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Abstract

In this paper, we investigate the early stopping strategy for the iterative regularization
technique, which is based on gradient descent of convex loss functions in reproducing kernel
Hilbert spaces without an explicit regularization term. This work shows that projecting the
last iterate of the stopping time produces an estimator that can improve the generalization
ability. Using the upper bound of the generalization errors, we establish a close link between
the iterative regularization and Tikhonov regularization scheme and explain theoretically
why the two schemes have similar regularization paths in the existing numerical simulations.
We introduce a data-dependent way based on cross-validation to select the stopping time.
We prove that the a-posteriori selection way can retain the comparable generalization errors
to those obtained by our stopping rules with a-prior parameters.

Keywords: iterative regularization, early stopping, reproducing kernel Hilbert spaces,
stopping rule, cross-validation

1. Introduction

Early stopping is a well known regularization method to overcome the phenomenon of
overfitting in the fields of science and engineering. In inverse problems, the original idea
of early stopping can date back to the 1970’s in the context of the Landweber iteration
(Strand, 1974). Later on it received considerable study based on spectral filtering for solving
linear or nonlinear operator equations and a series of subsequent papers can be found
(Vito et al., 2005; Guo et al., 2017; Lu and Pereverzev, 2013). Various forms of early
stopping also have been developed in the machine learning community as well as in the
statistics community, such as boosting algorithms (Bühlmann and Yu, 2003; Wei et al.,
2019), multi-pass stochastic gradient descent (Lin and Rosasco, 2017), conjugate gradient
descent (Blanchard and Mathé, 2010; Blanchard and Krämer, 2016) and gradient descent
(Yao et al., 2007; Lin et al., 2016). Apart from solving convex problems, early stopping
can be applied to non-convex optimization problems, including robust learning (Guo et al.,
2018), minimum error entropy criterion (Fan et al., 2016) and training neural networks
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(LeCun et al., 2012). In these algorithms, they sought to minimize empirically a loss function
in an iterative fashion and the number of iterations serves as a regularization parameter.
For ensuring best generalization abilities, the iterative regularization against overfitting is
realized by a suitable stopping strategy that provides the best possible convergence rate in
the iteration process. Statistical results on generalization properties and the regularization
effect of early stopping have been investigated in a variety of learning algorithms, especially
when an iterative update is generated by the least squares loss (Yao et al., 2007; Raskutti
et al., 2014; Bühlmann and Yu, 2003).

In this paper, we shall analyze stopping strategies applied to subgradient or gradient
descent of general convex loss functions associated with a reproducing kernel Hilbert space
(RKHS) in the supervised setting, where no constraint or extra penalty term is taken into
consideration. Similar framework has been investigated by the paper (Lin et al., 2016),
in which consistency and non-asymptotic bounds quantifying the generalization properties
were achieved under some specific stopping rules. However, these rates are not satisfactory
and worse than the error bounds achieved by other regularization schemes, such as support
vector machines, kernel ridge regression. In the recent papers (Wei et al., 2019; Stankewitz
et al., 2021), the early stopping strategies and convergence properties were studied when
iterative regularization schemes are generated by a class of (locally) smooth losses. Thus,
these works still left an open question whether the kind of iterative algorithms associated
with general convex losses can produce the estimators that have comparative generalization
errors when a suitable stopping strategy is taken. The first contribution of this paper is to
answer this question in the affirmative. This work improves the error analysis for the iter-
ative algorithm by a sharp estimate for the bound of the iterates before the stopping time
and shows that with a refined stopping rule the error bound of the projected last iterate can
match the best ones available in previous papers (to be discussed in Section 2). Secondly,
we investigate the link between our early stopping procedure and Tikhonov regularization.
Friedman and Popescu (2004) empirically reported that the regularization paths for early
stopping of gradient descent and L2-penalized least squares regression are similar, but did
not provide any theoretical explanation. Our strict error analysis will illustrate this phe-
nomenon and give a comparison between early stopping and Tikhonov regularization over
RKHS. More precisely, we prove that if the penalty parameter of Tikhonov regularization
is selected appropriately according to our stopping rule, then the generalization error sat-
isfies the same type of bounds. Finally, it is shown in the next section, our stopping rules
depend on some a-prior parameters that may be unknown in advance. Hence, we introduce
a stopping rule for determining the number of iterations based on cross-validation and show
that the same order of generalization errors can be achieved.

The rest of the paper is organized as follows. In Section 2, we introduce the neces-
sary backgrounds and provide three main results mentioned above. Section 3 is devoted
to deriving the explicit stopping time and the corresponding generalization error bounds
depend on some a-prior parameters. Section 4 contains the proofs of error bounds based on
cross-validation with the a-posteriori parameter selection. We close with some discussions
and conclusions in Section 5.
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2. Learning Algorithms and Main Results

We begin with some basic notations and assumptions required for a precise statement of our
results. Let X be a separable metric space, Y ⊂ R and ρ be a Borel probability measure on
Z = X ×Y. Given a predictor f : X → Y, a convex loss function φ : R×R→ R+ is used to
measure its local error by the value φ(y, f(x)) for (x, y) ∈ Z. The learning task is to minimize
the generalization error E(f) associated with the pair (φ, ρ), given as E(f) =

∫
Z φ(y, f(x))dρ.

Denote by fφρ : X → Y the minimizer of E(f) over all measurable functions. The main goal

of learning is to estimate fφρ according to the sample set D = {(xi, yi)}mi=1 ⊂ Z drawn from
the unknown ρ.

Kernel methods provide efficient non-parametric learning algorithms for dealing with
nonlinear features and RKHSs are used in this work as hypothesis spaces in the design
of iterative algorithms. Let K : X × X → R be a Mercer kernel, that is, a continuous,
symmetric and positive semi-definite function. The RKHS HK associated with K is defined
to be the completion of the linear span of the set of functions {Kx := K(x, ·), x ∈ X}
equipped with the inner product 〈·, ·〉K satisfying the reproducing property

〈g,Kx〉K = g(x), for any x ∈ X , g ∈ HK . (2.1)

Denote κ := supx∈X
√
k(x, x). This property implies that ‖g‖∞ ≤ κ‖g‖K , ∀g ∈ HK .

Throughout the paper, we assume that the loss φ is convex with respect to the second
variable. That is, for any fixed y ∈ Y , the univariate function φ(y, ·) on R is convex. Hence
its left derivative φ′−(y, f) exists at every f ∈ R and is non-decreasing. In what follows, we
consider the iterative algorithm based on the subgradient method, or the gradient descent
if the loss is smooth.

Definition 1 Given an i.i.d. sample set D = {(xi, yi)}mi=1 ⊂ Z and a stopping time T > 2,
the iterative algorithm is given by f1 = 0 and

ft+1 = ft −
ηt
m

m∑
j=1

φ′− (yj , ft(xj))Kxj , t = 1, · · · , T, (2.2)

where {ηt > 0, t = 1, · · · , T} is a step size sequence.

The primal purpose of this paper is to investigate the generalization ability of algorithm
(2.2), which is usually measured by the excess generalization error E(f) − E(fφρ ). To this
end, we need to introduce some necessary assumptions.

Assumption 1 We assume that cφ := sup
y∈Y

φ(y, 0) < ∞ and an increment condition holds

for the left derivative φ′−, that is, for some q > 0 and cq > 0,

|φ′−(y, f)| ≤ cq(1 + |f |)q, ∀f ∈ R, y ∈ Y. (2.3)

Condition (2.3) is satisfied by a broad class of loss functions. For smooth losses, it holds
with q = 1. For Lipschitz continuous losses, it holds with q = 0. For α-activating losses,
it holds with q = α, 0 < α < 1. Concrete examples include the hinge loss φ(y, f) =
max{1 − yf, 0}, the logistic loss φ(y, f) = log (1 + exp(−yf)) for classification, the least
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squares loss φ(y, f) = (y − f)2, the ε-insensitive loss φ(y, f) = max{|y − f | − ε, 0} for
regression. We also notice that Nemitski losses satisfy (2.3) when the output is bounded,
which are introduced in Steinwart and Christmann (2008); Vito et al. (2004) and consist of
most commonly used convex loss functions in various learning problems.

Assumption 2 We assume that for any B ≥ 1, there exists an exponent τ ∈ [0, 1] and the
positive constant cτ = cτ (B) satisfying

IE
{
φ(y, f(x))− φ(y, fφρ (x))

}2
≤ cτ

{
E(f)− E(fφρ )

}τ
, ∀f : X → [−B,B]. (2.4)

The above inequality is usually referred to a variance-expectation bound and plays an im-
portant role to improve our error analysis in this work. Inequality (2.4) always holds with

τ = 0 and cτ depending on ‖fφρ ‖∞ due to the continuity of convex losses. For the least
squares loss, we can take τ = 1. See the works (Cucker and Zhou, 2007; Steinwart and
Christmann, 2008).

Remark 1 The value of the exponent τ has close relation with some noise conditions im-
posed on the distribution ρ or the convexity of the loss φ. The hinge loss is a prominent
example for the noise condition. We can see that τ = 0 always holds for the hinge loss
and an improved τ = s

s+1 holds when the Tsybakov margin noise condition (to be stated
in (2.20)) is valid with exponent s (Wu et al., 2007). Another example is the pinball loss,
as shown in Section 9 of Steinwart and Christmann (2008), we can take τ = s′

2s′+2 if the
conditional distribution of ρ satisfies the quantile noise condition with exponent s′ > 0.

For the convexity of φ, we assume the loss φ(y, f) = V (yf) with some convex function
V. The modulus of convexity of V is defined as (Bartlett et al., 2006)

δ̂S(ε) = inf

{
V (a) + V (b)

2
− V

(
a+ b

2

)
: a, b ∈ S, |a− b| ≥ ε

}
.

If δ̂S(ε) > 0 for all ε > 0, then V is strictly convex in S. Assume that

δ̂S(ε) ≥ c|ε|ϑ, for some c > 0 and ϑ > 0. (2.5)

ϑ = 2 if V is strongly convex, e.g., the quadratic loss. Then by the work (Bartlett et al.,
2006), we know that (2.4) holds with τ = min{1, 2ϑ} if (2.5) is valid.

Assumption 3 Let λ > 0 and the regularization function fλ be the minimizer of the reg-
ularization error:

fλ := arg min
f∈HK

{
E(f) + λ‖f‖2K

}
. (2.6)

The approximation error associated with the triplet (ρ, φ,K) is defined by

D(λ) := min
f∈HK

{
E(f)− E(fφρ ) + λ‖f‖2K

}
= E(fλ)− E(fφρ ) + λ‖fλ‖2K . (2.7)

We assume that for some β ∈ (0, 1] and cβ > 0, there holds

D(λ) ≤ cβλβ, λ > 0. (2.8)
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The approximation error measures the approximation ability of the space HK with respect
to the learning process involving φ and ρ. Assumption (2.8) is standard in learning theory
and always holds with β = 0. The denseness of HK in C(X ) implies lim

λ→0
D(λ) = 0. Thus,

the decay of (2.8) can be estimated by K-functionals from the knowledge of approximation
theory. For more details, see discussions in Cucker and Zhou (2007); Wang and Hu (2021).
Throughout the paper, denote the closed ball of radius R > 0 in HK as BR := {f ∈
HK , ‖f‖K ≤ R}.

Assumption 4 Let G be a set of functions on X . The metric d2,D on G is defined by

d2,D(f, g) :=

{
1

m

m∑
i=1

(f(xi)− g(xi))
2

} 1
2

, ∀f, g ∈ G.

Recall that for a subset G of a metric space (H, d), the covering number N (G, ε, d) is defined
by

N (G, ε, d) = inf

{
` ∈ N : ∃f1, · · · , f` ∈ H such that G ⊂

⋃̀
i=1

{f ∈ G : d(f, fi) ≤ ε}

}
.

We assume that for some ζ ∈ (0, 2), cζ > 0, the covering number of the unit ball B1 in HK
with respect to d2,D satisfies

IED [logN (B1, ε, d2,D)] ≤ cζ
(

1

ε

)ζ
, ∀ε > 0. (2.9)

Empirical covering number N (G, ε, d2,D) is a widely adopted tool to characterize the capac-
ity of HK in learning theory. Note that for any G ∈ C(X ), N (G, ε, d2,D) is bounded by the
uniform covering number N (G, ε, d) under the metric d = ‖·‖∞ since d2,D(f, g) ≤ ‖f−g‖∞.
For example, when X is a bounded subset of Rn and the RKHS HK is a Sobolev space
Hα(X) with index α, it can be checked by Zhou (2002); Cucker and Zhou (2007) that
the condition (2.9) holds true with ζ = 2n/α. If the kernel K lies in the smooth space
C∞(X ×X ), then (2.9) is satisfied for an arbitrarily small ζ > 0. Recall that capacity of the
RKHS may be measured by other concepts: (dyadic) entropy numbers, effective dimensions,
decay of the eigenvalues of the integral operator associated with K. For their connections
and estimations in various function spaces, one can refer to the works (Lin et al., 2016;
Steinwart and Christmann, 2008; Lv et al., 2018).

Throughout the paper, we assume that for some constant B > 0 the output space
Y ⊂ [−B,B]. Thus, we shall choose the estimator of algorithm (2.2) by restricting its final
output onto [−B,B]. We make full use of the projection operator, given as

f̂(x) =


−B, if f(x) < −B,
f(x), if |f(x)| ≤ B,
B, if f(x) > B.

The idea of using a projected estimator to improve the learning performance was first
introduced by the work (Bartlett, 1998) in training neural networks, and then developed
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to the context of SVM (Bousquet and Elisseeff, 2002). In the subsequent works (Wu et al.,
2007; Steinwart and Christmann, 2008), they proved that the projection technique can lead
to sharp generalization errors for Tikhonov regularization. Inspired by their works, we
extend it to the analysis of iterative regularization (2.2) and demonstrate its superiority
by the following theoretical verification. We also assume that the loss function φ is B-
admissible:

φ(y, f̂(x)) ≤ φ(y, f(x)), for any f : X → R and y ∈ [−B,B]. (2.10)

For binary classification problems, we can take φ(y, f(x)) = V (yf(x)) with a convex func-
tion V : R → R+. When V belongs to the class of classifying loss functions (that is,
V ′(0) < 0 and the smallest zero of V is 1), it is easy to check that V (yf̂(x)) ≤ V (yf(x))
with B = 1. Examples of classifying losses include

• the hinge loss V (yf) = max{1− yf, 0},

• the least squares loss V (yf) = (1− yf)2,

• the p-norm soft margin SVM loss V (yf) = max{1− yf, 0}p (1 < p <∞).

For regression problems, many popular loss functions are also B-admissible, including

• the least squares regression loss φ(y, f) = (y − f)2,

• the ε-insensitive loss φ(y, f) = max{|y − f | − ε, 0},

• the pinball loss

φ(y, f) =

{
(1− τ)(y − f), if y ≥ f,
τ(f − y), otherwise,

• the logistic loss for regression φ(y, f) = − log
(

4ey−f

(1+ey−f )2

)
,

• the Huber loss

φ(y, f) =

{
(y − f)2, if |y − f | ≤ 1,
2|y − f | − 1, otherwise.

2.1 Main results for generalization error

Our first main theorem establishes a stopping rule for (2.2) in the situation of the smooth
loss functions and provides the corresponding generalization error bounds for the projected
last iterate. We say that the loss φ is smooth if the derivative φ′(y, ·) exists for any y ∈ Y
and is L-Lipschitz continuous for some constant L > 0,

|φ′(y, a)− φ′(y, b)| ≤ L|a− b|, ∀a, b ∈ R.

With the above smoothness assumption, we obtain the following generalization result whose
proof will be given in Subsection 3.6.

Denote bac as the largest integer not exceeding a, a ∈ R. The notation . means that
the inequality holds up to a multiplicative constant that depends on various parameters
appearing in the assumptions, but not on the sample size m or the confidence level δ.
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Theorem 1 (Smooth losses) Suppose Assumptions 1, 2, 3 and 4 hold. Let ηt = ηt−θ

with 0 ≤ θ < 1 and some 0 < η < min
{

1−θ
2cφ

, 1
Lκ2

}
. Define the parameters α and γ as

α = min

{
2

(1− θ)(ζ(1− β) + β(4− 2τ + ζτ))
,

2

(1− θ)(2β + (1− β)(q + 1))

}
, (2.11)

and

γ = min

{
2

ζ(1− β) + β(4− 2τ + ζτ)
,

2

2β + (1− β)(q + 1)

}
. (2.12)

If T = bmαc, then with confidence at least 1− δ,

E(f̂T )− E(fφρ ) . m−βγ log
logm

δ
. (2.13)

Under the above stopping rule, the upper bound (2.13) greatly improves the rate O(m−βγ
′
),

γ′ =
(
β(2− τ + ζτ/2) +

{
2−τ+ζτ/2

2 + q(1+ζ/2)
2

})−1
in Theorem 8, (Lin et al., 2016). It is

clear that algorithm (2.2) with different step sizes can yield the same generalization bounds.
Thus, a constant step size is chosen for smooth losses, which can considerably reduce the
iteration time.

Remark 2 In the recent work by Stankewitz et al. (2021), stopping strategies and the cor-
responding generalization errors were established for (locally) Lipschitz and smooth loss
functions without capacity conditions on hypothesis spaces. They showed that when the tar-
get function fφρ lies in a separable Hilbert space, the error for the averaged iterate is of

order O
(
m−

1
2

)
if the stopping time T = O

(
m

1
2

)
. By Theorem 1, we take a universal ζ = 2

for no capacity conditions on RKHSs and let β = 1 for fφρ ∈ HK , then our best rate is

O
(
m−

1
2 log(logm)

)
if T = O

(
m

1
2

)
, which is only slightly inferior. However, our analysis

does not require that the minimizer of min
f∈HK

E(f) exists, as shown in the proof, which is

more general.

Let us now derive some explicit consequences of our theorem by considering the least
squares loss for special choices of kernels that are of interest in practice. Denote by ρ(y|x) the
conditional probability for all (x, y) ∈ Z and by ρX the marginal distribution on X . The tar-

get function fφρ is the regression function fρ, defined as the conditional mean
∫
y∈Y ydρ(y|x)

for given x ∈ X and ‖fρ‖∞ ≤ B since |y| ≤ B. The generalization error is

E(f)− E(fρ) = ‖f − fρ‖2L2
ρX

where

L2
ρX =

{
f : X → R :

∫
X
|f(x)|2dρX <∞

}
.

In this case, Assumption 2 holds true with τ = 1 and cτ = (4B)2 since∫
Z

[
(y − f(x))2 − (y − fρ(x))2

]2
dρ =

∫
Z

(2y − f(x)− fρ(x))2 (f(x)− fρ(x))2 dρ

≤ (4B)2‖f − fρ‖2L2
ρX

= (4B)2 (E(f)− E(fρ))
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for any f : X → [−B,B].
Define the integral operator associated with K as

LK(f) :=

∫
X
f(x)KxdρX , ∀f ∈ L2

ρX .

When the operator LK is compact, the r-power of LK by LrK is well-defined for any r > 0.

If the regression function fρ belongs to the range space L
β
2

(
L2
ρX

)
with some 0 < β ≤ 1, it

is usually referred to as a regularity condition imposed on fρ and (2.8) is valid for the least
squares loss. We can refer to Cucker and Zhou (2007) for details.

Our next example applies to the class of RKHSs whose eigenvalues {µi}i of LK satisfy
a polynomial decay condition, meaning that

µi ≤ Ci−
2
ζ , for some 0 < ζ < 2 and constant C > 0. (2.14)

Kernels with the polynomial decaying eigenvalues include those that underlie for the Sobolev
spaces with different orders of smoothness (Birman and Solomjak, 1967; Lian et al., 2019).
As a concrete example, the first-order Sobolev kernel K(x, x′) = 1 + min{x, x′} generates
an RKHS of Lipschitz functions with smoothness ζ = 1. Other higher-order Sobolev kernels
also exhibit polynomial eigendecay with smaller values of the power ζ.

Example 1 Let φ(y, f(x)) = (y− f(x))2 and |y| ≤ B for some B > 0. Assume the polyno-

mial eigenvalue decay (2.14) holds and the regression function fρ lies in the space L
β
2
K

(
L2
ρX

)
with 1− ζ

2 ≤ β ≤ 1. Let ηt = ηt−θ with 0 ≤ θ < 1. If T =
⌊
m

2
(1−θ)(ζ+2β)

⌋
, then with confidence

at least 1− δ, there holds

‖f̂T − fρ‖2L2
ρX

= O
(
m
− 2β

2β+ζ log(logm)
)
.

Furthermore, if fρ belongs to HK (β = 1), with T =
⌊
m

2
ζ+2

⌋
and ηt ≡ η (let θ = 0),

‖f̂T − fρ‖2L2
ρX

= O
(
m
− 2

2+ζ log(logm)
)
. (2.15)

For regression learning, the known minimax bounds on estimation error in Sobolev spaces

are of order O
(
m
− 2

2+ζ

)
. See the papers (Stone, 1982; Tsybakov, 2009; Caponnetto and

Vito, 2007). The upper bound (2.15) is nearly optimal only up to a logarithm term and
obviously superior to the result of Corollary 10 in Lin et al. (2016).

Remark 3 Iterative techniques with the least squares can often be viewed as a member
of the family of spectral algorithms in solving inverse problems, with a special filter func-
tion (Lu and Pereverzev, 2013; Vito et al., 2005; Yao et al., 2007; Guo et al., 2018). In
those learning paradigms, error analyses were achieved by utilizing the linear structure of
algorithms and integral operators techniques of LK , which can not be applied in our work.

Their best obtained bounds are of order O
(
m
− 2β

2β+ζ

)
, which match minimax lower bounds

in the regression setting (Caponnetto and Vito, 2007). Besides, the same error bounds also
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have been established in other iterative schemes, such as conjugate gradient (Blanchard and
Krämer, 2016), incremental gradient (Rosasco and Villa, 2015), bias correction (Sun and
Wu, 2021), multi-pass stochastic gradient method (Lin and Rosasco, 2017; Lei et al., 2021).
The error bound in Example 1 has shown to be comparable just with the logarithm term.

Next we state our second main result in the situation of general losses, where the smooth-
ness condition in Theorem 1 is removed.

Theorem 2 (General losses) Suppose Assumptions 1, 2, 3 and 4 hold. Let ηt = ηt−θ

with max
{

q
q+1 ,

1
2

}
< θ < 1 and η satisfying

0 < η < min

{ √
(q∗ − 1)(1− θ)

2
√

5cq(κ+ 1)q+1
√
q∗
,

1− θ
4cφ + 1

}
. (2.16)

Define α and γ as in (2.11) and (2.12). If T = bmαc , then with confidence at least 1− δ,
we have for any ε > 0,

E(f̂T )− E(fφρ ) .

{
m−βγ log logm

δ , if θ ≥ q+1
q+2 ,

m−βγ+γ−α(θ(1+q)−q) (logm) log logm
δ , if θ < q+1

q+2 ,
(2.17)

where

q∗ = 2θ − (1− θ) ·max{0, q − 1} > 0. (2.18)

In the following, we will further illustrate the above result by considering the case q = 0,
which includes all Lipschitz losses.

Corollary 1 Suppose Assumption 1 holds true with q = 0. Let ηt = ηt−θ with 1
2 < θ < 1

and Assumptions 2, 3 and 4 hold. If T =

⌊
m

min
{

2
(1−θ)(ζ(1−β)+β(4−2τ+ζτ))

, 2
(1−θ)(β+1)

}⌋
, then

with confidence at least 1− δ, we have

E(f̂T )− E(fφρ ) = O

(
m
−min

{
2β

ζ(1−β)+β(4−2τ+ζτ)
, 2β
β+1

}
log(logm)

)
. (2.19)

Remark 4 For the non-smooth Lipschitz loss φ, Assumption 2 always holds with τ = 0,

then our result (2.19) reduces to O
(
m
−min

{
2β

ζ(1−β)+4β
, 2β
β+1

}
log(logm)

)
. Let us compare it

with the best results obtained for Tikhonov regularization with Lipschitz loss functions. By
assuming (2.8) and τ = 0, Theorem 7.23 in Steinwart and Christmann (2008) provides the

generalization error rate O
(
m
−min

{
2β

ζ(1−β)+4β
, 2β
β+1

})
. Hence, the two obtained error rates for

Lipschitz loss functions are nearly the same by ignoring the logarithm term.

A direct application of the above corollary can be done for the SVM classification with the
hinge loss. In this case, Y = {−1, 1} and the corresponding misclassification error is given
as

R(f) = Prob {(x, y) ∈ Z : f(x) 6= y} .
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The minimizer of the misclassification error over measurable functions is the Bayes rule

fc(x) = 2sign(2ρ(1|x)− 1), ∀x ∈ X .

Comparison theorems enable us to bound the excess misclassification error R(f) − R(fc)

by estimates for the excess generalization error E(f) − E(fφρ ). For the hinge loss, it holds
that

R(f)−R(fc) ≤ E(f)− E(fφρ ).

If further information about the distribution ρ is available, one can expect sharper error
bound for the above estimate. For example, suppose ρ satisfies a Tsybakov margin condition
(Tsybakov, 2009)

ρX

{
x ∈ X : 0 <

∣∣∣∣ρ(1|x)− 1

2

∣∣∣∣ ≤ C∆

}
≤ ∆s, ∀∆ > 0, (2.20)

with an exponent s > 0 and C > 0. In classification, ρ(1|x) = 1
2 is a critical point to

characterize the amount of noise. Consequently, exponent s quantifies the size of the set of
points that have noise in the labeling process. All distributions satisfy (2.20) with s = 0
and C > 0, whereas s = ∞ implies that ρ(1|x) is far away from 1

2 and ρ has a low noise
level.

With these preliminaries, misclassification error bound, for algorithm (2.2) with the
hinge loss, can then be obtained by applying Corollary 1.

Example 2 Let φ(y, f) = max{1 − yf, 0} and Y = {−1, 1}. Suppose (2.8) holds for
β ∈ (0, 1] and (2.9) is valid for ζ ∈ (0, 2). Let ηt = ηt−θ with 1

2 < θ < 1. As-
sume that ρ satisfies a Tsybakov margin condition (2.20) with exponent s > 0. If T =⌊
m

min
{

2(s+1)
(1−θ)(2β(s+2)+ζ(s+1−β)) ,

2
(1−θ)(1+β)

}⌋
, then with confidence at least 1− δ, we have

R(sign(fT ))−R(fc) = O

(
m
−min

{
2β(s+1)

2β(s+2)+ζ(s+1−β) ,
2β
β+1

}
log(logm)

)
. (2.21)

We know from the paper (Wu and Zhou, 2005) that (2.4) is valid with the exponent τ = s
s+1

and cτ = 8
(

1
2C

) s
s+1 . This example shows how noise condition (2.20) on ρ improves the error

bounds for (2.2) with the hinge loss from τ = 0 (s = 0, general distributions) to τ = s
s+1 > 0

(s > 0).

2.2 Comparison with Tikhonov regularization scheme

In this part, we will establish a close connection between the iterative regularization algo-
rithm (2.2) and Tikhonov regularization algorithm. Given a data set D = {(xi, yi)}mi=1 ⊂ Z,
the Tikhonov regularization scheme associated with the loss φ and kernel K is defined as

fD,λ := arg min
f∈HK

{
ED(f) + λ‖f‖2K

}
, (2.22)

where λ > 0 is a regularization parameter and the empirical error is

ED(f) :=
1

|D|
∑

(x,y)∈D

φ(y, f(x)) =
1

m

m∑
i=1

φ(yi, f(xi)).

10
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The statistical aspects of Tikhonov regularization for learning have been extensively
studied in literature. In particular, the error analysis is well done due to many results.
See e.g. Wu and Zhou (2005); Cucker and Zhou (2007); Caponnetto and Vito (2007);
Raskutti et al. (2014). As pointed out in Introduction, Tikhonov scheme has regularization
behavior similar to that of iterative regularization (2.2) in numerical experiments. For
the least squares loss, Raskutti et al. (2014) provided a theoretical basis to illustrate this
phenomenon by connecting their early stopping strategy with the choice of regularization
parameter in (2.22). They proved that for various kernel classes if the inverse regularization
parameter λ of (2.22) is chosen according to the same stopping criterion for (2.2), then
scheme (2.22) by the least squares can produce a minimax optimal estimator. Here we shall
show in theory that the two regularization schemes associated with general losses also have
similar regularization paths.

In what follows, we first provide the upper bounds for the generalization error of
Tikhonov regularization associated with general convex losses.

Theorem 3 Under Assumptions 1 to 4, let λ = m−γ with γ given as (2.12), then with
confidence at least 1− δ, we have that for any ε > 0,

E(f̂D,λ)− E(fφρ ) . m−(β−ε)γ log
12lε
δ
, (2.23)

where the integer lε is independent of m, δ.

It is worth mentioning that the upper bounds (2.23) of this order have been obtained
for multi-kernel based classification problems (Wu et al., 2007). By tracing their proofs
carefully, we can immediately derive the above results. Here we omit its proofs for simplicity.
The focus of the theorem is to connect the regularization paths of Tikhonov scheme (2.22)
with those of iterative algorithm (2.2).

Remark 5 To our knowledge, the result (2.23) provides the best error bounds for Tikhonov
regularization with general losses, which are available in existing literature (Steinwart and
Christmann, 2008; Wu et al., 2007; Steinwart et al., 2009). It is not yet fully clear about the
optimality and sharpness of the generalization error by general supervised learning problems,
so we are not sure whether the bound (2.23) can be improved further under the conditions
of Theorem 3. However, when we apply it to the case where φ is the least squares and the
regression function fρ lies in a Sobolev space HK , it has been shown in Example 1 that the
error rate (2.15) is nearly optimal in a minimax sense. In addition, when fρ is out of HK ,
belonging to the range space L

β/2
K (L2

ρX ) with 1− ζ
2 ≤ β < 1, the resulting error rate of (2.23)

is O
(
m
− 2β

2β+ζ
+ε
)

( ε > 0 is arbitrarily small) provided that the eigenvalue polynomial decay

(2.14) holds for HK . We can check by Theorem 15 of Steinwart et al. (2009) that the i-th

entropy number ei

(
id : L

β/2
K (L2

ρX )→ L2
ρX

)
∼ i
−β
ζ . Thus, it is known by Theorem 2.2 of

Temlyakov (2006) that this rate is nearly optimal.

We find that the choice of the regularization parameter is λ ' T−(1−θ) where T is the
stopping time used in Theorems 1, 2. Note that θ is determined by the decreasing rate of
step sizes ηt−θ and does not affect the error rates. For general losses, Theorem 2 establishes

11
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upper bounds (2.17) of the same order only with a logarithm term and a slightly different
leading constant when θ ≥ q+1

q+2 . For smooth losses, it is relaxed to 0 ≤ θ < 1 in Theorem 1.
In conjunction, Theorems 1, 2 and 3 provide a theoretical explanation for why, as shown in
past works, the paths of the iterates (2.2) and the Tikhonov estimate (2.22) are so similar.

2.3 Data-dependent stopping time

It should be noted that our stopping strategies in Subsection 2.1 depend on a-prior knowl-
edge of parameters, which is unknown in almost all situations. Thus, an adaptive choice
of stopping time T is desirable to obtain good learning rates. Here we recommend a data-
dependent way to select stopping time T, by taking a suitable a-posteriori choice based on
cross-validation.

We are now in a position of describing this selection procedure. In the rest of the section,
we assume that the data size m = 2n that is even with some n ∈ N and the data set D is
the disjoint union of two data subsets, D1 (the training set) and D2 (the validation set), of
equal cardinality |D1| = |D2| = n.

Definition 2 Let T = {Tk}k be an integer sequence of finite subsets Tk ∈ [n]. Then, we

perform algorithm (2.2) over Dl and get the T -th iterate f
(D1)
T , T ∈ T, i.e.,

f
(D1)
t+1 = f

(D1)
t − ηt

n

n∑
j=1

φ′−

(
yj , f

(D1)
t (xj)

)
Kxj , t = 1, · · · , T.

We use D2 to determine the stoping time T ∗ by

T ∗ := arg min
T∈T
ED2(f̂

(D1)
T ), (2.24)

and take f̂
(D1)
T ∗ as the final estimate for (2.2). This method is called a training/validation

iterative regularization with respect to T.

Cross-validation methods have been developed in various learning algorithms when a-priori
knowledge on the problem is usually not available. It has been proved in various learning
paradigms (Caponnetto and Yao, 2010; Lin and Zhou, 2017; Steinwart et al., 2009) that the
obtained error bounds for using a-priori choices of the parameters can be attained using a
suitable a-posteriori choice based on cross-validation. The following theorem aims to reach
a similar conclusion for the data-dependent choice (2.24). For simplicity, it only considers
the case of the least squares.

To state our results precisely, denote by Λ = {λs}s the finite ε-net of ( 1
m , 1] of cardinality

|Λ| with 0 < ε ≤ 1
m . Then, T = {Tk}k is given by

T = {bλ−1s c, λs ∈ Λ}, (2.25)

where bλ−1s c denotes the largest integer not exceeding λ−1s . Note that cardinality |T| ≤ |Λ|
since for any Tk ∈ T, there may exist more than one elementary λs ∈ Λ such that Tk =
bλ−1s c.

12
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Theorem 4 Let φ be the least squares loss. Assume (2.8) holds for 0 < β < 1, and (2.9)
is valid for 0 < ζ < 2. Take ηt ≡ η to be small enough. Define the set T by (2.25). If we
choose T ∗ by (2.24), then for any 0 < δ < 1, with confidence at least 1− δ,

E(f̂
(D1)
T ∗ )− E(fρ) . m

−min
{
1, 2

2β+ζ

}
β

log
logm

δ
log

(
(|Λ|+ 1)(3|Λ|+ 1)

δ

)
.

The proof of the theorem will be provided in Section 4. Under the same conditions in
Theorem 4, Theorem 1 shows that the error rate with a-prior choice of T should be

O
(
m
−min

{
2β

2β+ζ
,β
}

log
(
logm
δ

))
. The two bounds are slightly different in the logarithm

term. Thus, Theorem 4 confirms that the cross-validation based on (2.24) can retain the
best possible rate, which is achieved by the a-priori choices of the parameters.

3. Error Decomposition and Technical Estimates

In the section, we present the error decomposition for algorithm (2.2) and some useful
estimates, which are critical to prove the main results in Section 2.

Error decomposition is a standard method to estimate learning errors in various algo-
rithms. Here we will use a decomposition for the generalization error E(f̂T ) − E(fφρ ) as
follows

E(f̂T )− E(fφρ ) = ED(f̂T )− ED(fλ) +
{[
E(f̂T )− E(fλ)

]
−
[
ED(f̂T )− ED(fλ)

]}
+ E(fλ)− E(fφρ ). (3.1)

Here λ is a regularization parameter that should be optimized to achieve the sharpest
possible error bounds and can be chosen by a trade-off of error terms in (3.1). The last

term E(fλ)−E(fφρ ) is called the approximation error, which is independent of the sample set
and can be estimated by the decay rate of D(λ). The middle term is the sample error, which
depends on the sample set. We will upper bound it by employing the laws of large numbers
in empirical processes. The two types of error terms have also been tackled well in other
regularization schemes. See e.g., Cucker and Zhou (2007); Wang and Hu (2021); Yao et al.
(2007); Guo et al. (2018). Comparing with these works, decomposition (3.1) introduces the
computational error, the first term ED(f̂T )− ED(fλ) that characterizes the empirical error
between the final estimator and the regularization function. Lin et al. (2016) remarked that
it is uncertain whether the best rate is preserved when such an error related to optimization
is considered. Our following theoretical analysis will address this point by incorporating
it into the total error estimate, and the obtained results in Theorems 1, 2 confirm that
the best generalization error can be achieved by algorithm (2.2) when the trade-off among
computational error, approximation error and sample error are taken properly.

3.1 Estimates for the computational error with general losses

In this subsection, we will first estimate the computational error ED(f̂T ) − ED(fλ) in case
of general convex losses. To this end, we introduce the following lemma.

13
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Lemma 1 Suppose Assumption 1 holds with q > 0. If ηt = ηt−θ with q
q+1 < θ < 1 and

0 < η ≤ min

{ √
1−θ

2
1
2 cq(κ+1)q+1

, 1−θ4cφ

}
, then we have

ED(f̂T )− ED(fλ) ≤ C1‖fλ‖2KΛT,θ

+
T θ

2η

T−1∑
k=1

1

k + 1

[
2ηT−k −

1

k

T∑
t=T−k+1

2ηt

] [
ED(fλ)− ED(f̂T−k)

]
(3.2)

where

ΛT,θ =


T−(1−θ), if θ > q+1

q+2 ,

T−(1−θ) (log T ) , if θ = q+1
q+2 ,

T−(θ(1+q)−q) (log T ) , if θ < q+1
q+2 .

and C1 is a universal constant.

Proof Note that by (2.10), for any measurable f : X → R,

E(f̂) ≤ E(f) and ED(f̂) ≤ ED(f). (3.3)

This together with Lemma 17 of Lin et al. (2016) yields the conclusion (3.2).

In what follows, we shall see how this lemma can be used in bounding the total error of
(3.1). For notational simplicity, with f∗ ∈ HK we denote

FD(f∗) :=
[
ED(f∗)− ED(fφρ )

]
−
[
E(f∗)− E(fφρ )

]
,

MD(f) :=
[
E(f̂)− E(fφρ )

]
−
[
ED(f̂)− ED(fφρ )

]
,

A(f∗) := E(f∗)− E(fφρ ),

AD,T := max
t=1,··· ,T

ED(fφρ )− ED(f̂t) (3.4)

Proposition 1 Under the same conditions of Lemma 1, then for each t = 1, · · · , T,

E(f̂T )− E(fφρ ) ≤MD(fT ) +
4− θ
1− θ

(FD(fλ) +A(fλ) +AD,T ) + C1‖fλ‖2KΛT,θ, (3.5)

where C1 and ΛT,θ are given in Lemma 1.

Proof To bound the generalization error E(f̂T )−E(fφρ ), we shall tackle the errors in (3.1)
term by term.

For each k = 1, · · · , T − 1, decompose ED(fλ)− ED(f̂T−k) into

ED(fλ)− ED(f̂T−k) =
[
ED(fλ)− ED(fφρ )

]
−
[
E(fλ)− E(fφρ )

]
+
[
E(fλ)− E(fφρ )

]
+ ED(fφρ )− ED(f̂T−k) ≤ FD(fλ) +A(fλ) +AD,T .

14
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Plugging it into (3.2), the first term of (3.1) is bounded by Lemma 7 in Appendix as

ED(f̂T )− ED(fλ) ≤ 3

1− θ
{FD(fλ) +A(fλ) +AD,T }+ C1‖fλ‖2KΛT,θ.

For the second term of (3.1), with the above notations we have[
E(f̂T )− E(fλ)

]
−
[
ED(f̂T )− ED(fλ)

]
=
{[
E(f̂T )− E(fφρ )

]
−
[
ED(f̂T )− ED(fφρ )

]}
+
{[
ED(fλ)− ED(fφρ )

]
−
[
E(fλ)− E(fφρ )

]}
≤MD(fT ) + FD(fλ).

Rewrite (3.1) as

E(f̂T )− E(fφρ ) = ED(f̂T )− ED(fλ) +
{[
E(f̂T )− E(fλ)

]
−
[
ED(f̂T )− ED(fλ)

]}
+A(fλ).

Putting the above estimates into it, we get the desired conclusion.

3.2 Bounding the total error

According to the above proposition, we proceed estimating the quantities A(fλ),FD(fλ),
AD,T ,MD(f). Obviously, A(fλ) can be bounded by D(λ). The other three quantities can
be estimated by the following lemmas 2, 3.

Lemma 2 Suppose Assumptions 1, 2 and 4 hold. Then with confidence at least 1 − δ the
following inequality holds for all f ∈ BR

MD(f) ≤ 1

2

[
E(f̂)− E(fφρ )

]
+ ΩR(f) and ED(fφρ )− ED(f̂) ≤ ΩR(f), (3.6)

where

ΩR(f) = C2 max


(

max{1, ‖f‖ζK}
m

) 2
4−2τ+ζτ

,

(
max{1, ‖f‖ζK}

m

) 2
2+ζ

,

(
1

m

) 1
2−τ

log
logR

δ


and C2 is a universal constant (depending on q, ζ, τ) and will be given in the proof.

Lemma 3 Suppose Assumptions 1 and 2 hold. For any f∗ ∈ HK and ‖f∗‖K ≤ R̃ with
some constant R̃ ≥ 1, then for any 0 < δ < 1, with confidence at least 1− δ, there holds

FD(f∗) ≤ C3 max

{
R̃q+1

m
,

(
1

m

) 1
2−τ

,A(f∗)

}
log

2

δ
. (3.7)

where C3 is a universal constant (depending on q, τ) and will be given in the proof.
Specially, with f∗ = fλ and Assumption 3, we have with confidence at least 1− δ,

FD(fλ) ≤ C4 max

{
λ

(q+1)(β−1)
2

m
,

(
1

m

) 1
2−τ

, λβ

}
log

2

δ
, (3.8)

where C4 is a universal constant (depending on q, τ, β) and will be given in the proof.
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The proofs of the above two lemmas can be found in Appendix. With their help, we can
derive the following estimate, which plays a key role in deriving our main theorems. Note

we will show ‖ft‖K ≤ T
1−θ
2 for all t ≤ T and therefore we can apply Proposition 2 with

R = T
1−θ
2 .

Proposition 2 Let R > 0. Assume ‖ft‖K ≤ R for any 1 ≤ t ≤ T . Under the assumptions
of Lemmas 1, 2, then for any 0 < δ < 1, with confidence at least 1− δ,

E(f̂T )− E(fφρ )

≤ C5 max


(
RζT
m

) 2
4−2τ+ζτ

,

(
RζT
m

) 2
2+ζ

,

(
1

m

) 1
2−τ

log
2 logR

δ
,
λ

(q+1)(β−1)
2

m
log

4

δ
, λβ log

4

δ


+ C5λ

β−1ΛT,θ (3.9)

where RT = max{1, ‖ft‖K , t = 1, · · · , T} and C5 is a universal constant (will be given in
the proof).

Proof We shall prove (3.9) by Proposition 1. According to Lemma 2, with confidence at
least 1− δ,

MD(fT ) ≤ 1

2

[
E(f̂T )− E(fφρ )

]
+ ΩR(fT )

and

AD,T ≤ max
t=1,··· ,T

{ΩR(ft)}

This together with Lemma 3 and Proposition 1 yields that with confidence at least 1− 2δ,

E(f̂T )− E(fφρ ) ≤ 1

2

[
E(f̂T )− E(fφρ )

]
+

(
5− 2θ

1− θ

)
max

t=1,··· ,T
{ΩR(ft)}+

C4

(
4− θ
1− θ

)
max

{
λ

(q+1)(β−1)
2

m
,

(
1

m

) 1
2−τ

, λβ

}
log

2

δ
+

(
4− θ
1− θ

)
A(fλ) + C1‖fλ‖2KΛT,θ.

Note that

max
t=1,··· ,T

{ΩR(ft)} ≤ C2 max


(
RζT
m

) 2
4−2τ+ζτ

,

(
RζT
m

) 2
2+ζ

,

(
1

m

) 1
2−τ

log
logR

δ


and A(fλ) ≤ D(λ) ≤ cβλ

β, ‖fλ‖2K ≤ cβλ
β−1. Then subtracting 1

2

[
E(f̂T )− E(fφρ )

]
from

both sides of the above inequality and scaling 2δ to δ, then we can get the conclusion (3.9)
with

C5 = 2 max

{
5− 2θ

1− θ
C2 +

4− θ
1− θ

(C4 + cβ), C1cβ

}
.
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Observe from the above lemma that a crude bound ‖ft‖K ≤ R on the whole space appears

only in the logarithm term, which does no dominate the error analysis of E(f̂T ) − E(fφρ ).
Meanwhile, a tight bound of RT = max{1, ‖ft‖K , t = 1, · · · , T} will lead to a sharp estimate

of E(f̂T ) − E(fφρ ). Thus, in the next subsection we shall improve the bound of the iterate
sequence in probability.

3.3 Improving the iterate bound for general losses

In the paper (Lin et al., 2016), a uniform bound of HK-norm of {ft}Tt=1 has been established
in the following lemma.

Lemma 4 Suppose Assumption 1 holds. Let ηt = ηt−θ with q
q+1 ≤ θ < 1 and η satisfying

0 < η ≤ min

{ √
1− θ√

2cq(κ+ 1)q+1
,
1− θ
4cφ

}
,

then for t = 1, · · · , T,

‖ft+1‖K ≤ t
1−θ
2 . (3.10)

One main contribution of this paper is to refine the above bound for the HK-norms of
the sequence {ft} by algorithm (2.2), which is stated in the theorem below.

Theorem 5 Let 0 < λ ≤ T−(1−θ) and λ = m−γ , where γ is defined in (2.12). If the stepsize

ηt takes the form as ηt = ηt−θ with max
{

1
2 ,

q
q+1

}
< θ < 1 and η satisfying (2.16), then

with confidence at least 1− δ, there holds

‖ft+1‖K . λ
β−1
2

(
log

log T

δ

) 1
2

, t = 1, · · · , T. (3.11)

The notation . means that the inequality holds up to a multiplicative constant that depends
on various parameters appearing in the assumptions, but not on λ, T or δ.

It will be shown in the next subsection that the refined bound (3.11) essentially improves
the error estimate for (3.1).

Remark 6 This theorem asserts that ‖fT ‖K has the bound of order O
(
T

(1−β)(1−θ)
2

)
(ig-

noring the log term) if we take λ = T−(1−θ), which is obviously superior to O
(
T

1−θ
2

)
in

(3.10). We also notice that this upper bound is nearly a constant when β → 1. It implies

that if fφρ ∈ HK , the actual iterative process happens in a bounded region and the sequence
{ft} is uniformly bounded (independent of t) with high probability.
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3.4 Proof of Theorem 5

This subsection is devoted to proving Theorem 5. The following lemma is key and will be
used several times for our proofs, which has been proved in Lin et al. (2016).

Lemma 5 For any fixed f∗ ∈ HK , and t = 1, · · · , T, there holds

‖ft+1 − f∗‖2K ≤ ‖ft − f∗‖2K + η2tG
2
t − 2ηt [ED(ft)− ED(f∗)] (3.12)

where

G2
t =

∥∥∥∥∥∥ 1

m

m∑
j=1

φ′− (yj , ft(xj))Kxj

∥∥∥∥∥∥
2

K

≤ (1 + κ)2qc2q

(
1 + ‖ft‖2qK

)
. (3.13)

Using the above lemma, we can bound the iterate sequence in probability as follows. This
proposition allows us to control R2

T by a sub-quadratic function of RT , from which we can
get a bound on the norm of iterates.

Proposition 3 If the stepsize ηt is taken as the form in Theorem 5, then for any f∗ ∈ HK ,
with confidence at least 1− δ,

‖ft+1‖2K ≤ 5

{
‖f∗‖2K + 1 +

(
FD(f∗) +A(f∗) + ∆T

)
t1−θ

}
, t = 1, · · · , T, (3.14)

where

∆T = C2 max


(
RζT
m

) 2
4−2τ+ζτ

,

(
RζT
m

) 2
2+ζ

,

(
1

m

) 1
2−τ

log
log T

1−θ
2

δ


with RT = max{1, ‖ft‖K , t = 1, · · · , T} (C2 is a universal constant, given in Lemma 2).

Proof It follows from (3.12) and (3.3) that for t = 1, · · · , T,

‖ft+1 − f∗‖2K ≤ ‖ft − f∗‖2K + η2tG
2
t − 2ηt

[
ED(ft)− ED(fφρ )

]
+ 2ηt

[
ED(f∗)− ED(fφρ )

]
≤ ‖ft − f∗‖2K + η2tG

2
t − 2ηt

[
ED(f̂t)− ED(fφρ )

]
+ 2ηt

[
ED(f∗)− ED(fφρ )

]
= ‖ft − f∗‖2K + η2tG

2
t + 2ηt

{[
E(f̂t)− E(fφρ )

]
−
[
ED(f̂t)− ED(fφρ )

]}
+ 2ηtFD(f∗) + 2ηtA(f∗)− 2ηt

[
E(f̂t)− E(fφρ )

]
= ‖ft − f∗‖2K + η2tG

2
t + 2ηtMD(ft)

+ 2ηtFD(f∗) + 2ηtA(f∗)− 2ηt

[
E(f̂t)− E(fφρ )

]
.

Note that by (3.10), ‖ft‖K ≤ t
1−θ
2 for any t ∈ N. It implies that for any t ≤ T, ft ∈ BR with

R = T
1−θ
2 . Then by Lemma 2, we have that there exists a subset Zmδ ⊂ Zm with measure

at least 1− δ such that for arbitrary D ∈ Zmδ ,

‖ft+1 − f∗‖2K ≤ ‖ft − f∗‖2K + η2tG
2
t + 2ηtFD(f∗) + 2ηtA(f∗) + 2ηt∆T − ηt

[
E(f̂t)− E(fφρ )

]
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holds for each t = 1, · · · , T.
It follows from E(f̂t)− E(fφρ ) > 0 that when D ∈ Zmδ ,

‖ft+1 − f∗‖2K ≤ ‖ft − f∗‖2K + η2tG
2
t + 2ηt−θ (FD(f∗) +A(f∗) + ∆T ) (3.15)

holds for t = 1, · · · , T.
Now we are in a position of estimating η2tG

2
t . With Assumption 1, we have that

η2tG
2
t ≤ c2qη2(1 + ‖ft‖q∞)2t−2θ ≤ (1 + κ2q)c2qη

2(1 + ‖ft‖2qK )t−2θ.

If q ≤ 1, ‖ft‖2qK ≤ 1 + ‖ft‖2K . If q > 1, by (3.10), we have ‖ft‖2qK ≤ ‖ft‖2Kt(q−1)(1−θ).
Combining the two cases above yields

η2tG
2
t ≤ (1 + κ2q)c2qη

2t−2θ(1 + (1 + ‖ft‖2K)t2θ−q
∗
) ≤ 2(1 + κ2q)c2qη

2(1 + ‖ft‖2K)t−q
∗

where q∗ is defined in (2.18).
Plugging it into (3.15), then

‖ft+1 − f∗‖2K ≤ ‖ft − f∗‖2K + 2(1 + κ2q)c2qη
2(1 + ‖ft‖2K)t−q

∗

+ 2η

(
FD(f∗) +A(f∗) + ∆T

)
t−θ, t = 1, · · · , T.

Applying this inequality iteratively with f1 = 0, we derive for each t = 1, · · · , T,

‖ft+1−f∗‖2K ≤ ‖f∗‖2K+2(1 + κ2q)c2qη
2

t∑
j=1

(1 + ‖fj‖2K)j−q
∗
+

2η

1− θ

(
FD(f∗)+A(f∗)+∆T

)
t1−θ

≤ ‖f∗‖2K+2(1 + κ2q)c2qη
2

(
1 + max

j=1,··· ,t
‖fj‖2K

) t∑
j=1

j−q
∗
+

2η

1− θ

(
FD(f∗)+A(f∗)+∆T

)
t1−θ.

The restriction on θ implies that q∗ > 1. Applying the elementary inequality
∑t

j=1 j
−q∗ ≤

q∗

q∗−1 for q∗ > 1, then

‖ft+1−f∗‖2K ≤ ‖f∗‖2K+
2(1 + κ2q)c2qη

2q∗

q∗ − 1

(
1 + max

j=1,··· ,t
‖fj‖2K

)
+

2η

1− θ

(
FD(f∗)+A(f∗)+∆T

)
t1−θ.

Thus, by ‖ft+1‖2K ≤ 2‖ft+1 − f∗‖2K + 2‖f∗‖2K ,

‖ft+1‖2K ≤ 4‖f∗‖2K+
4(1 + κ2q)c2qη

2q∗

q∗ − 1

(
1+ max

j=1,··· ,t
‖fj‖2K

)
+

4η

1− θ

(
FD(f∗)+A(f∗)+∆T

)
t1−θ.

Suppose that for each 1 ≤ j ≤ t, there holds

‖fj‖2K ≤ 5

{
‖f∗‖2K + 1 +

(
FD(f∗) +A(f∗) + ∆T

)
(j − 1)1−θ

}
.
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Then,

‖ft+1‖2K ≤ 4‖f∗‖2K +
4(1 + κ2q)c2qη

2q∗

q∗ − 1

(
6 + 5‖f∗‖2K + 5

(
FD(f∗) +A(f∗) + ∆T

)
(t− 1)1−θ

)

+
4η

1− θ

(
FD(f∗) +A(f∗) + ∆T

)
t1−θ

=

(
4 +

20(1 + κ2q)c2qη
2q∗

q∗ − 1

)
‖f∗‖2K +

24(1 + κ2q)c2qη
2q∗

q∗ − 1

+

(
20(1 + κ2q)c2qη

2q∗

q∗ − 1
+

4η

1− θ

)(
FD(f∗) +A(f∗) + ∆T

)
t1−θ.

Then by (2.16),

‖ft+1‖2K ≤ 5

{
‖f∗‖2K + 1 +

(
FD(f∗) +A(f∗) + ∆R

)
t1−θ

}
.

So, we have when D ∈ Zmδ , for each t = 1, · · · , T,

‖ft+1‖2K ≤ 5

{
‖f∗‖2K + 1 +

(
FD(f∗) +A(f∗) + ∆T

)
t1−θ

}
.

The proof is finished.

This proposition establishes the upper bound of {ft}Tt=1 in terms of a reference function
f∗ ∈ HK . It tells us with a suitable choice of f∗, the estimate of ‖ft‖K can be improved
greatly, which will be shown in the following proof of Theorem 5.

Proof of Theorem 5. Recall A(fλ) ≤ D(fλ) ≤ cβλ
β and ‖fλ‖2K ≤ cβλ

β−1. Applying
Proposition 3 with f∗ = fλ and t1−θ ≤ T 1−θ ≤ λ−1, we have that with confidence at least
1− δ,

‖ft+1‖2K ≤ 5
{

2cβλ
β−1 + 1 + ∆Tλ

−1 + FD(fλ)λ−1
}

holds for each t = 1, · · · , T.
By Lemma 3 then with confidence at least 1− 2δ,

‖ft+1‖2K ≤ 5(2cβ + 1 + C2 + C4)λ
−1×

max


(
RζT
m

) 2
4−2τ+ζτ

,

(
RζT
m

) 2
2+ζ

,

(
1

m

) 1
2−τ

log
log T

1−θ
2

δ
,
λ

(q+1)(β−1)
2

m
log

2

δ
, λβ log

2

δ


holds for each t = 1, · · · , T.

By the choice (2.12) of λ, scaling 2δ to δ, it follows that with confidence at least 1− δ,

‖ft+1‖2K ≤ 5(2cβ + 1 + C2 + C4)λ
β−1 max

{(
R2
Tλ

1−β
) ζ

4−2τ+ζτ
,
(
R2
Tλ

1−β
) ζ

2+ζ
, log

2 log T
1−θ
2

δ

}
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holds for each t = 1, · · · , T.
Denote R̃T = max

t=1,··· ,T
‖ft‖K . By the above inequality, then with probability at least 1−δ,

R̃2
T ≤ 5(2cβ + 1 + C2 + C4)λ

β−1 max

{(
R2
Tλ

1−β
) ζ

4−2τ+ζτ
,
(
R2
Tλ

1−β
) ζ

2+ζ
, log

2 log T
1−θ
2

δ

}
.

Recall thatRT = max{1, ‖ft‖K , t = 1, · · · , T}. When R̃T ≤ 1, the statement of Theorem
5 is obviously true.

Now we consider R̃T > 1. Then RT = R̃T and the above inequality implies

R̃2
T ≤ 5(2cβ + 1 + C2 + C4)λ

β−1 max

{(
R̃2
Tλ

1−β
) ζ

4−2τ+ζτ
,
(
R̃2
Tλ

1−β
) ζ

2+ζ
, log

2 log T
1−θ
2

δ

}
.

If R̃2
T ≤ 5(2cβ + 1 + C2 + C4)λ

β−1
(
R̃2
Tλ

1−β
) ζ

4−2τ+ζτ
, then

R̃2
T ≤ (5(2cβ + 1 + C2 + C4))

4−2τ+τζ
4−2τ+ζτ−ζ λβ−1.

Else if R̃2
T ≤ 5(2cβ + 1 + C2 + C4)λ

β−1
(
R̃2
Tλ

1−β
) ζ

2+ζ
, then

R̃2
T ≤ (5(2cβ + 1 + C2 + C4))

2+ζ
2 λβ−1.

Otherwise we have R̃2
T ≤ 5(2cβ + 1 + C2 + C4)λ

β−1 log 2 log T
1−θ
2

δ .

Collecting the above analysis, we get the statement of Theorem 5 when R̃T > 1. The
proof is finished.

3.5 Proof of Theorem 2

Now we can prove Theorem 2 with the help of Theorem 5.
Proof of Theorem 2. We shall prove Theorem 2 by Proposition 2. Recall (3.10), then

we take R = T
1−θ
2 . Then by (3.9) with confidence at least 1− δ,

E(f̂T )− E(fφρ )

≤ C5 max


(
RζT
m

) 2
4−2τ+ζτ

,

(
RζT
m

) 2
2+ζ

,

(
1

m

) 1
2−τ

log
2 log T

1−θ
2

δ
,
λ

(q+1)(β−1)
2

m
log

4

δ
, λβ log

4

δ


+ C5λ

β−1ΛT,θ

≤ C5λ
β max

{(
R2
Tλ

1−β
) ζ

4−2τ+ζτ
,
(
R2
Tλ

1−β
) ζ

2+ζ
, log

2 log T
1−θ
2

δ

}
+ C5λ

β−1ΛT,θ (3.16)

where the last inequality is obtained by λ = m−γ with γ in (2.12).
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By (3.11), with confidence at least 1− δ, RT ≤ c1λ
β−1
2

(
log log T

δ

) 1
2

(c1 > 0 is a universal

constant). Putting it into (3.16) yields that with confidence at least 1− 2δ,

E(f̂T )− E(fφρ ) ≤ C5c
2ζ
2+ζ

1 λβ log
log T

δ
+ C5λ

β−1ΛT,θ. (3.17)

By the choice of λ, T , we have that

ΛT,θ =


m−γ , if θ > q+1

q+2 ,

αm−γ (logm) , if θ = q+1
q+2 ,

αm−α(θ(1+q)−q) (logm) , if θ < q+1
q+2 .

Plugging it into (3.17) and scaling 2δ to δ, then with confidence at least 1− δ,

E(f̂T )− E(fφρ ) ≤
2(C5c

2ζ
2+ζ

1 + C5)m
−βγ log log T

δ , if θ > q+1
q+2 ,

2(1 + α)(C5c
2ζ
2+ζ

1 + C5) max
{
m−βγ log log T

δ ,m−βγ (logm)
}
, if θ = q+1

q+2 ,

2(1 + α)(C5c
2ζ
2+ζ

1 + C5) max
{
m−βγ log log T

δ ,m−βγ+γ−α(θ(1+q)−q) (logm)
}
, if θ < q+1

q+2 .

Then we can get the statement of Theorem 2 by noting T = bmαc.

3.6 Proof of Theorem 1

This subsection proves error bounds for smooth losses stated in Theorem 1. Since φ′ is
Lipschitz continuous, its proof is shorter and easier than Theorem 2. Following the similar
proof idea, we shall present the iterate bound and computational error for smooth losses in
the following lemma.

Lemma 6 Assume that φ′− is Lipschitz continuous with a constant L > 0. Then we have
for t ∈ N,

‖ft+1‖K ≤

√√√√2cφ

t∑
k=1

ηk. (3.18)

In particular, if ηt = ηt−θ with 0 ≤ θ < 1 and 0 < η ≤ 1−θ
2cφ

, then for t ∈ N,

‖ft+1‖K ≤ t
1−θ
2 . (3.19)

If 0 < η < 1
Lκ2

, then for t ∈ N

‖ft+1 − fλ‖2K ≤ ‖ft − fλ‖2K − 2ηt [ED(ft+1)− ED(fλ)]

≤ ‖ft − fλ‖2K − 2ηt

[
ED(f̂t+1)− ED(fλ)

]
, (3.20)

and

ED(f̂T )− ED(fλ) ≤ ED(fT )− ED(fλ) ≤
2‖fλ‖2K

η
T θ−1. (3.21)
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The statements of this lemma can be derived by (3.3) and Lemmas 20, 21 in Lin et al.
(2016). Then, we follow the similar proof procedure of Theorem 5 and obtain the refined
iterate bound for smooth losses as follows.

Theorem 6 Let 0 < λ ≤ T−(1−θ) and λ = m−γ , where γ is defined in (2.12). If the step

size ηt takes the form as ηt = ηt−θ with 0 ≤ θ < 1 and some 0 < η < min
{

1−θ
2cφ

, 1
Lκ2

}
then

for any ε > 0, with confidence at least 1− δ,

‖ft+1‖K . λ
β−1
2

(
log

log T

δ

) 1
2

, t = 1, · · · , T.

Here the notation . means that the inequality holds up to a multiplicative constant that
depends on various parameters appearing in the assumptions, but not on λ, T or δ.

Proof of Theorem 6. By (3.20), for t ∈ N,

‖ft+1 − fλ‖2K ≤ ‖ft − fλ‖2K + 2ηtMD(ft+1) + 2ηtFD(fλ) + 2ηtA(fλ)− 2ηt

[
E(f̂t+1)− E(fφρ )

]
.

By Lemmas 2, 3, 6, with confidence at least 1− 2δ,

‖ft+1 − fλ‖2K ≤ ‖ft − fλ‖2K + 2ηt∆̃T + 2ηtA(fλ), t = 1, · · · , T, (3.22)

with

∆̃T = (C2 + C4) max


(
RζT
m

) 2
4−2τ+ζτ

,

(
RζT
m

) 2
2+ζ

, λβ log
log T

1−θ
2

δ

 .

Here ∆̃T is obtained by λ = m−γ with (2.12) and RT = max{1, ‖ft‖K , t = 1, · · · , T}.
Applying this inequality iteratively with f1 = 0, then with confidence at least 1− 2δ,

‖ft+1 − fλ‖2K ≤ ‖fλ‖2K + 2

t∑
j=1

ηt

(
∆̃T +A(fλ)

)
holds for each t = 1, · · · , T.

By ‖ft+1‖2K ≤ 2‖ft+1− fλ‖2K + 2‖fλ‖2K and t1−θ ≤ λ−1, with confidence at least 1− 2δ,

‖ft+1‖2K ≤ 4‖fλ‖2K + 4
t∑

j=1

ηt

(
∆̃T +A(fλ)

)
≤ 4‖fλ‖2K + 4η

(
∆̃T +A(fλ)

)
t1−θ

≤ 4‖fλ‖2K + 4η
(

∆̃T +A(fλ)
)
λ−1 ≤ [4cβ + 4η(1 + cβ)] ∆̃Tλ

−1

holds for each t = 1, · · · , T.
The rest of proof is very similar to Theorem 5. Here we omit it for simplicity.

With the help of Theorem 6, we can prove Theorem 1.
Proof of Theorem 1. By (3.21) and 0 < λ ≤ T−(1−θ), we have

E(f̂T )− E(fφρ ) =
[
E(f̂T )− E(fφρ )

]
−
[
ED(f̂T )− ED(fφρ )

]
+ ED(f̂T )− ED(fλ) + FD(fλ) +A(fλ)

≤
[
E(f̂T )− E(fφρ )

]
−
[
ED(f̂T )− ED(fφρ )

]
+

2‖fλ‖2K
η

T θ−1 + FD(fλ) +D(λ)

≤MD(fT ) + FD(fλ) + (2η−1 + 1)cβλ
β. (3.23)
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This together with Lemmas 2, 3 yields with confidence at least 1− 2δ,

E(f̂T )− E(fφρ ) ≤ 1

2

[
E(f̂)− E(fφρ )

]
+ ΩR(fT )

+ C4 max

{
λ

(q+1)(β−1)
2

m
,

(
1

m

) 1
2−τ

, λβ

}
log

2

δ
+ (2η−1 + 1)cβλ

β.

Note λ = m−γ with (2.12) and ‖fT ‖K ≤ T
1−θ
2 . Subtracting 1

2

[
E(f̂T )− E(fφρ )

]
from both

sides of the above inequality, then with confidence at least 1− 2δ

E(f̂T )− E(fφρ ) ≤2(C2 + C4 + (2η−1 + 1)cβ)λβ

max

{(
R2
Tλ

1−β
) ζ

4−2τ+ζτ
,
(
R2
Tλ

1−β
) ζ

2+ζ
, log

log T
1−θ
2

δ

}
.

By Theorem 6, we know that with confidence at least 1− δ,

‖fT ‖K ≤ c2λ
β−1
2

(
log

log T

δ

) 1
2

with some universal constant c2 > 0.

Putting it into the above inequality yields that with confidence at least 1− 3δ,

E(f̂T )− E(fφρ ) ≤ 2(C2 + C4 + (2η−1 + 1)cβ)c
2ξ
2+ξ

2 λβ log
log T

δ
.

Scaling 3δ to δ, by T = bmαc, then with confidence at least 1− δ

E(f̂T )− E(fφρ ) ≤ 2(C2 + C4 + (2η−1 + 1)cβ)c
2ξ
2+ξ

2 λβ log
3α logm

δ
.

This finishes the proof of Theorem 1.

4. Generalization Error for Cross-validation

This section will derive the explicit error rate for cross-validation, stated in Theorem 4.
Proof of Theorem 4. For the least squares loss, it is easy to prove that for each y ∈ Y,
φ′−(y, ·) is differentiable and φ′−(y, ·) is Lipschitz continuous with constant L = 2.

By (3.20), we have

‖f (D1)
t+1 − fλ‖

2
K ≤ ‖f

(D1)
t − fλ‖2K + 2ηtMD1(f

(D1)
t+1 )

+ 2ηtFD1(fλ) + 2ηtA(fλ)− 2η
[
E(f̂

(D1)
t+1 )− E(fρ)

]
.

Note that by (3.18), ‖ft+1‖K ≤
√

2cφηt
1
2 for any t ∈ N. Meanwhile, for the least squares,

(2.3) holds with q = 1 and (2.4) is valid with τ = 1. Then by Lemmas 2, 3, we get with
confidence at least 1− 2δ

‖f (D1)
t+1 − fλ‖

2
K ≤ ‖f

(D1)
t − fλ‖2K + C6ηmax


(
RζT
n

) 2
2+ζ

, λβ log
log T

1
2

δ

 , t = 1, · · · , T,
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for a fixed λ ∈ Λ, T = bλ−1c. Here C6 denotes a universal constant and

RT = max{1, ‖f (D1)
t+1 ‖K , t = 1, · · · , T}.

Note that T = bλ−1c satisfies t ≤ T ≤ λ−1. Scaling 2δ to δ, and applying the above
inequality iteratively with f1 = 0, we get that with confidence at least 1− δ,

‖f (D1)
t+1 − fλ‖

2
K ≤ ‖fλ‖2K + C6ηtmax


(
RζT
n

) 2
2+ζ

, λβ log
log T

δ


≤ ‖fλ‖2K + C6ηmax


(
RζT
n

) 2
2+ζ

λ−1, λβ−1 log
log T

δ


≤ ‖fλ‖2K + 2C6ηmax


(
RζT
m

) 2
2+ζ

λ−1, λβ−1 log
logm

δ

 , t = 1, · · · , T,

for any λ ∈ Λ, T = bλ−1c. The last inequality is obtained by m = 2n and T ≤ m for any
T ∈ T.

Thus, by ‖f (D1)
t+1 ‖2K ≤ 2‖f (D1)

t+1 − fλ‖2K + 2‖fλ‖2K and ‖fλ‖2K ≤ D(λ)/λ ≤ cβλ
β−1, we

have that with confidence at least 1− δ, there holds

‖f (D1)
t+1 ‖

2
K ≤ 4(C6η + cβ) max

λ−1
(
RζT
m

) 2
2+ζ

, λβ−1
(

log
logm

δ

) , t = 1, · · · , T, (4.1)

for a fixed λ ∈ Λ, T ∈ T.
Then following the similar proof in Theorem 6, we have with confidence at least 1− δ,

‖f (D1)
t+1 ‖K ≤ 2

√
C6η + cβ max

{
λ−

2+ζ
4 m−

1
2 , λ

β−1
2

(
log

logm

δ

) 1
2

}
:= Rλ (4.2)

holds for each t = 1, · · · , T.
By (3.23), we know that

E(f̂
(D1)
T )− E(fρ) ≤MD1(f̂

(D1)
T ) + FD1(fλ) + (2η−1 + 1)cβλ

β.

Note that f̂
(D1)
T ≤

√
2cφηT

1
2 ≤

√
2cφηm

1
2 . Then we can use Lemma 2 with R =

√
2cφηm

1
2

and RT ≤ Rλ to estimate MD1(f̂
(D1)
T ). This together with Lemma 3 and (4.2) yields with

confidence at least 1− 3δ,

E(f̂
(D1)
T )− E(fρ) ≤ C7 max


(
Rζλ
m

) 2
2+ζ

, λβ log
logm

δ

 ≤ C7

(Rζλ
m

) 2
2+ζ

+ λβ log
logm

δ


(4.3)

where C7 denotes a universal constant.
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It implies that

inf
Tk∈T

E(f̂
(D1)
Tk

)− E(fρ) ≤ C7 inf
λs∈Λ

(Rζλs
m

) 2
2+ζ

+ λβs log
logm

δ

 (4.4)

holds with confidence at least 1− 3|Λ|δ.
Recall the definition of T ∗ in Definition 2. Note that (2.4) holds for τ = 1 and∥∥∥φ(y, f̂

(D1)
Tk

)(x)− φ(y, f̂
(D1)
Tk

)(x)
∥∥∥
∞
≤ 4B2, Tk ∈ T.

Then by Theorem 7.2 in Steinwart and Christmann (2008) we find that for a fixed D1,

E(f̂
(D1)
T ∗ )− E(fρ) ≤ 6 inf

Tk∈T

(
E(f̂

(D1)
Tk

)− E(fρ)
)

+ 64(4B2 + 1)m−1
(

log
1 + |T|
δ

)
.

holds with confidence at least 1− δ. This together with (4.4) and |T| ≤ |Λ| implies

E(f̂
(D1)
T ∗ )− E(fρ) ≤ max

{
6C7, 64(4B2 + 1)

} inf
λs∈Λ

(Rζλs
m

) 2
2+ζ

+ λβs log
logm

δ

+m−1
(

log
1 + |Λ|
δ

) (4.5)

holds with confidence at least 1− (3|Λ|+ 1)δ.

Notice that

(
Rζλ
m

) 2
2+ζ

is continuous and non-increasing with respect to λ ∈
[
1
m , 1

]
. So,

there exists a λ∗ ∈
[
1
m , 1

]
such that

(
Rζλ∗

m

) 2
2+ζ

+ (λ∗)β log
logm

δ
= min

λ∈[ 1
m
,1]

(Rζλ
m

) 2
2+ζ

+ λβ log
logm

δ

 .
Write λ0 := 1

m and let Λ be of the form

Λ = {λ1, · · · , λ|Λ|}, with λs−1 < λs, s = 2, · · · , |Λ|.

Since Λ
⋃
{λ0} is the finite ε-net of [ 1

m , 1], we have that

λs − λs−1 ≤ 2ε, for s = 1, · · · , |Λ|.

Then we can find an index s∗ ∈ {1, · · · , |Λ|} such that λs∗−1 ≤ λ∗ ≤ λs∗ and conclude that

λ∗ ≤ λs∗ ≤ λ∗ + 2ε.
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By monotonicity and ε ≤ 1
m , we have that

inf
λs∈Λ

(Rζλ
m

) 2
2+ζ

+ λβs log
logm

δ

 ≤ (Rζλs∗
m

) 2
2+ζ

+ (λs∗)
β log

logm

δ

≤

(
Rζλ∗

m

) 2
2+ζ

+ (λ∗ + 2ε)β log
logm

δ
≤

(
Rζλ∗

m

) 2
2+ζ

+ (λ∗)β log
logm

δ
+ 2βm−β log

logm

δ

= min
λ∈[ 1

m
,1]

(Rζλ
m

) 2
2+ζ

+ λβ log
logm

δ

+ 2βm−β log
logm

δ
. (4.6)

If 2
ζ+2β ≥ 1, then m

− 2
ζ+2β ≤ m−1 and

min
λ∈[ 1

m
,1]

(Rζλ
m

) 2
2+ζ

+ λβ log
logm

δ

 ≤
(Rζλ

m

) 2
2+ζ

+ λβ log
logm

δ


λ=m−1

≤
(

1 + (2
√
C6η + cβ)

2ζ
2+ζ

)
m−β log

logm

δ
.

If 2
ζ+2β ≤ 1, then m

− 2
ζ+2β ∈ [m−1, 1] and

min
λ∈[ 1

m
,1]

(Rζλ
m

) 2
2+ζ

+ λβ log
logm

δ

 ≤
(Rζλ

m

) 2
2+ζ

+ λβ log
logm

δ


λ=m

− 2
ζ+2β

≤
(

1 + (2
√
C6η + cβ)

2ζ
2+ζ

)
m
− 2β

2β+ζ log
logm

δ
.

So, we conclude that

min
λ∈[ 1

m
,1]

(Rζλ
m

) 2
2+ζ

+ λβ log
logm

δ

 ≤ (1 + (2
√
C6η + cβ)

2ζ
2+ζ

)
m
−min{1, 2

2β+ζ
}β

log
logm

δ
.

This in connection with (4.5) and (4.6) yields

E(f̂
(D1)
T ∗ )− E(fρ) ≤ 2β max

{
6C7, 64(4B2 + 1)

}(
1 + (2

√
C6η + cβ)

2ζ
2+ζ

)
{
m
−min{1, 2

2β+ζ
}β

log
logm

δ
+m−1

(
log

1 + |Λ|
δ

)}
. m

−min{1, 2
2β+ζ

}β
log

logm

δ

(
log

1 + |Λ|
δ

)
holds with confidence at least 1− (3|Λ|+ 1)δ.

Then, we get the statement of Theorem 4 by scaling (3|Λ|+ 1)δ to δ.
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5. Conclusion and Discussion

This paper considers the iterative regularization in the RKHSs for both classification and
regression learning problems associated with a broad class of loss functions. We established
the early stopping rules and derived corresponding generalization errors by only taking the
projected last iterate as the final estimator. We show that these error bounds are comparable
to the best obtained rates of Tikhonov regularization counterparts. Besides improving the
existing results in Lin et al. (2016), our work provides a theoretical basis for the link between
regularization paths of early stopping rules and and Tikhonov regularization. The novelty
of our analysis is that utilizing the projection approach (or clipping idea) (Steinwart and
Christmann, 2008; Gorbunov et al., 2020) provides a tight bound of the learning sequence
{ft}t for the sharpest possible convergence rates.

Iterative regularization with some specified losses have been shown to be closely related
to spectral algorithms in inverse problems (see Remark 3 for details) or boosting-type
algorithms. For the squared loss, it can be referred to as L2-boosting and their consistency
and convergence properties have been studied extensively (Blanchard and Krämer, 2016;
Bühlmann and Yu, 2003; Yao et al., 2007; Caponnetto and Yao, 2010). In the work (Raskutti
et al., 2014), the authors proposed a computable-from-data stopping rule that also produced
mini-max optimal estimators for kernel classes. In contrast, our optimal stopping time is
determined by some unknown parameters in practice. Furthermore, the cross-validation
strategy by Definition 2 ensures comparable error rates, which has been proved in Theorem
4. Moreover, we note that by Example 1, our optimal stopping time depends only on ζ
that can be derived directly from the smoothness of the kernel if the regression function fρ
belongs to the known RKHS.

For other losses, the study on the regularization effect of stopping strategies is relatively
fewer. We can refer to the papers (Bickel et al., 2006; Jiang, 2004; Bühlmann and Hothorn,
2007; Bartlett and Traskin, 2007; Zhang and Yu, 2005). In the work by Wei et al. (2019),
the optimal stopping rules were established for a relatively broad class of loss functions in
the context of kernel boosting algorithms. In the random design case their main theorem
assumes that loss functions satisfy that

c3‖f − g‖2L2
ρX
≤ E(f)− E(g)− 〈∇E(g), f − g〉 ≤ c4‖f − g‖2L2

ρX
, ∀f, g ∈ B(f∗φ, σ)

where f∗φ is the minimizer of E(f) over the RKHS, B(f∗φ, σ) denotes a RKHS ball centred at
f∗φ with some specified radius σ > 0, c3, c4 > 0 are universal constants. This assumption con-
siders the least squares loss, logistic loss and exponential loss, but is hardly satisfied by some
commonly used loss functions. For example, the hinge SVM loss φ(y, f) = max{1 − yf}+
for classification and the pinball loss for quantile regression (Steinwart and Christmann,
2008) are excluded, which can be addressed in our paper.

However, we should point out that our current analysis requires condition (2.10) for φ,
which excludes loss functions of the form V (yf) where V (u) > 0 for all u ∈ R, such as the
logistic loss V (yf) = log(1 + e−yf ) for classification (Cucker and Zhou, 2007; Wu et al.,
2007). Since the resulting analysis is more involved, we leave this as future research.
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Appendix A. Some technical lemmas and proofs

Lemma 7 (Page 24, Lin et al. 2016) Take ηt = ηt−θ with η > 0 and 0 < θ < 1. Then
for T ≥ 2,

0 <
T−1∑
k=1

1

k + 1

[
2ηT−k −

1

k

T∑
t=T−k+1

2ηt

]
≤ 6η

1− θ
T−θ.

Lemma 8 (Bernstein inequality) Let {ξ(zi)}mi=1 be a set of random variables defined on

Z and M̃ > 0 be the constant such that ‖ξ‖∞ ≤ M̃ and the variance σ2(ξ) < ∞, then for
any ε > 0,

Prob

{
1

m

m∑
i=1

ξ(zi)− IE(ξ) > ε

}
≤ exp

{
− mε2

2(σ2(ξ) + 1
3M̃ε)

}
. (A.1)

Lemma 9 Let {ξ(zi)}mi=1 be a set of random variables defined on Z and M̃, c > 0, τ ∈ [0, 1]

be the constant such that ‖ξ‖∞ ≤ M̃ and IE(ξ)2 ≤ c(IEξ)τ , then for any 0 < δ < 1, with
confidence at least 1− δ, there holds

1

m

m∑
i=1

ξ(zi)− IE(ξ) ≤ 2 log
1

δ
max

{
M̃

m
,
( c
m

) 1
2−τ

, IEξ

}
.

Proof Set the right hand of (A.1) as δ := exp

{
− mε2

2(σ2(ξ)+ 1
3
M̃ε)

}
. Solving it, we get that

with confidence at least 1− δ, there holds

1

m

m∑
i=1

ξ(zi)− IE(ξ) ≤
2M̃ log 1

δ

3m
+

√
2 log 1

δ

m
σ2(ξ) ≤ 2 log

1

δ
max

{
M̃

m
,

√
c(IEξ)τ/2√

m

}

≤ 2 log
1

δ
max

{
M̃

m
,

[( c
m

) 1
2−τ
]1− τ

2

(IEξ)τ/2

}
.

Applying the elementary inequality

xτ/2y1−τ/2 ≤ τ

2
x+ (1− τ

2
)y, x, y ∈ R, (A.2)

then [( c
m

) 1
2−τ
]1− τ

2

(IEξ)τ/2 ≤
(

1− τ

2

)( c
m

) 1
2−τ

+
τ

2
IEξ.

Thus, the desired conclusion holds.

29



Hu and Lei

Lemma 10 (Wu et al. 2007) Let G be a set of measurable functions on Z, and M, c > 0,
τ ∈ [0, 1] be constants such that each function g ∈ G satisfies ‖g‖∞ ≤ M and IE(g2) ≤
c (IEg)τ . If for some a ≥M ζ and ζ ∈ (0, 2),

IED [logN (G, ε, d2,D)] ≤ a
(

1

ε

)ζ
, ∀ε > 0. (A.3)

then there exists a positive c′ζ depending only on ζ such that for any b > 0, with probability

at least 1− e−b, there holds

IEg − 1

m

m∑
i=1

g(zi) ≤
1

2
η1−τ (IEg)τ + c′ζη + 2

(
cb

m

)1/(2−τ)
+

18Mb

m
, ∀g ∈ G,

where

η := max

{
c

2−ζ
4−2τ+ζτ

( a
m

) 2
4−2τ+ζτ

,M
2−ζ
2+ζ

( a
m

) 2
2+ζ

}
.

Proof of Lemma 3. Decompose FD(f∗) into

FD(f∗) =

{[
ED(f∗)− ED(f̂∗)

]
−
[
E(f∗)− E(f̂∗)

]}

+

{[
ED(f̂∗)− ED(fφρ )

]
−
[
E(f̂∗)− E(fφρ )

]}
:= S1 + S2.

Firstly, we consider S1. Let ξ1(z) = φ(y, f∗(x))− φ(y, f̂∗(x)). Notice that ξ1(z) ≥ 0, then

‖ξ1‖∞ ≤ sup
(x,y)∈Z

|φ(y, f∗(x))| ≤ cq
(
1 + κq‖f∗‖qK

)
κ‖f∗‖K ≤ cqκ(1 + κq)R̃q+1,

and
IEξ21 ≤ ‖ξ1‖∞IEξ1 ≤ cqκ (1 + κq) R̃q+1IEξ1.

Applying Lemma 9 with ξ = ξ1, c = cqκ (1 + κq) R̃q+1, M̃ = cqκ (1 + κq) R̃q+1 and τ = 1,
we know that there exists a subset Zmδ,1 ⊂ Zm with the measure at least 1− δ such that for
arbitrary D ∈ Zmδ,1 we have

S1 ≤ 2cqκ (1 + κq) log
1

δ
max

{
R̃q+1

m
, IEξ1

}
. (A.4)

Next, we estimate S2. Let ξ2(z) = φ(y, f̂∗(x))−φ(y, fφρ (x)). Assumptions 1 and 2 imply
that

‖ξ2‖∞ ≤ cqκ(1 + κq)(Bq+1 + ‖fφρ ‖
q+1
K ) := Mq

and IEξ22 ≤ cτ (IEξ2)
τ . Applying Lemma 9 with ξ = ξ2 again, we know that there exists a

subset Zmδ,2 ⊂ Zm with measure at least 1− δ such that arbitrary D ∈ Zmδ,2, there holds

S2 ≤ 2(Mq + cτ ) log
1

δ
max

{(
1

m

) 1
2−τ

, IEξ2

}
. (A.5)
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Noticing the fact IEξ1 ≤ A(f∗) and IEξ2 ≤ A(f∗), by (A.4) and (A.5), then

FD(f∗) = S1 + S2 ≤ (2Mq + 2cτ + 2cqκ (1 + κq)) log
1

δ
max

{
R̃q+1

m
,A(f∗)

}

holds with measure at least 1− 2δ. Scaling 2δ to δ, then proof of (3.7) is finished with

C3 = 2Mq + 2cτ + 2cqκ (1 + κq) .

For the estimate of (3.8), let f∗ = fλ, then by Assumption 3,

A(fλ) ≤ D(fλ) ≤ cβλβ, ‖fλ‖K ≤ c
1
2
βλ

β−1
2 .

Applying (3.7) with R̃ = c
1
2
βλ

β−1
2 , then the proof of (3.8) is finished with

C4 = (2Mq + 2cτ + 2cqκ (1 + κq)) max{c
q+1
2

β , cβ}.

To prove Lemma 2, we need the following Lemma.

Lemma 11 Suppose Assumptions 1, 2 and 4 hold. For a fixed f ∈ BR with R ≥ 1, then
with confidence at least 1− δ,

MD(f) ≤ 1

2

[
E(f̂)− E(fφρ )

]
+ C max

{(
Rζ

m

) 2
4−2τ+ζτ

,

(
Rζ

m

) 2
2+ζ

,

(
1

m

) 1
2−τ

log
1

δ

}
(A.6)

and

ED(fφρ )− ED(f̂) ≤ C max

{(
Rζ

m

) 2
4−2τ+ζτ

,

(
Rζ

m

) 2
2+ζ

,

(
1

m

) 1
2−τ

log
1

δ

}
(A.7)

where C is a universal constant (depending on q, τ, ζ) and will be given in the proof.

Proof We apply Lemma 10 to the function set

G =
{
g(x, y) := φ(y, f̂(x))− φ(y, fφρ (x)), f ∈ BR

}
.

Assumption 1 implies that

‖g‖∞ ≤M := cqκ(1 + κq)(Bq+1 + ‖fφρ ‖
q+1
K ).

Assumption 2 tells us that with c = cτ , each g ∈ G satisfies that IE(g2) ≤ c (IEg)τ by the
fact |f̂(x)| ≤ B. Since

|φ(y, f̂(x))− φ(y, ĥ(x))| ≤ max
δ∈[−B,B]

|φ′−(y, δ)||f̂(x))− ĥ(x)| ≤ cq(1 +B)|f(x)− h(x)|,
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then

N (G, ε, d2,D) ≤ N (BR,
ε

cq(1 +B)
, d2,D) ≤ N (B1,

ε

cq(1 +B)R
, d2,D).

Hence, Assumption 4 yields the covering number condition with a = cζ(cq(1 +B)R)ζ . Thus
all the conditions in Lemma 10 hold. We have that with confidence at least 1 − δ, for all
g ∈ G, there holds

IEg − 1

m

m∑
i=1

g(zi) ≤
1

2
η1−τ (IEg)τ + c′ζη + 2

(
cτ log 1

δ

m

)1/(2−τ)

+
18M

m
log

1

δ

where

η = max

(cτ )
2−ζ

4−2τ+ζτ

(
cζ(cq(1 +B)R)ζ

m

) 2
4−2τ+ζτ

,M
2−ζ
2+ζ

(
cζ(cq(1 +B)R)ζ

m

) 2
2+ζ


≤ C ′max

{(
Rζ

m

) 2
4−2τ+ζτ

,

(
Rζ

m

) 2
2+ζ

}
,

and

C ′ = (cτ )
2−ζ

4−2τ+ζτ

(
cζ(cq(1 +B))ζ

) 2
4−2τ+ζτ

+M
2−ζ
2+ζ

(
cζ(cq(1 +B))ζ

) 2
2+ζ

.

Applying the elementary inequality (A.2) with x = IEg and y = η, we get that with
confidence at last 1− δ, there holds for f ∈ BR,[

E(f̂)− E(fφρ )
]
−
[
ED(f̂)− ED(fφρ )

]
≤
(

1

2
+ cζ ′

)
η +

1

2

[
E(f̂)− E(fφρ )

]
+ 2

(
cτ log 1

δ

m

)1/(2−τ)

+
18M

m
log

1

δ
.

It yields the desired conclusion (A.6) with

C =

(
1

2
+ c′ζ

)
C ′ + 2c

1
2−τ
τ + 18M.

For (A.7),

ED(fφρ )− ED(f̂) =
[
E(f̂)− E(fφρ )

]
−
[
ED(f̂)− ED(fφρ )

]
−
[
E(f̂)− E(fφρ )

]
=MD(f)−

[
E(f̂)− E(fφρ )

]
.

By E(f̂)− E(fφρ ) > 0 and (A.6), we get the conclusion (A.7).

Proof of Lemma 2. Let rj = R · 2−j for j = 0, 1, . . . , J , where J = blog2Rc + 1. It is

clear that rJ ≤ 1. For any j ∈ {0, . . . , J − 1}, define

Bj =
{
f ∈ HK : rj+1 < ‖f‖K ≤ rj

}
.
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and BJ = {f ∈ HK : ‖f‖K ≤ rJ}.
For any j ∈ {0, 1, . . . , J}, according to Lemma 11, with probability at least 1−δ/(J+1)

the following inequality holds for all f ∈ Bj[
E(f̂)− E(fφρ )

]
−
[
ED(f̂)− ED(fφρ )

]
≤ 1

2

[
E(f̂)− E(fφρ )

]
+

C max


(
rζj
m

) 2
4−2τ+ζτ

,

(
rζj
m

) 2
2+ζ

,

(
1

m

) 1
2−τ

log
1

δJ

 ,

ED(fφρ )− ED(f̂) ≤ C max


(
rζj
m

) 2
4−2τ+ζτ

,

(
rζj
m

) 2
2+ζ

,

(
1

m

) 1
2−τ

log
1

δJ

 ,

where we introduce δJ = δ/(J + 1).
It is clear that if f ∈ Bj for j < J , then rj ≤ 2‖f‖K . If f ∈ BJ , then ‖f‖K ≤ 1.

Therefore we have if f ∈ Bj ,

rj ≤ max
{

1, 2‖f‖K
}
, ∀j = 1, 2, . . . , J.

Note that BR =
⋃J
j=0Bj . By the union of probability, with confidence at least 1− δ the

following holds for all f ∈ BR[
E(f̂)− E(fφρ )

]
−
[
ED(f̂)− ED(fφρ )

]
≤ 1

2

[
E(f̂)− E(fφρ )

]
+

C max


(

max
{

1, (2‖f‖K)ζ
}

m

) 2
4−2τ+ζτ

,

(
max

{
1, (2‖f‖K)ζ

}
m

) 2
2+ζ

,

(
1

m

) 1
2−τ

log
1

δJ

 ,

ED(fφρ )− ED(f̂) ≤

C max


(

max
{

1, (2‖f‖K)ζ
}

m

) 2
4−2τ+ζτ

,

(
max

{
1, (2‖f‖K)ζ

}
m

) 2
2+ζ

,

(
1

m

) 1
2−τ

log
1

δJ

 .

The stated bound then follows directly by taking C2 = 2
2ζ
2+ζC. The proof is completed.
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