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Abstract

With the increasing adoption of electronic health records, there is an increasing interest
in developing individualized treatment rules, which recommend treatments according to
patients’ characteristics, from large observational data. However, there is a lack of valid
inference procedures for such rules developed from this type of data in the presence of
high-dimensional covariates. In this work, we develop a penalized doubly robust method
to estimate the optimal individualized treatment rule from high-dimensional data. We
propose a split-and-pooled de-correlated score to construct hypothesis tests and confidence
intervals. Our proposal adopts the data splitting to conquer the slow convergence rate of
nuisance parameter estimations, such as non-parametric methods for outcome regression
or propensity models. We establish the limiting distributions of the split-and-pooled de-
correlated score test and the corresponding one-step estimator in high-dimensional setting.
Simulation and real data analysis are conducted to demonstrate the superiority of the
proposed method.
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1. Introduction

An individualized treatment rule is a decision rule that maps the patient profiles X ∈ X , a
subspace of Rp, into the intervention space A ∈ A, where p is the number of the covariates
and A is the set of available interventions. Given an outcome of interest, the optimal
individualized treatment rule maximizes the value function which is the mean outcome if
it were applied to a target population. Understanding the driving factors of a data-driven
treatment rule can help with identifying the source of the heterogeneous effects and with
guiding practical applications of precision medicine.

The increasing adoption of electronic health records at healthcare centers has provided
us unprecedented opportunities to understand the optimal individualized treatment rule
through massive observational data. One of the difficulties in dealing with observational
data is the high-dimensionality of the covariates. There have been various methods de-
veloped to estimate the optimal individualized treatment rule. For regression-based ap-
proaches, Q-learning methods (Watkins and Dayan, 1992; Chakraborty et al., 2010; Qian
and Murphy, 2011; Laber et al., 2014a) pose a fully specified model assumption on the
conditional mean of the outcomes given the covariates and treatments. Qian and Mur-
phy (2011) approximates the conditional mean by a rich linear model, along with an l1
penalty to accommodate high-dimensional data. A-learning methods (Murphy, 2003; Lu
et al., 2013; Shi et al., 2016, 2018; Wu et al., 2021) pose a model assumption on the con-
trast function of the conditional means. With high-dimensional covariates, Shi et al. (2016,
2018) adopt penalized estimating equation or penalized regression with a linear contrast
function. An alternative class of methods searches over a pre-specified class of individual-
ized treatment rules to optimize an estimator of the mean outcome, usually called direct
(Laber et al., 2014b), policy learning (Athey and Wager, 2017), value-search (Davidian
et al., 2014) estimators, or C-learning (Zhang and Zhang, 2018). Especially, Zhang et al.
(2012) adopts a doubly robust strategy to estimate the value under any treatment rules and
directly optimize the estimated value. Their procedure can be applied to the observational
data by plugging in a parametrically-estimated propensity score. Similarly, A-learning can
also be extended to deal with observational data by plugging in a parametrically-estimated
propensity score. Among these methods, Zhao et al. (2012) propose the outcome weighted
learning approach based on an inverse probability weighted estimator of the value. Song
et al. (2015) develop a variable selection method based on penalized outcome weighted
learning for optimal individualized treatment selection.

Statistical inference for the optimal or estimated individualized treatment rule is partic-
ularly challenging in the presence of high-dimensional covariates. Confounding and selection
bias presented in large observational data such as EHR data add one more layer of complex-
ity. Liang et al. (2018b) propose a concordance-assisted learning algorithm in the presence
of high-dimensional covariates. Nonetheless, they do not provide any inference procedures.
Inference methods for A-learning approaches such as Song et al. (2017) and Jeng et al.
(2018) are developed assuming the propensity score is known. Recently, Wu et al. (2021)
provide an inference procedure for a high-dimensional single-index contrast function as-
suming a known propensity. Thus, their methods cannot be applied if data are collected
from observational studies. Shi et al. (2018) derive the oracle inequalities of the proposed
estimators for the parameters in a linear contrast function, but their work focuses on the
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selection consistency and has little discussion on the inference of the estimated rule. Their
method depends on parametric assumptions on the propensity and outcome models, and
thus may not be consistent when complex propensity or outcome models are expected. In
practice, to avoid misspecification, flexible models may be adopted for the outcome regres-
sion or the propensity score. However, these models result in slow convergence rates for
the nuisance parameters, and deteriorate the limiting distribution of the estimated decision
rule. As such, it is important to propose an inference procedure for the estimated decision
rule, which is valid under the high-dimensional setup and robust to flexible models for the
nuisance parameters. Recent literature on the high-dimensional inference can assist with
tackling this challenge. For example, van de Geer et al. (2014) propose a debiased Lasso
approach for generalized linear models. Ning and Liu (2017) propose a de-correlated score
test for low-dimensional parameters with the existence of the high-dimensional covariates,
which is applicable for parametric models with correctly specified likelihoods. Dezeure et al.
(2017) propose a bootstrap procedure for high-dimensional inference, but it is computation-
ally intensive.

Another importance and related topic is the inference of the optimal value. The inference
of the optimal value has been shown to be challenging at exceptional laws (non-regular case)
where there exists a subgroup of patients for which treatment effect vanishes (Chakraborty
et al., 2010; Laber et al., 2014c; Goldberg et al., 2014). To achieve the inference of the
optimal value in low-dimensional setup, Chakraborty et al. (2014) propose an m-out of-n
bootstrap to construct a confidence interval for the value. Luedtke and Van Der Laan (2016)
propose an online one-step estimator which is the weighted average the values estimated on
chunks of data increasing in size. Recently, Shi et al. (2020) use a subagging algorithm to
aggregate value estimates obtained by repeated sample splittings. In both Luedtke and Van
Der Laan (2016) and Shi et al. (2020), a single-split procedure is also discussed to facilitate
the computation, though the resulting confidence interval might be wider. However, the
value inference for high-dimensional setup is lacking.

In this work, we propose a novel penalized doubly robust approach, termed as penal-
ized efficient augmentation and relaxation learning, to estimate the optimal individualized
treatment rule in observational studies with high-dimensional covariates. We construct
the decision rules by optimizing a convex relaxation of the augmented inverse probability
weighted estimator of the value with penalties, which generalizes the method proposed in
Zhao et al. (2019) to high-dimensional setup. The proposed procedure involves estimation
of the conditional means of the outcomes and the propensity scores as nuisance parameters.
As long as one of the nuisance models is correctly specified, we can consistently estimate
the optimal individualized treatment rules under certain conditions. Furthermore, we pro-
pose a split-and-pooled de-correlated score test, which provides valid hypothesis testing
and interval estimation procedures to identify the driving factors of the estimated decision
rule. The proposed procedure generalizes the de-correlated score (Ning and Liu, 2017) to
handle the potential slow convergence rates from the nuisance parameters estimation and
to allow a general loss function. Sample-splitting is adopted to separate the estimation of
the nuisance parameters from the construction of the de-correlated score, which is adopted
in Chernozhukov et al. (2018) for inference on a low-dimensional parameter of interest in
the presence of high-dimensional nuisance parameters. However, the inference on the es-
timated decision rule using the proposed approach requires a more sophisticated analysis
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due to the convex relaxation schemes. Theoretically, we show that the split-and-pooled de-
correlated score is asymptotically normal even when the nuisance parameters are estimated
non-parametrically with slow convergence rates. In addition, we use a single-split procedure
to infer the value under the estimated decision rule.

2. Method

In this section, we propose the penalized efficient augmentation and relaxation learning and
then introduce the proposed inference procedure.

2.1 Penalized Efficient Augmentation and Relaxation Learning

Let X be a p-dimensional random vector, which contains the baseline covariates capturing
patient profiles. We assume that p can be much larger than the sample size n. Let A ∈
{−1, 1} be the treatment assignment, and Y ∈ R be the observed outcome that higher values
are preferred. Here, we adopt the framework of potential outcomes (Rubin, 1974, 2005).
Denote the potential outcome under treatment a ∈ {−1, 1} as Y (a). Then the observed
outcome is Y = Y (a)I{a = A}, where I{·} is the indicator function. An individualized
treatment rule, denoted by D, is a mapping from the space of covariates X ⊆ Rp to the space
of treatments A = {−1, 1}. With a slight abuse of notation, we write the observed outcome
under this decision rule as Y (D) =

∑
a∈{−1,1} Y (a)I{a = D(X)}. The expectation of Y (D),

V (D) = E (Y (D)), is called the value function which is the average of the outcomes over the
population if the decision rule were to be adopted. In order to express the value in terms of
the data generative model, we assume the following conditions: 1) the stable unit treatment
value assumption (Imbens and Rubin, 2015); 2) the strong ignorability Y (−1), Y (1) ⊥ A |
X; 3) Consistency Y = Y (A). The stable unit treatment value assumption assumes that the
potential outcomes for a patient do not vary with the treatments assigned to other patients.
It also implies that there are no different versions of the treatment. The strong ignorability
condition means that there is no unmeasured confounding between the potential outcomes
and the treatment assignment mechanism. The optimal individualized treatment rule is
defined as Dopt = arg maxD{V (D)}.

In this paper, due to the high-dimensional nature of the data we work with, we focus on
deriving a linear decision rule of the form D(x) = sgn(x>β), where x ∈ X and the function
sgn(t) = 1 if t ≥ 0; sgn(t) = −1 if t < 0. To ensure the identifiability, we assume that the
k∗-th coordinate of β, βk∗ = 1, for some k∗. The choice of k∗ can be determined by the
domain knowledge. Let π(a;x) = P (A = a | X = x) and Q(a;x) = E(Y | X = x, A = a)
for a ∈ {−1, 1} and x ∈ X . Define the weights

Ŵa = Wa(Y,X, A, π̂, Q̂) =
Y I {A = a}
π̂(a;X)

− [I {A = a} − π̂(a;X)] Q̂(a;X)

π̂(a;X)

for a ∈ {−1, 1}, where π̂(a;X) and Q̂(a;X) are the estimators of π(a;X) and Q(a;X)
respectively. Under the conditions above, the augmented inverse probability weighted esti-
mator of the value function is

V̂ (D) = En

[
Ŵ1I {D(X) = 1}+ Ŵ−1I {D(X) = −1}

]
,
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where En[·] denotes the empirical average. The estimator V̂ (D) enjoys the double robust-
ness property. Assume that Q̂(a;x) and π̂(a;x) converge in probability uniformly to some
deterministic limits, denoted by Qm(a;x) and πm(a;x), respectively. V̂ (D) converges to
V m(D), where

V m(D) = E
[
Wm

1 I {D(X) = 1}+Wm
−1I {D(X) = −1}

]
.

Here, Wm
a = Wa(Y,X, A, πm, Qm) is the limit that Ŵa converges to, a = ±1. As shown in

Zhao et al. (2019), if either πm(a;x) = π(a;x) or Qm(a;x) = Q(a;x), but not necessarily
both, then V m(D) = V (D).

To avoid negative Ŵa, we consider its positive and negative parts separately and define
Ŵa,+ = |Ŵa|1{Ŵa ≥ 0} and Ŵa,− = |Ŵa|1{Ŵa ≤ 0}. Maximizing V̂ (D) is equivalent to
minimizing

En

[(
Ŵ1,+ + Ŵ−1,−

)
I {D(X) 6= 1}+

(
Ŵ1,− + Ŵ−1,+

)
I {D(X) 6= −1}

]
. (1)

Directly optimizing (1) is infeasible due to the indicator functions in the objective function,
especially with a large number of covariates. To avoid minimizing the indicator function,
we replace the indicator function with a strictly convex surrogate loss. Due to the strict
convexity, the minimizer of the surrogate loss is always unique. Thus, we can relax the
constraint that βk∗ = 1. Furthermore, we add a sparse penalty function, which enables
us to eliminate the unimportant variables from the derived rule. We denote the weight
encouraging A = 1 as Ω̂+ = Ŵ1,+ + Ŵ−1,− and the weight encouraging A = −1 as Ω̂− =

Ŵ1,− + Ŵ−1,+. Our proposed estimator β̂ is

β̂ = arg min
β
En

[
Ω̂+φ

(
X>β

)
+ Ω̂−φ

(
−X>β

)]
+ λnP (β), (2)

where φ is a convex surrogate loss, P (β) is a sparse penalty function with respect to β, and
λn is a tuning parameter controlling the amount of penalization. In this paper, we focus
on the l1-lasso penalty P (β) = ‖β‖1. The framework allows a broad class of surrogate
loss functions, such as logistic loss, φ(t) = log

(
1 + e−t

)
, see Section 3 for the detailed

technical conditions on φ. The estimated decision rule can be subsequently obtained as

D̂(X) = sgn
(
X>β̂

)
.

2.2 Split-and-pooled De-correlated Score Test

We define

lφ(β; Ωm
+ ,Ω

m
− ) = Ωm

+φ
(
X>β

)
+ Ωm

−φ
(
−X>β

)
,

and β∗ = arg minβ E
[
lφ(β; Ωm

+ ,Ω
m
− )
]
, where Ωm

+ = Wm
1,+ +Wm

−1,− and Ωm
− = Wm

1,−+Wm
−1,+.

To simplify notations, we will suppress the superscript and write them as Ω+ and Ω−
instead. Let Xj ∈ R is the j-th covariate andX−j ∈ Rp−1 includes the remaining covariates.
Likewise, let β∗j be the j-th coordinate of β∗ and β∗−j be a p− 1 dimensional sub-vector of
β∗ without β∗j . Without loss of generality, suppose that β∗j is of interest. The statistical
inference problem can be formulated as testing the null hypothesis H0 : β∗j = 0 versus H1 :
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β∗j 6= 0, or constructing confidence intervals for β∗j . The proposed method can be easily
generalized to test any low-dimensional projection of β∗.

Before we propose our inference procedure for β∗, we introduce a lemma to show that
under certain conditions, our inference procedure for β∗ can provide information on Dopt(x).
In Lemma 1, we assume that Dopt(x) = sgn(x>βopt), which also indicates Dopt(x) =
sgn(cx>βopt) for any c > 0. To avoid βopt = 0 and identifiability issue, we restrict inference
to regimes in which βopt

k∗ = 1. This implies that we would not infer βopt
k∗ through β∗k∗ .

In general, the contrast function Q(1;x) − Q(−1;x) could be a complex function of x,
but in many situations, the optimal rule Dopt(x) may only depend on a linear function
of x (Xu et al., 2015). In Lemma 1, we provide sufficient conditions that β∗ satisfies
Dopt(X) = sgn(X>βopt) = sgn(X>β∗). In this case, the results on the sparsity pattern of
β∗ can be extended to inferring βopt.

Define two subspaces depending on β,

∆φ(β) =
{
f(X) ∈ L2 : cov

[
f(X),

{
φ(X>β)− φ(−X>β)

}
|X>βopt

]
≥ 0
}
,

Sφ(β) =
{
f(X) ∈ L2 : cov

[
f(X),

{
φ(X>β) + φ(−X>β)

}
|X>βopt

]
≥ 0
}
.

Lemma 1 If the Dopt(X) has a linear form, and Qm = Q or πm = π in Ω+ and Ω−, then
Dopt(X) = sgn(X>β∗) if the following conditions are satisfied: (a) The contrast function
Q(1;X) − Q(−1;X) ∈ ∆φ(β∗), and the main effect E(Y (1) + Y (−1) | X) ∈ Sφ(β∗); (b)
there exists a p-dimensional vector P such that E(X |X>βopt) = PX>βopt.

The subspaces ∆φ(β) and Sφ(β) enjoy the following properties: (i) Any measurable
function of X>βopt belongs to ∆φ(β) ∩ Sφ(β), ∀β; (ii) Suppose that a function g(X) ∈
∆φ(β) (or Sφ(β)), then the function h(X>βopt)g(X) ∈ ∆φ(β) (or Sφ(β)), where h(·) is an
arbitrary measurable function. Thus, if E(Y1 |X) and E(Y−1 |X) only depend onX>βopt,
Condition (a) is easily satisfied. We provide examples in the Appendix B to further show
that Condition (a) is satisfied by a large class of models, including data generative models
that are dense and not single index models (see Example 2 in Appendix B). In particular,
although method proposed in Wu et al. (2021) can deal with general single index models,
it has more restriction on the sparsity level of the contrast function than our requirement.

Condition (b) on the design matrix X is common in the dimension reduction literature
(Li, 1991; Zhu et al., 2006; Lin et al., 2018, 2019). It is satisfied if the distribution of X
is elliptically symmetric. Li and Duan (1989); Duan and Li (1991) provide a thorough
discussion on this condition in regression methods which aims to estimate a single index
with an arbitrary and unknown link function. More specifically, they provide a bias bound
when the elliptical symmetry is violated and show that the asymptotic bias is small when
the elliptical symmetry is nearly satisfied. Further, Hall and Li (1993) shows that when
the dimension of X is large, for most directions βopt even the most nonlinear regression is
still nearly linear. In addition, empirical studies by Brillinger and others suggest that quite
often the bias may be negligible even for a moderate violation of condition (b) (Brillinger,
2012; Li and Duan, 1989).

Remark 2 Alternatively, instead of assuming the conditions in Lemma 1, the desired re-
lationship Dopt(X) = sgn(X>β∗) may still hold under some parametric assumptions on
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E(Y1 |X) and E(Y−1 |X). For example, if the outcomes are non-negative and the follow-
ing conditions are satisfied

log {E(Y1 |X)/E(Y−1 |X)} = X>βopt, (3)

we still have Dopt(X) = sgn(X>β∗). Condition (3) poses a parametric assumption on
E(Y1 | X)/E(Y−1 | X) (see Appendix B for the details). This ratio measures the relative
change of the potential outcomes. Under Condition (3), hypothesis testing of β∗ is equivalent
to testing for the driving factors of the Dopt. Furthermore, the interval estimation of β∗

can be interpreted through the specified model assumption in (3).

Next, we introduce our proposed inference procedure. Suppose that Ω+ and Ω− are
known, then the estimator β̂ is obtained by minimizing the empirical loss

En [lφ(β; Ω+,Ω−)] + λnP (β).

Let ∇lφ(β; Ω+,Ω−) = Ω+φ
′ (X>β)−Ω−φ

′ (−X>β). For j 6= k∗, the score function of βj is

En [∇lφ(β; Ω+,Ω−)Xj ] . Let β̂null(j) be a vector that equals to β̂ with the j-th coordinate re-

placed by 0. In the low-dimensional setting where p is fixed, the score function with β̂null(j),

En

[
∇lφ(β̂null(j); Ω+,Ω−)Xj

]
, is asymptotically normal. Nevertheless, in a high-dimensional

setting, the asymptotic normality of the score function En

[
∇lφ(β̂null(j); Ω+,Ω−)Xj

]
is de-

teriorated by the high-dimensionality of β̂−j . Following Ning and Liu (2017), we use the

semiparametric theory to de-couple the estimation error of β̂−j with the score function of

βj . A de-correlated score function is defined as En

[
∇lφ(β̂null(j); Ω+,Ω−)

(
Xj −X>−jw∗j

)]
,

where w∗j =
(
I∗−j,−j

)−1
I∗−j,j is chosen to reduce the uncertainty of the score function due

to the estimation error of β̂−j . Denote ∇2lφ(β; Ω+,Ω−) = Ω+φ
′′ (
X>β

)
+ Ω−φ

′′ (−X>β).
The I∗−j,−j and I∗−j,j are the corresponding partitions of I∗ = E

[
∇2lφ(β∗; Ω+,Ω−)XX>

]
.

Under the null hypothesis, this de-correlated score function follows

n1/2En

[
∇lφ(β̂null(j); Ω+,Ω−)

(
Xj −X>−jw∗j

)]
→ N

(
0,
(
ν∗j
)>
Iν∗j

)
,

where ν∗j is a vector whose j-th coordinate is 1 and other coordinates equal to −w∗j . We
propose to estimate the nuisance parameter w∗j via

min
w

En

[
∇2lφ

(
β̂; Ω+,Ω−

)(
Xj −X>−jw

)2
]

+ λ̃n‖w‖1,

where λ̃n is a tuning parameter. Denote the estimator for w∗j as ŵj . A valid test for
H0 : β∗j = 0 is constructed based on

En

[
∇lφ(β̂null(j); Ω+,Ω−)

(
Xj −X>−jŵj

)]
. (4)

The nuisance parameters, Ω+ and Ω− are unknown in practice, and are estimated via
modeling π and Q. To avoid misspecification, they can be estimated using flexible non-
parametric or machine learning methods, which may lead to convergence rates slower than
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n−1/2. To overcome the possible slow convergence rates of π̂ and Q̂, we propose a split-and-
pooled de-correlated score, where we consider a sample split procedure in constructing the
de-correlated score function (Chernozhukov et al., 2018).

Let I1, . . . , IK be a random partition of the observed data with approximately equal sizes,
where K ≥ 2 is a fixed pre-specified integer. We assume that bn/Kc ≤ |Ik| ≤ bn/Kc + 1,

for all k = 1, . . . ,K. Let E
(k)
n [·] denote the expectation defined by the data in Ik. For

each k ∈ {1, . . . ,K}, we repeat the following procedure. First, we obtain π̂(−k) and Q̂(−k)

using the data excluding Ik. In the presence of high-dimensional covariates, we can use
generalized linear model with penalties (van de Geer, 2008) or kernel regression after a
model-free variable screening (Li et al., 2012; Cui et al., 2015) for estimating π and Q. A
data-split estimator β̂(k) is obtained by

β̂(k) = arg min
β
E(k)
n

[
lφ

(
β; Ω̂

(−k)
+ , Ω̂

(−k)
−

)]
+ λn,k‖β‖1, (5)

where Ω̂
(−k)
+ and Ω̂

(−k)
− are computed with π̂(−k) and Q̂(−k) plugged in, and λn,k is a tuning

parameter. Then, we estimate w∗j by

ŵ
(k)
j = arg min

w
E(k)
n

[
∇2lφ

(
β̂(k); Ω̂

(−k)
+ , Ω̂

(−k)
−

)(
Xj −X>−jw

)2
]

+ λ̃n,k‖w‖1, (6)

where λ̃n,k is a tuning parameter. Let
(
β̂

(k)
null(j)

)
be a vector that equals β̂(k) except its

j-th coordinate replaced by 0. Finally, we construct the data-split de-correlated score test

statistic S
(k)
j (β̂

(k)
null(j), ŵ

(k)
j ) as

S
(k)
j

(
β̂

(k)
null(j), ŵ

(k)
j

)
= E(k)

n

[
∇lφ

(
β̂

(k)
null(j); Ω̂

(−k)
+ , Ω̂

(−k)
−

)(
Xj −X>−jŵ

(k)
j

)]
. (7)

Combining K data-split estimators, we obtain the pooled estimator β̂ = K−1
∑K

k=1 β̂
(k).

Likewise, the pooled de-correlated score test statistic is Sj = K−1
∑K

k=1 S
(k)
j

(
β̂

(k)
null(j), ŵ

(k)
j

)
.

As shown in Theorem 4, under null hypothesis (β∗j = 0), we have

n1/2Sj → N
(

0,
(
ν∗j
)>
Iν∗j

)
,

uniformly holds over all j’s. The detailed algorithm is provided in Algorithm 1. In this
algorithm, for a fixed 1 ≤ k ≤ K, π̂(−k) and Q̂(−k) are trained on a subset of samples of size
n(K − 1)/K.

2.3 Confidence Intervals

We use the data-split de-correlated score to construct a valid confidence interval of β∗j . This

is motivated from the fact that the data-split de-correlated score S
(k)
j

(
β, ŵ

(k)
j

)
is also an

unbiased estimating equation for β∗j when fixing β−j = β∗−j . However, directly solving this
estimating equation has several drawbacks, such as the existence of multiple roots or ill-
posed Hessian (Chapter 5 in van der Vaart (2000)). Ning and Liu (2017) proposed a one-step

8



Inference on high-dimensional individualized treatment rules

Algorithm 1: Inference of β∗ using a sample-split procedure

Input: A random seed; n samples; a positive integer K.
Output: β̂ and a p-value for H0 : β∗j = 0.

Randomly split data into K parts {Ik}Kk=1 with equal size, and set k = 1;

Estimate π and Q on Ick and denote the estimator as π̂(−k) and Q̂(−k);

Obtain a data-split estimator β̂(k) on Ik by (5), where λn,k is tuned by
cross-validation ;

Obtain an estimator ŵ
(k)
j for w∗j by (6), where λ̃n,k is tuned by cross-validation ;

Construct the data-split de-correlated score test statistic S
(k)
j (β̂

(k)
null(j), ŵ

(k)
j ) by

Equation (7), and the estimator of the variance

σ̂2
k,j = E

(k)
n

[{
∇lφ

(
β̂(k); Ω̂

(−k)
+ , Ω̂

(−k)
−

)}2 (
Xj −X>−jŵ

(k)
j

)2
]
;

Set k = 2, 3, . . . ,K, and repeat Step 2 and 5. Obtain
{
β̂(k)

}K
k=1

and{
S

(k)
j

(
β̂

(k)
null(j), ŵ

(k)
j

)}K
k=1

as well as
{
σ̂2
k,j

}K
k=1

. Aggregate them by

β̂ = K−1
K∑
k=1

β̂(k), Sj = K−1
K∑
k=1

S
(k)
j

(
β̂

(k)
null(j), ŵ

(k)
j

)
, σ̂2

j = K−1
K∑
k=1

σ̂2
k,j .

Calculate the p-value by 2
(
1− Φ(n1/2|Sj |/σ̂j)

)
, where Φ(·) is the cumulative

distribution function of a standard normal distribution.

9
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estimator, which solved a first order approximation of the de-correlated score. Following

their procedure, we construct the data-split one-step estimator, β̃
(k)
j , as the solution to,

S
(k)
j

(
β̂(k), ŵ

(k)
j

)
+ E(k)

n

[
∇2lφ

(
β̂(k); Ω̂

(−k)
+ , Ω̂

(−k)
−

)
Xj(Xj −X>−jŵ

(k)
j )
]

(βj − β̂(k)
j ) = 0.

Hence, we have that β̃
(k)
j = β̂

(k)
j − S

(k)
j

(
β̂(k), ŵ

(k)
j

)
/Î

(k)
j|−j , where

Î
(k)
j|−j = E(k)

n

[
∇2lφ

(
β̂(k); Ω̂

(−k)
+ , Ω̂

(−k)
−

)
Xj(Xj −X>−jŵ

(k)
j )
]
.

Finally, the pooled one-step estimator is the aggregation of these data-split one-step

estimators following β̃j = K−1
∑K

k=1 β̃
(k)
j . In Section 3, we will show the asymptotic nor-

mality of the pooled one-step estimator β̃j , which provides a valid confidence interval for
β∗j . The algorithm for constructing confidence intervals is presented in Algorithm 2.

Algorithm 2: Confidence interval of β∗j using a sample-split procedure

Input: The data-split de-correlated score S
(k)
j

(
β̂(k), ŵ

(k)
j

)
and Î

(k)
j|−j for

k = 1, . . . ,K; σ̂2 from Algorithm 1.
Output: A 95% confidence interval for β∗j .

Construct the data-split one-step estimator by β̃
(k)
j = β̂

(k)
j −S

(k)
j

(
β̂(k), ŵ

(k)
j

)
/Î

(k)
j|−j ;

Aggregate these data-split one-step estimators by β̃j = K−1
∑K

k=1 β̃
(k)
j , and

calculate Îj|−j = K−1
∑K

k=1 Î
(k)
j|−j ;

Construct the 95% confidence interval by(
β̃j − 1.96n−1/2σ̂j/Îj|−j , β̃j + 1.96n−1/2σ̂j/Îj|−j

)
.

2.4 Inference of the Value

We adopt an analogy of the single-split procedure (Luedtke and Van Der Laan, 2016; Shi
et al., 2020) to infer the value under D∗(X), V (D∗), where D∗(X) = sgn

(
X>β∗

)
. The

single-split procedure splits the entire data set into two parts. We use one part for training
and nuisance parameter fitting, and conduct inference on the other part. When β∗ ∝
βopt, i.e., there is a constant c > 0 such that β∗ = cβopt, our procedure provides a valid
inference procedure for the optimal value. The detailed procedure for inference of the value
is presented in Algorithm 3.

3. Theoretical Properties

We assume the following conditions.

(C1) Each covariate Xj ’s is sub-Gaussian with common proxy σx, ‖β∗‖1 ≤ R, and
maxj{‖w∗j‖1} ≤ R; supx∈X |Q(a;X)| is bounded, and the conditional distribution of

10
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Algorithm 3: Inference of the value V (D∗) using a single-split procedure

Input: A random seed; n samples.
Output: A 95% confidence interval for V (D∗).
Randomly split the data into two sets, Ĩ1 and Ĩ2 with sample size n1 and n2, and
obtain β̂ using data in Ĩ1 by Algorithm 1;

Estimate π and Q on Ĩ1 and denote the estimator as π̂ and Q̂;

Estimate V (D∗) on Î2 and denote the estimator as V̂ ,

V̂ (D̂) = E
(2)
n2

[
W
D̂(X)

(Y,X, A, π̂, Q̂)
]
, where D̂(X) = sgn(X>β̂);

Estimate the variance and denote the estimator as σ̂2
V ,

σ̂2
V = var

(2)
n2

[
W
D̂(X)

(Y,X, A, π̂, Q̂)
]
, where var

(2)
n2 (·) is the sample variance on I2.

Construct the 95% confidence interval by(
V̂ (D̂)− 1.96n

−1/2
2 σ̂V , V̂ (D̂) + 1.96n

−1/2
2 σ̂V

)
.

Y (a)−Q(a;X) given X is sub-exponential, i.e., it is either bounded or satisfies that
there exists some constants M,ν0 ∈ R such that

E [exp {|Y (a)−Q(a;X)|/M} − 1− |Y (a)−Q(a;X)|/M |X]M2 ≤ ν0/2,

for both a = 1 and a = −1.

(C2) There exists some constants 0 < πmin < πmax < 1 such that πmin ≤ π(a;X) ≤ πmax

with probability 1.

(C3) φ is convex, and φ′ is bounded with φ′(0) < 0; for any t ∈ [−c̄ − ε, c̄ + ε] with some
constant ε > 0 and a sequence t1 satisfying |t1− t| = o(1), it holds that 0 < φ′′(t) ≤ C
and |φ′′(t1)− φ′′(t)| ≤ C|t1 − t|φ′′(t) for some constant C > 0.

(C4) The smallest eigenvalue of E[∇2lφ(β∗; Ω+,Ω−)XX>] is larger than κ, where κ is a
positive constant.

(C5) Suppose that for some α, β > 0, supx |π̂(a;x)− π(a;x)| = Op(n
−α) and

supx

∣∣∣Q̂(a;x)−Q(a;x)
∣∣∣ = Op(n

−β) for a = 1 and −1, we require that Rn−α−β+1/2 =

o(1). In addition, we require that

Rmax{s∗, s′} log n(log p)3/2 = o(n1/2), (8)

and
(n−α + n−β)s∗

√
log p→ 0, (9)

where s∗ = ‖β∗‖0 and s′ = maxj ‖w∗j‖0.

Condition (C1) on the joint distribution of (X, A, Y ) is weaker than the assumption in
high-dimensional inference literature (van de Geer et al., 2014; Ning and Liu, 2017). Instead
of sub-gaussian design, they only consider that the design is uniformly bounded. We also
assume that Y (a)−Q(a;X) is sub-exponential or bounded. This condition enables a faster

11
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convergence rate of high-dimensional empirical processes involving the estimation errors of

π̂ and Q̂. Under this condition, if supX

∣∣∣Q̂(a;X)−Q(a;X)
∣∣∣ = op(1), we have∥∥∥En [{Y (a)−Q(a;X)}

{
Q(a;X)− Q̂(a;X)

}
X
]∥∥∥
∞

= op

(
(log p/n)1/2

)
.

Condition (C2) prevents the extreme values in the true propensities. Condition (C3) requires
that the surrogate loss φ has bounded first-order and second-order derivatives. The logistic
loss satisfies these conditions. Condition (C4) is standard in high-dimensional inference
literature (Ning and Liu, 2017; van de Geer et al., 2014; Dezeure et al., 2017). Condition (C5)
is imposed for Algorithm 1. We assume that it holds on each split data set. To simplify the
notation, we do not distinguish π̂ and Q̂ with π̂(−k) and Q̂(−k) for a fixed k. First it requires

that both π̂ and Q̂ are consistent and the convergence rates satisfy Rn−α−β+1/2 = o(1).
This can be attained if either the convergence rate of π̂ or Q̂ is sufficiently fast. For example,
assuming R = O(1), if π is estimated by a regression spline estimator and is known to be
pπ-dimensional (low dimension) by design, we have supX |π̂(a;X)− π(a;X)| = Op

(
n−1/3

)
,

where π is assumed to belong to the Hölder class with a smoothness parameter greater
than 5pπ (Newey, 1997). Then n−α−β � n−1/2 is satisfied when n−β � n−1/6. Second,
formula (8) in Condition (C5) requires that the number of nonzero entries of β∗ and w∗j
is smaller than the order of n1/2/(log p)3/2, which is slightly more restrictive than the
conditions in the high-dimensional inference literature (van de Geer et al., 2014; Ning and
Liu, 2017) due to the sub-gaussian design. Finally, formula (9) of Condition (C5) indicates
the convergence rates of the nuisance parameter estimations cannot be too slow if s∗ and p
increase fast with the sample size n.

Theorem 3 Assume that Conditions (C1)-(C5) hold. By choosing λn,k � (log p/n)1/2 ,

we have ‖β̂ − β∗‖1 = Op
(
s∗(log p/n)1/2

)
.

Theorem 3 assumes that both the outcome and propensity score models are correctly spec-
ified, Qm = Q and πm = π (implied by Condition (C5)). Nonetheless, our proposed
estimator enjoys the doubly robustness property in the sense that β̂ is still consistent
if either Qm = Q or πm = π. When Qm 6= Q and πm = π, we have ‖β̂ − β∗‖1 =
Op
(
s∗max

{
(log p/n)1/2, n−α

})
; when πm 6= π and Qm = Q, we have ‖β̂ − β∗‖1 =

Op
(
s∗max

{
(log p/n)1/2, n−β

})
. This also indicates that as long as one of the estimators π̂

and Q̂ has a reasonably fast rate, the estimator β̂ is consistent.
Theorems 4 and 5 provide the uniform validity of the testing procedures in Algorithm 1

and the confidence interval constructed using the pooled one-step estimator β̃j ’s in Algo-
rithm 2 via sample-splitting, respectively.

Theorem 4 Assume that Conditions (C1)-(C5) hold. For Algorithm 1, under the null
hypothesis H0 : β∗j = 0,∀j ∈ J ⊂ {1, · · · , p}, by choosing λn,k � λ̃n,k � (log p/n)1/2 , we
have

max
j∈J

sup
α∈(0,1)

∣∣∣P (∣∣∣σ−1
j n1/2Sj

∣∣∣ ≤ Φ−1(1− α/2)
)
− (1− α)

∣∣∣ = op(1).

and maxj |σ̂j − σ2
j | = op(1), where σ̂2

j is given in Algorithm 1, and

σ2
j =

(
ν∗j
)>

var
[
∇2lφ(β∗; Ω+,Ω−)

]
ν∗j .
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Theorem 5 Assume that Conditions (C1)-(C5) hold. The pooled one-step estimator sat-
isfies

max
j

sup
α∈(0,1)

∣∣∣P (∣∣∣n1/2
(
β̃j − β∗j

)
Îj|−j/σ̂j

∣∣∣ ≤ Φ−1(1− α/2)
)
− (1− α)

∣∣∣ = op(1).

Remark 6 Theorems 4 and 5 assume that both the propensity and the outcome models
are correctly specified and estimated. Nonetheless, when the propensity score is known by
the design of the experiment, the conclusions in Theorems 4 and 5 still hold even if the
outcome model is misspecified. In contrast, Q-learning requires correctly specified outcome
models even when the propensity is known. In practice, an individualized treatment rule can
still be linear even if the contrast function is non-linear. As such, our modeling framework
is more flexible. The advantages of our methods extend to the high-dimensional setting.
The outcome weighted learning approach does not involve modeling outcomes. However, the
corresponding penalized estimator in the outcome weighted learning approach may have a
slower convergence rate than the proposed estimator in Theorem 3 when the propensity score
is estimated with a slow rate. Therefore, the de-correlated score or the one-step estimator
based on the outcome weighted learning approach cannot achieve a limiting distribution with
n1/2 convergence rate as in Theorems 4 and 5.

To derive the asymptotic property of the inference procedure for the value, we further
introduce the following conditions:

(C6) There exists an increasing function ψ such that 1) ψ(0) = 0; 2) there exists ζ > 0 and
lim supt→0 ψ(t)/tζ < +∞; 3) |E(Y (1)−Y (−1) |X)| ≤ ψ(|X>β∗|) when |X>β∗| ≤ t0,
where t0 is a constant.

(C7) There exist constants γ > 0 and Cγ > 0 such that for any t in some neighborhood of
0, we have that P

(
0 <

∣∣X>β∗∣∣ ≤ t) ≤ Cγtγ .
Theorem 7 Assume that Y is bounded and denote the sample size of Ĩ1 as n1 and Ĩ2 as n2.

In addition to the conditions in Theorem 3, we further assume n−α−β1 n
1/2
2 = o(1) and one

of the following conditions: 1) Conditions (C6) and (C7) holds with
(
s(log p/n1)1/2

)ζ+γ
=

op(n
−1/2
2 ); 2) Condition (C7) holds with P

(∣∣X>β∗∣∣ = 0
)

= 0 and
(
s(log p/n1)1/2

)γ
=

op(n
−1/2
2 ), then we have

n2
1/2σ−2

V (V̂ (D̂)− V (D∗))→ N(0, 1),

where σ2
V = var

[
W
D̂(X)

(Y,X, A, π,Q)
]
.

Condition (C6) implicitly assumes that β∗ corresponds to the optimal individualized treat-
ment rule. When Condition (C6) fails, the inference of the value under D∗(X) requires
stronger assumptions (see Theorem 9 in Appendix D for details). In the simulation studies
and application, we choose n1 = n2 = n/2.
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4. Simulation Studies

In this section, we test our estimation and inference procedure under various simulation
scenarios. Let ∆(X) = {Q(1;X)−Q(−1;X)} /2 and S(X) = {Q(1;X) +Q(−1;X)} /2.
We generate X ∼ N (0, Ip×p), and Y = A∆(X) + S(X) + ε, ε ∼ N(0, 1). Let βopt =
(1, 1,−1,−1, 0, . . . , 0)>,β∗S = (−1,−1, 1,−1, 0, . . . , 0)>, and β∗π = (1,−1, 0, . . . , 0)>. The
following scenarios are considered: (I) ∆(X) = ξX>βopt, S(X) = 0.4X>β∗S , and π(1;X) =

exp(0.4X>β∗π)/
{

1 + exp(0.4X>β∗π)
}

; (II) ∆(X) =
{

Φ
(
ξX>βopt

)
− 0.5

}
×∆̃(X), S(X) =

exp
(
0.4X>β∗S

)
, π(1;X) = exp{(X2

1 +X2
2 +X1X2)/4}/

[
1 + exp{(X2

1 +X2
2 +X1X2)/4}

]
,

where ∆̃(X) = 2(
∑4

j=1Xj)
2 + 2ξ and Φ(·) is the cdf of the standard normal distribution.

Under these settings, the magnitude of the treatment effect ∆(X) changes with ξ,
which ranges from 0.1 to 1. Scenario (I) features a linear outcome model Q(a;X) for
both a = 1 and a = −1, and a logistic model for the propensity. Scenario (II) has a
nonlinear treatment effect ∆(X), though the decision boundary is still linear. The treatment
assignment mechanism is also complex. More simulation results with a mixture of both
discrete and continuous covariates, as well as highly correlated design matrices and non-
regular cases, can be found in Appendix A.

We compare the pooled estimator with Q-learning, a regression-based method (Qian and
Murphy, 2011). With high-dimensional covariates, we fit a linear regression with a lasso
penalty in Q-learning for all scenarios. The inference target of interest is βopt. However, the
limits of the coefficients estimates using either proposed method or Q-learning may not be
identical to βopt. In our simulation experiments, we will test and construct confidence inter-
vals for β∗j ’s, j = 1, . . . , 8, the j-th coordinate of β∗, which by abuse of notations, denote the
limits of estimates under either method. We generate large data sets multiple times using
the same data-generating process, and empirically verify that the sparsity pattern of β∗

matches with that of βopt. Hence, inferences on β∗ provide insights on the true optimal de-
cisions. We conduct the hypothesis testing for Q-learning using the de-correlated score test
proposed in Ning and Liu (2017), and construct 95% confidence intervals for the coefficients
of interest in the context of Q-learning. For value inference, we implement the Algorithm 3
as our proposed approach; for Q-learning, we implement the Algorithm 3 with the coeffi-
cients β̂ estimated from Q-learning approach. The true value V (β∗) is approximated by
the average of estimated values on a large independent data set. An R package called
ITRInference (see https://github.com/muxuanliang/ITRInference.git) is coded to
implement the proposed method and Q-learning approach. For the proposed method, the
user can specify the method or select from a list of candidates to estimate nuisance parame-
ters. In our implementation, we choose to estimate π and Q functions nonparametrically for
all scenarios. To be more specific, we first implement a distance correlation-based variable
screening procedure (Li et al., 2012). We then fit a kernel regression using the selected
variables after screening. When estimating π, we set caps at 0.1 and 0.9 to trim extreme
values.

In all scenarios, the sample size n and the dimension p range from 350, 500, 800, 1600,
2500 to 8000. We set the nominal significance level at 0.05, and the nominal coverage at
95%. We report the type I errors, the powers of the hypothesis tests, and the value functions
under the estimated decision rules out of 500 replications. In particular, we present the type
I errors for testing β∗5 to β∗8 , and the powers for testing β∗1 to β∗4 . For each method, we also
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present the coverage of the interval estimations around the limiting coefficients. We also
present the bias and the length of the confidence interval for the coefficients estimations
and value estimations.

Figures 1 - 3 show the simulation results for different scenarios, with the sample size n
varied and the p and ξ fixed. Additional results on varying p with n and ξ fixed can be
found in Appendix A. As expected, in Scenarios (I) (Figure 1) where the regression model
is correctly specified for Q-learning, Q-learning yields a better value function. Conversely,
the proposed method outperforms the Q-learning method in Scenario (II) (Figure 2). In
terms of the type I error and power, the proposed method is comparable to the Q-learning
approach in Scenario (I) (Figure 1). For Scenarios (II) (Figure 2), our method is more
powerful, and the type I errors are well controlled. Figure 3 also shows that the proposed
method leads to less biased point estimations and shorter confidence intervals. The excessive
bias of point estimations and lengths of interval estimations for the Q-learning approach
may be due to the model misspecification. The coverage of β∗5 to β∗8 are concentrated near
95%, and the coverage of the β∗1 to β∗4 gradually approach 95% for the proposed method.
For the coverage of the value V (β∗), the inference procedure achieves a valid CI for the
value under the proposed approach in both scenarios when the sample size is large enough.
However, the inference for the value under the Q-learning is under-coverage due to the model
misspecification. In Appendix A, we also compare the proposed value inference procedure
with bootstrap methods in terms of the coverage probabilities and lengths of confidence
intervals.

5. Application to Complex Patients with Type-II Diabetes

In this section, we apply our proposed estimation and inference procedures to construct
the optimal individualized treatment rule for complex patients with type-II diabetes. The
data are collected from the electronic health records through Health Innovation Program
at University of Wisconsin. The entire data set includes n = 9101 patients. There are 40
covariates, including socio-demographic variables, previous disease experiences, and baseline
HbA1c levels, etc. The outcome is the indicator whether the patient successfully controls the
HbA1c below 8% after a year. The treatment A = 1 if the patient received any medications,
including insulin, sulphnea or OHA, and A = −1 otherwise. Among 9101 patients, 17.1%
had a missing post-treatment HbA1c measurement, and 15.4% had the missing baseline
HbA1c measurements. We impute missing values using Multivariate Imputation by Chained
Equations (MICE package in R), which is based on the estimated conditional distributions
of each covariate given other covariates (van Buuren and Groothuis-Oudshoorn, 2011). To
address the possible interactions among covariates, we consider both raw covariates and
all first-order interactions. We rank these covariates by their variances and select p = 100
covariates with top variances.

We split the data set into a training data set (80% of the entire data set) and a testing
data set (20% of the entire data set). The proposed method and Q-learning are fitted on the
training data set using the same strategies as described in simulation studies. To evaluate
these estimated decision rules, we calculate the value function by En[Y 1{A = D̂(X)}/π̂0],
on the testing data set, where D̂ is the estimated decision rules on the training data set
and π̂0 is the estimated propensity scores on the testing data set. The entire procedure is
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Figure 1: Simulation results for Scenario (I) with the change of sample size when ξ = 0.7
and p = 2500. Types of the line represent different coefficients.
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Figure 2: Simulation results for Scenario (II) with the change of sample size when ξ = 0.8
and p = 2500. Types of the line represent different coefficients.
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Mean Standard deviation

Observed 0.860 0.008
Proposed approach 0.877 0.015
Q-Learning 0.869 0.015

Table 1: Comparisons on value functions.

Coef P-value

Chronic Complications : Fluid and Electrolyte Disorders -0.024 4.71× 10−2

Chronic Complications : African American -0.027 3.58× 10−2

Alcohol Abuse : Entitlement Disability -0.054 3.33× 10−2

HCC Community Score : Special Chronic Conditions -0.022 2.99× 10−2

Hypertension : Lower Extremity Ulcer -0.036 2.39× 10−2

HbA1c at Baseline : African American 0.019 2.26× 10−2

Entitlement Disability : Hypothyroidism -0.024 2.25× 10−2

Cardiac Heart Failure : Peripheral Vascular Disease -0.029 2.24× 10−2

Chronic Kidney Disease : HbA1c at Baseline 0.081 1.97× 10−2

Other Race : Special Chronic Conditions 0.016 1.95× 10−2

Liver Disease : Weight Loss 0.015 1.72× 10−2

Other Neurological Disorders : Female -0.021 1.28× 10−2

Lower Extremity Ulcer : HbA1c at Baseline 0.039 9.60× 10−3

Chronic Complications : Bucketized Age 0.040 9.05× 10−4

HbA1c at Baseline : Female 0.044 8.47× 10−8

Table 2: Coefficients and p-value for the significant covariates of the estimated decision rule
(CIs are included in Appendix C). Special chronic conditions refer to chronic con-
ditions including amputation, chronic blood loss, drug abuse, lymphoma, metas-
tatistic cancer, and peptic ulcer disease. Bucketized age refers to a variable created
by bucketizing the raw age by its observed quartiles. Other Race refers to the race
excluding White and Black.

repeated 100 times with random training and testing data splits. The mean and standard
deviation (sd) of the value functions over these repeats are summarized in Table 1. Both
the proposed and Q-learning methods construct decision rules that yield better results
than the current clinical practice (sd of the difference is 0.0138 (Proposed); 0.0143 (Q-
Learning)). Furthermore, our proposed method achieves a higher value function than Q-
learning approach as shown in Table 1 (sd of the difference is 0.0115).

Next, we conduct the inference procedure to identify driving factors of the optimal
individualized treatment rule as well as to provide an interval estimation using the entire
data set. Results are presented in Table 2. After controlling for the false discovery rate
below 0.05, our results indicate that a female patient with a higher HbA1c value at baseline
is more likely to benefit from the treatment. The figure comparing the list of significant
covariates selected by the proposed method and Q-learning can be found in Appendix C.
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6. Discussion

In this paper, we consider a single-stage problem and assume a high-dimensional linear
decision rule. In practice, especially in managing chronic diseases, dynamic treatment
regimes are widely adopted, where sequential decision rules for individual patients adapt
overtime to the evolving disease. One future direction is to develop inferential methods
in the multi-decision setup. We can also extend the linear decision rule to a single index
decision rule d(X>β∗), where d is an unknown function. Throughout, we require that the
surrogate loss function be differentiable. A non-differentiable surrogate loss such as the
hinge loss does not have a well-defined Hessian, which hinders the construction of the de-
correlated score. This can be addressed by a smoothed hinge loss or an approximation of
the Hessian. We are currently working on these possible extensions.

In this work, we adopt the de-correlated score to infer the high-dimensional linear de-
cision rule. It is also possible to use other high-dimensional influential tools developed
recently. Partial penalized tests proposed in Shi et al. (2019) allow to test hypotheses in-
volving a growing number of coefficients as the sample size increases. Ma et al. (2021)
consider the global and simultaneous hypothesis testing for high-dimensional logistic re-
gression models. Although a modified algorithm 1 can be combined with these methods,
its theoretical property, especially the consequences of nuisance parameter estimation with
slow rates, needs future investigations. In addition, this work can be extended to test
multi-dimensional hypotheses, i.e., H0 : β∗j = 0, j ∈ G, where G is a subset of {1, · · · , p}.
For a low-dimensional sub-vector, .i.e, |G|, the proposed de-biased estimators can be used
to construct p-values or confidence regions. For a high-dimensional sub-vector, i.e. G, the
current procedure can be extended as well. However, the required relationship among α, β,
p, and n needs future investigation. Thus, we will leave it as future work.

In addition, in this work, we assume that both nuisance parameters are correctly spec-
ified and estimated by nonparametric methods after the variable screening. Some recent
literature in estimating the average treatment effect assumes that only one of the nuisance
parameters is correctly specified (Athey et al., 2018; Ning et al., 2020; Tan, 2020; Smucler
et al., 2019). In these approaches, the correct specified nuisance parameter is assumed to
follow a structural model such as linear or partially linear models. It would be interesting
to investigate how to extend these approaches to ITR inference.

In this work, we approximate the indicator function by a smooth convex surrogate. In
addition to a smooth surrogate, many other non-smooth or non-convex loss functions such
as the hinge loss (Cortes and Vapnik, 1995), the ramp loss (Collobert et al., 2006a,b) and the
ψ-learning loss (Shen et al., 2003) can be considered to approximate the indicator function.
Especially, the non-convex loss function such as the ramp loss and the ψ-learning loss is more
robust to the presence of outliers. However, the non-convex/non-smooth surrogate loss may
be hard to optimize and the non-convexity creates an additional barrier in high-dimensional
inference. We would consider this extension as our future work.

Another future work is to extend the proposed approach to multiple treatment options
setup. There are several possible directions. The first direction is to transform the multiple
treatment problem into multiple binary decision problems. We can consider a sequential
decision-making strategy (Zhou et al., 2018) by conducting a series of binary treatment
selections. It is shown that such strategy is Fisher consistent. Another direction is to adopt
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techniques used in multi-label classification problems to estimate the optimal individualized
treatment rule (Liang et al., 2018a). We can incorporate the weights based on the outcome
model and propensity model into this framework and develop the corresponding inferential
procedures. We are currently working on these extensions.
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Appendix A.

In Appendix A, we provide additional simulation results.

Simulation Results with ξ and p Changed

In this section, we provides more simulation results. Let ∆(X) = {Q(1;X)−Q(−1;X)} /2
and S(X) = {Q(1;X) +Q(−1;X)} /2. We generate X ∼ N (0, Ip×p), and Y = A∆(X) +
S(X) + ε, where ε ∼ N(0, 1) is the random error.

Denote βopt = (1, 1,−1,−1, 0, · · · , 0)>, β∗S = (−1,−1, 1,−1, 0, · · · , 0)>, and β∗π =
(1, 1, 1, 0,−1, 0,−1, 0, · · · , 0)>. The following scenarios are considered:
(I) ∆(X) = ξX>βopt, S(X) = 0.8X>β∗S , and π(1;X) = 1/

{
1 + exp(−0.4X>β∗π)

}
;

(II) ∆(X) =
{

Φ
(
ξX>βopt

)
− 0.5

}
×∆̃(X), S(X) = exp

(
0.4X>β∗S

)
, π(1;X) = exp((X2

1 +

X2
2 + X1X2)/4)/

{
1 + exp((X2

1 +X2
2 +X1X2)/4)

}
, where ∆̃(X) = 2(

∑4
j=1Xj)

2 + 2ξ and
Φ(·) is the cdf of the standard normal distribution.

Under these settings, the magnitude of the treatment effect ∆(X) changes with ξ, which
ranges from 0.1 to 1. In all scenarios, the sample size n and the dimension p range from 350,
500, 800, 1600, 2500, to 8000. When p changes from 350 to 2500, these settings include both
low-dimensional (p = 350, n = 2500) and high-dimensional (n = 350, p = 2500) settings.
We set the nominal significant level at 0.05, and the nominal coverage at 95%. We report
the type I error, the power of the testing, and the value functions under the estimated
decision rules out of 500 replications. For simplicity, we only test for β∗l ’s, l = 1, · · · , 8,
where β∗l is the l-th coordinate of β∗.

Figuress 4 and 5 show the simulation results for Scenario (I) and (II). Figure 4 shows that
when we fix n = 500, the proposed method suffers from the high-dimensional nonparametric
estimation of Q compared with Q-learning in terms of the value function as p increases.
Figure 5 shows that the proposed method dominates the Q-learning in terms of the value
function no matter how ξ and p changes.

Non-regular Scenarios

In this section, we provides two additional simulation scenarios. These two scenarios
share the same conditional distribution of Y given A,X but have different design ma-
trix. Both scenarios are non-regular in the sense that there exists a subgroup of patients
for whom treatment is neither beneficial nor harmful. Specifically, we consider a func-
tion z(t) = (z − 0.2)3I {z ≥ 0.2} + (z + 0.2)3I {z ≤ −0.2}. Then we choose ∆(X) =
z
(
ξ
{

4Φ
(
ξX>βopt

)
− 2
})

, where Φ(·) is the cdf of the standard normal distribution; S(X) =
exp

(
0.4X>β∗S

)
; π(1;X) = exp(0.25(X2

1 +X2
2 +X1X2))/

{
1 + exp(0.25(X2

1 +X2
2 +X1X2))

}
.

In Scenario III.a, the design matrix involves only continuous variables. In Scenario
III.b, the design matrix involves discrete variables and a dense correlation matrix between
covariates. Specially, we consider (III.a) X ∼ N (0, Ip×p); (III.b) X̃ follows N(0,Σ), and

then Xj = I{j = 4i + 3, i ∈ N}I{X̃j > 0} + I{j 6= 4i + 3, i ∈ N}X̃j , where Σ is a p × p
matrix with the (i, j)th entry 0.2|i−j|.

Figures 6 and 7 show the results under non-regular cases. Compared with Q-learning,
the proposed method has higher value and comparable testing power. On the coverage of
value, the proposed method is less susceptible to model mis-specification compared with
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Figure 4: Simulation results for Scenario (I) with the change of ξ (p = 2500) and p (ξ = 0.7)
when n = 500. Types of the line represent different coefficients.
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Figure 5: Simulation results for Scenario (II) with the change of ξ (p = 2500) and p (ξ = 0.8)
when n = 1600. Types of the line represent different coefficients.
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Figure 6: Simulation results for Scenario (III.a) with the change of sample size when ξ = 0.8
and p = 2500. Types of the line represent different coefficients.

the Q-learning approach. Figures 8 and 9 show the results with changing ξ and p. When ξ
increases, the region where treatment effect vanishes gets smaller. Especially, when ξ = 0.1,
there is no treatment effect for any patients. We can see that the proposed approach has
higher value function no matter how ξ and p changes. The Q-learning has slightly worse
lower when the non-regularity is severe.

Comparison of Inference Methods for the Optimal Value

In this section, we compare different methods to infer the optimal value. We consider the
proposed method (direct), standard bootstrap procedure (bootstrap), and the weighted
bootstrap procedure (weightedBootstrap). For the weighted bootstrap procedure, for each
bootstrap, we only bootstrap the sampling weighted from a random variable with a mean
1 and unit variance. We do B = 1000 bootstraps for each bootstrap-based procedure. For
each inference method, we use the PEARL and Q-learning to estimate the optimal decision
rules. We follow the data generation procedure in Scenario (I), (II), (III.a), and (III.b)
and report the coverages of the optimal value and the lengths of the confidence interval.
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Figure 7: Simulation results for Scenario (III.b) with the change of sample size when ξ = 0.8
and p = 2500. Types of the line represent different coefficients.
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Figure 8: Simulation results for Scenario (III.a) with the change of ξ (p = 2500) and p
(ξ = 0.8) when n = 800. Types of the line represent different coefficients.
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Figure 9: Simulation results for Scenario (III.b) with the change of ξ (p = 2500) and p
(ξ = 0.8) when n = 800. Types of the line represent different coefficients.
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Figure 10: Simulation results for value inference.

From Figure 10, the proposed method has a similar performance to the standard bootstrap
method in terms of the coverages and lengths of the CIs. However, the weighted bootstrap
leads to slightly over-coverage, especially for non-regular settings, i.e., Scenario (III.a) and
(III.b).

Illustration of Double Robustness

In this section, we check the double robustness of the proposed method under either misspec-
ified propensity model or outcome models. We generate the data following Scenario (II) and
consider alternative methods to estimate the propensity and outcome models. Specifically,
we consider 1) the proposed method with non-parametrically estimated propensity and out-
come models (Both Correct); 2) the proposed method with a non-parametrically estimated
propensity and outcome models estimated by linear regressions (Outcome Missed); 3) the
proposed method with non-parametrically estimated outcome models and a propensity es-
timated by logistic regression (Propensity Missed). Figure 11 shows that as the sample
size increases, the values of the decision rules derived by all these approaches achieve the
optimal value. This implies that our proposed method is consistent if either the outcome
models or the propensity is correctly specified.

Appendix B.

In Appendix B, we provide a sufficient condition and examples for β∗ ∝ βopt. Lemma 1
provides sufficient conditions that β∗ satisfies Dopt(X) = sgn(X>βopt) = sgn(X>β∗),
which indicates the inference of β∗ is equivalent to that of βopt. First, we show the proof
of Lemma 1.
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Figure 11: Simulation results for double robustness.

Proof. First, we provide a proof for Lemma 1. Under the Lemma 1, we show that
β∗ ∝ βopt. Without loss of generality, we assume that Wa’s are non-negative.

For β = β∗, we have the following

E
[
E(Ω+ |X)φ

(
X>β

)
+ E(Ω− |X)φ(−X>β)

]
= E

[
∆/2

{
φ(X>β)− φ(−X>β)

}
+ S/2

{
φ(X>β) + φ(−X>β)

}]
= E

[
E
[
E[∆/2

{
φ(X>β)− φ(−X>β)

}
+ S/2

{
φ(X>β) + φ(−X>β)

}
|X>βopt

]]
≥ E

[
E(∆(X)/2 |X>βopt)E

[
φ(X>β)− φ(−X>β) |X>βopt

]
+E

[
S(X)/2 |X>βopt]E

[
φ(X>β) + φ(−X>β) |X>βopt

])]
= E

[
E(Ω+ |X>βopt)E

[
φ
(
X>β

)
|X>βopt

]
+E(Ω− |X>βopt)E

[
φ
(
−X>β

)
|X>βopt

]]
≥ E

[
E(Ω+ |X>βopt)φ

(
P>βX>βopt

)
+ E(Ω− |X>βopt)φ

(
−P>βX>βopt

)]
= E

[
E(Ω+ |X)φ

(
P>βX>βopt

)
+ E(Ω− |X)φ

(
−P>βX>βopt

)]
.

30



Inference on high-dimensional individualized treatment rules

The first inequality comes from Condition (a). The last equality comes from the convexity
of φ(·) and Condition (b). Next, we notice that

E
[
E(Ω+ |X)φ

(
P>βX>βopt

)
+ E(Ω− |X)φ

(
−P>βX>βopt

)]
−E

[
E(Ω+ |X)φ

(
−P>βX>βopt

)
+ E(Ω− |X)φ

(
P>βX>βopt

)]
= E

[
{E(Ω+ |X)− E(Ω− |X)}

{
φ
(
P>βX>βopt

)
− φ

(
−P>βX>βopt

)}]
= E

[
{Q(1;X)−Q(−1;X)}

{
φ
(
P>βX>βopt

)
− φ

(
−P>βX>βopt

)}]
If P>β > 0, we have

E
[
E(Ω+ |X)φ

(
P>βX>βopt

)
+ E(Ω− |X)φ

(
−P>βX>βopt

)]
≤ E

[
E(Ω+ |X)φ

(
−P>βX>βopt

)
+ E(Ω− |X)φ

(
P>βX>βopt

)]
.

If P>β ≤ 0, we have

E
[
E(Ω+ |X)φ

(
P>βX>βopt

)
+ E(Ω− |X)φ

(
−P>βX>βopt

)]
≥ E

[
E(Ω+ |X)φ

(
−P>βX>βopt

)
+ E(Ω− |X)φ

(
P>βX>βopt

)]
.

Combining this inequality with the inequality above, we have for β = β∗,

E
[
E(Ω+ |X)φ

(
X>β

)
+ E(Ω− |X)φ

(
−X>β

)]
≥ E

[
E(Ω+ |X)φ

(
|P>β|X>βopt

)
+ E(Ω− |X)φ

(
−|P>β|X>βopt

)]
Notice the fact that β∗ minimizes

E
[
E(Ω+ |X)φ

(
X>β

)
+ E(Ω− |X)φ

(
−X>β

)]
.

By the strict convexity of φ, we have β∗ = |P>β∗|βopt. This concludes the proof.

Next, we provide a proof for our remark. Notice that β∗ solves

E
[{
E(Ω+ |X)φ

′
(
X>β

)
− E(Ω− |X)φ

′
(
−X>β

)}
X
]

= 0.

Take the logistic loss as an example where φ
′
(t) = − exp(−t)/(1 + exp(−t)). We will show

that

E[Ω+ |X]φ
′
{
X>βopt

}
− E[Ω− |X]φ

′
{
−X>βopt

}
= 0.

From the equation in the remark, we have that

(Q(1;X)−Q(−1;X))/(Q(1;X) +Q(−1;X))

= (φ′(X>βopt)− φ′(−X>βopt))/(φ′(X>βopt) + φ′(−X>βopt)).
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Notice that Q(1;X) − Q(−1;X) = E(Ω+ | X) − E(Ω− | X) and Q(1;X) + Q(−1;X) =
E(Ω+ |X) + E(Ω− |X). As such, we have

E(Ω+ |X)φ
′
(
X>βopt

)
− E(Ω− |X)φ

′
(
−X>βopt

)
= 0,

and
E
[{
E(Ω+ |X)φ

′
(
X>βopt

)
− E(Ω− |X)φ

′
(
−X>βopt

)}
X
]

= 0.

By the strict convexity of φ, we have β∗ = βopt.
At last, we claim that when Y (a)’s are bounded, we can shift Y (a) by a constant such

that E(|Wa| |X) = Q(a;X). Take a = 1 as an example.

E(|W1| |X)

= E
[
π−1(1;X) |Y I {A = 1} − [I {A = 1} − π(1;X)]Q(1;X)| |X

]
= E [|(Y (1)−Q(1;X))I {A = 1} /π(1;X) +Q(1;X)| |X]

= E [|Q(1;X)| |X]π(−1;X) + E [|{Y (1)−Q(1;X)} /π(1;X) +Q(1;X)| |X]π(1;X)

Now, we shift Y (a) by a constant and notice that Y (1) − Q(1;X) does not change under
any constant shift. With a sufficiently large shift, we can guarantee that Q(1;X) ≥ 0
and {Y (1)−Q(1;X)} /π(1;X) +Q(1;X) ≥ 0. Thus, with a sufficiently large shift on the
outcome, we can achieve E(|Wa| |X) = Q(a;X). �

In the following, we show two non-trivial examples where Condition (a) in Lemma 1 is
satisfied.

Example 1 If Xj’s are independent with mean 0, let A =
{
j ∈ N : βopt

j 6= 0
}

. Consider

the following model

E(Y (a) |X) = fa(X
>βopt) + g(XAc).

Define

G = {g(XAc) : E(g(XAc)Xj) = 0, E(g(XAc)) = 0,∀j ∈ Ac} .

Then if g(XAc) ∈ G, then Condition (a) is satisfied for the model above.

Proof. First, we have

E(Y (1) |X)− E(Y (−1) |X) = f1(X>βopt)− f−1(X>βopt) ∈ ∆φ(β),

for any β. Next, we will show that E(Y (1) | X) + E(Y (−1) | X) ∈ Sφ(β∗). Because
f1(X>βopt) + f−1(X>βopt) ∈ Sφ(β) for all β, we just need to verify

E
[
g(XAc)

{
φ(X>β∗) + φ(−X>β∗)

}
|X>βopt

]
− E

[
g(XAc) |X>βopt

]
E
[
φ(X>β∗) + φ(−X>β∗) |X>βopt

]
= 0.

Notice that E
[
g(XAc) |X>βopt

]
= E [g(XAc)] = 0, we just need to show that

E
[
g(XAc)

{
φ(X>β∗) + φ(−X>β∗)

}
|X>βopt

]
= 0.
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Define A∗ =
{
j ∈ N : β∗j 6= 0

}
. This is equivalent to show that

0 = E
[
g(XAc)

{
φ(X>β∗) + φ(−X>β∗)

}
|X>βopt

]
= E

[
g(XAc)

{
φ(X>A∗β

∗
A∗) + φ(−X>A∗β∗A∗)

}
|X>Aβ

opt
A

]
.

This is satisfied if A∗ ⊂ A due to E[g(XAc)] = 0. To show this, assume W1 and W−1 are
positive, we consider the optimization problem

E[E(Y (1) |X)φ(X>AβA) + E(Y (−1) |X)φ(−X>AβA)].

Due to the strictly convexity, we can find the unique minimizer of this optimization problem
and denote it as β∗A. The β∗A satisfies that

E[{E(Y (1) |X)φ
′
(X>Aβ

∗
A)− E(Y (−1) |X)φ

′
(−X>Aβ∗A)}Xj ],

for all j ∈ A due to the first-order condition. Now, we claim that β∗ = (β∗A, 0)>. By first
order condition, we just need to show that

E[{E(Y (1) |X)φ
′
(X>Aβ

∗
A)− E(Y (−1) |X)φ

′
(−X>Aβ∗A)}Xj ] = 0,

for all j ∈ Ac. Notice that

E[{E(Y (1) |X)φ
′
(X>Aβ

∗
A)− E(Y (−1) |X)φ

′
(−X>Aβ∗A)}Xj ]

= E[{f1(X>βopt)φ
′
(X>Aβ

∗
A)− f−1(X>βopt)φ

′
(−X>Aβ∗A)}Xj ]

+E[{g(XAc)φ
′
(X>Aβ

∗
A)− g(XAc)φ

′
(−X>Aβ∗A)}Xj ]

= E[f1(X>βopt)φ
′
(X>Aβ

∗
A)− f−1(X>βopt)φ

′
(−X>Aβ∗A)]E[Xj ]

+E[φ
′
(X>Aβ

∗
A)− φ′(−X>Aβ∗A)]E[g(XAc)Xj ]

= 0.

Thus, we have that β∗ = (β∗A, 0)>, which implies that A∗ ⊂ A. �

Example 2 If βopt = e1, X ∼ N(0, I), and φ is a logistics loss, define

A =
{
j ∈ N : βopt

j 6= 0
}
,

and

F = {f(XAc) ∈ R+ : cov (f(XAc),X |X1) = 0 and E(f(XAc)XAc) = 0} .

Consider the following model

E(Y (a) |X) = fa(X
>βopt)f(XAc) + g(XAc).

then if g(XAc) ∈ G and f(XAc) ∈ F , then Condition (a) is satisfied for the model above.

Especially, all even polynomials Bl(XAc) =
∏
j∈XAc X

2kj
j belongs to F , where kj ∈ N .
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Proof. Let

C(β; f)

= cov
[
E(Y (1) |X)− E(Y (−1) |X), φ(X>β)− φ(−X>β) |X>βopt

]
= cov

[
(f1(X>βopt)− f−1(X>βopt))f(XAc), φ(X>β)− φ(−X>β) |X>βopt

]
= (f1(X>βopt)− f−1(X>βopt))cov

[
f(XAc), φ(X>β)− φ(−X>β) |X>βopt

]
.

We just need to show that

cov
[
f(XAc), φ(X>β)− φ(−X>β) |X>βopt

]
= 0.

The gradient of C(β; f) is proportional to cov (f(XAc),X | X1) . Because

cov (f(XAc),X | X1) = 0,

we can then conclude that C(β; f) = 0 for all β. Thus, we have that

E(Y (1) |X)− E(Y (−1) |X) ∈ ∆φ(β∗).

Next, we will verify that

E(Y (1) |X) + E(Y (−1) |X) ∈ Sφ(β∗).

Similar to Example 1, we will show that A∗ ⊂ A. To show this, assume W1 and W−1 are
positive, we consider the optimization problem

E[E(Y (1) |X)φ(X>AβA) + E(Y (−1) |X)φ(−X>AβA)].

Due to the strictly convexity, we can find the unique minimizer of this optimization problem
and denote it as β∗A. The β∗A satisfies that

E[{E(Y (1) |X)φ
′
(X>Aβ

∗
A)− E(Y (−1) |X)φ

′
(−X>Aβ∗A)}Xj ],

for all j ∈ A due to the first-order condition. Now, we claim that β∗ = (β∗A, 0)>. By first
order condition, we just need to show that

E[{E(Y (1) |X)φ
′
(X>Aβ

∗
A)− E(Y (−1) |X)φ

′
(−X>Aβ∗A)}Xj ] = 0,

for all j ∈ Ac. Notice that

E[{E(Y (1) |X)φ
′
(X>Aβ

∗
A)− E(Y (−1) |X)φ

′
(−X>Aβ∗A)}Xj ]

= E[{f1(X>βopt)f(XAc)φ
′
(X>Aβ

∗
A)− f−1(X>βopt)f(XAc)φ

′
(−X>Aβ∗A)}Xj ]

+E[{g(XAc)φ
′
(X>Aβ

∗
A)− g(XAc)φ

′
(−X>Aβ∗A)}Xj ]

= E[f1(X>βopt)φ
′
(X>Aβ

∗
A)− f−1(X>βopt)φ

′
(−X>Aβ∗A)]E[f(XAc)Xj ]

+E[φ
′
(X>Aβ

∗
A)− φ′(−X>Aβ∗A)]E[g(XAc)Xj ]

= 0.
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Thus, we have that β∗ = (β∗A, 0)>, which implies that A∗ ⊂ A. Thus, we have that

E
[
g(XAc)

{
φ(X>β∗) + φ(−X>β∗)

}
|X>βopt

]
− E(g(XAc) |X>βopt)E(φ(X>β∗) + φ(−X>β∗) |X>βopt) = 0,

and

E
[
(f1(X>βopt) + f−1(X>βopt))f(XAc)

{
φ(X>β∗) + φ(−X>β∗)

}
|X>βopt

]
− E[(f1(X>βopt) + f−1(X>βopt))f(XAc) |X>βopt]

× E(φ(X>β∗) + φ(−X>β∗) |X>βopt) = 0.

Thus, we have that

E(Y (1) |X) + E(Y (−1) |X) ∈ Sφ(β∗).

At the end, we will verify that cov (Bl(XAc),X |X1) = 0 and E(f(XAc)XAc) = 0. When
j 6= 1, we have

cov (Bl(XAc), Xj |X1) = E(Bl(XAc)Xj |X1) = 0,

by E(Xj | X1) = E(Xj) = 0 and the distribution of Xj is symmetric. When j = 1, we also
have that cov (Bl(XAc), X1 | X1) = 0 by the definition of conditional expectation. This

concludes that Bl(XAc) =
∏
j∈Ac X

2kj
j ∈ F . �

Appendix C.

In Appendix C, we compared the list of significant covariates selected by the proposed
method and Q-learning. The proposed approach identified most of the covariates selected
by Q-learning. In addition, the proposed approach also identifies 10 new driving factors,
which provide additional insights for further investigations. The figure 12 shows the Venn
plot of the selected covariates. The 95%-confidence interval of the selected covariates by
the proposed method is reported in Table 3.

Appendix D.

In Appendix D, we study the limiting property of the proposed method. We show the
proof of Theorems 3 - 7. In addition, we also show the validity of the Algorithm 4, where
the nuisance parameters are estimated nonparametrically and there is no sample splitting
procedure.

Theorem 8 shows that Algorithm 2, where there is no sample-splitting procedure, is
valid when the nuisance parameters are estimated parametrically.

Theorem 8 Assume that X is bounded. Suppose that π(a;X) and Q(a;X) are known
to follow parametric models π(a;X,βπ) and Q(a;X,βQ) with true parameters β∗π and β∗Q
respectively. Assume π(a;X,βπ) and Q(a;X,βQ) are second order continuously differ-

entiable, and ‖∇βππ(a;X,β∗π)‖∞ and
∥∥∥∇βQQ(a;X,β∗Q)

∥∥∥
∞

are bounded. Further, there
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Figure 12: Variable selection using the proposed method and Q-learning.

Algorithm 4: Inference of β∗ with parametric propensity and outcome model
estimations

Input: n samples.
Output: β̂ and a p-value for H0 : β∗1 = 0.
Use all data to fit a parametric regression model with a lasso penalty and obtain an
estimator π̂ for the propensity and an estimator Q̂ for the outcome model;

Obtain the proposed estimator β̂ by minβ En

[
lφ

(
β; Ω̂+, Ω̂−

)]
+ λn‖β‖1, where Ω̂+

and Ω̂− are computed with π̂ and Q̂ plugged in, and λn is tuned by
cross-validation;

Obtain an estimator ŵ for w∗ by

minw En

[
∇2lφ

(
β̂; Ω̂+, Ω̂−

) (
X1 −X>−1w

)2]
+ λ̃n‖w‖1, where λ̃n is tuned by

cross-validation;

Let
(
β̂null

)>
=

(
0,
(
β̂−1

)>)
, where β̂−1 is a p− 1 dimensional sub-vector of β̂

without β̂1. Construct the de-correlated score test statistic S(β̂null, ŵ) as

S
(
β̂null, ŵ

)
= En

[
∇lφ

(
β̂null; Ω̂+, Ω̂−

) (
X1 −X>−1ŵ

)]
, and the estimator of the

variance σ̂2 = En

[{
∇lφ

(
β̂null; Ω̂+, Ω̂−

)}2 (
X1 −X>−1ŵ

)2]
;

Calculate the p-value by 2 (1− Φ(|S|/σ̂)), where Φ(·) is the cumulative distribution
function of a standard normal distribution.
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Coef 95% - CI

Chronic Complications : Fluid and Electrolyte Disorders -0.024 [-0.047,-0.001]
Chronic Complications : African American -0.027 [-0.052,-0.001]
Alcohol Abuse : Entitlement Disability -0.054 [-0.104,-0.004]
HCC Community Score : Special Chronic Conditions -0.022 [-0.042,-0.002]
Hypertension : Lower Extremity Ulcer -0.036 [-0.068,-0.005]
HbA1c at Baseline : African American 0.019 [0.003,0.036]
Entitlement Disability : Hypothyroidism -0.024 [-0.045,-0.003]
Cardiac Heart Failure : Peripheral Vascular Disease -0.029 [-0.057, -0.001]
Chronic Kidney Disease : HbA1c at Baseline 0.081 [0.014, 0.149]
Other Race : Special Chronic Conditions 0.016 [0.003,0.029]
Liver Disease : Weight Loss 0.015 [0.003,0.027]
Other Neurological Disorders : Female -0.021 [-0.038,-0.005]
Lower Extremity Ulcer : HbA1c at Baseline 0.039 [0.010,0.069]
Chronic Complications : Bucketized Age 0.040 [0.016,0.063]
HbA1c at Baseline : Female 0.044 [0.028,0.061]

Table 3: Coefficients and CI for the significant covariates of the estimated decision rule.
Special chronic conditions refer to chronic conditions including amputation,
chronic blood loss, drug abuse, lymphoma, metastatistic cancer, and peptic ul-
cer disease. Bucketized age refers to a variable created by bucketizing the raw
age by its observed quartiles. Other Race refers to the race excluding White and
Black.

exist constants Cπ and CQ such that ∇2
βπ
π(a;X,βπ) ≺ CπXX

> and ∇2
βQ
Q(a;X,βQ) ≺

CQXX
>, where for two matrices A and B, A ≺ B implies that B − A is positive semi-

definite. In addition, suppose that ‖β̂π − β∗π‖1 = Op(n
−α) and ‖β̂Q − β∗Q‖1 = Op(n

−β) for
some α, β > 0, we require that α+ β > 1/2. In addition, we require that

Rmax{s∗, s′} log n(log p)3/2 = o(n1/2)

and

(n−α + n−β)R→ 0,

where s∗ = ‖β∗‖0 and s′ = maxj ‖w∗j‖0.

Assume that Conditions (C1)-(C4) hold. For Algorithm 4, under the null hypothesis
H0 : β∗j = 0, by choosing λn � λ̃n � (log p/n)1/2, we have

n1/2Sj → N(0, σ2),

and σ̂2
j → σ2

j , where σ̂2
j is given in Algorithm 2, and σ2

j =
(
ν∗j

)>
var
[
∇2lφ(β∗; Ω+,Ω−)

]
ν∗j .

For the value inference, we also have the following theorem.
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Theorem 9 Assume that Y is bounded and denote the sample size of Ĩ1 as n1 and Ĩ2 as n2.

In addition to the conditions in Theorem 3, we further assume n−α−β1 n
1/2
2 = o(1) and one

of the following conditions: 1) Conditions (C6) and (C7) holds with
(
s(log p/n1)1/2

)ζ+γ
=

op(n
−1/2
2 ); 2) Condition (C7) holds with P

(∣∣X>β∗∣∣ = 0
)

= 0 and
(
s(log p/n1)1/2

)γ
=

op(n
−1/2
2 ), then we have

n2
1/2σ−2

V (V̂ (D̂)− V (D∗))→ N(0, 1),

where σ2
V = var

[
W
D̂(X)

(Y,X, A, π,Q)
]
.

Under Conditions (C6) and (C7) with
(
s(log p/n1)1/2

)ζ+γ
= op(n

−1/2
2 ), Theorem 7 holds

for both regular and non-regular cases. Condition (C6) implicitly assumes that β∗ cor-
responds to the optimal individualized treatment rule. When Condition (C6) fails, the
inference of the value under D∗(X) is challenging but possible if Condition (C7) holds with

P
(∣∣X>β∗∣∣ = 0

)
= 0 and

(
s(log p/n1)1/2

)γ
= op(n

−1/2
2 ).

Proof of Theorems and Corollary.

The proof of Thoerem 3 can be found for the proof of Lemma 10. The following provides
the proof of Theorem 4.

Proof of Thoerem 4. Let’s compute the following

(n/K)1/2S
(k)
j

(
β̂

(k)
null(j), ŵ

(k)
j

)
(10)

= (n/K)1/2E(k)
n

[{
Ω̂

(k)
+ φ′(X>β̂

(k)
null(j))− Ω̂

(k)
− φ′(−X>β̂(k)

null(j))
}

(Xj −X>−jŵ
(k)
j )
]

(11)

= (n/K)1/2E(k)
n

[{
Ω̂

(k)
+ φ′(X>β̂

(k)
null(j))− Ω̂

(k)
− φ′(−X>β̂(k)

null(j))
}

(Xj −X>−jw∗j )
]

(12)

+(n/K)1/2E(k)
n

[{
Ω̂

(k)
+ φ′(X>β̂

(k)
null(j))− Ω̂

(k)
− φ′(−X>β̂(k)

null(j))
}

(X>−jŵ
(k)
j −X

>
−jw

∗
j )
]

= (n/K)1/2E(k)
n

[{
Ω̂

(k)
+ φ′(X>β∗)− Ω̂

(k)
− φ′(−X>β∗)

}
(Xj −X>−jw∗j )

]
+(n/K)1/2E(k)

n

[{
Ω̂

(k)
+ φ′′(X>β∗) + Ω̂

(k)
− φ′′(−X>β∗)

}
X>−j(β̂

(k)
−j − β

∗
−j)

(Xj −X>−jw∗j )
]

+(n/K)1/2E(k)
n

[{
Ω̂

(k)
+ φ′(X>β∗)− Ω̂

(k)
− φ′(−X>β∗)

}
(X>−jŵ

(k)
j −X

>
−jw

∗
j )
]

+op(1), (13)

uniformly over j ∈ {1, · · · , J}. The first line from (10) to (11) is the definition of

S
(k)
j

(
β̂

(k)
null(j), ŵ

(k)
j

)
.
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From Line (12) to (13), we use that

E(k)
n

[{
Ω̂

(k)
+ φ′(X>β∗)− Ω̂

(k)
− φ′(−X>β∗)

}
(Xj −X>−jw∗j )

]
= E(k)

n

[{
Ω̂

(k)
+ φ′(X>β∗)− Ω̂

(k)
− φ′(−X>β∗)

}
(Xj −X>−jw∗j )

]
+E(k)

n

[{
Ω̂

(k)
+ φ′′(X>βnull,j) + Ω̂

(k)
− φ′′(−X>βnull,j)

}
X>−j(β̂

(k)
−j − β

∗
−j)

(Xj −X>−jw∗j )
]

= E(k)
n

[{
Ω̂

(k)
+ φ′(X>β∗)− Ω̂

(k)
− φ′(−X>β∗)

}
(Xj −X>−jw∗j )

]
+E(k)

n

[{
Ω̂

(k)
+ φ′′(X>β∗) + Ω̂

(k)
− φ′′(−X>β∗)

}
X>−j(β̂

(k)
−j − β

∗
−j)(Xj −X>−jw∗j )

]
+E(k)

n

[{
Ω̂

(k)
+

[
φ′′(X>β∗)− φ′′(X>βnull(j))

]
+Ω̂

(k)
−

[
φ′′(−X>β∗)− φ′′(−X>βnull,j)

]}
X>−j(β̂

(k)
−j − β

∗
−j)(Xj −X>−jw∗j )

]
,

∣∣∣E(k)
n

[{
Ω̂

(k)
+

[
φ′′(X>β∗)− φ′′(X>βnull)

]
+ Ω̂

(k)
−

[
φ′′(−X>β∗)− φ′′(−X>βnull)

]}
X>−j(β̂

(k)
−j − β

∗
−j)(Xj −X>−jw∗j )

]∣∣∣
≤ E(k)

n

[{
Ω̂

(k)
+

∣∣∣φ′′(X>β∗)− φ′′(X>βnull)
∣∣∣+ Ω̂

(k)
−

∣∣∣φ′′(−X>β∗)− φ′′(−X>βnull)
∣∣∣}

|X>−j(β̂
(k)
−j − β

∗
−j)||Xj −X>−jw∗j |

]
≤ CE(k)

n

[{
Ω̂

(k)
+ φ′′(X>β∗) + Ω̂

(k)
− φ′′(−X>β∗)

}
|X>−j(β̂

(k)
−j − β

∗
−j)|2|Xj −X>−jw∗j |

]
.

By the sub-gaussian of Xj −X>−jw∗j and supj ‖w∗j‖1 ≤ R, there exists a constant σx such
that

P

{
max

j=1,··· ,p
max

1≤i≤n
|Xi,j −X>i,−jw∗j | ≥ 2σxR

√
log(np)

}
≤ 2 exp{− log(np)}.

One the event that maxj=1,··· ,p max1≤i≤n |Xi,j −X>i,−jw∗j | ≤ 2σwR
√

log(np), we have

E(k)
n

[{
Ω̂

(k)
+ φ′′(X>β∗) + Ω̂

(k)
− φ′′(−X>β∗)

}
|X>−j(β̂

(k)
−1 − β

∗
−1)|2|Xj −X>−jw∗j |

]
≤ 2σwR

√
log(np)E(k)

n

[{
Ω̂

(k)
+ φ′′(X>β∗) + Ω̂

(k)
− φ′′(−X>β∗)

}
|X>−j(β̂

(k)
−1 − β

∗
−1)|2

]
.

By Lemma 10, we have that

sup
j=1,··· ,p

E(k)
n

[{
Ω̂

(k)
+ φ′′(X>β∗) + Ω̂

(k)
− φ′′(−X>β∗)

}
|X>−j(β̂

(k)
−j − β

∗
−j)|2

]
= Op(s

∗ log p/n).

Thus, we have that

E(k)
n

[{
Ω̂

(k)
+ φ′′(X>β∗) + Ω̂

(k)
− φ′′(−X>β∗)

}
|X>−j(β̂

(k)
−1 − β

∗
−1)|2|Xj −X>−jw∗j |

]
= Op(R

√
log(np)s∗ log p/n)
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Under the condition Rs∗(log p)3/2/
√
n→ 0, we have Line (12) to (13).

Now, we focus on a bound for (13). For the first term in (13), by Claim 13, we have
that

n1/2E(k)
n

[{
Ω̂

(k)
+ φ′(X>β∗)− Ω̂

(k)
− φ′(−X>β∗)

}
(Xj −X>−jw∗j )

]
= n1/2E(k)

n

[{
Ω+φ

′(X>β∗)− Ω−φ
′(−X>β∗)

}
(Xj −X>−jw∗j )

]
+n1/2E(k)

n

[{[
Ω̂

(k)
+ − Ω+

]
φ′(X>β∗)−

[
Ω̂

(k)
− − Ω−

]
φ′(−X>β∗)

}
(Xj −X>−jw∗j )

]
= n1/2E(k)

n

[{
Ω+φ

′(X>β∗)− Ω−φ
′(−X>β∗)

}
(Xj −X>−jw∗j )

]
+

Op

(
Rn−α−β +R(n−α + n−β)

√
log p/n

)
,

uniformaly holds in j. By the conditions, we have

Rn−α−β+1/2 → 0, R(n−α + n−β)
√

log p→ 0.

Thus, we have that the first term in (13) is equivalent to

(n/K)1/2E(k)
n

[{
Ω+φ

′(X>β∗)− Ω−φ
′(−X>β∗)

}
(Xj −X>−jw∗j )

]
uniformly.

The second term in (13) can be bounded by the following

max
j∈J

∣∣∣(n/K)1/2E(k)
n

[{
Ω̂

(k)
+ φ′′(X>β∗) + Ω̂

(k)
− φ′′(−X>β∗)

}
X>−j(β̂

(k)
−j − β

∗
−j)(Xj −X>−jw∗j )

]∣∣∣
≤ (n/K)1/2 max

j∈J

∥∥∥E(k)
n

[{
Ω̂

(k)
+ φ′′(X>β∗) + Ω̂

(k)
− φ′′(−X>β∗)

}
(Xj −X>−jw∗j )X−j

]∥∥∥
∞∥∥∥β̂(k) − β∗

∥∥∥
1

≤ (n/K)1/2 max
j∈J

∥∥∥E(k)
n

[{
Ω+φ

′′(X>β∗) + Ω−φ
′′(−X>β∗)

}
(Xj −X>−jw∗j )X−j

]∥∥∥
∞∥∥∥β̂(k) − β∗

∥∥∥
1

+Op

((
Rn−α−β+1/2 +R(n−α + n−β)

√
log p

)
s∗(log p/n)1/2

)
.

The second equality comes from Claim 13 and Lemma 10. To bound∥∥∥E(k)
n

[{
Ω+φ

′′(X>β∗) + Ω−φ
′′(−X>β∗)

}
(Xj −X>−jw∗j )X−j

]∥∥∥
∞
,

we consider the following decomposition∥∥∥E(k)
n

[{
Ω+φ

′′(X>β∗) + Ω−φ
′′(−X>β∗)

}
(Xj −X>−jw∗j )X−j

]∥∥∥
∞

≤
∥∥∥∥E(k)

n

[{
1{A = 1}

π1
(Y −Q(1;X))φ′′(X>β∗)+

1{A = −1}
π−1

(Y −Q(−1;X))φ′′(−X>β∗)
}

(Xj −X>−jw∗j )X−j
]∥∥∥∥
∞

+
∥∥∥E(k)

n

[{
Q(1;X)φ′′(X>β∗) +Q(1;X)φ′′(−X>β∗)

}
(Xj −X>−jw∗j )X−j

]∥∥∥
∞
.
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By the condition on Y −Q(a;X) on A = a, by the proof of Claim 13, the first term can be
bounded

n1/2 max
j∈J

∥∥∥∥E(k)
n

[{
1{A = 1}

π1
(Y −Q(1;X))φ′′(X>β∗)+

1{A = −1}
π−1

(Y −Q(−1;X))φ′′(−X>β∗)
}

(Xj −X>−jw∗j )X−j
]∥∥∥∥
∞

= Op(R
√

log p/n).

For the second term, by the boundedness of Q(a;X)’s and φ
′′
(·), by Lemma 14 in Loh and

Wainwright (2015), if log p = O(n), we have

max
j∈J

∥∥∥E(k)
n

[{
Q(1;X)φ′′(X>β∗) +Q(1;X)φ′′(−X>β∗)

}
(Xj −X>−jw∗j )X−j

]∥∥∥
∞

= Op(R
√

log p/n).

Because our condition that

Rn−1/2s∗ log p→ 0, Rn−α−β+1/2 → 0, and R(n−α + n−β)
√

log p→ 0,

the second term in (13) is op(1).

The third term in (13) can also be bounded following a similar steps to the first term
in (13).∣∣∣(n/K)1/2E(k)

n

[{
Ω̂

(k)
+ φ′(X>β̂

(k)
null(j))− Ω̂

(k)
− φ′(−X>β̂(k)

null(j))
}

(X>−jŵ
(k)
j −X

>
−jw

∗
j )
]∣∣∣

≤
∣∣∣(n/K)1/2E(k)

n

[{
Ω̂

(k)
+ φ′(X>β∗)− Ω̂

(k)
− φ′(−X>β∗)

}
(X>−jŵ

(k) −X>−jw∗j )
]∣∣∣

+
∣∣∣(n/K)1/2E(k)

n

[{
Ω̂

(k)
+ φ

′′
(X>β∗) + Ω̂

(k)
− φ

′′
(−X>β∗)

}
X>−j(ŵ

(k)
j −w

∗
j )X

>
−j(β̂

(k)
−j − β

∗
−j)
]∣∣∣+ op(1),

uniformly in j. To bound the second term above, by Lemma 10 and 11, we have that

max
j∈J

∣∣∣(n/K)1/2E(k)
n

[{
Ω̂

(k)
+ φ

′′
(X>β∗) + Ω̂

(k)
− φ

′′
(−X>β∗)

}
X>−j(ŵ

(k)
j −w

∗
j )X

>
−j(β̂

(k)
−j − β

∗
−j)
]∣∣∣

≤ (n/K)1/2

{
max
j∈J

E(k)
n

[{
Ω̂

(k)
+ φ

′′
(X>β∗) + Ω̂

(k)
− φ

′′
(−X>β∗)

} ∣∣∣X>−j(ŵ(k)
j −w

∗
j )
∣∣∣2∣∣∣∣

max
j∈J

E(k)
n

[{
Ω̂

(k)
+ φ

′′
(X>β∗) + Ω̂

(k)
− φ

′′
(−X>β∗)

} ∣∣∣X>−j(β̂(k)
−j − β

∗
−j)
∣∣∣2]}1/2

= op(1).
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To bound the first term, we have

max
j∈J

∣∣∣(n/K)1/2E(k)
n

[{
Ω̂

(k)
+ φ′(X>β∗)− Ω̂

(k)
− φ′(−X>β∗)

}
(X>−jŵ

(k)
j −X

>
−jw

∗
j )
]∣∣∣

≤ max
j∈J

∥∥∥(n/K)1/2E(k)
n

[{
Ω̂

(k)
+ φ′(X>β∗)− Ω̂

(k)
− φ′(−X>β∗)

}
X−j

]∥∥∥
∞

∥∥∥ŵ(k)
j −w

∗
j )
∥∥∥

1

≤
∥∥∥(n/K)1/2E(k)

n

[{
Ω+φ

′(X>β∗)− Ω−φ
′(−X>β∗)

}
X
]∥∥∥
∞

max
j∈J

∥∥∥ŵ(k)
j −w

∗
j )
∥∥∥

1

+
∥∥∥(n/K)1/2E(k)

n

[{(
Ω̂

(k)
+ − Ω+

)
φ′(X>β∗)−

(
Ω̂

(k)
− − Ω−

)
φ′(−X>β∗)

}
X
]∥∥∥
∞

max
j∈J

∥∥∥ŵ(k)
j −w

∗
j )
∥∥∥

1

For the second term, by Lemma 11 and Claim 13, we know that the second term is negligible.
For the first term, we decompose it into two terms, i.e.,

n1/2E(k)
n

[{
Ω+φ

′(X>β∗)− Ω−φ
′(−X>β∗)

}
X
]

= n1/2E(k)
n

[{
1{A = 1}

π1
(Y −Q(1;X))φ′(X>β∗)

−1{A = −1}
π−1

(Y −Q(−1;X))φ′(−X>β∗)
}
X

]
+n1/2E(k)

n

[{
Q(1;X)φ′(X>β∗)−Q(−1;X)φ′(−X>β∗)

}
X
]
.

Because Q(a;X)’s are bounded and φ
′
(·) is bounded, by the sub-Gaussian condition on X,

under the null hypothesis, we have that

max
j∈J

∥∥∥E(k)
n

[{
Q(1;X)φ′(X>β∗)−Q(−1;X)φ′(−X>β∗)

}
X
]∥∥∥
∞

= Op(
√

log p/n).

By the condition of Y − Q(a;X) on A = 1 and the sub-Gaussian condition on X, by the
proof of Claim 13, if log p = O(n), we have

max
j∈J

∣∣∣∣E(k)
n

[
1{A = 1}

π1
(Y −Q(1;X))φ′(X>β∗)(Xj −X>−jw∗j )

]∣∣∣∣
= Op(

√
log p/n).

Similarly, we can show that

max
j∈J

∥∥∥∥E(k)
n

[
1{A = −1}

π−1
(Y −Q(−1;X))φ′(−X>β∗)X

]∣∣∣∣
∞

= Op(
√

log p/n).

Thus, the first term is Op(n
1/2
√

log p/nmax{s∗, s′}
√

log p/n), which is negligiable.
In conclusion, we have that

max
j∈J

∣∣∣(n/K)1/2S
(k)
j

(
β̂

(k)
null(j), ŵ

(k)
j

)
− (n/K)1/2E(k)

n

[{
Ω+φ

′(X>β∗)

−Ω−φ
′(−X>β∗)

}
(Xj −X>−jw∗j )

]∣∣∣ = op(1).
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Define

σ2
j = E

[{
Ω+φ

′(X>β)− Ω−φ
′(−X>β)

}2
(Xj −X>−jw∗j )2

]
.

Applying the Berry-Esseen bound for CLT, there exists some universal constant such
that

max
j∈J

sup
α∈(0,1)

∣∣∣P (∣∣∣σ−1
j (n/K)1/2E(k)

n

[{
Ω+φ

′(X>β∗)

−Ω−φ
′(−X>β∗)

}
(Xj −X>−jw∗j )

]∣∣∣ ≤ Φ−1(1− α/2)
)
− (1− α)

∣∣∣
≤ c0√

n
max
j
E[|Mj |3],

where

Mj =
{

Ω+φ
′(X>β∗)− Ω−φ

′(−X>β∗)
}

(Xj −X>−jw∗j ).

From the sub-Gaussian conditions, we have that maxj E[|Mj |3] = O(R3). Thus, ifR3/
√
n→

0, we have that c0√
n

maxj E[|Mj |3]→ 0.

Combining the inequalities above, we have

max
j∈J

sup
α∈(0,1)

∣∣∣P (∣∣∣σ−1
j (n/K)1/2S

(k)
j

(
β̂

(k)
null(j), ŵ

(k)
j

)∣∣∣ ≤ Φ−1(1− α/2)
)
− (1− α)

∣∣∣ = op(1).

Averaging all the k’s, we can conclude the proof.
�
Proof of Theorem 8. We can observe that if Claim 13 holds with

n1/2
∥∥∥En [(Ω̂(k)

a − Ω(k)
a

)
h(X)X

]∥∥∥
∞

= op(1),

then the proof of Theorem 4 is applicable to Algorithm 2. However, the proof of Claim 13
uses the fact that the data used to train π̂(−k) and Q̂(−k) is independent with those used to
fit the proposed method and form the score test statistic. Here, we provide a separate proof
of Claim 13 utilizing the parametric structure. Without loss of generality, we assume that π
is estimated parametrically. To start with, denote the parametric model of π as π(A;X,β).

Under this notation, we rewrite that π̂(A;X) = π
(
A;X, β̂π

)
and π(A;X) = π (A;X,β∗π).

We want to show that for any function h with ‖h‖∞ ≤ C, we have for a = 1 or −1,∥∥∥En [(Ω̂(k)
a − Ω(k)

a

)
h(X)X

]∥∥∥
∞

= Op

(
n−α−β + (n−α + n−β)(log p/n)1/2

)
.

We consider a = 1. Note that∥∥∥En [(Ω̂(k)
a − Ωa

)
h(X)X

]∥∥∥
∞

≤
∥∥∥En [I{A = 1}

(
π̂−1(1;X)− π−1(1;X)

) (
Q̂(−k)(1;X)−Q(1;X)

)
h(X)X

]∥∥∥
∞

+
∥∥En [I{A = 1}

(
π̂−1(1;X)− π−1(1;X)

)
(Y1 −Q(1;X))h(X)X

]∥∥
∞

+
∥∥∥En [(I{A = 1}/π(1;X)− 1)

(
Q̂(−k)(1;X)−Q(1;X)

)
h(X)X

]∥∥∥
∞

=I1 + I2 + I3
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For I1, we can show that I1 . n−β
∥∥∥β̂π − β∗π∥∥∥

1
following the proof of Claim 13 and(

β̂π − β∗π
)>

En[XX>]
(
β̂π − β∗π

)
. n−1/2. Likewise, from the proof of Claim 13, we can

conclude that I3 . Op
(
n−β(log p/n)1/2

)
. For I2, we have∥∥∥En [I{A = 1}

(
π̂−1(1;X)− π1/2(1;X)

)
(Y1 −Q(1;X))h(X)X

]∥∥∥
∞

=
∥∥∥En [I{A = 1}

(
π−1

(
A;X, β̂π

)
− π−1 (A;X,β∗π)

)
(Y1 −Q(1;X))h(X)X

]∥∥∥
∞

.

∥∥∥∥En [−I{A = 1}π−2 (A;X,β∗π)∇βπ(A;X,β∗)
(
β̂π − β∗

)>
(Y1 −Q(1;X))

h(X)X]‖∞
≤

∥∥∥En [−XI{A = 1}π−2 (A;X,β∗π) {∇βπ(A;X,β∗)}> (Y1 −Q(1;X))h(X)
]∥∥∥
∞

×
∥∥∥β̂π − β∗∥∥∥

1

=
∥∥∥β̂π − β∗∥∥∥

1
(log p/n)1/2

When π is estimated by linear or logistic regression with lasso penalty, we have∥∥∥β̂π − β∗∥∥∥
1
. n−α.

Thus, the claim holds. �
Proof of Theorem 5. First, we will show that

(n/K)1/2 max
j

∣∣∣(β̃(k)
j − β

∗
j

)
Î

(k)
j|−j + E(k)

n

[
{∇lφ (β∗; Ω+,Ω−)}

(
Xj −X>−jw∗j

)]∣∣∣ = op(1).

By the definition of β̃
(k)
j ,

(n/K)1/2
∣∣∣(β̃(k)

j − β
∗
j

)
Î

(k)
j|−j + E(k)

n

[
{∇lφ (β∗; Ω+,Ω−)}

(
Xj −X>−jw∗j

)]∣∣∣
= (n/K)1/2

∣∣∣(β̂(k)
j − β

∗
j

)
Î

(k)
j|−j −

{
S

(k)
j

(
β̂(k), ŵ

(k)
j

)
− E(k)

n [{∇lφ (β∗; Ω+,Ω−)}(
Xj −X>−jw∗j

)]}∣∣∣
≤ (n/K)1/2

∣∣∣(β̂(k)
j − β

∗
j

)
Î

(k)
j|−j −

{
S

(k)
j

(
β̂(k), ŵ

(k)
j

)
− S(k)

j

(
β̂

(k)
null(j), ŵ

(k)
j

)}∣∣∣
(n/K)1/2

∣∣∣S(k)
j

(
β̂

(k)
null(j), ŵ

(k)
j

)
− E(k)

n

[
{∇lφ (β∗; Ω+,Ω−)}

(
Xj −X>−jw∗j

)]∣∣∣
≤ I1j + I2j ,

where β̂
(k)
null(j) equals to β̂(k) except its jth coefficient replaced by β∗j .

By the proof of Theorem 4, we have

max
j
I2j = op(1).
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To bound I1j uniformly, we consider

(n/K)1/2S
(k)
j

(
β̂(k), ŵ

(k)
j

)
− S(k)

j

(
β̂

(k)
null(j), ŵ

(k)
j

)
= (n/K)1/2E(k)

n

[{
Ω̂

(k)
+ φ′′(X>β∗) + Ω̂

(k)
− φ′′(−X>β∗)

}
Xj(β̂

(k)
j − β

∗
j )(Xj −X>−jw∗j )

]
+(n/K)1/2E(k)

n

[{
Ω̂

(k)
+ φ′′(X>βnull(j)) + Ω̂

(k)
− φ′′(−X>βnull(j))

}
Xj(β̂

(k)
j − β

∗
j )

X>−j(ŵ
(k)
j −w

∗
j )
]

+(n/K)1/2E(k)
n

[{
Ω̂

(k)
+

{
φ′′(X>βnull(j))− φ′′(X>β∗)

}
+

Ω̂
(k)
−

{
φ′′(−X>βnull(j))− φ′′(−X>β∗)

}}
Xj(β̂

(k)
j − β

∗
j )(Xj −X>−jw∗j

]
,

where βnull(j) is in between β̂
(k)
null(j) and β̂

(k)
j . By Claim 13 and the proof of Theorem 4, we

can see that

(n/K)1/2E(k)
n

[{
Ω̂

(k)
+ φ′′(X>β∗) + Ω̂

(k)
− φ′′(−X>β∗)

}
Xj(β̂

(k)
j − β

∗
j )(Xj −X>−jw∗j )

]
= (n/K)1/2

(
β̂

(k)
j − β

∗
j

)
Ij|−j + op(1),

uniformly holds over j = 1, · · · , J . For the third term, we have

(n/K)1/2
∣∣∣E(k)

n

[{
Ω̂

(k)
+

{
φ′′(X>βnull(j))− φ′′(X>β∗)

}
+

Ω̂
(k)
−

{
φ′′(−X>βnull(j))− φ′′(−X>β∗)

}}
Xj(β̂

(k)
j − β

∗
j )(Xj −X>−jw∗j )

]∣∣∣
≤ (n/K)1/2CE(k)

n

[{
Ω̂

(k)
+ φ′′(X>β∗) + Ω̂

(k)
− φ′′(−X>β∗)

}
X>(β̂(k) − β∗)Xj(β̂

(k)
j − β

∗
j )(Xj −X>−jw∗j )

]
.

By the proof of Thoerem 4, we can show that

max jE(k)
n

[{
Ω̂

(k)
+ φ′′(X>β∗) + Ω̂

(k)
− φ′′(−X>β∗)

}
X>(β̂(k) − β∗)Xj(β̂

(k)
j − β

∗
j )(Xj −X>−jw∗j )

]
= Op(Rs

∗(log p)3/2/n).

Thus, the second term is negligible due to Rs∗(log p)3/2/
√
n→ 0. Similarly, we can derive

the second term is negligible.

Combining these results, we have that

(n/K)1/2 max
j

∣∣∣(β̃(k)
j − β

∗
j

)
Î

(k)
j|−j + E(k)

n

[
{∇lφ (β∗; Ω+,Ω−)}

(
Xj −X>−jw∗j

)]∣∣∣
= (n/K)1/2 max

j

∣∣∣(β̂(k)
j − β

∗
j

)(
Î

(k)
j|−j − Ij|−j

)∣∣∣+ op(1).
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Notice that(
β̂

(k)
j − β

∗
j

)(
Î

(k)
j|−j − I

(k)
j|−j

)
= E(k)

n

[{
Ω̂

(k)
+ φ′′(X>β̂(k)) + Ω̂

(k)
− φ′′(−X>β̂(k))

}
Xj(β̂

(k)
j − β

∗
j )(Xj −X>−jŵ

(k)
j )
]

−E
[{

Ω+φ
′′(X>β∗) + Ω−φ

′′(−X>β∗)
}
Xj(β̂

(k)
j − β

∗
j )(Xj −X>−jw∗j )

]
.

By Lemma 10, 11 and the proof of Thoerem 4, we have

(n/K)1/2E(k)
n

[{
Ω̂

(k)
+ φ′′(X>β̂(k)) + Ω̂

(k)
− φ′′(−X>β̂(k))

}
Xj(β̂

(k)
j − β

∗
j )

(Xj −X>−jŵ
(k)
j )
]

= (n/K)1/2E(k)
n

[{
Ω̂

(k)
+ φ′′(X>β∗) + Ω̂

(k)
− φ′′(−X>β∗)

}
Xj(β̂

(k)
j − β

∗
j )(Xj −X>−jw∗j )

]
+Op(Rs

∗(log p)3/2/
√
n)

uniformly over j. Thus,

max
j

∣∣∣(β̂(k)
j − β

∗
j

)(
Î

(k)
j|−j − I

(k)
j|−j

)∣∣∣
≤ max

j

∣∣∣E(k)
n

[{
Ω̂

(k)
+ φ′′(X>β(k)) + Ω̂

(k)
− φ′′(−X>β(k))

}
Xj(Xj −X>−jw∗j )

]
−

E
[{

Ω+φ
′′(X>β∗) + Ω−φ

′′(−X>β∗)
}
Xj(Xj −X>−jw∗j )

]∣∣∣ ‖β̂(k) − β∗‖2.

By Claim 13, we have

max
j

∣∣∣E(k)
n

[{
Ω̂

(k)
+ φ′′(X>β∗) + Ω̂

(k)
− φ′′(−X>β∗)

}
Xj(Xj −X>−jw∗j )

]
−

E
[{

Ω+φ
′′(X>β∗) + Ω−φ

′′(−X>β∗)
}
Xj(Xj −X>−jw∗j )

]∣∣∣
= Op(Rn

−α−β +R(n−α + n−β)
√

log p/n).

Thus, we have (n/K)1/2 maxj

∣∣∣(β̂(k)
j − β∗j

)(
Î

(k)
j|−j − Ij|−j

)∣∣∣ = op(1).

Next, define

(
σ̂

(k)
j

)2
= E(k)

n

[{
∇lφ

(
β̂(k); Ω̂

(k)
+ , Ω̂

(k)
−

)}2 (
Xj −X>−jŵ

(k)
j

)2
]
.

and

σ2
j = E

[
{∇lφ (β∗; Ω+,Ω−)}2

(
Xj −X>−jw∗j

)2
]
.
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We will show that maxj

∣∣∣∣(σ̂(k)
j

)2
− σ2

j

∣∣∣∣ = op(1). To show this,

E(k)
n

[{
∇lφ

(
β̂(k); Ω̂

(k)
+ , Ω̂

(k)
−

)}2 (
Xj −X>−jŵ

(k)
j

)2
]

−E
[
{∇lφ (β∗; Ω+,Ω−)}2

(
Xj −X>−jw∗j

)2
]

= E(k)
n

[{
∇lφ

(
β̂(k); Ω̂

(k)
+ , Ω̂

(k)
−

)}2
{(

Xj −X>−jŵ
(k)
j

)2
−
(
Xj −X>−jw∗j

)2
}]

+E(k)
n

[{{
∇lφ

(
β̂(k); Ω̂

(k)
+ , Ω̂

(k)
−

)}2
− {∇lφ (β∗; Ω+,Ω−)}2

}(
Xj −X>−jw∗j

)2
]

+
(
E(k)
n − E

)[
{∇lφ (β∗; Ω+,Ω−)}2

(
Xj −X>−jw∗j

)2
]

= I1 + I2 + I3.

For I1, we have

E(k)
n

[{
∇lφ

(
β̂(k); Ω̂

(k)
+ , Ω̂

(k)
−

)}2
{(

Xj −X>−jŵ
(k)
j

)2
−
(
Xj −X>−jw∗j

)2
}]

≤ CE(k)
n

[{
Ω̂

(k)
+

}2
{(

Xj −X>−jŵ
(k)
j

)2
−
(
Xj −X>−jw∗j

)2
}]

+CE(k)
n

[{
Ω̂

(k)
−

}2
{(

Xj −X>−jŵ
(k)
j

)2
−
(
Xj −X>−jw∗j

)2
}]

By Condition (C5), we have

E(k)
n

[{
Ω̂

(k)
+

}2
{(

Xj −X>−jŵ
(k)
j

)2
−
(
Xj −X>−jw∗j

)2
}]

= E(k)
n

[
Ω+Ω̂

(k)
+

{(
Xj −X>−jŵ

(k)
j

)2
−
(
Xj −X>−jw∗j

)2
}]

+(n−α + n−β)E(k)
n

[
Ω̂

(k)
+

{(
Xj −X>−jŵ

(k)
j

)2
−
(
Xj −X>−jw∗j

)2
}]

.

Notice that (
Xj −X>−jŵ

(k)
j

)2
−
(
Xj −X>−jw∗j

)2

= X>−j(ŵ
(k)
j −w

∗
j )
(

2Xj −X>−jŵ
(k)
j −X

>
−jw

∗
j

)
= −

{
X>−j(ŵ

(k)
j −w

∗
j )
}2

+ 2X>−j(ŵ
(k)
j −w

∗
j )
(
Xj −X>−jw∗j

)
.

By the condition on Y −Q(a;X), X and Xj −X>−jw∗j , we have

max
j
E(k)
n

[{
Ω̂

(k)
+

}2
{(

Xj −X>−jŵ
(k)
j

)2
−
(
Xj −X>−jw∗j

)2
}]

= Op(R log n log(np) max{s∗, s′}
√

log p/n).
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For I2, we have

I2

= E(k)
n

[{
∇lφ

(
β̂(k); Ω̂

(k)
+ , Ω̂

(k)
−

)
−∇lφ (β∗; Ω+,Ω−)

}2 (
Xj −X>−jw∗j

)2
]

−2E(k)
n

[{
∇lφ

(
β̂(k); Ω̂

(k)
+ , Ω̂

(k)
−

)
−∇lφ (β∗; Ω+,Ω−)

}
∇lφ (β∗; Ω+,Ω−)(

Xj −X>−jw∗j
)2
]
.

Under the sub-Gaussian conditions, we have

max
i

∣∣∣∇lφ (β̂(k); Ω̂
(k)
+ , Ω̂

(k)
−

)
−∇lφ (β∗; Ω+,Ω−)

∣∣∣
= Op

(
(n−α + n−β) +R

√
log(np)s∗

√
log p/n

)
.

Thus, we have

I2

≤ Op

(
(n−α + n−β) +R

√
log(np)s∗

√
log p/n

)
E(k)
n

[(
Xj −X>−jw∗j

)2
]

+Op

(
(n−α + n−β) +R

√
log(np)s∗

√
log p/n

)
×E(k)

n

[
|∇lφ (β∗; Ω+,Ω−)|

(
Xj −X>−jw∗j

)2
]
.

By the condition on Y −Q(a;X), we have

max
i
|∇lφ (β∗; Ω+,Ω−)| = Op(

√
log n).

By Lemma 14 in Loh and Wainwright (2015), we have

max
j
|E(k)

n

[(
Xj −X>−jw∗j

)2
]
|

= max
j
E

[(
Xj −X>−jw∗j

)2
]

+Op(
√

log p/n).

Thus, we have maxj I2 = op(1). For I3, similar to I2, we can derive that maxj I3 = op(1).
Thus, we have

max
j

∣∣∣∣(σ̂(k)
j

)2
− σ2

j

∣∣∣∣ = op(1).

Now, we show that minj σ
2
j is bounded away from 0. To see this,

σ2
j

≥ E
[
(Xj −X>−jw∗j )2

]{
E
[
{∇lφ (β∗; Ω+,Ω−)}2

]}−1

≥ λmin

{
E
[
{∇lφ (β∗; Ω+,Ω−)}2

]}−1
> 0.
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Combining these results, we have

(n/K)1/2 max
j

∣∣∣(β̃(k)
j − β

∗
j

)
Î

(k)
j|−j/σ̂

(k)
j

+σ−1
j E(k)

n

[
{∇lφ (β∗; Ω+,Ω−)}

(
Xj −X>−jw∗j

)]∣∣∣ = op(1).

By the Berry-Esseen bound for CLT, we have

max
j

sup
α∈(0,1)

∣∣∣P (∣∣∣(β̃(k)
j − β

∗
j

)
Î

(k)
j|−j/σ̂

(k)
j

∣∣∣ ≤ Φ−1(1− α/2)
)
− (1− α)

∣∣∣ = op(1).

�
Proof of Theorem 7. Let the two split data set be I1 and I2 with sample size n1

and n2. We rearrange the data as the order of index in I1 and I2. Define the sigma-field
generated by first j samples as Fj .

V̂ (D̂)− V (D∗) = (V̂ − V )(D̂)

+V (D̂)− V (D∗)

= I1 + I2.

For I1,we have

I1 = (E(2)
n2
− E)

(
Ŵ
D̂(X)

(Y,X, A, π̂(−2), Q̂(−2))
)

+E
[
Ŵ
D̂(X)

(Y,X, A, π̂(−2), Q̂(−2))−WD̂(X)
(Y,X, A, π,Q)

]
= (E(2)

n2
− E)

(
Ŵ
D̂(X)

(Y,X, A, π̂(−2), Q̂(−2))
)

+Op(n
−α−β
1 ).

The second equality is due to Condition (C5). Let Zn,i = Ŵ
D̂(Xi)

(Yi,Xi, Ai, π̂(−2), Q̂(−2))−

E
[
Ŵ
D̂(Xi)

(Yi,Xi, Ai, π̂(−2), Q̂(−2))
]
. Consider Mn,i = n

−1/2
2 σ̂−1

V Zn,i. We have

E[Mn,i|Fi−1] = 0

for any i ∈ I2. We also have that
∑

i∈I2 E[M2
n,i|Fi−1] = σ2

V /σ̂
2
V → 1. Because Y is bounded,

π̂ and Q̂ are consistent, and π(a;X) is bounded away from 0 and 1, we have that Zn,i is
bounded. Because σ̂2

V → σ2
V > 0, the conditional Linderberg condition (Condition C2) in

Luedtke and Van Der Laan (2016)) holds, the martingle central limit theorem for triangular

arrays [see, e.g., Theorem 2 in ] shows that n
1/2
2 σ̂−1

V I1 =
∑

i∈I2 Mn,i → N(0, 1).

Next, we will show that I2 = op(n
−1/2
2 ).

V (D̂∗)− V (D∗) = E
[
|∆|1

{
D̂∗ 6= D∗

}]
≤ E

[
|∆|1

{
|X>(β̂ − β∗)| ≥ |X>β∗|

}]
≤ E

[
|∆|1

{
‖β̂ − β∗‖1 ≥ |X>β∗|

}]
If |∆| ≤ ψ

(
|X>β∗|

)
when X>β∗ is at a neighborhood of 0, then V (D̂∗) − V (D∗) .

‖β̂ − β∗‖ζ+γ1 . If we do not have condition, then V (D̂∗) − V (D∗) . ‖β̂ − β∗‖γ1 . Under

conditions, we have I2 = op(n
−1/2
2 ). This concludes the proof. �
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Proof of Lemmas and Claims.

The proofs of theorems use lemmas and claims below. For the simplicity of the notation,
we omit the superscript indicating split data set. For example, β̂(k) is written as β̂.

Lemma 10 Assuming conditions in Theorem 4, we have

‖β̂ − β∗‖1 = Op

(
s∗(log p/n)1/2

)
,

where s∗ = ‖β∗‖0. Further,

(β̂ − β∗)>HX(β̂ − β∗) . s∗ log p/n,

and

max
j

(β̂−j − β∗−1)>H−j(β̂−j − β∗−j) . s∗ log p/n,

where HX and H−j are defined in the proof.

Lemma 11 We have

max
j
‖ŵj −w∗j‖1 = Op

(
Rmax

{
s∗, s′

}
(log p/n)1/2

)
,

where s′ = max ‖w∗j‖0.

The following claims are useful in the proofs of lemmas. It essentially takes advantage
of the subgaussian tail of Ya −Q(a;X).

Claim 12 Let Y = (Y1, · · · , Yn)T be the n dimensional independent random vector and
a ∈ Rn. Then

a. If Yi’s are bounded in [c, d] for some c, d ∈ R., then for any t ∈ (0,+∞)

P
(∣∣∣a>Y − a>E[Y ]

∣∣∣ > t
)
≤ 2 exp

{
−t2/‖a‖22(d− c)2

}
.

b. If Yi’s are unbounded and there exists some M,ν0 ∈ R such that

max
i=1,··· ,n

E {exp [|Yi − E(Yi)|/M ]− 1− |Yi − E(Yi)|/M}M2 ≤ ν0/2,

then for any t ∈ (0,+∞)

P
(∣∣∣a>Y − a>E(Y )

∣∣∣ > t
)
≤ 2 exp

{
−t2/2(‖a‖22ν0 + ‖a‖∞Mt)

}
.

Proof of Claim 12. The proof is the same as Proposition 4 in Fan and Lv (2011). The
results from Hoeffding’s and Bernstein’s inequality, respectively. �
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Claim 13 For any function vector h : Rp → Rq with h is sub-Gaussian with a proxy of the
order O(R), ‖h(X)X>‖max ≤ Op(an) and

‖E[h(X)X>]‖∞ = O(R) and maxj1,j2 E
[
h4
j1

(X)
]
E
[
X4
j2

]
≤ R4, if anR

−1
√

log p/n → 0,

we have for a = 1 or −1,∥∥∥En[(Ω̂a − Ωa)h(X)X>]
∥∥∥

max
= Op

(
Rn−α−β +R(n−α + n−β)

√
log p/n

)
,

where ‖V ‖max denotes the maximum of the absolute values of the entries if V is a matrix;
if V is a vector, ‖V ‖max = ‖V ‖∞.

Proof of Claim 13. For simplicity, we will prove when a = 1. The proof can also be
applied to a = −1. Note that

‖En[(Ω̂a − Ωa)h(X)X>]‖max

≤
∥∥∥En [I{A = 1}

(
π̂−1(1;X)− π−1(1;X)

) (
Q̂(1;X)−Q(1;X)

)
h(X)X>

]∥∥∥
max

+
∥∥∥En [I{A = 1}

(
π̂−1(1;X)− π−1(1;X)

)
(Y −Q(1;X))h(X)X>

]∥∥∥
max

+
∥∥∥En [(I{A = 1}π−1(1;X)− 1

) (
Q̂(1;X)−Q(1;X)

)
h(X)X>

]∥∥∥
max

=I1 + I2 + I3

Define

Ωn(c) = {‖Q̂−Q‖∞ ≤ cnβ} ∩ {‖π̂ − π‖∞ ≤ cn−α} ∩ {‖h(X)X>‖max ≤ can}
Θn = {‖En[h(X)h>(X)]− E[h(X)h>(X)]‖max ≤ cR

√
log p/n}

∪{‖En[XX>]− E[XX>]‖max ≤ cR
√

log p/n}

For I1, we have

P (|I1| > t) ≤ P (|I1| > t | Ωn(c) ∩Θn) + P (Ωc
n(c)) + P (Θc

n).

By Condition (C5) and sub-Gaussian conditions, we have

P (Ωc
n(c))→ 0, P (Θc

n)→ 0.

On Ωn(c) ∩Θn, we have

|I1| ≤ cn−αcn−β max
j1,j2

En[|hj1(X)Xj2 |]

≤ c2n−α−β max
j1,j2
{(En − E)[|hj1(X)Xj2 |] + E[|hj1(X)Xj2 |]} .

By Lemma 14 in Loh and Wainwright (2011), we have

P (|(En − E)[|hj1(X)Xj2 |]| ≥ t) ≤ 6pq exp
{
−cnmin

(
t2/σ2, t/σ

)}
where σ is the multiplication of the proxy of Xj2 and hj1(X). Thus, we know that

|I1| ≤ CRn−α−β
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on Ωn(c) ∩Θn.
Now we focus on I2. For any t, c > 0, we have

P (I2 ≥ t) ≤ P (I2 ≥ t | Ωn(c) ∩Θn) + P (Ωc
n(c)) + P (Θc

n).

Notice that by Claim 12 and the independence of π̂. Let

Et =
{∣∣En [I{A = 1}

(
π̂−1(1;X)− π−1(1;X)

)
(Y1 −Q(1;X))hj1(X)Xj2

]∣∣ > t
}
.

For any j1 ∈ {1, · · · , q} and j2 ∈ {1, · · · , p}, we have

P {Et | A = 1,Ωn ∩Θn}

≤ 2 exp

{
−1

2
nt2
{
c2n−2αν0En

[
h2
j1(X)X2

j2

]
+ max
i=1,··· ,n

|hj1(Xi)Xi,j2 |cn−αMt

}}
≤ 2 exp

{
−1

2
nt2

{
c2n−2αν0

√
En

[
h4
j1

(X)
]
En

[
X4
j2

]
+ max
i=1,··· ,n

|hj1(Xi)Xi,j2 |cn−αMt

}}
≤ 2 exp

{
−1

2
nt2

{
c4n−2αν0 max

j1,j2

√
E
[
h4
j1

(X)
]
E
[
X4
j2

]
+ c2ann

−αMt

}}
.

The last inequality uses the concentration inequality for polynomials of sub-Gaussian ran-
dom variables Adamczak and Wolff (2015), .i.e. there exist C,Cd, and c1, c2 such that

P
(
|(En − E)[h4

j (X)]| > t
)
≤ 2C exp

{
− 1

CD
min

(
nt2/(c1R

2), n1/2t1/2/(c2R
2)
)}

,

P
(
|(En − E)[X4

j ]| > t
)
≤ 2C exp

{
− 1

CD
min

(
nt2/c1, n

1/2t1/2/c2

)}
,

and the assumption that log p/
√
n→ 0.

Thus, under log p/
√
n→ 0, we have

P (I2 ≥ t | Ωn(c) ∩Θn)

≤2p2 exp
{
−nt2/2

{
Cc4R2n−2αν0 + c2ann

−αMt
}}

.

Let t = 8(Cc4ν0 + c2M)Rc2n−α
√

log p/n, we have

P
{
I2 ≥ 8(Cc4ν0 + c2M)Rc2n−α

√
log p/n | Ωn(c) ∩Θn

}
→ 0.

For I3, notice that π is bounded and apply (a) in Claim 12, we can similarly conclude
I3 . Op(Rn−β

√
log pn). Thus, we con conclude the claim. �

Proof of Lemma 10. To simplify the notation, we omite the superscript (k)l instead,
we assume that the nuisance parameter estimations used in constructing Ω̂+ and Ω̂− are
independent from the observed samples. Let S denote the support of β∗. Denote

D(β,β∗)

= En

[{
Ω̂+[φ′(X>β)− φ′(X>β∗)]− Ω̂−[φ′(−X>β)− φ′(−X>β∗)]

}
X> (β − β∗)

]
.
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Let ∆̂ = β̂ − β∗. Thus,

D(β̂,β∗)

= En

[{
Ω̂+φ

′(X>β̂)− Ω̂−φ
′(−X>β̂)

}
X>S ∆̂S

]
+En

[{
Ω̂+φ

′(X>β̂)− Ω̂−φ
′(−X>β̂)

}
X>S β̂S̄

]
−En

[{
Ω̂+φ

′(X>β∗)− Ω̂−φ
′(−X>β∗)

}
X>∆̂

]
= (I) + (II) + (III)

By KKT condition,
(I) ≤ λn‖∆̂S‖1, (II) = −λn‖∆̂S̄‖.

Assuming that Ŵ1, Ŵ−1, W1 and W−1 are positive, we have

(III)

=− En
[{
Ŵ1φ

′(X>β∗)− Ŵ−1φ
′(−X>β∗)

}
X>∆̂

]
=− En

[{
W1φ

′(X>β∗)−W−1φ
′(−X>β∗)

}
X>∆̂

]
− En

[{
[Ŵ1 −W1]φ′(X>β∗)− [Ŵ−1 −W−1]φ′(−X>β∗)

}
X>∆̂

]
.

Due to the sub-Gaussian condition on X, following the proof of Theorem 4, we can show
that

P
(∥∥∥En [{W1φ

′(X>β∗)−W−1φ
′(−X>β∗)

}
X
]∥∥∥
∞
≥ C

√
log p/n

)
≤ c0 exp(−c1 log p),

where C, c0 and c1 are som constants. By (the proof of) Claim 13, the second term can

be bounded by Op

{
[(n−α + n−β)(log p/n)1/2 + n−α−β]‖∆̂‖1

}
when both model are correct.

Thus, (III) ≤ C(log p/n)1/2‖∆̂‖1 with a large enough C.
Let λn = 2C(log p/n)1/2, on the event,{∥∥∥En [{W1φ

′(X>β∗)−W−1φ
′(−X>β∗)

}
X
]∥∥∥
∞
≤ C

√
log p/n

}
,

we have
D(β̂,β∗) ≤ C(log p/n)1/2(3‖∆̂S‖1 − ‖∆̂S̄‖1).

Since φ is convex, we have D(β̂,β∗) ≥ 0 and ‖∆̂S̄‖1 ≤ 3‖∆̂S‖1. In addition, D(β̂,β∗) can
be rewritten as

(β̂ − β∗)>En[∇lφ(β̂; Ω̂+, Ω̂−)−∇lφ(β∗; Ω̂+, Ω̂−)X]

=En

{
[Ω̂+φ

′′(X>β̃) + Ω̂−φ
′′(−X>β̃)](X>∆̂)2

}
=En

{[
Ω+φ

′′(X>β̃) + Ω−φ
′′(−X>β̃)

]
(X>∆̂)2

}
+ En

{[(
Ω̂+ − Ω+

)
φ′′(X>β̃) +

(
Ω̂− − Ω−

)
φ′′(−X>β̃)

]
(X>∆̂)2

}
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The first term satisfies the RSC condition following the Proposition 1 in Loh and Wainwright
(2015) when X’s are zero-mean sub-Gaussians with probablity at least 1 − c1 exp(−c2n).
The second term has the following bound∣∣∣En {[(Ω̂+ − Ω+

)
φ′′(X>β̃) +

(
Ω̂− − Ω−

)
φ′′(−X>β̃)

]
(X>∆̂)2

}∣∣∣
≤‖∆̂‖21

∥∥∥En [{(Ω̂+ − Ω+

)
φ′′(X>β̃) +

(
Ω̂− − Ω−

)
φ′′(−X>β̃)

}
XX>

]∥∥∥
max

.(n−α−β + (n−β + n−β)
√

log p/n)s∗‖∆̂‖22.

The last inequality uses the fact that ‖∆̂‖1 ≤ 4‖∆̂S‖1 ≤ 4(s∗)1/2‖∆̂S‖2 ≤ 4(s∗)1/2‖∆̂‖2
and the concentration inequality for the polynomial functions of independent sub-Gaussian
(Adamczak and Wolff, 2015). Thus, we have D(β̂,β∗) ≥ κ‖∆̂‖22− τ

√
log p/n‖∆̂‖1‖∆̂‖2 on

the event {∥∥∥En [{W1φ
′(X>β∗)−W−1φ

′(−X>β∗)
}
X
]∥∥∥
∞
≤ C

√
log p/n

}
∪{

‖Q̂−Q‖∞ ≤ cnβ
}
∩
{
‖π̂ − π‖∞ ≤ cn−α

}
∪ {RSC condition holds}.

Notice that

τ
√

log p/n‖∆̂‖1‖∆̂‖2 ≤ κ/2‖∆̂‖22 +
τ2

2κ

log p

n
‖∆̂‖21

Combining the upper bound of D(β̂,β∗) derived above, given ‖β∗‖1 ≤
√
n/ log p, we

have

κ/2‖∆̂‖22 ≤ C(log p/n)1/2(3‖∆̂S‖1 − ‖∆̂S̄‖1) +
τ2

2κ

√
log p

n
‖∆̂‖1.

Thus, we have

‖∆̂‖2 ≤
{

24C

κ
+

4τ2

κ2

}√
s∗ log p

n
,

‖∆̂‖1 ≤
{

96C

κ
+

16τ2

κ2

}
s∗
√

log p

n
,

D(β̂,β∗) ≤ 3C

{
96C

κ
+

16τ2

κ2

}
s∗

log p

n
.

Let HX = En

{
[Ω̂+φ

′′(X>β∗) + Ω̂−φ
′′(−X>β∗)](X>X)

}
. Note that

|D(β̂,β∗)− (β̂ − β∗)>HX(β̂ − β∗)|

=
∣∣∣En [Ω̂+φ

′′(X>β) + Ω̂−φ
′′(−X>β)− Ω̂+φ

′′(X>β∗)− Ω̂−φ
′′(−X>β∗)(X>∆̂)2

]∣∣∣
.C
√

log(np)s∗ (log p/n)1/2
∣∣∣(β̂ − β∗)>HX(β̂ − β∗)

∣∣∣ .
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Combining with the upper bound on D(β̂,β∗), by s∗ log p/
√
n→ 0, we know that

(β̂ − β∗)>HX(β̂ − β∗) ≤ 3C

1 + C

{
96C

κ
+

16τ2

κ2

}
s∗

log p

n
.

Let H−j = En

[
{Ω̂+φ

′′(X>β∗) + Ω̂−φ
′′(−X>β∗)}X−jX>−j

]
. We have

(β̂−j − β∗−j)>H−j(β̂−j − β∗−j)

≤2(β̂ − β∗)>HX(β̂ − β∗)

+ 2(β̂j − β∗j )2En

[
[Ω+φ

′′(X>β∗) + Ω−φ
′′(−X>β∗)]X2

j

]
.

Thus, we have

max
j

(β̂−j − β∗−j)>H−j(β̂−j − β∗−j)

≤ 2(β̂ − β∗)>HX(β̂ − β∗)

+2‖β̂ − β∗‖22 max
j
En

[
[Ω̂+φ

′′(X>β∗) + Ω̂−φ
′′(−X>β∗)]X2

j

]
.

By the sub-Gaussian assumption, we have

max
j

∣∣∣En [[Ω̂+φ
′′(X>β∗) + Ω̂−φ

′′(−X>β∗)]X2
j

]
−E

[
[Ω̂+φ

′′(X>β∗) + Ω̂−φ
′′(−X>β∗)]X2

j

]∣∣∣ = op(1).

By maxj E[X2
j ] is bounded, we have that

max
j

(β̂−j − β∗−j)>H−j(β̂−j − β∗−j) = Op

(
s∗

log p

n

)
.

�

Before the formal proof of Lemma 11, we establish the following claim. The following
claim plays the same role as the RSC in the proof of Lemma 10. Let S′ be the support of
w∗.

Claim 14 Denote F̂ (β) = En[Û(β)XX>], where Û(β) = Ω̂+φ
′′(X>β) + Ω̂−φ

′′(−X>β).
And

κD(s′) = min
{

(s′)1/2(v>F̂ (β̂)v)1/2/‖vS′‖1 : v ∈ Rp\{0}, ‖vS̄′‖1 ≤ ξ‖vS′‖1
}
,

where ξ is a positive constant. Assuming assumptions in Theorem 4, with probability tending
to one, κD(s′) ≥ κ/

√
6.
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Proof of Claim 14. By the definition of κD(s′) and the fact that ‖vS′‖1 ≤ (s′)1/2‖vS′‖2 ≤
(s′)1/2‖v‖2, we only need to show that

κ2
D(s′) = min

{
v>F̂ (β̂)v/‖v‖22 : v ∈ Rp\{0}, ‖vS̄′‖ ≤ ξ‖vS′‖1

}
.

Let F (β) = En[U(β)XX>], where U(β) = Ω+φ
′′(X>β) + Ω−φ

′′(−X>β). We have

v>F̂ (β̂)v/‖v‖22
=v>F (β∗)v/‖v‖22

+ En

[{
(Ω̂+ − Ω+)φ′′(X>β∗) + (Ω̂− − Ω−)φ′′(−X>β∗)

}
(X>v)2/‖v‖22

]
+ En

[{
Ω+(φ′′(X>β̂)− φ′′(X>β∗)) + Ω−(φ′′(−X>β̂)− φ′′(−X>β∗))

}
(X>v)2/‖v‖22

]
+ En

[{
(Ω̂+ − Ω+)(φ′′(X>β̂)− φ′′(X>β∗))

}
(X>v)2/‖v‖22

]
+ En

[{
(Ω̂− − Ω−)(φ′′(−X>β̂)− φ′′(−X>β∗))

}
(X>v)2/‖v‖22

]
=v>F (β∗)v/‖v‖22 + I1 + I2 + I3 + I4

By (the proof of) Lemma 10, I1 can be bounded by Op
(
n−α + n−β

)
. For I2, we have

I2 ≤ CEn

[{
Ω+φ

′′(X>β∗) + Ω−φ
′′(−X>β∗)

}
X>(β̂ − β∗)(X>v)2/‖v‖22

]
≤ Cs∗ log(np)/

√
nv>F (β∗)v/‖v‖22.

By s∗ log(np)/
√
n→ 0, we know that

I2 ≤ v>F (β∗)v/2‖v‖22.

For I3, we have the following.

I3 ≤En
[{
|Ω̂+ − Ω+|φ′′(X>β∗)|X>(β̂ − β∗)|

}
(X>−jv)2/‖v‖22

]
≤Cs∗ log(np)/

√
nEn

[{
|Ω̂+ − Ω+|φ′′(X>β∗)

}
(X>−jv)2/‖v‖22

]
.(n−α + n−β)s∗ log(np)/

√
n.

Similarly, I4 . (n−α+n−β)s∗ log(np)/
√
n. Hence, v>F̂ (β̂)v/‖v‖22 ≥ (1/4)v>F (β∗)v/‖v‖22,

with probability tending to 1. Note that

v>F̂ (β̂)v/‖v‖22 ≥ (1/4)v>F (β∗)v/‖v‖22
= 1/4

{
v>I∗v/‖v‖22 + v> (F (β∗)− I∗)v/‖v‖22

}
≥ 1/4

{
λmin (I∗)−

∣∣∣v> (F (β∗)− I∗)v
∣∣∣ /‖v‖22}

≥ 1/4
{
κ2 − ‖v‖21‖F (β∗)− I∗‖max/‖v‖22

}
.

By ‖v‖2 ≤ (ξ + 1)2‖vS′‖21 ≤ s′(ξ + 1)2‖v‖22, we have

v>F̂ (β̂)v/‖v‖22 ≥ 1/4
{
κ2 − (ξ + 1)2s′‖F (β∗)− I∗‖max

}
.

56



Inference on high-dimensional individualized treatment rules

By sub-gaussian condition, we know that ‖F (β∗)− I∗‖max = OP ((log p/n)1/2). By

s′(log p/n)1/2 → 0,

we have probability tending to 1 such that s′‖F (β∗) − I∗‖max ≤ κ2/[3(ξ + 1)2]. Thus, we
can conclude the claim. �

Proof of Lemma 11. Let ∆̂j = ŵj −w∗j . By definition, we have

En

[{
Ω̂+φ

′′(X>β̂) + Ω̂−φ
′′(−X>β̂)

}
(Xj −X>−jŵj)

2
]

+ λ′n‖ŵj‖1

≤En
[{

Ω̂+φ
′′(X>β̂) + Ω̂−φ

′′(−X>β̂)
}

(Xj −X>−jw∗j )2
]

+ λ′n‖w∗j‖1.

By rearranging terms, we have equivalently

En

[{
Ω̂+φ

′′(X>β̂) + Ω̂−φ
′′(−X>β̂)

}
(∆̂>j X−j)

2
]

≤2En

[{
Ω̂+φ

′′(X>β̂) + Ω̂−φ
′′(−X>β̂)

}
(Xj −X>−jw∗j )∆̂>j X−j

]
+ λ′n‖w∗j‖1 − λ′n‖ŵj‖1
≤2I1 + λ′n‖w∗j‖1 − λ′n‖ŵj‖1.

Notice that

λ′n‖w∗j‖1 − λ′n‖ŵj‖1 = λ′n‖w∗j,S′‖1 − λ′n‖ŵj,S′‖1 − λ′n‖ŵj,S̄′‖1 ≤ λ′n‖∆̂j,S′‖1 − λ′n‖∆̂j,S̄′‖1.

We just need to bound I1.

I1

=En

[{
Ω+φ

′′(X>β∗) + Ω−φ
′′(−X>β∗)

}
(Xj −X>−jw∗)∆̂>j X−j

]
+ En

[{
(Ω̂+ − Ω+)φ′′(X>β̂) + (Ω̂− − Ω−)φ′′(−X>β̂)

}
(Xj −X>−jw∗j )∆̂>j X−j

]
+ En

[{
Ω+(φ′′(X>β̂)− φ′′(X>β∗)) + Ω−(φ′′(−X>β̂)− φ′′(−X>β∗))

}
(Xj −X>−jw∗j )∆̂>j X−j

]
=I11 + I12 + I13.

By the proof of Theorem 4, on the event{
max
j

∥∥∥En [{Ω+φ
′′(X>β∗) + Ω−φ

′′(−X>β∗)
}

(Xj −X>−jw∗)X−j
]∥∥∥
∞

≤ CR(log p/n)1/2
}
,

we have that

|I11| ≤
∥∥∥En [{Ω+φ

′′(X>β∗) + Ω−φ
′′(−X>β∗)

}
(Xj −X>−jw∗)X−j

]∥∥∥
∞
‖∆̂j‖1

≤ CR(log p/n)1/2‖∆̂j‖1.
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For I12, we have

|I12|

≤‖En
[{

(Ω̂+ − Ω+)φ′′(X>β̂) + (Ω̂− − Ω−)φ′′(−X>β̂)
}

(Xj −X>−jw∗j )X−j
]
‖∞‖∆̂j‖1.

and

‖En
[{

(Ω̂+ − Ω+)φ′′(X>β̂) + (Ω̂− − Ω−)φ′′(−X>β̂)
}

(Xj −X>−jw∗j )X−j
]
‖∞

≤‖En
[{

(Ω̂+ − Ω+)φ′′(X>β∗) + (Ω̂− − Ω−)φ′′(−X>β∗)
}

(Xj −X>−jw∗)X−j
]
‖∞

+ ‖En
[{

(Ω̂+ − Ω+)(φ′′(X>β̂)− φ′′(X>β∗))
}

(Xj −X>−jw∗)X−j
]
‖∞

+ ‖En
[{

(Ω̂− − Ω−)(φ′′(−X>β̂)− φ′′(−X>β∗))
}

(Xj −X>−jw∗)X−j
]
‖∞

=I21 + I22 + I23.

First, by (the proof of) Claim 13, maxj I21 can be bounded byOp[R(n−α+n−β)(log p/n)1/2+
Rn−α−β]. Second, by the sub-Gaussian of X, Lemma 10, and Claim 13, we have

max
j
I22 ≤C max

j

∥∥∥En [{|Ω̂+ − Ω+|φ′′(X>β∗)
}
X−j |Xj −X>−jw∗||X>(β̂ − β∗)|

]∥∥∥
∞

≤C ′s∗ log p/
√
nmax

j

∥∥∥En [{|Ω̂+ − Ω+|φ′′(X>β∗)
}
X−j |Xj −X>−jw∗|

]∥∥∥
∞

.R(n−α + n−β)s∗ log p/
√
n.

Similarly, max I23 . R(n−α + n−β)s∗ log p/
√
n. Thus,

|I12| . o
(
R(log p/n)1/2‖∆̂j‖1

)
uniformly holds for all j’s.

Now, we will bound I13. Let U(β) = Ω+φ
′′(X>β) + Ω+φ

′′(−X>β).

|I13|

≤En
[∣∣∣(U(β̂)− U(β∗))/(U(β∗)(X>(β̂ − β∗)))

∣∣∣ ∣∣∣U1/2(β∗)(X>(β̂ − β∗))(Xj −X>−jw∗j )
∣∣∣

×
∣∣∣U1/2(β∗)∆̂>X−j

∣∣∣]
≤C

(
En[U(β∗)(X>(β̂ − β∗))2(Xj −X>−jw∗j )2]

)1/2 (
En[U(β∗)(∆̂>X−j)

2]
)1/2

=C(∆̂>j F−j(β
∗)∆̂j)

1/2
(
En[U(β∗)(X>(β̂ − β∗))2(Xj −X>−jw∗j )2]

)1/2
,

where F−j(β) = En[U(β)X−jX
>
−j ]. To bound

max
j
En[U(β∗)(X>(β̂ − β∗))2(Xj −X>−jw∗j )2],
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we have

max
j
En[U(β∗)(X>(β̂ − β∗))2(Xj −X>−jw∗j )2]

≤ max
j

∣∣∣(En − E)[U(β∗)(X>(β̂ − β∗))2(Xj −X>−jw∗j )2]
∣∣∣

+ max
j
E[U(β∗)(X>(β̂ − β∗))2(Xj −X>−jw∗j )2]

≤ ‖β̂ − β∗‖21‖(En − E)[U(β∗)(Xj −X>−jw∗j )2]XX>‖max

+C‖β̂ − β∗‖22 max
j
E[(Xj −X>−jw∗j )2]

By Lemma 10, we know that there exists a constant C such that

|I13| ≤ CR(∆̂>j F−j(β
∗)∆̂j)

1/2(s∗ log p/n)1/2

uniformly holds for all j’s.

Taking λ′n � R(log p/n)1/2 and combining bound on I1 and λ′n‖w∗j‖1 − λ′n‖ŵj‖1, we
have

P
(
∩j
{
En

[{
Ω̂+φ

′′(X>β̂) + Ω̂−φ
′′(−X>β̂)

}
(∆̂>j X−j)

2
]

≤ CR(∆̂>j F−j(β
∗)∆̂j)

1/2(s∗ log p/n)1/2

+3RC(log p/n)1/2‖∆̂j,S′‖1 − CR(log p/n)1/2‖∆̂j,S̄′‖1
})
→ 1.

Let F̂−j(β) = En[Û(β)X−jX
>
−j ], where Û(β) = Ω̂+φ

′′(X>β) + Ω̂−φ
′′(−X>β). To make

the above inequality useful, we further link ∆̂>j F̂−j(β̂)∆̂j with ∆̂>j F (β∗)∆̂j . Consider

∣∣∣∆̂>j [F̂−j(β̂)− F−j(β∗)
]

∆̂j

∣∣∣
=
∣∣∣En [{Ω̂+φ

′′(X>β̂) + Ω̂−φ
′′(−X>β̂)− Ω+φ

′′(X>β∗)− Ω−φ
′′(−X>β∗)

}
(∆̂>j X−j)

2
]∣∣∣

≤
∣∣∣En [{(Ω̂+ − Ω+)φ′′(X>β̂) + (Ω̂− − Ω−)φ′′(−X>β̂)

}
(∆̂>j X−j)

2
]∣∣∣

+
∣∣∣En [{Ω+(φ′′(X>β̂)− φ′′(X>β∗)) + Ω−(φ′′(−X>β̂)− φ′′(−X>β∗))

}
(∆̂>j X−j)

2
]∣∣∣

≤
∥∥∥∆̂j

∥∥∥2

1

∥∥∥En [{(Ω̂+ − Ω+)φ′′(X>β̂) + (Ω̂− − Ω−)φ′′(−X>β̂)
}
XX>

]∥∥∥
max

+ C
∣∣∣En [{Ω+φ

′′(X>β∗) + Ω−φ
′′(−X>β∗)

}
X>(β̂ − β∗)(∆̂>j X−j)2

]∣∣∣
≤C(n−α + n−β)‖∆̂j‖21 + C|∆̂>j F (β∗)∆̂j |s∗ log(np)/n1/2.

Thus, for some constant C
′′
, we have

∆̂>j F−j(β
∗)∆̂j ≤

(
1 + C

′′
s∗ log(np)/n1/2

)
∆̂>j F̂−j(β̂)∆̂j + C ′′(n−α + n−β)‖∆̂j‖21,
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uniformly hold over all j’s. Combining with the inequality above, we have

∆̂>j F̂−j(β̂)∆̂j

≤ CR(∆̂>j F−j(β
∗)∆̂j)

1/2(s∗ log p/n)1/2

+3CR(log p/n)1/2‖∆̂S′,j‖1 − CR(log p/n)1/2‖∆̂S̄′,j‖1

≤ CR

√
s∗ log p

n

((
1 + C

′′
s∗ log(np)/n1/2

)
∆̂>j F̂−j(β̂)∆̂j + C ′′(n−α + n−β)‖∆̂j‖21

)1/2

+3CR(log p/n)1/2‖∆̂S′,j‖1 − CR(log p/n)1/2‖∆̂S̄′,j‖1,

uniformly holds over all j’s.
Notice that (n−α + n−β)s∗ → 0 and s∗ log(np)/

√
n→ 0, we have

∆̂>j F̂−j(β̂)∆̂j ≤ C ′R(s∗ log p/n)1/2(∆̂>j F̂−j(β̂)∆̂j)
1/2

+3CR(log p/n)1/2‖∆̂S′,j‖1 − CR(log p/n)1/2‖∆̂S̄′,j‖1, (14)

uniformly holds over all j’s with a sufficient large C ′ and C.

If
(
∆̂>j F̂−j(β̂)∆̂j

)1/2
≤ C ′R(s∗ log p/n)1/2, Inequality (14) holds trivially. If(
∆̂>j F̂−j(β̂)∆̂j

)1/2
> C ′R(s∗ log p/n)1/2,

this implies that 3‖∆̂S′,j‖1 ≥ ‖∆̂S̄′,j‖1. Due to the claim with ξ = 3, we conclude

that ‖∆̂s′,j‖1 ≤ C(s′)1/2(∆̂>j F̂−j(β̂)∆̂j)
1/2. Combining with Inequality (14), we have

(∆̂>j F̂−j(β̂)∆̂j)
1/2 . R(max{s∗, s′} log p/n)1/2. Thus,

∆̂>j F̂−j(β̂)∆̂j . R
2 max{s∗, s′} log p/n

uniformly holds over all j’s.
Now, we consider to bound ‖∆̂j‖1. First, if 6‖∆̂S′,j‖1 ≥ ‖∆̂S̄′,j‖1, then we have

‖∆̂j‖1 ≤ 7‖∆̂S′,j‖1 . (s′)1/2(∆̂jF̂−j(β̂)∆̂j)
1/2 by claim with ξ = 6. Therefore, we ob-

tain that
‖∆̂j‖1 . Rmax{s∗, s′}(log p/n)1/2.

Otherwise, we have 6‖∆̂S′,j‖1 ≤ ‖∆̂S̄′,j‖1. Then Inequality (14) implies that

∆̂jF̂−j(β̂)∆̂j ≤ C ′R(s∗ log p/n)1/2(∆̂jF̂−j(β̂)∆̂j)
1/2 − CR(log p/n)1/2‖∆̂S̄′,j‖1/2.

Hence,

‖∆̂j‖1 ≤ 7/6‖∆̂S̄′,j‖1 . R(s∗)1/2(∆̂jF̂−j(β̂)∆̂j)
1/2 . Rmax{s∗, s′}(log p/n)1/2,

uniformly holds for all j’s.
Because∣∣∣∆̂>j [F̂−j(β̂)− F (β∗)

]
∆̂j

∣∣∣ . (n−α + n−β)‖∆̂j‖21 + |∆̂>j F−j(β∗)∆̂j |s∗ log p/
√
n

uniformly holds over all j’s, we have ∆̂>j F−j(β
∗)∆̂j . Rmax{s∗, s′} log p/n holds uniformly

over all j’s. �
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