
Journal of Machine Learning Research 23 (2022) 1-77 Submitted 9/21; Revised 3/22; Published 4/22

Provable Tensor-Train Format Tensor Completion by
Riemannian Optimization

Jian-Feng Cai jfcai@ust.hk

Jingyang Li jlieb@connect.ust.hk

Dong Xia madxia@ust.hk

Department of Mathematics

Hong Kong University of Science and Technology

Hong Kong SAR, China

Editor: Prateek Jain

Abstract

The tensor train (TT) format enjoys appealing advantages in handling structural high-
order tensors. The recent decade has witnessed the wide applications of TT-format tensors
from diverse disciplines, among which tensor completion has drawn considerable attention.
Numerous fast algorithms, including the Riemannian gradient descent (RGrad), have been
proposed for the TT-format tensor completion. However, the theoretical guarantees of these
algorithms are largely missing or sub-optimal, partly due to the complicated and recursive
algebraic operations in TT-format decomposition. Moreover, existing results established
for the tensors of other formats, for example, Tucker and CP, are inapplicable because
the algorithms treating TT-format tensors are substantially different and more involved.
In this paper, we provide, to our best knowledge, the first theoretical guarantees of the
convergence of RGrad algorithm for TT-format tensor completion, under a nearly optimal
sample size condition. The RGrad algorithm converges linearly with a constant contraction
rate that is free of tensor condition number without the necessity of re-conditioning. We
also propose a novel approach, referred to as the sequential second-order moment method,
to attain a warm initialization under a similar sample size requirement. As a byproduct,
our result even significantly refines the prior investigation of RGrad algorithm for matrix
completion. Lastly, statistically (near) optimal rate is derived for RGrad algorithm if the
observed entries consist of random sub-Gaussian noise. Numerical experiments confirm our
theoretical discovery and showcase the computational speedup gained by the TT-format
decomposition.

Keywords: tensor completion, Riemannian gradient descent, tensor-train decomposition,
tensor-train SVD, spectral initialization.

1. Introduction

An m-th order tensor is an m-dimensional array, that is, a matrix is a 2nd-order tensor.
Tensor completion refers to the task of recovering the whole tensor by observing only a
small subset of its entries. Of course, this is possible only when the underlying tensor
possesses certain structural properties such that the tensor of interest actually lies in a
low-dimensional space. Throughout this paper, we assume that the tensor of interest is
low-rank. There are diverse applications that drive the research of tensor completion: vi-
sual data in-painting (Liu et al., 2012; Li et al., 2017), medical imaging (Gandy et al., 2011;
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Semerci et al., 2014; Cheng et al., 2017; Wang and Li, 2020), seismic data analysis (Kreimer
et al., 2013; Ely et al., 2013), personalized medicine (Soroushmehr and Najarian, 2016;
Pawlowski, 2019), to name a few. It is a natural generalization of the well-explored matrix
completion (Candès and Recht, 2009; Candès and Tao, 2010; Cai et al., 2010; Recht, 2011;
Davenport and Romberg, 2016; Xia and Yuan, 2021; Chen et al., 2019b; Cai et al., 2016; Xia
and Koltchinskii, 2016; Sun and Luo, 2016; Jain et al., 2013; Keshavan et al., 2010). While
seeming, at least conceptually, a straightforward extension of matrix completion, the multi-
linear nature of tensors poses unprecedented challenges to tensor completion from multiple
fronts. For instance, convex relaxation by matrix nuclear norm is a prevailing approach
for low-rank matrix completion, whereas tensor nuclear norm, also a convex function, is
generally NP-hard (Hillar and Lim, 2013) to compute. This computational hardness exists
in many tensor-related convex functions such as tensor operator norm. As a result, the trick
of convex relaxation for tensor completion can be computationally infeasible in some cases.
Moreover, another phenomenon making tensor completion fundamentally different from
matrix completion is the gap between the information-theoretical sample complexity (the
number of observed entries for example) and that required by polynomial-time algorithms.
Indeed, it is known that matrix completion is solvable by fast algorithms with a nearly op-
timal sample complexity (Gross, 2011; Candès and Recht, 2009). However, evidence (Barak
and Moitra, 2016) has been found showing that the sample size required by polynomial-
time algorithms for tensor completion is significantly larger than the information-theoretical
sample complexity. This phenomenon is also observed in other tensor-related problems such
as tensor PCA (Zhang and Xia, 2018; Brennan et al., 2018) and tensor clustering (Luo and
Zhang, 2020).

Since a multi-linear array can always be re-arranged into a matrix, tensor completion
can also be re-formulated as matrix completion. Along this direction are some representable
works (Liu et al., 2012; Song et al., 2019; Yuan and Zhang, 2017; Gandy et al., 2011; Mu
et al., 2014). These methods, while easy to implement (borrowing state-of-art conclusions
from matrix completion), suffer from unnecessarily high computational cost because the
intrinsic tensor structure is abandoned and the resultant matrix lies in a much higher
dimensional space. To overcome these issues, methods for tensor completion better act
on the low-rank tensor structure directly. Unlike matrices whose ranks are universally
defined, there exist multiple widely-accepted definitions of the rank(s) for tensors and,
hence, different formats of tensor decomposition. Existing literature of tensor completion,
especially those with theoretical investigations, mainly focus on the CP format and Tucker
format. The CP decomposition of a tensor seeks a representation by the sum of a minimal
number, called the CP rank, of rank-one tensors. Under the assumption that the underlying
tensor is CP decomposable with r orthogonal components, Jain and Oh (2014) proposed
a fast alternating minimization algorithm for exactly completing a d × d × d tensor using
merely O(κ4

0r
5d3/2 · Polylog(d)) randomly observed entries, where κ0 denotes the tensor

condition number (see formal definition in Section 2). Later, Barak and Moitra (2016)
introduced a semi-definite programming, referred to as the sum-of-squares (SOS) hierarchy,
and demonstrated that this polynomial-time method can approximately recover the tensor
using a similar number of observed entries, even if the CP components are not orthogonal.
Then, in Potechin and Steurer (2017), the authors further proved that, with orthogonal CP
components, SOS method can exactly recover the tensor by observing O(rd3/2 · Polylog(d))
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randomly sampled entries. Kivva and Potechin (2020) focused on the regime r > d and
proved that exact completion from O(rd3/2 ·Polylog(d)) samples for random tensors with CP
rank less than r is possible with high probability using SOS. Even though SOS is a provably
polynomial-time method, it usually runs very slowly making it impractical for real-world
applications. Meanwhile, the orthogonal decomposability is a rather restrictive assumption.
Still restricted to the CP format, a spectral algorithm was proposed by Montanari and Sun
(2018) which approximately recovers the tensor under a sample size requirement comparable
to Potechin and Steurer (2017). The spectral algorithm runs very fast, so it is more scalable
to large tensors. More recently, based on many sample splittings, Liu and Moitra (2020)
proposed an algorithm, combining both non-convex and convex ideas, to exactly recover a
tensor with robust linearly independent components. Other representable works include Bi
et al. (2018); Ibriga and Sun (2021); Sun et al. (2017); Cai et al. (2020) and etc.

The Tucker rank of a tensor refers to the rank of the matrices obtained by tensor unfold-
ing. An m-th order tensor of size d×· · ·×d admits m ways of unfolding, so the Tucker rank
consists of a collection of m matrix ranks. Tucker decomposition factorizes the tensor into
the multi-linear product of a core tensor and m orthonormal matrices, usually referred to as
the singular vectors. The core tensor is usually small-sized but still of order m. Tucker de-
composition is always attainable via higher-order singular value decomposition (HOSVD).
Readers are suggested to Kolda and Bader (2009) for more details. Presuming low Tucker
ranks, Huang et al. (2015) designed a polynomial-time algorithm, by tensor unfolding and
(matrix) nuclear norm minimization, for tensor completion. Due to the unbalanced unfold-
ing of odd-order tensors, their algorithm requires a random sample of O(rdd

m
2
e · Polylog(d))

entries for completing an m-th order tensor. Zhang (2019) proposed a special sampling
scheme showing that O(rd+rm) entries suffice to exactly recover the unknown tensor. Con-
vex approach by tensor nuclear norm minimization, albeit being computationally infeasible,
was studied in Yuan and Zhang (2016) which completes the tensor by using O(r1/2dm/2)
randomly sampled entries. Later, Xia and Yuan (2019) investigated a polynomial time al-
gorithm for exact tensor completion with a sample complexity O(κ2

0r
mdm/2 ·Polylog(d))) via

gradient descent on the Grassmannian manifold, but the iteration complexity was not pro-
vided. More recently, Tong et al. (2021) introduced a scaled gradient descent algorithm and
derived an iteration complexity that is free of the condition number. In Xia et al. (2021), a
fast higher-order orthogonal iteration algorithm was proposed for noisy tensor completion
achieving a statistically optimal rate with a sample complexity O(rm/2dm/2 · Polylog(d)).
The rate was derived under sub-Gaussian noise and is optimal w.r.t. the model complexity
and sample size, which is, however, not proportional to the noise variance.

Despite the popularity of CP format and Tucker format in applications and theories,
both these two formats have their pros and cons. The CP decomposition is more friendly
for interpreting the principal components of tensors, and the required degree of freedom
O(mrd) grows linearly with respect to the order m of a tensor of size d × · · · × d and CP
rank r. Unfortunately, the set of tensors of a fixed CP rank is not even closed (Kolda
and Bader, 2009), implying that the existence of a best rank r approximation is not even
guaranteed. Moreover, it is generally computationally NP-hard to determine the CP rank
(Hillar and Lim, 2013) of a given tensor. In contrast, the Tucker rank and decomposition
of a tensor can be always and easily determined by HOSVD, and the tensors with Tucker
ranks bounded by a constant constitute a manifold. However, when representing an m-way

3



Cai, Li and Xia

tensor of Tucker rank ≤ (r, . . . , r), the required number of parameters is O(rm +mdr) and
grows exponentially fast with respect to the order m. As a result, Tucker decomposition
consumes a great deal of memory and computing resources for the tensors of very high
orders.

The recent decade has witnessed an increasing attraction in a new tensor format (Os-
eledets, 2009, 2011), referred to as the tensor train (TT, see formal definition in Section 2),
which enjoys the advantages of both CP and Tucker formats. The TT format was inspired
by the matrix product state (MPS, Perez-Garcia et al. 2006), an extremely powerful method
to represent the state of a large quantum system (Gross, 2011; Koltchinskii and Xia, 2015).
The model complexity of TT formats grows linearly with respect to the tensor order. For
instance, the parameters needed to store an m-th order tensor of TT rank ≤ (r, . . . , r) is
O(mdr2), saving significant space than the Tucker format. More importantly, TT rank is
always and easily attainable like the Tucker rank. Indeed, similarly as the Tucker decom-
position, an algorithm based on the sequential SVDs, named as tensor train SVD (TTSVD,
Oseledets 2011), is applicable to decide the TT rank, and hence the TT decomposition, of
a tensor. TTSVD can also be viewed as a quasi-optimal approximation of a given tensor
(Oseledets, 2011). Since the tensors of fixed TT ranks construct a manifold (Holtz et al.,
2012), numerous manifold-based algorithms are readily adaptable to the TT formats. Due
to the aforementioned advantages of TT formats, there has emerged a vast literature in
tensor computation, application and theory exploring the TT-format decomposition. The
earliest appearance of TT format or MPS can be traced back to the seminal works in
physics, specifically in the simulations of quantum dynamics for very large systems (Vidal,
2003, 2004; Perez-Garcia et al., 2006). The formal definition of TT ranks is later proposed
by Oseledets (2011), which has inspired a great many works for the computation and ap-
plications of low TT-rank tensors. Bengua et al. (2017) introduced the nuclear norm for
TT-format tensors based on the unfolded matrices, and proposed simultaneous matrix fac-
torization for tensor completion, showcasing its superior performances in the recovery of
color images and videos. Inspired by their ideas and motivated by the local smoothness
of image data, Ding et al. (2019) further proposed a total variation regularization for the
image and video inpainting problems. Based on tensor factorization, Wang et al. (2016)
investigated low TT-rank tensor completion by alternating minimization which updates the
estimated components sequentially. This is a non-convex approach where the good ini-
tialization plays a critical role, and they adopted the spectral initialization by TTSVD. A
gradient descent algorithm was proposed in the work of Yuan et al. (2019) for TT-format
tensor completion with a random initialization, which often performs poorly when the sam-
ple size is small. More recently, Ko et al. (2020) provided a novel but heuristic initialization
method for the applications in recovering images and videos that is efficient in numerical
experiments. These prior works mostly focus on the methodology and algorithm designs
without, or with rather limited, theoretical justification. Towards that end, Imaizumi et al.
(2017) introduced a new convex relaxation by the Schatten norm of matrices obtained by
the separations (see definition in Section 2) of a TT-format tensor. They investigated a
convex method for tensor completion showing that the TT-format tensor is approximately
recovered by observing O(rddm/2e · Polylog(d))) randomly sampled entries. More recently,
Zhou et al. (2020) established the statistically optimal convergence rates of tensor SVD by
the fast higher-order orthogonal iteration algorithm in the TT-format.
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A particularly important class of efficient algorithms for learning low-rank tensor de-
composition is based on the Riemannian optimization. Different from projected gradient
descent (Chen et al., 2019a), in each step, the gradient is projected to the tangent space.
The gist of these algorithms is to view the tensor of interest as a point on the Rieman-
nian manifold (Holtz et al., 2012), for example, the collection of tensors with a bounded
Tucker-rank or TT-rank., and then to adapt the Riemannian gradient descent algorithm
(RGrad) for minimizing the associated objective function. An incomplete list of repre-
sentable works of RGrad for matrix and tensor applications includes Steinlechner (2016);
Wei et al. (2016b,a); Kressner et al. (2014); Cai et al. (2021b). Similarly, the TT-format
tensor completion can be recast to an unconstrained problem over the Riemannian mani-
fold and is numerically solvable via RGrad (Wang et al., 2019). This algorithm is similar
to most non-convex algorithms in the sense that it starts from a good initial point on the
manifold, iteratively updates the new estimate by descending along the Riemannian gradi-
ent and retracts it back to the target manifold by TTSVD. Here Riemannian gradient is
simply the projection of vanilla gradient onto the tangent space of the manifold. The Rie-
mannian gradient is low-rank and hence can significantly speedup the downstream task of
TTSVD. Fortunately, Riemannian gradient, as shown in the works of Lubich et al. (2015);
Steinlechner (2016), can be fast computed using QR decomposition and recursive SVD.
All these foregoing properties of computational efficiency make RGrad a perfect choice for
TT-format tensor completion, especially for tensors of a very high order. Interestingly, we
also observe considerable time saving by TT-format tensor completion compared with the
Tucker-format tensor completion, even when the Riemannian gradient descent algorithm is
applied for both scenario. See the numerical experiments in Section 7.

1.1 Our Contributions

Despite the rich literature in algorithm designs for TT-format tensor completion and their
empirical efficiency, the theoretical understanding, for example, sample size requirement,
initialization condition, convergence behaviour and recovery guarantee, of those algorithms
is relatively scarce. While abundant results are available for the CP-format and Tucker-
format tensor completion, they cannot be directly translated into the case of TT-format
for, at least, four reasons. First, the gap of model complexity between TT-format and
other formats suggests that the sample size requirement can be different. Secondly, an-
other fundamental condition making tensor completion possible is the so-called incoherence
condition. It can be straightforwardly defined by the components of tensor decomposition
in the CP-format and Tucker-format. Since the decomposition of a TT-format tensor is
recursive, a suitable adaptation of the incoherence condition is necessary which causes ad-
ditional complications in the theoretical understanding. Thirdly, the algorithm design (for
instance, RGrad) for TT-format tensor completion is quite special, also due to the recur-
sive nature of TT decomposition, involving the recursive reshapes by tensor separation. It
poses extra challenges in analyzing the convergence behaviour of any iterative algorithms
for TT-format tensor completion. Finally, obtaining a warm initialization is crucial. The
naive spectral initialization suggested by Wang et al. (2016) requires a large sample size ob-
served by empirical simulations. In addition, the second-order moment method (Xia et al.,
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2021) of spectral initialization for Tucker-format is not directly applicable for the tensors
of TT-format.

In this manuscript, we investigate the Riemannian gradient descent algorithm for TT-
format tensor completion and provide, to our best knowledge, the first theoretical guarantees
of this algorithm under a nearly optimal sample size requirement. More specifically, for an
m-th order tensor T ∗ of size d× · · · × d in the TT-format with TT rank bounded by r, the
RGrad algorithm can exactly recover T ∗ by observing O(κ4m−4

0 r(5m−9)/2dm/2 · Polylog(d) +
κ4m+8

0 r3m−3d ·Polylog(d)) randomly sampled entries where κ0 denotes the condition number
of T ∗. Our contributions can be summarized into three folds. First of all, by a more
sophisticated approach of analysis, we show that the RGrad algorithm for tensor completion
converges linearly as long as the initialization is just reasonably good, namely ‖T0−T ∗‖F =
o(1) · ‖T ∗‖F. This significantly improves existing results (Wei et al., 2016b,a) on the RGrad
algorithm for matrix completion (m = 2) which require a stringent initialization condition
‖T0−T ∗‖F = o(n1/2/d)·‖T ∗‖F. Secondly, we prove that the error of the iterates produced by
RGrad algorithm contracts at a constant rate that is strictly smaller than 1, under a nearly
optimal sample size condition. The contract rate is free of the tensor condition number,
improving over prior works (Jain and Oh, 2014; Cai et al., 2021a; Xia and Yuan, 2019)
the iteration complexity for completing an ill-conditioned tensor. The attained iteration
complexity matches the best one achieved by a recently proposed scaled gradient descent
algorithm (Tong et al., 2021). Finally, inspired by the idea in Xia and Yuan (2019), we
propose a novel initialization, based on a sequential second order moment method, as the
input of RGrad algorithm for tensor completion. This approach, unlike the one-pass spectral
estimate in the work of Xia and Yuan (2019), involves a recursive estimate of the components
of TT decomposition, posing additional challenges in the proof. Our method guarantees
a warm initialization with a nearly optimal sample size requirement. Our result fills the
void of guaranteed initialization for TT-format tensor completion. Existing initialization
approaches (Ko et al., 2020; Wang et al., 2016; Yuan et al., 2019) are either heuristic or
miss theoretical justifications. Finally, we investigate the statistical property of RGrad and
sequential second-order moment initialization assuming the observed entries contain sub-
Gaussian noise. Statistically (near) optimal rate is established, which is proportional of the
noise variance.

For readers’ convenience, we showcase our theoretical results in Table 1 and compare
with representable literature of tensor completion with respect to the tensor formats, sample
complexity and iteration complexity. For ease of exposition, Table 1 only focus on third
order tensors with m = 3 and of size d× d× d.

1.2 Organization of the Paper

The rest of this manuscript is organized as follows. Section 2 reviews the basics of TT-
format tensors, its decomposition and TTSVD. The formulation of tensor completion and
the incoherence of TT-format tensors are presented in Section 3. In Section 4, we explain
in details the RGrad algorithm for TT-format tensor completion, and the sequential second
order moment method for initialization. Section 5 presents the main theorems regarding the
convergence of RGrad algorithm and the performance bound of spectral initialization, and
establishes the specific sample size requirement. We demonstrate the statistical optimality
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Data type Algorithms
Sample

complexity
Iteration

complexity

CP format with
orthogonal
components

Alternating minimization
(Jain and Oh, 2014)

d3/2r5κ4
0 log4(d) log( rκ0ε )

CP format
Vanilla gradient descent

(Cai et al., 2021a)
Cκ0d

3/2r4 log4 d κ
8/3
0 log(1

ε )

Tucker
Grassmannian gradient descent

(Xia and Yuan, 2019)
d3/2r7/2κ4

0 log7/2(d) N/A

Tucker
Scaled gradient descent

(Tong et al., 2021)
d3/2r2κ0(

√
r ∨ κ2

0) log3(d) log(1
ε )

Tensor Train
Riemannian gradient descent

(this paper)
d3/2r3κ8

0 log5(d) log(1
ε )

Table 1: Comparisons between TT-format RGrad algorithm and prior algorithms for tensor
completion with respect to the tensor formats, sample complexity and iteration complexity.
For ease of exposition, we only present the results for 3rd-order tensor T ∗ of size d×d×d with
CP rank r, Tucker rank (r, r, r) and TT rank (r, r), respectively. For sample complexity, we
state the number required in terms of d, r only for clarity. For the iteration complexity, we
consider the number of iterations needed to output T̂ such that ‖T̂ − T ∗‖F ≤ εσ. Here κ0

and σ are the condition number and minimum singular value of T ∗, and may be defined in
different ways for different formats. See more details for the case of TT-format in Section 2.
We note that, in the work of Cai et al. (2021a), the condition number κ0 is assumed � 1.
In fact, their sample complexity and iteration complexity, after checking the proof, indeed
depend on κ0. Moreover, Theorem 1.1 in the work of Jain and Oh (2014) states the iteration
complexity as log(

√
r‖T ∗‖F/(εσ)), where ‖T ∗‖F/σ has an order

√
rκ0.

of RGrad for noisy tensor completion in Section 6. Comprehensive numerical experiments
are displayed in Section 7. All proofs and technical lemmas are relegated to the appendix.

1.3 Notations

Throughout this manuscript, we shall use the calligraphic letters (T ,X ) to denote tensors of
size d1×· · ·×dm, the capital letters (T,M) to denote the components (see formal definition
in Section 2) of TT tensors or matrices, blackboard bold-face letters (R,M) for sets, and
the lower case bold-face letters (x,y) to denote vectors. The j-th canonical basis vector
is denoted by ej , and we omit the ambient space it lies in whenever the context is clear.
For a positive integer d, denote [d] := {1, · · · , d}. The standard basis in the tensor space
Rd1×···×dm is denoted by {Eω : ω ∈ [d1] × · · · × [dm]}, where Eω is a binary tensor of size
d1×· · ·×dm with only the ω-th entry being 1. We use T (x), T (ω) for ω,x ∈ [d1]×· · ·× [dm]
as the entry of T .

Let ‖ · ‖F denote the Frobenius norm of tensors or matrices. We use ‖ · ‖`p to denote
the `p norm of vectors for 0 < p ≤ ∞ and ‖ · ‖`0 to represent the number of nonzero
entries. The notations C,C1, . . . are reserved for some positive and absolute constants
which do not depend on the related parameters of the problem, but their actual values may
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change from line to line. Sometimes, these constants may depend on the tensor order m
and we shall write them as Cm, Cm,1, · · · . For positive integers r1, · · · , rm−1, we denote
d := maxmi=1 di, r := maxm−1

i=1 ri and r := minm−1
i=1 ri. Moreover, define d∗ := d1 · · · dm and

r∗ := r1 · · · rm−1.

2. Preliminaries of TT-format Tensors

We now briefly review the basic ideas of tensor trains and the various formats frequently
used in the TT-format tensor representation. They play a critical role in the motivation
of the TT-format RGrad algorithm. Interested readers can refer to Oseledets (2011) and
Holtz et al. (2012) for more details and examples.

TT-format. For an m-th order tensor T ∈ Rd1×···×dm , the TT-format rewrites it as a
product of m 3-way tensors, called the TT-format components and denoted by T1, . . . , Tm,
where the i-th component Ti ∈ Rri−1×di×ri with the convention r0 = rm = 1, such that for
all x = (x1, . . . , xm) ∈ [d1]× . . .× [dm],

T (x) =
∑

k1,...,km−1

T1(x1, k1)T2(k1, x2, k2) · · ·Tm(km−1, xm),

where the auxiliary index variables ki runs from 1 to ri. The representation can be simplified.
If we view each Ti as a matrix valued function, usually called a component function, defined
by

Ti : [di]→ Rri−1×ri , Ti(xi) = Ti(:, xi, :).

Here we follow the Matlab syntax to denote Ti(:, xi, :) the sub-matrix of Ti with the second
index being fixed at xi. Now for x = (x1, . . . , xm), the value T (x) can be compactly written
in the matrix product form:

T (x) = T1(x1) · · ·Tm(xm), (1)

where T1(x1) is a row vector and Tm(xm) is a column vector. To simplify the notations, we
often write the TT-format in short as T = [T1, . . . , Tm].

Separation and TT rank. The dimension ri’s of the component Ti are called the TT ranks
of T . They are defined by the ranks of matrices obtained from the so-called separation
of T . More specifically, the i-th separation of T , denoted by T 〈i〉, is a matrix of size
(d1 · · · di)× (di+1 · · · dm) and defined by

T 〈i〉(x1 · · ·xi, xi+1 · · ·xm) = T (x).

Then, ri is defined by the rank of T 〈i〉. The collection r = (r1, · · · , rm−1) is called the TT-
rank of T . For ease of exposition, we denote ranktt(T ) = r. As proved by Theorem 1 in Holtz
et al. (2012), the TT rank is well defined for any tensor. Meanwhile, a TT decomposition
T = [T1, . . . , Tm] is always attainable with Ti ∈ Rri−1×di×ri by the fast TTSVD algorithm,
to be introduced in subsequent paragraphs. See Algorithm 1.
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Left and right unfoldings. Note that the TT decomposition (1) for a given tensor is not
unique. Indeed, one can always multiply Ti(xi) from right with any invertible matrix A
and meanwhile multiply Ti+1(xi+1) from left with the inverse matrix A−1, rendering a
distinct TT decomposition. For identifiability, we impose additional conditions on the TT-
format components of T . To that end, we first define the left and right unfolding of a
3-rd order tensor, reformatting the tensor into matrices. For any U ∈ Rp1×p2×p3 be a
3-way tensor, the left and right unfolding linear operators L : Rp1×p2×p3 → R(p1p2)×p3 ,
R : Rp1×p2×p3 → Rp1×(p2p3) are defined by

L(U)(jx, k) = U(j, x, k), and R(U)(j, xk) = U(j, x, k).

We say the component Ti is left-orthogonal if L(Ti)
>L(Ti) is an identity matrix. Similarly,

Ti is said right-orthogonal if R(Ti)
>R(Ti) is identity.

For identifiability of the TT-format components, we assume that T1, · · · , Tm−1 in eq.
(1) are all left-orthogonal. The resultant TT decomposition is called the left orthogonal
decomposition of T . Note that no condition is required for the last component Tm. The
left orthogonal decomposition of T can be easily obtained using Algorithm 1 (TTSVD)
without the truncation step. By Theorem 1 in Holtz et al. (2012), such a decomposition
of a TT-format tensor is unique up to the insertions of orthogonal matrices: for any two
left-orthogonal decompositions of T satisfying T = [T1, . . . , Tm] = [T̃1, . . . , T̃m], there exist
orthogonal matrices Q1, . . . , Qm−1 with Qi ∈ Rri×ri such that

T1(x1)Q1 = T̃1(x1), Q>m−1Tm(xm) = T̃m(xm) and Q>i−1Ti(xi)Qi = T̃i(xi) for 2 ≤ i ≤ m− 1.

For any TT rank r = (r1, · · · , rm−1), define Mtt
r = {T ∈ Rd1×···×dm : ranktt(T ) ≤ r} the set

of tensors with TT rank ≤ r. Holtz et al. (2012) proves that Mtt
r is a manifold of dimension∑m

i=1 ri−1diri −
∑m−1

i=1 r2
i .

Relations between TT-rank, CP rank and Tucker rank. The TT-rank, CP rank and Tucker
rank are closely related. For an arbitrary tensor T ∈ Rd1×···×dm , we denote its TT-rank
by rtt = ranktt(T ) ∈ Nm−1, CP rank by rcp = rankcp(T ) ∈ N and Tucker rank by rtk =
ranktucker(T ) ∈ Nm. Then

rcp ≤ rtt1 · · · rttm−1, rcp ≤ rtk1 · · · rtkm−1

rtti ≤ rcp, ∀ i ∈ [m− 1],

rtki ≤ rtti−1r
tt
i , rtki ≤ rcp ∀ i ∈ [m],

rtti ≤ min{rtk1 · · · rtki , rtki+1 · · · rtkm}, ∀ i ∈ [m− 1],

where we use the convention that rtt0 = rttm = 1.

Left and right parts of a TT-format tensor. The low-rank factorization of the separation T 〈i〉
is frequently used throughout the algorithm design and technical proof. It is attainable from
the TT decomposition (1) of T . To be exact, define the matrix T≤i of size (d1 · · · di)× ri,
known as the i-th left part of T , row-wisely by

T≤i(x1 · · ·xi, :) = T1(x1)T2(x2) · · ·Ti(xi)

9
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Similarly, we define the matrix T≥i of size ri−1 × (di · · · dm), know as the i-th right part of
T , column-wisely by

T≥i(:, xi · · ·xm) = Ti(xi)Ti+1(xi+1) · · ·Tm(xm)

By default, we set T≤0 = T≥m+1 = [1]. With these notations, the i-th separation of T can
be factorized as

T 〈i〉 = T≤iT≥i+1.

By definition, there exists a recursive relations between the left parts of T given by T≤i =
(T≤i−1 ⊗ Idi)L(Ti) and, similarly, between the right parts of T given by T≥i = R(Ti)(Idi ⊗
T≥i+1). Here ⊗ denotes the Kronecker product such that T≤i−1 ⊗ Idi is a matrix of size
(d1 · · · di)×(ridi). Another useful fact is when the TT decomposition (1) is a left orthogonal
decomposition, its left parts are also orthogonal. See Lemma 1. This can be proved by
induction and the recursive equation T≤i = (T≤i−1 ⊗ I)L(Ti).

Lemma 1 Let T = [T1, . . . , Tm] ∈ Mtt
r be a left orthogonal decomposition. Then we have

T≤i>T≤i = Iri for all i = 1, · · · ,m− 1.

TTSVD. Given an arbitrary m-th order tensor T , we are often interested in obtaining an
approximation of T by a TT-format tensor with TT rank ≤ r = (r1, · · · , rm−1) for some
pre-determined positive integers ri’s. Meanwhile, the desired low TT-rank approximation
better be readily representable with a left orthogonal decomposition. This can be obtained
by the TTSVD algorithm proposed by Oseledets (2009). For completeness, we here restate
the algorithm as in Algorithm 1. At first glance Algorithm 1 may seem slightly different
from the original one proposed by Oseledets (2009). But they are indeed equivalent due to
the following fact:

reshape((T̂≤i−1)>T 〈i−1〉, [ri−1di, di+1 · · · dm]) = (T̂≤i−1 ⊗ Idi)
>T 〈i〉

An immediate question is whether the output T̂ by Algorithm 1 is the best low TT rank-r
approximation of T . Unfortunately, this is generally untrue. In fact, based on existing
evidence (Hillar and Lim, 2013), computing the best low TT rank-r approximation of an
arbitrary tensor is generally NP-hard.

Another technical issue, frequently met in the proof, is that when T = T ∗ + E where
T ∗ ∈Mtt

r and E is a small but arbitrary perturbation, then how accurately does the output
T̂ from Algorithm 1 approximate the true low-rank T ∗? Interestingly, using the spectral
representation formula (Xia, 2021), we prove that ‖T̂ −T ∗‖ ≤ (1+o(1)) ·‖E‖F in Lemma 26
with a sharp leading constant 1 and being free of the condtion number of T ∗, which might
be of independent interest. To our best knowledge, ours is the first result of this kind.

Tensor condition number. The signal strength of a TT-format tensor T with TT-rank
r = (r1, · · · , rm−1) is defined by the smallest singular value among all the matrices obtained
from separation, that is,

σ(T ) := minm−1
i=1 σri(T 〈i〉),

10
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Algorithm 1 TT-SVD ( SVDtt
r )

Input: an arbitrary T ∈ Rd1×···×dmand desired TT rank r = (r1, . . . , rm−1).
Set T̂≤0 = [1]
for i = 1, . . . ,m− 1 do

Let L(T̂i) be the top ri left singular vectors of the matrix (T̂≤i−1 ⊗ Idi)>T 〈i〉
Set T̂≤i = (T̂≤i−1 ⊗ Idi)L(T̂i)

end for
T̂m = (T̂≤m−1)>T 〈m−1〉.
Output: T̂ = [T̂1, . . . , T̂m] ∈Mtt

r .

where σk(·) returns the k-th singular value of a matrix. Similarly, the largest singular value
of T is defined by σ(T ) := maxm−1

i=1 σ1(T 〈i〉). Then the condition number of T is defined
by κ(T ) := σ(T )−1σ(T ). The condition number plays a critical role in the convergence
behaviour of many iterative algorithms for tensor completion. See, for instance, Table 1.

3. TT-format Tensor Completion and Incoherence Condition

The goal of tensor completion is to (exactly) recover an underlying tensor by only observing
a small subset of its entries. Denote by T ∗ the true underlying tensor of size d1 × · · · × dm
with TT rank r = (r1, · · · , rm−1) which, for simplicity, is assumed known beforehand and
satisfy ri � di. The observed entries of T ∗ are assumed to be uniformly sampled with
replacement, a prevailing sampling scheme in the literature (Koltchinskii et al., 2011; Xia
and Yuan, 2019; Xia et al., 2021) for its convenience in modelling randomness. More
exactly, let Ω = {ωi : i = 1, · · · , n} where ωi is independently and uniformly sampled from
the set of collections [d1] × · · · × [dm]. By observing only the entries {T ∗(ωi)}ni=1, we aim
to design computationally efficient methods to recover the whole tensor T ∗. Intuitively,
tensor completion becomes easier when more entries are observed. Oftentimes, the number
of observed entries n, known as sample size, is significantly smaller than d∗ := d1 · · · dm.

Note that the problem can be ill-posed if T ∗ has, for instance, only one entry that is
non-zero, then it is impossible to recover T ∗ unless this non-zero entry is indeed observed.
To resolve this issue, it is usually assumed that the information T ∗ carries spreads fairly
among almost all its entries. One concept characterizing this information spread is by the
spikiness of T ∗ (Yuan and Zhang, 2016; Cai et al., 2021b) defined by

Spiki(T ∗) := (d∗)(1/2)‖T ∗‖`∞/‖T ∗‖F.

If the spikiness of T ∗ is upper bounded by a constant, it means that most of its entries have
comparable magnitudes. Oftentimes, another related concept characterizing the informa-
tion spread, called incoherence condition, is more frequently used. The exact definition of
incoherence condition usually relies on the tensor formats. See the definitions for CP-format
tensors in the works of Jain and Oh (2014); Cai et al. (2021a) and for Tucker-format tensors
in the works of Yuan and Zhang (2016); Xia et al. (2021). To formalize the definition of
incoherence for TT-format tensors, we begin with reviewing the incoherence condition of a
matrix.

11
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For a matrix M of size p1×p2 and rank r whose compact SVD is given by M = UΣV >,
the incoherence of M is defined by

Incoh(M) := max
{√

p1/r ·maxi∈[p1] ‖U>ei‖`2 ,
√
p2/r ·maxj∈[p2] ‖V >ej‖`2

}
.

We say M is incoherent with a constant µ if Incoh(M) ≤ µ1/2. Note that incoherence
is defined through the singular subspace of M . Therefore, the incoherence of M can be
equivalently obtained from any low-rank decomposition M = U1Σ1V

>
1 satisfying U1U

>
1 =

UU> and V1V
>

1 = V V >. This simple property will ease our understanding of incoherence
for TT-format tensors. Now the incoherence of the TT-format tensor T ∗ ∈ Mtt

r is defined
by

Incoh(T ∗) := max
{
Incoh(T ∗〈i〉) : i = 1, 2, · · · ,m− 1

}
.

Similarly, we say T ∗ is incoherent with a constant µ if Incoh(T ∗) ≤ µ1/2. We write the left
orthogonal decomposition of T ∗ by T ∗ = [T ∗1 , · · · , T ∗m]. Then for 1 ≤ i ≤ m − 1, the i-th
separation T ∗〈i〉 can be written as T ∗〈i〉 = T ∗≤iΛ∗i+1V

∗>
i+1 where Λ∗i+1 is invertible and of size

ri× ri, and T ∗≤i>T ∗≤i = V ∗>i+1V
∗
i+1 = Iri . Then the condition Incoh(T ∗) ≤ µ1/2 implies that

m−1
max
i=1

{
max

k∈[d1...di]
‖T ∗≤i>ek‖`2(d1 . . . di/ri)

1/2, max
k∈[di+1...dm]

‖V ∗>i+1ek‖`2(di+1 . . . dm/ri)
1/2

}
≤ √µ.

The spikiness and incoherence of TT-format tensors are closely related and summarized
in the following lemma.

Lemma 2 (Spikiness implies incoherence) Let T ∗ ∈ Mtt
r satisfy Spiki(T ∗) ≤ ν. Then

we have
Incoh(T ∗) ≤ νκ0,

where Incoh(T ∗) is the incoherence parameter of T ∗ and κ0 is the condition number of T ∗
defined by κ0 = σ(T ∗)/σ(T ∗).

Now that assuming the incoherence property of the T ∗, the problem of tensor completion
is well-posed. To recover T ∗, the natural idea is to search for a low TT rank tensor that is
consistent with the observed entries {T ∗(ωi)}ni=1. This can be formalized as a non-convex
optimization program of a least squares estimator

min
T ∈Rd1×···×dm

fΩ(T ) :=
1

2
〈T − T ∗,PΩ(T − T ∗)〉 =

1

2

∑
ω∈Ω

(
T (ω)− T ∗(ω)

)2
(2)

such that ranktt(T ) ≤ r,

where the operator PΩ is defined by PΩ(T ) :=
∑n

i=1 T (ωi) · Eωi and the inner prod-
uct of any two tensors T1, T2 of the same size d1 × · · · × dm is defined by 〈T1, T2〉 :=∑

x∈[d1]×···×[dm] T1(x)T2(x). We remark that, due to the sampling with replacement, fΩ(T )

may not be equal to ‖PΩ(T −T ∗)‖2F/2. This is slightly different from the setting of sampling
without replacement. To simplify the notation, we shall just write f(·) in short for fΩ(·).

The optimization program (2) is highly non-convex due to the constraint of TT rank,
which is usually solvable only locally. Since the objective function in (2) is smooth, the

12
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major concern in algorithm design is usually placed on the effective enforcement of the rank
constraint. A particularly popular class of algorithms is based on the projected gradient
descent including the singular value projection (SVP, Meka et al. 2009) and iterative hard
thresholding (IHT, Goldfarb and Ma 2011). These algorithms consist of mainly two steps:
(1) update the estimate along the vanilla gradient descent direction and (2) retract the new
estimate to the target tensor/matrix manifold by low-rank approximation, such as HOSVD
or TTSVD. Oftentimes, these method suffer from high computational cost because the
vanilla gradient is often full-rank and so is the resultant new estimate. Consequently, the
retraction in the second step relies on the SVD of a very large and full-rank matrix, at each
iteration.

4. Riemannian Gradient Descent and Spectral Initialization

As explained, the vanilla gradient descent algorithm often suffers from high computational
burdens. To reduce the computational costs, a modified algorithm, named as the Rieman-
nian gradient descent, was proposed by Edelman et al. (1998); Kressner et al. (2014); Van-
dereycken (2013), which explores the local geometry structure of low-rank tensors/matrices.
The essential modification is to take advantage of the manifold structure and project
the vanilla gradient onto the tangent space leading to the so-called Riemannian gradient
(RGrad). Compared with the vanilla gradient, the Riemannian gradient is also low-rank,
rendering considerable speedup in the downstream task of retraction. Inspired by this idea,
the Riemannian gradient descent algorithm has been widely applied for matrix/tensor com-
pletion (Wei et al., 2016b; Kressner et al., 2014), generalized low-rank tensor estimation
(Cai et al., 2021b) and etc. We are in position to explain how RGrad can be adapted to
the TT-format tensor completion.

4.1 TT-format Riemannian Gradient Descent

RGrad is an iterative algorithm and, given the current estimate Tl ∈ Mtt
r at an iteration,

the algorithm updates the estimate by three steps: (1) compute the Riemannian gradient;
(2) descent along the Riemannian gradient and (3) retract back to the TT-format tensor
manifold. See the pseudocodes in Algorithm 2.

In the first step, the Riemannian gradient (Absil et al., 2009) is obtained via projecting
the vanilla gradient∇f(Tl) onto the tangent space, denoted by Tl, of Mtt

r at the point Tl. The
tangent space Tl has an explicit form so that the projection PTl(∇f(Tl)) onto Tl is attainable
by fast computations. For cleaner presentation here, we sink the detailed explanation of
PTl(·) to Section 4.3. The follow-up gradient descent step is easy, and we demonstrate that a
fixed stepsize α = 0.12n−1d∗ suffices for convergence where d∗ = d1 · · · dm and the constant
0.12 is slightly adjustable in practice. The last step, retraction, is of crucial importance.
The updated estimate Wl = Tl − αl · PTl(∇f(Tl)) after the first two steps is generally not
an element in Mtt

r , and in fact, the TT-rank of Wl is larger than the desired TT-rank r,
violating the rank constraints. The retraction procedure enforces the TT-rank constraint by
projectingWl back to Mtt

r . This can be done by TTSVD, denoted by SVDtt
r in Algorithm 1.
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Due to technical reasons, Algorithm 2 involves an additional procedure, called trimming.
The trimming operator Trimζ which acts entry-wisely on a tensor is defined as follows:

Trimζ(T ) =

{
ζ · sign(T (x)), if |T (x)| ≥ ζ,
T (x), otherwise

Basically, it trims those large entries of T and thus maintains an acceptable spikiness or
incoherence. The trimming step is necessary to guarantee the incoherence property of the
new estimate Tl at each iteration, playing a critical role in proving the local convergence of
Algorithm 2. It might be possible to directly prove through a more sophisticated analysis
(Cai et al., 2021a) that the incoherence property holds automatically without trimming. We
indeed observe in numerical experiments that the RGrad algorithm without trimming runs
nearly the same as the trimmed version, implying the automatic validity of incoherence.
However, to directly prove the incoherence without trimming is very challenging. Instead,
we resort to trimming for simplicity. This procedure is completely for convenience of the
technical proof and alters almost nothing in our numerical experiments.

Algorithm 2 TT-format Riemannian Gradient Descent (RGrad)

Initialization: T0 ∈Mtt
r , spikiness parameter ν and maximum iterations lmax

for l = 0, 1, · · · , lmax do
Gl = PΩ(Tl − T ∗)
αl = 0.12d

∗

n
Wl = Tl − αl · PTlGl
Set W̃l = Trimζl(Wl) with ζl = 10‖Wl‖F

9
√
d∗

ν

Tl+1 = SVDtt
r (W̃l)

end for

We further remark on the choice of spikiness parameter ν in the algorithm. Note that
here ν is not necessary the true spikiness parameter of T ∗. It suffices to take ν as a tuning
parameter that is slightly larger than Spiki(T ∗), assuming Spiki(T ∗) is relatively small. For
instance, when one is confident that the true spikiness is bounded by O(1), then this tuning
parameter can be set as ν � log d̄ in numerical implementation.

Theorem 5 in Section 5 demonstrates that, under mild conditions on the initialization
and a suitable sample size requirement, Algorithm 2 guarantees that ‖Tl+1 − T ∗‖F ≤ γ ·
‖Tl − T ∗‖F for an absolute constant γ ∈ (0, 1), implying a linear convergence of Algorithm
2. However, it requires the initialization T0 to be close enough to the underlying tensor
T ∗. Existing literature (Wang et al., 2016) suggests a naive spectral initialization by the
observed tensor n−1d∗PΩ(T ∗). It turns out that a naive spectral initialization performs
poorly and only works when the sample size n is exceedingly large. We now propose a novel
approach, inspired by Xia et al. (2021) and called sequential second-order moment method,
to produce a good initialization requiring only an almost optimal sample size.

4.2 Sequential Spectral Initialization

Recall that the left orthogonal decomposition of T ∗ is written as T ∗ = [T ∗1 , · · · , T ∗m]. Our
initialization method yields good estimates for T ∗1 , . . . , T

∗
m up to orthogonal rotations. For
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ease of illustration, we denote by T̃ = n−1d∗PΩ(T ∗) the scaled observed tensor. Due to
the uniform sampling scheme, it is clear that ET̃ = T ∗. Since T ∗1 contains the left singular
vectors of T ∗〈i〉, the naive spectral initialization, suggested by Wang et al. (2016), takes
the top r1 left singular vectors of T̃ 〈1〉 as an estimation for T ∗1 . Unfortunately, this method
usually performs poorly because the matrix T ∗〈1〉 is of size d1 × (d2 · · · dm) whose number
of columns can be significantly larger than d1. While we are only interested in a parameter
from a d1-dimensional space, the quality of spectral estimate from T̃ 〈1〉 is affected by the
larger dimension between d1 and d2 · · · dm.

The second-order spectral moment method is inspired Xia and Yuan (2019) by the
fact that T ∗1 also contains the eigenvectors of T ∗〈1〉T ∗〈1〉> which is a square matrix of size
d1 × d1. Therefore, Xia and Yuan (2019) proposed a U-statistic to estimate the square
matrix T ∗〈1〉T ∗〈1〉> directly and then applied the spectral initialization. Unlike the Tucker-
format where the components can be computed independent of each other (Section 4 of
Xia and Yuan 2019), the computation of components in TT-format decomposition depends
recursively on each other, that is, T̂i+1 relies on the availability of T̂i, see the TTSVD
procedure in Algorithm 3. Indeed, L(T ∗i+1) is the top ri+1 left singular vectors of the

matrix (T ∗≤i ⊗ I)>T ∗〈i+1〉, implying that we shall aim to estimate the eigenvectors of
(T ∗≤i ⊗ I)>T ∗〈i+1〉T ∗〈i+1〉>(T ∗≤i ⊗ I). Conceptually, there is no difficulty to generalize
the second-order moment method for this purpose. However, on the technical front, the
dependence of T̂≤i on the original data creates substantial challenges in establishing a sharp
spectral perturbation bound. For simplicity, we resort to the trick of sample splitting.

For ease of illustration, some additional notations are necessary. Without loss of gen-
erality, assume n = (2m− 1)n0 for some integer n0. We split the observed sample [n] into
equally-sized 2m − 1 sub-samples, each of which is of size n0

1. For each 1 ≤ j ≤ 2m − 1,
define PΩj (T ∗) := n−1

0

∑jn0

k=(j−1)n0+1 T
∗(ωi) · Eωi . Due to i.i.d. sampling with replacement,

we have EPΩj (T ∗) = T ∗/d∗. Basically, for each i = 1, · · · ,m − 1, we use the sub-samples

Ω2i−1 and Ω2i, together with the estimates T̂1, · · · , T̂i−1, to estimate T ∗i . Finally, the last
sub-sample Ω2m−1 is used to estimate T ∗m. Now, for each i = 1, 2, · · · ,m − 1, define a
(d1 · · · di)× (d1 · · · di) matrix

Ni =
(d∗)2

2n2
0

(
PΩ2i−1(T ∗)〈i〉

(
PΩ2i(T ∗)〈i〉

)>
+ PΩ2i(T ∗)〈i〉

(
PΩ2i−1(T ∗)〈i〉

)>)
Due to the independence between Ω2i−1 and Ω2i, one can easily verify ENi = T ∗〈i〉T ∗〈i〉>
so that Ni is an unbiased estimator. Note that the dimension of Ni becomes larger when
i increases. It turns out that a direct spectral initialization by Ni still performs poorly
unless the sample size is greater than d1 · · · di. Instead, we multiply the left and right
hand side of Ni by the estimated left part T̂≤i−1 ⊗ Idi and its transpose, respectively. The
resultant symmetric matrix is then used for estimating the i-th component T ∗i . See the
details in Algorithm 3. So the initialization is proceeded in an iterative fashion. Note that
an additional truncation procedure is applied to guarantee the incoherence property of the
estimates T̂i’s, where T̂ 1

i denotes the 1-st row of matrix T̂i.

1. We note that the minimal sample size requirement for ensuring the effectiveness of Ni is distinct for
different i’s. This is reasonable because the dimensions of Ni’s change with respect to i. For ease of
exposition, we set all the ni’s to be equal.

15



Cai, Li and Xia

After obtaining the estimates T̂1, . . . , T̂m−1 and the respectively constructed left part
T̂≤m−1 , the last component T̂m is estimated by the minimizer of

minTm
∥∥T̂≤m−1Tm − n−1

0 d∗PΩ2m−1(T ∗)〈m−1〉∥∥
F
,

whose solution is explicitly given by T̂m := n−1
0 d∗T̂≤m−1>(PΩ2m−1(T ∗))〈m−1〉. Finally, a

trimming treatment is implemented on the reconstructed low TT-rank tensor T̂ to ensure
the desired spikiness condition. We again remark that the numbers µ and ν are not neces-
sarily the true spikiness and incoherence parameter of T ∗, and they are treated as tuning
parameters of Algorithm 3.

Algorithm 3 Initialization by Sequential Spectral Initialization

Input: Spikiness parameter ν and incoherence parameter µ
Set T̃1 be the top r1 left singular vectors of N1

Truncation: T
i
1 =

T̃ i1
‖T̃ i1‖`2

·min{‖T̃ i1‖`2 , (µr1/d1)1/2}

Re-normalization: T̂1 = T 1(T
>
1 T 1)−1/2

for i = 2, . . . ,m− 1 do
Set L(T̃i) to be the top ri left singular vectors of (T̂≤i−1 ⊗ I)>Ni(T̂

≤i−1 ⊗ I)

Truncation: L(T i)
j = L(T̃i)

j

‖L(T̃i)j‖`2
·min{‖L(T̃i)

j‖`2 ,
√
µri/di}

Re-normalization: L(T̂i) = L(T i)
(
L(T i)

>L(T i)
)−1/2

end for

The last component: T̂m = (T̂≤m−1)>
(
d∗

n0
PΩ2m−1(T ∗)

)〈m−1〉

Reconstruction: T̂ = [T̂1, . . . , T̂m]

Output: T0 = SVDtt
r (Trimζ(T̂ )) with ζ = 10‖T̂ ‖F

9
√
d∗

ν

4.3 Computation of Riemannian Gradient

In this section, we provide more details regarding the computation of Riemannian gradient,
that is, PT(A), where A is a given tensor of size d1 × · × dm and T is the tangent space
of the TT-format tensor manifold Mtt

r at the point T with a left orthogonal decomposition
T = [T1, · · · , Tm]. By definition, PT(A) is the projection of A onto the tangent space T.

Let us begin with parametrizing the tangent space T. By Theorem 2 of Holtz et al.
(2012), the parametrization of T depends on a gauge sequence. For simplicity and ease of
exposition, we take the gauge sequence as a sequence of identity matrices. By Holtz et al.
(2012), for any element X ∈ T, there exist a sequence of tensors X1, · · · , Xm with Xi being
a tensor of size ri−1 × di × ri such that X can be explicitly written in the form

X =
m∑
i=1

δXi where the TT-format tensor δXi = [T1, · · · , Ti−1, Xi, Ti+1, · · · , Tm]. (3)

The tensor Xi should satisfy that L(Ti)
>L(Xi) is an all-zero matrix of size ri × ri for all

i = 1, · · · ,m− 1. There is no constraint on the last component Xm.
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Based on the parametrization form (3), for an arbitrary tensor A of size d1 × · · · × dm,
the Riemannian gradient PT(A) must be of the following form

PT(A) = δA1 + . . .+ δAm where δAi = [T1, · · · , Ti−1, Ai, Ti+1, · · · , Tm]

for some tensor Ai of size ri−1 × di × ri satisfying L(Ti)
>L(Ai) is an all-zero matrix for all

i = 1, · · · ,m − 1. This suggests that, for all i 6= j, the tensor δAi is orthogonal to δAj ,
proved in the following lemma.

Lemma 3 Let T = [T1, . . . , Tm] ∈ Mtt
r be a left orthogonal decomposition of T . For an

arbitrary A of size d1× · · · × dm, the components δAi’s of PT(A) satisfy 〈δAi, δAj〉 = 0 for
all 1 ≤ i 6= j ≤ m.

Proof Without loss of generality, assume i < j. Then we have

〈δAi, δAj〉 = 〈(δAi)〈i〉, (δAj)〈i〉〉 = 〈(T≤i−1 ⊗ I)L(Ai)T
≥i+1, (T≤i−1 ⊗ I)L(Ti)Ã

≥i+1
j 〉 = 0,

where the last equality is due to the facts that (T≤i−1 ⊗ I) has orthonormal columns and
L(Ai)

>L(Ti) is an all-zero matrix. Here, for simplicity, we denote (δAj)〈i〉 = T≤iÃ≥i+1
j for

some matrix Ã≥i+1
j .

Due to this orthogonality property of Lemma 3, for all i ∈ [m− 1], determining δAi is
equivalent to solving the following individual optimization problem

min
Ai
‖A − δAi‖F, s.t. δAi = [T1, . . . , Ai, . . . , Tm] and L(Ai)

>L(Ti) = 0 (4)

For the last component, it suffices to solve

min
Am
‖A − δAm‖F, s.t. δAm = [T1, . . . , Tm−1, Am] (5)

Finally, based on (4) and (5), we can obtain a closed-form solution of Ai, i ∈ [m], represented
in the form of L(Ai), by

L(Ai) =

{
(I − L(Ti)L(Ti)

>)(T≤i−1 ⊗ I)>A〈i〉(T≥i+1)>(T≥i+1(T≥i+1)>)−1, i ∈ [m− 1]

(T≤m−1 ⊗ I)>A〈m〉, if i = m.

(6)

This yields the way of computing the Riemannian gradient PT(A).

5. Exact Recovery and Convergence Analysis

In this section, we prove the validity of the sequential second-order spectral initialization
and linear convergence behaviour of the RGrad algorithm so that the underlying tensor
can be exactly recovered with an almost optimal sample size of observed entries. For
ease of exposition, we assume r1, . . . , rm−1 are of the same order and denote r an upper
bound for them. The sample size requirement in more general cases of ri’s can be found
from Theorem 9 and Theorem 15 in the Appendix. Recall the notations d = maxj dj and
d∗ = d1 · · · dm. The smallest singular value and condition number of T ∗ are denoted by σ
and κ0, respectively. Our main theorem of exact recovery is described as follows.
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Theorem 4 Suppose that T ∗ is of size d1 × · · · × dm with a TT-rank r = (r1, . . . , rm−1)
whose spikiness is bounded by Spiki(T ∗) ≤ ν. Let T0 be initialized by the sequential second-
order method as Algorithm 3 and {Tl}lmax

l=1 be the iterates produced by Algorithm 2 where lmax

is the maximum number of iterations, and the stepsize α = 0.12n−1d∗. There exist absolute
constants Cm,1, Cm,2 > 0 depending only on m such that if the sample size n satisfies

n ≥ Cm,1 ·
(
κ4m−4

0 νm+3(d∗)1/2r(5m−9)/2 logm+2 d+ κ4m+8
0 ν2m+2dr3m−3 log2m+4 d

)
,

then with probability at least 1−(2m+4)d
−m

, for any ε ∈ (0, 1), after lmax = dCm,2·log(σ/ε)e
iterations, the final output achieves error ‖Tlmax − T ∗‖F ≤ ε.

If the tensor dimension is balanced dj � d for all j, rank r = O(1) and T ∗ is well
conditioned in that κ0, ν = O(1), the sample size requirement of Theorem 4 simplifies to
Om(dm/2 · Polylog(d)). This improves the existing result (Imaizumi et al., 2017) based on

matricization and matrix nuclear norm penalization, which requires sample size Om(d
m+1

2 ·
Polylog(d)) when m is odd. Moreover, for the case m = 3, Barak and Moitra (2016) con-
jectures that, based on the reduction to Boolean satisfiability problem, O(d3/2) is a lower
bound for the sample size such that polynomial-time algorithm exists for exact tensor com-
pletion. Therefore, suppose r = O(1), the sample size requirement of Theorem 4 is likely
optimal, at least for m = 3, up the logarithmic factors if only polynomial-time algorithms
are sought.

We note that, in the sample size requirement, the exponent on rank r still depends
on the order of tensor, due to technical difficulties. The recursive nature of computing
a TT decomposition substantially complicates the theoretical analysis, involving repeated
appearances of the incoherence parameters and TT rank. Interestingly, the required number
of iterations lmax is free of the condition number, which often appears in decomposition-
based algorithms (Cai et al., 2021a; Han et al., 2020), except the recently proposed scaled
gradient descent algorithm (Tong et al., 2021).

The proof of Theorem 4 relies on two essential parts: the local convergence of warm-
initialized Algorithm 2 and the validity of initialization by Algorithm 3, which are separately
dealt with in the subsequent sections.

5.1 Local Convergence of Riemannian Gradient Descent

We study the local convergence of Algorithm 2 in a small neighbourhood of the global
minimizer, namely T ∗ for our case. Lemma 5 dictates that Algorithm 2 converges linearly
to T ∗ as long as the initialization, be it obtained from our proposed Algorithm 3 or other
approaches, T0 is sufficiently close to T ∗ and a sample size condition holds. The proof of
Lemma 5 is postponed to the Appendix.

Lemma 5 Suppose the conditions on T ∗ from Theorem 4 hold, and the initialization T0

satisfies

‖T0 − T ∗‖F ≤
σ

Cmκ0r1/2
and Incoh(T0) ≤ 2κ2

0ν

for a sufficiently large but absolute constant C > 0. There exists an absolute constant
Cm > 0 depending only on m such that if the sample size n satisfies

n ≥ Cm ·
(
κ2m+4

0 νm+1(d∗)1/2r
m+3

2
∨(m−1/2) logm+2 d+ κ4m+8

0 ν2m+2dr(m+3)∨(2m−1) log2m+4 d
)
,
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then with probability at least 1− (m+ 4)d
−m

, the sequence {Tl}∞l=1 generated by Algorithm
2 with a constant step size α = 0.12n−1d∗ satisfy

‖Tl − T ∗‖2F ≤ 0.975 · ‖Tl−1 − T ∗‖2F.

for all l = 1, 2, · · · .

Lemma 5 dictates that the error contracts at a constant rate which is strictly smaller
than 1. One interesting fact of our results is that the contraction rate is independent
of the condition number, which is the reason that lmax in Theorem 4 is free of κ0. It
suggests that the Riemannian gradient descent algorithm converges fast even for very ill-
conditioned tensors, improving the existing results (Jain and Oh, 2014) and (Cai et al.,
2021a). Recently, Tong et al. (2021) introduced a scaled gradient descent algorithm to
remove the dependence on the condition number, where the rescaling procedure plays a
role of re-conditioning. Interestingly, Riemannian gradient descent algorithm automatically
achieves this performance without the need to re-scaling. This is perhaps an intrinsic
advantage of the manifold-type algorithms (see also Cai et al. 2021b). We note that the
contraction rate 0.975 is improvable but no further efforts are made for that purpose.

In the case r, κ0, ν = O(1), the sample size required by Lemma 5 is Om(dm/2 ·Polylog(d)),
which matches that required by Theorem 4. However, if r grows with d, the exponent on r
is slightly better than that of Theorem 4.

If m = 2, a TT-format tensor is merely a matrix and the left orthogonal decomposition
reduces a decomposition with an orthogonal matrix on left hand side. The convergence
analysis of Riemannian gradient descent algorithm for matrix completion was investigated
by Wei et al. (2016b), showing that the algorithm converges linearly if the initialization is
so good that ‖T0 − T ∗‖F = o

(
(n/d∗)1/2

)
· σ. This is very restrictive since, oftentimes, the

desired sample size n is only of order d∗1/2. It is speculated that this gap is due to technical
reasons, deriving from the special form of Riemannian gradient where the existing strategy
(Candès and Recht, 2009) simply fails, but the issue has never been really resolved. Taking
a more sophisticated approach, by integrating prior tools from Xia and Yuan (2019); Cai
et al. (2021b) and Tong et al. (2021), we finally provide an affirmative answer that the
initialization condition can indeed be relaxed to the typical ones required by other rivalry
algorithms. Lemma 5 suggests that, ifm, r, κ0 are bounded, we only require the initialization
satisfies ‖T0 − T ∗‖ ≤ c · σ for a small enough but absolute constant c > 0. This holds for
higher-order TT-format tensors and is not restricted to matrices.

5.2 Initialization by Sequential Second-Order Spectral Method

As stated in Lemma 5, the warm initialization is of crucial importance to ensure the con-
vergence of Algorithm 2. Now we show that our proposed sequential second-order spectral
initialization, stated in Algorithm 3, can indeed, with high probability, deliver an estimate
close to T ∗ under a nearly optimal sample size condition. While our algorithm is inspired
by Xia and Yuan (2019), the theoretical investigation turns out to be more challenging due
to the recursive nature of Algorithm 3. Compared with Xia and Yuan (2019), a major
challenge in our proof is to establish the concentration of (T̂≤i−1⊗ I)>Ni(T̂

≤i−1⊗ I) rather
than the concentration of Ni itself. Actually, the concentration of Ni is poor because its
dimension can be quite large. By multiplying both sides with the incoherent matrix T̂≤i−1,
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the resultant smaller matrix enjoys much better concentration. The proof of Lemma 6 is
relegated to the Appendix.

Lemma 6 Suppose the conditions of T ∗ from Theorem 4 hold. For any absolute constant
C > 0, there exists an absolute constant Cm > 0 depending only on m such that if

n ≥ Cmνm+3κ4m−4
0 ((d∗)1/2r(5m−9)/2 + dr3m−4) log2 d,

then with probability at least 1−md−m, the output of Algorithm 3 satisfies

‖T0 − T ∗‖F ≤
σ

Cmκ2
0r

1/2
and Incoh(T0) ≤ 2κ2

0ν.

Therefore, the output of Algorithm 3 indeed satisfies the initialization condition required
by Lemma 5. If the tensor dimension is balanced dj � d and ν, κ0, r = O(1), the sample
size requirement for warm initialization matches, with a slightly better dependence on log d,
that required by the algorithmic convergence of Lemma 5. Thus our initialization method
is valid requiring a nearly optimal sample size.

Theorem 4 can be readily proved by combining Lemma 5 and Lemma 6.
Proof Under the sample size condition of Theorem 4, both Lemma 5 and Lemma 6 hold.
Therefore, from the contraction property in Lemma 5, we get

‖Tlmax − T ∗‖F ≤ (0.975)lmax · ‖T0 − T ∗‖F ≤ (0.975)lmax · σ,

where the last inequality is guaranteed by Lemma 6 and the above bound holds with prob-
ability at least 1− (2m+ 4)d

−m
. Then, for any ε > 0, there exists a constant C2 > 0 such

that if lmax = dC2 log(σ/ε)e, the final output achieves the error ‖Tlmax − T ∗‖ ≤ ε, which
concludes the proof.

6. Statistically Optimal Noisy TT-format Tensor Completion

Oftentimes, the observed data are contaminated by noise. Suppose we observe i.i.d. random
pairs {(ωi,Yi)}ni=1, where Yi = T ∗(ωi) + ξi with the noise {ξi}ni=1 being i.i.d. σs-sub-
Gaussian. Clearly, the case σs = 0 reduces to the problem of exact tensor completion
studied above.

The loss function is re-written by

min
T ∈Rd1×···×dm

gΩ(T ) :=
1

2

n∑
i=1

(
T (ωi)− Yi

)2
such that ranktt(T ) ≤ r. (7)

The initialization procedure is essentially identical to the noiseless case but shall be re-
written using new notations. Here the sample splitting is applied to [n] as in Section 4.2
and recall n = (2m − 1)n0. With a slight abuse of notation, we re-define the matrices
{Ni}m−1

i=1 by

Ni =
(d∗)2

2n2
0

(2i−1)n0∑
j=(2i−2)n0+1

2in0∑
k=(2i−1)n0+1

YjYk(E〈i〉ωj (E〈i〉ωk )> + E〈i〉ωk (E〈i〉ωj )>)
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Similarly, for the component T̂m, it is attained by

T̂m = n−1
0 d∗T̂≤m−1>

n∑
i=(2m−2)n0+1

YiE〈m−1〉
ωi

The initialization T0 is then obtained by applying Algorithm 3 with the newly defined
{Ni}m−1

i=1 and T̂m. Lemma 7 affirms that, under a suitable signal-to-noise ratio condition,
Algorithm 3 outputs an initialization that is sufficiently close to T ∗. For ease of exposition,
we assume d1 � · · · � dm � d̄ and r1 � · · · � rm−1 � r̄. We also provide a version of
Lemma 7 with general dj ’s and rj ’s in Section A.3. Recall that dj ≤ d̄, rj ≤ r̄, r∗ = r1 · · · rm
and d∗ = d1 · · · dm.

Lemma 7 Suppose Spiki(T ∗) ≤ ν, κ(T ∗) ≤ κ0 and {ξi}ni=1 are i.i.d. σs sub-Gaussian with
variance Var ξ2

1 ≤ C1σ
2
s for some absolute constant C1 > 0. Suppose the sample size

requirement in Lemma 6 holds, also assume the signal-to-noise ratio (SNR) condition:

σ/σs ≥ C2 ·
(d∗)3/4(r∗r)1/4 log3/2(d)

n1/2

for some C2 > 0 depending only on m,κ0, ν. Then with probability at least 1 − 10md
−m

,
the output of Algorithm 3 satisfies

‖T0 − T ∗‖F ≤
σ

Cmκ2
0r

1/2
and Incoh(T0) ≤ 2κ2

0ν,

where C > 0 is the same as in Lemma 6.

In particular, to fix ideas, consider the case when d1 = · · · = dm = d and κ0, ν, {ri}m−1
i=1

are all O(1), then there exist C1, C2 > 0 independent of d, under the sample size condition
n ≥ C1d

m/2 · Polylog(d), the SNR requirement of Lemma 7 can be simplified as

σ/σs ≥ C2
d3m/4

n1/2
· Polylog(d).

This SNR requirement matches the previous work in Xia et al. (2021) where the noisy
Tucker-format tensor completion was investigated. While it remains mysterious in the
minimal SNR requirement for noisy tensor completion, convincing evidences have appeared
showing that the above SNR requirement is likely (near) minimal if only polynomial time
algorithms are sought, at least for the special case n � d∗. See, e.g., Zhang and Xia (2018);
Lyu and Xia (2022); Kunisky et al. (2019).

Once a faithful initialization is available, the convergence of RGrad Algorithm 2 and its
statistical performance are guaranteed by the following lemma.

Lemma 8 Suppose Spiki(T ∗) ≤ ν, κ(T ∗) ≤ κ0 and {ξi}ni=1 are i.i.d. σs sub-Gaussian with
variance Var ξ2

1 ≤ C1σ
2
s for some absolute constant C1 > 0. Assume the same condition

on T0 and sample size n as in Lemma 5. Further suppose the signal-to-noise ratio (SNR)
satisfies

σ/σs ≥ Cm max

{√d∗d

n
+
d∗

n

 r∗ logm+2(d), κ4
0ν

2

√
d∗r · dof

n

}
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for some constant Cm > 0 depending only on m and dof =
∑m

i=1 ri−1diri is the degree of

freedom of a TT-rank r tensor. Then with probability exceeding 1 − (2m + 5)d
−m

, after
Om
(

log(nσ2dof−1σ−2
s )
)

iterations, Algorithm 2 outputs an estimator T̂ such that

1

d∗
‖T̂ − T ∗‖2F ≤ C

r · dof
n

σ2
s log(d),

where the constant C > 0 depends only on m,κ0, ν.

Consider the case dj � d, rj � r, and κ0, ν = O(1), by Lemma 7 and Lemma 8, if the
sample size and SNR satisfy

n� dm/2r5m/2 logm+2 d and
σ

σs
� d3m/4rm/2 logm+2 d

n1/2

, then with sequential second-order moment initialization and after Om
(

log(nσ2d−1σ−2
s )
)

Riemannian gradient descent iterations, we end up with

1

d∗
‖T̂ − T ∗‖2F = Om

(
r3d log d

n
σ2
s

)
,

which holds with high probability. Note that the model complexity is mr2d. Therefore,
when m = O(1), T̂ is statistically optimal up to an additional factor of r and the logarithmic
factor. To our best knowledge, this is the first and sharp statistical bound for noisy TT-
format tensor completion.

7. Numerical Experiments

We perform several numerical experiments for both synthetic data and real data. We also
compare the RGrad-TT algorithm with RGrad-Tucker format to show the computation
efficiency of the tensor train format. Throughout this section, we shall use relative error
frequently that is defined by

relative error =
‖T̂ − T ∗‖F
‖T ∗‖F

where T̂ is the output of the algorithm and T ∗ is the original tensor. And all for the
numerical experiments, the stopping criteria is chosen when ‖Tl+1 − Tl‖F/‖Tl‖F ≤ 0.001.

7.1 Synthetic Data

In this section, we present some synthetic experiments.

7.1.1 Phase Transition

The number of measurements required for an algorithm to reliably rebuild a low TT rank
tensor is an essential question in tensor completion. We explore the recovery abilities of
the proposed algorithm in the framework of phase transition, which compares the number
of measurements, n, the size of a cubic d× d× d tensor of TT rank (r, r).
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Figure 1: Left: Empirical phase transition using RGrad-TT. Successful recovery rate of ten-
sors with a fixed rank (r, r) = (2, 2) from noiseless data is shown. White denotes successful
recovery in all ten random experiments, and black denotes failure in all experiments. Right:
Successful recovery rate of tensors with fix dimension d = 100 of different TT rank.

In the first test, we fix the rank (r, r) = (2, 2) and change the size of the tensor d and
the number of measurements n. For each (d, n) tuple, we test 10 random instances. The
true low TT-rank (r, r) tensor T ∗ is generated from truncating a random Gaussian tensor
using TT-SVD. The measurements tensor PΩ(T ∗) is obtained by sampling n entries of T ∗
uniformly at random. A test is considered to be successful if the returned tensor T satisfies
‖T − T ∗‖F/‖T ∗‖F ≤ 0.01. The dimension of the tensor are ranging from 110 to 190, and
the measurements are from 5000 to 55000. The probabilities of successful recovery for the
RGrad-TT is displayed in Figure 1a. In this figure, white color means that the algorithm can
recover T ∗ in all 10 repeated simulations, whereas the black color means that the algorithm
fails in all 10 simulations. A clear phase transition can be observed from the figure.

In the second test, we fix the dimension d = 100. For each (n, r) tuple, we conduct 10
random instances and a test is considered to be successful if the returned tensor T̂ satisfies
‖T̂ − T ∗‖F/‖T ∗‖F ≤ 0.01. We plot the curves of successful recovery rate against nd−3/2 of
tensors with TT-ranks from (4, 4) to (8, 8) in Figure 1b.

7.1.2 Efficiency of RGrad-TT

We also conduct experiments to illustrate the efficiency of RGrad-TT against RGrad-Tucker.
We fix the dimension d = 300 and consider cubic tensor T ∗ of size d × d × d. We modify
the parameter r and generate a tensor with CP rank r. Then the TT rank of this tensor
is bounded by (r, r) and the Tucker rank of the tensor is bounded by (r, r, r). And we
use Algorithm 3 for initialization for TT format and use the second order moment method
proposed by Xia and Yuan (2019) as initialization for Tucker format. To eliminate the
impact of the randomness, for each fixed r, we conduct experiments on 10 instances and
count the total runtime and runtime for per iteration. The stopping criteria is satisfied
when ‖Tl+1 − Tl‖F/‖Tl‖F ≤ 0.001. The results are shown in Figure 2.
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Figure 2: Left: Total runtime of 10 instances; Right: average runtime for per iteration. In
both cases we fix the tensor of size 300×300×300.

From the figures, we can see that when the TT rank is (r, r) and Tucker rank is (r, r, r),
RGrad-TT is much faster in terms of both total runtime and per iteration runtime.

7.1.3 Low TT-rank Completion with Noise

In this section, we present the performance of proposed algorithm when there exists noise.
We randomly generate the tensor T ∗ ∈ R100×100×100 with TT-rank (r, r) = (2, 2) and
σ(T ∗) ≈ 5. We consider varying sampling numbers from 25000 to 75000. For each fixed
sampling number, i.i.d. Gaussian noise is generated with variance from 0.001 to 0.009. For
each setting, we repeat 10 i.i.d. times and the results are displayed in Figure 3.

From Figure 3, we can see the estimation error depends linearly in the noise level σs
and is inversely proportional to the

√
n, which consists with our theoretical analysis.

7.2 Real Data: Video Completion

We consider a video of a tomato of size (242,320,167), where the third dimension is the
number of frames. Since the video is an RGB one, we concatenate one channel after another
along the third direction and the size of the true tensor T ∗ is (242,320,501).

To demonstrate the represent-ability of TT format against Tucker format, we apply
TTSVD and HOSVD to the original video with TT rank (r, r) and Tucker rank (r, r, r).
The approximation error is measured in the relative error and is plotted in the red and
pink curves. From these curves, we can see that TTSVD has a better performance in
approximating this video.

Then we conduct video completion for this data in both TT format and Tucker format.
Suppose 90% of the pixels are missing and we would like to recover the original video. We
use RGrad-TT (Algorithm 2) with Algorithm 3 as initialization. To make the initialization
comparable, we use second order method introduced in Xia and Yuan (2019) for Tucker
format. We change the rank parameter r, and the corresponding TT rank is (r, r) and the
Tucker rank is (r, r, r). The recovered accuracy is measured in terms of relative error as
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Figure 3: Low TT-rank completion with Gaussian noise. T ∗ ∈ R100×100×100 with TT-rank
(r, r) = (2, 2) and σ(T ∗) ≈ 5. Each setting is repeated 10 times.

shown in Figure 42. From this result, we can see when we fix TT rank to be (r, r) and
Tucker rank to be (r, r, r), the accuracy using RGrad-TT is better than RGrad-Tucker.
Also, we can see that the recovered accuracy is almost the same as the approximation using
TTSVD, which is a quasi-optimal approximation as shown in Oseledets (2011).
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2. The results using RGrad-Tucker is better than using HOSVD for small r since HOSVD is only a quasi-
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Appendix A. Proofs of Main Lemmas

In this section, we will present the proofs for Lemma 5 and Lemma 6. Before we start the
proof, we shall introduce some notations and definitions that will be used throughout in
the proof.

Following Yuan and Zhang (2016), we define the spectral norm of T ∈ Rd1×···×dm as

‖T ‖ := sup
ui∈Sdi−1

〈T , u1 ⊗ · · · ⊗ um〉,

where Sd−1 = {x ∈ Rd : ‖x‖`2 = 1}. The nuclear norm is the dual of spectral norm:

‖T ‖∗ := max
‖Y‖≤1

〈T ,Y〉.

The relation between nuclear norm and Frobenius norm for tensors of low TT rank is
summarized in Lemma 25.

We shall use the semicolon ; to separate the row and column indices of a matrix, for
example, we shall write T 〈i〉(x1, . . . , xi;xi+1, . . . , xm). The operator reshape(M, [p1, . . . , pm])
reshapes the data M of size p1 · · · pm to a tensor of size p1 × · · · × pm in the Matlab way.

We also define some norms for matrices. For a matrix A ∈ Rp1×p2 , the ‖ · ‖2,∞ of
A is defined as ‖A‖2,∞ = maxp1i=1 ‖A(i, :)‖`2 and the ‖ · ‖`∞ norm of A is defined to be
‖A‖`∞ = maxi,j |A(i, j)|.

We also define the projection distance and the chordal distance between two orthogonal
matrices U, V ∈ Rp×r as

dp(U, V ) = ‖UUT − V V T ‖F, dc(U, V ) = min
Q∈Or

‖UQ− V ‖F.

Then we have 1√
2
dc(U, V ) ≤ dp(U, V ) ≤ dc(U, V ).

A.1 Proof of Lemma 5

We first restate a more detailed version of the lemma.

Lemma 9 (Restate of Lemma 5) Suppose the conditions on T ∗ from Theorem 4 hold,
and the initialization T0 satisfies

‖T0 − T ∗‖F ≤
σ

Cmκ0r1/2
and Incoh(T0) ≤ 2κ2

0ν

for a sufficiently large but absolute constant C > 0. There exists an absolute constant
Cm > 0 depending only on m such that if the sample size n satisfies

n ≥ Cm
(
κ2m+4

0 νm+1 logm+2(d) · (d∗)1/2((r∗)1/2r2 ∨ r∗r1/2)

+κ4m+8
0 ν2m+2 log2m+4(d) · d(r∗r4 ∨ (r∗)2r)

)
,

then with probability at least 1− (m+ 4)d
−m

, the sequence {Tl}∞l=1 generated by Algorithm
2 with a constant step size α = 0.12n−1d∗ satisfy

‖Tl − T ∗‖2F ≤ 0.975 · ‖Tl−1 − T ∗‖2F.

for all l = 1, 2, · · · .
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Now we present the proof of this lemma. First we introduce several events that will be
useful in the proof. And the randomness of these events are from the sampling set Ω.

E1 = {‖d
∗

n
PT∗PΩPT∗ − PT∗‖ ≤

1

2
},

E2 = {max
x∈[d∗]

n∑
i=1

I(ωi = x) ≤ 2m log(d)},

E3 = {‖(PΩ −
n

d∗
I)(J )‖ ≤ Cm

√nd

d∗
+ 1

 logm+2(d)},

where J ∈ Rd1×···×dm is the tensor with all its entries one and I is the identity operator from
Rd1×···×dm to Rd1×···×dm . From Lemma 31, E1 holds with probability exceeding 1 − d−m.
From Lemma 33 E2 holds with probability exceeding 1− d−m. From Lemma 32, E3 holds
with probability exceeding 1− d−m.

Also we consider the following empirical process:

βn(γ1, γ2) := sup
A∈Kγ1,γ2

∣∣∣〈PΩA,A〉 −
n

d∗
‖A‖2F

∣∣∣ , (8)

where

Kγ1,γ2 = {A ∈ Rd1×...×dm : ‖A‖F ≤ 1, ‖A‖`∞ ≤ γ1, ‖A‖∗ ≤ γ2}.

The following lemma states gives the upper bound for βn(γ1, γ2) with high probability.

Lemma 10 Given 0 < δ−1 < δ+
1 , 0 < δ−2 < δ+

2 and t ≥ 1, let

t = s+ log 2 + log(log2(
δ+

1

δ−1
)) + log(log2(

δ+
2

δ−2
)).

Then there exists a universal constant Cm > 0 such that with probability at least 1 − e−s,
the following bound holds for all γ1 ∈ [δ−1 , δ

+
1 ] and all γ2 ∈ [δ−2 , δ

+
2 ],

βn(γ1, γ2) ≤ Cmγ1γ2

√nd

d∗
+ 1

 logm+2(d) + 4γ1

√
nt

d∗
+ 8γ2

1t.

Now we consider for any A ∈ Rd1×...×dm , we have
‖A‖`∞
‖A‖F ∈ [1/d∗, 1]. Also from (Hu

2015, Lemma 5.1), ‖A‖∗‖A‖F ∈ [1, d
(m−1)/2

]. So we use Lemma 10 with δ−1 = 1/d∗, δ+
1 =

1, δ−2 = 1, δ+
2 = d

(m−1)/2
and s = α log(d), then t = m log(d) + log 2 + log(log2(d∗)) +

log(log2(d
(m−1)/2

)) ≤ 4m log(d). So with probability exceeding 1−d−m, for all γ1 ∈ [1/d∗, 1]

and γ2 ∈ [1, d
(m−1)/2

],

βn(γ1, γ2) .m γ1γ2

√nd

d∗
+ 1

 logm+2(d) + γ1

√
n log(d)

d∗
+ γ2

1 log(d).
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Denote this event by E4.

Now we denote the event E i5 =

{
‖P(i)(PΩ − n

d∗I)P(i)‖ ≤ Cm
√

µ2r2dn log(d)
(d∗)2

}
for all i ∈

[m], where P(i) : Rd1×...×dm → Rd1×...×dm in terms of its i-th separation:

(P(i)X )〈i〉 = (T ∗≤i−1T ∗≤i−1T ⊗ I)X 〈i〉V ∗i+1V
∗T
i+1.

It is easy to see that P(i) is a projection and this operator is independent of the choice
of left orthogonal representation of T ∗. Set E5 = ∩mi=1E i5, then E5 holds with probability

exceeding 1−md−m from the following lemma.

Lemma 11 Suppose that T ∗ = [T ∗1 , . . . , T
∗
m] ∈ Mtt

r satisfies Incoh(T ∗) ≤ √µ. And Ω is
sampled uniformly with replacement such that |Ω| = n. Then we have with probability

exceeding 1− d−m,

‖P(i)(PΩ −
n

d∗
I)P(i)‖ ≤ Cm

√
µ2r2dn log(d)

(d∗)2

holds as long as n ≥ Cµ2r2d log(d).

When A = [T ∗1 , . . . , T
∗
i−1, A, T

∗
i+1, . . . , T

∗
m],B = [T ∗1 , . . . , T

∗
i−1, B, T

∗
i+1, . . . , T

∗
m], then we have

P(i)A = A and P(i)B = B. Applying Cauchy-Schwartz leads to the following corollary of
Lemma 11.

Corollary 12 For any i ∈ [m], set

A = [T ∗1 , . . . , T
∗
i−1, A, T

∗
i+1, . . . , T

∗
m], B = [T ∗1 , . . . , T

∗
i−1, B, T

∗
i+1, . . . , T

∗
m]

for arbitrary A,B ∈ Rri−1×di×ri. Then under the event E i5, we have

〈A, (PΩ −
n

d∗
I)B〉 ≤ Cm

√
µ2r2dn log(d)

(d∗)2
‖A‖F‖B‖F.

And we denote E = E1 ∩ E2 ∩ E3 ∩ E4 ∩ E5. Then E holds with probability exceeding
1− (m+ 4)d

−m
. Now we proceed assuming E holds.

Using the idea of induction, we start the proof assuming ‖Tl −T ∗‖F ≤ σ

600000mκ0
√
r

and

Incoh(Tl) ≤ 2κ2
0ν. For simplicity we drop the subscript and denote T = Tl and T = Tl in

the following.
Now suppose we fix a left orthogonal decomposition of T = [T1, . . . , Tm], we choose

a left orthogonal decomposition for T ∗ accordingly. First let T ∗ = [T ′1, . . . , T
′
m] be a left

orthogonal decomposition. Define R1 = arg minR∈Or1 ‖T1−T ′1R‖F. Now suppose we obtain
R1, . . . , Ri−1, define

Ri = arg min
R∈Ori

‖T≤i − T ′≤iR‖F.

In this way we obtain R1, . . . , Rm−1. And we define L(T ∗i ) = (Ri−1 ⊗ I)TL(T ′i )Ri for
i ∈ [m − 1] using the convention R0 = [1] and T ∗m = RTm−1T

′
m. Now we can prove by
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induction that [T ′1, . . . , T
′
m] = [T ∗1 , . . . , T

∗
m] and T

′≤iRi = T ∗≤i So we take T ∗ = [T ∗1 , . . . , T
∗
m]

to be the left orthogonal decomposition, and it is the one such that T ∗≤i and T≤i are aligned
in the sense that dc(T

≤i, T ∗≤i) = ‖T≤i−T ∗≤i‖F. And we can write T≥j+1 = Λj+1V
T
j+1 and

T ∗≥j+1 = Λ∗j+1V
∗T
j+1 such that Λj+1,Λj+1 ∈ Rrj are invertible and Vj+1, V

∗
j+1 are orthogonal

and dc(Vj+1, V
∗
j+1) = ‖Vj+1 − V ∗j+1‖F.

As a result from the above alignment process and Wedin’s theorem, we have for all
i ∈ [m− 1],

max{‖T≤i − T ∗≤i‖F, ‖Vi+1 − V ∗i+1‖F} ≤
2‖T − T ∗‖F

σ
. (9)

We first derive the upper bounds for the terms in ‖Tl+1−T ∗‖2F in the following subsections.

A.1.1 Estimation of 〈T − T ∗,PΩ(T − T ∗)〉.

Since the operator PΩ is SPD, we have

〈T − T ∗,PΩ(T − T ∗)〉 ≥ 1

2
〈PΩPT∗(T − T ∗),PT∗(T − T ∗)〉 − 〈PΩP⊥T∗(T ),P⊥T∗(T )〉. (10)

Since E holds, we have

〈PΩPT∗(T − T ∗),PT∗(T − T ∗)〉 ≥
n

2d∗
‖PT∗(T − T ∗)‖F =

n

2d∗
‖T − T ∗‖2F −

n

2d∗
‖P⊥T∗(T )‖2F

Coro. 28
≥ n

2d∗
‖T − T ∗‖2F −

n

d∗
200m2‖T − T ∗‖4F

σ2
. (11)

On the other hand, we consider the upper bound for 〈PΩP⊥T∗T ,P⊥T∗T 〉. Since T and Ω
are dependent, we need to consider the empirical process (8). First notice that

〈PΩP⊥T∗T ,P⊥T∗T 〉 ≤
n

d∗
‖P⊥T∗T ‖2F + ‖P⊥T∗T ‖2Fβn

(
‖P⊥T∗T ‖`∞
‖P⊥T∗T ‖F

,
‖P⊥T∗T ‖∗
‖P⊥T∗T ‖F

)
.

Under E4, we have for any A ∈ Rd1×...×dm ,

‖A‖2Fβn
(
‖A‖`∞
‖A‖F

,
‖A‖∗
‖A‖F

)
.m ‖A‖`∞‖A‖∗

√nd

d∗
+ 1

 logm+2(d)

+ ‖A‖`∞‖A‖F

√
n log(d)

d∗
+ ‖A‖2`∞ log(d).

And this implies that

〈PΩA,A〉 ≤
n

d∗
‖A‖2F + Cm‖A‖`∞‖A‖∗

√nd

d∗
+ 1

 logm+2(d). (12)

Now we focus on ‖P⊥T∗T ‖`∞ , ‖P⊥T∗T ‖∗.

36



Provable TT-format Tensor Completion by Riemannian Optimization

Estimation of ‖P⊥T∗T ‖`∞. Notice that we have Incoh(T ) ≤ 2κ2
0ν and Incoh(T ∗) ≤ κ0ν from

Lemma 2. Using triangle inequality, we have ‖P⊥T∗T ‖`∞ ≤ ‖T ‖`∞ +‖PT∗T ‖`∞ . Meanwhile,
for all 1 ≤ i ≤ m− 1, we have

σmax(Λi+1) ≤ σmax(Λ∗i+1) + ‖T − T ∗‖F ≤
11

10
σ. (13)

As a result of the above inequality and Lemma 21, we have

‖T ‖`∞ = ‖T 〈i〉‖`∞ = ‖T≤iΛi+1V
T
i+1‖`∞ ≤

11

10
σ‖T≤i‖2,∞‖Vi+1‖2,∞ ≤

22

5
σ
κ4

0ν
2ri√
d∗

.

As this holds for all i ∈ [m− 1], we have

‖T ‖`∞ ≤
22

5

rκ4
0ν

2

√
d∗

σ. (14)

On the other hand, we have PT∗T = δT1 + . . .+ δTm, where

δTi = [T ∗1 , . . . , T
∗
i−1, Xi, T

∗
i+1, . . . , T

∗
m]

and the expression of Xi are give in (6). Now we would like to estimate ‖δTi‖`∞ . Since the
reshape operation remains the infinity norm unchanged, we have for all i ∈ [m− 1],

‖δTi‖`∞ = ‖δT 〈i〉i ‖`∞
= ‖(T ∗≤i−1 ⊗ I)(I − L(T ∗i )L(T ∗i )T )(T ∗≤i−1 ⊗ I)TT 〈i〉V ∗i+1V

∗T
i+1‖`∞

≤ ‖(T ∗≤i−1 ⊗ I)(T ∗≤i−1 ⊗ I)TT 〈i〉V ∗i+1V
∗T
i+1‖`∞ + ‖T ∗≤iT ∗≤iTT 〈i〉V ∗i+1V

∗T
i+1‖`∞ ,

and for i = m,

‖δTm‖`∞ = ‖δT 〈m〉m ‖`∞ = ‖(T ∗≤m−1 ⊗ I)(T ∗≤m−1 ⊗ I)TT 〈m〉‖`∞
Lemma 20

= ‖T ∗≤m−1T ∗≤m−1TT 〈m−1〉‖`∞ .

We check the term ‖(T ∗≤i−1 ⊗ I)(T ∗≤i−1 ⊗ I)TT 〈i〉V ∗i+1V
∗T
i+1‖`∞ .

‖(T ∗≤i−1 ⊗ I)(T ∗≤i−1 ⊗ I)TT 〈i〉V ∗i+1V
∗T
i+1‖`∞

(a)

≤
√
di+1 . . . dm‖(T ∗≤i−1T ∗≤i−1T ⊗ I)T 〈i〉‖`∞‖V ∗i+1‖2,∞

(b)

≤ ‖T ∗≤i−1T ∗≤i−1TT 〈i−1〉‖`∞κ0ν
√
ri, (15)

where in (a) we use Lemma 21 and ‖V ∗i+1‖2,∞ = ‖V ∗i+1V
∗T
i+1‖2,∞; in (b) we use Lemma 20

and Incoh(T ∗) ≤ κ0ν. Also, when 2 ≤ i ≤ m

‖T ∗≤i−1T ∗≤i−1TT 〈i−1〉‖`∞ = ‖T ∗≤i−1T ∗≤i−1TT≤i−1ΛiV
T
i ‖`∞

≤ σmax(Λi)‖Vi‖2,∞ ·max
j
‖T≤i−1TT ∗≤i−1T ∗≤i−1T ej‖`2

(a)

≤ σmax(Λi)‖Vi‖2,∞‖T≤i−1‖2,∞‖T ∗≤i−1‖2,∞
√
d1 . . . di−1

(b)

≤ 22

5

κ5
0ν

3r
3/2
i−1√
d∗

σ,
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where in (a) we use Lemma 21 and in (b) we use Incoh(T ∗) ≤ κ0ν, Incoh(T ) ≤ 2κ2
0ν and

(13). And when i = 1,

‖T ∗≤0T ∗≤0TT 〈0〉‖`∞ = ‖T ‖`∞
(14)

≤ 22

5

rκ4
0ν

2

√
d∗

σ.

Combine these with (15) and we get

‖(T ∗≤i−1 ⊗ I)(T ∗≤i−1 ⊗ I)TT 〈i〉V ∗i+1V
∗T
i+1‖`∞ ≤


22
5
κ50ν

3rr
1/2
1√

d∗
σ, i = 1

22
5

κ60ν
4r

3/2
i−1r

1/2
i√

d∗
σ, 2 ≤ i ≤ m

≤ 22

5

κ6
0ν

4r2

√
d∗

σ.

Now for all i ∈ [m− 1], we check ‖T ∗≤iT ∗≤iTT 〈i〉V ∗i+1V
∗T
i+1‖`∞ .

‖T ∗≤iT ∗≤iTT 〈i〉V ∗i+1V
∗T
i+1‖`∞ = max

j,k
|eTj T ∗≤iT ∗≤iTT≤iΛi+1V

T
i+1V

∗
i+1V

∗T
i+1ek|

≤ max
j,k

σmax(Λi+1)‖T≤iTT ∗≤iT ∗≤iT ej‖`2‖V T
i+1V

∗
i+1V

∗T
i+1ek‖`2

≤ σmax(Λi+1)‖T ∗≤i‖2,∞‖T≤i‖2,∞‖Vi+1‖2,∞‖V ∗i+1‖2,∞
√
d∗

≤ 22

5

κ6
0ν

4r2
i√

d∗
σ.

Put these together and we have

‖P⊥T∗T ‖`∞ ≤
44m

5

κ6
0ν

4r2

√
d∗

σ. (16)

Estimation of ‖P⊥T∗T ‖∗. First notice P⊥T∗T = T −PT∗T . From Lemma 24 and ranktt(T ) ≤
(r1, . . . , rm−1), we know ranktt(P⊥T∗T ) ≤ (3r1, . . . , 3rm−1). Now we use Lemma 25 and we
get

‖P⊥T∗T ‖∗ ≤ 3(m−1)/2√r1 . . . rm−1‖P⊥T∗T ‖F. (17)

Now we combine (16), (17), (12) and Lemma 27, since ‖T − T ∗‖F ≤ σ
20m ,

〈PΩP⊥T∗T ,P⊥T∗T 〉 ≤400m2 n

d∗
‖T − T ∗‖4F

σ2

+ Cm
κ7

0ν
4r2

√
d∗
√
r1 . . . rm−1‖T − T ∗‖2F

√nd

d∗
+ 1

 logm+2(d). (18)

So as long as n ≥ Cm
(
κ7

0ν
4
√
d∗r2(r∗)1/2 logm+2(d) + κ14

0 ν
8dr4r∗ log2m+4(d)

)
, we have from

(11) and (18), we have

〈PΩP⊥T∗T ,P⊥T∗T 〉 ≤
1

100
〈PΩPT∗(T − T ∗),PT∗(T − T ∗)〉.
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Together with (10) and (11), we get

〈PΩPT∗T ,PT∗T 〉 ≥
49

100
〈PΩPT∗(T − T ∗),PT∗(T − T ∗)〉

≥ 49

100
(
n

2d∗
‖T − T ∗‖2F −

n

d∗
200m2‖T − T ∗‖4F

σ2
)

≥ 6n

25d∗
‖T − T ∗‖2F, (19)

where the last inequality holds since ‖T − T ∗‖F ≤ 1
600mσ.

A.1.2 Estimation of ‖PTPΩ(T − T ∗)‖2F
First notice that we have both T and T ∗ are of TT rank (r1, . . . , rm−1). And Incoh(T ) ≤
2κ2

0ν, Incoh(T ∗) ≤ κ0ν ≤ 2κ2
0ν =:

√
µ. First notice that

‖PTPΩ(T − T ∗)‖2F ≤ 1001‖PT(PΩ −
n

d∗
I)(T − T ∗)‖2F + 1.001

n2

(d∗)2
‖PT(T − T ∗)‖2F. (20)

Now we check ‖PT(PΩ− n
d∗I)(T −T ∗)‖F. From the variational representation of Frobenius

norm, we can write it as

‖PT(PΩ −
n

d∗
I)(T − T ∗)‖F = 〈(PΩ −

n

d∗
I)(T − T ∗),PT(X0)〉,

for some X0 with ‖X0‖F ≤ 1. Now we set PT(X0) = δX1 + . . . + δXm, with δXi =
[T1, . . . , Xi, . . . , Tm]. For all i ∈ [m], we consider the bound for 〈(PΩ − n

d∗I)(T − T ∗), δXi〉.
We can decompose T − T ∗ as

T − T ∗ = [T ∗1 , . . . ,∆i, . . . , T
∗
m] +

i−1∑
j=1

[T ∗1 , . . . ,∆j , . . . , Ti, T
∗
i+1, . . . , T

∗
m]

+
m∑

j=i+1

[T1, . . . , Ti, Ti+1, . . . ,∆j , . . . , T
∗
m]

=: Yi,i +
i−1∑
j=1

Yi,j +
m∑

j=i+1

Yi,j , (21)

where ∆j = Tj − T ∗j . Before the estimation, we need the following lemmas whose proofs
are presented in the Section C.

Lemma 13 Suppose that Ω is the set sampled uniformly with replacement with size |Ω| = n.
Then under the event E3, we have for any tensors A,B with TT rank (r1, . . . , rm−1),

|〈(PΩ −
n

d∗
I)A,B〉|

≤ Cm

√nd

d∗
+ 1

 logm+2(d) ·
m∏
i=1

(
max
xi
‖Ai(:, xi, :)‖F · ‖Bi‖F ∧max

xi
‖Bi(:, xi, :)‖F · ‖Ai‖F

)
,

where A = [A1, . . . , Am] and B = [B1, . . . , Bm] can be arbitrary decompositions such that
Ai, Bi ∈ Rri−1×di×ri.
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Lemma 14 Let T be a tensor of rank (r1, . . . , rm−1) such that Incoh(T ) ≤ √µ, and it has
a left orthogonal decomposition T = [T1, . . . , Tm]. Then we have

max
xi
‖Ti(:, xi, :)‖2F ≤

µri
di
, ‖Ti‖F =

√
ri, i ∈ [m− 1],

max
xm
‖Tm(:, xm)‖2F ≤ σ2

max(T )
µrm−1

dm
, ‖Tm‖F = ‖T ‖F ≤

√
rσmax(T ).

Now we present some bounds related to ∆j and Xj .

Properties for ∆j. For all j ∈ [m − 1], we estimate ‖∆j‖F = ‖L(Tj) − L(T ∗j )‖F as follows.

Notice T 〈j〉 = (T≤j−1 ⊗ I)L(Tj)T
≥j+1, (T ∗)〈j〉 = (T ∗≤j−1 ⊗ I)L(T ∗j )T ∗≥j+1. So we have,

‖L(Tj)− L(T ∗j )‖F = ‖(T≤j−1 ⊗ I)TT 〈j〉Vj+1Λ−1
j+1 − (T ∗≤j−1 ⊗ I)T (T ∗)〈j〉V ∗j+1(Λ∗j+1)−1‖F

≤ ‖((T≤j−1 ⊗ I)T − (T ∗≤j−1 ⊗ I)T )T 〈j〉Vj+1Λ−1
j+1‖F

+ ‖(T ∗≤j−1 ⊗ I)T (T 〈j〉 − (T ∗)〈j〉)Vj+1Λ−1
j+1‖F

+ ‖(T ∗≤j−1 ⊗ I)T (T ∗)〈j〉(Vj+1Λ−1
j+1 − V

∗
j+1(Λ∗j+1)−1)‖F

(a)

≤ σ−1
min(T )

‖T − T ∗‖F
2σmin(T ∗)

√
rjσmax(T ) + σ−1

min(T )‖T − T ∗‖F

+
√
rσmax(T ∗)12κ0‖T − T ∗‖F

σ2
min(T ∗)

(b)

≤ 20
√
rj
κ2

0‖T − T ∗‖F
σmin(T ∗)

,

where in (a) we use (9) and the bound

‖Vj+1Λ−1
j+1 − V

∗
j+1(Λ∗j+1)−1‖F ≤ ‖(Vj+1 − V ∗j+1)(Λ∗j+1)−1‖F + ‖Vj+1(Λ−1

j+1 − (Λ∗j+1)−1)‖F

and Lemma 22 and in (b) we use |σmax(T )−σmax(T ∗)|∨|σmin(T )−σmin(T ∗)| ≤ 1
10σmin(T ∗).

When i = m, we have

‖Tm − T ∗m‖F = ‖T≤m−1TT 〈m−1〉 − T ∗≤m−1T (T ∗)〈m−1〉‖F
≤ ‖(T≤m−1T − T ∗≤m−1T )(T ∗)〈m−1〉‖F + ‖T≤m−1T (T 〈m−1〉 − (T ∗)〈m−1〉)‖F
≤ 2
√
rm−1κ0‖T − T ∗‖F + ‖T − T ∗‖F ≤ 3

√
rm−1κ0‖T − T ∗‖F.

Therefore, we have

‖∆i‖F ≤
{

20σ−1
min(T ∗)√riκ2

0‖T − T ∗‖F, i ∈ [m− 1]
3
√
rm−1κ0‖T − T ∗‖F, i = m.

(22)

On the other hand, from Lemma 14, we have

max
xi
‖∆i(:, xi, :)‖F ≤

 2
√
µrid

−1
i , i ∈ [m− 1]

2
√
µrm−1d

−1
m · σmax(T ∗), i = m.

(23)
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Upper bound for ‖Xj‖F. For all Xi, i ∈ [m−1], we have L(Xi) = (I−L(Ti)L(Ti)
T )(T≤i−1⊗

I)TX 〈i〉0 T≥i+1T (T≥i+1T≥i+1T )−1, thus ‖Xi‖F ≤ σ−1
min(T ) ≤ 2σ−1

min(T ∗). For i = m, L(Xm) =

(T≤m−1 ⊗ I)TX 〈m〉0 , so ‖Xm‖F ≤ 1. Therefore, we obtain

‖Xi‖F ≤ 2σ−1
min(T ∗), i ∈ [m− 1], ‖Xm‖F ≤ 1. (24)

Now we consider the upper bound for 〈(PΩ − n
d∗I)(T − T ∗), δXi〉.

When i ∈ [m− 1]. Due to (21), we can write it as

〈(PΩ −
n

d∗
I)(T − T ∗), δXi〉 =

m∑
j=1

〈(PΩ −
n

d∗
I)Yi,j , δXi〉.

Now for all j 6= i,m, we consider 〈(PΩ − n
d∗I)(Yi,j), δXi〉. By setting A = Yi,j , B = δXi in

Lemma 13, together with Lemma 14, (22), (23), (24) and we have under the event E3,

|〈(PΩ −
n

d∗
I)(Yi,j), δXi〉| ≤ Cm

√nd

d∗
+ 1

 logm+2(d)κ4
0µ

m/2 r
∗ · rm−1√
rid∗

‖T − T ∗‖F.

For j = m, we have under the event E3,

|〈(PΩ −
n

d∗
I)(Yi,m), δXi〉| ≤ Cm

√nd

d∗
+ 1

 logm+2(d)κ2
0µ

m/2 r
∗ · rm−1√
rid∗

‖T − T ∗‖F.

And when j = i, we estimate |〈(PΩ − n
d∗I)(Yi,i), δXi〉|. We can write

δXi = [T ∗1 , . . . , Xi, . . . , T
∗
m] + [∆1, T2, . . . , Xi, . . . , Tm] + . . .+ [T ∗1 , . . . , Xi, T

∗
i+1, . . . ,∆m]

=: Xi,0 +

m∑
k=1,k 6=i

Xi,k. (25)

Then 〈(PΩ − n
d∗I)(Yi,i), δXi〉 = 〈(PΩ − n

d∗I)(Yi,i),Xi,0〉+
∑m

k=1,k 6=i〈(PΩ − n
d∗I)(Yi,i),Xi,k〉.

And here the first term can be bounded using Corollary 12,

|〈(PΩ−
n

d∗
I)(Yi,i),Xi,0〉| ≤ Cmκ4

0

µr
√
nd log(d)

d∗
√
ri‖T −T ∗‖F ≤ Cmκ4

0

µr3/2
√
nd log(d)

d∗
‖T −T ∗‖F.

When k 6= i,m, we have

|〈(PΩ −
n

d∗
I)(Yi,i),Xi,k〉| ≤ Cm

√nd

d∗
+ 1

 logm+2(d)µm/2
r∗ · rm−1√

rid∗
κ4

0‖T − T ∗‖F.

When k = m, we have

|〈(PΩ −
n

d∗
I)(Yi,i),Xi,m〉| ≤ Cm

√nd

d∗
+ 1

 logm+2(d)µm/2
r∗ · rm−1√

rid∗
κ2

0‖T − T ∗‖F.
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In summary, under the event E3, we have

|〈(PΩ −
n

d∗
I)(Yi,i), δXi〉| ≤ Cmκ4

0µ
m/2 logm+2(d)

√nd

d∗
+ 1

 r∗ · rm−1r
−1/2
i√

d∗
‖T − T ∗‖F.

Together with the estimation when j 6= i, we see that under the event E3,

〈(PΩ −
n

d∗
I)(T − T ∗), δXi〉 ≤ Cmκ4

0µ
m/2 logm+2(d)

√nd

d∗
+ 1

 r∗ · rm−1r
−1/2
i√

d∗
‖T − T ∗‖F.

When i = m. Similarly, we write

〈(PΩ −
n

d∗
I)(T − T ∗), δXm〉 =

m∑
j=1

〈(PΩ −
n

d∗
I)Ym,j , δXm〉.

First when j ∈ [m− 1], we have

|〈(PΩ −
n

d∗
I)(Ym,j), δXm〉| ≤ Cm

√nd

d∗
+ 1

 logm+2(d)κ3
0µ

m/2 r
∗ · r1/2

m−1√
d∗

‖T − T ∗‖F.

(26)

And when j = m, we consider 〈(PΩ − n
d∗I)(Ym,m), δXm〉 = 〈(PΩ − n

d∗I)(Ym,m),Xm,0〉 +∑m−1
k=1 〈(PΩ − n

d∗I)(Ym,m),Xm,k〉 as in (25). Similarly, using Lemma 11, we have

〈(PΩ −
n

d∗
I)(Ym,m),Xm,0〉 ≤ Cmκ0

µr
√
nd log(d)

d∗
√
rm−1‖T − T ∗‖F

≤ Cmκ0

µr3/2
√
nd log(d)

d∗
‖T − T ∗‖F.

And when k ∈ [m− 1], we have

〈(PΩ −
n

d∗
I)(Ym,m),Xm,k〉 ≤ Cmκ3

0µ
m/2 logm+2(d)

√nd

d∗
+ 1

 r∗ · r1/2
m−1√
d∗

‖T − T ∗‖F.

So under the event E3, we have

|〈(PΩ −
n

d∗
I)(Ym,m), δXm〉| ≤ Cmκ3

0µ
m/2 logm+2(d)

√nd

d∗
+ 1

 r∗ · r1/2
m−1√
d∗

‖T − T ∗‖F,

and

〈(PΩ −
n

d∗
I)(T − T ∗), δXm〉 ≤ Cmκ3

0µ
m/2 logm+2(d)

√nd

d∗
+ 1

 r∗ · r1/2
m−1√
d∗

‖T − T ∗‖F.

(27)
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Now we conclude from (26), (27) and under the event E3,

‖PT(PΩ −
n

d∗
I)(T − T ∗)‖F ≤ Cmκ4

0µ
m/2 logm+2(d)

√nd

d∗
+ 1

 r∗rm−1 ·
∑m−1

i=1 r
−1/2
i√

d∗
‖T − T ∗‖F.

Together with (20), as long as

n ≥ Cmκ8
0µ

m log2m+4(d)·d(r∗)2r2
m−1(

m−1∑
i=1

r−1
i )+Cmκ

4
0µ

m/2 logm+2(d)·(d∗)1/2r∗rm−1(

m−1∑
i=1

r
−1/2
i ),

we have under the event E3,

‖PTPΩ(T − T ∗)‖2F ≤ 1.002
n2

(d∗)2
‖T − T ∗‖2F. (28)

A.1.3 Estimation of 〈P⊥T (T − T ∗),PΩ(T − T ∗)〉

Now we derive the upper bound for 〈P⊥T (T − T ∗),PΩ(T − T ∗)〉. First we have

〈P⊥T (T − T ∗),PΩ(T − T ∗)〉 = 〈P⊥T (T − T ∗), (PΩ −
n

d∗
I)(T − T ∗)〉+

n

d∗
‖P⊥T T ∗‖2F.

As in (21), we write T − T ∗ as T − T ∗ =
∑m

j=1 Ym,j . Notice as estimated above (17),

we have ranktt(P⊥T (T − T ∗)) ≤ (3r1, . . . , 3rm−1). So there exists a TT decomposition of
P⊥T (T − T ∗) = [Y1, . . . , Ym−1, Ym] such that ‖Yi‖F =

√
3ri, i ∈ [m − 1] and ‖Ym‖F =

‖P⊥T (T − T ∗)‖F.
When j ∈ [m−1], we estimate 〈P⊥T (T −T ∗), (PΩ− n

d∗I)Ym,j〉. Using Lemma 13, Lemma
14, (22), (23), (24) and Lemma 27, and we have under the event E3,

|〈P⊥T (T − T ∗), (PΩ −
n

d∗
I)Ym,j〉| ≤ Cm

√nd

d∗
+ 1

 logm+2(d)µm/2κ0
r∗ · r1/2

m−1√
d∗

‖T − T ∗‖2F.

And when j = m, we have under the event E3,

|〈P⊥T (T − T ∗), (PΩ −
n

d∗
I)Ym,m〉| ≤ Cm

√nd

d∗
+ 1

 logm+2(d)µm/2κ0
r∗ · r1/2

m−1√
d∗

‖T − T ∗‖2F.

So we conclude under the event E3,

|〈P⊥T (T − T ∗),PΩ(T − T ∗)〉|

≤ Cm

√nd

d∗
+ 1

 logm+2(d)µm/2κ0
r∗ · r1/2

m−1√
d∗

‖T − T ∗‖2F +
n

d∗
300m2‖T − T ∗‖4F

σ2
min(T ∗)

≤ n

1000d∗
‖Tl − T ∗‖2F, (29)

where the last inequality holds as long as

n ≥ Cm logm+2(d)µm/2κ0r
∗r1/2

√
d∗ + Cmdr(r

∗)2µmκ2
0 log2m+4(d).
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A.1.4 Contraction

Now we consider the error ‖Tl+1 − T ∗‖F assuming E holds. From Algorithm 2, we have

‖Tl+1 − T ∗‖2F = ‖SVDtt
r (W̃l)− T ∗‖2F

Lemma 26
≤ ‖W̃l − T ∗‖2F +

600m‖W̃l − T ∗‖3F
σ

. (30)

From the way we choose ζl, we have ‖W̃l−T ∗‖F ≤ ‖Wl−T ∗‖F. Now we estimate ‖Wl−T ∗‖2F.

‖Wl − T ∗‖2F = ‖Tl − T ∗ − αlPTlPΩ(Tl − T ∗)‖2F
= ‖Tl − T ∗‖2F − 2αl 〈Tl − T ∗,PΩ(Tl − T ∗)〉︸ ︷︷ ︸

I

+ 2αl 〈P⊥Tl(Tl − T
∗),PΩ(Tl − T ∗)〉︸ ︷︷ ︸

II

+α2
l ‖PTlPΩ(Tl − T ∗)‖2F︸ ︷︷ ︸

III

.

From (19),(29) and (28), when

n ≥ Cm
(
κ2m+4

0 νm+1 logm+2(d) · (d∗)1/2((r∗)1/2r2 ∨ r∗rm−1r
−1/2 ∨ r∗r1/2)

+κ4m+8
0 ν2m+2 log2m+4(d) · d(r∗r4 ∨ (r∗)2r2

m−1r
−1 ∨ (r∗)2r)

)
,

we obtain

I ≥ 6n

25d∗
‖Tl − T ∗‖2F, |II| ≤ n

1000d∗
‖Tl − T ∗‖2F, |III| ≤ 1.002

n2

(d∗)2
‖Tl − T ∗‖2F.

From these estimations and we get,

‖Wl − T ∗‖2F ≤ ‖Tl − T ∗‖2F(1− 0.239αl
n

d∗
+ 1.002α2

l

n2

(d∗)2
).

Now we set αl = 0.12d
∗

n , and we get ‖Wl − T ∗‖F ≤ 0.986‖Tl − T ∗‖F. When ‖Tl − T ∗‖F ≤
σ

600000m , we have from (30)

‖Tl+1 − T ∗‖2F ≤ 0.975‖Tl − T ∗‖2F.

And this implies ‖Tl+1−T ∗‖F ≤ σ

600000mκ0
√
r

and Incoh(Tl+1) ≤ 2κ2
0ν is implied by Lemma

29. So we finish the proof of Lemma 9.

A.2 Proof of Lemma 6

Before we start the proof, we give a detailed version of the theorem, notice here we set
|Ωi| = ni.

Lemma 15 (Restate of Lemma 6) Suppose the conditions of T ∗ from Theorem 4 hold.
For any absolute constant C > 0, there exists an absolute constant Cm > 0 depending only

44



Provable TT-format Tensor Completion by Riemannian Optimization

on m such that if

n =
2m−1∑
i=1

ni ≥ Cmνm+3κ4m−4
0 log2(d)

(
(d∗)1/2(r∗rr2)1/2 + dr∗rr2

+

m−2∑
k=1

(
(dk · · · dm)1/2(r1 · · · rk−1)3rk(rk+1 · · · rm−1)1/2(rr2)1/2 + d(r1 · · · rk−1)2r∗rr2

)
+ (dr∗rrrm−1)1/2 + drrrm−1 + r∗rrrm−1

)
,

then with probability at least 1−md−m, the output of Algorithm 3 satisfies

‖T0 − T ∗‖F ≤
σ

Cmκ2
0r

1/2
and Incoh(T0) ≤ 2κ2

0ν.

Step 0: We denote Ri = arg minR∈Ori ‖T̂
≤i − T ∗≤iR‖F and we set

√
µ = 2κ2

0ν.

Step 1: When i = 1.
Firstly from Wedin’s sinΘ theorem, and from Lemma 34, we see that when n1, n2 ≥
Cmν

2κ2m−2
0 · (d∗)1/2(r∗r)1/2r log2(d) + Cmν

4κ4m−4
0 dr∗rr2, we have

dp(T̃1, T
∗
1 ) ≤

2
√
r1‖N1 −N∗1 ‖

σ2
≤ (Cmκ

2m−4
0 (r2 · · · rm−1)1/2r1/2)−1. (31)

Now from Lemma 37, we know Incoh(T̂1) ≤
√

3µ and dc(T̂1, T
∗
1 ) ≤ (Cmκ

2m−4
0 (r2 · · · rm−1)1/2r1/2)−1.

Step 2: When 2 ≤ i ≤ m− 1.
Suppose we already have Incoh(T̂≤i−1) ≤ (3µ)(i−1)/2(r1 · · · ri−2)3/2 =:

√
µi−1 and dc(T̂

≤i−1, T ∗≤i−1) ≤
(Ci−1m

2κ
2ti−1

0

√
r · ri)−1. From Lemma 35, we see that,

dp(L(T̃i), (Ri−1 ⊗ I)TL(T ∗i ))

≤
2
√
ri‖(T̂≤i−1 ⊗ I)TNi(T̂

≤i−1 ⊗ I)− (T ∗≤i−1Ri−1 ⊗ I)TN∗i (T ∗≤i−1Ri−1 ⊗ I)‖
σ2

.

Notice that

‖(T̂≤i−1 ⊗ I)TNi(T̂
≤i−1 ⊗ I)− (T ∗≤i−1Ri−1 ⊗ I)TN∗i (T ∗≤i−1Ri−1 ⊗ I)‖

≤ ‖(T̂≤i−1 ⊗ I)T (Ni −N∗i )(T̂≤i−1 ⊗ I)‖+ 2‖T̂≤i−1 − T ∗≤i−1Ri−1‖ · σ2.

So we have

dp(L(T̃i), (Ri−1 ⊗ I)TL(T ∗i )) ≤ 2
√
riσ
−2‖(T̂≤i−1 ⊗ I)T (Ni −N∗i )(T̂≤i−1 ⊗ I)‖

+ 4
√
riκ

2
0dc(T̂

≤i−1, T ∗≤i−1)

=: bi−1 + 4
√
riκ

2
0xi−1. (32)
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Now we derive the chordal distance between T̂≤i and T ∗≤i. Notice that

dc(T̂
≤i, T ∗≤i) ≤

√
ridc(T̂

≤i−1, T ∗≤i−1) + dc(L(T̂i), (Ri−1 ⊗ I)TL(T ∗i ))

≤
√
ridc(T̂

≤i−1, T ∗≤i−1) +
√

2dp(L(T̂i), (Ri−1 ⊗ I)TL(T ∗i ))

Lemma 37
≤

√
ridc(T̂

≤i−1, T ∗≤i−1) + 4
√

2π · dp(L(T̃i), (Ri−1 ⊗ I)TL(T ∗i ))

Together with (32), and denote by qi−1 = 80
√
riκ

2
0, we have xi ≤ qi−1xi−1 + bi−1. Sum this

up and we have

xm−1 ≤ qm−1 · · · q1x1 +
m−2∑
k=1

qm−2 · · · qk+1bk.

From Lemma 35, as long as

n2k+1, n2k+2 ≥ Cmνk+2κ2m
0 log2(d) · (dk · · · dm)1/2(r1 · · · rk−1)3rk(rk+1 · · · rm−1)1/2(rr2)1/2

+Cmν
k+4κ4m−2k

0 log(d) · d(r1 · · · rk−1)3rkrk+1 · · · rm−1(rr2),

we have qm−2 · · · qk+1bk ≤ 1
Cm2κ20

√
r
. Together with the estimation in Step 1, we have

dc(T̂
≤m−1, T ∗≤m−1) = xm−1 ≤ (Cmκ2

0

√
r)−1. (33)

Step 3: When i = m. We have

‖T ∗ − T̂ ‖F = ‖T ∗≤m−1Rm−1R
T
m−1T

∗
m − T̂≤m−1T̂m‖F

≤ ‖(T ∗≤m−1Rm−1 − T̂≤m−1)RTm−1T
∗
m‖F + ‖RTm−1T

∗
m − T̂m‖F

≤ dc(T ∗≤m−1, T̂≤m−1) · σ + ‖RTm−1T
∗
m − T̂m‖F.

Notice dc(T
∗≤m−1, T̂≤m−1) is estimated in (33). On the other hand, we have

‖RTm−1T
∗
m − T̂m‖F = ‖(T ∗≤m−1Rm−1)T (T ∗)〈m−1〉 − (T̂≤m−1)T (

d∗

n2m−1
PΩ2m−1(T ∗))〈m−1〉‖F

≤ ‖(T̂≤m−1)T ((T ∗)〈m−1〉 − (
d∗

n2m−1
PΩ2m−1(T ∗))〈m−1〉)‖F

+ ‖(T ∗≤m−1Rm−1 − T̂≤m−1)T (T ∗)〈m−1〉‖F

≤ ‖(T̂≤m−1)T ((T ∗)〈m−1〉 − (
d∗

n2m−1
PΩ2m−1(T ∗))〈m−1〉)‖F

+ dc(T
∗≤m−1, T̂≤m−1) · σ. (34)

Together with Lemma 36, we have as long as

n2m−1 ≥ Cmν(m+1)/2κm+1
0 log(d) · (dr∗rrrm−1)1/2 + Cmνκ

4
0 log(d) · drrrm−1

+ Cmν
mκ2m+2

0 log(d) · r∗rrrm−1,

we have

‖(T̂≤m−1)T ((T ∗)〈m−1〉 − (
d∗

n2m−1
PΩ2m−1(T ∗))〈m−1〉)‖F ≤

σ

Cmκ0

√
r
. (35)
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From (33) - (34) and we conclude with probability exceeding 1−md−m,

‖T ∗ − T̂ ‖F ≤
σ

Cmκ0

√
r
.

Finally, together with Lemma 29, we conclude that the output T0 satisfies

‖T0 − T ∗‖F ≤
σ

Cmκ2
0

√
r

and Incoh(T0) ≤ 2κ2
0ν.

And this finishes the proof of the lemma.

A.3 Proof of Lemma 7

Lemma 16 (Restate of Lemma 7) Suppose the conditions of T ∗ from Theorem 4 hold
and {ξi}ni=1 are i.i.d. σs subgaussian random variables with variance Var ξ2 ≤ C1σ

2
s for

some absolute constant C1 > 0. Suppose the sample size

n =
2m−1∑
i=1

ni ≥ Cmνm+3κ4m−4
0 log2(d)

(
(d∗)1/2(r∗rr2)1/2 + dr∗rr2

+
m−2∑
k=1

(
(dk · · · dm)1/2(r1 · · · rk−1)3rk(rk+1 · · · rm−1)1/2(rr2)1/2 + d(r1 · · · rk−1)2r∗rr2

)
+ (dr∗rrrm−1)1/2 + drrrm−1 + r∗rrrm−1

)
,

where Cm > 0 depends only on m. Also we assume the signal-to-noise ratio satisfies

σ/σs ≥ Cm max{κ2m−3
0 (r∗rr)1/2(

d1d
∗ log(d)

n
)1/2, κm−2

0 (r∗r)1/4 (d∗)3/4 log3/2(d)

n1/2
(1 +

d
1/2
1

(d∗)1/4
)}

+
m−1∑
i=2

[
Cmκ

2(m−i)+5
0 ν2(ri · · · rm−1rr)

1/2
((d∗)1/2di

n
ri−1 log(d) +

(d∗)1/2di · · · dm
n2

ri−1 log2(d)

+
(d∗di)

1/2

√
n

√
ri−1 log1/2(d)

)
+ Cmκ

m−i+2
0 ν(ri · · · rm−1rr)

1/4
((d∗di)

1/2

n1/2
r

1/2
i−1 log5/4(d) +

d
1/2
i (di+1 · · · dm)1/4

n1/2
r

3/4
i−1 log5/4(d)

)]

+ Cmκ0

√
r
(√d∗dmrm−1

n
log1/2(d) +

d∗

n

√
rm−1

d1 · · · dm−1
κ2

0ν log(d)
)
,

Then with probability at least 1− 10md
−m

, the output of Algorithm 3 satisfies

‖T0 − T ∗‖F ≤
σ

Cmκ2
0r

1/2
and Incoh(T0) ≤ 2κ2

0ν.

The proof is similar to that of Lemma 6. We only need to modify the bound of ‖(T̂≤i−1⊗
I)T (Ni −N∗i )(T̂≤i−1 ⊗ I)‖. To this end, we need a noisy version of Lemma 34 and Lemma
35. For ‖N1 −N∗1 ‖, we use the Theorem 2 from Xia et al. (2021).
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Lemma 17 (Xia et al. (2021), Theorem 2) There exists absolute constant C1, C2 such
that for any α ≥ 1, if

n = n1 = n2 ≥ C1α(
√
d∗ log(d) + d log2(d)),

then with probability exceeding 1− d−α,

‖N1 −N∗1 ‖ ≤ C2

(
(σs + ‖T ∗‖∞)‖T ∗‖F

√
αmd1d∗ log(d)

n

+ α3(σ2
s + ‖T ∗‖2∞ log2(d))

(md∗)3/2 log3(d)

n
(1 +

d1√
d∗

)
)
.

Using this lemma and the sample size condition, under the SNR condition,

σ/σs ≥ Cm max{κ2m−3
0 (r∗rr)1/2(

d1d
∗ log(d)

n2
)1/2, κm−2

0 (r∗r)1/4 (d∗)3/4 log3/2(d)

n
1/2
2

(1+
d

1/2
1

(d∗)1/4
)},

(31) still holds with probability exceeding 1− d−m. For 2 ≤ i ≤ m− 1, we need to use the
following lemma.

Lemma 18 Let M ∈ Rp1×p2 and Xi = p1p2(Mωi + ξi)Eωi , Yj = p1p2(Mω′j
+ ξ′j)Eω′j , where

ωi ∈ Ω1, ω
′
j ∈ Ω2 are independently and uniformly sampled from [p1]×[p2] and |Ω1| = |Ω2| =

n with n ≤ p1p2, and {Eω}ω∈[p1]×[p2] is the standard basis for Rp1×p2 and ξ, {ξi}ni=1, {ξ′j}nj=1

are i.i.d. σs subgaussian random variables with variance Var ξ2 ≤ C1σ
2
s for some absolute

constant C1 > 0. Let U ∈ Rp1×r be the orthogonal matrix such that Incoh(U) ≤ √µ. Then
for any α ≥ 1, with probability exceeding 1−9p−α where p = max{p1, p2}, we have for some
absolute constant C2 > 0,

‖ 1

2n2

∑
i,j

(UTXiY
T
j U + UTYjX

T
i U)− UTMMTU‖

≤ Cα‖M‖∞σs
(
µr
p1p2

n
log(p) + µr

p1p
2
2

n2
log2(p) +

p1p2√
n

√
µr log(p)

)
+ Cασ

2
s

p1p2

n

(
µr log3/2(p) + µr log5/2(p)

√
p2
√
p2 ∨ r
n

)
+ Cα log2(p)

p1p2‖M‖2∞
n

(
µrp

1/2
2 +

µrp2

n
+ (

µrn

log3(p)
)1/2

)
.

We can use this lemma to bound ‖(T̂≤i−1 ⊗ I)T (Ni − N∗i )(T̂≤i−1 ⊗ I)‖. Using the same

notations as in the proof of Lemma 6, we denote bi−1 = 2
√
riσ
−2‖(T̂≤i−1 ⊗ I)T (Ni −

N∗i )(T̂≤i−1 ⊗ I)‖ and qi−1 = 80
√
riκ

2
0. For any 2 ≤ i ≤ m − 1, under the sample size
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condition and the SNR condition,

σ/σs ≥ Cmκ2(m−i)+5
0 ν2(ri · · · rm−1rr)

1/2
((d∗)1/2di

n2i
ri−1 log(d) +

(d∗)1/2di · · · dm
n2

2i

ri−1 log2(d)

+
(d∗di)

1/2

√
n2i

√
ri−1 log1/2(d)

)
+ Cmκ

m−i+2
0 ν(ri · · · rm−1rr)

1/4
((d∗di)

1/2

n
1/2
2i

r
1/2
i−1 log5/4(d) +

d
1/2
i (di+1 · · · dm)1/4

n
1/2
2i

r
3/4
i−1 log5/4(d)

)
,

with probability exceeding 1 − 9d
−m

, we have qm−2 · · · qibi−1 ≤ 1
Cm2κ20

√
r

holds. And we

obtain (33), that is,

dc(T̂
≤m−1, T ∗≤m−1) ≤ (Cmκ2

0

√
r)−1.

We still need to bound n−1
2m−1d

∗‖T≤m−1>∑
i∈Ω2m−1

ξiE〈m−1〉
ωi ‖F. Notice this is already

bounded in (45). We get with probability exceeding 1− d−m,

‖T≤m−1>
∑

i∈Ω2m−1

ξiE〈m−1〉
ωi ‖ ≤ Cm

(√ d∗dm
n2m−1

log1/2(d) +
d∗

n2m−1
κ2

0ν

√
rm−1

d1 · · · dm−1
log(d)

)
σs.

Therefore under the SNR condition,

σ/σs ≥ Cmκ0

√
r
(√d∗dmrm−1

n2m−1
log1/2(d) +

d∗

n

√
rm−1

d1 · · · dm−1
κ2

0ν log(d)
)
,

we get (35) holds with probability exceeding 1 − d−m. Put all these together and we get

with probability exceeding 1− (9(m− 2) + 2)d
−m

,

‖T ∗ − T̂ ‖F ≤
σ

Cmκ0

√
r
.

Finally, together with Lemma 29, we conclude that the output T0 satisfies

‖T0 − T ∗‖F ≤
σ

Cmκ2
0

√
r

and Incoh(T0) ≤ 2κ2
0ν.

And this finishes the proof of the lemma.

A.4 Proof of Lemma 8

For notion simplicity, we denote PΩ(S) =
∑n

j=1 ξjEωj . We only need to slightly modify the
proof of Lemma 5 in Section A.1.4. Notice now we have

‖Tl+1 − T ∗‖2F = ‖SVDtt
r (W̃l)− T ∗‖2F

Lemma 26
≤ ‖W̃l − T ∗‖2F +

600m‖W̃l − T ∗‖3F
σ

, (36)
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where Lemma 26 is valid only when ‖W̃l−T ∗‖F ≤ cmσ for some sufficient cm > 0 depending

only on m, which we will verify momentarily. From the way we choose ζl, we have ‖W̃l −
T ∗‖F ≤ ‖Wl − T ∗‖F. Now we estimate ‖Wl − T ∗‖2F.

‖Wl − T ∗‖2F = ‖Tl − T ∗ − αlPTlPΩ(Tl − T ∗) + αlPTlPΩ(S)‖2F
≤ (1 + δ)‖Tl − T ∗ − αlPTlPΩ(Tl − T ∗)‖2F + (1 + δ−1)α2

l ‖PTlPΩ(S)‖2F. (37)

Now we need to bound ‖PTlPΩ(S)‖F. In the following we shall drop the subscript of Tl for
simplicity. We have ‖PTPΩ(S)‖2F ≤ 2‖(PT − PT∗)PΩ(S)‖2F + 2‖PT∗PΩ(S)‖2F. And

‖(PT − PT∗)PΩ(S)‖F = 〈PΩ(S), (PT − PT∗)(X0)〉 ≤ ‖PΩ(S)‖ · ‖(PT − PT∗)(X0)‖∗

for some X0 with ‖X0‖F ≤ 1. Notice (PT − PT∗)(X0) has TT-rank at most 4(r1, · · · , rm−1)
from Lemma 24. Applying Lemma 25 and we obtain

‖(PT − PT∗)(X0)‖∗ ≤ 2m−1
√
r∗‖(PT − PT∗)(X0)‖F.

Denote PT(X0) =
∑m

i=1 δXi and PT∗(X0) =
∑m

i=1 δX ∗i with

δX 〈i〉i = (T≤i−1 ⊗ I)(I − L(Ti)L(Ti)
T )(T≤i−1 ⊗ I)TX 〈i〉0 Vi+1V

T
i+1,

δX ∗〈i〉i = (T ∗≤i−1 ⊗ I)(I − L(T ∗i )L(T ∗i )T )(T ∗≤i−1 ⊗ I)TX 〈i〉0 V ∗i+1V
∗T
i+1.

In the following for an orthogonal matrix U , we denote PU = UUT . Now for 1 ≤ i ≤ m, we
consider ‖δXi − δX ∗i ‖F. Notice

PT≤i−1⊗IX
〈i〉
0 PVi+1 − PT ∗≤i−1⊗IX

〈i〉
0 PV ∗i+1

= (PT≤i−1⊗I − PT ∗≤i−1⊗I)X
〈i〉
0 PVi+1 + PT ∗≤i−1⊗IX

〈i〉
0 (PVi+1 − PV ∗i+1

).

Since T≤i−1⊗I is the top diri−1 left singular vectors of T 〈i〉 and T ∗≤i−1⊗I is the top diri−1

left singular vectors of T ∗〈i〉, we have

‖PT≤i−1⊗I − PT ∗≤i−1⊗I‖ ≤
2‖T − T ∗‖F

σ
, ‖PVi+1 − PV ∗i+1

‖ ≤ 2‖T − T ∗‖F
σ

.

This implies

‖(PT≤i−1⊗I − PT ∗≤i−1⊗I)X
〈i〉
0 PVi+1 + PT ∗≤i−1⊗IX

〈i〉
0 (PVi+1 − PV ∗i+1

)‖2F ≤
16‖T − T ∗‖2F

σ2
.

And similarly we can bound∥∥∥(T≤i−1 ⊗ I)L(Ti)L(Ti)
T (T≤i−1 ⊗ I)TX 〈i〉0 Vi+1V

T
i+1

− (T ∗≤i−1 ⊗ I)L(T ∗i )L(T ∗i )T (T ∗≤i−1 ⊗ I)TX 〈i〉0 V ∗i+1V
∗T
i+1

∥∥∥
F

= ‖PT≤iX
〈i〉
0 PVi+1 − PT ∗≤iX

〈i〉
0 PV ∗i+1

‖F

≤
16‖T − T ∗‖2F

σ2
.
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Therefore

‖PT(X0)− PT∗(X0)‖2F = ‖
m∑
i=1

δXi − δX ∗i ‖2F ≤ m
m∑
i=1

‖δXi − δX ∗i ‖2F ≤ 32m2 ‖T − T ∗‖2F
σ2

.

(38)

On the other hand, it is proved in (Theorem 1, Xia et al. (2021)) that with probability

exceeding 1− d−m,

‖PΩ(S)‖ ≤ Cmσs(

√
nd

d∗
+ 1) logm+2(d). (39)

According to (38) and (39), we get

‖(PT − PT∗)PΩ(S)‖F ≤ Cm
σs
σ

(

√
nd

d∗
+ 1)
√
r∗ logm+2(d)‖T − T ∗‖F.

Now we bound ‖PT∗PΩ(S)‖F. From the definition of PT∗ in Section 4.3, we have

‖PT∗PΩ(S)‖2F = ‖δA1‖2F + . . .+ ‖δAm‖2F,

such that for i ∈ [m− 1],

‖δAi‖2F = ‖(T ∗≤i−1 ⊗ I)(I − L(T ∗i )L(T ∗i )T )(T ∗≤i−1 ⊗ I)TPΩ(S)〈i〉V ∗i+1(V ∗i+1)T ‖2F
≤ ‖(T ∗≤i ⊗ I)TPΩ(S)〈i〉V ∗i+1‖2F,

and ‖δAm‖2F = ‖(T ∗≤m−1)TPΩ(S)〈m−1〉‖2F. Recall from induction we assume Incoh(T ∗) ≤
2κ2

0ν =:
√
µ. Now we shall use Bernstein’s inequality to bound ‖(T ∗≤i−1⊗I)TPΩ(S)〈i〉V ∗i+1‖.

We denote PΩ(S)〈i〉 =
∑n

j=1 ξjEj , where Ej = E〈i〉ωj . Then we have

‖(T ∗≤i−1 ⊗ I)TEjV
∗
i+1‖ ≤ ‖V ∗i+1‖2,∞‖T ∗≤i−1 ⊗ I‖2,∞ = ‖V ∗i+1‖2,∞‖T ∗≤i−1‖2,∞ ≤

√
ri−1diri
d∗

µ,

where the last inequality holds since Incoh(T ∗) ≤ √µ. And thus for all j ∈ [n], we have

∥∥‖ξj(T ∗≤i−1 ⊗ I)TEjV
∗
i+1‖

∥∥
ψ2
≤ σs

√
ri−1diri
d∗

µ.

On the other hand, we have

‖Eξ2
j (T ∗≤i−1 ⊗ I)TEjV

∗
i+1(V ∗i+1)TETj (T ∗≤i−1 ⊗ I)‖ ≤ σ2

s

ri−1diri
d∗

µ2

and

‖Eξ2
j (V ∗i+1)TETj (T ∗≤i−1 ⊗ I)(T ∗≤i−1 ⊗ I)TEjV

∗
i+1‖ ≤ σ2

s

ri−1diri
d∗

µ2.

Now from Theorem 30, we have with probability exceeding 1− d−m,

‖(T ∗≤i−1 ⊗ I)TPΩ(S)〈i〉V ∗i+1‖ ≤ Cmµσs

√
nri−1diri

d∗
log(d),
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where Cm > 0 is some absolute constant depending only on m. Therefore we have

‖δAi‖2F ≤ Cmκ8
0ν

4σ2
s

nri−1dir
2
i

d∗
log(d).

Similarly, we have ‖δAm‖2F ≤ Cmκ
4
0ν

2σ2
s
nr2m−1dm

d∗ log(d). Combine these bounds and we
have

‖PT∗PΩ(S)‖2F ≤
m−1∑
i=1

Cmκ
8
0ν

4σ2
s

nri−1dir
2
i

d∗
log(d) + Cmκ

4
0ν

2σ2
s

nr2
m−1dm

d∗
log(d)

≤ Cmκ8
0ν

4 n

d∗
σ2
sr · dof,

where dof =
∑m

i=1 ri−1diri is the degree of freedom of a TT-rank r tensor.

α2
l ‖PTPΩ(S)‖2F ≤ Cm

σ2
s

σ2
(
d∗d

n
+

(d∗)2

n2
)r∗ log2m+4(d)‖T − T ∗‖2F + Cmκ

8
0ν

4d
∗

n
σ2
sr · dof.

(40)

Under the SNR condition, σ/σs ≥ Cm

(√
d∗d
n + d∗

n

)
r∗ logm+2(d), we go back to (37), and

we have

‖Wl − T ∗‖2F ≤ (1 + δ)‖Tl − T ∗ − αlPTlPΩ(Tl − T ∗)‖2F + Cm(1 + δ−1)κ8
0ν

4d
∗

n
σ2
sr · dof · log(d)

+ 10−6 · (1 + δ−1)‖T − T ∗‖2F. (41)

Since we already bound ‖Tl − T ∗ − αlPTlPΩ(Tl − T ∗)‖2F in Section A.1.4. Now we choose
δ = 0.001, together with (36), (41) and under the SNR condition, we have

‖Tl+1 − T ∗‖2F ≤ 0.98‖Tl − T ∗‖2F + Cmκ
8
0ν

4d
∗

n
σ2
sr · dof · log(d).

After at most lmax = Ω
(

log(Cmκ
10
0 ν

4r2 d∗

n (σsσ )2 · dof)
)

iterations, we have

‖Tlmax − T ∗‖2F ≤ Cmκ8
0ν

4d
∗

n
σ2
sr · dof · log(d).

Appendix B. Technical Lemmas

In this section, we provide some technical lemmas. Some proofs for the lemmas are placed
to the next section.

Theorem 19 (Wedin’s sinΘ theorem) Let M∗, M = M∗+E ∈ Rp1×p2 be two matrices.
Let U∗, U be the top r left singular vectors of M∗,M respectively. If ‖E‖ < σ∗r −σ∗r+1, then

min
R∈Or

‖UR−R∗‖ ≤
√

2‖E‖
σ∗r − σ∗r+1 − ‖E‖

,

where σ∗i is the i-th largest singular value of M∗, and Or is the set of r × r orthogonal
matrices.
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B.1 Lemmas about linear algebra

Lemma 20 Let N ∈ RdN×d1···di and M ∈ Rdi+2...dm×dM , then we have the following rela-
tions:

reshape(NT 〈i〉, [dNdi+1, di+2 · · · dm]) = (N ⊗ Idi+1
)T 〈i+1〉,

reshape
(

(N ⊗ Idi+1
)T 〈i+1〉, [dN , di+1 · · · dm]

)
= NT 〈i〉,

reshape(T 〈i+1〉M, [d1 . . . di, di+1dM ]) = T 〈i〉(Idi+1
⊗M),

reshape(T 〈i〉(Idi+1
⊗M), [d1 . . . di+1, dM ]) = T 〈i+1〉M.

Proof We first show the first equation. For all xN ∈ [dN ] and xj ∈ [dj ], we have

NT 〈i〉(xN ;xi+1 · · ·xm) =
∑

x1,··· ,xi

N(xN ;x1, · · · , xi)T (x1, · · · , xm)

=
∑

x1,··· ,xi,x′i+1

N(xN ;x1, · · · , xi)I(xi+1, x
′
i+1)T (x1, · · · , x′i+1, · · · , xm)

=
∑

x1,··· ,xi,x′i+1

(N ⊗ Idi+1
)(xN , xi+1;x1, · · · , xi, x′i+1)T (x1, · · · , x′i+1, · · · , xm).

So from this we get the desired result. Now the second equation is just the inverse statement
of the first one. And the third and fourth equations are similar to the first one.

Lemma 21 For any matrix A ∈ Rn×m, x ∈ Rn, we have

‖ATx‖`2 ≤
√
n‖A‖2,∞‖x‖`2 .

Let another matrix B ∈ Rp×m, then we have

‖ABT ‖`∞ ≤
√
m‖A‖`∞‖B‖2,∞.

When we have another matrix X ∈ Rm×m and m ≤ p,m ≤ n, we have

‖AXBT ‖`∞ ≤ ‖X‖ · ‖A‖2,∞‖B‖2,∞.

Proof Set A =

a
T
1
...
aTn

 ∈ Rn×m, then ATx =
∑n

i=1 xiai. And from Cauchy-Schwartz

inequality, we have

‖ATx‖2`2 ≤ ‖x‖
2
`2 ·

n∑
i=1

‖ai‖2`2 ≤ n‖x‖
2
`2‖A‖

2
2,∞.

Also set B =

b
T
1
...
bTp

, then

‖ABT ‖`∞ = max
j,k
|aTj bk| ≤ max

j,k
‖aj‖`∞‖bk‖`1 ≤

√
m‖A‖`∞ max

k
‖bk‖`2 ≤

√
m‖A‖`∞ ·‖B‖2,∞.
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Finally, let X = UΣV T be its SVD,

‖AXBT ‖`∞ ≤ ‖AX‖2,∞‖B‖2,∞ = ‖AUΣ‖2,∞‖B‖2,∞
≤ ‖X‖‖AU‖2,∞‖B‖2,∞ = ‖X‖‖A‖2,∞‖B‖2,∞.

Lemma 22 Let A1, A2 ∈ Rm×n be two rank r matrices with the decomposition A1 =
U1Σ1V

T
1 , A2 = U2Σ2V

T
2 such that UT1 U1 = UT2 U2 = V T

1 V1 = V T
2 V2 = Ir and Σ1,Σ2 ∈ Rr×r

be invertible and U1, U2, V1, V2 are well aligned in the sense that dc(U1, U2) = ‖U1 − U2‖F
and dc(V1, V2) = ‖V1−V2‖F. Suppose that ‖A1−A2‖F ≤ 1

10 min{σmin(A1), σmin(A2)}, then
we have

‖Σ1 − Σ2‖F ≤ 4
√
rκ‖A1 −A2‖,

where κ = max{κ(A1), κ(A2)} and σmin(A) is the smallest nonzero singular value of A.

Proof We can decompose Σ1 − Σ2 as follows,

‖Σ1 − Σ2‖F ≤ ‖(U1 − U2)TA1V1‖F + ‖UT2 (A1 −A2)V1‖F + ‖UT2 A2(V1 − V2)‖F
≤ (
√
r +
√

2rκ(A1) +
√

2rκ(A2))‖A1 −A2‖ ≤ 4
√
rκ‖A1 −A2‖,

where the first inequality in the second line follows Wedin’s sinΘ theorem.

Lemma 23 Let A ∈ Rm×n and B ∈ Rnp×q be such that ATA = In, B
TB = Iq and

Incoh(A) ≤ √µ1, Incoh(B) ≤ √µ2. Then we have Incoh((A⊗ Ip)B) ≤ √µ1µ2n.

Proof Consider for any k ∈ [mp], ‖eTk (A⊗ Ip)B‖`2 , denote by aTk the k-th row of A⊗ Ip,
and thus ‖ak‖`0 ≤ n. So we have

‖eTk (A⊗ Ip)B‖`2 = ‖aTkB‖`2 ≤
√
µ1n

m

√
n
µ2q

np
=

√
µ1µ2n

q

mp
.

B.2 Lemmas concerning TT format

Lemma 24 (Facts about TT rank) 1. Let A,B ∈ Rd1×...×dm be two tensors satisfies
ranktt(A) = (r1, . . . , rm−1) and ranktt(B) = (s1, . . . , sm−1). Then we have

ranktt(A+ B) ≤ (r1 + s1, . . . , rm−1 + sm−1).

2. Let T ∗ ∈ Mtt
r and T∗ be the corresponding tangent space. Let T ∈ Rd1×...×dm be an

arbitrary tensor. Then the rank of PT∗(T ) satisfies ranktt(PT∗(T )) ≤ (2r1, . . . , 2rm−1).
Proof
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1. It follows from rank((A+ B)〈i〉) ≤ rank(A〈i〉) + rank(B〈i〉) = ri + si.

2. Since PT∗(T ) = δT1 + . . . + δTm, where δTi = [T ∗1 , . . . , T
∗
i−1, Xi, T

∗
i+1, . . . , T

∗
m] and

the expression of Xi are give in (6). Now we consider the i − th separation rank

of PT∗(T ). Notice that for all j ≤ i, we have δT 〈i〉j = T ∗≤ij T ∗≥i+1, where T ∗≤ij ∈
Rd1...di×ri is the matrix generated by T ∗1 , . . . , Xj , . . . , T

∗
i . And for j ≥ i + 1, we

have δT 〈i〉j = T ∗≤iT ∗≥i+1
j , where T ∗≥ij ∈ Rri×di+1...dm is the matrix generated by

T ∗i+1, . . . , Xj , . . . , T
∗
m. So we have

PT∗(T )〈i〉 = (
i∑

j=1

T ∗≤ij )T ∗≥i+1 + T ∗≤i(
m∑

j=i+1

T ∗≥i+1
j ).

And thus rank(PT∗(T )〈i〉) ≤ 2ri.

Lemma 25 Let T ∈ Mtt
r be a tensor of TT rank (r1, . . . , rm−1) with a left orthogonal

decomposition T = [T1, . . . , Tm]. Then we have

‖T ‖∗ ≤
√
r1 . . . rm−1‖T ‖F.

Proof Using the alternative definition for the tensor nuclear norm from in Friedland and
Lim (2014), we have

‖T ‖∗ = min{
s∑
i=1

|λi| : T =
s∑
i=1

λiu1,i ⊗ . . .⊗ um,i, ‖ul,i‖`2 = 1, l ∈ [m], i ∈ [s], s ∈ N}. (42)

So we can write T as sum of rank one tensors in the following form

T =

r1∑
k1=1

· · ·
rm−1∑

km−1=1

T1(·, k1)⊗ T2(k1, ·, k2)⊗ . . .⊗ Tm(km−1, ·),

where each Ti(ki−1, ·, ki) ∈ Rdi is a vector. For each fixed k1, . . . , km−1, we have

‖T1(·, k1)⊗ T2(k1, ·, k2)⊗ . . .⊗ Tm(km−1, ·)‖F =
m∏
i=1

‖Ti(ki−1, ·, ki)‖`2 .

And( r1∑
k1=1

· · ·
rm−1∑

km−1=1

m∏
i=1

‖Ti(ki−1, ·, ki)‖`2
)2 ≤ r1 . . . rm−1

r1∑
k1=1

· · ·
rm−1∑

km−1=1

m∏
i=1

‖Ti(ki−1, ·, ki)‖2`2

(a)
= r1 . . . rm−1 ·

∑
k1,...,km−1

m∏
i=2

‖Ti(ki−1, ·, ki)‖2`2

= . . .

(b)
= r1 . . . rm−1 ·

∑
km−1

‖Tm(km−1, ·)‖2`2 = r1 . . . rm−1‖T ‖2F,
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where (a) holds since we have ‖T1(·, k1)‖`2 = 1 since L(T1)L(T1)T = I and (b) holds for sim-
ilar reason and we use L(Ti)

TL(Ti) = Iri for all i ∈ [m− 1]. Together with ‖Tm‖F = ‖T ‖F
and (42), we finish the proof.

Lemma 26 (Perturbation bound for TT SVD) Let T ∗ ∈ Mtt
r be the m-way tensor

and σ := minm−1
i=1 σmin(T ∗)〈i〉. And we denote the tensor T = T ∗ + D. Then suppose

σ ≥ Cm‖D‖F for some constant Cm ≥ 500m depending only on m, we have

‖SVDtt
r (T )− T ∗‖2F ≤ ‖D‖2F +

600m‖D‖3F
σ

.

Proof See Section C.7.

Lemma 27 Let T , T ∗ ∈Mtt
r be two TT-rank r tensors. Suppose we have 8‖T −T ∗‖F ≤ σ,

then we have

‖P⊥T (T ∗)‖F ≤
12
√

2m‖T − T ∗‖2F
σ

,

where T is the tangent space at the point T .

Proof See Section C.8.

Interchanging the roles of T and T ∗ in the theorem and using Weyl’s inequality and we get
the following corollary.

Corollary 28 Under the setting of Lemma 27, let T∗ be the corresponding tangent space
at T ∗, then we have

‖P⊥T∗(T )‖F ≤
20m‖T − T ∗‖2F

σ
.

Lemma 29 (TTSVD + Trim implies incoherence) Let T ∗ ∈Mtt
r be such that Spiki(T ∗) ≤

ν. Suppose thatW satisfies ‖W−T ∗‖F ≤ σ

600m
√
rκ0

, then we have Incoh
(
SVDtt

r (Trimζ(W))
)
≤

2κ2
0ν if we choose ζ = 10‖W‖F

9
√
d∗

ν. Furthermore,

‖SVDtt
r (Trimζ(W))− T ∗‖F ≤

√
2‖W − T ∗‖F.

Proof See Section C.9.

B.3 Concentration inequalities

Define the upper bound of the ψα norm of ‖Z‖ as

U (α) := inf{u > 0 : E exp(‖Z‖α/uα) ≤ 2}, α ≥ 1

and

σ2 = max

{
‖ 1

n

n∑
i=1

EZiZTi ‖, ‖
1

n

n∑
i=1

EZTi Zi‖

}
.
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Theorem 30 (Koltchinskii et al. (2011)) Let Z,Z1, . . . , Zn be i.i.d. random matrices
with dimensions d1 × d2 that satisfy EZ = 0 and U (α) < ∞ for some α ≥ 1. Then there
exists some absolute constant C > 0 such that for all t > 0, with probability at least 1− e−t,
we have

‖ 1

n

n∑
i=1

Zi‖ ≤ C max

σ
√
t+ log d

n
, U (α)

(
log

U (α)

σ

)1/α

· t+ log d

n

 ,

where d = d1 + d2.

First we introduce some operators for the following lemma. For all x ∈ [d1]× . . .× [dm],
let the operator Px : Rd1×...×dm → Rd1×...×dm be defined by Px(X ) = 〈X , Ex〉Ex. And
let Ω = {ω1, . . . , ωn} be the sampling set and define PΩ : Rd1×...×dm → Rd1×...×dm by
PΩ(X ) =

∑m
i=1〈X , Eωi〉Eωi .

Lemma 31 (Concentration inequality) Suppose Ω with |Ω| = n is a set of indices sam-
pled independently and uniformly with replacement. Suppose Spiki(T ∗) ≤ ν for some ν > 0.
When n ≥ Cm(νκ0)4d̄r̄2 log(d∗) for some large constant C1 > 0, with probability exceeding
1− (d)−m, we have

‖d
∗

n
PT∗PΩPT∗ − PT∗‖ ≤

1

2
.

Proof First we define the operators:

Zx :=
d∗

n
PT∗PxPT∗ −

1

n
PT∗ , x ∈ [d1]× . . .× [dm].

Then d∗

n PT∗PΩPT∗ − PT∗ =
∑n

i=1Zωi . We first estimate an upper bound for ‖Zωi‖. First
notice

(PT∗PxPT∗)2(X ) = ‖PT∗(Ex)‖2F(PT∗PxPT∗)(X ).

This implies ‖PT∗PxPT∗‖ ≤ ‖PT∗(Ex)‖2F. And

‖Zx‖ ≤
d∗

n
‖PT∗PxPT∗‖+

1

n
≤ d∗

n
‖PT∗(Ex)‖2F +

1

n
≤ 2m(νκ0)4d̄r̄2

n
,

where the last inequality we use maxx ‖PT∗(Ex)‖2F ≤
m(νκ0)4d̄r̄2

n , which comes from Lemma 2.
Now we bound ‖E

∑n
i=1Z2

ωi‖. Simple calculations show that

E
n∑
i=1

Z2
ωi =

d∗

n

∑
x∈[d1]×...×[dm]

(PT∗PxPT∗)2 − 1

n
PT∗ .

And this implies

‖E
n∑
i=1

Z2
ωi‖ ≤

d∗

n
‖
∑
x

(PT∗PxPT∗)2‖+
1

n

(a)

≤ d∗

n
max
x
‖PT∗(Ex)‖2F · ‖

∑
x

PT∗PxPT∗‖+
1

n

≤ 2m(νκ0)4d̄r̄2

n
,
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where in (a) we use the fact that (PT∗PxPT∗)2 ≤ ‖PT∗(Ex)‖2FPT∗PxPT∗ , where A ≤ B means
B −A is an SPD operator. So we conclude using operator Bernstein inequality,

‖d
∗

n
PT∗PΩPT∗ − PT∗‖ ≤ C

(√
m(νκ0)4d̄r̄2 log(d∗)

n
+
m(νκ0)4d̄r̄2 log(d∗)

n

)

with probability exceeding 1− (d)−m. When n ≥ Cm(νκ0)4d̄r̄2 log(d∗), the right hand side
is less than 1/2. And this finishes the proof of the lemma.

Lemma 32 (Xia et al. 2021, Theorem 1) Suppose Ω is the set sampled uniformly with
replacement with size |Ω| = n, then we have with probability exceeding 1 − (d)−m, the
following holds

‖(PΩ −
n

d∗
I)(J )‖ ≤ Cm

√nd

d∗
+ 1

 logm+2(d),

where J ∈ Rd1×···×dm is the tensor with all its entries 1.

Lemma 33 Let Ω = {ωi : i = 1, · · · , n} where ωi is independently and uniformly sampled

from the set of collections [d1]× · · ·× [dm]. With probability at least 1− d−m, the maximum
number of repetitions of any entry in Ω is less than 2m log(d).

Proof This is a result of standard Chenroff bound. See for example (Recht 2011, Propo-
sition 5) for a proof.

B.4 Lemmas for initialization

Lemma 34 (Xia and Yuan 2019, Theorem 2) Let M ∈ Rp1×p2 and Xi = p1p2PωiM ,
Yj = p1p2Pω′jM , where ωi ∈ Ω1, ω

′
j ∈ Ω2 are independently and uniformly sampled from

[p1] × [p2] and |Ω1| = |Ω2| = n. Denote by N = MMT and Ñ = 1
2n2

∑
i,j(XiY

T
j + YjX

T
i ),

then with probability exceeding 1− p−α with p = max{p1, p2}, we have

‖Ñ −N‖ ≤ Cα2 p
3/2
1 p

3/2
2 log(p)

n

[(
1 +

p1

p2

)1/2

+
p

1/2
1 p

1/2
2

n
+

(
n

p2 log(p)

)1/2
]
· ‖M‖2∞.

Lemma 35 Let M ∈ Rp1×p2 and Xi = p1p2PωiM,Yj = p1p2Pω′jM , where ωi ∈ Ω1, ω
′
j ∈ Ω2

are independently and uniformly sampled from [p1]×[p2] and |Ω1| = |Ω2| = n. Let U ∈ Rp1×r
be the orthogonal matrix such that Incoh(U) ≤ √µ. Then with probability exceeding 1−p−α,
we have

‖ 1

2n2

∑
i,j

(UTXiY
T
j U + UTYjX

T
i U)− UTMMTU‖

≤ Cα2 log2(p)
p1p2‖M‖2∞

n

(
µrp

1/2
2 +

µrp2

n
+ (

µrn

log3(p)
)1/2

)
.
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Proof See Section C.10.

When Spiki(M) ≤ ν, we have

‖ 1

2n2

∑
i,j

(UTXiY
T
j U + UTYjX

T
i U)− UTMMTU‖

≤ Cα2 log2(p)ν2‖M‖2F

(
µrp

1/2
2

n
+
µrp2

n2
+ (

µr

n log3(p)
)1/2

)

holds with probability exceeding 1− p−α.

Lemma 36 Let M ∈ Rp1×p2 and Xi = p1p2Pωi(M), where ωi ∈ Ω is independently and
uniformly sampled in [p1]× [p2] and |Ω| = n. Let U ∈ Rp1×r be the orthogonal matrix such
that Incoh(U) ≤ √µ. Then with probability exceeding 1− p−α, we have

‖UT (
p1p2

n
PΩ(M)−M)‖ ≤ Cα

(√
p1p2
√
µr‖M‖∞ log(p)

n
+

√
p1p2‖M‖2∞(µr ∨ p2) log(p)

n

)
.

Proof See appendix C.11.

Lemma 37 (Keshavan et al. 2010, Remark 6.2) Let U,X ∈ Rp×r be orthogonal and
Incoh(U) ≤ √µ0 and dp(U,X) ≤ δ ≤ 1

16π . Then X̄ satisfies Incoh(X̂) ≤
√

3µ0 and

dp(X̂, U) ≤ 4πδ, where

X
i

=
Xi

‖Xi‖`2
·min{‖Xi‖`2 ,

√
µr

p
}, X̂ = X(X

T
X)−1/2.

Appendix C. Proofs of technical lemmas

In this section, we provide the proofs for the technical lemmas.

C.1 Proof of Lemma 2

Since (T ∗)〈i〉 = T ∗≤iΛ∗i+1V
∗T
i+1, we have T ∗≤i = (T ∗)〈i〉V ∗i+1(Λ∗i+1)−1. And thus for any

k ∈ [d1 . . . di],

‖eTk T ∗≤i‖`2 = ‖eTk (T ∗)〈i〉V ∗i+1(Λ∗i+1)−1‖`2 ≤
1

σmin(Λ∗i+1)
‖eTk (T ∗)〈i〉‖`2 ≤

√
di+1 . . . dm
σmin(Λ∗i+1)

‖T ∗‖`∞ .

And the spikiness condition implies ‖T ∗‖`∞ ≤ ν√
d∗
‖T ∗‖F, and together with ‖T ∗‖F ≤√

riσ1(Λ∗i+1), we obtain

‖eTk T ∗≤i‖`2

√
d1 . . . di√
ri

≤ νκ0.

The bound for ‖eTk V ∗i+1‖`2 can be similarly derived. And this finishes the proof.
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C.2 Proof of Lemma 10

For simplicity denote the random tensor which is uniformly distributed in {Eω}ω∈[d∗] by E
and let E1, . . . , En be n i.i.d. copies of E . Also define δ1,j = 2jδ−1 , j = 0, . . . , dlog2(

δ+1
δ−1

)e =: j0,

δ2,k = 2kδ−2 , k = 0, . . . , dlog2(
δ+2
δ−2

)e =: k0. For each j, k, we derive an upper bound for

βn(γ1, γ2) with γ1 = δ1,j , γ2 = δ2,k.
We observe that

sup
A∈Kγ1,γ2

∣∣〈A, E〉2 − E〈A, E〉2
∣∣ ≤ γ2

1 ,

and

sup
A∈Kγ1,γ2

Var〈A, E〉2 ≤ sup
A∈Kγ1,γ2

〈A, E〉4 ≤
γ2

1‖A‖2F
d∗

≤ γ2
1

d∗
.

Now apply Bousquet’s version of Talagrand concentration inequality (see Giné and Nickl
2021, Theorem 3.3.9), and we get with probability at least 1− e−t for any t > 0,

βn(γ1, γ2) ≤ 2Eβn(γ1, γ2) + 2γ1

√
nt

d∗
+ 2γ2

1t.

Using symmetric inequality, we have

Eβn(γ1, γ2) ≤ 2nE sup
A∈Kγ1,γ2

∣∣∣∣∣ 1n
n∑
i=1

εi〈A, Ei〉2
∣∣∣∣∣ ,

where ε1, . . . , εn are i.i.d. Rademacher random variables. Since |〈A, E〉| ≤ γ1, we have from
contraction inequality

Eβn(γ1, γ2) ≤ 4nγ1E sup
A∈Kγ1,γ2

∣∣∣∣∣ 1n
n∑
i=1

εi〈A, Ei〉

∣∣∣∣∣ .
Now we denote Y = 1

n

∑n
i=1 εiEi. Then we have

E sup
A∈Kγ1,γ2

∣∣∣∣∣ 1n
n∑
i=1

εi〈A, Ei〉

∣∣∣∣∣ ≤ E sup
A∈Kγ1,γ2

‖Y‖‖A‖∗ ≤ γ2E‖Y‖.

The estimation for ‖Y‖ derived in the Theorem 1 of Xia et al. (2021) gives

E‖Y‖ ≤ Cm

√ d

nd∗
+

1

n

 logm+2(d).

As a result, with probability exceeding 1− e−t, we have

βn(γ1, γ2) ≤ Cmγ1γ2

√nd

d∗
+ 1

 logm+2(d) + 2γ1

√
nt

d∗
+ 2γ2

1t. (43)
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Now we take union bound and we get with probability exceeding 1−2 log2

(
δ+1
δ−1

)
log2

(
δ+2
δ−2

)
e−t,

and for all γ1 ∈ {δ1,0, . . . , δ1,j0}, γ2 ∈ {δ2,0, . . . , δ2,k0}, (43) holds. Now we consider arbitrary
γ1 ∈ [δ−1 , δ

+
1 ], γ2 ∈ [δ−2 , δ

+
2 ]. Then there exists some j, k, such that γ1 ∈ [δ1,j−1, δ1,j ], γ2 ∈

[δ2,k−1, δ2,k]. Together with the fact that δ1,j ≤ 2γ1 and δ2,k ≤ 2γ2 we get

βn(γ1, γ2) ≤ βn(δ1,j , δ2,k) ≤ Cmγ1γ2

√nd

d∗
+ 1

 logm+2(d) + 4γ1

√
nt

d∗
+ 8γ2

1t.

This finishes the proof of the lemma.

C.3 Proof of Lemma 11

Let ω ∈ [d1]× . . .× [dm], then

‖P(i)Eω‖2F ≤


µr1d1
d∗ , i = 1

µ2ri−1ridi
d∗ , 2 ≤ i ≤ m− 1

µrm−1dm
d∗ , i = m

≤ µ2r2d

d∗
.

Set Zj = P(i)(Pωj − 1
d∗I)P(i) for all j ∈ [n], then P(i)(PΩ − n

d∗I)P(i) =
∑n

j=1Zj . First for
arbitrary X , we have

(P(i)PωP(i))2X = ‖P(i)Eω‖2F · P(i)PωP(i)X .

Therefore ‖P(i)PωP(i)‖ ≤ ‖P(i)Eω‖2F and this implies that

‖Zj‖ ≤ max
ω
‖P(i)Eω‖2F +

1

d∗
≤ 2µ2r2d

d∗
.

On the other hand, since Zj is an symmetric operator, we consider E
∑n

j=1Z2
j .

‖E
n∑
j=1

Z2
j ‖ = n‖ 1

d∗

∑
ω

(P(i)PωP(i))2 − 1

(d∗)2
P(i)‖

≤ n

d∗
max
ω
‖P(i)Eω‖2F +

n

(d∗)2
≤ 2µ2r2nd

(d∗)2
.

Now using operator Bernstein inequality, with probability exceeding 1− d−m,

‖P(i)(PΩ −
n

d∗
I)P(i)‖ ≤ Cm

µ2r2d log(d)

d∗
+

√
µ2r2dn log(d)

(d∗)2

 ≤ Cm
√
µ2r2dn log(d)

(d∗)2
,

where the last inequality holds as long as n ≥ Cµ2r2d log(d).
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C.4 Proof of Lemma 13

Notice that

〈(PΩ −
n

d∗
I)A,B〉 = 〈(PΩ −

n

d∗
I)J ,A� B〉 ≤ ‖(PΩ −

n

d∗
I)J ‖ · ‖A � B‖∗.

where J is the tensor with all its entries one. And from the definition of nuclear norm in
(42), we have

‖A � B‖2∗ ≤

 ∑
k1,...,km−1

k′1,...,k
′
m−1

‖A1(:, k1)�B1(:, k′1)‖`2 . . . ‖Am(km−1, :)�B1(k′m−1, :)‖`2


2

≤
∑
x1

‖A1(x1, :)‖2F‖B1(x1, :)‖2F . . .
∑
xm

‖Am(:, xm)‖2F‖Bm(:, xm)‖2F,

where the last inequality comes from using Cauchy-Schwartz inequality m− 1 times. Since
E3 holds and∑

xi

‖Ai(:, xi, :)‖2F‖Bi(:, xi, :)‖2F ≤ max
xi
‖Ai(:, xi, :)‖2F · ‖Bi‖2F ∧max

xi
‖Bi(:, xi, :)‖2F · ‖Ai‖2F

we get the desired result.

C.5 Proof of Lemma 14

Consider for all i ∈ [m− 1], notice that L(Ti) = (T≤i−1 ⊗ I)TT≤i. We have

L(Ti)(ki−1, xi; ki) =
∑

yi−1∈[d1···di−1]

T≤i−1(yi−1, ki)T
≤i(yi−1, xi; ki).

This implies

‖Ti(:, xi, :)‖2F = ‖(T≤i−1)T · T≤i(:, xi, :)‖2F ≤ ‖T≤i(:, xi, :)‖2F ≤
µri
di
,

where T≤i(:, xi, :) is viewed as a matrix of size d1 · · · di−1× ri by extracting d1 · · · di−1 rows
of T≤i. And since the decomposition is left orthogonal, we have ‖Ti‖F = ‖L(Ti)‖F = ri.

When i = m, since Tm = ΛmR
T
m for some Λm ∈ Rrm−1×rm−1 invertible and orthogonal

Rm with Incoh(Rm) ≤ √µ. So we have

max
xm
‖Tm(:, xm)‖2F ≤ σ2

max(T )
µrm−1

dm
.

And ‖T ‖F = ‖T 〈m−1〉‖F = ‖T≤m−1Tm‖F = ‖Tm‖F since T≤m−1 is orthogonal.
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C.6 Proof of Lemma 18

We first introduce some notations. Denote PΩ(M) =
∑

ωi∈ΩMωiEωi and PΩ′(M) =∑
ω′j∈ΩMω′j

Eω′j , and their mean zero version ∆ = p1p2
n PΩ(M)−M , ∆′ = p1p2

n PΩ′(M)−M
denote also Ξ = p1p2

n

∑n
i=1 ξiU

TEωi and Ξ′ = p1p2
n

∑n
j=1 ξ

′
iU

TEω′j . Also we will encounter

norms ‖A‖∞ = maxi,j |Aij | and ‖ · ‖k,∞ for k = 1, 2 defined as follows

‖A‖kk,∞ := max
i∈[p1]

p2∑
j=1

|Aij |k.

Notice that

‖ 1

2n2

∑
i,j

(UTXiY
T
j U + UTYjX

T
i U)− UTMMTU‖

= ‖(p1p2)2

2n2

∑
i,j

(MωiMω′j
+Mωiξ

′
j + ξiMω′j

+ ξiξ
′
j)U

T (EωiE
T
ω′j

+ Eω′jE
T
ωi)U − U

TMMTU‖

≤ ‖(p1p2)2

2n2
(UTPΩ(M)PΩ′(M)TU + UTPΩ′(M)PΩ(M)TU)− UTMMTU‖︸ ︷︷ ︸

β1

+
p1p2

2n
‖UTPΩ(M)Ξ′TU + UTΞ′PΩ(M)TU‖︸ ︷︷ ︸

β2

+
p1p2

2n
‖UTΞPΩ′(M)TU + UTPΩ′(M)ΞTU‖︸ ︷︷ ︸

β3

+ ‖ΞΞ′T + Ξ′ΞT ‖︸ ︷︷ ︸
β4

. (44)

Notice β1 can be controlled using Lemma 35. And β2 and β3 can be bounded similarly.

We begin with several preliminary facts which can be easily proved by matrix Bern-
stein inequalities (Theorem 30). We have with probability exceeding 1 − 2p−α, where
p = max{p1, p2} and for any α ≥ 1,

max{‖Ξ‖, ‖Ξ′‖} ≤ Cα

(√
p1p2(p2 ∨ r)

n
log pσs +

p1p2

n

√
µr

p1
log pσs

)
. (45)

Meanwhile, using Theorem 30, we also have with probability exceeding 1− 2p−α,

max{‖UTMΞT ‖, ‖UTMΞ′T ‖} ≤ Cα

(√
µrp2

1p
2
2

n
log p+

p1p2

n
µr log p

)
‖M‖∞σs. (46)

Notice β2 ≤ ‖UT∆Ξ′T ‖ + ‖UTMΞ′T ‖. And UT∆Ξ′T = p1p2
n

∑
j U

T∆ξ′jE
T
ω′j
U . Let

Ω = {(ik, jk)}nk=1, then using Chernoff bound, with probability exceeding 1− n−α,

max
l∈[p2]

n∑
k=1

1(jk = l) ≤ (3α+ 7)(
n

p2
+ log(p)).
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Therefore,

max
l∈[p2]

‖UTPΩ(M)el‖`2 = max
l∈[p2]

‖UT
n∑
k=1

Mik,jkeike
T
jk
el‖`2 ≤ (3α+ 7)(

n

p2
+ log(p))‖M‖∞

√
µr

p1
.

Meanwhile,

max
l∈[p2]

‖UTMel‖`2 = max
l∈[p2]

‖UT
∑
i,j

Mi,jeie
T
j el‖`2 = max

l∈[p2]
‖UT

∑
i

Mi,lei‖`2 ≤ p1‖M‖∞
√
µr

p1
.

Using these two bounds on ‖MTU‖2,∞ and ‖PΩ(M)TU‖2,∞, we get

‖UT∆ξ′jE
T
ω′j
U‖ ≤ ‖U‖2,∞ · ‖(

p1p2

n
PΩ(M)−M)TU‖2,∞

≤ ‖U‖2,∞ · (‖MTU‖2,∞ +
p1p2

n
‖PΩ(M)TU‖2,∞)

≤ (3α+ 8)(1 +
p2

n
log p)µr‖M‖∞.

where in the fourth line we use Lemma 21, ‖ · ‖`2 ≤ ‖ · ‖`1and Chernoff bound. Therefore
we obtain∥∥∥‖ξ′jUT (

p1p2

n
PΩ(M)−M)ξ′jE

T
ω′j
U‖
∥∥∥
ψ2

≤ (3α+ 8)(1 +
p2

n
log p)µr‖M‖∞σs.

On the other hand, notice with probability 1− p−α,

max{‖Eξ′2j UT∆ETω′j
UUTEω′j∆

TU‖, ‖Eξ′2j UTEω′j∆
TUUT∆ETω′j

U‖}

≤ rσ2
s

p1p2
‖UT∆‖2

≤ Cα2 rσ
2
s

p1p2

(
p1p

2
2µr‖M‖2∞ log2(p)

n2
+
p1p2‖M‖2∞(µr ∨ p2) log(p)

n

)
,

where the last inequality follows from Lemma 36. Therefore when n ≤ p1p2, we have with
probability exceeding 1− p−α,

‖UT∆Ξ′T ‖ ≤ Cα
p1p2

n
‖M‖∞σs

(
µr log(p) +

p2

n
µr log2(p)

)
.

Together with (46), we see with probability exceeding 1− 3p−α − n−α,

β2 ≤ Cα‖M‖∞σs
(
µr
p1p2

n
log(p) + µr

p1p
2
2

n2
log2(p) +

p1p2√
n

√
µr log(p)

)
. (47)

And we can bound β3 similarly.
Now we consider β4. For any fixed Ξ′, we need to control p1p2

n ‖
∑

i ξiU
TEωiΞ

′T ‖. No-

tice using Chernoff bound and the fact that maxi |ξi| ≤ Cασs log1/2(n) with probability
exceeding 1− n−α, we have with probability exceeding 1− 2n−α,

‖Ξ′T ‖2,∞ =
p1p2

n
max
l∈[p2]

‖
n∑
j=1

ξ′jU
TEω′jel‖`2 ≤ Cα(3α+ 7)

p1p2

n
(
n

p2
+ log(p))σs log1/2(n)

√
µr

p1
.
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Therefore

‖UTEωiΞ′T ‖ ≤ ‖U‖2,∞ · ‖Ξ′T ‖2,∞ ≤ Cα
p1p2

n
(
n

p2
+ log(p))σs log1/2(n)

µr

p1

where in the last inequality of the first line we use Lemma 21. And thus∥∥‖ξiUTEωiΞ′T ‖∥∥ψ2
≤ Cα

µr

p1
σ2
s log1/2(n)

p1p2

n
(
n

p2
+ log(p)).

On the other hand,

1

n
‖
∑
i

Eξ2
i U

TEωiΞ
′TΞ′ETωiU‖ =

σ2
s

p1p2
‖
∑
k,l

UT eke
T
l Ξ′TΞ′ele

T
kU‖ =

σ2
s

p1p2
‖‖Ξ′‖2F · I‖ ≤

σ2
sr

p1p2
‖Ξ′‖2,

and similarly 1
n‖
∑

i Eξ2
i Ξ′ETωiUU

TEωiΞ
′T ‖ ≤ σ2

sr
p1p2
‖Ξ′‖2. Now from (46) and Theorem 30,

when n ≤ p1p2, we have with probability exceeding 1− 2n−α − 2p−α,

β4 ≤ Cασ2
s

p1p2

n

(
µr log3/2(p) + µr log5/2(p)

√
p2
√
p2 ∨ r
n

)
. (48)

We get the desired result combining (47), (48) and Lemma 35.

C.7 Proof of Lemma 26

Denote T̂ = SVDtt
r (T ) = [T̂1, . . . , T̂m]. Let T ∗ = [T ∗∗1 , . . . , T ∗∗m ] be a TT decomposition that

is left orthogonal and Ri = arg minR∈Ori ‖(T
∗∗)≤iR− T̂≤i‖F. Now we set L(T ∗i ) = (Ri−1 ⊗

I)TL(T ∗∗i )Ri. Then T ∗ = [T ∗1 , . . . , T
∗
m] is another left orthogonal decomposition so that T ∗≤i

and T̂≤i are well aligned in terms of chordal distance. Also, let (T ∗)〈i〉 = T ∗≤iΛi+1V
∗T
i+1 be

such that V ∗Ti+1V
∗
i+1 = Iri and Λi+1 ∈ Rri×ri be invertible.

From Algorithm 1, we have (T̂≤m−1)TT 〈m−1〉 = T̂m. Now using the notations P̂i =
T̂≤m−1T̂≤m−1T and P∗i = T ∗≤iT ∗≤iT , we have

‖SVDtt
r (T )− T ∗‖F = ‖T̂ 〈m−1〉 − (T ∗)〈m−1〉‖F = ‖(P̂m−1 − I)(T ∗)〈m−1〉 + P̂m−1D〈m−1〉‖F

(a)
= ‖(P̂m−1 − P∗m−1)(T ∗)〈m−1〉 + P∗m−1D〈m−1〉 + (P̂m−1 − P∗m−1)D〈m−1〉‖F
(b)
= ‖ (I − P∗m−1)∆m−1V

∗
mV
∗T
m + P∗m−1D〈m−1〉︸ ︷︷ ︸

(I.1)

+H(P̂m−1,P∗m−1)(T ∗)〈m−1〉 + (P̂m−1 − P∗m−1)D〈m−1〉︸ ︷︷ ︸
high order terms=:(I.2)

‖F, (49)

where in (a) we use the fact that (I−P∗m−1)(T ∗)〈m−1〉 = 0 and (b) follows from the following
equation when i = m− 1, which is a result of Lemma 32,

P̂i − P∗i = T ∗≤i(Λ∗i+1)−1(V ∗i+1)T∆T
i (I − P∗i ) + (I − P∗i )∆iV

∗
i+1(Λ∗i+1)−1(T ∗≤i)T +H(P̂i,P∗i ),
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and since T ∗≤i is the top ri left singular vectors of (T ∗)〈i〉 and T̂≤i is the top ri left singular
vectors of (P̂i−1 ⊗ I)T 〈i〉, so ∆i = (P̂i−1 ⊗ I)T 〈i〉 − (P∗i−1 ⊗ I)(T ∗)〈i〉, and thus

∆i =
(

(P̂i−1 − P∗i−1)⊗ Idi
)

(T ∗)〈i〉 +
(
P̂i−1 ⊗ Idi

)
D〈i〉

=
(

(P̂i−1 − P∗i−1)⊗ Idi
)

(T ∗)〈i〉 +
(
P∗i−1 ⊗ Idi

)
D〈i〉 +

(
(P̂i−1 − P∗i−1)⊗ Idi

)
D〈i〉

=
(
(I − P∗i−1)∆i−1V

∗
i (Λ∗i )

−1(T ∗≤i−1)T ⊗ Idi
)

(T ∗)〈i〉 +
(
P∗i−1 ⊗ Idi

)
D〈i〉

+
(
H(P̂i−1,P∗i−1)⊗ Idi

)
(T ∗)〈i〉 +

(
(P̂i−1 − P∗i−1)⊗ Idi

)
D〈i〉︸ ︷︷ ︸

high order terms=:Hi

=: Li +Hi, (50)

here we use Li and Hi to denote the leading terms and high order terms of ∆i respectively.
Now we derive first the upper bound for ‖Hi‖F.

Bound for ‖Hi‖F. Notice by triangle inequality, we have

‖Hi‖F ≤ ‖
(
H(P̂i−1,P∗i−1)⊗ Idi

)
(T ∗)〈i〉‖F + ‖

(
(P̂i−1 − P∗i−1)⊗ Idi

)
D〈i〉‖F.

From the assumption we have σmin(Λ∗i ) ≥ 8‖∆i−1‖F, we have

‖
(
H(P̂i−1,P∗i−1)⊗ Idi

)
(T ∗)〈i〉‖F ≤

12‖∆i−1‖2F
σmin(Λ∗i )

,

and

‖
(

(P̂i−1 − P∗i−1)⊗ Idi
)
D〈i〉‖F ≤

4‖D‖F‖∆i−1‖F
σmin(Λ∗i )

.

So combine these two estimations, and we have

‖Hi‖F ≤
12‖∆i−1‖2F
σmin(Λ∗i )

+
4‖D‖F‖∆i−1‖F

σmin(Λ∗i )
. (51)

Upper bound for ‖∆i‖F. We first show the following for all 2 ≤ i ≤ m− 1.

‖(I − P∗i )∆i‖2F − ‖(I − P∗i−1)∆i−1‖2F
≤ ‖(T ∗≤i−1 ⊗ Idi)(I − L(T ∗i )L(T ∗i )T )((T ∗≤i−1)T ⊗ Idi)D

〈i〉‖2F + 2‖(I − P∗i )Li‖F‖Hi‖F + ‖Hi‖2F.
(52)

As a consequence of P∗i = (U∗≤i−1 ⊗ Idi)L(T ∗i )L(T ∗i )T ((T ∗≤i−1)T ⊗ Idi), we have

P∗i
(
(I − P∗i−1)∆i−1V

∗
i (Λ∗i )

−1(T ∗≤i−1)T ⊗ Idi
)

(T ∗)〈i〉 = 0.

So the leading term of (I − P∗i )∆i is

(I − P∗i )Li =
(
(I − P∗i−1)∆i−1V

∗
i (Λ∗i )

−1(T ∗≤i−1)T ⊗ Idi
)

(T ∗)〈i〉 + (I − P∗i )
(
P∗i−1 ⊗ Idi

)
D〈i〉

(a)
=
(
(I − P∗i−1)∆i−1V

∗
i (Λ∗i )

−1(T ∗≤i−1)T ⊗ Idi
)

(T ∗)〈i〉

+ (T ∗≤i−1 ⊗ Idi)(I − L(T ∗i )L(T ∗i )T )((T ∗≤i−1)T ⊗ Idi)D
〈i〉 (53)

(b)
= reshape

(
(I − P∗i−1)∆i−1V

∗
i V
∗T
i

)
+ (T ∗≤i−1 ⊗ Idi)(I − L(T ∗i )L(T ∗i )T )((T ∗≤i−1)T ⊗ Idi)D

〈i〉,
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where in (a) we use

(I − P∗i )
(
P∗i−1 ⊗ Idi

)
=
(
I − (T ∗≤i−1 ⊗ Idi)L(T ∗i )L(T ∗i )T ((T ∗≤i−1)T ⊗ Idi)

) (
T ∗≤i−1(T ∗≤i−1)T ⊗ Idi

)
= T ∗≤i−1(T ∗≤i−1)T ⊗ Idi − (T ∗≤i−1 ⊗ Idi)L(T ∗i )L(T ∗i )T (T ∗≤i−1 ⊗ Idi)

T

= (T ∗≤i−1 ⊗ Idi)(I − L(T ∗i )L(T ∗i )T )(T ∗≤i−1 ⊗ Idi)
T .

And in (b) we use Lemma 20. Notice the two terms in (53) are mutually orthogonal, so we
have

‖(I − P∗i )Li‖2F
= ‖(I − P∗i−1)∆i−1V

∗
i V
∗T
i ‖2F + ‖(T ∗≤i−1 ⊗ Idi)(I − L(T ∗i )L(T ∗i )T )((T ∗≤i−1)T ⊗ Idi)D

〈i〉‖2F
≤ ‖(I − P∗i−1)∆i−1‖2F + ‖(T ∗≤i−1 ⊗ Idi)(I − L(T ∗i )L(T ∗i )T )((T ∗≤i−1)T ⊗ Idi)D

〈i〉‖2F. (54)

Meanwhile, from (50), we have

‖(I − P∗i )∆i‖2F ≤ ‖(I − P∗i )Li‖2F + 2‖(I − P∗i )Li‖F‖Hi‖F + ‖Hi‖2F. (55)

Combine (54), (55) and we get (52).

Upper bound for ‖(I − P∗k)∆k‖2F + ‖P∗kD〈k〉‖2F. From the recurrence relation (52), we have

‖(I − P∗k)∆k‖2F + ‖P∗kD〈k〉‖2F

≤ ‖P∗kD〈k〉‖2F +
k∑
i=2

‖(T ∗≤i−1 ⊗ Idi)(I − L(T ∗i )L(T ∗i )T )((T ∗≤i−1)T ⊗ Idi)D
〈i〉‖2F

+ ‖(I − P∗1 )D〈1〉‖F +

k∑
i=2

(
2‖(I − P∗i )Li‖F‖Hi‖F + ‖Hi‖2F

)
︸ ︷︷ ︸

high order terms=:ξk,2

=: ξk,1 + ξk,2.

Now we first show ξk,1 = ‖D‖2F. The key point of the proof lies in the following equation:

‖P∗i D〈i〉‖2F + ‖(T ∗≤i−1 ⊗ Idi)(I − L(T ∗i )L(T ∗i )T )((T ∗≤i−1)T ⊗ Idi)D
〈i〉‖2F = ‖P∗i−1D〈i−1〉‖2F.

(56)

Suppose this holds, then we have the left hand side is equal to ‖P∗1D〈1〉‖2F+‖(I−P∗1 )D〈1〉‖2F =
‖D‖2F and this finishes the proof. So now we verify (56).

LHS of (56) = ‖(T ∗≤i−1 ⊗ Idi)L(T ∗i )L(T ∗i )T ((T ∗≤i−1)T ⊗ Idi)D
〈i〉‖2F

+ ‖(T ∗≤i−1 ⊗ Idi)(I − L(T ∗i )L(T ∗i )T )((T ∗≤i−1)T ⊗ Idi)D
〈i〉‖2F

= ‖(T ∗≤i−1 ⊗ Idi)((T
∗≤i−1)T ⊗ Idi)D

〈i〉‖2F
(a)
= ‖P∗i−1D〈i−1〉‖2F,
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where in (a) we use Lemma 20.
On the other hand, for ξk,2, we have from (54), ‖(I−P∗i )Li‖F ≤ 3‖D‖F. And from (51),

we have

‖Hi‖F ≤
12‖∆i−1‖2F
σmin(Λ∗i )

+
4‖D‖F‖∆i−1‖F

σmin(Λ∗i )
≤

56‖D‖2F
σmin(Λ∗i )

.

Combine the above two estimations, and we have

ξk,2 ≤
k∑
i=2

(
2 · 3‖D‖F

56‖D‖2F
σmin(Λ∗i )

+
562‖D‖4F
σ2

min(Λ∗i )

)
≤

350(k − 1)‖D‖3F
σ

.

And thus

‖(I − P∗k)∆k‖2F + ‖P∗kD〈k〉‖2F ≤ ‖D‖2F +
350(k − 1)‖D‖3F

σ
. (57)

Upper bound for ‖∆i‖F. We shall bound ‖∆i‖F by induction. For the base case when
i = 1, we have ‖∆1‖F = ‖D〈1〉‖F = ‖D‖F ≤ 2‖D‖F. Now suppose we have the bound for
‖∆i‖F ≤ 2‖D‖F for all 1 ≤ i ≤ k. Then from the definition of Lk+1, we have

‖Lk+1‖2F = ‖(I − P∗k)∆kV
∗
k+1V

∗T
k+1‖2F + ‖(P∗k ⊗ Idk+1

)D〈k+1〉‖2F ≤ ‖(I − P∗k)∆k‖2F + ‖P∗kD〈k〉‖2F
(a)

≤ ‖D‖2F +
350(k − 1)‖D‖3F

σmin(Λ∗k)
,

where (a) follows from (57). And the upper bound for ‖Hk+1‖F is already derived as in
(51), since σmin(Λ∗k+1) ≥ C1‖D‖F ≥ 8‖∆k‖F, we have

‖Hk+1‖F ≤
12‖∆k‖2F
σmin(Λ∗k+1)

+
4‖D‖F‖∆k‖F
σmin(Λ∗k+1)

≤
56‖D‖2F

σmin(Λ∗k+1)
.

From (50), we have

‖∆k+1‖F = ‖Lk+1 +Hk+1‖F ≤

√
1 +

350(k − 1)‖D‖F
σmin(Λ∗k+1)

‖D‖F +
56‖D‖F

σmin(Λ∗k+1)
‖D‖F ≤ 2‖D‖F.

And this finishes the induction. So it holds for all i ∈ [m− 1] that ‖∆i‖F ≤ 2‖D‖F.

Estimation of ‖SVDtt
r (T ) − T ∗‖F. Now we go back to (49) and we bound ‖(I.1)‖F and

‖(I.2)‖F separately. For the term ‖(I.2)‖F, we have

‖(I.2)‖F = ‖H(P̂m−1,P∗m−1)(T ∗)〈m−1〉 + (P̂m−1 − P∗m−1)D〈m−1〉‖F
(a)
= ‖Hm‖F,

where (a) follows from (50) and Lemma 20. So from (51), we have

‖(I.2)‖F ≤
12‖∆m−1‖2F
σmin(Λ∗m)

+
4‖D‖F‖∆m−1‖F

σmin(Λ∗m)
≤

56‖D‖2F
σmin(Λ∗m)

.
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And for the term ‖(I.1)‖F, we have from (57),

‖(I.1)‖2F ≤ ‖(I − P∗m−1)∆m−1‖2F + ‖P∗m−1D〈m−1〉‖2F ≤ ‖D‖2F +
350(m− 2)‖D‖3F
σmin(Λ∗m−1)

So together with (49), we have

‖SVDtt
r (T )− T ∗‖2F ≤ ‖(I.1)‖2F + 2‖(I.1)‖F‖(I.2)‖F + ‖(I.2)‖2F

≤ ‖D‖2F +
350(m− 2)‖D‖3F
σmin(Λ∗m−1)

+
250‖D‖3F
σmin(Λ∗m)

≤ ‖D‖2F +
600m‖D‖3F

σ
.

And this finishes the proof of the lemma.

C.8 Proof of Lemma 27

First we introduce some notations,

T = [T1, . . . , Tm], T ∗ = [T ∗1 , . . . , T
∗
m], and (T ∗)〈i〉 = T ∗≤iΛ∗i+1V

∗
i+1, T 〈i〉 = T≤iΛi+1Vi+1, i ∈ [m−1].

Also we denote Pi = T≤iT≤iT , Qi+1 = Vi+1V
T
i+1 as shorthand notations, and define similar

notations for T ∗. Now we take A = T ∗ and denote PT(T ∗) = δT1 + . . .+ δTm, then we have
for all i ∈ [m− 1]

(δTi)〈i〉 = (T≤i−1 ⊗ I)(I − L(Ti)L(Ti)
T )(T≤i−1 ⊗ I)T (T ∗)〈i〉Vi+1V

T
i+1

= (I − Pi)(Pi−1 ⊗ I)(T ∗)〈i〉Qi+1.

And

−‖δTi‖2F = −〈(I − Pi)(Pi−1 ⊗ I)(T ∗)〈i〉Qi+1, (I − Pi)(Pi−1 ⊗ I)(T ∗)〈i〉Qi+1〉
= −〈(T ∗)〈i〉, (Pi−1 ⊗ I)(I − Pi)(Pi−1 ⊗ I)(T ∗)〈i〉Qi+1〉
= −〈(T ∗)〈i〉, (Pi−1 ⊗ I)(T ∗)〈i〉Qi+1〉+ 〈(T ∗)〈i〉,Pi(T ∗)〈i〉Qi+1〉
= −〈(T ∗)〈i〉, (Pi−1 ⊗ I)(T ∗)〈i〉(Qi+1 −Q∗i+1)〉+ 〈(T ∗)〈i〉,Pi(T ∗)〈i〉(Qi+1 −Q∗i+1)〉
− 〈(T ∗)〈i〉, (Pi−1 ⊗ I)(T ∗)〈i〉〉+ 〈(T ∗)〈i〉,Pi(T ∗)〈i〉〉

= −〈(T ∗)〈i〉, ((Pi−1 − P∗i−1)⊗ I)(T ∗)〈i〉(Qi+1 −Q∗i+1)〉
+ 〈(T ∗)〈i〉, (Pi − P∗i )(T ∗)〈i〉(Qi+1 −Q∗i+1)〉
− 〈(T ∗)〈i〉, (Pi−1 ⊗ I)(T ∗)〈i〉〉+ 〈(T ∗)〈i〉,Pi(T ∗)〈i〉〉

Meanwhile, when i = m, we have

−‖δTm‖2F = −‖(Pm−1 ⊗ I)(T ∗)〈m〉‖2F = −‖Pm−1(T ∗)〈m−1〉‖2F,
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where the last equality is from Lemma 20. Now we first estimate

m−1∑
i=1

(
−〈(T ∗)〈i〉, (Pi−1 ⊗ I)(T ∗)〈i〉〉+ 〈(T ∗)〈i〉,Pi(T ∗)〈i〉〉

)
− ‖Pm−1(T ∗)〈m−1〉‖2F

=
m−1∑
i=1

(
−‖(Pi−1 ⊗ I)(T ∗)〈i〉‖2F + ‖Pi(T ∗)〈i〉‖2F

)
− ‖Pm−1(T ∗)〈m−1〉‖2F

=

m−1∑
i=1

(
−‖Pi−1(T ∗)〈i−1〉‖2F + ‖Pi(T ∗)〈i〉‖2F

)
− ‖Pm−1(T ∗)〈m−1〉‖2F = −‖T ∗‖2F.

And now we estimate 〈(T ∗)〈i〉, (Pi − P∗i )(T ∗)〈i〉(Qi+1 −Q∗i+1)〉 first,

〈(T ∗)〈i〉, (Pi − P∗i )(T ∗)〈i〉(Qi+1 −Q∗i+1)〉
= 〈(Pi − P∗i )(T ∗)〈i〉, (T ∗)〈i〉(Qi+1 −Q∗i+1)〉
= 〈P∗i ∆i(I −Q∗i+1) + (T ∗)〈i〉H(Qi+1,Q∗i+1), (I − P∗i )∆iQ∗i+1 +H(Pi,P∗i )(T ∗)〈i〉〉
= 〈(T ∗)〈i〉H(Qi+1,Q∗i+1), H(Pi,P∗i )(T ∗)〈i〉〉
≤ ‖(T ∗)〈i〉H(Qi+1,Q∗i+1)‖F‖H(Pi,P∗i )(T ∗)〈i〉‖F

Notice here we use

Pi − P∗i = T ∗≤i(Λ∗i+1)−1(V ∗i+1)T∆T
i (I − P∗i ) + (I − P∗i )∆iV

∗
i+1(Λ∗i+1)−1(T ∗≤i)T +H(Pi,P∗i ),

and

Qi+1 −Q∗i+1 = V ∗i+1(Λ∗i+1)−1(T ∗≤i)T∆i(I −Q∗i+1) + (I −Q∗i+1)∆T
i T
∗≤i(Λ∗i+1)−1V ∗Ti+1

+H(Qi+1,Q∗i+1),

where ∆i = (T − T ∗)〈i〉 and H(·, ·) denotes high order terms.

Similarly for 〈(T ∗)〈i〉, ((Pi−1 − P∗i−1)⊗ I)(T ∗)〈i〉(Qi+1 −Q∗i+1)〉, we have

〈(T ∗)〈i〉, ((Pi−1 − P∗i−1)⊗ I)(T ∗)〈i〉(Qi+1 −Q∗i+1)〉
= 〈(T ∗)〈i〉H(Qi+1,Q∗i+1), (H(Pi−1,P∗i−1)⊗ I)(T ∗)〈i〉〉
≤ ‖(T ∗)〈i〉H(Qi+1,Q∗i+1)‖F‖(H(Pi−1,P∗i−1)⊗ I)(T ∗)〈i〉‖F
= ‖(T ∗)〈i〉H(Qi+1,Q∗i+1)‖F‖H(Pi−1,P∗i−1)(T ∗)〈i−1〉‖F

Now as long as σ ≥ 8‖T − T ∗‖F, we have

‖H(Pi,P∗i )(T ∗)〈i〉‖F ≤
12‖T − T ∗‖2F

σ
,

‖(T ∗)〈i〉H(Qi+1,Q∗i+1)‖F ≤
12‖T − T ∗‖2F

σ
.
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Finally, we have

‖P⊥T (T ∗)‖2F = ‖T ∗‖2F −
m∑
i=1

‖δTi‖2F =
m−1∑
i=1

(
− 〈(T ∗)〈i〉, ((Pi−1 − P∗i−1)⊗ I)(T ∗)〈i〉(Qi+1 −Q∗i+1)〉

+ 〈(T ∗)〈i〉, (Pi − P∗i )(T ∗)〈i〉(Qi+1 −Q∗i+1)〉
)

≤
288m2‖T − T ∗‖4F

σ2
.

And this finishes the proof.

C.9 Proof of Lemma 29

We begin the proof introducing some notations. For simplicity, we denote W̃ = Trimζ(W).

And SVDtt
r (W̃) = Ŵ = [Ŵ1, . . . , Ŵm]. And we denote for all i ∈ [m − 1], Ŵ〈i〉 =

Ŵ≤iŴ≥i+1 = Ŵ≤iΣi+1N
T
i+1 where Σi+1 ∈ Rri×ri is invertible and NT

i+1Ni+1 = Iri . And
we also introduce some notations for the process of TTSVD. From Algorithm 1, we know
(Ŵ≤i−1 ⊗ I)T W̃〈i〉 = L(Ŵi)Si+1R

T
i+1 + Ei is how we get the estimation Ŵi once we know

Ŵ1, . . . , Ŵi−1, where Si+1 ∈ Rri×ri is invertible and RTi+1Ri+1 = Iri . To estimate the

incoherence of Ŵ, we check maxj ‖eTj Ŵ≤i‖`2 and maxj ‖NT
i+1ej‖`2 .

We first estimate σmin(Σi+1) and σmin(Si+1). From the Algorithm 1, we know

σmin(Si+1) = σmin((Ŵ≤i−1Ŵ≤i−1T ⊗ I)W̃〈i〉)

≥ σmin((T ∗)〈i〉)− ‖(T ∗)〈i〉 − (Ŵ≤i−1Ŵ≤i−1T ⊗ I)W̃〈i〉‖F.

So we need to derive an upper bound for ‖(T ∗)〈i〉 − (Ŵ≤i−1Ŵ≤i−1T ⊗ I)W̃〈i〉‖F.

(Ŵ≤i−1Ŵ≤i−1T ⊗ I)W̃〈i〉 − (T ∗)〈i〉 = (Ŵ≤i−1Ŵ≤i−1T − T ∗≤i−1T ∗≤i−1T )⊗ I · (W̃〈i〉 − (T ∗)〈i〉)

+ T ∗≤i−1T ∗≤i−1T ⊗ I · (W̃〈i〉 − (T ∗)〈i〉)

+ (Ŵ≤i−1Ŵ≤i−1T − T ∗≤i−1T ∗≤i−1T )⊗ I · (T ∗)〈i〉.
(58)

Since ‖T ∗‖`∞ = Spiki(T ∗)‖T
∗‖F√
d∗
≤ ν ‖T

∗‖F√
d∗
≤ 10ν

9
‖W‖F√
d∗

= ζ, we have ‖W̃ − T ∗‖F ≤ ‖W −
T ∗‖F. And the bound for ‖Ŵ≤i−1Ŵ≤i−1T − T ∗≤i−1T ∗≤i−1T ‖ goes as follows. First we
notice that from Lemma 26,

‖Ŵ − T ∗‖2F ≤ ‖W̃ − T ∗‖2F +
600m‖W̃ − T ∗‖3F

σ
≤ 2‖W − T ∗‖2F, (59)

where the last inequality is from the assumption ‖W̃ − T ∗‖F ≤ ‖W − T ∗‖F ≤ 1
600mσ. So

we have from Wedin’s theorem,

‖Ŵ≤i−1Ŵ≤i−1T − T ∗≤i−1T ∗≤i−1T ‖ ≤
√

2‖Ŵ − T ∗‖F
σmin(Λ∗i )− ‖W̃ − T ∗‖F

≤ 4‖W − T ∗‖F
σ

≤ 1

150m
√
rκ0

,
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where in the penultimate inequality we use σmin(Λ∗i ) − ‖W̃ − T ∗‖F ≥
σ
2 and (59). This

together with (58) gives

‖(T ∗)〈i〉 − (Ŵ≤i−1Ŵ≤i−1T ⊗ I)W̃〈i〉‖F

≤ 4‖W − T ∗‖F
σ

· ‖W − T ∗‖F + ‖W − T ∗‖F +
4‖W − T ∗‖F

σ
· ‖T ∗‖F

≤ σ

10
.

So we conclude that σmin(Si+1) ≥ 9
10σ.

Meanwhile, for σmin(Σi+1) and σmax(Σi+1), we have

σmax(Σi+1) = σmax(Ŵ〈i〉) ≤ σmax((T ∗)〈i〉) + ‖T ∗ −W‖F ≤
11

10
σ,

σmin(Σi+1) = σmin(Ŵ〈i〉) ≥ σmin((T ∗)〈i〉)− ‖T ∗ −W‖F ≥
9

10
σ.

With these preparations, we are ready to bound the incoherence of Ŵ. For all j ∈
[d1 . . . di],

‖eTj Ŵ≤i‖`2 = ‖eTj (Ŵ≤i−1Ŵ≤i−1T ⊗ I)W̃〈i〉Ri+1S
−1
i+1‖`2

≤
‖fTj W̃〈i〉‖`2
σmin(Si+1)

(a)

≤
10‖fj‖`2

√
di+1 . . . dm‖W̃‖`∞

9σ

(b)

≤ 100

81σ

ν‖W‖F√
d1 . . . di

≤ 100ν

81σ

‖T ∗‖F + ‖W − T ∗‖F√
d1 . . . di

≤ 100ν

81
κ0

√
ri√

d1 . . . di
+

10ν

81

1√
d1 . . . di

≤ 110νκ0

81

√
ri√

d1 . . . di
, (60)

where fj = (Ŵ≤i−1Ŵ≤i−1T ⊗ I)ej and in (a) we use the estimation for σmin(Si+1) and

‖Wx‖`2 ≤
√
n‖W‖`∞‖x‖`2 for some matrix W ∈ Rn×m; in (b) we use ‖W̃‖`∞ ≤ ζ =

10‖W‖F
9
√
d∗

ν and ‖fj‖`∞ ≤ 1.

On the other hand, we have

Ŵ≥i+1 = R(Ŵi+1)(I ⊗ Ŵ≥i+2). (61)

Here we use the convention that Ŵm+1 = [1]. And from L(Ŵi+1) = (Ŵ≤i⊗I)T W̃〈i+1〉Ri+2S
−1
i+2,

we obtain

R(Ŵi+1) = (Ŵ≤i)T reshape(W̃〈i+1〉Ri+2S
−1
i+2) = (Ŵ≤i)T W̃〈i〉(I ⊗Ri+2S

−1
i+2). (62)

Combine (61) and (62), we have

Ŵ≥i+1 = (Ŵ≤i)T W̃〈i〉(I ⊗Ri+2S
−1
i+2Ŵ

≥i+2),

which implies
NT
i+1 = Σ−1

i+1(Ŵ≤i)T W̃〈i〉(I ⊗Ri+2S
−1
i+2Ŵ

≥i+2).
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Now for any j ∈ [di+1 . . . dm], we have

‖NT
i+1ej‖`2 = ‖Σ−1

i+1(Ŵ≤i)T W̃〈i〉(I ⊗Ri+2S
−1
i+2Ŵ

≥i+2)ej‖`2

≤ 1

σmin(Σi+1)
‖(Ŵ≤i)T W̃〈i〉(I ⊗Ri+2S

−1
i+2Ŵ

≥i+2)ej‖`2

≤ 1

σmin(Σi+1)
‖W̃〈i〉(I ⊗Ri+2S

−1
i+2Ŵ

≥i+2)ej‖`2

≤
√
d1 . . . di

σmin(Σi+1)
‖W̃‖`∞‖(I ⊗Ri+2S

−1
i+2Ŵ

≥i+2)ej‖`2

≤
√
d1 . . . di

σmin(Σi+1)
‖W̃‖`∞

σmax(Σi+2)

σmin(Si+2)

≤ 1100

729σ
κ0

ν‖W‖F√
di+1 . . . dm

≤ 1210

729
κ2

0ν

√
ri√

di+1 . . . dm
. (63)

From (60) and (63), we have

Incoh(Ŵ) ≤ 2κ2
0ν.

Now we consider the second part, from Lemma 26, we see that

‖SVDtt(W̃)− T ∗‖2F ≤ ‖W̃ − T ∗‖2F +
600m‖W̃ − T ∗‖3F

σ
≤ 2‖T̃ − T ∗‖2F ≤ 2‖W − T ∗‖2F.

And this finishes the proof of the lemma.

C.10 Proof of Lemma 35

For simplicity, we denote

S1k =

k∑
i=1

UTXi, S2k =

k∑
i=1

UTYi and ∆1k = S1k − kUTM, ∆2k = S2k − kUTM.

First we estimate ‖ 1
nS1n − UTM‖. Notice that

1

n
S1n − UTM =

1

n

n∑
i=1

(
p1p2U

TPωi(M)− UTM
)

=:
1

n

n∑
i=1

Zi.

And the uniform bound for p1p2U
TPωi(M) is given by

‖p1p2U
TPωi(M)‖ ≤ p1p2‖M‖∞

√
µr

p1
=
√
µp2r

√
p1p2‖M‖∞.
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and ‖UTM‖ ≤ ‖M‖ ≤ √p1p2‖M‖∞. So ‖Zi‖ ≤ 2
√
µp2r

√
p1p2‖M‖∞. On the other hand

we have

EZiZTi ≤ p1p2

∑
(j,k)∈[p1]×[p2]

M2
jkU

T eje
T
j U

≤ p1p2‖M‖2∞
∑

(j,k)∈[p1]×[p2]

UT eje
T
j U

= p1p
2
2‖M‖2∞Ir

and

EZTi Zi ≤ p1p2

∑
(j,k)∈[p1]×[p2]

M2
jkeke

T
j UU

T eje
T
k

≤ p1p2‖M‖2∞
∑
k

∑
j

‖UT ej‖2`2eke
T
k

≤ p1p2‖M‖2∞µrIp2 .

Therefore we have max{‖
∑n

i=1 ZiZ
T
i ‖, ‖

∑n
i=1 Z

T
i Zi‖} ≤ np1p2(µr ∨ p2)‖M‖2∞. And from

operator Bernstein inequality, with probability exceeding 1− p−α,

‖
n∑
i=1

Zi‖ ≤
√

8(α+ 1)µp1p2
2r log(p)

3n
‖M‖∞.

Now set the event E1 as{
‖∆1n‖ ≤

√
8n(α+ 1)µp1p2

2r log(p)

3
‖M‖∞

}
∩

{
‖∆2n‖ ≤

√
8n(α+ 1)µp1p2

2r log(p)

3
‖M‖∞

}

and we know P(E1) ≥ 1− 2p−α. Also, define the event

E2 =

max
j∈[p2]

∑
ω∈Ω1

1(ω2 = j) ≤ (3α+ 7)(
n

p2
+ log(p))


∩

max
j∈[p2]

∑
ω∈Ω2

1(ω2 = j) ≤ (3α+ 7)(
n

p2
+ log(p))

 .

From Chernoff bound, we know E2 holds with probability exceeding 1− 2p−α. From trian-
gular inequality, we have

‖ 1

2n2

∑
i,j

(UTXiY
T
j U + UTYjX

T
i U)− UTMMTU‖

≤ 1

2n2
‖∆1n∆T

2n + ∆2n∆T
1n‖+

1

2n
‖∆2nM

TU + UTM∆T
2n‖+

1

2n
‖∆1nM

TU + UTM∆T
1n‖

=: A1 +A2 +A3.
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Using Markov’s inequality and Golden-Thompson inequality repeatedly, we get

P ({‖A1‖ > t} ∩ E)

≤ r · e−λtE
(∥∥∥∥E{exp

[
λ

2n2
[∆1n(Yn −M)TU + UT (Yn −M)∆T

1n]

]
1E
∣∣S1n

}∥∥∥∥n) .
From triangular inequality, we have

‖ λ

2n2
∆1n(Yn −M)TU + UT (Yn −M)∆T

1n‖ ≤
λ

n2

(
‖∆1nY

T
n U‖+ ‖∆1nM

TU‖
)
.

Under the event E2, we have

‖∆1nY
T
n U‖ ≤ ‖S1nY

T
n U‖+ n‖UTMY T

n U‖

≤ (3α+ 7)p1p2‖M‖2∞(
n

p2
+ log(p))µrp2 + n

√
µrp2p1p2‖M‖2∞.

On the other hand, under the event E1,

‖∆1nM
TU‖ ≤ ‖∆1n‖‖MTU‖ ≤

√
8(α+ 1)µp1p2

2r log(p)n

3
‖M‖∞

√
p1p2‖M‖∞.

As long as n ≥ 8
3(α+ 1) log(p), we have ‖∆1nM

TU‖ ≤ n√µp2rp1p2‖M‖2∞ and thus

λ

2n2
‖∆1n(Yn −M)TU + UT (Yn −M)∆T

1n‖

≤ λ

n2

(
(3α+ 7)p1p2‖M‖2∞(

n

p2
+ log(p))µrp2 + 2n

√
µrp2p1p2‖M‖2∞

)
.

Therefore for any

λ ≤ n2

(
(3α+ 7)p1p2‖M‖2∞(

n

p2
+ log(p))µrp2 + 2n

√
µrp2p1p2‖M‖2∞

)−1

,

we have

E
{

exp

[
λ

2n2
[∆1n(Yn −M)TU + UT (Yn −M)∆T

1n]

]
1E
∣∣S1n

}
≤ Ir + E

{[
λ2

4n4
[∆1n(Yn −M)TU + UT (Yn −M)∆T

1n]2
]

1E
∣∣S1n

}
≤ Ir + E

{[
λ2

4n4
[∆1nY

T
n U + UTYn∆T

1n]2
]

1E
∣∣S1n

}
≤ Ir +

λ2p1p2‖M‖2∞
4n4

[
(µr + 2)∆1n∆T

1n + tr(∆1n∆T
1n)Ir

]
,
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where in the first inequality we use exp(A) ≤ I + A + A2 for ‖A‖ ≤ 1. And notice that
tr(∆1n∆T

1n) ≤ r‖∆1n∆T
1n‖, we obtain∥∥∥∥E{exp

[
λ

2n2
[∆1n(Yn −M)TU + UT (Yn −M)∆T

1n]

]
1E
∣∣S1n

}∥∥∥∥
≤ 1 +

λ2p1p2‖M‖2∞µr
2n4

‖∆1n∆T
1n‖

≤ 1 +
λ2p1p2‖M‖2∞µr

2n4

8n(α+ 1)µp1p
2
2r log(p)

3
‖M‖2∞

= 1 +
4(α+ 1)λ2µ2r2p2 log(p)

3n3
(p1p2‖M‖2∞)2.

Therefore we have

P ({‖A1‖ > t} ∩ E) ≤ r · e−λt exp

(
4(α+ 1)λ2µ2r2p2 log(p)

3n2
(p1p2‖M‖2∞)2

)
.

Taking

λ = min
{ 3n2t

8(α+ 1)µ2r2p2
1p

3
2‖M‖4∞ log(p)

,
n2

(6α+ 14)p1p2
2µr‖M‖2∞( np2 + log(p))

,

n

4
√
µrp2p1p2‖M‖2∞

}
yields

P ({‖A1‖ > t} ∩ E) ≤ r · exp
(
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{ 3n2t2

16(α+ 1)µ2r2p2
1p

3
2‖M‖4∞ log(p)

,

n2t

(12α+ 28)p1p2
2µr‖M‖2∞( np2 + log(p))

,
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8
√
µrp2p1p2‖M‖2∞

})
.

Now we bound A2 and A3. Due to the symmetry, we shall consider A2 only. In a similar
fashion, we have

P ({‖A2‖ > t} ∩ E) ≤ r ·
∥∥∥∥E{exp

[
λ

2n
(UTM(Yn −M)TU + UT (Yn −MMTU))

]
1E

}∥∥∥∥n .
Simple calculations show that
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2n

(UTM(Yn −M)TU + UT (Yn −M)MTU)‖ ≤ 2µrp1p2‖M‖2∞λ
n

.

So as long as λ ≤ n
2µrp1p2‖M‖2∞

, we have∥∥∥∥E{exp

[
λ

2n
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]
1E
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≤ 1 +
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λ
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Now take λ = min
{

n
2µrp1p2‖M‖2∞

, nt
2µrp21p

2
2‖M‖2∞

}
, then

P ({‖A2‖ > t} ∩ E) ≤ r · exp

{
−min{ nt

4µrp1p2‖M‖2∞
,

nt2

4µrp2
1p

2
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}
}
.

So we have

P

‖ 1

2n2

∑
i,j

(UTXiY
T
j U + UTYjX

T
i U)− UTMMTU‖ > t


≤

3∑
k=1

P({‖Ak‖ > t/3} ∩ E) + P(Ec).

By taking

t = Cα2 log2(p)
p1p2‖M‖2∞

n

(
µrp

1/2
2 +

µrp2

n
+ (

µrn

log3(p)
)1/2

)
,

we conclude that

P

‖ 1

2n2

∑
i,j

(UTXiY
T
j U + UTYjX

T
i U)− UTMMTU‖ > t

 ≤ 7p−α.

And the proof is finalized by replacing α with α + logp(7) and adjusting the constant C
accordingly.

C.11 Proof of Lemma 36

First denote Zi = UT (p1p2Pωi(M)−M). Then we have UT (p1p2n PΩ(M)−M) = 1
n

∑n
i=1 Zi.

Notice that ‖p1p2U
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√
µr‖M‖∞. And this implies that
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√
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√
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On the other hand, we have
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∑n
i=1 Z

T
i Zi‖ ≤ np1p2‖M‖2∞(µr ∨ p2). Using matrix Bernstein in-

equality and we have with probability exceeding 1− p−α,
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(√
p1p2
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µr‖M‖∞ log(p)

n
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.
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