 14 to derive suitable upper bounds for the absolute values of the second
order partial derivatives of the risk function. Lemma 15, Corollary 16, and Corollary 19 are
all employed in Section 3 below.
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Our proof of Lemma 14 employs the well-known Leibniz integral rule type result in
Lemma 13 in Subsection 2.4, the known representation and regularity result for the first
derivative of the risk function in Proposition 11 in Subsection 2.4, the elementary continuity
result in Lemma 12 in Subsection 2.4, the elementary and well-known differentiability result
for certain parameter integrals in Lemma 4 in Subsection 2.2 below, and the elementary
continuity result for certain parameter integrals involving indicator functions in Lemma 5
in Subsection 2.2 and Corollary 9 in Subsection 2.3 below. Proposition 11 is a direct
consequence of Propositions 2.2 and 2.11 in Jentzen and Riekert (2022); see also Proposition
2.4 in Cheridito et al. (2022a) for a similar result. Our proof of Lemma 15 also uses the local
Lipschitz continuity results for certain parameter integrals involving indicator functions in
Corollary 10 in Subsection 2.3. Our proofs of Corollaries 9 and 10, in turn, employ the
elementary Lipschitz continuity result for certain parameter integrals involving indicator
functions in Lemma 6 in Subsection 2.2 as well as the local Lipschitz continuity results for
active neuron regions in Lemma 7 and Corollary 8 in Subsection 2.3.

2.1 Mathematical description of artificial neural networks (ANNs)

Setting 3 Let H, d ∈ N, a ∈ R, b ∈ (a,∞), f ∈ C([a, b],R) satisfy d = 3H + 1, let w =
((wθ

1, . . . ,w
θ
H))θ∈Rd : Rd → RH , b = ((bθ1, . . . , b

θ
H))θ∈Rd : Rd → RH , v = ((vθ1, . . . , v

θ
H))θ∈Rd : Rd →

RH , c = (cθ)θ∈Rd : Rd → R, and q = ((qθ1, . . . , q
θ
H)) : Rd → (−∞,∞]H satisfy for all

θ = (θ1, . . . , θd) ∈ Rd, j ∈ {1, 2, . . . ,H} that wθ
j = θj, b

θ
j = θH+j, v

θ
j = θ2H+j, c

θ = θd, and

qθj =

{
−bθj/wθj : wθ

j 6= 0

∞ : wθ
j = 0,

(2.1)

let p : [a, b]→ (0,∞) be Lipschitz continuous, let R : R→ R, N = (N θ)θ∈Rd : Rd → C(R,R),
and L : Rd → R satisfy for all θ ∈ Rd, x ∈ R that R(x) = max{x, 0}, N θ(x) = cθ +∑H

j=1 v
θ
j [R(wθ

jx+ bθj)], and

L(θ) =

∫ b

a
(N θ(y)− f(y))2p(y) dy, (2.2)

let Iθj ⊆ R, θ ∈ Rd, j ∈ {1, 2, . . . ,H}, satisfy for all θ ∈ Rd, j ∈ {1, 2, . . . ,H} that

Iθj = {x ∈ [a, b] : wθ
jx+bθj > 0}, let G = (G1, . . . ,Gd) : Rd → Rd satisfy for all θ ∈ {ϑ ∈ Rd : L

is differentiable at ϑ} that G(θ) = (∇L)(θ), and let V ⊆ Rd satisfy

V =
{
θ ∈ Rd :

(∏H
j=1

∏
v∈{a,b}(w

θ
jv + bθj) 6= 0

)}
. (2.3)

2.2 Regularity properties for parametric integrals of Lipschitz continuous
functions

Lemma 4 Let n ∈ N, j ∈ {1, 2, . . . , n}, u ∈ R, v ∈ (u,∞), let φ : Rn × [u, v]→ R be locally
bounded and measurable, let µ : B([u, v]) → [0,∞] be1 a finite measure, let Φ: Rn → R
satisfy for all x ∈ Rn that

Φ(x) =

∫ v

u
φ(x, s)µ(ds), (2.4)

1. For all u ∈ R, v ∈ (u,∞) we denote by B([u, v]) the Borel sigma algebra on [u, v], i.e., the smallest
σ-algebra which contains all open subsets of [u, v].
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let x = (x1, . . . , xn) ∈ Rn, δ, c ∈ (0,∞) satisfy for all s ∈ [u, v], h ∈ (−δ, δ) that

|φ(x1, . . . , xj−1, xj + h, xj+1, . . . , xn, s)− φ(x, s)| ≤ c|h|, (2.5)

let E ⊆ [u, v] be measurable, assume µ([u, v]\E) = 0, and assume for all s ∈ E that
R 3 v 7→ φ(x1, . . . , xj−1, v, xj+1, . . . , xn, s) ∈ R is differentiable at xj. Then

(i) it holds that R 3 v 7→ Φ(x1, . . . , xj−1, v, xj+1, . . . , xn) ∈ R is differentiable at xj and

(ii) it holds that (
∂
∂xj

Φ
)
(x1, . . . , xn) =

∫
E

(
∂
∂xj

φ
)
(x1, . . . , xn, s)µ(ds). (2.6)

Proof [Proof of Lemma 4] Observe that (2.5) and the dominated convergence theorem
establish items (i) and (ii). The proof of Lemma 4 is thus complete.

Lemma 5 Let n ∈ N, u ∈ R, v ∈ (u,∞), x ∈ Rn, c, ε ∈ (0,∞), φ ∈ C(Rn × [u, v],R),
let µ : B([u, v]) → [0,∞] be a finite measure, let Iy ∈ B([u, v]), y ∈ Rn, satisfy2 for all
y, z ∈ {v ∈ Rn : ‖x− v‖ ≤ ε} that µ(Iy∆Iz) ≤ c‖y − z‖, and let Φ: Rn → R satisfy for all
y ∈ Rn that

Φ(y) =

∫
Iy
φ(y, s)µ(ds). (2.7)

Then it holds that {v ∈ Rn : ‖x− v‖ ≤ ε} 3 y 7→ Φ(y) ∈ R is continuous.

Proof [Proof of Lemma 5] Throughout this proof let y ∈ {v ∈ Rn : ‖x − v‖ ≤ ε} and let
z = (zk)k∈N : N→ {v ∈ Rn : ‖x− v‖ ≤ ε} satisfy lim supk→∞‖zk − y‖ = 0. Note that for all
k ∈ N it holds that

|Φ(y)− Φ(zk)| ≤
∫
Iy∩Izk

|φ(y, s)− φ(zk, s)|µ(ds) +

∫
Iy\Izk

|φ(y, s)|µ(ds)

+

∫
Izk\Iy

|φ(zk, s)|µ(ds).

(2.8)

Next observe that the assumption that φ is continuous and the dominated convergence
theorem demonstrate that

lim sup
k→∞

[∫
Iy∩Izk

|φ(y, s)− φ(zk, s)|µ(ds)

]
= 0. (2.9)

Moreover, note that the fact that for all k ∈ N it holds that µ(Iy∆Izk) ≤ c‖y− zk‖ and the
assumption that φ is continuous prove that for all k ∈ N we have that

lim sup
k→∞

[∫
Iy\Izk

|φ(y, s)|µ(ds) +

∫
Izk\Iy

|φ(zk, s)|µ(ds)

]
= 0. (2.10)

2. Throughout this article we denote by ‖·‖ :
(⋃

n∈N R
n
)
→ R and 〈·, ·〉 :

(⋃
n∈N(R

n × Rn)
)
→ R the func-

tions which satisfy for all n ∈ N, x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn that ‖x‖ =
[∑n

i=1|xi|
2]1/2 and

〈x, y〉 =
∑n
i=1 xiyi.
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Combining this with (2.8) and (2.9) establishes that lim supk→∞|Φ(y) − Φ(zk)| = 0. The
proof of Lemma 5 is thus complete.

Lemma 6 Let n ∈ N, u ∈ R, v ∈ (u,∞), x ∈ Rn, c, ε ∈ (0,∞), let φ : Rn × [u, v] → R be
locally Lipschitz continuous, let µ : B([u, v])→ [0,∞] be a finite measure, let Iy ∈ B([u, v]),
y ∈ Rn, satisfy for all y, z ∈ {v ∈ Rn : ‖x − v‖ ≤ ε} that µ(Iy∆Iz) ≤ c‖y − z‖, and let
Φ: Rn → R satisfy for all y ∈ Rn that

Φ(y) =

∫
Iy
φ(y, s)µ(ds). (2.11)

Then there exists C ∈ R such that for all y, z ∈ {v ∈ Rn : ‖x − v‖ ≤ ε} it holds that
|Φ(y)− Φ(z)| ≤ C‖y − z‖.

Proof [Proof of Lemma 6] Observe that the assumption that φ is locally Lipschitz contin-
uous ensures that there exists C ∈ R which satisfies for all y, z ∈ {v ∈ Rn : ‖x − v‖ ≤ ε},
s ∈ [u, v] with y 6= z that

|φ(y,s)−φ(z,s)|
‖y−z‖ + |φ(y, s)|+ |φ(z, s)| ≤ C. (2.12)

Furthermore, note that (2.11) ensures for all y, z ∈ Rn that

|Φ(y)− Φ(z)| ≤
∫
Iy∩Iz

|φ(y, s)− φ(z, s)|µ(ds) +

∫
Iy\Iz

|φ(y, s)|µ(ds) +

∫
Iz\Iy

|φ(z, s)|µ(ds).

(2.13)
In addition, observe that (2.12) shows for all y, z ∈ {v ∈ Rn : ‖x− v‖ ≤ ε} that∫

Iy∩Iz
|φ(y, s)− φ(z, s)|µ(ds) ≤ C‖y − z‖µ([u, v]). (2.14)

Moreover, note that (2.12) and the assumption that for all y, z ∈ {v ∈ Rn : ‖x− v‖ ≤ ε} it
holds that µ(Iy∆Iz) ≤ c‖y − z‖ prove that for all y, z ∈ {v ∈ Rn : ‖x − v‖ ≤ ε} we have
that ∫

Iy\Iz
|φ(y, s)|µ(ds) +

∫
Iz\Iy

|φ(z, s)|µ(ds) ≤ cC‖y − z‖. (2.15)

Combining this with (2.13) and (2.14) establishes for all y, z ∈ {v ∈ Rn : ‖x− v‖ ≤ ε} that

|Φ(y)− Φ(z)| ≤ C(c+ µ([u, v]))‖y − z‖. (2.16)

The proof of Lemma 6 is thus complete.

9
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2.3 Local Lipschitz continuity for active neuron regions

Lemma 7 Let a ∈ R, b ∈ (a,∞), u = (u1, u2) ∈ R2\{0}, let p : [a, b] → R be bounded
and measurable, and let Iv ⊆ R, v ∈ R2, satisfy for all v = (v1, v2) ∈ R2 that Iv =
{x ∈ [a, b] : v1x + v2 > 0}. Then there exist c, ε ∈ (0,∞) such that for all v, w ∈ R2 with
max{‖u− v‖, ‖u− w‖} ≤ ε it holds that∣∣∣∣∫

Iv∆Iw
p(x) dx

∣∣∣∣ ≤ c‖v − w‖. (2.17)

Proof [Proof of Lemma 7] Throughout this proof let M ∈ R satisfy M = supx∈[a,b]|p(x)|.
In the following we distinguish between the case u1 = 0 and the case u1 6= 0.

We first prove (2.17) in the case

u1 = 0. (2.18)

Observe that (2.18) and the assumption that u = (u1, u2) ∈ R2\{0} imply that u2 6= 0.
Moreover, note that (2.18) shows for all v = (v1, v2) ∈ R2, x ∈ Iu∆Iv that

|(u1x+ u2)− (v1x+ v2)| = |u1x+ u2|+ |v1x+ v2| ≥ |u1x+ u2| = |u2|. (2.19)

In addition, observe that for all v = (v1, v2) ∈ R2, x ∈ [a, b] we have that

|(u1x+ u2)− (v1x+ v2)| ≤ |u1 − v1||x|+ |u2 − v2| ≤ (1 + max{|a|, |b|})‖u− v‖. (2.20)

Combining this with (2.19) demonstrates for all v ∈ R2 with ‖u − v‖ < |u2|
1+max{|a|,|b|} that

Iu∆Iv = ∅ and, therefore, Iu = Iv. Hence, we obtain for all v, w ∈ R2 with max{‖u −
v‖, ‖u − w‖} ≤ |u2|

2+max{|a|,|b|} that Iv = Iu = Iw and, therefore,
∫
Iv∆Iw p(x) dx = 0. This

establishes (2.17) in the case u1 = 0.

In the next step we prove (2.17) in the case u1 6= 0. Note that for all v = (v1, v2),
w = (w1, w2) ∈ R2, s ∈ {−1, 1} with min{sv1, sw1} > 0 it holds that

Iv\Iw = {y ∈ [a, b] : v1y + v2 > 0 ≥ w1y + w2} =
{
y ∈ [a, b] : − sv2

v1
< sy ≤ − sw2

w1

}
⊆
{
y ∈ R : − sv2

v1
< sy ≤ − sw2

w1

}
.

(2.21)

Hence, we obtain for all v = (v1, v2), w = (w1, w2) ∈ R2, s ∈ {−1, 1} with min{sv1, sw1} > 0
that ∫

Iv\Iw
1 dx ≤

∣∣∣(− sw2
w1

)
−
(
− sv2

v1

)∣∣∣ =
∣∣∣v2v1 − w2

w1

∣∣∣. (2.22)

Furthermore, observe that the fact that for all y ∈ R it holds that y ≥ −|y| implies that for
all v = (v1, v2) ∈ R2 with ‖u− v‖ < |u1| we have that

u1v1 = (u1)2 + (v1 − u1)u1 ≥ |u1|2 − |u1 − v1||u1| ≥ |u1|2 − ‖u− v‖|u1| > 0. (2.23)

This ensures that for all v = (v1, v2), w = (w1, w2) ∈ R2 with max{‖u − v‖, ‖u − w‖} <
|u1| there exists s ∈ {−1, 1} such that min{sv1, sw1} > 0. Combining this with (2.22)

10
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demonstrates for all v = (v1, v2), w = (w1, w2) ∈ R2 with max{‖u − v‖, ‖u − w‖} ≤ |u1|
2

that∣∣∣∣∫
Iv∆Iw

p(x) dx

∣∣∣∣ ≤M[∫
Iv∆Iw

1 dx

]
≤ 2M

∣∣∣v2v1 − w2
w1

∣∣∣ = 2M

∣∣∣∣v2(w1 − v1)− v1(w2 − v2)

v1w1

∣∣∣∣
≤ 2M

[∣∣∣∣v2(w1 − v1)

v1w1

∣∣∣∣+

∣∣∣∣v1(w2 − v2)

v1w1

∣∣∣∣] ≤ 2M

[
|v2|‖v − w‖
|v1w1|

+
|v1|‖v − w‖
|v1w1|

]
≤ 4M‖v‖‖v − w‖

|v1w1|
≤
[

16M‖v‖
|u1|2

]
‖v − w‖ ≤

[
32M‖u‖
|u1|2

]
‖v − w‖.

(2.24)

This establishes (2.17) in the case u1 6= 0. The proof of Lemma 7 is thus complete.

Corollary 8 Assume Setting 3 and let θ ∈ V. Then there exist c, ε ∈ (0,∞) such that for
all ϑ1, ϑ2 ∈ Rd with max{‖ϑ1 − θ‖, ‖ϑ2 − θ‖} ≤ ε it holds that∫

∪Hi,j=1((I
ϑ1
i ∩I

ϑ1
j )∆(I

ϑ2
i ∩I

ϑ2
j ))

p(x) dx ≤
∫
∪Hi=1(I

ϑ1
i ∆I

ϑ2
i )

p(x) dx ≤ c‖ϑ1 − ϑ2‖. (2.25)

Proof [Proof of Corollary 8] Note that (2.3) ensures that mink∈{1,2,...,H}(|wθ
k| + |bθk|) > 0.

Combining this with Lemma 7 shows that there exist c, ε ∈ (0,∞) such that for all k ∈
{1, 2, . . . ,H}, ϑ1, ϑ2 ∈ Rd with max{‖θ − ϑ1‖, ‖θ − ϑ2‖} ≤ ε we have that∫

I
ϑ1
k ∆I

ϑ2
k

p(x) dx ≤ c‖ϑ1 − ϑ2‖. (2.26)

Next observe that the fact that for all sets A,A, B,B it holds that

(A ∩ A)\(B ∩ B) ⊆ (A\B) ∪ (A\B) ⊆ (A∆B) ∪ (A∆B) (2.27)

implies that for all sets A,A, B,B we have that

(A ∩ A)∆(B ∩ B) ⊆ (A∆B) ∪ (A∆B). (2.28)

Hence, we obtain for all ϑ1, ϑ2 ∈ Rd, i, j ∈ {1, 2, . . . ,H} that (Iϑ1i ∩ I
ϑ1
j )∆(Iϑ2i ∩ I

ϑ2
j ) ⊆

(Iϑ1i ∆Iϑ2i )∪(Iϑ2j ∆Iϑ2j ). Combining this with (2.26) proves for all ϑ1, ϑ2 ∈ Rd with max{‖θ−
ϑ1‖, ‖θ − ϑ2‖} ≤ ε that∫

∪Hi,j=1((I
ϑ1
i ∩I

ϑ1
j )∆(I

ϑ2
i ∩I

ϑ2
j ))

p(x) dx ≤
∫
∪Hk=1(I

ϑ1
k ∆I

ϑ2
k )

p(x) dx

≤
H∑
k=1

[∫
I
ϑ1
k ∆I

ϑ2
k

p(x) dx

]
≤ cH‖ϑ1 − ϑ2‖.

(2.29)

The proof of Corollary 8 is thus complete.
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Corollary 9 Assume Setting 3 and let i, j ∈ {1, 2, . . . ,H}, φ ∈ C(Rd × [a, b],R). Then

(i) it holds that

V 3 θ 7→
∫
Iθi

φ(θ, x)p(x) dx ∈ R (2.30)

is continuous and

(ii) it holds that

V 3 θ 7→
∫
Iθi ∩Iθj

φ(θ, x)p(x) dx ∈ R (2.31)

is continuous.

Proof [Proof of Corollary 9] Throughout this proof let θ ∈ V. Note that Corollary 8 and
Lemma 5 (applied with n x d, u x a, v x b, x x θ, µ x (B([a, b]) 3 A 7→

∫
A p(x) dx ∈

[0,∞]) in the notation of Lemma 5) assure that there exists ε ∈ (0,∞) such that

{ψ ∈ Rd : ‖θ − ψ‖ ≤ ε} 3 ϑ 7→
∫
Iϑi

φ(ϑ, x)p(x) dx ∈ R (2.32)

and

{ψ ∈ Rd : ‖θ − ψ‖ ≤ ε} 3 ϑ 7→
∫
Iϑi ∩Iϑj

φ(ϑ, x)p(x) dx ∈ R (2.33)

are continuous. This shows items (i) and (ii). The proof of Corollary 9 is thus complete.

Corollary 10 Assume Setting 3, let i, j ∈ {1, 2, . . . ,H}, and let φ : Rd × [a, b] → R be
locally Lipschitz continuous. Then

(i) it holds that

V 3 θ 7→
∫
Iθi

φ(θ, x)p(x) dx ∈ R (2.34)

is locally Lipschitz continuous and

(ii) it holds that

V 3 θ 7→
∫
Iθi ∩Iθj

φ(θ, x)p(x) dx ∈ R (2.35)

is locally Lipschitz continuous.

Proof [Proof of Corollary 10] Throughout this proof let θ ∈ V. Observe that Corollary 8
and Lemma 6 (applied with nx d, u x a, v x b, xx θ, µx (B([a, b]) 3 A 7→

∫
A p(x) dx ∈

[0,∞]) in the notation of Lemma 6) demonstrate that there exist ε,C ∈ (0,∞) such that
for all ϑ1, ϑ2 ∈ Rd with max{‖θ − ϑ1‖, ‖θ − ϑ2‖} ≤ ε it holds that∣∣∣∣∣

∫
I
ϑ1
i

φ(ϑ1, x)p(x) dx−
∫
I
ϑ2
i

φ(ϑ2, x)p(x) dx

∣∣∣∣∣ ≤ C‖ϑ1 − ϑ2‖ (2.36)

12
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and ∣∣∣∣∣
∫
I
ϑ1
i ∩I

ϑ1
j

φ(ϑ1, x)p(x) dx−
∫
I
ϑ2
i ∩I

ϑ2
j

φ(ϑ2, x)p(x) dx

∣∣∣∣∣ ≤ C‖ϑ1 − ϑ2‖. (2.37)

This establishes items (i) and (ii). The proof of Corollary 10 is thus complete.

2.4 Explicit representations for the Hessian matrix of the risk function

Proposition 11 Assume Setting 3 and let θ ∈ V. Then

(i) it holds that L is differentiable at θ and

(ii) it holds for all i ∈ {1, 2, . . . ,H} that

Gi(θ) =
(
∂
∂θi
L
)
(θ) = 2vθi

∫
Iθi

x(N θ(x)− f(x))p(x) dx,

GH+i(θ) =
(

∂
∂θH+i

L
)
(θ) = 2vθi

∫
Iθi

(N θ(x)− f(x))p(x) dx,

G2H+i(θ) =
(

∂
∂θ2H+i

L
)
(θ) = 2

∫ b

a

[
R(wθ

ix+ bθi )
]
(N θ(x)− f(x))p(x) dx,

and Gd(θ) =
(
∂
∂θd
L
)
(θ) = 2

∫ b

a
(N θ(x)− f(x))p(x) dx.

(2.38)

Proof [Proof of Proposition 11] Note that the assumption that θ ∈ V implies that for all
i ∈ {1, 2, . . . ,H} it holds that |wθ

i |+ |bθi | > 0. Hence, we obtain that

L(θ)
(∑H

i=1|vθi |1{0}
(
|wθ

i |+ |bθi |
))

= 0. (2.39)

Combining this with (Jentzen and Riekert, 2022, Proposition 2.2 and Proposition 2.11) es-
tablishes items (i) and (ii). The proof of Proposition 11 is thus complete.

Lemma 12 Assume Setting 3, let i ∈ {1, 2, . . . ,H}, r, s ∈ N0, let ψ : R → R satisfy for
all x ∈ R\{0} that ψ(x) = x−1, and let c : (−∞,∞] → R satisfy for all x ∈ (−∞,∞] that
c(x) = max{min{x, b}, a}. Then

(i) it holds for all continuous φ : V× [a, b]→ R that

V 3 θ 7→
[
ψ([wθ

i ]
r|wθ

i |s)
][
φ(θ, c(qθi ))

]
1[a,b](q

θ
i ) ∈ R (2.40)

is continuous and

(ii) it holds for all locally Lipschitz continuous φ : V× [a, b]→ R that

V 3 θ 7→
[
ψ([wθ

i ]
r|wθ

i |s)
][
φ(θ, c(qθi ))

]
1[a,b](q

θ
i ) ∈ R (2.41)

is locally Lipschitz continuous.

13
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Proof [Proof of Lemma 12] Observe that (2.3) shows for all θ ∈ V that |wθ
i | + |bθi | > 0.

Hence, we obtain for all θ ∈ V with wθ
i = 0 that bθi 6= 0. This implies that for all θ ∈ V

with wθ
i = 0 there exists ε ∈ (0,∞) such that for all ϑ ∈ {ψ ∈ Rd : ‖ψ − θ‖ < ε} we have

that qϑi /∈ [a, b]. Combining this with (2.1) and the fact that for all θ ∈ V it holds that
qθi /∈ {a, b} establishes items (i) and (ii). The proof of Lemma 12 is thus complete.

Lemma 13 Let a ∈ R, b ∈ (a,∞), let U ⊆ R be open, let φ = (φx(t))(x,t)∈[a,b]×U ∈
C([a, b]×U,R) satisfy for all x ∈ [a, b] that φx ∈ C1(U,R), assume that [a, b]×U 3 (x, t) 7→
(φx)′(t) ∈ R is continuous, let ψ0, ψ1 ∈ C1(U, [a, b]), and let Φ: U → R satisfy for all t ∈ U
that

Φ(t) =

∫ ψ1(t)

ψ0(t)
φx(t) dx. (2.42)

Then

(i) it holds that Φ ∈ C1(U,R) and

(ii) it holds for all t ∈ U that

Φ′(t) =
[
φψ1(t)(t)

][
(ψ1)′(t)

]
−
[
φψ0(t)(t)

][
(ψ0)′(t)

]
+

∫ ψ1(t)

ψ0(t)
(φx)′(t) dx. (2.43)

Proof [Proof of Lemma 13] Throughout this proof let Ψ: [a, b] × U → R satisfy for all
x ∈ [a, b], t ∈ U that

Ψ(x, t) =

∫ x

a
φy(t) dy. (2.44)

Note that (2.42) and (2.44) imply for all t ∈ U that

Φ(t) =

∫ ψ1(t)

a
φx(t) dx−

∫ ψ0(t)

a
φx(t) dx = Ψ(ψ1(t), t)−Ψ(ψ0(t), t). (2.45)

Next observe that the fundamental theorem of calculus ensures for all x ∈ [a, b], t ∈ U
that ∂

∂xΨ(x, t) = φx(t). In addition, note that Lemma 4 assures for all x ∈ [a, b], t ∈ U

that ∂
∂tΨ(x, t) =

∫ x
a (φy)

′(t) dy. Furthermore, observe that the assumption that [a, b]× U 3
(x, t) 7→ φx(t) ∈ R is continuous, the assumption that [a, b] × U 3 (x, t) 7→ (φx)′(t) ∈ R is
continuous, and the dominated convergence theorem demonstrate that [a, b]×U 3 (x, t) 7→
∂
∂xΨ(x, t) ∈ R and [a, b]×U 3 (x, t) 7→ ∂

∂tΨ(x, t) ∈ R are continuous. Hence, we obtain that
Ψ ∈ C1([a, b] × U,R). Combining this with (2.45) and the chain rule shows for all t ∈ U
that Φ ∈ C1(U,R) and

Φ′(t) = (ψ1)′(t)
(
∂
∂xΨ

)
(ψ1(t), t) +

(
∂
∂tΨ

)
(ψ1(t), t)

− (ψ0)′(t)
(
∂
∂xΨ

)
(ψ0(t), t)−

(
∂
∂tΨ

)
(ψ0(t), t)

=
[
(ψ1)′(t)

][
φψ1(t)(t)

]
+

∫ ψ1(t)

a
(φx)′(t) dx−

[
(ψ0)′(t)

][
φψ0(t)(t)

]
−
∫ ψ0(t)

a
(φx)′(t) dx

=
[
(ψ1)′(t)

][
φψ1(t)(t)

]
−
[
(ψ0)′(t)

][
φψ0(t)(t)

]
+

∫ ψ1(t)

ψ0(t)
(φx)′(t) dx.

(2.46)
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The proof of Lemma 13 is thus complete.

Lemma 14 Assume Setting 3, let ψ : R → R satisfy for all x ∈ R\{0} that ψ(x) = x−1,
and let c : (−∞,∞]→ R satisfy for all x ∈ (−∞,∞] that c(x) = max{min{x, b}, a}. Then

(i) it holds that V ⊆ Rd is open,

(ii) it holds that L|V ∈ C2(V,R), and

(iii) it holds for all θ = (θ1, . . . , θd) ∈ V, i, j ∈ {1, 2, . . . ,H} that(
∂2

∂θj∂θd
L
)
(θ) = 2vθj

∫
Iθj
xp(x) dx, (2.47)

(
∂2

∂θH+j∂θd
L
)
(θ) = 2vθj

∫
Iθj
p(x) dx, (2.48)

(
∂2

∂θ2H+j∂θd
L
)
(θ) = 2

∫ b
a

[
R(wθ

jx+ bθj)
]
p(x) dx, (2.49)

(
∂2

∂θ2d
L
)
(θ) = 2

∫ b
a p(x) dx, (2.50)

(
∂2

∂θj∂θ2H+i
L
)
(θ) = 2vθj

∫
Iθj
x
[
R(wθ

ix+ bθi )
]
p(x) dx

+ 21{i}(j)
∫
Iθi
x(N θ(x)− f(x))p(x) dx, (2.51)

(
∂2

∂θH+j∂θ2H+i
L
)
(θ) = 2vθj

∫
Iθj

[
R(wθ

ix+ bθi )
]
p(x) dx

+ 21{i}(j)
∫
Iθi

(N θ(x)− f(x))p(x) dx, (2.52)

(
∂2

∂θ2H+j∂θ2H+i
L
)
(θ) = 2

∫ b
a

[
R(wθ

ix+ bθi )
][
R(wθ

jx+ bθj)
]
p(x) dx, (2.53)

(
∂2

∂θj∂θi
L
)
(θ) = 2vθi v

θ
j

∫
Iθi ∩Iθj

x2p(x) dx

− 2vθi b
θ
i1{i}(j)1[a,b](q

θ
i )[ψ(wθ

i |wθ
i |)][c(qθi )](N

θ(c(qθi ))− f(c(qθi )))p(c(qθi )), (2.54)

(
∂2

∂θj∂θH+i
L
)
(θ) = 2vθi v

θ
j

∫
Iθi ∩Iθj

xp(x) dx

+ 2vθi1{i}(j)1[a,b](q
θ
i )[ψ(|wθ

i |)][c(qθi )](N
θ(c(qθi ))− f(c(qθi )))p(c(qθi )), (2.55)

and(
∂2

∂θH+j∂θH+i
L
)
(θ) = 2vθi v

θ
j

∫
Iθi ∩Iθj

p(x) dx

+ 2vθi1{i}(j)1[a,b](q
θ
i )[ψ(|wθ

i |)](N θ(c(qθi ))− f(c(qθi )))p(c(qθi )). (2.56)

15



Jentzen and Riekert

Proof [Proof of Lemma 14] Note that (2.3) establishes item (i). Next observe that Propo-
sition 11 ensures that V 3 θ 7→ L(θ) ∈ R is differentiable and satisfies ∇(L|V) = G|V. In
addition, note that (2.38) and Corollary 9 prove that ∇(L|V) is continuous. Hence, we
obtain that L|V ∈ C1(V,R). Combining this with (2.38), Lemma 4, and the product rule
establishes (2.47) to (2.53).

In the next step we prove (2.54) to (2.56) and for this let θ = (θ1, . . . , θd) ∈ V, i, j ∈
{1, 2, . . . ,H}. In our proof of (2.54) to (2.56) we distinguish between the case (i 6= j), the
case ((i = j)∧(max{wθ

i a+bθi ,w
θ
i b+bθi } < 0)), the case ((i = j)∧(min{wθ

i a+bθi ,w
θ
i b+bθi } >

0)), the case ((i = j) ∧ (wθ
i a + bθi < 0 < wθ

i b + bθi )), and the case ((i = j) ∧ (wθ
i a + bθi >

0 > wθ
i b+ bθi )). We first establish (2.54) to (2.56) in the case (i 6= j). Observe that for all

k ∈ {0, 1} and almost all x ∈ [a, b] it holds that

∂
∂θkH+j

N θ(x) = ∂
∂θkH+j

(
θ2H+j [R(θjx+ θH+j)]

)
= vθjx

1−k
1Iθj

(x). (2.57)

Combining this with (2.38) and Lemma 4 (applied for every k, ` ∈ {0, 1} with n x d,
j x kH+j, φx (Rd× [a, b] 3 (ϑ, x) 7→ x1−`(N ϑ(x)−f(x))p(x)1Iϑi (x) ∈ R) in the notation
of Lemma 4) demonstrates for all k, ` ∈ {0, 1} that(

∂2

∂θkH+j∂θ`H+i
L
)
(θ) =

(
∂

∂θkH+j
G`H+i

)
(θ)

= ∂
∂θkH+j

(
2vθi

∫ b

a
x1−`(N θ(x)− f(x))p(x)1Iθi (x) dx

)
= 2vθi v

θ
j

∫
Iθi ∩Iθj

x2−k−`p(x) dx.

(2.58)

This establishes (2.54) to (2.56) in the case (i 6= j).
We next prove (2.54) to (2.56) in the case

(i = j) ∧ (max{wθ
i a+ bθi ,w

θ
i b+ bθi } < 0). (2.59)

Note that (2.59) implies that there exists δ ∈ (0,∞) such that for all h ∈ Rd with ‖h‖ < δ it

holds that qθ+hi /∈ [a, b] and Iθ+hi = ∅. Combining this with (2.38) ensures that
(
∂2

∂θ2i
L
)
(θ) =(

∂2

∂θi∂θH+i
L
)
(θ) =

(
∂2

∂θ2H+i
L
)
(θ) = 0, as desired.

In the next step we prove (2.54) to (2.56) in the case

(i = j) ∧ (min{wθ
i a+ bθi ,w

θ
i b+ bθi } > 0). (2.60)

Observe that (2.60) implies that there exists δ ∈ (0,∞) such that for all h ∈ Rd with
‖h‖ < δ it holds that qθ+hi /∈ [a, b] and Iθ+hi = [a, b]. Combining (2.38) and Lemma 4

hence shows that
(
∂2

∂θ2i
L
)
(θ) = 2(vθi )

2
∫ b
a x

2p(x) dx,
(

∂2

∂θi∂θH+i
L
)
(θ) = 2(vθi )

2
∫ b
a xp(x) dx,

and
(

∂2

∂θ2H+i
L
)
(θ) = 2(vθi )

2
∫ b
a p(x) dx, as claimed.

In the remaining cases we employ Lemma 13 since the interval Iθi depends on wθ
i and

bθi in these cases. We first consider the case

(i = j) ∧ (wθ
i a+ bθi < 0 < wθ

i b+ bθi ). (2.61)

Note that (2.61) ensures that there exists an open neighborhood U ⊆ Rd of θ which satisfies
for all ϑ ∈ U that wϑ

i > 0, qϑi ∈ (a, b), and Iϑi = (qϑi , b]. Furthermore, observe that
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U 3 ϑ 7→ qϑi = − bϑi
wϑi
∈ R is continuously differentiable and satisfies ∂

∂θi
qθi =

bθi
(wθi )2

= − qθi
wθi

and ∂
∂θH+i

qθi = − 1
wθi

. Combining Lemma 13 and (2.38) hence shows that

(
∂2

∂θ2i
L
)
(θ) = 2(vθi )

2
∫
Iθi
x2p(x) dx−

[
2vθi b

θ
i

(wθi )2

]
qθi (N

θ(qθi )− f(qθi ))p(qθi ),(
∂2

∂θi∂θH+i
L
)
(θ) = 2(vθi )

2
∫
Iθi
xp(x) dx+

[
2vθi
wθi

]
qθi (N

θ(qθi )− f(qθi ))p(qθi ),

and
(

∂2

∂θ2H+i
L
)
(θ) = 2(vθi )

2
∫
Iθi
p(x) dx+

[
2vθi
wθi

]
(N θ(qθi )− f(qθi ))p(qθi ).

(2.62)

This establishes (2.54) to (2.56) in the case ((i = j)∧(wθ
i a+bθi < 0 < wθ

i b+bθi )). It remains
to consider the case

(i = j) ∧ (wθ
i a+ bθi > 0 > wθ

i b+ bθi ) (2.63)

Note that (2.63) assures that wθ
i < 0, qθi ∈ (a, b), and Iθi = [a, qθi ). Combining Lemma 13

and (2.38) therefore demonstrates that

(
∂2

∂θ2i
L
)
(θ) = 2(vθi )

2
∫
Iθi
x2p(x) dx+

[
2vθi b

θ
i

(wθi )2

]
qθi (N

θ(qθi )− f(qθi ))p(qθi ),(
∂2

∂θi∂θH+i
L
)
(θ) = 2(vθi )

2
∫
Iθi
xp(x) dx−

[
2vθi
wθi

]
qθi (N

θ(qθi )− f(qθi ))p(qθi ),

and
(

∂2

∂θ2H+i
L
)
(θ) = 2(vθi )

2
∫
Iθi
p(x) dx−

[
2vθi
wθi

]
(N θ(qθi )− f(qθi ))p(qθi ).

(2.64)

This establishes (2.54) to (2.56) in the case ((i = j) ∧ (wθ
i a+ bθi > 0 > wθ

i b+ bθi )).

Finally, observe that Corollary 9 and item (i) in Lemma 12 imply that the partial deriva-
tives in (2.47) to (2.56) are continuous on V. The proof of Lemma 14 is thus complete.

Lemma 15 Assume Setting 3 and assume that f is Lipschitz continuous. Then

(i) it holds that V ⊆ Rd is open,

(ii) it holds that L|V ∈ C2(V,R), and

(iii) it holds that V 3 θ 7→ (HessL)(θ) ∈ Rd×d is locally Lipschitz continuous.

Proof [Proof of Lemma 15] Note that Lemma 14 establishes items (i) and (ii). Moreover,
observe that Lemma 14, Corollary 10, item (ii) in Lemma 12, the assumption that f is
Lipschitz continuous, and the assumption that p is Lipschitz continuous establish item (iii).
The proof of Lemma 15 is thus complete.
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Corollary 16 Assume Setting 3, let θ ∈ V, i, j ∈ {1, 2, . . . ,H}, and assume for all x ∈
[a, b] that N θ(x) = f(x). Then

(
∂2

∂θi∂θj
L
)
(θ) = 2vθi v

θ
j

∫
Iθi ∩Iθj

x2p(x) dx,

(
∂2

∂θi∂θH+j
L
)
(θ) = 2vθi v

θ
j

∫
Iθi ∩Iθj

xp(x) dx,

and
(

∂2

∂θH+i∂θH+j
L
)
(θ) = 2vθi v

θ
j

∫
Iθi ∩Iθj

p(x) dx.

(2.65)

Proof [Proof of Corollary 16] Note that the assumption that for all x ∈ [a, b] it holds that
N θ(x) = f(x) and Lemma 14 establish (2.65). The proof of Corollary 16 is thus complete.

2.5 Upper bounds for the entries of the Hessian matrix of the risk function

Lemma 17 Assume Setting 3, let D ∈ [1,∞), A ∈ R satisfy A = max{1, |a|, |b|, b−a}, and
let θ ∈ V satisfy maxi∈{1,2,...,d}|θi| ≤ D and minj∈{1,2,...,H}

(
(wθ

j − 1
2)1[a,b](q

θ
j)
)
≥ 0. Then

maxi,j∈{1,2,...,d}
∣∣( ∂2

∂θi∂θj
L
)
(θ)
∣∣

≤
(
8A3D2 + 8A2D2

[
supx∈[a,b]|N θ(x)− f(x)|

])(
supx∈[a,b] p(x)

)
.

(2.66)

Proof [Proof of Lemma 17] Throughout this proof let ψ : R→ R satisfy for all x ∈ R\{0}
that ψ(x) = x−1 and let c : (−∞,∞] → R satisfy for all x ∈ (−∞,∞] that c(x) =
max{min{x, b}, a}. Observe that Lemma 14 implies for all i, j ∈ {1, 2, . . . ,H} that∣∣( ∂2

∂θ2d
L
)
(θ)
∣∣ = 2

∣∣∫ b
a p(x) dx

∣∣ ≤ 2A
(
supx∈[a,b] p(x)

)
, (2.67)

∣∣( ∂2

∂θ2H+j∂θd
L
)
(θ)
∣∣ = 2

∣∣∫ b
a [R(wθ

jx+ bθj)]p(x) dx
∣∣ ≤ 2

∫ b
a |R(wθ

jx+ bθj)|p(x) dx

≤ 2A(|wθ
j |+ |bθj |)

∫ b
a p(x) dx ≤ 4A2D

(
supx∈[a,b] p(x)

)
,

(2.68)

∣∣( ∂2

∂θ2H+i∂θ2H+j
L
)
(θ)
∣∣ = 2

∣∣∫ b
a [R(wθ

ix+ bθi )][R(wθ
jx+ bθj)]p(x) dx

∣∣
≤ 2

∫ b
a |R(wθ

ix+ bθi )R(wθ
jx+ bθj)|p(x) dx

≤ 2A2(|wθ
i |+ |bθi |)(|wθ

j |+ |bθj |)
∫ b
a p(x) dx ≤ 8A3D2

(
supx∈[a,b] p(x)

)
,

(2.69)

∣∣( ∂2

∂θd∂θj
L
)
(θ)
∣∣ = 2|vθj |

∣∣∫
Iθj
xp(x) dx

∣∣ ≤ 2A2D
(
supx∈[a,b] p(x)

)
, (2.70)

∣∣( ∂2

∂θd∂θH+j
L
)
(θ)
∣∣ = 2|vθj |

∫
Iθj
p(x) dx ≤ 2AD

(
supx∈[a,b] p(x)

)
, (2.71)
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∣∣( ∂2

∂θ2H+i∂θj
L
)
(θ)
∣∣ ≤ 2|vθj |

∣∣∫
Iθj
x[R(wθ

ix+ bθi )]p(x) dx
∣∣+ 2

∣∣∫
Iθi
x(N θ(x)− f(x))p(x) dx

∣∣
≤
(
4A3D2 + 2A2

[
supx∈[a,b]|N θ(x)− f(x)|

])(
supx∈[a,b] p(x)

)
,

(2.72)

and∣∣( ∂2

∂θ2H+i∂θH+j
L
)
(θ)
∣∣ ≤ 2|vθj |

∣∣∫
Iθj

[R(wθ
ix+ bθi )]p(x) dx

∣∣+ 2
∣∣∫
Iθi

(N θ(x)− f(x))p(x) dx
∣∣

≤
(
4A2D2 + 2A

[
supx∈[a,b]|N θ(x)− f(x)|

])(
supx∈[a,b] p(x)

)
.

(2.73)

In addition, note that Lemma 14 and the fact that for all i ∈ {1, 2, . . . ,H} with qθi ∈ [a, b]
it holds that wθ

i ≥ 1
2 show that for all i, j ∈ {1, 2, . . . ,H} we have that∣∣( ∂2

∂θi∂θj
L
)
(θ)
∣∣ ≤ 2|vθi vθj |

∣∣∫
Iθi ∩Iθj

x2p(x) dx
∣∣

+ 1[a,b](q
θ
i )
∣∣2vθi bθi [ψ(|wθ

i |2)][c(qθi )](N
θ(c(qθi ))− f(c(qθi )))p(c(qθi ))

∣∣
≤
(
2A3D2 + 8AD2

[
supx∈[a,b]|N θ(x)− f(x)|

])(
supx∈[a,b] p(x)

)
,

(2.74)

∣∣( ∂2

∂θi∂θH+j
L
)
(θ)
∣∣ ≤ 2|vθi vθj |

∣∣∫
Iθi ∩Iθj

xp(x) dx
∣∣

+ 1[a,b](q
θ
i )
∣∣2vθi [ψ(wθ

i )][c(qθi )](N
θ(c(qθi ))− f(c(qθi )))p(c(qθi ))

∣∣
≤
(
2A2D2 + 4AD

[
supx∈[a,b]|N θ(x)− f(x)|

])(
supx∈[a,b] p(x)

)
,

(2.75)

and∣∣( ∂2

∂θH+i∂θH+j
L
)
(θ)
∣∣ ≤ 2|vθi vθj |

∣∣∫
Iθi ∩Iθj

p(x) dx
∣∣

+ 1[a,b](q
θ
i )
∣∣2vθi [ψ(wθ

i )](N
θ(c(qθi ))− f(c(qθi )))p(c(qθi ))

∣∣
≤
(
2AD2 + 4D

[
supx∈[a,b]|N θ(x)− f(x)|

])(
supx∈[a,b] p(x)

)
.

(2.76)

Combining this with the fact that {A,D} ⊆ [1,∞) establishes (2.66). The proof of Lemma 17
is thus complete.

Lemma 18 Assume Setting 3 and let θ ∈ Rd, A ∈ R satisfy A = max{1, |a|, |b|}. Then

supx∈[a,b]|N θ(x)| ≤ |cθ|+A
[∑H

i=1|vθi |(|wθ
i |+ |bθi |)

]
≤
[
maxi∈{1,2,...,d}|θi|

]
+ 2AH

[
maxi∈{1,2,...,d}|θi|2

]
.

(2.77)

Proof [Proof of Lemma 18] Observe that for all i ∈ {1, 2, . . . ,H}, x ∈ [a, b] it holds that

|vθiR(wθ
ix+ bθi )| ≤ |vθi |(|wθ

ix|+ |bθi |) ≤ |vθi |(|wθ
i |+ |bθi |)A. (2.78)
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This and the triangle inequality demonstrate for all x ∈ [a, b] that

|N θ(x)| ≤ |cθ|+
∑H

i=1|vθiR(wθ
ix+ bθi )| ≤ |cθ|+A

[∑H
i=1|vθi |(|wθ

i |+ |bθi |)
]

≤
[
maxi∈{1,2,...,d}|θi|

]
+ 2AH

[
maxi∈{1,2,...,d}|θi|2

]
.

(2.79)

The proof of Lemma 18 is thus complete.

Corollary 19 Assume Setting 3, let D ∈ [1,∞), A ∈ R satisfy A = max{1, |a|, |b|, b− a},
and let θ ∈ V satisfy maxi∈{1,2,...,d}|θi| ≤ D and minj∈{1,2,...,H}

(
(wθ

j − 1
2)1[a,b](q

θ
j)
)
≥ 0.

Then

maxi,j∈{1,2,...,d}
∣∣( ∂2

∂θi∂θj
L
)
(θ)
∣∣

≤
[
8A3D2 + 8A2D2

(
D + 2AHD2 + supx∈[a,b]|f(x)|

)](
supx∈[a,b] p(x)

)
=
[
8A3D2 + 8A2D3 + 16A3HD4 + 8A2D2

(
supx∈[a,b]|f(x)|

)](
supx∈[a,b] p(x)

)
.

(2.80)

Proof [Proof of Corollary 19] Note that Lemma 18 and the triangle inequality prove that
for all x ∈ [a, b] it holds that

|N θ(x)− f(x)| ≤ D + 2AHD2 + |f(x)| ≤ D + 2AHD2 + supy∈[a,b]|f(y)|. (2.81)

This and Lemma 17 establish (2.80). The proof of Corollary 19 is thus complete.

3. Regularity properties for the set of global minima of the risk function

In this section we establish in Corollary 29 in Subsection 3.3 below under the assumption
that the target function is piecewise affine linear that there exists a natural number k ∈
{1, 2, . . . , d} such that a suitable subset of the set of global minima of the considered risk
function constitutes a k-dimensional C∞-submanifold of the ANN parameter space on which
the Hessian matrix of the risk function has the maximal rank d−k. Related results regarding
C∞-manifolds of ANN parameter vectors with identical realization functions have recently
been established in Dereich and Kassing (2022).

Our proof of Corollary 29 employs Proposition 26 in Subsection 3.3 as well as the
elementary and well-known eigenvalue estimate in Lemma 28 in Subsection 3.3. In the
scientific literature Lemma 28 is, e.g., proved in (Golub and Van Loan, 2013, Section 2.3.2).
In Proposition 26 we establish under the assumption that the target function is piecewise
affine linear with varying slopes in consecutive sub-intervals that a suitable subset of the set
of global minima of the risk function represents an (H+ 1)-dimensional C∞-submanifold of
the ANN parameter space on which the Hessian matrix of the risk function has the maximal
rank d−(H+1) = (3H+1)−(H+1) = 2H where H ∈ N represents the number of neurons
on the hidden layer (see Setting 3 for details).

Our proof of Proposition 26 uses Lemma 21 in Subsection 3.1, Proposition 23 in Subsec-
tion 3.2, and the elementary and well-known properties for tangent spaces of submanifolds
in Lemma 25 in Subsection 3.3. The notion of tangent spaces is recalled in Definition 24
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in Subsection 3.3. Only for the sake of completeness we include in this section the detailed
proof for Lemma 25. Our proof of Proposition 23, in turn, is based on an application of the
auxiliary result in Lemma 22 in Subsection 3.2 and in Lemma 22 and Proposition 23 we
show that certain matrices involving appropriate sub-integrals of the unnormalized density
function have a strictly positive determinant.

In Lemma 21 in Subsection 3.1 we verify that a suitable subset of the ANN parameter
space is a non-empty (H+1)-dimensional C∞-submanifold of the ANN parameter space Rd.
Our proof of Lemma 21 is based on an application of the regular level set theorem which we
recall in Proposition 20 below. In the scientific literature Proposition 20 is sometimes also
referred to as submersion level set theorem, regular value theorem, or preimage theorem.
Proposition 20 is, e.g., proved as Theorem 9.9 in Tu (2011).

3.1 Submanifolds of the ANN parameter space

Proposition 20 Let d, n ∈ N, let U ⊆ Rd be open, let g ∈ C∞(U,Rn), and assume for all
x ∈ g−1({0}) that rank(g′(x)) = n. Then it holds that g−1({0}) ⊆ U is a (d−n)-dimensional
C∞-submanifold of Rd.

In Proposition 20 above, we have for every x ∈ U that the differential g′(x) is a linear
map from Rd to Rn, which can be identified with a matrix in Rn×d, the Jacobian.

Lemma 21 Assume Setting 3, let x0,x1, . . . ,xH , α1, α2, . . . , αH ,D,y ∈ R satisfy a =
x0 < x1 < · · · < xH = b and

D ≥ 1 + |y|+ (1 + 2 maxj∈{1,2,...,H}|αj |)(1 + |a|+ |b|), (3.1)

and let M⊆ Rd be given by

M =
{
θ ∈ (−D,D)d :

([
min{wθ

1a+ bθ1,w
θ
1b+ bθ1, v

θ
1} > 0

]
, [vθ1(wθ

1a+ bθ1) + cθ = y],

[wθ
1v
θ
1 = α1],

[
∀ j ∈ N ∩ (1, H] : wθ

j > 1/2, qθj = xj−1, w
θ
jv
θ
j = αj − αj−1

])}
. (3.2)

Then

(i) it holds that M 6= ∅ and

(ii) it holds that M is a (H + 1)-dimensional C∞-submanifold of Rd.

Note that in (3.2) and subsequent equations, we have that N∩ (1, H] = {1, 2, . . . ,H}\{1} =
{i ∈ N : 2 ≤ i ≤ H}.
Proof [Proof of Lemma 21] Throughout this proof let U ⊆ Rd satisfy

U =
{
θ ∈ (−D,D)d :

([
min{wθ

1a+ bθ1,w
θ
1b+ bθ1, v

θ
1} > 0

]
,
[
∀ j ∈ N ∩ (1, H] : wθ

j > 1/2
])}

,
(3.3)

let g = (g1, . . . , g2H) : U → R2H satisfy for all θ ∈ U , j ∈ {1, 2, . . . ,H} that

gj(θ) =

{
wθ

1v
θ
1 − α1 : j = 1

wθ
jv
θ
j − (αj − αj−1) : j > 1

(3.4)
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and

gH+j(θ) =

{
vθ1(wθ

1a+ bθ1) + cθ − y : j = 1

qθj −xj−1 : j > 1,
(3.5)

and let ϑ ∈ Rd satisfy

(
[wϑ

1 = α1], [∀ i ∈ N∩(1, H] : wϑ
i = 1], [bϑ1 = |α1|(|a|+|b|)+1], [∀ i ∈ N∩(1, H] : bϑi = −xi−1],

[vϑ1 = 1], [∀ i ∈ N ∩ (1, H] : vϑi = αi − αi−1], [cϑ = y− vϑ1 (wϑ
1a+ bϑ1 )]

)
. (3.6)

Observe that (3.6) ensures that vϑ1 > 0, wϑ
1v

ϑ
1 = α1, and vϑ1 (wϑ

1a+ bϑ1 ) + cϑ = y. Moreover,
note that min{wϑ

1a+bϑ1 ,w
ϑ
1b+bϑ1} = min{α1a, α1b}+|α1|(|a|+|b|)+1 ≥ 1 > 0. In addition,

observe that for all j ∈ N ∩ (1, H] we have that wϑ
j = 1 > 1/2, qϑj = −bϑj/wϑj = xj−1, and

wϑ
j v

ϑ
j = αj −αj−1. Furthermore, note that for all i ∈ N∩ (1, H] it holds that |wϑ

i | = 1 < D,

|vϑi | ≤ 2 maxj∈{1,2,...,H}|αj | < D, and |bϑi | ≤ 1 + |a| + |b| < D. Moreover, observe that

|wϑ
1 | = |α1| < D, |bϑ1 | ≤ (1 + maxj∈{1,2,...,H}|αj |)(1 + |a|+ |b|) < D, |vϑ1 | = 1 < D, and

|cϑ| ≤ |y|+ |vϑ1wϑ
1a|+ |vϑ1bϑ1 | = |y|+ |α1||a|+ |α1|(|a|+ |b|) + 1

≤ |y|+
(
1 + 2 maxj∈{1,2,...,H}|αj |

)
(1 + |a|+ |b|) < D.

(3.7)

This implies that ϑ ∈ (−D,D)d. Hence, we obtain that ϑ ∈ M. This establishes item (i).
In the next step we prove item (ii) through an application of the regular value theorem in
Proposition 20. Note that (3.3) assures that U ⊆ Rd is open. In addition, observe that the
fact that for all θ ∈ U , j ∈ N ∩ (1, H] it holds that wθ

j > 0 ensures that g ∈ C∞(U,R2H).
Moreover, note that

g−1({0}) =
{
θ ∈ U :

(
[wθ

1v
θ
1 = α1], [vθ1(wθ

1a+ bθ1) + cθ = y],[
∀ j ∈ N ∩ (1, H] : qθj = xj−1, w

θ
jv
θ
j = αj − αj−1

])}
. (3.8)

This implies that

g−1({0}) =
{
θ ∈ (−D,D)d :

([
min{wθ

1a+ bθ1,w
θ
1b+ bθ1, v

θ
1} > 0

]
,

[∀ j ∈ N ∩ (1, H] : wθ
j > 1/2], [wθ

1v
θ
1 = α1], [vθ1(wθ

1a+ bθ1) + cθ = y],[
∀ j ∈ N ∩ (1, H] : qθj = xj−1, w

θ
jv
θ
j = αj − αj−1

])}
=M. (3.9)

Next observe that (3.4), (3.5), and the fact that for all θ ∈ U , j ∈ N ∩ [1, H] it holds that
wθ
j = θj , b

θ
j = θH+j , and vθj = θ2H+j ensure that for all θ ∈ U , j ∈ N∩(1, H], ` ∈ N∩ [1, 2H]

we have that (
∂

∂θ2H+j
g`
)
(θ) =

{
wθ
j 6= 0 : ` = j

0 : ` 6= j
(3.10)

and (
∂

∂θH+j
g`
)
(θ) =

{
−(wθ

j)
−1 6= 0 : ` = H + j

0 : ` 6= H + j.
(3.11)
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In addition, note that (3.4) and (3.5) show for all θ ∈ U , ` ∈ N ∩ [1, 2H] that

(
∂
∂θ1

g`
)
(θ) =


vθ1 6= 0 : ` = 1

vθ1a : ` = H + 1

0 : ` /∈ {1, H + 1}
(3.12)

and (
∂

∂θH+1
g`
)
(θ) =

{
vθ1 6= 0 : ` = H + 1

0 : ` 6= H + 1.
(3.13)

This demonstrates that for all θ ∈ U it holds that the ((2H) × (2H))-matrix with en-
tries

(
∂
∂θi
g`
)
(θ) ∈ R, (i, `) ∈ ({1} ∪ {H + j : j ∈ N ∩ [1, H]} ∪ {2H + j : j ∈ N ∩ (1, H]}) ×

{1, 2, . . . , 2H}, is invertible. Hence, we obtain for all θ ∈ U that rank(g′(θ)) = 2H. Combin-
ing this with Proposition 20 establishes item (ii). The proof of Lemma 21 is thus complete.

3.2 Determinants of submatrices of the Hessian matrix of the risk function

Lemma 22 Let a ∈ R, b ∈ (a,∞), let p : [a, b] → (0,∞) be bounded and measurable, let
QN ⊆ RN+1, N ∈ N, satisfy for all N ∈ N that QN = {x = (x1, . . . ,xN+1) ∈ RN+1 : a ≤
x1 < x2 < · · · < xN+1 ≤ b}, and let AN,x = (AN,xi,j )(i,j)∈{1,2,...,2N}2 ∈ R(2N)×(2N), x ∈ QN ,
N ∈ N, satisfy for all N ∈ N, x = (x1, . . . ,xN+1) ∈ QN , i, j ∈ {1, 2, . . . , N} that

AN,xi,j =
∫ xN+1

xmax{i,j}
x2p(x) dx, AN,xN+i,j = AN,xi,N+j =

∫ xN+1

xmax{i,j}
xp(x) dx,

and AN,xN+i,N+j =
∫ xN+1

xmax{i,j}
p(x) dx. (3.14)

Then it holds for all N ∈ N, x ∈ QN that

det(AN,x) =

N∏
i=1

([∫ xi+1

xi
x2p(x) dx

][∫ xi+1

xi
p(x) dx

]
−
[∫ xi+1

xi
xp(x) dx

]2
)
> 0. (3.15)

Proof [Proof of Lemma 22] Throughout this proof let EN,xi ∈ R, i ∈ {1, 2, . . . , N}, x ∈ QN ,
N ∈ N, satisfy for all N ∈ N, x ∈ QN , i ∈ {1, 2, . . . , N} that

EN,xi =
[∫ xi+1

xi
x2p(x) dx

][∫ xi+1

xi
p(x) dx

]
−
[∫ xi+1

xi
xp(x) dx

]2
. (3.16)

Observe that the Cauchy-Schwarz inequality and the fact that for all x ∈ [a, b] it holds that
p(x) > 0 ensure that for all N ∈ N, x ∈ QN , i ∈ {1, 2, . . . , N} we have that∣∣∣∫ xi+1

xi
xp(x) dx

∣∣∣ =
∣∣∣∫ xi+1

xi

[
x
√

p(x)
][√

p(x)
]

dx
∣∣∣

<
[∫ xi+1

xi
x2p(x) dx

]1/2[∫ xi+1

xi
p(x) dx

]1/2
.

(3.17)

Hence, we obtain for all N ∈ N, x ∈ QN , i ∈ {1, 2, . . . , N} that EN,xi > 0. Next we claim
that for all N ∈ N, x ∈ QN it holds that

det(AN,x) =
∏N
i=1E

N,x
i > 0. (3.18)
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We now prove (3.18) by induction on N ∈ N. For the base case N = 1 note that for all
x = (x1,x2) ∈ Q1 it holds that

det(A1,x) = det

(∫ x2
x1
x2p(x) dx

∫ x2
x1
xp(x) dx∫ x2

x1
xp(x) dx

∫ x2

x1
p(x) dx

)
= E1,x

1 > 0. (3.19)

This establishes (3.18) in the base case N = 1. For the induction step let N ∈ N ∩ [2,∞)
and assume for all x ∈ QN−1 that

det(AN−1,x) =
∏N−1
i=1 EN−1,x

i > 0. (3.20)

Next let x = (x1, . . . ,xN+1) ∈ QN and let B = (Bi,j)(i,j)∈{1,2,...,2N}2 ∈ R(2N)×(2N) satisfy
for all i, j ∈ {1, 2, . . . , 2N} that

Bi,j =


AN,xi,j : i /∈ {1, N + 1}

AN,x1,j −A
N,x
2,j : i = 1

AN,xN+1,j −A
N,x
N+2,j : i = N + 1.

(3.21)

Observe that B is the matrix that is obtained from AN,x by subtracting the 2nd row from
the 1st row and the (N + 2)-th row from the (N + 1)-th row. In particular, note that (3.21)
implies that det(B) = det(AN,x). Next observe that the fact that for all j ∈ N ∩ (1, N ] it
holds that AN,x1,j = AN,x2,j , AN,x1,N+j = AN,x2,N+j , A

N,x
N+1,j = AN,xN+2,j , and AN,xN+1,N+j = AN,xN+2,N+j

demonstrates that for all i, j ∈ N ∩ (1, N ] we have that

B1,1 = AN,x1,1 −A
N,x
2,1 =

∫ xN+1

x1
x2p(x) dx−

∫ xN+1

x2
x2p(x) dx =

∫ x2

x1
x2p(x) dx,

BN+1,1 = B1,N+1 =
∫ xN+1

x1
xp(x) dx−

∫ xN+1

x2
xp(x) dx =

∫ x2

x1
xp(x) dx,

BN+1,N+1 =
∫ xN+1

x1
p(x) dx−

∫ xN+1

x2
p(x) dx =

∫ x2

x1
p(x) dx,

B1,j = BN+1,j = B1,N+j = BN+1,N+j = 0, Bi,j = AN,xi,j , BN+i,j = AN,xN+i,j ,

Bi,N+j = AN,xi,N+j , and BN+i,N+j = AN,xN+i,N+j .

(3.22)

Hence, we obtain that

det(B) = (B1,1BN+1,N+1 −BN+1,1B1,N+1) det
(
(Bi,j)(i,j)∈({1,2,...,2N}\{1,N+1})2

)
= EN,x1 det

(
(Bi,j)(i,j)∈({1,2,...,2N}\{1,N+1})2

)
.

(3.23)

In addition, note that (3.20) proves that

det
(
(Bi,j)(i,j)∈({1,...,2N}\{1,N+1})2

)
= det(AN−1,(x2,x3,...,xN+1))

=
∏N−1
i=1 E

N−1,(x2,x3,...,xN+1)
i =

∏N
i=2E

N,x
i > 0.

(3.24)

Hence, we obtain that det(AN,x) = det(B) =
∏N
i=1E

N,x
i . Induction thus proves (3.18). Fur-

thermore, observe that (3.18) establishes (3.15). The proof of Lemma 22 is thus complete.
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Proposition 23 Let N ∈ N, v1, v2, . . . , vN ∈ R\{0}, x0,x1, . . . ,xN ∈ R satisfy x0 <
x1 < · · · < xN , let Ij ⊆ R, j ∈ {1, 2, . . . , N}, satisfy for all j ∈ {1, 2, . . . , N} that
Ij = [xj−1,xN ], let p : [x0,xN ] → (0,∞) be bounded and measurable, and let A =
(Ai,j)(i,j)∈{1,2,...,2N}2 ∈ R(2N)×(2N) satisfy for all i, j ∈ {1, 2, . . . , N} that

Ai,j = 2vivj
∫
Ii∩Ij x

2p(x) dx, AN+i,j = Ai,N+j = 2vivj
∫
Ii∩Ij xp(x) dx,

and AN+i,N+j = 2vivj
∫
Ii∩Ij p(x) dx. (3.25)

Then det(A) > 0.

Proof [Proof of Proposition 23] Throughout this proof let B = (Bi,j)(i,j)∈{1,2,...,2N}2 ∈
R(2N)×(2N) satisfy for all i, j ∈ {1, 2, . . . , N} that Bi,j =

∫
Ii∩Ij x

2p(x) dx, BN+i,j = Bi,N+j =∫
Ii∩Ij xp(x) dx, and BN+i,N+j =

∫
Ii∩Ij p(x) dx. Note that for all i, j ∈ {1, 2, . . . , N} it holds

that

Bi,j =
∫ xN
xmax{i−1,j−1}

x2p(x) dx, BN+i,j = Bi,N+j =
∫ xN
xmax{i−1,j−1}

xp(x) dx,

and BN+i,N+j =
∫ xN
xmax{i−1,j−1}

p(x) dx. (3.26)

Furthermore, observe that (3.25) and the fact that the determinant is linear in each row
and each column show that

det(A) = 4N
(∏N

i=1|vi|4
)

det(B). (3.27)

In addition, note that (3.26) and Lemma 22 (applied with ax x0, bx xN , p x p, N x N ,
x x (x0,x1, . . . ,xN ) in the notation of Lemma 22) demonstrate that det(B) > 0. Combin-
ing this with (3.27) ensures that det(A) > 0. The proof of Proposition 23 is thus complete.

3.3 Regularity properties for the set of global minima of the risk function

Definition 24 (Tangent space) Let d ∈ N, let M ⊆ Rd be a set, and let x ∈ M. Then
we denote by T xM ⊆ Rd the set given by

T xM =
{
v ∈ Rd :

[
∃ γ ∈ C1(R,Rd) :

(
[γ(R) ⊆M], [γ(0) = x], [γ′(0) = v]

)]}
. (3.28)

Lemma 25 Let d, k ∈ N, let U ⊆ Rd be open, let f ∈ C2(U,R) have locally Lipschitz
continuous derivatives, let M⊆ U satisfy M = {x ∈ U : f(x) = infy∈U f(y)}, assume that
M is a k-dimensional C2-submanifold of Rd, and let x ∈M. Then

(i) it holds for all v ∈ T xM that
(
(Hess f)(x)

)
v = 0,

(ii) it holds that rank((Hess f)(x)) ≤ d− k, and

(iii) it holds for all v ∈ (T xM)⊥ that
(
(Hess f)(x)

)
v ∈ (T xM)⊥

(cf. Definition 24).
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Proof [Proof of Lemma 25] Observe that the assumption that M = {y ∈ U : f(y) =
infz∈U f(z)} ensures for all y ∈ M that (∇f)(y) = 0. This implies for all γ ∈ C1(R,Rd),
t ∈ R with γ(R) ⊆ M that (∇f)(γ(t)) = 0. Hence, we obtain for all γ ∈ C1(R,Rd), t ∈ R
with γ(R) ⊆M that

0 = d
dt

(
(∇f)(γ(t))

)
=
(
(Hess f)(γ(t))

)
γ′(t). (3.29)

This shows for all γ ∈ C1(R,Rd) with γ(R) ⊆M and γ(0) = x that ((Hess f)(x))γ′(0) = 0.
This establishes item (i).

Next note that the assumption thatM is a k-dimensional C2-submanifold of Rd proves
that dim(T xM) = k. Combining this with item (i) establishes item (ii).

Moreover, observe that item (i) and the fact that (Hess f)(x) is symmetric demonstrate
for all v ∈ T xM, w ∈ (T xM)⊥ that〈

v,
(
(Hess f)(x)

)
w
〉

=
〈(

(Hess f)(x)
)
v, w

〉
= 〈0, w〉 = 0. (3.30)

This establishes item (iii). The proof of Lemma 25 is thus complete.

Proposition 26 Assume Setting 3, let x0,x1, . . . ,xH , α1, α2, . . . , αH ∈ R satisfy a =
x0 < x1 < · · · < xH = b, assume for all i ∈ {1, 2, . . . ,H}, x ∈ [xi−1,xi] that f(x) =
f(xi−1) + αi(x−xi−1), assume

∏H−1
i=1 (αi+1 − αi) 6= 0, and let D ∈ R satisfy

D = 1 + |f(a)|+ (1 + 2 maxj∈{1,2,...,H}|αj |)(1 + |a|+ |b|). (3.31)

Then there exists an open U ⊆ (−D,D)d such that

(i) it holds that U ⊆ V,

(ii) it holds that L|U ∈ C2(U,R),

(iii) it holds that U 3 θ 7→ (HessL)(θ) ∈ Rd×d is locally Lipschitz continuous,

(iv) it holds for all θ = (θ1, . . . , θd) ∈ U that

maxi,j∈{1,2,...,d}
∣∣( ∂2

∂θi∂θj
L
)
(θ)
∣∣ ≤ (24D5 + 16HD7

)(
supx∈[a,b] p(x)

)
, (3.32)

(v) it holds that {ϑ ∈ U : L(ϑ) = 0} 6= ∅,

(vi) it holds that {ϑ ∈ U : L(ϑ) = 0} is a (H + 1)-dimensional C∞-submanifold of Rd, and

(vii) it holds for all θ ∈ {ϑ ∈ U : L(ϑ) = 0} that rank((HessL)(θ)) = 2H = d− (H + 1).

Proof [Proof of Proposition 26] Throughout this proof let U ⊆ Rd satisfy

U =
{
θ ∈ (−D,D)d :

([
min{wθ

1a+ bθ1,w
θ
1b+ bθ1, v

θ
1} > 0

]
,
[
∀ j ∈ N ∩ (1, H] : wθ

j > 1/2
]
,[

∀ j ∈ N ∩ (1, H] : qθj ∈ (a, b)
]
,
[
∀ j ∈ N ∩ (1, H) : qθj < qθj+1

])}
(3.33)
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and let M⊆ Rd be given by

M =
{
θ ∈ (−D,D)d :

([
min{wθ

1a+ bθ1,w
θ
1b+ bθ1, v

θ
1} > 0

]
, [vθ1(wθ

1a+ bθ1) + cθ = f(a)],

[wθ
1v
θ
1 = α1],

[
∀ j ∈ N ∩ (1, H] : wθ

j > 1/2, qθj = xj−1, w
θ
jv
θ
j = αj − αj−1

])}
. (3.34)

Note that (3.33) ensures that U is open. Furthermore, observe that (2.3) and (3.33) assure
that U ⊆ V. This proves item (i). In addition, note that item (i), Lemma 15, and the fact
that U is open establish items (ii) and (iii).

Next observe that Corollary 19, the fact that for all θ ∈ U , j ∈ {1, 2, . . . ,H} with qθj ∈
[a, b] it holds that wθ

j >
1
2 , and the fact that D ≥ max{|a|, |b|, b− a, supx∈[a,b]|f(x)|, 1} ≥ 1

prove that for all θ ∈ U ⊆ (−D,D)d we have that

max
i,j∈{1,2,...,d}

∣∣( ∂2

∂θi∂θj
L
)
(θ)
∣∣ ≤ (16D5 + 16HD7 + 8D4

(
supx∈[a,b]|f(x)|

))(
supx∈[a,b] p(x)

)
≤
(
24D5 + 16HD7

)(
supx∈[a,b] p(x)

)
.

(3.35)

This establishes item (iv).

Next note that (3.34) and Lemma 21 imply thatM is a non-empty (H+1)-dimensional
C∞-submanifold of Rd. Furthermore, observe that (3.33), (3.34), and the fact that a <
x1 < x2 < · · · < xH = b show that M ⊆ U . In the next step we intend to prove that for
all θ ∈M it holds that L(θ) = 0. Note that (3.33) and the fact that for all θ ∈ U , x ∈ [a, b]
it holds that

wθ
1x+ bθ1 =

[
b−x
b−a

]
(wθ

1a+ bθ1) +
[
x−a
b−a

]
(wθ

1b+ bθ1) > 0 (3.36)

ensure that for all θ ∈ U , x ∈ [a, b] we have that

N θ(x) = cθ + vθ1 max{wθ
1x+ bθ1, 0}+

∑H
j=2 v

θ
j max{wθ

jx+ bθj , 0}

= cθ + vθ1(wθ
1x+ bθ1) +

∑H
j=2 v

θ
jw

θ
j max{x− qθj , 0}.

(3.37)

Combining this with (3.34) demonstrates that for all θ ∈M, x ∈ [a, b] we have that

N θ(x) = vθ1w
θ
1x+ vθ1b

θ
1 + cθ +

∑H
j=2 v

θ
jw

θ
j max{x−xj−1, 0}

= vθ1w
θ
1x+ f(a)− vθ1w

θ
1a+

∑H
j=2 v

θ
jw

θ
j max{x−xj−1, 0}

= f(a) + α1(x− a) +
∑H

j=2(αj − αj−1) max{x−xj−1, 0}.

(3.38)

In addition, observe that the assumption that for all i ∈ {1, 2, . . . H}, x ∈ [xi−1,xi] it holds
that f(x) = f(xi−1) + αi(x−xi−1) proves that for all j ∈ {0, 1, . . . ,H − 1}, x ∈ [xj ,xj+1]
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we have that

f(x) = f(x0) +
[∑j

k=1[f(xk)− f(xk−1)]
]

+ [f(x)− f(xj)]

= f(a) +
[∑j

k=1 αk(xk −xk−1)
]

+ αj+1(x−xj)

= f(a) + αj+1x+
[∑j

k=1 αk(xk −xk−1)
]
− αj+1xj

= f(a) + αj+1x+
[∑j

k=1 αkxk
]
−
[∑j

k=1 αkxk−1

]
− αj+1xj

= f(a) + αj+1x−
([∑j+1

k=1 αkxk−1

]
−
[∑j

k=1 αkxk
])

= f(a) + αj+1x−
(
α1x0 +

[∑j+1
k=2 αkxk−1

]
−
[∑j+1

k=2 αk−1xk−1

])
= f(a) +

(
α1x+

[∑j+1
k=2(αk − αk−1)x

])
−
(
α1x0 +

[∑j+1
k=2(αk − αk−1)xk−1

])
= f(a) + α1(x− a) +

∑j+1
k=2(αk − αk−1)(x−xk−1)

= f(a) + α1(x− a) +
∑H

k=2(αk − αk−1) max{x−xk−1, 0}.

(3.39)

This implies that for all x ∈ [a, b] we have that

f(x) = f(a) + α1(x− a) +
∑H

j=2(αj − αj−1) max{x−xj−1, 0}. (3.40)

Combining this with (3.38) demonstrates that for all θ ∈ M, x ∈ [a, b] it holds that
N θ(x) = f(x). Hence, we obtain for all θ ∈ M that L(θ) = 0. Next we intend to prove
that for all θ ∈ U with L(θ) = 0 it holds that θ ∈ M. Note that (2.2) and the fact that
for all θ ∈ Rd it holds that [a, b] 3 x 7→ N θ(x) − f(x) ∈ R is continuous show that for all
θ ∈ {ϑ ∈ U : L(ϑ) = 0} ⊆ Rd, x ∈ [a, b] we have that

N θ(x) = f(x). (3.41)

Combining this with (3.33), (3.34), (3.37), and the fact that M ⊆ U demonstrates for all
θ ∈ {ϑ ∈ U : L(ϑ) = 0}, x ∈ [x0,x1 + min{0, (qθmin{2,H} −x1)1(1,∞)(H)}] that

f(a)+α1(x−a) = f(x) = N θ(x) = vθ1(wθ
1x+bθ1)+cθ = vθ1w

θ
1(x−a)+vθ1(wθ

1a+bθ1)+cθ. (3.42)

The fact that for all θ ∈ U it holds that x1 +min{0, (qθmin{2,H}−x1)1(1,∞)(H)} > x0 hence

ensures that for all θ ∈ {ϑ ∈ U : L(ϑ) = 0} we have that

wθ
1v
θ
1 = α1 and vθ1(wθ

1a+ bθ1) + cθ = f(a). (3.43)

Next observe that the fact that for all θ ∈ U it holds that (a, b)\{qθ1, qθ2, . . . , qθH} is an open
set shows that there exists ε = (εθ,x)(θ,x)∈U×R : U×R→ (0,∞) which satisfies for all θ ∈ U ,

x ∈ (a, b)\{qθ1, qθ2, . . . , qθH} that (x − εθ,x, x + εθ,x) ⊆ (a, b)\{qθ1, qθ2, . . . , qθH}. Combining
this with (3.33) and (3.37) demonstrates for all θ ∈ U , x ∈ (a, b)\{qθ1, qθ2, . . . , qθH} that
(x− εθ,x, x+ εθ,x) 3 y 7→ N θ(y) ∈ R is affine linear. This, (3.40), (3.41), and the fact that
for all i ∈ N ∩ [1, H) it holds that αi+1 6= αi prove that for all θ ∈ {ϑ ∈ U : L(ϑ) = 0},
i ∈ N ∩ [1, H) we have that xi ∈ {qθ1, qθ2, . . . , qθH}. Combining this with the fact that for
all θ ∈ U it holds that qθ1 /∈ [a, b], the fact that for all θ ∈ U , j ∈ N ∩ (1, H] it holds
that qθj ∈ (a, b), the fact that for all θ ∈ U , j ∈ N ∩ (1, H) it holds that qθj < qθj+1, and
the fact that a < x1 < x2 < · · · < xH = b shows that for all θ ∈ {ϑ ∈ U : L(ϑ) = 0},
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j ∈ N ∩ (1, H] we have that qθj = xj−1. This, (3.36), (3.40), (3.41), and (3.43) assure that
for all θ ∈ {ϑ ∈ U : L(ϑ) = 0}, x ∈ [a, b] it holds that

f(a) + α1(x− a) +
∑H

j=2(αj − αj−1) max{x−xj−1, 0} = f(x)

= N θ(x) = cθ +
∑H

j=1 v
θ
j max{wθ

jx+ bθj , 0}

= cθ + vθ1 max{wθ
1x+ bθ1, 0}+

∑H
j=2 v

θ
jw

θ
j max{x+ (wθ

j)
−1bθj , 0}

= cθ + vθ1(wθ
1x+ bθ1) +

∑H
j=2 v

θ
jw

θ
j max{x− qθj , 0}

= cθ + vθ1w
θ
1(x− a) + vθ1w

θ
1a+ vθ1b

θ
1 +

∑H
j=2 v

θ
jw

θ
j max{x−xj−1, 0}

= (cθ + vθ1w
θ
1a+ vθ1b

θ
1) + α1(x− a) +

∑H
j=2 v

θ
jw

θ
j max{x−xj−1, 0}

= f(a) + α1(x− a) +
∑H

j=2 v
θ
jw

θ
j max{x−xj−1, 0}.

(3.44)

Hence, we obtain for all θ ∈ {ϑ ∈ U : L(ϑ) = 0}, j ∈ N ∩ (1, H] that vθjw
θ
j = αj − αj−1.

Combining this with (3.43) proves for all θ ∈ {ϑ ∈ U : L(ϑ) = 0} that θ ∈ M. Hence,
we obtain that M = {ϑ ∈ U : L(ϑ) = 0}. This and the fact that M is a non-empty
(H + 1)-dimensional C∞-submanifold of Rd establish items (v) and (vi).

In the next step note that (3.36) ensures for all θ ∈ M that Iθ1 = [a, b]. In addition,
observe that (3.34) shows for all θ ∈ M, j ∈ N ∩ (1, H] that Iθj = (xj−1, b]. Furthermore,
note that (3.34) and the fact that for all j ∈ N ∩ (1, H] it holds that αj − αj−1 6= 0
demonstrate that for all θ ∈M, i ∈ N∩ [1, H] it holds that vθi 6= 0. This, Corollary 16, and

Proposition 23 assure for all θ ∈M that det
(((

∂2

∂θi∂θj
L
)
(θ)
)

(i,j)∈{1,2,...,2H}2
)
6= 0. Hence, we

obtain for all θ ∈M that
rank((HessL)(θ)) ≥ 2H. (3.45)

Moreover, observe that the fact thatM = {ϑ ∈ U : L(ϑ) = 0} is a (H+1)-dimensional C∞-
submanifold of Rd and Lemma 25 imply that for all θ ∈M we have that rank((HessL)(θ)) ≤
d− (H + 1) = 2H. This and (3.45) establish item (vii). The proof of Proposition 26 is thus
complete.

Definition 27 Let n ∈ N and let A ∈ Rn×n\{0} be symmetric. Then we denote by σ(A) ∈
(0,∞) the real number given by

σ(A) = min{` ∈ (0,∞) : [∃λ ∈ {−`, `}, v ∈ Rn\{0} : Av = λv]} (3.46)

and we denote by Λ(A) ∈ (0,∞) the real number given by

Λ(A) = max{` ∈ (0,∞) : [∃λ ∈ {−`, `}, v ∈ Rn\{0} : Av = λv]} (3.47)

Note that Definition 27 above ensures that σ(A) is the smallest absolute value of a
nonzero eigenvalue of A and Λ(A) is the largest absolute value of a nonzero eigenvalue of
A.

Lemma 28 Let n ∈ N and let A = (ai,j)(i,j)∈{1,2,...,n}2 ∈ Rn×n\{0} be symmetric. Then

Λ(A) ≤
[∑n

i,j=1|ai,j |2
]1/2

(cf. Definition 27).
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Corollary 29 Assume Setting 3, let N ∈ N ∩ [1, H], x0,x1, . . . ,xN , α1, α2, . . . , αN ∈ R
satisfy a = x0 < x1 < · · · < xN = b, assume for all i ∈ {1, 2, . . . , N}, x ∈ [xi−1,xi] that
f(x) = f(xi−1) + αi(x−xi−1), and let D ∈ R satisfy

D = 1 + |f(a)|+ (1 + 2 maxj∈{1,2,...,N}|αj |)(1 + |a|+ |b|). (3.48)

Then there exist k ∈ N ∩ [1, d) and an open U ⊆ (−D,D)d such that

(i) it holds that U ⊆ V,

(ii) it holds that L|U ∈ C2(U,R),

(iii) it holds that U 3 θ 7→ (HessL)(θ) ∈ Rd×d is locally Lipschitz continuous,

(iv) it holds for all θ ∈ U that

Λ((HessL)(θ)) ≤ (3N + 1)
(
24D5 + 16ND7

)(
supx∈[a,b] p(x)

)
, (3.49)

(v) it holds that {ϑ ∈ U : L(ϑ) = 0} 6= ∅,

(vi) it holds that {ϑ ∈ U : L(ϑ) = 0} is a k-dimensional C∞-submanifold of Rd,

(vii) it holds for all θ ∈ {ϑ ∈ U : L(ϑ) = 0} that rank((HessL)(θ)) = d− k, and

(viii) it holds that k = d− 2[N −#{i ∈ N ∩ [1, N) : αi = αi+1}]

(cf. Definition 27).

Proof [Proof of Corollary 29] Throughout this proof we assume without loss of generality
that

∏N−1
i=1 (αi+1 − αi) 6= 0. (Otherwise, we can remove the points xi ∈ (a, b) which satisfy

αi+1 = αi. This decreases the number N of breakpoints and changes neither the target
function f nor the parameter space Rd. It also does not change the number k in item (viii).)

In the following let P : Rd → R3N+1 satisfy for all θ ∈ Rd that P (θ) = (wθ
1, . . . ,w

θ
N , b

θ
1, . . . ,

bθN , v
θ
1, . . . , v

θ
N , c

θ), and let ℒ : R3N+1 → R satisfy for all θ = (θ1, . . . , θ3N+1) ∈ R3N+1 that

ℒ (θ) =
∫ b
a

(
f(x)− θ3N+1 −

∑N
j=1 θ2N+j [R(θjx+ θN+j)]

)2
p(x) dx. (3.50)

Observe that Proposition 26 (applied with H x N , L x ℒ in the notation of Proposi-
tion 26) demonstrates that there exists an open V ⊆ (−D,D)3N+1 which satisfies that

(I) it holds that

V ⊆
{
θ = (θ1, . . . , θ3N+1) ∈ R3N+1 :

(∏N
j=1

∏
v∈{a,b}(θjv + θN+j) 6= 0

)}
, (3.51)

(II) it holds that ℒ |V ∈ C2(V,R),

(III) it holds for all θ = (θ1, . . . , θ3N+1) ∈ V that

maxi,j∈{1,2,...,3N+1}
∣∣( ∂2

∂θi∂θj
ℒ
)
(θ)
∣∣ ≤ (24D5 + 16ND7

)(
supx∈[a,b] p(x)

)
, (3.52)
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(IV) it holds that {ϑ ∈ V : ℒ (ϑ) = 0} 6= ∅,

(V) it holds that {ϑ ∈ V : ℒ (ϑ) = 0} is an (N+1)-dimensional C∞-submanifold of R3N+1,
and

(VI) it holds for all θ ∈ {ϑ ∈ V : ℒ (ϑ) = 0} that rank((Hessℒ )(θ)) = 2N = (3N + 1) −
(N + 1).

In the following let U ⊆ Rd satisfy

U =
{
θ ∈ (−D,D)d∩(P−1(V )) :

(
∀ j ∈ N∩(N,H] : max

{
wθ
ja+bθj ,w

θ
jb+bθj

}
< 0
)}
. (3.53)

Note that (3.53) assures that U ⊆ Rd is open. In addition, observe that (2.3), (3.53), and
item (I) imply that U ⊆ V. This establishes item (i). Next note that item (i) and Lemma 15
prove items (ii) and (iii). Furthermore, observe that for all θ ∈ U , x ∈ [a, b], i ∈ N∩ (N,H]
it holds that R(wθ

ix+ bθi ) = 0. Therefore, we obtain for all θ ∈ U , x ∈ [a, b] that

N θ(x) = cθ +
∑H

j=1 v
θ
j

[
R(wθ

jx+ bθj)
]

= cθ +
∑N

j=1 v
θ
j

[
R(wθ

jx+ bθj)
]
. (3.54)

This implies for all θ ∈ U that
L(θ) = ℒ (P (θ)). (3.55)

Combining this with (3.52) ensures for all θ ∈ U , i, j ∈ N∩ ((0, N ]∪ (H,H+N ]∪ (2H, 2H+
N ] ∪ {3H + 1}) that∣∣( ∂2

∂θi∂θj
L
)
(θ)
∣∣ ≤ (24D5 + 16ND7

)(
supx∈[a,b] p(x)

)
. (3.56)

Moreover, note that (3.55) shows that for all θ ∈ U , i ∈ {1, 2, . . . , d}\((0, N ]∪ (H,H +N ]∪
(2H, 2H +N ] ∪ {3H + 1}), j ∈ {1, 2, . . . , d} we have that(

∂2

∂θi∂θj
L
)
(θ) = 0. (3.57)

Combining this with Lemma 28 and (3.56) assures for all θ ∈ U that

Λ((HessL)(θ)) ≤
√∑H

i,j=1

∣∣( ∂2

∂θi∂θj
ℒ
)
(θ)
∣∣2 ≤ (3N + 1)

(
24D5 + 16ND7

)(
supx∈[a,b] p(x)

)
.

(3.58)
This establishes item (iv). Furthermore, observe that items (IV) and (V), (3.53), and (3.55)
establish items (v), (vi) and (viii). In addition, note that (3.55), (3.57), and item (VI)
demonstrate for all θ ∈ {ϑ ∈ U : L(ϑ) = 0} that rank((HessL)(θ)) = 2N . Combining this
with item (viii) establishes item (vii). The proof of Corollary 29 is thus complete.

4. Local convergence to the set of global minima for gradient flow (GF)

In this section we employ Corollary 29 from Section 3 to establish in Proposition 44 in
Subsection 4.3 below and Corollary 45 in Subsection 4.4 below that the risk of certain solu-
tions of GF differential equations converges under the assumption that the target function
is piecewise constant exponentially quick to zero. Our proof of Proposition 44 employs the
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abstract local convergence result for GF trajectories in Proposition 43 in Subsection 4.2.
Proposition 43 and its proof are strongly inspired by (Fehrman et al., 2020, Proposition 16).
Our proofs of Propositions 43 and 44 also use the several well-known concepts and results
from differential geometry which we recall in Subsection 4.1 below.

In particular, Lemma 33 is a direct consequence of, e.g., (Fehrman et al., 2020, Propo-
sition 7), Lemma 35 is proved as, e.g., (Fehrman et al., 2020, Lemma 10), Lemma 36 is
proved as, e.g., (Fehrman et al., 2020, Lemma 11), Definition 37 is a slight reformula-
tion of, e.g., (Fehrman et al., 2020, Definition 12), Proposition 39 is a slight extension of,
e.g., (Fehrman et al., 2020, Proposition 13), Proposition 41 is a reformulation of (Fehrman
et al., 2020, Lemma 15), and Lemma 42 is a slight generalization of (Fehrman et al., 2020,
Lemma 14).

4.1 Differential geometric preliminaries

Definition 30 Let d ∈ N and letM⊆ Rd satisfyM 6= ∅. Then we denote by dM : Rd → R
the function which satisfies for all x ∈ Rd that dM(x) = infy∈M‖x− y‖.

Definition 31 Let d ∈ N and let M ⊆ Rd satisfy M 6= ∅. Then we denote by PM ⊆ Rd

the set given by
PM =

{
x ∈ Rd : (∃1 y ∈M : ‖x− y‖ = dM(x))

}
(4.1)

and we denote by pM : PM → Rd the function which satisfies for all x ∈ PM that pM(x) ∈
M and

‖x−pM(x)‖ = dM(x) (4.2)

(cf. Definition 30).

Definition 32 Let d ∈ N and let M ⊆ Rd satisfy M 6= ∅. Then we denote by PM ⊆ Rd

the set given by

PM =
⋃

U⊆Rd is open, U⊆PM,
and pM|U∈C1(U,Rd)

U (4.3)

(cf. Definition 31).

Lemma 33 Let d, k ∈ N, let M ⊆ Rd be a k-dimensional C2-submanifold of Rd, and let
x ∈M. Then there exists an open V ⊆ Rd such that

(i) it holds that x ∈ V ⊆ PM and

(ii) it holds that pM|V ∈ C1(V,Rd).

(cf. Definitions 30 and 31).

Proposition 34 Let d, k ∈ N and letM⊆ Rd be a non-empty k-dimensional C2-submanifold
of Rd. Then M⊆ PM (cf. Definition 32).

Proof [Proof of Proposition 34] Observe that Lemma 33 assures thatM⊆ PM. The proof
of Proposition 34 is thus complete.
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Lemma 35 Let d, k ∈ N, let M ⊆ Rd be a non-empty k-dimensional C2-submanifold of

Rd, and let x ∈ PM (cf. Definition 32). Then x−pM(x) ∈ (T pM(x)
M )⊥ (cf. Definitions 24

and 31).

Lemma 36 Let d, k ∈ N and let M ⊆ Rd be a non-empty k-dimensional C2-submanifold
of Rd. Then

(i) it holds that PM\M ⊆ Rd is open,

(ii) it holds that PM\M 3 y 7→ dM(y) ∈ R is continuously differentiable, and

(iii) it holds for all y ∈ PM\M that

(∇dM)(y) = y−pM(y)
‖y−pM(y)‖ (4.4)

(cf. Definitions 30 to 32).

Definition 37 Let d, k ∈ N, let M⊆ Rd be a k-dimensional C2-submanifold of Rd, and let
x ∈M, r, s ∈ (0,∞). Then we denote by V r,s

M,x ⊆ Rd the set given by

V r,s
M,x =

{
y ∈ Rd : ∃m ∈M : ∃ v ∈ (T m

M)⊥ :
[
(‖m− x‖ ≤ r), (‖v‖ < s), (y = m + v)

]}
(4.5)

(cf. Definition 24).

Lemma 38 Let d, k ∈ N, let M ⊆ Rd be a k-dimensional C2-submanifold of Rd, and let
x ∈M, r, s ∈ (0,∞). Then

(i) it holds that

V r,s
M,x =

{
y ∈ Rd : ∃m ∈M :

[
(‖m− x‖ ≤ r), (‖y −m‖ < s), (y −m ∈ (T m

M)⊥)
]}
,

(4.6)

(ii) it holds that

V r,s
M,x ⊇

{
y ∈ PM :

[
(‖x−pM(y)‖ ≤ r), (‖y −pM(y)‖ < s)

]}
, (4.7)

and

(iii) it holds that x ∈ (V r,s
M,x)◦ (cf. Definitions 24, 31, 32 and 37).

Proof [Proof of Lemma 38] Note that (4.5) establishes item (i). Next observe that (4.5)
and Lemma 35 establish item (ii). Furthermore, note that item (ii) implies that

V r,s
M,x ⊇

{
y ∈ PM :

[
(‖x−pM(y)‖ < r), (‖y −pM(y)‖ < s)

]}
. (4.8)

Furthermore, observe that the fact that PM 3 y 7→ p(y) ∈ Rd is continuous shows that
{y ∈ PM : [(‖x − pM(y)‖ < r), (‖y − pM(y)‖ < s)]} ⊆ Rd is open. Combining this with
(4.8) and the fact that x ∈ {y ∈ PM : [(‖x−pM(y)‖ < r), (‖y−pM(y)‖ < s)]} establishes
item (iii). The proof of Lemma 38 is thus complete.
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Proposition 39 Let d, k ∈ N, let M ⊆ Rd be a k-dimensional C2-submanifold of Rd, let
U ⊆ PM be open, and let x ∈ M ∩ U (cf. Definition 32). Then there exist R,S ∈ (0,∞)
such that

(i) it holds for all r ∈ (0, R], s ∈ (0, S] that V r,s
M,x ⊆ U ,

(ii) it holds for all r ∈ (0, R], s ∈ (0, S] that

V r,s
M,x =

{
y ∈ Rd : dM(y) = d{m∈M : ‖x−m‖≤r}(y) < s

}
, (4.9)

(iii) it holds for all r ∈ (0, R], s ∈ (0, S], m ∈ M, v ∈ (T m
M)⊥ with ‖m − x‖ ≤ r and

‖v‖ < s that m + v ∈ V r,s
M,x and pM(m + v) = m, and

(iv) it holds for all r ∈ (0, R], s ∈ (0, S] that

V r,s
M,x =

{
y ∈ PM :

[
(‖x−pM(y)‖ ≤ r), (‖y −pM(y)‖ < s)

]}
(4.10)

(cf. Definitions 24, 30, 31 and 37).

Proof [Proof of Proposition 39] Note that (Fehrman et al., 2020, Proposition 13) establishes
items (i) to (iii). In addition, observe that items (ii) and (iii) and (4.5) establish item (iv).
The proof of Proposition 39 is thus complete.

Setting 40 Let d ∈ N, k ∈ N ∩ (0, d), let U ⊆ Rd be open, let f ∈ C2(U,R) have locally
Lipschitz continuous derivatives, let M ⊆ U satisfy M = {x ∈ U : f(x) = infy∈U f(y)},
and assume that M is a k-dimensional C2-submanifold of Rd.

Proposition 41 Assume Setting 40 and let x ∈M satisfy rank((Hess f)(x)) = d−k. Then

(i) it holds for all v ∈ ((T xM)⊥)\{0} that 〈((Hess f)(x))v, v〉 ≥ [σ((Hess f)(x))]‖v‖2 > 0
and

(ii) it holds for all v ∈ ((T xM)⊥)\{0}, r ∈ [0, (Λ((Hess f)(x)))−1] that ‖v−r((Hess f)(x))v‖ ≤
[1− rσ((Hess f)(x))]‖v‖.

(cf. Definitions 24 and 27).

Proof [Proof of Proposition 41] Throughout this proof let {v1, v2, . . . , vd−k} ⊆ ((T xM)⊥)\{0}
be an orthogonal basis of (T xM)⊥ with respect to which (Hess f)(x) is diagonal and let
λ1, λ2, . . . , λd−k ∈ R satisfy for all i ∈ {1, 2, . . . , d−k} that ((Hess f)(x))vi = λivi. Note that
the fact that x is a local minimum of f shows for all i ∈ {1, 2, . . . , d−k} that λi ≥ 0. This and
the assumption that rank((Hess f)(x)) = d−k imply for all i ∈ {1, 2, . . . , d−k} that λi > 0.
Hence, we obtain for all i ∈ {1, 2, . . . , d−k} that λi ∈ [σ((Hess f)(x)),Λ((Hess f)(x))]. Next
let v ∈ ((T xM)⊥)\{0} and let u1, u2, . . . , ud−k ∈ R satisfy v =

∑d−k
i=1 uivi. Observe that〈(

(Hess f)(x)
)
v,v

〉
=
∑d−k

i=1

(
λi|ui|2‖vi‖2

)
≥
[
σ((Hess f)(x))

][∑d−k
i=1 |ui|2‖vi‖2

]
=
[
σ((Hess f)(x))

]
‖v‖2 > 0.

(4.11)
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This establishes item (i). Furthermore, note that the fact that for all i ∈ {1, 2, . . . , d− k} it
holds that λi ∈ [σ((Hess f)(x)),Λ((Hess f)(x))] ensures that for all r ∈ [0, (Λ(Hess f)(x))−1]
we have that∥∥v − r((Hess f)(x)

)
v
∥∥2

=
∑d−k

i=1

(
|ui|2‖vi‖2(1− rλi)2

)
≤
∑d−k

i=1

(
|ui|2‖vi‖2

(
1− r

[
σ((Hess f)(x))

])2)
=
(
1− r

[
σ((Hess f)(x))

])2‖v‖2. (4.12)

This establishes item (ii). The proof of Proposition 41 is thus complete.

Lemma 42 Assume Setting 40 and let x ∈ M. Then there exist c, r, s ∈ (0,∞) such that

for all y ∈ V r,s
M,x it holds that V r,s

M,x ⊆ (PM ∩ U) and∥∥(∇f)(y)−
(
(Hess f)(pM(y))

)
(y −pM(y))

∥∥ ≤ c(dM(y))2 (4.13)

(cf. Definitions 30 to 32 and 37).

Proof [Proof of Lemma 42] Observe that Proposition 39 ensures that there exist r, s ∈
(0,∞) which satisfy V r,s

M,x ⊆ U , which satisfy

V r,s
M,x =

{
y ∈ PM :

[
(‖x−pM(y)‖ ≤ r), (‖y −pM(y)‖ < s)

]}
, (4.14)

and which satisfy for all m ∈M, v ∈ (T m
M)⊥ with ‖m−x‖ ≤ r and ‖v‖ < s that m+v ∈ V r,s

M,x

and
pM(m + v) = m (4.15)

(cf. Definition 24). Note that (4.14), (4.15), and Lemma 35 imply for all y ∈ V r,s
M,x, t ∈

[0, 1] that pM(y) + t(y − pM(y)) ∈ V r,s
M,x. In addition, observe that the fact that V r,s

M,x

is compact and the assumption that U 3 y 7→ (Hess f)(y) ∈ Rd×d is locally Lipschitz

continuous prove that there exists c ∈ (0,∞) which satisfies for all y, z ∈ V r,s
M,x, v ∈ Rd that

‖((Hess f)(y)− (Hess f)(z))v‖ ≤ c‖y − z‖‖v‖. Furthermore, note that the fact that for all
y ∈ V r,s

M,x it holds that (∇f)(pM(y)) = 0 and the assumption that f is twice continuously

differentiable demonstrate that for all y ∈ V r,s
M,x it holds that

(∇f)(y) =

∫ 1

0

(
(Hess f)(pM(y) + t(y −pM(y))

)
(y −pM(y)) dt

=
(
(Hess f)(pM(y))

)
(y −pM(y))

+

∫ 1

0

(
(Hess f)

(
pM(y) + t(y −pM(y))

)
− (Hess f)(pM(y))

)
(y −pM(y)) dt.

(4.16)

Combining this with the fact that for all y ∈ V r,s
M,x, t ∈ [0, 1] it holds that∥∥((Hess f)(pM(y) + t(y −pM(y))− (Hess f)(pM(y))

)
(y −pM(y))

∥∥ ≤ ct‖y −pM(y)‖2
(4.17)
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implies that for all y ∈ V r,s
M,x we have that

‖(∇f)(y)− ((Hess f)(pM(y)))(y −pM(y))‖ ≤ c‖y −pM(y)‖2
[∫ 1

0 tdt
]

= c
2(dM(y))2.

(4.18)

The proof of Lemma 42 is thus complete.

4.2 Abstract convergence result for GF to a submanifold of global minima

Proposition 43 Assume Setting 40, assume for all x ∈M that rank((Hess f)(x)) = d−k,
let G : Rd → Rd be locally bounded and measurable, assume for all x ∈ U that G(x) =
(∇f)(x), let Θθ ∈ C([0,∞),Rd), θ ∈ Rd, satisfy for all θ ∈ Rd, t ∈ [0,∞) that Θθ

t =
θ −

∫ t
0 G(Θθ

s) ds, and let x ∈M. Then there exist r, s ∈ (0,∞) such that

(i) it holds for all θ ∈ V r/2,s
M,x , t ∈ [0,∞) that Θθ

t ∈ V
r,s
M,x,

(ii) it holds that infy∈M∩V r,sM,x
[σ((Hess f)(y))] > 0, and

(iii) it holds for all θ ∈ V r/2,s
M,x , t ∈ [0,∞) that

dM(Θθ
t ) ≤ exp

(
− t

2

[
infy∈M∩V r,sM,x

[
σ((Hess f)(y))

]])
dM(θ) (4.19)

(cf. Definitions 27, 30 and 37).

Proof [Proof of Proposition 43] Observe that Proposition 39 and Lemma 42 prove that

there exist r, ε, c ∈ (0,∞) which satisfy V r,ε
M,x ⊆ U , which satisfy

V r,s
M,x =

{
y ∈ PM :

[
(‖x−pM(y)‖ ≤ r), (‖y −pM(y)‖ < s)

]}
, (4.20)

and which satisfy for all y ∈ V r,ε
M,x that

‖(∇f)(y)− (Hess f)(pM(y))(y −pM(y))‖ ≤ c(dM(y))2 (4.21)

(cf. Definition 32). In the following let κ ∈ R satisfy κ = 1
2 infy∈M∩V r,εM,x

[
σ((Hess f)(y))

]
.

Note that the fact that Hess f is locally Lipschitz continuous and the fact that the eigenval-
ues are continuous functions of a matrix (cf., e.g., (Kato, 1995, Section 2.5.1)) prove that

κ > 0. Next observe that the fact that V r,ε
M,x is compact, the fact that for all y ∈ PM

it holds that (∇f)(pM(y)) = 0, the fact that PM 3 y 7→ pM(y) ∈ Rd is continuously
differentiable, and the assumption that f ∈ C2(U,R) prove that there exists c ∈ (0,∞)

which satisfies for all y ∈ V r,ε
M,x that

‖(pM)′(y)[(∇f)(y)]‖ = ‖(pM)′(y)[(∇f)(y)− (∇f)(pM(y))]‖ ≤ c‖y −pM(y)‖ = cdM(y)
(4.22)

(cf. Definition 31). In the following let s ∈ (0,∞) satisfy

s = min
{κ
c
,
κr

2c
, ε
}
, (4.23)
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let θ ∈ V r/2,s
M,x , and let τ ∈ (0,∞] satisfy τ = inf({t ∈ [0,∞) : Θθ

t /∈ V
r,s
M,x} ∪ {∞}). Note

that the assumption that for all y ∈ U it holds that G(y) = (∇f)(y) and the fact that
U 3 y 7→ (∇f)(y) ∈ Rd is continuous assure that [0, τ) 3 t 7→ Θθ

t ∈ Rd is continuously
differentiable and that for all t ∈ [0, τ) it holds that d

dtΘ
θ
t = −(∇f)(Θθ

t ). This, Lemma 36,
and the chain rule show for all t ∈ [0, τ) that

d

dt
dM(Θθ

t ) = −
〈

(∇f)(Θθ
t ), (∇dM)(Θθ

t )
〉

= −
〈

(∇f)(Θθ
t ),

Θθ
t −pM(Θθ

t )

‖Θθ
t −pM(Θθ

t )‖

〉
(4.24)

. Next observe that (4.21), (4.23), (4.24), and Proposition 41 demonstrate for all t ∈ [0, τ)
that

d

dt
dM(Θθ

t ) = −
〈

(Hess f)(pM(Θθ
t ))(Θ

θ
t −pM(Θθ

t )),
Θθ
t −pM(Θθ

t )

‖Θθ
t −pM(Θθ

t )‖

〉
−
〈

(∇f)(Θθ
t )− (Hess f)(pM(Θθ

t ))(Θ
θ
t −pM(Θθ

t )),
Θθ
t −pM(Θθ

t )

‖Θθ
t −pM(Θθ

t )‖

〉
≤ −2κ‖Θθ

t −pM(Θθ
t )‖+ c(dM(Θθ

t ))
2

= −2κdM(Θθ
t ) + c(dM(Θθ

t ))
2 ≤ −κdM(Θθ

t ).

(4.25)

Hence, we obtain for all t ∈ [0, τ) that

dM(Θθ
t ) ≤ e−κtdM(Θθ

0) = e−κtdM(θ). (4.26)

It remains to prove that τ =∞. To this end, note that the chain rule and Lemma 33 imply
for all t ∈ [0, τ) that

d
dtpM(Θθ

t ) = −(DpM)(Θθ
t )(∇f(Θθ

t )). (4.27)

Combining this, (4.22), and (4.26) ensures for all t ∈ [0, τ) that∥∥∥ d
dtpM(Θθ

t )
∥∥∥ ≤ cdM(Θθ

t ) ≤ ce−κtdM(θ) ≤ cse−κt. (4.28)

This and (4.23) show for all t ∈ [0, τ) that

‖pM(Θθ
t )−pM(θ)‖ ≤ cs

∫ t

0
e−κu du ≤ κr

2

∫ ∞
0

e−κu du =
r

2
. (4.29)

Furthermore, observe that the assumption that θ ∈ V
r/2,s
M,x assures that there exists δ ∈

(0,∞) which satisfies that θ ∈ V
r/2−δ,s
M,x . Combining this with (4.29) establishes for all

t ∈ [0, τ) that Θθ
t ∈ V

r−δ,s
M,x . Consequently, we must have that τ =∞. The proof of Propo-

sition 43 is thus complete.
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4.3 Convergence rates for GF in the training of ANNs

Proposition 44 Assume Setting 3, let N ∈ N∩ [1, H], x0,x1, . . . ,xN , α1, α2, . . . , αN ∈ R
satisfy a = x0 < x1 < · · · < xN = b, assume for all i ∈ {1, 2, . . . , N}, x ∈ [xi−1,xi] that
f(x) = f(xi−1) + αi(x − xi−1), assume that G is locally bounded and measurable, and let
Θθ ∈ C([0,∞),Rd), θ ∈ Rd, satisfy for all θ ∈ Rd, t ∈ [0,∞) that

Θθ
t = θ −

∫ t

0
G(Θθ

s) ds. (4.30)

Then there exist c,C ∈ (0,∞) and a non-empty open U ⊆ Rd such that for all θ ∈ U ,
t ∈ [0,∞) it holds that L(Θθ

t ) ≤ Ce−ct.

Proof [Proof of Proposition 44] Throughout this proof let M ⊆ Rd satisfy M = {θ ∈
Rd : L(θ) = 0}. Note that Corollary 29 proves that there exist k ∈ N ∩ [1, d) and an
open U ⊆ Rd which satisfy U ⊆ V, which satisfy that L|U is twice continuously differ-
entiable, which satisfy that (HessL)|U is locally Lipschitz continuous, which satisfy that
M ∩ U is a non-empty k-dimensional C2-submanifold of Rd, and which satisfy for all
θ ∈ M ∩ U that rank((HessL)(θ)) = d − k. Combining this, Proposition 11, Lemma 38,
and Proposition 39 with Proposition 43 ensures that there exist m ∈ M ∩ U , c ∈ (0,∞),
V,V ∈ {A ⊆ U : A is compact} which satisfy that

(i) it holds that m ∈ V ◦ ⊆ V ⊆ V,

(ii) it holds for all θ ∈ V that dM∩U (θ) = dM∩U∩V ,

(iii) it holds for all θ ∈ V , t ∈ [0,∞) that Θθ
t ∈ V, and

(iv) it holds for all t ∈ [0,∞) that dM∩U (Θθ
t ) ≤ e−ctdM∩U (θ)

(cf. Definition 30). Furthermore, observe that the fact that L|U is twice continuously
differentiable proves that there exists C ∈ (0,∞) which satisfies for all θ, ϑ ∈ V that
|L(θ) − L(ϑ)| ≤ C‖θ − ϑ‖. This assures that for all θ ∈ V ◦, t ∈ [0,∞) we have that

L(Θθ
t ) = infϑ∈M∩U∩V |L(Θθ

t )− L(ϑ)| ≤ C
[
infϑ∈M∩U∩V‖Θθ

t − ϑ‖
]

= C
[
dM∩U (Θθ

t )
]
≤ Ce−ctdM∩U (θ).

(4.31)

The proof of Proposition 44 is thus complete.

4.4 Convergence rates for GF with random initializations in the training of
ANNs

Corollary 45 Assume Setting 3, let N ∈ N ∩ [1, H], x0,x1, . . . ,xN , α1, α2, . . . , αN ∈ R
satisfy a = x0 < x1 < · · · < xN = b, assume for all i ∈ {1, 2, . . . , N}, x ∈ [xi−1,xi]
that f(x) = f(xi−1) + αi(x − xi−1), assume that G is locally bounded and measurable,
let (Ω,F ,P) be a probability space, let Θ: [0,∞) × Ω → Rd be a stochastic process with
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continuous sample paths, assume that Θ0 is standard normally distributed, and assume for
all t ∈ [0,∞), ω ∈ Ω that

Θt(ω) = Θ0(ω)−
∫ t

0
G(Θs(ω)) ds. (4.32)

Then there exist c,C ∈ (0,∞) such that P(∀ t ∈ [0,∞) : L(Θt) ≤ Ce−ct) > 0.

Proof [Proof of Corollary 45] Note that Proposition 44 ensures that there exist c,C ∈ (0,∞)
and a non-empty open U ⊆ Rd which satisfy for all t ∈ [0,∞), ω ∈ Ω with Θ0(ω) ∈ U that
L(Θt(ω)) ≤ Ce−ct. Observe that the fact that U is a non-empty open set and the assump-
tion that Θ0 is standard normally distributed imply that P(Θ0 ∈ U) > 0. This completes
the proof of Corollary 45.

5. Local convergence to the set of global minima for gradient descent
(GD)

In this section we employ Corollary 29 from Section 3 to establish in Theorem 48 in Sub-
section 5.2, Corollary 49 in Subsection 5.3, and Corollary 50 in Subsection 5.3 under the
assumption that the target function is piecewise affine linear that the risk of certain GD
processes converges to zero. Our proofs of Corollaries 49 and 50 are based on an application
of Theorem 48 and our proof of Theorem 48 uses the abstract local convergence result for
GD processes in Proposition 47 in Subsection 5.1 below. Proposition 47 and its proof are
strongly inspired by (Fehrman et al., 2020, Proposition 17). Our proof of Proposition 47
employs the elementary uniform estimate for certain exponential sums in Lemma 46 in Sub-
section 5.1. For completeness we include in this section also a detailed proof for Lemma 46.

5.1 Abstract convergence result for GD to a submanifold of global minima

Lemma 46 Let ρ ∈ [0, 1), c, g ∈ (0,∞). Then there exists C ∈ R such that for all γ ∈ (0, g]
it holds that

∞∑
k=1

γk−ρ exp
(
−cγ(k − 1)1−ρ) ≤ C. (5.1)

Proof [Proof of Lemma 46] First note that for all γ ∈ (0, g] it holds that

∞∑
k=1

γk−ρ exp
(
−cγ(k − 1)1−ρ) ≤ γ +

∞∑
k=2

γ(k − 1)−ρ exp
(
−cγ(k − 1)1−ρ)

≤ g +
∞∑
n=1

γn−ρ exp
(
−cγn1−ρ)

≤ 2g +

∞∑
n=2

γn−ρ exp
(
−cγn1−ρ).

(5.2)
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Next observe that the fact that for all γ ∈ (0,∞) it holds that [1,∞) 3 x 7→ x−ρ exp(−cγx1−ρ) ∈
R is continuous and non-increasing assures that for all γ ∈ (0, g] we have that

∞∑
n=2

γn−ρ exp
(
−cγn1−ρ) ≤ ∞∑

n=2

[∫ n

n−1
γx−ρ exp

(
−cγx1−ρ) dx

]
=

∫ ∞
1

γx−ρ exp
(
−cγx1−ρ) dx.

(5.3)

Moreover, note that the integral transformation theorem proves for all γ ∈ (0, g] that∫ ∞
1

γx−ρ exp
(
−cγx1−ρ) dx =

∫ ∞
γ1/(1−ρ)

γ
1+ ρ

1−ρx−ρ exp
(
−cx1−ρ)γ− 1

1−ρ dx

≤
∫ ∞

0
x−ρ exp

(
−cx1−ρ) dx ≤

∫ 1

0
x−ρ dx+

∫ ∞
1

exp
(
−cx1−ρ) dx

=
1

1− ρ
+

∫ ∞
1

exp
(
−cx1−ρ) dx.

(5.4)

Furthermore, observe that the assumption that c ∈ (0,∞) and the assumption that ρ ∈ [0, 1)
ensure that

∫∞
1 exp

(
−cx1−ρ) dx < ∞. Combining this, (5.2), (5.3), and (5.4) establishes

for all γ ∈ (0, g] that

∞∑
k=1

γk−ρ exp
(
−cγ(k − 1)1−ρ) ≤ 2g +

1

1− ρ
+

∫ ∞
1

exp
(
−cx1−ρ) dx <∞. (5.5)

The proof of Lemma 46 is thus complete.

Proposition 47 Assume Setting 40, assume for all x ∈M that rank((Hess f)(x)) = d−n,
let G : Rd → Rd satisfy for all x ∈ U that G(x) = (∇f)(x), let x ∈ M, ρ ∈ [0, 1), and let

Θθ,γ : N0 → Rd, θ ∈ Rd, γ ∈ R, satisfy for all θ ∈ Rd, γ ∈ R, n ∈ N that Θθ,γ
0 = θ and

Θθ,γ
n = Θθ,γ

n−1 −
γ
nρG(Θθ,γ

n−1). (5.6)

Then there exist r, s ∈ (0,∞) such that

(i) it holds for all θ ∈ V r/2,s
M,x , γ ∈ (0,min{[supy∈M∩V r,sM,x

Λ((Hess f)(y))]−1, 1}], n ∈ N0

that Θθ,γ
n ∈ V r,s

M,x,

(ii) it holds that infy∈M∩V r,sM,x

[
σ((Hess f)(y))

]
> 0, and

(iii) it holds for all θ ∈ V r/2,s
M,x , γ ∈ (0,min{[supy∈M∩V r,sM,x

Λ((Hess f)(y))]−1, 1}], n ∈ N0

that

dM(Θθ,γ
n ) ≤ exp

(
− γ

2(1−ρ)

[
infy∈M∩V r,sM,x

[
σ((Hess f)(y))

]]
n1−ρ

)
dM(θ) (5.7)

(cf. Definitions 27 and 37).
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Proof [Proof of Proposition 47] Note that Proposition 39 and Lemma 42 prove that there

exist r, ε, c ∈ (0,∞) which satisfy V r,ε
M,x ⊆ U , which satisfy

V r,s
M,x =

{
y ∈ PM :

[
(‖x−pM(y)‖ ≤ r), (‖y −pM(y)‖ < s)

]}
, (5.8)

and which satisfy for all y ∈ V r,ε
M,x that

‖(∇f)(y)− (Hess f)(pM(y))(y −pM(y))‖ ≤ c(dM(y))2 (5.9)

(cf. Definition 32). In the following let κ ∈ R satisfy κ = infy∈M∩V r,εM,x

[
σ((Hess f)(y))

]
.

Observe that the fact that U 3 y 7→ (Hess f)(y) ∈ Rd×d is locally Lipschitz continuous and
the fact that the eigenvalues are continuous functions of a matrix (cf., e.g., (Kato, 1995,

Section 2.5.1)) prove that κ > 0. Next note that the fact that V r,ε
M,x is compact and the fact

that U 3 y 7→ (∇f)(y) ∈ Rd is continuously differentiable demonstrate that there exists

c ∈ (0,∞) which satisfies for all y ∈ V r,ε
M,x that

‖(∇f)(y)‖ = ‖(∇f)(y)− (∇f)(pM(y))‖ ≤ c‖y −pM(y)‖ = cdM(y) (5.10)

(cf. Definition 31). In the following let C ∈ (0,∞) satisfy for all γ ∈ (0, 1] that

∞∑
k=1

γk−ρ exp
(
− κγ

2(1−ρ)(k − 1)1−ρ
)
≤ C (5.11)

(cf. Lemma 46), let s ∈ (0,∞) satisfy

s = min

{
κ

2c
,

r

2(2 + cC)
, ε

}
, (5.12)

let θ ∈ V
r/2,s
M,x and γ ∈ (0,min{[supy∈M∩V r,sM,x

Λ((Hess f)(y))]−1, 1}] be arbitrary, and let

τ ∈ N ∪ {∞} satisfy τ = inf{n ∈ N0 : Θθ,γ
n /∈ V r,s

M,x}. Observe that the fact that for all

n ∈ N ∩ (0, τ ] it holds that Θθ,γ
n ∈ V r,s

M,x proves that for all n ∈ N ∩ (0, τ ] we have that

dM(Θθ,γ
n ) ≤ ‖Θθ,γ

n −pM(Θθ,γ
n−1)‖

=
∥∥∥Θθ,γ

n−1 −pM(Θθ,γ
n−1)− γ

nρ (∇f)(Θθ,γ
n−1)

∥∥∥
≤
∥∥∥Θθ,γ

n−1 −pM(Θθ,γ
n−1)− γ

nρ (Hess f)(pM(Θθ,γ
n−1))(Θθ,γ

n−1 −pM(Θθ,γ
n−1))

∥∥∥
+ γ

nρ

∥∥∥((Hess f)(pM(Θθ,γ
n−1))

)
(Θθ,γ

n−1 −pM(Θθ,γ
n−1))− (∇f)(Θθ,γ

n−1)
∥∥∥.

(5.13)

Combining this, Proposition 41, and (5.9) demonstrates for all n ∈ N ∩ (0, τ ] that

dM(Θθ,γ
n ) ≤

(
1− κγ

nρ

)
dM(Θθ,γ

n−1) + cγ
nρ (dM(Θθ,γ

n−1))2. (5.14)

This, the fact that for all n ∈ N∩ (0, τ ] it holds that dM(Θθ,γ
n−1) ≤ s ≤ κ

2c , and (5.12) imply
that for all n ∈ N ∩ (0, τ ] it holds that

dM(Θθ,γ
n ) ≤

(
1− κγ

2nρ

)
dM(Θθ,γ

n−1). (5.15)
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By induction, we therefore obtain for all n ∈ N ∩ (0, τ ] that

dM(Θθ,γ
n ) ≤

[∏n
k=1

(
1− κγ

2kρ

)]
dM(θ). (5.16)

Next note that the assumption that γ ≤ [supy∈M∩V r,sM,x
Λ((Hess f)(y))]−1 ≤ κ−1 shows for all

k ∈ N that κγ
2kρ ∈ (0, 1). This and the fact that for all u ∈ (0, 1) it holds that ln(1−u) ≤ −u

prove that for all n ∈ N we have that

ln
[∏n

k=1

(
1− κγ

2kρ

)]
=
∑n

k=1 ln
(
1− κγ

2kρ

)
≤ −κγ

2

∑n
k=1 k

−ρ ≤ −κγ
2

∫ n
0 u−ρ du = κγ

2(1−ρ)n
1−ρ.

(5.17)
Combining this with (5.16) demonstrates for all n ∈ N ∩ (0, τ ] that

dM(Θθ,γ
n ) ≤ exp

(
− κγ

2(1−ρ)n
1−ρ
)
dM(θ). (5.18)

It only remains to show that τ =∞. Observe that (5.10) assures for all n ∈ N∩ (0, τ ] that

‖Θθ,γ
n −Θθ,γ

n−1‖ = γ
nρ ‖(∇f)(Θθ,γ

n−1)‖ ≤ cγ
nρdM(Θθ,γ

n−1) (5.19)

This, (5.18), the fact that γ ≤ 1, (5.11), and the triangle inequality establish for all n ∈
N ∩ (0, τ ] that

‖Θθ,γ
n − θ‖ ≤

n∑
k=1

cγk−ρ exp
(
− κγ

2(1−ρ)(k − 1)1−ρ
)
dM(θ)

≤ cs
∞∑
k=1

γk−ρ exp
(
− κγ

2(1−ρ)(k − 1)1−ρ
)
≤ csC.

(5.20)

Combining this with (5.18), (5.12), and the triangle inequality proves for all n ∈ N ∩ (0, τ ]
that

‖pM(Θθ,γ
n )−pM(θ)‖ ≤ dM(Θθ,γ

n ) + ‖Θθ,γ
n − θ‖+ dM(θ)

≤ s(2 + cC) ≤ r
2 .

(5.21)

Furthermore, note that the assumption that θ ∈ V r/2,s
M,x assures that there exists δ ∈ (0,∞)

which satisfies that θ ∈ V r/2−δ,s
M,x . Hence, we obtain for all n ∈ N∩ (0, τ ] that Θθ,γ

n ∈ V r−δ,s
M,x .

This implies that τ =∞. The proof of Proposition 47 is thus complete.

5.2 Convergence rates for GD in the training of ANNs

Theorem 48 Assume Setting 3, let N ∈ N ∩ [1, H], ρ ∈ [0, 1), x0,x1, . . . ,xN , α1, α2, . . . ,
αN ∈ R satisfy a = x0 < x1 < · · · < xN = b, assume for all i ∈ {1, 2, . . . , N}, x ∈
[xi−1,xi] that f(x) = f(xi−1) + αi(x−xi−1), let D ∈ R satisfy

D = 1 + |f(a)|+ (1 + 2 maxj∈{1,2,...,H}|αj |)(|a|+ |b|+ 1), (5.22)

and let Θθ,γ : N0 → Rd, θ ∈ Rd, γ ∈ R, satisfy for all θ ∈ Rd, γ ∈ R, n ∈ N that Θθ,γ
0 = θ

and
Θθ,γ
n = Θθ,γ

n−1 −
γ
nρG(Θθ,γ

n−1). (5.23)
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Then there exist c,C ∈ (0,∞) and a non-empty open U ⊆ (−D,D)d such that for all θ ∈ U ,

γ ∈ (0, ((3N + 1)(24D5 + 16ND7)(supx∈[a,b] p(x)))−1], n ∈ N0 it holds that L(Θθ,γ
n ) ≤

C exp(−cγn1−ρ).

Proof [Proof of Theorem 48] Throughout this proof let M ⊆ Rd satisfy M = {θ ∈
Rd : L(θ) = 0}. Observe that Corollary 29 proves that there exist k ∈ N ∩ [1, d) and
an open U ⊆ (−D,D)d which satisfy U ⊆ V, which satisfy that L|U is twice contin-
uously differentiable, which satisfy for all θ ∈ U that Λ((HessL)(θ)) ≤ (3N + 1)(24D5 +
16ND7)(supx∈[a,b] p(x)), which satisfy that (HessL)|U is locally Lipschitz continuous, which

satisfy thatM∩U is a non-empty k-dimensional C2-submanifold of Rd, and which satisfy for
all θ ∈M∩U that rank((HessL)(θ)) = d− k. Combining this, Proposition 11, Lemma 38,
and Proposition 39 with Proposition 47 shows that there exist m ∈ M ∩ U , c ∈ (0,∞),
V,V ∈ {A ⊆ U : A is compact} such that

(i) it holds that m ∈ V ◦ ⊆ V ⊆ V,

(ii) it holds for all θ ∈ V that dM∩U (θ) = dM∩U∩V(θ), and

(iii) it holds for all θ ∈ V , γ ∈ (0,min{(supϑ∈M∩V2 Λ((Hess f)(ϑ)))−1, 1}], n ∈ N0 that

Θθ,γ
n ∈ V and dM∩U (Θθ,γ

n ) ≤ exp(−cγn1−ρ)dM∩U (θ)

(cf. Definition 30). In addition, note that

supϑ∈M∩V Λ((Hess f)(ϑ)) ≤ supϑ∈U Λ((Hess f)(ϑ))

≤ (3N + 1)
(
24D5 + 16ND7

)(
supx∈[a,b] p(x)

)
.

(5.24)

Furthermore, observe that the fact that L|U is twice continuously differentiable implies that
there exists C ∈ (0,∞) which satisfies for all θ, ϑ ∈ V that |L(θ)− L(ϑ)| ≤ C‖θ − ϑ‖. This
ensures that for all θ ∈ V ◦, γ ∈ (0, ((3N + 1)(16D5 + 8ND7)(supx∈[a,b] p(x)))−1], n ∈ N0 we
have that

L(Θθ,γ
n ) = infϑ∈M∩U∩V |L(Θθ,γ

n )− L(ϑ)| ≤ C
[

infϑ∈M∩U∩V‖Θθ,γ
n − ϑ‖

]
= C

[
dM∩U (Θθ,γ

n )
]
≤ C exp(−cγn1−ρ)dM∩U (θ).

(5.25)

The proof of Theorem 48 is thus complete.

5.3 Convergence results for GD with random initializations in the training of
ANNs

Corollary 49 Assume Setting 3, let N ∈ N ∩ [1, H], ρ ∈ [0, 1), x0,x1, . . . ,xN , α1, α2, . . . ,
αN ∈ R satisfy a = x0 < x1 < · · · < xN = b, assume for all i ∈ {1, 2, . . . , N}, x ∈
[xi−1,xi] that f(x) = f(xi−1) + αi(x−xi−1), let D ∈ R satisfy

D = 1 + |f(a)|+ (1 + 2 maxj∈{1,2,...,H}|αj |)(|a|+ |b|+ 1), (5.26)

let (Ω,F ,P) be a probability space, let Θγ
n : Ω → Rd, γ ∈ R, n ∈ N0, be random variables,

assume for all γ ∈ R that Θγ
0 is standard normally distributed, and assume for all γ ∈ R,

n ∈ N, ω ∈ Ω that
Θγ
n(ω) = Θγ

n−1(ω)− γn−ρG(Θγ
n−1(ω)). (5.27)
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Then there exist c,C ∈ (0,∞) such that for all γ ∈ (0, ((3N+1)(24D5+16ND7)(supx∈[a,b] p(x)))−1]

it holds that P(∀n ∈ N0 : L(Θγ
n) ≤ C exp(−cγn1−ρ)) ≥ c.

Proof [Proof of Corollary 49] Note that Theorem 48 ensures that there exist c,C ∈ (0,∞)
and a non-empty open U ⊆ Rd such that for all γ ∈ (0, ((3N+1)(24D5+16ND7)(supx∈[a,b] p(x)))−1],
ω ∈ Ω, n ∈ N0 with Θγ

0(ω) ∈ U it holds that

L(Θγ
n(ω)) ≤ C exp(−cγn1−ρ). (5.28)

Observe that the fact that U is a non-empty open set and the assumption that for all γ ∈ R
it holds that Θγ

0 is standard normally distributed imply that there exists δ ∈ (0,∞) such
that for all γ ∈ R we have that P(Θγ

0 ∈ U) ≥ δ. This completes the proof of Corollary 49.

Corollary 50 Assume Setting 3, let N ∈ N ∩ [1, H], x0,x1, . . . ,xN , α1, α2, . . . , αN ∈ R
satisfy a = x0 < x1 < · · · < xN = b, assume for all i ∈ {1, 2, . . . , N}, x ∈ [xi−1,xi] that
f(x) = f(xi−1) + αi(x−xi−1), let D ∈ R satisfy

D = 1 + |f(a)|+ (1 + 2 maxj∈{1,2,...,H}|αj |)(|a|+ |b|+ 1), (5.29)

let Θk,γ
n : Ω → Rd, k, n ∈ N0, γ ∈ R, and kk,γn : Ω → N, k, n ∈ N0, γ ∈ R, be random

variables, assume for all γ ∈ R that Θk,γ
0 , k ∈ N, are independent standard normal random

variables, and assume for all k ∈ N, γ ∈ R, n ∈ N0, ω ∈ Ω that

Θk,γ
n+1(ω) = Θk,γ

n (ω)− γG(Θk,γ
n (ω)) (5.30)

and
kk,γn (ω) ∈ arg min`∈{1,2,...,k} L(Θ`,γ

n (ω)). (5.31)

Then it holds for all γ ∈ (0, ((3N + 1)(24D5 + 16ND7)(supx∈[a,b] p(x)))−1] that

lim infK→∞ P
(

lim supn→∞ L
(
ΘkK,γn ,γ
n

)
= 0
)

= 1. (5.32)

Proof [Proof of Corollary 50] Throughout this proof let g ∈ R satisfy g = ((3N+1)(24D5 +
16ND7)(supx∈[a,b] p(x)))−1. Note that Theorem 48 assures that there exist c,C ∈ (0,∞)
and a non-empty open U ⊆ (−D,D)d such that for all γ ∈ (0, g], k ∈ N, ω ∈ Ω, n ∈ N0 with

Θk,γ
0 (ω) ∈ U it holds that L(Θk,γ

n (ω)) ≤ C exp(−cγn). Hence, we obtain for all γ ∈ (0, g],

k ∈ N, ω ∈ Ω with Θk,γ
0 (ω) ∈ U that lim supn→∞ L(Θk,γ

n (ω)) = 0. Next observe that (5.31)
ensures for all K ∈ N, γ ∈ (0, g] that

P
(

lim supn→∞ L
(
ΘkK,γn ,γ
n

)
= 0
)
≥ P

(
∃ k ∈ {1, 2, . . . ,K} :

[
lim supn→∞ L(Θk,γ

n ) = 0
])
.

(5.33)

Furthermore, note that the fact that for all γ ∈ (0, g], k ∈ N, ω ∈ Ω with Θk,γ
0 (ω) ∈ U it

holds that lim supn→∞ L(Θk,γ
n (ω)) = 0 shows that for all K ∈ N, γ ∈ (0, g] we have that

P
(
∃ k ∈ {1, 2, . . . ,K} :

[
lim supn→∞ L(Θk,γ

n ) = 0
])
≥ P

(
∃ k ∈ {1, 2, . . . ,K} : Θk,γ

0 ∈ U
)
.

(5.34)
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In addition, observe that the fact that for all γ ∈ R it holds that Θk,γ
0 , k ∈ N, are i.i.d.

implies that for all K ∈ N, γ ∈ (0, g] we have that

P
(
∃ k ∈ {1, 2, . . . ,K} : Θk,γ

0 ∈ U
)

= 1− P
(
∀ k ∈ {1, 2, . . . ,K} : Θk,γ

0 ∈ (Rd\U)
)

= 1−
[
P
(
Θ1,γ

0 ∈ (Rd\U)
)]K

.
(5.35)

Moreover, note that the fact that U is non-empty and open and the fact that for all γ ∈ R
it holds that Θ1,γ

0 is standard normally distributed prove that for all γ ∈ R we have that

P
(
Θ1,γ

0 ∈ (Rd\U)
)
< 1. This and (5.35) demonstrate for all γ ∈ (0, g] that

lim infK→∞ P
(
∃ k ∈ {1, 2, . . . ,K} : Θk,γ

0 ∈ U
)

= 1. (5.36)

Combining this with (5.33) and (5.34) shows for all γ ∈ (0, g] that

lim infK→∞ P
(

lim supn→∞ L
(
ΘkK,γn ,γ
n

)
= 0
)

= 1. (5.37)

The proof of Corollary 50 is thus complete.
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