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Abstract

In this paper, we consider the learning rate of support vector machines with both a func-
tional predictor and a high-dimensional multivariate vectorial predictor. Similar to the
literature on learning in reproducing kernel Hilbert spaces, a source condition and a capac-
ity condition are used to characterize the convergence rate of the estimator. It is highly
non-trivial to establish the possibly faster rate of the linear part. Using a key basic in-
equality comparing losses at two carefully constructed points, we establish the learning rate
of the linear part which is the same as if the functional part is known. The proof relies
on empirical processes and the Rademacher complexity bound in the semi-nonparametric
setting as analytic tools, Young’s inequality for operators, as well as a novel “approximate
convexity” assumption.

Keywords: Convergence rate; Prediction risk; Rademacher complexity; Support vector
classification.

1. Introduction

Binary classification based on support vector machines (SVM) is by now a popular and ma-
ture statistical tool for pattern recognition. It was originally posed as a margin-maximization
procedure and later found to be consistent with the standard loss+penalty paradigm often
appearing in traditional statistical procedures. In particular, based on the penalized hinge
loss formulation, various penalties have been used to deal with different problem structures
(Wu and Zhou, 2006; Luo et al., 2015), with the ridge penalty and the squared RKHS
(reproducing kernel Hilbert space) penalty corresponding to the standard linear and kernel
SVM, respectively.
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In this paper, we consider the setting that the features for prediction consist of a func-
tional part (an observed curve) and a high-dimensional multivariate part. For example,
in a disease presence prediction study, a high-dimensional vectorial predictor may come
from genetic sequence information (such as SNPs) while other measurements such as brain
imaging data may be regarded as the (two or three-dimensional) functional predictor. Kong
et al. (2016) considered a regression problem where daily concentration measurements of
PM2.5 is used as a functional predictor and the scalar covariates are obtained from the
U.S. census for each city including factors such as land area per individual and water area
per individual, among many others. Ma et al. (2019) established the association between
the mini-mental state examination scores (response variable) and the brain volume imaging
data of 20 regions of interest (ROI) (functional predictor), while accounting for the scalar
covariates, including the selected 1071 SNPs and some prognostic-related covariates.

Classification with functional data has been widely studied in the statistical and machine
learning literature (Delaigle and Hall, 2012; Preda et al., 2007; Chamroukhi et al., 2013),
while here we are particularly interested in the learning rate when using an SVM as the
prediction tool, which has not been studied before.

More specifically, given an i.i.d. sample of observations (Xi, zi, yi), i = 1, . . . , n, with
Xi ∈ L2(T ), zi ∈ Rp, yi ∈ {−1, 1}, and T is a compact set of a certain Euclidean space
(without much of loss of generality, we will always assume T = [0, 1]), we consider the
following optimization problem

(f̂ , β̂) = arg min
f,β

1

n

n∑
i=1

h(yi(〈Xi, f〉+ zT
i β)) + λ1‖f‖2 + λ2‖β‖1.

In the above, h(x) = (1−x)+ is the hinge loss, 〈Xi, f〉 =
∫
T Xi(t)f(t)dt is the functional part

and β ∈ Rp is the coefficient in the linear part. A quadratic penalty on ‖f‖2 =
∫
T f

2(t)dt is
used for regularization which is important since L2(T ) is an infinite-dimensional space, and
optimization without penalty will make the problem ill-posed (Ramsay and Dalzell, 1991).
Since we mainly consider the case that p is large (possibly larger than n), a lasso penalty
exploiting the potential sparseness property of the unknown high-dimensional coefficient
vector is suitable and popularly used in high-dimensional learning.

Our theoretical results are in some sense similar to the recent work Xia et al. (2021),
which studied non-functional partially linear SVM classification that considered a nonpara-
metric function f(xi) in a reproducing kernel Hilbert space framework, in place of our
〈Xi, f〉. It is known that functional regression and nonparametric kernel regression has
strong similarities (see Lin and Rosasco (2017) which proposed a uniform treatment of
both). However, we note the following key differences and our distinctive contributions.

• We can establish a non-trivial learning rate even without any smoothness assumption
on f (except it is in L2(T )). We will show later that we can also adapt a RKHS
framework for f in our model. Smoothness assumption for our f as the coefficient
for the functional predictor is much more natural than the corresponding assumption
in Xia et al. (2021) for the nonparametric function estimation problem. With details
presented in Section 5, we show that in the setting of Xia et al. (2021), their assump-
tion that f is in a RKHS is usually very stringent, even when they consider it only as
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an approximation to the true function. While in the functional setting, we naturally
can construct nontrivial examples that f can be smooth.

• For the nonparametric part, the rates in Xia et al. (2021) are characterized by a
single parameter indicating the capacity of the function space. We instead use an
additional source condition that characterizes the smoothness of f . Such a source
condition is often used in previous theoretical studies of kernel learning problems, but
restricted to the least-squares loss (Gu, 2013). As far as we know, our work is the
first study that uses a source condition in non-least-squares loss which is incorporated
into our theoretical investigations using Young’s inequality for operators (Suzuki and
Sugiyama, 2013).

• Most importantly, Xia et al. (2021) only established an overall rate for the sum of the
nonparametric and the linear part (they stated the rate for the linear part but it is
the same as the overall rate). Indeed, they considered a rate for the linear part that
does not depend on the capacity parameter of the RKHS as an open problem in their
discussion section at the end of the paper. It’s non-trival to remove the effect of the
functional part. To achieve this goal, we propose a novel “approximate convexity”
assumption and based on this assumption, the key innovative step is to use the basic
inequality comparing losses at two carefully constructed points. We are not aware of
similar constructions in the literature concerning functional data classification.

The rest of the article is organized as follows. In Section 2, we establish the overall
rate of estimation based on empirical processes and Rademacher complexity. Section 3
establishes the rate for the linear part, which is the same as if the functional part is known.
Section 4 provides clarifications and sufficient conditions for a key local strong convexity
assumption used. In Section 5, we conclude the paper and discuss a RKHS framework for
the functional coefficient f and argue that the same proof also works for this setting. We
also carefully discuss the problem considered in Xia et al. (2021) in relation to ours, in
particular stating the rates we can obtain using their setting, which extends the results in
Xia et al. (2021).

2. Functional estimation in the L2 space with a high-dimensional linear
part

Without loss of generality we assume E[X] = 0 and define the covariance operator Γ =
E[X ⊗X], where for f, g ∈ L2([0, 1]), f ⊗ g denotes the operator that maps h ∈ L2([0, 1])
to 〈g, h〉f ∈ L2([0, 1]). We assume E‖X‖2 <∞ which guarantees that Γ is a compact trace
operator. By Mercer’s theorem, we have the spectral decomposition

Γ =
∞∑
j=1

sjej ⊗ ej ,

where sj is the sequence of eigenvalues decreasing to zero, and {ej} is an orthonormal basis
of L2([0, 1]).

For any (f,β), with (f0,β0) denoting the target “true” parameters (defined in as-
sumption (A1) later), the error for which we will establish the learning rate is given by
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E[(〈X∗, f − f0〉+ z∗T (β − β0))2] where the expectation is taken over (X∗, z∗) which is an
independent copy of (Xi, zi). For the functional term, the error will depend on two quanti-
ties. One is the smoothness of f0 and the other is the capacity of the hypothesis space which
is the space of the linear functions of X of the form 〈X, f〉, f ∈ L2([0, 1]). For the former,
we assume the so-called “source condition” that for some constant C > 0 (throughout the
paper C will denote a generic positive constant),

‖Γ−rf0‖ ≤ C for some r ∈ [0, 1/2]. (1)

For the latter, we define R(u) =
√

1
n

∑
j min{sj , u2}, which turns out to be an upper

bound of the local Rademacher complexity of the space of linear functions mentioned above
(Lemma 1). We note that for r = 0, we do not assume any further smoothness beyond
f0 ∈ L2([0, 1]). Writing f0 =

∑
j f0jej with f0j the Fourier coefficients in the basis {ej},

the source condition is equivalent to
∑

j f
2
0j/s

2r
j < ∞ and it is readily seen that larger r

requires faster convergence of the Fourier coefficients to zero, and thus can be regarded as a
stronger smoothness condition for f0. Increasing r beyond r = 1/2 does not make the rate
faster which is a well-known saturation effect in the regularized estimation (Lin et al., 2017;
Lin and Rosasco, 2017; Lin and Cevher, 2020). Since we assume f0 ∈ L2, we only study
the attainable case here. The non-attainable case corresponds to the setting that f0 6∈ L2,
which seems significantly harder and we leave it for future investigation.

Formally, we take up the following technical assumptions.

(A1) (Xi, zi, yi) is an i.i.d. sample and (f0,β0) = arg minf,β E[h(yi(〈Xi, f〉+ zT
i β))].

(A2) Both ‖X‖ and components of z are sub-Gaussian.

(A3) f0 satisfies the source condition (1) with some r ∈ [0, 1/2]. β0 = (β01, . . . , β0p)
T is a

s-sparse vector with support S = {j : β0j 6= 0}.

(A4) There exist constants C1, C2 > 0 and ξ ≥ 2, such that for any f,β, E[h(y(〈X, f〉 +

zTβ))]−E[h(y(〈X, f0〉+zTβ0))] ≥ C1E[(〈X, f−f0〉+zT(β−β0))2]
ξ
2 , and E[(〈X, f〉+

zTβ)2] � ‖Γ1/2f‖2 + ‖β‖2, if E[(〈X, f − f0〉+ zT(β − β0))2] ≤ C2.

Existence and uniqueness of minimizer of E[h(yi(〈Xi, f〉+ zT
i β))] provide a target for esti-

mation. For linear models, existence and uniqueness was investigated in Koo et al. (2008).
Following that work, later we also give a concrete example when (X, z) is Gaussian for
which the closed-form expression of (f0,β0) is available. Sub-Gaussian assumption as (A2)
is commonly-used in high dimensional analysis (Loh and Wainwright, 2015) for theoretical
convenience. (A2) is satisfied if (X, z) is jointly Gaussian, but also allows other short-tailed
distributions. The first part of (A3) imposes smoothness condition on f0 while the second
part imposes sparseness of the high-dimensional vector. As mentioned in the introduction,
we believe smoothness of f0 in the functional setting is much more reasonable (as illustrated
by the concrete Gaussian example) than the corresponding similar assumption for the stan-
dard non-functional nonlinear SVM, with the detailed arguments presented in Section 5.
(A4) was also used in Xia et al. (2021) where further references are provided with sufficient
conditions for it to hold. We believe that ξ = 2 is the more typical case, assuming the risk
difference to be locally strongly convex.
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Although we do not explicitly impose assumptions on R(u) which is related to the
capacity of the hypothesis space, the learning rate is dependent onR(u) through the positive
scalar un that satisfies R(un) = u2+2r

n (there is a unique such positive value (Bartlett et al.,
2005)).

Theorem 1 Under assumptions (A1)-(A4), setting λ1 = Cu2
n, and λ2 = C

√
logp/n for C

sufficiently large, we have

‖Γ1/2(f̂ − f0)‖2 + ‖β̂ − β0‖2 .
(
E[h(y(〈X, f̂〉+ zTβ̂))]− E[h(y(〈X, f0〉+ zTβ0))]

) 2
ξ

= Op

((
u2+4r
n +

slogp

n

) 1
ξ−1

)
.

As a special case, if sj � j−α for some α > 1, we have

‖Γ1/2(f̂ − f0)‖+ ‖β̂ − β0‖ = Op

(n− α(1+2r)
2(α(1+2r)+1) +

√
slogp

n

) 1
ξ−1

.


The rest of this section is devoted to the proof of Theorem 1. We first state and prove

the following bound for a semiparametric version of Rademacher complexity.

Lemma 1 For any u > 0, v > 0,

E

 sup
f∈L2([0,1])

β∈Rp

(1/n)
∑

i σi(〈Xi, f〉+ zT
i β)

‖Γ1/2f‖/u+ ‖f‖+ ‖β‖1/v

 ≤ C
(
R(u) +

√
logp

n
v

)
,

where σi ∈ {−1, 1}, i = 1, . . . , n are i.i.d. Rademacher variables and

R(u) =

 1

n

∞∑
j=1

min{sj , u2}

1/2

.

We also have

E

[
sup

β,f∈L2([0,1])

∣∣∣∣(P − Pn)
h(y(zTβ + 〈X, f〉))− h(y(zTβ0 + 〈X, f0〉))
‖Γ1/2(f − f0)‖/u+ ‖f − f0‖+ ‖β − β0‖1/v

∣∣∣∣
]
≤ C

(
R(u) +

√
logp

n
v

)
,

where Pn is the empirical measure on the observed data and P is the corresponding popula-
tion measure.

Proof of Lemma 1. First, we have

E

 sup
‖Γ1/2f‖≤u
‖f‖≤1

(1/n)
∑
i

σi〈Xi, f〉

 ≤ CR(u). (2)
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The proof for the above is basically the same as Theorem 41 of Mendelson (2002) adapted
to the functional context, which we also present here for completeness. Indeed, we have
the the Karhunen-Loéve expansion Xi =

∑
j ηijej with Eη2

ij = sj , and we can also expand
f =

∑
j fjej with fj = 〈f, ej〉 being the Fourier coefficients of f . Thus we have

E

[
sup

f :‖Γ1/2f‖≤u,‖f‖≤1

1

n

n∑
i=1

σi〈Xi, f〉

]

= E

 sup
f :
∑
j sjf

2
j≤u2,

∑
j f

2
j≤1

1

n

n∑
i=1

σi〈
∑
j

ηijej ,
∑
j

fjej〉


= E

 sup
f :
∑
j sjf

2
j≤u2,

∑
j f

2
j≤1

1

n

∞∑
j=1

n∑
i=1

σiηijfj

 .
We bound the first moment of the above by the squared root of the second moment. Since
{f :

∑
j sjf

2
j ≤ u2,

∑
j f

2
j ≤ 1} ⊆ {f :

∑
j max{1, sj

u2
}f2
j ≤ 2}, denoting νj = max{1, sj

u2
},

we have that, using the Cauchy-Schwarz inequality,

E

 sup
f :
∑
j sjf

2
j≤u2,

∑
j f

2
j≤1

1

n

∞∑
j=1

n∑
i=1

σiηijfj

2
≤ E

 sup
f :
∑
j νjf

2
j≤2

1

n

∞∑
j=1

n∑
i=1

σiηij√
νj

√
νjfj

2
≤ 2

n2
E

 ∞∑
j=1

(
n∑
i=1

σiηij√
νj

)2


=
2

n

∑
j

sj
νj

=
2

n

∑
j

min{sj , u2}.

This finishes the proof of (2).

For the linear part, we have

E

[
sup
‖β‖1≤v

(1/n)
∑
i

σiz
T
i β

]

≤ E

[
‖(1/n)

∑
i

σizi‖∞

]
sup
‖β‖1≤v

‖β‖1

≤ C

√
logp

n
v, (3)

using the sub-Gaussianity of the components of z.
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Then, the standardized version f ′ := f
‖Γ1/2f‖/u+‖f‖ satisfies ‖Γ1/2f ′‖ ≤ u and ‖f ′‖ ≤ 1,

and thus (2) leads to

E

[
sup
f

(1/n)
∑

i σi〈Xi, f〉
‖Γ1/2f‖/u+ ‖f‖

]
≤ E

 sup
‖Γ1/2f ′‖≤u
‖f ′‖≤1

(1/n)
∑
i

σi〈Xi, f
′〉

 ≤ CR(u). (4)

Similarly (3) leads to

E

[
sup
β

(1/n)
∑

i σiz
T
i β

‖β‖1/v

]
≤ C

√
logp

n
v. (5)

The first part of the lemma is proved by combining (4) and (5).
To obtain the second part of the lemma, we use the symmetrization argument (Pol-

lard, 2012) and the contraction inequality for the Rademacher complexity (Theorem 2.2 of
Koltchinskii (2011)) to get

E

[
sup
β,f

∣∣∣∣(P − Pn)
h(y(〈Xi, f〉+ zTβ))− h(y(〈Xi, f0〉+ zTβ0))

u−1‖Γ1/2(f − f0)‖+ ‖f − f0‖+ v−1‖β − β0‖1

∣∣∣∣
]

≤ CE

[
sup
β,f

∣∣∣∣(1/n)
∑

i σi{h(y(〈Xi, f〉+ zTβ))− h(y(〈Xi, f0〉+ zTβ0))}
u−1‖Γ1/2(f − f0)‖+ ‖f − f0‖+ v−1‖β − β0‖1

∣∣∣∣
]

≤ CE

[
sup
β,f

∣∣∣∣ (1/n)
∑

i σi(〈Xi, f − f0〉+ zT
i (β − β0))

u−1‖Γ1/2(f − f0)‖+ ‖f − f0‖+ v−1‖β − β0‖1

∣∣∣∣
]

≤ C

(
R(u) +

√
logp

n
v

)
.

This finishes the proof. �

The next lemma uses concentration inequality to obtain the high probability bound
corresponding to the expectation bound of Lemma 1. For technical reasons, an additional
term

√
s‖β − β0‖/v in the denominator is necessary.

Lemma 2 With probability at least 1− exp{−min{n H(u,v)
(1+v)log(p∨n) , n

H2(u,v)
(u+v/

√
s)2
}},

sup
β,f∈H

∣∣∣∣(P − Pn)
h(y(zTβ + 〈X, f〉))− h(y(zTβ0 + 〈X, f0〉))

‖Γ1/2(f − f0)‖/u+ ‖f − f0‖+
√
s‖β − β0‖/v + ‖β − β0‖1/v

∣∣∣∣ ≤ CH(u, v),

where H(u, v) = R(u) +
√

logp
n v.

Proof of Lemma 2. Since the hinge loss is Lipschitz, using that∣∣∣∣ h(y(zTβ + 〈X, f〉))− h(y(zTβ0 + 〈X, f0〉))
‖Γ1/2(f − f0)‖/u+ ‖f − f0‖+

√
s‖β − β0‖/v + ‖β − β0‖1/v

∣∣∣∣
≤ C

∣∣∣∣ 〈X, f − f0〉+ zT(β − β0)

‖Γ1/2(f − f0)‖/u+ ‖f − f0‖+
√
s‖β − β0‖/v + ‖β − β0‖1/v

∣∣∣∣
≤ C(‖X‖+ v‖z‖∞),
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and

V ar

(
h(y(zTβ + 〈X, f〉))− h(y(zTβ0 + 〈X, f0〉))

‖Γ1/2(f − f0)‖/u+ ‖f − f0‖+
√
s‖β − β0‖/v + ‖β − β0‖1/v

)
≤ CV ar

(
〈X, f − f0〉+ zT(β − β0)

‖Γ1/2(f − f0)‖/u+ ‖f − f0‖+
√
s‖β − β0‖/v + ‖β − β0‖1/v

)
≤ C(u2 + v2/s),

by the Adamczak bound (pages 24–25 of Koltchinskii (2011)), we have

sup
β,f

∣∣∣∣(P − Pn)
h(y(zTβ + 〈X, f〉))− h(y(zTβ0 + 〈X, f0〉))

‖Γ1/2(f − f0)‖/u+ ‖f − f0‖+
√
s‖β − β0‖/v + ‖β − β0‖1/v

∣∣∣∣
≤ CE

[
sup
β,f

∣∣∣∣(P − Pn)
h(y(zTβ + 〈X, f〉))− h(y(zTβ0 + 〈X, f0〉))

‖Γ1/2(f − f0)‖/u+ ‖f − f0‖+
√
s‖β − β0‖/v + ‖β − β0‖1/v

∣∣∣∣
]

+C(u+ v/
√
s)
√
t/n+ C(‖max

i
‖Xi‖‖ψ1 + v‖max

i
‖zi‖∞‖ψ1)(t/n),

with probability at least 1−e−t, where ‖.‖ψ1 is the Orlicz norm associated with the function
ψ1(x) = ex − 1. By Lemma 2.2.2 of Vaart and Wellner (1996), we have ‖maxi ‖zi‖∞‖ψ1 ≤
Clog(n ∨ p) and ‖maxi ‖Xi‖‖ψ1 ≤ Clogn. By setting t = min{n H(u,v)

(1+v)log(p∨n) , n
H2(u,v)

(u+v/
√
s)2
},

we complete the proof. �

Our last lemma is the key lemma that takes into account the source condition.

Lemma 3 Assume that (1) holds for some r ∈ [0, 1/2]. For any f ∈ L2([0, 1]) and λ > 0,

|λ〈f0, f − f0〉| ≤ C(λ
1
2

+r‖Γ1/2(f − f0)‖+ λ1+r‖f − f0‖).

Proof of Lemma 3.

|λ〈f0, f − f0〉| = λ|〈Γ−rf0,Γ
r(f − f0)〉|

≤ Cλ
1
2

+r‖λ
1
2
−rΓr(f − f0)‖

≤ Cλ
1
2

+r
√
〈f − f0, ((1− 2r)λ+ 2rΓ)(f − f0)〉

≤ C(λ
1
2

+r‖Γ1/2(f − f0)‖+ λ1+r‖f − f0‖),

where the second line uses assumption (1), and the third line uses Young’s inequality for
positive operators λ1−2rΓ2r ≤ (1− 2r)λ+ 2rΓ for r ∈ [0, 1/2]. �
Proof of Theorem 1. We have

1

n

∑
i

h(y(zT
i β̂ + 〈Xi, f̂〉)) + λ1‖f̂‖2 + λ2‖β̂‖1

≤ 1

n

∑
i

h(y(zT
i β0 + 〈Xi, f0〉)) + λ1‖f0‖2 + λ2‖β0‖1.
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Using Lemma 2 and 3, with probability at least 1−exp{−min{n H(u,v)
(1+v)log(p∨n) , n

H2(u,v)
(u+v/

√
s)2
}},

E[h(y(zTβ̂ + 〈X, f̂〉))]− E[h(y(zTβ0 + 〈X, f0〉))] + λ2‖β̂‖1

≤ λ1‖f0‖2 − λ1‖f̂‖2 + λ2‖β0‖1 + C
H(u, v)

u
‖Γ1/2(f̂ − f0)‖+ CH(u, v)‖f̂ − f0‖

+C
H(u, v)

v/
√
s
‖β̂ − β0‖+ C

H(u, v)

v
‖β̂ − β0‖1

= −2λ1〈f0, f̂ − f0〉 − λ1‖f̂ − f0‖2 + λ2‖β0‖1 + C
H(u, v)

u
‖Γ1/2(f̂ − f0)‖+ CH(u, v)‖f̂ − f0‖

+C
H(u, v)

v/
√
s
‖β̂ − β0‖+ C

H(u, v)

v
‖β̂ − β0‖1

≤ Cλ
1/2+r
1 ‖Γ1/2(f̂ − f0)‖+ Cλ1+r

1 ‖f̂ − f0‖ − λ1‖f̂ − f0‖2 + λ2‖β0‖1

+C
H(u, v)

u
‖Γ1/2(f̂ − f0)‖+ CH(u, v)‖f̂ − f0‖+ C

H(u, v)

v/
√
s
‖β̂ − β0‖+ C

H(u, v)

v
‖β̂ − β0‖1

≤ C(λ
1/2+r
1 +

H(u, v)

u
)‖Γ1/2(f̂ − f0)‖+ C(λ1+2r

1 +
H2(u, v)

λ1
)− λ1

2
‖f̂ − f0‖2 + λ2‖β0‖1

+C
H(u, v)

v/
√
s
‖β̂ − β0‖+ C

H(u, v)

v
‖β̂ − β0‖1, (6)

where the last inequality uses uv ≤ uq/q + vp/p with 1/q + 1/p = 1. Setting u = un (un as
defined just before the statement of Theorem 1) and v = u2+2r

n

√
n/logp, with λ1 = Cu2

n,
λ2 = C

√
logp/n, it is easy to see that

C
H(un, v)

v
= C

(
R(un) +

√
logp/nv

v

)
= C

(
u2+2r
n

u2+2r
n

√
n/logp

+
√

logp/n

)
≤ λ2/2.

Thus (6) implies

E[h(y(zTβ̂ + 〈X, f̂〉))]− E[h(y(zTβ0 + 〈X, f0〉))] + λ2‖β̂‖1 +
λ1

2
‖f̂ − f0‖2

≤ C(λ
1/2+r
1 +

H(un, v)

un
)‖Γ1/2(f̂ − f0)‖+ C(λ1+2r

1 +
H2(un, v)

λ1
) + λ2‖β0‖1

+Cλ2

√
s‖β̂ − β0‖+

λ2

2
‖β̂ − β0‖1.

Using ‖β̂‖1 = ‖β̂S‖1 +‖β̂Sc‖1, ‖β̂−β0‖1 = ‖β̂S −β0S‖1 +‖β̂Sc −β0Sc‖1 and ‖β0S‖1−
‖β̂S‖1 ≤ ‖β̂S − β0S‖1, we then have

E[h(y(zTβ̂ + 〈X, f̂〉))]− E[h(y(zTβ0 + 〈X, f0〉))] + λ2‖β̂Sc‖1 +
λ1

2
‖f̂ − f0‖2

≤ C(λ
1/2+r
1 +

H(un, v)

un
)‖Γ1/2(f̂ − f0)‖+ C(λ1+2r

1 +
H2(un, v)

λ1
) + λ2‖β̂S − β0S‖1

+Cλ2

√
s‖β̂ − β0‖+

λ2

2
‖β̂S − β0S‖1 +

λ2

2
‖β̂Sc − β0Sc‖1,

9
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leading to

γ(f̂ , β̂) +
λ2

2
‖β̂Sc‖1 +

λ1

2
‖f̂ − f0‖2

≤ C(λ
1/2+r
1 +

H(un, v)

un
)‖Γ1/2(f̂ − f0)‖

+C(λ1+2r
1 +

H2(un, v)

λ1
) + Cλ2

√
s‖β̂ − β0‖, (7)

using ‖β̂S−β0S‖1 ≤
√
s‖β̂S−β0S‖ ≤

√
s‖β̂−β0‖, where γ(f̂ , β̂) = E[h(y(zTβ̂+〈X, f̂〉))]−

E[h(y(zTβ0 + 〈X, f0〉))] is the risk difference. By some re-arrangement, we have

γ(f̂ , β̂) ≤ C(λ
1/2+r
1 +

H(un, v)

un
+ λ2

√
s)(‖Γ1/2(f̂ − f0)‖+ ‖β̂ − β0‖) + C(λ

1/2+r
1 +

H(un, v)

un
)2.

By assumption (A4) and using Young’s inequality that ab ≤ a
ξ
ξ−1 / ξ

ξ−1 + bξ/ξ, we then have

γ(f̂ , β̂) ≤ C(λ
1
2

+r

1 +
H(un, v)

un
+ λ2

√
s)

ξ
ξ−1 + cγ(f̂ , β̂),

where ξ ≥ 2 is defined in assumption (A4) and c is a constant that can be made smaller
than 1 when applying Young’s inequality. Thus

γ(f̂ , β̂) ≤ C(λ
1
2

+r

1 +
H(un, v)

un
+ λ2

√
s)

ξ
ξ−1 = C(u1+2r

n +
√
slogp/n)

ξ
ξ−1 .

This also implies

‖Γ1/2(f̂ − f0)‖+ ‖β̂ − β0‖ ≤ C(u1+2r
n +

√
slogp/n)

1
ξ−1 .

Finally, note that when sj � j−α, we can easily calculate R(u) � u1−1/α/
√
n and then

un � n−
α

2(α(1+2r)+1) . The bound above then becomes (u1+2r
n +

√
slogp
n )

1
ξ−1 � (n

− α(1+2r)
2(α(1+2r)+1) +√

slogp
n )

1
ξ−1 . �

3. Rate for the linear part

The main purpose of this section is to show that ‖β̂ − β0‖ = Op(
√
slogp/n). As discussed

in the introduction, it is a non-trivial task to remove the effect of the functional part. We
need the following additional assumptions.

(B1) Let g0 = (g01, . . . , g0p)
T ∈ (L2([0, 1]))p with g0j = arg ming E[δ(1 − y(〈X, f0〉 +

zTβ0))(zj −〈X, g〉)2] where δ(.) is the Dirac delta function. We assume maxj ‖g0j‖ ≤
C.

(B2) There exists some constant C > 0 such that, for any f,β with ‖Γ1/2(f − f0)‖ +
‖β − β0‖ ≤ δn := Cn−1/4, we have E[h(y(〈X, f〉 + zTβ0 + (z − 〈X,g0〉)T(β −
β0)))] − E[h(y(〈X, f〉 + zTβ0))] ≥ C‖β − β0‖2 − δ2

n‖β − β0‖, where 〈X,g0〉 =
(〈X, g01〉, . . . , 〈X, g0p〉)T.

10
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Assumptions similar to (B1) often appear in theoretical studies of semiparametric models
to make it possible to transform linear part to make it orthogonal to the nonparametric
part (Li, 2000; Wang et al., 2009). Such orthogonalization is also implicit in (B2) when
we subtract the effect of the functional part from z. Some technical issues are hidden in
the assumption (B2). Note that the delta function that appears in the definition of g0j is
important, which is related to the second derivative of the loss function. The critical role
of the delta function is also highlighted in Section 4 where we discuss why this naturally
appears to make proper orthogonalization. Seemingly Strangely, the way g0 is defined
plays no role in our proof of Theorem 2. However, this issue is clarified in Section 4 that
shows that (B2) can be expected to be satisfied only for such g0 as defined in (B1). As
demonstrated in Section 4, the term δ2

n‖β − β0‖ seems necessary to avoid the pathological
case that ‖Γ1/2(f̂−f0)‖ is much larger than ‖β̂−β0‖ which would destroy the local convexity
at (f0,β0). Such kind of “approximate convexity” also appears in works such as Loh and
Wainwright (2015), where it arises for entirely different reasons.

We could assume E[h(y(〈X, f〉 + zTβ0 + (z − 〈X,g0〉)T(β − β0)))] − E[h(y(〈X, f〉 +
zTβ0))] ≥ C‖β − β0‖ξ − δ2

n‖β − β0‖ for some ξ ≥ 2 as in (A4) with small changes in
proof and convergence rate below, but ξ = 2 seems to be most typical (a locally quadratic
expected loss) and our concrete example to be presented in Section 4 shows the assumption
(B2) is naturally satisfied. Thus in this section we only consider ξ = 2.

Theorem 2 Under the same assumptions as in Theorem 1 with ξ = 2, and u2
n = O(

√
logp/n),

and (B1) and (B2) hold, then ‖β̂ − β0‖ = Op

(√
slogp
n

)
and ‖β̂ − β0‖1 = Op

(
s
√

logp
n

)
.

Proof of Theorem 2. First, we assume u2+4r
n ≤ slogp/n. In this case, Theorem 1

immediately implies ‖β̂ − β0‖ = Op(
√
slogp/n). Furthermore, (7) implies λ2‖β̂Sc‖1 ≤

Cu2+4r
n + Cλ2

√
s‖β̂ − β0‖ ≤ Cslogp/n. Combining this with ‖β̂S − β0S‖1 ≤

√
s‖β̂ − β0‖,

we get ‖β̂ − β0‖1 = Op(s
√

logp/n).

Thus in the rest of the proof, we assume u2+4r
n > slogp/n (the linear part has a faster

rate). In this case, (7) implies ‖f̂ − f0‖ is bounded. To ease notation, let L(f,β) =
1
n

∑
i h(yi(〈Xi, f〉+ zT

i β)) + λ1‖f‖2 + λ2‖β‖1. The key innovative step for proving the rate
of the linear part is to use the basic inequality (as Geer et al. (2000) calls such kind of
comparison inequalities for other models)

L(f̂ , β̂) ≤ L(f̂ + gT
0 (β̂ − β0),β0), (8)

which is true since (f̂ , β̂) minimizes L and g0j ∈ L2([0, 1]). The above can be written as

Pnh(y(〈X, f̂ + gT
0 (β̂ − β0)〉+ zTβ0 + (z− 〈X,g0〉)T(β̂ − β0)))

−Pnh(y(〈X, f̂ + gT
0 (β̂ − β0)〉+ zTβ0)) + λ2‖β̂‖1

≤ λ1‖f̂ + gT
0 (β̂ − β0)‖2 − λ1‖f̂‖2 + λ2‖β0‖1.

The next goal is to replace the empirical measure Pn above by the population measure
P . Let g(X, y, z; f,β) = h(y(〈X, f̂ + gT

0 (β − β0)〉 + zTβ0 + (z − 〈X,g0〉)T(β − β0))) −

11
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h(y(〈X, f̂+gT
0 (β−β0)〉+zTβ0)). We have, similar to the proof in Lemma 1, for any u > 0,

E
[

sup
‖Γ1/2(f−f0)‖≤u,
‖f−f0‖≤C, β

(Pn − P )
g(X, y, z; f,β)

‖β − β0‖1

]

≤ CE
[

sup
‖Γ1/2(f−f0)‖≤u,
‖f−f0‖≤C, β

1

n

∑
i

σi
g(Xi, yi, zi; f,β)

‖β − β0‖1

]

≤ CE
[

sup
β

1

n

∑
i

σi
(zi − 〈Xi,g0〉)T(β − β0))

‖β − β0‖1

]
≤ C

√
logp

n
.

Using the concentration inequality (the Adamczak bound again), by ‖g‖2 ≤ C(‖X‖2 +
‖z‖2)‖β − β0‖2 and |g| ≤ ‖z− 〈X,g0〉‖∞‖β − β0‖1, we get that with probability 1− e−t,

sup
‖Γ1/2(f−f0)‖≤u,
‖f−f0‖≤C, β

(Pn − P )
g(X, y, z; f,β)√

s‖β − β0‖+ ‖β − β0‖1

≤ CE
[

sup
‖Γ1/2(f−f0)‖≤u,
‖f−f0‖≤C, β

(Pn − P )
g(X, y, z; f,β)√

s‖β − β0‖+ ‖β − β0‖1

]

+C

√
t

sn
+ C‖max

i
‖zi − 〈Xi,g0〉‖∞‖ψ1

t

n
.

Setting t = min{slogp,
√
nlogp

log(p∨n)}, we get

sup
‖f−f0‖≤u,
‖f−f0‖≤C, β

(Pn − P )
g(X, y, z; f,β)√

s‖β − β0‖+ ‖β − β0‖1
≤ C

√
logp

n
.

Our assumption that ‖X‖ is sub-Gaussian in particular means Γ is a trace operator with∑∞
j=1 sj < ∞. It is then easy to verify that R(n−1/4) = O(n−1/2) and by the definition of

un, our estimator always has convergence rate Op(n
−1/4). Then, by assumption (B2),

C‖β̂ − β0‖2 − δ2
n‖β̂ − β0‖+ λ2‖β̂‖1

≤ λ1‖f̂ + gT
0 (β̂ − β0)‖2 − λ1‖f̂‖2

+λ2‖β0‖1 + C

√
logp

n
‖β̂ − β0‖1 + C

√
slogp

n
‖β̂ − β0‖. (9)

Noting that ‖f̂−f0‖ is bounded and f0 is fixed implies ‖f̂‖ is bounded, λ1‖f̂+gT
0 (β̂−β0)‖2−

λ1‖f̂‖2 = λ1‖gT
0 (β̂ − β0)‖2 + 2λ1〈f̂ ,gT

0 (β̂ − β0)〉 ≤ Cλ1‖β̂ − β0‖1 ≤ C
√

logp
n ‖β̂ − β0‖1.

12



Functional partially linear SVM

Note that δn ≤ Cn−1/4. From (9) and the Cauchy-Schwartz inequality
√

slogp
n ‖β − β0‖ ≤

C slogp
n + 1

4C ‖β − β0‖2, we have

C‖β̂ − β0‖2 + λ2‖β̂‖1 ≤ λ2‖β0‖1 + C

√
logp

n
‖β̂ − β0‖1 + C

slogp

n
.

Using ‖β‖1 = ‖βS‖1 + ‖βSc‖1, the above displayed implies

C‖β̂ − β0‖2 + λ2‖β̂S‖1 + λ2‖β̂Sc‖1

≤ λ2‖β0S‖1 + C

√
logp

n
‖β̂S − β0S‖1 + C

√
logp

n
‖β̂Sc‖1 + C

slogp

n
.

Moving the second term on the left-hand side to the right side and moving the third term
on the right-hand side to the left side, using that λ2 = C

√
logp/n for a sufficiently large C,

we get

C‖β̂ − β0‖2 + C

√
logp

n
‖β̂Sc‖1 ≤ C

√
logp

n
‖β̂S − β0S‖1 + C

slogp

n
, (10)

which in turn yields

‖β̂ − β0‖1 ≤ C‖β̂S − β0S‖1 + s

√
logp

n
≤ C
√
s‖β̂ − β0‖+ s

√
logp

n
. (11)

Using (11) in (10), we immediately get ‖β̂−β0‖2 ≤ Cslogp/n, and using (11) again we get
‖β̂ − β0‖1 ≤ C(s

√
logp/n).

4. Discussions on assumption (B2)

First, we argue informally why we use E[h(y(〈X, f〉+ zTβ0 + (z− 〈X,g0〉)T(β − β0)))]−
E[h(y(〈X, f〉+zTβ0))] ≥ C‖β−β0‖2 (ignoring the term δ2

n‖β−β0‖ for now). In particular,
we argue why assumption (B2) cannot be changed to E[h(y(〈X, f〉+zTβ0 +zT(β−β0))]−
E[h(y(〈X, f〉+ zTβ0))] ≥ C‖β − β0‖2 which looks simpler. In the following, we show that
the latter cannot be expected to be satisfied unless X and z are independent.

We first develop intuition by considering a convex smooth loss `(y, 〈X, f〉+zTβ) instead
of the hinge loss. The parallel derivations for the hinge loss follows similarly. Using Taylor’s
expansion, and that (f0,β0) minimizes `(y, 〈X, f〉+ zTβ), we have

E[`(y, 〈X, f〉+ zTβ)]− E[`(y, 〈X, f〉+ zTβ0)]

≈ E[`′(y, 〈X, f〉+ zTβ0)zT(β − β0)] + 0.5E[`′′(y, 〈X, f〉+ zTβ0){zT(β − β0)}2]

≈ E[{`′(y, 〈X, f〉+ zTβ0)− `′(y, 〈X, f0〉+ zTβ0)}zT(β − β0)]

+0.5E[`′′(y, 〈X, f0〉+ zTβ0){zT(β − β0)}2]

≈ E[{`′′(y, 〈X, f0〉+ zTβ0)〈X, f − f0〉zT(β − β0)]

+0.5E[`′′(y, 〈X, f0〉+ zTβ0){zT(β − β0)}2], (12)

where `′ and `′′ denote the first and the second derivative with respect to the second ar-
gument, respectively, and in the second step we use that E[`′(y, 〈X, f0〉 + zTβ0)zT] = 0

13
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which is a first order condition for the optimality of (f0,β0). The second term in (12)
is naturally expected to be quadratic since `′′ ≥ 0 due to convexity, but in general the
first term is hard to control and thus E[`(y, 〈X, f〉 + zTβ)] − E[`(y, 〈X, f〉+zTβ0)] ≥
C‖β − β0‖2 in general will not hold when f 6= f0. On the other hand, if we define
g0 = arg ming=(g1,...,gp)T E[`′′(y, 〈X, f0〉 + zTβ0)(z − 〈X,g〉)2], we have by the same ar-
guments

E[`(y, 〈X, f〉+ zTβ0 + (z− 〈X,g0〉)T(β − β0))]− E[`(y, 〈X, f〉+ zTβ0)]

≈ E[{`′′(y, 〈X, f0〉+ zTβ0)〈X, f − f0〉(z− 〈X,g0〉)T(β − β0)]

+0.5E[`′′(y, 〈X, f0〉+ zTβ0){(z− 〈X,g0〉)T(β − β0)}2],

and the first term on the right-hand side above is exactly zero due to that the definition of
g0 as a (weighted) projection making E[{`′′(y, 〈X, f0〉 + zTβ0)X(z − 〈X,g0〉)T] = 0. Thus
we naturally can expect

E[`(y, 〈X, f〉+ zTβ0 + (z− 〈X,g0〉)T(β − β0))]− E[`(y, 〈X, f〉+ zTβ0)] ≥ C‖β − β0‖2.

For the hinge loss, although the loss is not differentiable, the expected loss is and the
second derivative is formally given by an expression involving the delta function, and thus
assumption (B2) is reasonable.

In the second part of this section, we provide a concrete example when (B2) is satisfied,
by making the above discussions rigorous under the Gaussian assumption for (X, z). We
use the following specific setup.

Let W = (X, z) ∈ L2([0, 1])× Rp considered to be in a product Hilbert space. Assume
W given y = 1 has a Gaussian distribution in the sense that 〈W,F 〉 = 〈X, f〉 + zTβ is
Gaussian for all F = (f,β), and similarly for y = −1. The mean and the covariance
operator of W (conditional on y = 1) is denoted by µ = (µ1, µ2) and Σ = {Σjj′}2j,j′=1 based
on the partition W = (X, z).

As shown in Koo et al. (2008), both the first the second derivatives of the expected
hinge loss are well-defined. We have

E[h(y(〈X, f〉+ zTβ0 + (z− 〈X,g0〉)T(β − β0)))]− E[h(y(〈X, f〉+ zTβ0))]

= −E[I{y(〈X, f〉+ zTβ0) ≤ 1}y(z− 〈X,g0〉)T(β − β0)

+0.5E[δ(1− y〈X, f∗〉 − yzTβ∗){(z− 〈X,g0〉)T(β − β0)}2]

= −E[(I{y(〈X, f〉+ zTβ0) ≤ 1} − I{y(〈X, f0〉+ zTβ0) ≤ 1})y(z− 〈X,g0〉)T(β − β0)]

+0.5E[δ(1− y〈X, f∗〉 − yzTβ∗){(z− 〈X,g0〉)T(β − β0)}2]

= E[δ(1− y(〈X, f∗〉+ zTβ0))〈X, f − f0〉 · (z− 〈X,g0〉)T(β − β0)]

+0.5E[δ(1− y〈X, f∗〉 − yzTβ∗){(z− 〈X,g0〉)T(β − β0)}2]

= E[δ(1− y(〈X, f0〉+ zTβ0))〈X, f − f0〉 · (z− 〈X,g0〉)T(β − β0)]

+0.5E[δ(1− 〈X, f0〉 − zTβ0){(z− 〈X,g0〉)T(β − β0)}2]

+0.5E[{δ(1− y〈X, f∗〉 − yzTβ∗)− δ(1− y〈X, f0〉 − yzTβ0)}{(z− 〈X,g0〉)T(β − β0)}2]

+E[{δ(1− y(〈X, f∗〉+ zTβ0))− δ(1− y(〈X, f0〉+ zTβ0))}
·〈X, f − f0〉 · (z− 〈X,g0〉)T(β − β0)], (13)
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with β∗ lying between β0 and β, f∗ between f0 and f (different appearances of f∗ may mean
different values in the above), where the second equality is due to the first-order optimality
conditions E[I{y(〈X, f0〉+zTβ0) ≤ 1}yz] = 0 and E[I{y(〈X, f0〉+zTβ0) ≤ 1}yX] = 0, the
first and the third equality use Taylor’s expansion, and the last equality is obtained simply
by adding and subtracting the same terms.

Importantly, the first term of (13) is zero by the first-order optimality condition of the
weighted quadratic problem that defines g0 in (B1). The second term can naturally be
assumed to be bounded below by C‖β − β0‖2. The third term and the fourth term can be
bounded in similar ways as follows.

Let F ∗ = (f∗,β∗), F0 = (f0,β0). Then we write

E[{δ(1− y〈X, f∗〉 − yzTβ∗)− δ(1− y〈X, f0〉 − yzTβ0)}{(z− 〈X,g0〉)T(β − β0)}2]

= E[{δ(1− y〈W,F ∗〉)− δ(1− y〈W,F0〉)}g(W,β)],

where g(W,β) = {(z−〈X,g0〉)T(β−β0)}2. By the calculations in the Appendix B of Lian
and Fan (2018), we have in the Gaussian setting

E[{δ(1− y〈W,F ∗〉)}g(W,β)]

= p0E[{δ(1 + 〈W,F ∗〉)}g(W,β)|y = −1] + p1E[{δ(1− 〈W,F ∗〉)}g(W,β)|y = 1]

= p0q∗(−1)E[g(W,β)|y = −1, 〈W,F ∗〉 = −1] + p1q∗(1)E[g(W,β)|y = 1, 〈W,F ∗〉 = 1],

and similarly

E[{δ(1− y〈W,F0〉)}g(W,β)]

= p0q0(−1)E[g(W,β)|y = −1, 〈W,F0〉 = −1] + p1q0(1)E[g(W,β)|y = 1, 〈W,F0〉 = 1],

where p0 = P (y = −1), p1 = P (y = 1), q∗(1) (q∗(−1)) is the (Gaussian) density of 〈W,F ∗〉
at 1 given y = 1 (the density of 〈W,F ∗〉 at −1 given y = −1), and q0(1) (q0(−1)) is the
density of 〈W,F0〉 at 1 given y = 1 (the density of 〈W,F0〉 at −1 given y = −1). Without
loss of generality we only consider expectations conditional on y = 1 below since the case
for y = −1 is the same. In the following, the distributions are always conditional on y = 1.

Due to the Gaussianity assumption, these conditional expectations have closed-form
expressions. More specifically, the joint distribution of (〈W,F ∗〉, z− 〈X,g0〉) is(

〈W,F ∗〉
z− 〈X,g0〉

)
∼
((

η1

η2

)
,

(
Θ11 Θ12

Θ21 Θ22

))
,

where η1 = 〈µ1, f
∗〉+µT

2 β
∗, η2 = µ2−〈µ1,g0〉, Θ11 = 〈f∗,Σ11f

∗〉+β∗TΣ22β
∗+2β∗TΣ21f

∗,
Θ21 = −gT

0 Σ11f
∗−gT

0 Σ12β
∗+ Σ21f

∗+ Σ22β
∗, Θ12 = ΘT

21, Θ22 = Σ22 +gT
0 Σ11g0−gT

0 Σ12−
Σ21g0 (here we regard g0 naturally as an operator from Rp to (L2([0, 1]))p). And we have
the conditional distribution

(z− 〈X,g0〉)T(β − β0)|〈W,F ∗〉 = 1 ∼ N(a1, b1),

where a1 = (η2−Θ21Θ−1
11 (1−η1))T(β−β0), b1 = (β−β0)T(Θ22−Θ21Θ−1

11 Θ12)(β−β0) and
E[g(W,β)|y = 1, 〈W,F ∗〉 = 1] = a2

1 + b1. Similarly E[g(W,β)|y = 1, 〈W,F0〉 = 1] = a2
2 + b2

where (a2, b2) differs from (a1, b1) by changing f∗ to f0 and changing β∗ to β0 in the various
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expressions above. Furthermore, q∗(1) = 1√
2π

exp{− (1−η1)2

2Θ2
11
}, for example. From these

expressions, and that ‖Σ11(f−f0)‖+‖β−β0‖ ≤ δn, we can easily get if µ1 ∈ Σ
1/2
11 L

2([0, 1]),

Σ
−1/2
11 Σ12 is a bounded operator, f0Σ11f0 > 0 then

|E[{δ(1− y〈W,F ∗〉)}g(W,β)]− E[{δ(1− y〈W,F0〉)}g(W,β)]| ≤ Cδn‖β − β0‖2.

Similarly the fourth term of (13) is O(δ2
n‖β−β0‖), which gives the additional term in the

lower bound leading to “approximate convexity”.
Summarizing the above, we have proved the following proposition.

Proposition 1 Assume the following assumptions:

(C1) Conditional on y = 1 (similary for y = −1), (X, z) is jointly Gaussian with mean

(µ1, µ2) and Σ =

(
Σ11 Σ12

Σ21 Σ22

)
,

(C2) 〈f0,Σ11f0〉 > 0, Σ
−1/2
11 µ1 ∈ L2([0, 1]), Σ

−1/2
11 Σ12 is a bounded operator, and E[δ(1 −

y(〈X, f0〉+ zTβ0)(z− 〈X,g0〉)⊗2] is also positive-definite.

Then we have that there exists some constant c > 0 such that for any f,β with ‖Γ1/2(f −
f0)‖+ ‖β − β0‖ ≤ δn = Cn−1/4,

E[h(y(〈X, f〉+ zTβ0 + (z− 〈X,g0〉)T(β − β0)))]− E[h(y(〈X, f〉+ zTβ0))]

≥ c‖β − β0‖2 − δ2
n‖β − β0‖.

From the above calculations, we can see that the reason for the appearance of the
additional term δ2

n‖β − β0‖ can roughly be explained as follows. When we use Taylor’s
expansion to approximate the risk difference, the main term is the quadratic term C‖β −
β0‖2, while the higher order term involves terms such as ‖Γ1/2(f−f0)‖2‖β−β0‖. However,
if ‖Γ1/2(f−f0)‖2 > ‖β−β0‖, this term is not actually “higher-order”. To deal with this, we
relax the condition to be that the risk difference is bounded below by C‖β−β0‖2−δ2

n‖β−β0‖
which then reasonably holds based on Taylor’s expansion. We would automatically have
the quadratic lower bound C‖β− β0‖2 if the loss were the least squares loss instead of the
hinge loss.

5. Discussions on the RKHS setting

In this paper, we have established the learning rate of functional partially linear SVM,
including the overall rate and the possibly faster rate for the high-dimensional linear part.

We can also put the functional coefficient f in a RKHS, with few modifications in the
proof. We assume f0 is in an RKHS H ⊆ L2([0, 1]), characterized by a bivariate positive
definite kernel function K(., .). K also denotes the operator Kf =

∫
[0,1]K(t, .)f(t)dt. We

assume
∫∫

[0,1]2 K
2(s, t) ds dt <∞, which guarantees that the operator K is compact. Under

the additional assumption that sups,tK(s, t) <∞, it is also a trace operator. The spectral

theory for T := K1/2ΓK1/2 yields

T =
∞∑
j=1

sjej ⊗ ej ,

16



Functional partially linear SVM

with eigenvalues s1 ≥ s2 ≥ · · · > 0 and eigenfunctions e1, e2, . . .. Our estimator is now

(f̂ , β̂) = arg min
f∈H,β

1

n

n∑
i=1

h(yi(〈Xi, f〉+ zT
i β)) + λ1‖f‖2H + λ2‖β‖1,

where ‖.‖H is the RKHS norm (the RKHS inner product is denoted by 〈., .〉H).
We can show under straightforward modifications of the assumptions, most notably that

the source condition becomes ‖T−rf0‖H ≤ C for some r ∈ [0, 1/2], and also ‖g0j‖H ≤ C, we
have ‖Γ1/2(f − f0)‖+ ‖β − β0‖ ≤ C(u1+2r

n +
√
slogp/n) (with ξ = 2 in assumption (A4))

and ‖β − β0‖ ≤ C
√
slogp/n.

To see that we only need minor modifications in the proof to deal with this RKHS setting,
note that since H = K1/2(L2([0, 1])) and the mapping K1/2 is isometric from L2([0, 1]) to
H (Wahba, 1990), we have 〈X, f〉 = 〈K1/2X,K−1/2f〉 and ‖f‖2H = ‖K−1/2f‖2. Then the
proofs in Section 2 and Section 3 can be followed line by line by regarding K1/2X as the
functional predictor, and the RKHS norm or inner product involving f can all be converted
to L2 norm and L2 inner product involving K−1/2f . Note that the covariance operator of
K1/2X, given by E[(K1/2X)⊗(K1/2X)], is exactly T . Thus T plays the role of Γ in Section
2. The details are contained in the appendix.

We now discuss the setup of Xia et al. (2021), which considered the non-functional setting
by replacing 〈X, f〉 in our model by f(x) (for simplicity we again assume the domain of f
is [0, 1] but this is non-essential). They define the estimation target in an RKHS H to be

(f∗,β∗) = arg min
f∈H,β∈Rp

E[h(y(f(x) + zTβ))]. (14)

Note the minimization is over the RKHS H, and f∗ is considered to be a certain approx-
imation to the “true” function f0 which may be outside H. However, the well-posedness
of (14) is a very strong assumption even in the nonparametric case with β0 = 0. The
reason is that it is known that under mild measurability assumptions the minimizer of
arg minf∈L2([0,1])E[h(yf(x))] is f = sign{P (y = 1|x)− 1/2} except on the set P (y = 1|x) =
1/2 (Bartlett et al., 2006). Thus, due to the discontinuity of the sign function, in general, one
would expect f is not smooth and only in L2([0, 1]). Furthermore, since H is typically dense
in L2([0, 1]), this means inff∈HE[h(yf(x))] is not achieved for a f ∈ H, and in typical sit-
uations one has a sequence fn ∈ H such that E[h(yfn(x))]→ arg minf∈L2([0,1])E[h(yf(x))]
with ‖fn‖H →∞ (if the sequence were bounded, by the weak compactness of the unit ball
in a Hilbert space, there would be a converging subsequence in H converging to a minimizer
in H with bounded norm, which would lead to a contradiction). One could deal with this
problem by considering the minimization over {f : ‖f‖ ≤ C}. However, unless C → ∞,
the approximation error of this estimator does not converge to zero. If inff∈HE[h(yf(x))]
is achievable, then our Theorem 1 indeed produces the same learning rate as Xia et al.
(2021) (note that f(x) = 〈f,K(x, .)〉H and thus the proof is basically the same as in the
functional case with the functional predictor replaced by K(x, .)), although their result is
limited to r = 0 and only for the overall rate combining the nonparametric and the linear
parts. Alternatively, Wu and Zhou (2006); Steinwart and Scovel (2007) used a regularized
loss to make the minimization problem in H well-defined.

In our functional setting, for the problem arg minf∈L2([0,1])E[h(y〈X, f〉)], the minimizer
is achievable and f can also be a smooth function. To see a concrete example, again consider
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the Gaussian setting for X conditional on y. Following the same calculations as in Koo et al.
(2008) (in particular their equation (8)), the minimizer is f0 ∝ Γ−1(E[X|y = 1)−E[X|y =
−1]) (when this expression is well-defined), and thus one can certainly construct concrete
example such that f0 ∈ Γr(L2([0, 1])) for any r ≥ 0, as long as E[X|y] is assumed to be
sufficiently smooth.

6. Simulations

We illustrate the performances of the functional partial linear SVM for classification via sim-
ulations. The simulated data are generated from the following model. First, yi are generated
from the binary distribution P (yi = 1) = P (yi = −1) = 0.5. Given yi = 1, zi is gener-
ated from a multivariate normal distribution with mean µ = (0.1, 0.2, 0.3, 0.4, 0.5, 0, . . . , 0)T

and covariance matrix Σ = (σjj′) with σjj = 1 for all j, and σjj′ = −0.2 if j ≤ 5, j′ ≤
5, j 6= j′ and σjj′ = 0 otherwise. The functional predictor Xi(t) is generated by Xi(t) =∑50

k=1 ξikφk(t) where φ2l−1 = 2−1/2 cos{(2l − 1)πt} and φ2l = 2−1/2 sin{(2l − 1)πt}(l =
1, . . . , 25; t ∈ T = [0, 1]) are Fourier basis functions.
Case 1: ξik are independent and identically distributed as N(bk, 16k−2) for different i where
b1 = 0.1, b2 = 0.2, b3 = 0.3, b4 = 0.4, bk = 0.8/(k − 2)4.
Case 2: This case is the same as Case 1 expcet that we allow moderate correlation be-
tween Xi(t) and zi by giving a correlation structure specified by corr(ξik, zil) = r|k−l|+1 for
k = 1, . . . , 4, l = 1, . . . , 5, with r = 0.2.
Case 3: ξik are independent and identically distributed as N(bk, 4k

−1) for different i where
b1 = 0.1, b2 = 0.2, b3 = 0.3, b4 = 0.4, bk = 0.8/(k − 2)4.
Given yi = −1, zi is generated from a multivariate normal distribution with mean −µ and
covariance matrix Σ. The functional predictor Xi(t) is generated in the same way as given
yi = 1 but with ξik from normal with negative mean in all three cases. The true func-
tional coefficient has the form f(t) =

∑50
k=1 fkφk(t), a linear combination of the eigenbasis.

Therefore, we numerically minimize

min
fk,β

1

n

n∑
i=1

h(yi(

50∑
k=1

ξikfk + zT
i β)) + λ1

50∑
k=1

f2
k + λ2‖β‖1.

By the equations (28) and (29) in Peng et al. (2016), the true parameters can be numer-
ically calculated. The minimization problem is solved by the semismooth newton coor-
dinate descent algorithm proposed by Yi and Huang (2017). We consider sample sizes
n = 200, 400, 600, 800, 1000, 1500 with p = 1000 and use an independent tuning data set
of size 10n to choose the tuning parameters by minimizing the prediction error. For each
simulation scenario, we use 200 repetitions. The estimation accuracy is measured by three
criteria:

• Prediction error on an independent test dataset with 10n sample size;

• L2 estimation error for the linear part ‖β̂ − β0‖2/‖β0‖2;

• L2 estimation error for the functional part ‖Γ1/2(f̂(t) − f0(t))‖/‖Γ1/2f0(t)‖ where
‖Γ1/2(f̂(t) − f0(t))‖ = {

∑50
k=1 sk(f̂k − f0k)

2}1/2, ‖Γ1/2f0(t)‖ = {
∑50

k=1 skf
2
0k}1/2 and

sk is the variance of ξik.
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We normalize the L2 estimation error by the norm of the true parameters to make it
more comparable for different cases. The prediction error is showed in Figure 1 for Case 1
and Case 2. Since the figure for Case 3 is very similar with Case 1 and we omit it. The
oracle prediction error shown in Figure 1 is the predictor error obtained by the true (f0,β0).
The results show that the prediction error becomes closer to the oracle one as sample size
increases.

Next we plot the L2 error for the linear part and functional part vesus
√

logp/n. In
Figure 2, we see that the linear error is indeed proportional to

√
logp/n in all cases. Com-

paring Case 1 with Case 2, the errors for the latter are larger, which is possibly due to
the correlation between the linear part and the functional part making the estimation more
difficult. Comparing Case 1 with Case 3, we see the errors for the functional part for the
latter is larger, due to that the eigenvalues of the covariance operator Γ decay slower for
Case 3, which is consistent with our theoretical results.
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Figure 1: Boxplot of prediction errors for Case 1 and Case 2.
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the errors for the functional part.
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Appendix: Details on the RKHS setting

We assume that f0 is in a RKHSH ⊆ L2([0, 1]), characterized by a bivariate positive definite
kernel function K(., .). Our estimator is now

(f̂ , β̂) = arg min
f∈H,β

1

n

n∑
i=1

h(yi(〈Xi, f〉+ zT
i β)) + λ1‖f‖2H + λ2‖β‖1,

where ‖.‖H is the RKHS norm (the RKHS inner product is denoted by 〈., .〉H).
Let K also denote the integral operator Kf =

∫
[0,1]K(t, .)f(t)dt. We assume that∫∫

[0,1]2 K
2(s, t) ds dt < ∞, which guarantees that the operator K is compact. Under the

additional assumption that supsK(s, s) < ∞, it is also a trace operator. By the Riesz
representation theorem, the operator K satisfies 〈f,Kg〉H = 〈f, g〉.

Note that since the square-root operator K1/2 is isometric from L2([0, 1]) to H (Wahba,
1990), we have H = K1/2(L2([0, 1])). To facilitate theoretical analysis, we reformulate the
problem. Since we have 〈X, f〉 = 〈K1/2X,K−1/2f〉 and ‖f‖2H = ‖K−1/2f‖2, our estimator
is equivalent to

(f̂ , β̂) = arg min
f∈H,β

1

n

n∑
i=1

h(yi(〈K1/2Xi,K
−1/2f〉+ zT

i β)) + λ1‖K−1/2f‖2 + λ2‖β‖1.

Let g = K−1/2f , and the above is equivalent to finding an optimization in L2([0, 1]) such
that

(ĝ, β̂) = arg min
g∈L2([0,1]),β

1

n

n∑
i=1

h(yi(〈K1/2Xi, g〉+ zT
i β)) + λ1‖g‖2 + λ2‖β‖1.

and the desired estimator in the RKHS is f̂ = K1/2ĝ. Regarding K1/2X as the new
functional predictor, we can imitate the proofs in Section 2 and 3. Define a new operator

T = E[(K1/2X)⊗ (K1/2X)] = K1/2ΓK1/2,

which plays the role of Γ in Section 2 and 3. By the Mercer’s Theorem, T has a spectral
expansion given by

T =

∞∑
j=1

sjej ⊗ ej ,

where s1 ≥ s2 ≥ · · · > 0 are the eigenvalues with sj → 0 and {ej} are the orthonormalized
eigenfunctions in L2([0, 1]). We shall see that the statistical convergence rate depends on
the decay rate of eigenvalues of T . Now the source condition becomes

‖T−rf0‖H ≤ C, for some r ∈ [0, 1/2]. (15)

Then the proofs in Section 2 can be followed line by line by regarding g as the target and
we have

‖T 1/2(g − g0)‖+ ‖β − β0‖ ≤ C(u1+2r
n +

√
slogp/n). (16)
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Furthermore,

‖T 1/2(g − g0)‖ = 〈T 1/2K−1/2(f − f0), T 1/2K−1/2(f − f0)〉
= 〈TK−1/2(f − f0),K−1/2(f − f0)〉
= 〈K1/2Γ(f − f0),K−1/2(f − f0)〉
= 〈Γ(f − f0), (f − f0)〉 = ‖Γ1/2(f − f0)‖.

Thus (16) is equivalent to

‖Γ1/2(f − f0)‖+ ‖β − β0‖ ≤ C(u1+2r
n +

√
slogp/n).

At last, for the convergence rate of linear part, we should modify assumption (B1) to

(B1′) Let g0 = (g01, . . . , g0p)
T with g0j = arg ming E[δ(1− y(〈X, f0〉+ zTβ0))(zj − 〈X, g〉)2]

where δ(.) is the Dirac delta function. We assume that g0j ∈ H, ∀j and maxj ‖g0j‖H ≤
C.

Following the proofs line by line in Section 3, we can obtain ‖β − β0‖ ≤ C
√
slogp/n for

ξ = 2 in assumption (A4). Formally, we state the result as follows.

Theorem 3 Under the same assumptions as for Theorem 1, except that we now assume
f0 ∈ H, (A4) is assumed to hold with f ∈ H, and the source condition is replaced by (15),
we have

‖Γ1/2(f − f0)‖+ ‖β − β0‖ = Op(u
1+2r
n +

√
slogp/n).

Furthermore, under the additional assumptions (B1′) and (B2) (with f in (B2) assumed to

be in H), and ξ = 2, we have ‖β̂ − β0‖ = Op

(√
slogp
n

)
and ‖β̂ − β0‖1 = Op

(
s
√

logp
n

)
.
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