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Abstract

We design stochastic Difference-of-Convex-functions Algorithms (DCA) for solving a class
of structured Difference-of-Convex-functions (DC) problems. As the standard DCA re-
quires the full information of (sub)gradients which could be expensive in large-scale set-
tings, stochastic approaches rely upon stochastic information instead. However, stochas-
tic estimations generate additional variance terms making stochastic algorithms unstable.
Therefore, we integrate some novel variance reduction techniques including SVRG and
SAGA into our design. The almost sure convergence to critical points of the proposed
algorithms is established and the algorithms’ complexities are analyzed. To study the effi-
ciency of our algorithms, we apply them to three important problems in machine learning:
nonnegative principal component analysis, group variable selection in multiclass logistic
regression, and sparse linear regression. Numerical experiments have shown the merits of
our proposed algorithms in comparison with other state-of-the-art stochastic methods for
solving nonconvex large-sum problems.

Keywords: DC programming, DCA, DCA-SVRG, DCA-SAGA, variance reduction tech-
nique

1. Introduction

We are concerned with the following nonconvex optimization problem

(P ) min {F (x) = G(x)−H(x) + r1(x)− r2(x) : x ∈ Rn} ,

where H := 1
N

∑N
i=1 hi, G, hi : Rn → R and r1, r2 : Rn → R ∪ {+∞} are convex, lower

semicontinuous functions while each hi has Lipschitz continuous gradient (with a common
constant L) on the effective domain of r1.

This type of problems is often encountered in many areas, in particular in machine
learning, where G−H represents the data-fitting term (the loss function) while r1− r2 rep-
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resents the regularization term to encourage some desired properties on the found solutions
(some low dimensional structures such as low-rank or sparsity - for instance) or to model
constraints on x. Moreover, in the era of big data, optimization models are expected to
take into account the large-sum structure in order to capture the high volume nature of
data. Therefore, the loss function often has a (nonconvex) large-sum structure. Here, we
consider a more general structure of the loss function including the large-sum case. More
precisely, we assume the large-sum structure of H but not G, because that, as will be seen
later, our approach treats impartially whether G is a large-sum function or not. As for the
regularization term, we consider two cases of r2: r2 is convex (the regularizer term is a DC
function), and r2 is a composite function defined by r2(x) =

∑m
i=1 li(pi(x)) with li : R→ R

being convex, decreasing and pi : Rn → R being convex. In the second case, r2 is no longer
convex in general. It is well-known that most nonconvex sparsity-promoting regularizers
(usually used to approximate the `0 norm) have the above composite form of r2 (Le Thi
et al., 2015; Ong and Le Thi, 2013), for instance, log-sum penalty (Candes et al., 2008),
smoothly clipped absolute deviate (SCAD) (Fan and Li, 2001), capped `1 (Zhang, 2010b),
minimax concave penalty (Zhang, 2010a), (nonconcave) piecewise linear function (Le Thi,
2012).

The problem (P ) attracts our special attention, thanks to its important role in machine
learning and big data analytics via two prominent features: the (nonconvex) DC structure
of the objective (on both loss and regularizer) and the large-sum structure of H (more
precisely, the very large value of N). In fact, since many newly developed machine learning
models are complicated, nonconvex optimization is indispensable to model them. Here, the
nonconvexity is represented by the DC structure, which covers a large class of nonconvex
optimization problems (Le Thi and Pham Dinh, 2018). Moreover, as mentioned above, the
large-sum structure is one of the most popular forms encountered in practice to model big
data-driven problems. For example, the large-sum structure arises naturally in empirical
risk minimization (ERM) in stochastic programming. That is, for instance, the stochastic
problem

min
x∈D

E(f(x, ξ)),

where ξ is a random variable, can be approximated by the following regularized empirical
risk minimization problem

(ERM) min
x∈D

1

N

N∑
i=1

f(x, ξi) + λΩ(x),

where {ξ1, ξ2, . . . ξN} is a set of i.i.d. realizations of ξ, and Ω is the regularization term.
In particular, when Ω is a convex function, D is a convex set, and f(·, ξi) has L-Lipschitz
gradients for all i, the problem (ERM) falls into the spectrum of the problem (P) with
G(x) = (L/2)‖x‖2, hi(x) = (L/2)‖x‖2 − f(x, ξi), i = 1, 2, . . . , N , and r1(x) = λΩ(x) +
χD(x), r2(x) = 0. Many important applications such as LASSO, Principal component anal-
ysis, logistic regression, etc., can be expressed in this form.

Related works and our motivation. The two mentioned features of the problem (P ) also
create a huge challenge. On one hand, there are very few efficient and scalable algorithms
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dealing with nonconvex problems, and, on another hand, the large-sum structure is diffi-
cult to be handled by deterministic algorithms. Therefore, an efficient approach could be
using stochastic methods for dealing with the large-sum structure combined with power
algorithms for nonconvex programming. Intuitively, a stochastic algorithm usually em-
ploys some stochastic approximation techniques based on a framework of a deterministic
algorithm. This deterministic frame plays an important role in the overall quality of a
stochastic algorithm and should therefore be highly suited to the problem’s structure. And
the stochastic approximation should be determined in an inexpensive way while having a
small noise.
In the convex setting, the literature on stochastic optimization is vast. In particular, the
problem (ERM) with f(·, ξ) and Ω being convex, D = Rn, has been studied intensively.
By the classical idea of Stochastic gradient descent, which is traced back to the seminal
work (Robbins and Monro, 1951), many variants have been developed, to name but a
few, stochastic dual coordinate descent (Shalev-Shwartz and Zhang, 2013), stochastic av-
erage gradient (SAG) (Schmidt et al., 2017), stochastic variance reduced gradient (SVRG)
(Johnson and Zhang, 2013), SAGA (Defazio et al., 2014), StochAstic Recursive grAdient
algoritHm (SARAH) (Nguyen et al., 2017), etc. Some other works considered the (strongly)
convex sum function but relaxed the convexity of each component function f(·, ξ) (Allen-
Zhu and Yuan, 2016; Shalev-Shwartz, 2016).
Works for nonsmooth, nonconvex large-sum problems remain rare. The (ERM) problem
with L-smooth f(·, ξ) and (possibly nonsmooth) convex regularizer Ω (which is a special
case of (P )) is probably the most common model that has been studied via the proximal-
based approach (J. Reddi et al., 2016; Pham et al., 2020). Among stochastic algorithms
for solving the (ERM), the two algorithms prox-SVRG and prox-SAGA (J. Reddi et al.,
2016) are the most related to our work since they adopt the SVRG and SAGA estimators,
respectively. Another work based on the Majorize-Minimization (MM) method was pro-
posed in (Mairal, 2015) which considered a large-sum of nonconvex functions where each
function admit surrogates with L-smooth error (i.e. the difference between a function and
its surrogates is L-smooth).
For nonsmooth DC large-sum problems, the current body of research is even more limited.
There were some recent works (Le Thi et al., 2017, 2020; Xu et al., 2019b) that developed
stochastic methods based on DCA (DC Algorithm). The first stochastic DCA was pro-
posed in (Le Thi et al., 2017) for a large-sum of (nonconvex) L-smooth functions with DC
regularizer, which was further extended to a more general problem where the L-smooth
assumption is relaxed (Le Thi et al., 2020). In these works, the stochastic DCA has been
developed based on the SAG estimator (Schmidt et al., 2017) that is a variance reduction
estimator. This research direction is promising and should be continued for a very large
class to cover various problems arising in practice.
Another approach was studied in (Xu et al., 2019b) where the data-fitting term is large-sum
DC and the regularizer is nonconvex, nonsmooth whose proximal operator can be efficiently
computed. By using the Moreau envelope (which is a DC function) of the regularizer, the
authors approximated the original problem by a DC program and proposed DCA schemes
for solving it. In general, the proposed algorithms can be regarded as the standard DCA
in which the (large-sum) convex subproblems are solved by stochastic algorithms (e.g.,
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Adagrad (Duchi et al., 2011), SVRG (Johnson and Zhang, 2013)) up to a certain level of
accuracy.

Starting from the above observations, we are motivated to develop new stochastic al-
gorithms based on DCA for solving (P ). Also, the virtue of stochastic variance-reduced
gradients given by SVRG and SAGA has been theoretically and practically justified by
many researchers. Hence, combining them with the DCA could be efficient approaches.
In (deterministic) nonconvex optimization, DC programming and DCA were well known to
be powerful tools, as they established a nice philosophy allowing researchers to travel from
the convex world to the land of nonconvexity, where passengers are able to carry with them
useful instruments of convex analysis/programming which have been developed for decades.
The original key idea of DCA relies on the DC structure of the objective function. DCA
consists in iteratively approximating the considered DC program by a sequence of convex
ones. DC programming and DCA, constitute the backbone of nonconvex programming and
global optimization, were introduced in 1985 by Pham Dinh Tao and have been extensively
developed by Le Thi Hoai An and Pham Dinh Tao since 1994, to become now classic and
increasingly popular (see e.g. (Pham Dinh and Le Thi, 1997; Le Thi and Pham Dinh, 2005,
2018)). Their popularity is due to their robustness and efficiency compared to existing
methods, their adaptation to the structures of treated problems and their ability to solve
large-scale real world nonconvex programs (see a comprehensive survey on thirty years of
developments of DC programming and DCA in (Le Thi and Pham Dinh, 2018)). It was
analyzed in (Le Thi and Pham Dinh, 2018) that most algorithms (classical as well as recent
algorithms) in nonconvex programming framework can be seen as versions of DCA with
suitable DC decompositions / DC formulations. DCA has been successfully applied for
solving numerous problems in divers areas, especially in large-scale settings: transport lo-
gistic, finance, data mining and machine learning, computational chemistry, computational
biology, robotics and computer vision, combinatorial optimization, cryptology, inverse prob-
lems and ill-posed problems, etc., see e.g. (Le Thi and Pham Dinh, 2005; Pham Dinh and
Le Thi, 1997, 1998; Le Thi, 2005; Le Thi and Pham Dinh, 2018) and references therein.
Given the well-established strength in deterministic optimization, DCA is an appropriate
frame for designing nonconvex stochastic algorithms.

Paper’s contribution. Aiming to tackle the two above mentioned challenges of (P ), namely,
the nonconvexity and the large-sum structure of the objective, we investigate variance
reduction techniques in stochastic algorithms to deal with the large-sume structure, and
develop DCA to solve nonconvex programs, that result in the so-called stochastic DCA. We
propose two stochastic DCA schemes integrated SVRG and SAGA, namely DCA-SVRG
and DCA-SAGA. In our design, we consider two commonly-used sample strategies: sample
with replacement and sample without replacement. Sampling is called with replacement if
one sample selected at random from the population is returned to the population, then the
next sample is selected in the same way; therefore, it allows repetition. Meanwhile, sample
without replacement strategy sequentially samples from the population where each chosen
unit is not placed back in the population. In the literature, algorithms for solving large-sum
problems mainly adopt the former sampling strategy due to its convenient property: each
sample is independent of the others. However, in practice, the latter one is a very natural
strategy to employ and sometimes leads to remarkably better results (which is illustrated
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by our numerical experiments in Section 5). Therefore, we provide the analysis for both
sampling strategies. Our algorithms follow the new trend in the development of DCA:
design novel efficient algorithms based on DCA for nonconvex optimization which improve
standard DCA in some aspects.

The convergence of the DCA-SVRG and DCA-SAGA has been studied rigorously. The
almost sure convergence to critical points of the proposed algorithms is established. We
show that, each accumulated point of the sequence generated by DCA-SVRG and DCA-
SAGA is a DC critical point of F = (G+ r1)− (H + r2). Furthermore, if r2 is L-smooth, we
obtain the O(k−1/2) convergence rate with respect to the measure of proximity to criticality,
where k is the number of iterations. As a consequence, to find ε-criticality, DCA-SVRG
and DCA-SAGA have the complexity of O(N2/3/ε2) and O(N + N3/4/ε2) (respectively)
in terms of gradient evaluations. Another important contribution is novel arguments used
in the analysis of DCA-SAGA. We introduce an elegant idea of how to escape the non-
independence (which causes difficulties in the analysis) and give good quantitative links
between E‖xt − αti‖2 and E‖xt − xt−1‖2,E‖xt−1 − xt−2‖2, etc., where {αti}Ni=1 are local
auxiliary variables introduced by the SAGA technique, which are used for building variance
reduction terms and are updated progressively. These new arguments are expected to be
useful in analyzing future SAGA-type algorithms.

Furthermore, we give additional convergence analysis to handle the composite structure
of r2. By introducing new optimization variables, zi = pi(x) with i = 1,m, one can
reformulate this problem as a DC program in form of (P ) with respect to a couple of
old and new variables. However, our aim here is to provide a more practical convergence
result where we do not simply treat this couple of variables as a whole. Instead, we still
focus on the main role of the primitive variable x in our convergence results. This special
treatment offers us more flexible results to be employed in practice and avoids an undesirable
situation when straightforwardly applying the original convergence analysis of the proposed
algorithms (discussed in Section 4).

Finally, we conduct numerical experiments to study carefully the proposed algorithms’
behaviors. The real-life problems being considered are the nonnegative principal component
analysis, the group variable selection in multiclass logistic regression, and sparse linear
regression.

Comparison with related works. Comparing with (Le Thi et al., 2017, 2020), we use SVRG
and SAGA estimators in the construction of convex subproblems, while (Le Thi et al.,
2017, 2020) employed the SAG estimator. Intuitively, the SAG is quite “conservative” due
to its averaging feature: at each iteration, it computes the average of b new gradients and
N − b kept gradients (b is the minibatch size and N is the number of functions of the large
sum) to form a stochastic direction used to construct a subproblem. Consequently, if b is
relatively small in comparison with N , the old information dominates the new information,
which makes this stochastic direction change slowly from iteration to iteration. In the
convex case, numerical experiments in the paper (Defazio et al., 2014) have also shown
some merits of SVRG and SAGA over SAG. Hence, SVRG and SAGA are expected to
continue exhibiting these advantages in the context of DC programming and DCA.

As for (Xu et al., 2019b), our proposed algorithms are quite different: their algorithms
are in fact deterministic DCA in which stochastic convex solvers are used to solve convex
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subproblems, while our algorithms stochastically construct convex subproblems. Moreover,
in their work, the authors employ the SVRG algorithm for solving their subproblem, which
results in the so-named SSDC-SVRG algorithm. Our DCA-SVRG differs from the SSDC-
SVRG by the fact that in the DCA-SVRG, the SVRG estimator is employed as an outer
method to compute stochastic gradients; whereas, the SVRG is used as an inner convex
solver in the SSDC-SVRG.

Regarding the proximal-SVRG and the prox-SAGA in (J. Reddi et al., 2016) for solving
the (ERM) problem where each f(·, ξi) is L-smooth and Ω is convex, which is a special case
of (P ): the DCA-SVRG via the option with replacement applies on this particular problem
with G, hi, r1, r2 defined above recovers the prox-SVRG. Meanwhile, the DCA-SAGA via
the option with replacement do not correspond to the prox-SAGA, but a closely related
algorithm, where the “stochastic variance-reduced gradient” of prox-SAGA, ∇̃prox-SAGA, is
drifted by another unbiased variance-reduction term: ∇̃DCA-SAGA = ∇̃prox-SAGA − drift,
where

drift =
L

N

N∑
i=1

αti −
L

b

∑
i∈I

αti.

Furthermore, in the prox-SAGA step of updating the table of gradients, the authors do not
update directly on I but drawing another independent set of indexes J , that mainly aims
to facilitate their theoretical analysis. This procedure additionally consumes - in the worst
case - b gradients computation, where b is the minibatch size. By contrast, the DCA-SAGA
does not need to use another set J , rather, we update the table of gradients based on I
directly, which omits these additional computations.

2. Background

The optimal value α of the problem (P ) is assumed to be finite, i.e., α > −∞, which implies
dom r1 ⊂ dom r2. Moreover, we assume that dom r1 ⊂ dom ∂r2.

The space X := Rn is equipped with the canonical inner product 〈·, ·〉. Its dual space Y
is identified with X itself. The effective domain of a function f : X → R ∪ {+∞}, denoted
by dom f , is dom f := {x ∈ X : f(x) < +∞}. It is called proper if dom f 6= ∅. We adopt
the convention that +∞− (+∞) = +∞.

A function f is called ρ-convex for some ρ ≥ 0, if for all x, y ∈ Rn, λ ∈ [0, 1], one has

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)− ρ

2
λ(1− λ)‖x− y‖2.

The supremum of all ρ ≥ 0 such that the above inequality holds is called convex modulus
of f , denoted by ρ(f) or ρf . Let x ∈ dom f , a vector z ∈ X is called a subgradient of f at
x if

f(y)− f(x) ≥ 〈z, y − x〉, ∀y ∈ X.

The set of all subgradients of f at x is called the subdifferential of f at x, denoted by ∂f(x).
And, f is said to be subdifferentiable at x if ∂f(x) 6= ∅. Also, by definition,

dom ∂f = {x ∈ X : ∂f(x) 6= ∅}.
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Let f be differentiable on an open set U , and let V ⊂ U . The function f is called L-smooth
(L-Lipschitz derivative) on V if

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖, ∀x, y ∈ V.

Let Γ0(X) denote the convex cone of all lower semicontinuous proper convex functions
on X. The vector space of DC functions is denoted by DC(X) := Γ0(X) − Γ0(X). The
standard DC program takes the form

(Pdc) α := inf{f(x) := g(x)− h(x) : x ∈ X}

where g, h ∈ Γ0(X). Such a function f is called DC, g−h is DC decomposition while g and
h are DC components of f . It is worth noting that a DC function f has infinitely many DC
decompositions.
A DC program with closed convex constraint x ∈ C can be equivalently written as a stan-
dard DC program by adding the indicator function χC to the first component g,

inf{f(x) := g(x)− h(x) : x ∈ C} = inf{χC(x) + g(x)− h(x) : x ∈ X}.

Without loss of generality, we can assume that g and h are strongly convex since f can be
reformulated as a difference of two strongly convex functions as

f =
(
g +

ρ

2
‖ · ‖2

)
−
(
h+

ρ

2
‖ · ‖2

)
, with ρ > 0.

A point x∗ is called a critical point of (Pdc) (or f = g − h), iff ∂g(x∗) ∩ ∂h(x∗) 6= ∅,
or equivalently 0 ∈ ∂g(x∗) − ∂h(x∗). Critical points are generalized KKT points for DC
programs. They coincide, under technical assumptions, with zero of Clarke subdifferential
(or Clarke’s stationarity) of f (Le Thi and Pham Dinh, 2018; Le Thi et al., 2018). Also
x∗ is called a strongly critical point of (Pdc) (or f = g − h), iff ∅ 6= ∂h(x∗) ⊂ ∂g(x∗).
This inclusion expresses the d(irectional)- stationarity of x∗ for f. Finally, note that strong
criticality is a necessary (and sufficient with additional assumptions) condition for local
optimality in DC programming (Le Thi et al., 2018; Le Thi and Pham Dinh, 2018).

In practice, the notion of ε-criticality has also been used (Xu et al., 2019b). A point
x∗ is called an ε-critical point of f = g − h if dist(∂g(x∗), ∂h(x∗)) ≤ ε, where dist(A,B)
denotes the distance between two sets A and B.
Philosophy of DCA: DCA is based on local optimality conditions and duality in DC pro-
gramming, which introduces the nice and elegant concept of approximating a DC program
by a sequence of convex ones: at each iteration k, DCA approximates the second DC com-
ponent h by its affine minorization hk(x) = h(xk) + 〈x − xk, yk〉, with yk ∈ ∂h(xk), and
then solves the resulting convex subprogram to get xk+1. The standard DCA is formally
described as follows.

Standard DCA.
Initialization: Let x0 ∈ dom ∂h and k = 0.
repeat

Step 1: Compute the subgradient yk ∈ ∂h(xk).
Step 2: Solve the convex program xk+1 ∈ arg min{g(x)− hk(x) : x ∈ X}.
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Step 3: k = k + 1.

until Stopping criterion.

Convergences properties of the standard DCA and its complete theoretical foundation in
the DC programming framework can be found in (Le Thi and Pham Dinh, 2005; Pham Dinh
and Le Thi, 1997, 1998). For instance, it is especially worth mentioning that the sequence
{xk} generated by DCA has the following properties:

1. The sequence {(g − h)(xk)} is decreasing.

2. If (g− h)(xk+1) = (g− h)(xk), then xk and xk+1 are critical points of (Pdc) and DCA
terminates at k-th iteration.

3. If ρ(g) + ρ(h) > 0 then the series
∑∞

k=1 ‖xk+1 − xk‖2 converges.

4. If the optimal value α of the problem (Pdc) is finite and the sequences {xk} and {yk}
are bounded, then every limit point x̃ of {xk} is a critical point of g − h.

Remark 1 In general, the convergence of the whole sequence {xk} generated by DCA does
not hold. Proving this property is difficult and requires more sophisticated tools. Hence,
there were a very few results about it. The first known positive result has been stated for the
class of DC programs with subanalytic data, i.e., their DC objective functions and convex
constraints are subanalytic (see (Le Thi et al., 2018)). Its proof has been based on the
famous Lojasiewics inequality.

3. Stochastic DCA with Variance Reduction

Throughout this section, we study the problem (P ) with r2 being a convex function.

3.1 The First Stochastic DCA: DCA-SVRG

In this subsection, we develop the first stochastic DCA, called DCA-SVRG, for solving
the problem (P ). The algorithm can be considered as a combination of the deterministic
DCA and the SVRG-style of gradient update. That is, based on the deterministic DCA,
we replace the gradient of H by the “stochastic variance reduced gradient” of H. The
algorithm is epoch-based, where the full gradient of H is computed at the beginning of each
epoch and used as a variance-reduction term inside that epoch.

To construct the stochastic variance reduction gradient of H, we can choose one of two
options of sampling: with or without replacement. If the option is sample with replacement,
at each iteration, a set of indexes Ib = {i1, i2, . . . , ib} is randomly chosen from {1, 2, . . . , N}
where each ij is independent of the others. Otherwise, the repetition in Ib is not allowed.

On the other hand, since a critical point x∗ of F = (G + r1) − (H + r2) satisfies
dist(∂(G+ r1)(x∗), ∂(H + r2)(x∗)) = 0, we define the measure of proximity to criticality as
follows

dK = min
k=0,1,...,K−1,j=0,1,...,M−1

Edist(∂(H + r2)(xk+1
j+1), ∂(G+ r1)(xk+1

j+1)).
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Algorithm 1 DCA-SVRG

Initialization: x̃0 ∈ dom r1, inner-loop length M , minibatch size b, k = 0, option (either
with replacement or without replacement).
repeat

Compute the full gradient ν̃k = 1
N

∑N
i=1∇hi(x̃k) and set xk+1

0 = x̃k.
for j = 0 : M − 1 do

if option is with replacement then
Randomly choose with replacement the set Ib of b elements of [N ].

else
Randomly choose without replacement the set Ib of b elements of [N ].

end if
Compute the “stochastic variance reduced gradient” tk+1

j by

tk+1
j =

1

b

∑
i∈Ib

∇hi(xk+1
j ) + ν̃k − 1

b

∑
i∈Ib

∇hi(x̃k).

Compute yk+1
j ∈ ∂r2(xk+1

j ) and let zk+1
j = tk+1

j + yk+1
j .

Solve the convex problem xk+1
j+1 ∈ arg min{G(x) + r1(x)− 〈zk+1

j , x〉 : x ∈ Rn}.
end for
Set x̃k+1 = xk+1

M , and k = k + 1.
until Stopping criterion.

For brevity, we denote x̄k = {xk0, xk1, . . . , xkM−1} and ȳk = {yk0 , yk1 , . . . , ykM−1} for all

k ∈ N∗. Let Pk+1
j be the sigma algebra defined as

Pk+1
j = σ(x̄1, . . . , x̄k, xk+1

0 , xk+1
1 , . . . , xk+1

j , ȳ1, . . . , ȳk, yk+1
0 , yk+1

1 , . . . , yk+1
j ).

With the suitable selection of the minibatch size b and the inner-loop length M , we derive
the following convergence results.

Theorem 2 If the minibatch size b and the inner-loop length M satisfy

M√
b
≤ 1

4
√
e− 1

ρG+r1 + ρH + ρr2
L

,

then

1. The sequence {F (x̃k)} converges almost surely.

2.
∑∞

k=0

∑M−1
j=0 E‖xk+1

j+1 − x
k+1
j ‖2 < +∞.

3. Suppose the sequence {ykj } is bounded almost surely, then every limit point of {xkj } is
a critical point of F = (G+ r1)− (H + r2) almost surely.

4. If r2 has Lipschitz continuous gradient over dom r1, then dK = O(1/
√
K). Moreover,

by choosing b = bN2/3c, M = bµ
√
bc, where

µ =
1

4
√
e− 1

ρG+r1 + ρH + ρr2
L

,
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the complexity in terms of the number of gradient evaluations to obtain ε-criticality
in expectation is O(N2/3/ε2); Meanwhile, the complexity in terms of the number of
convex subproblems being solved is O(1/ε2).

We will prove Theorem 2 simultaneously for both options with replacement and without
replacement since the proofs for two options are essentially overlap. In the following proof,
we will highlight parts that need to be analyzed differently for each option. Before giving
the proof for Theorem 2, we first introduce the following lemma for the option of sample
without replacement.

Lemma 3 For the option of sample without replacement, the following inequality holds

E(‖tk+1
j −∇H(xk+1

j )‖2|Pk+1
j ) ≤ L2

b

(
1− b− 1

N − 1

)
‖xk+1

j − x̃k‖2 ≤ L2

b
‖xk+1

j − x̃k‖2.

The proof of this lemma is given in the appendix.

Proof [Proof of Theorem 2] 1. Since H is ρH -convex and by the definition of xk+1
j+1 ,

H(xk+1
j+1) ≥ H(xk+1

j ) + 〈∇H(xk+1
j ), xk+1

j+1 − x
k+1
j 〉+

ρH
2
‖xk+1

j+1 − x
k+1
j ‖2,

r2(xk+1
j+1) ≥ r2(xk+1

j ) + 〈yk+1
j , xk+1

j+1 − x
k+1
j 〉+

ρr2
2
‖xk+1

j+1 − x
k+1
j ‖2.

It follows from the definition of xk+1
j+1 that

(G+ r1)(xk+1
j ) ≥ (G+ r1)(xk+1

j+1) + 〈zk+1
j , xk+1

j − xk+1
j+1〉+

ρG+r1

2
‖xk+1

j − xk+1
j+1‖

2.

These inequalities imply

F (xk+1
j+1) ≤ F (xk+1

j ) + 〈xk+1
j+1 − x

k+1
j , tk+1

j −∇H(xk+1
j )〉 − ρ

2
‖xk+1

j+1 − x
k+1
j ‖2,

where ρ = ρH +ρr2 +ρG+r1 . Let γ > 0 that will be determined later. By applying Schwartz
inequality and AM-GM inequality,

F (xk+1
j+1) ≤ F (xk+1

j ) +
1

2γ
‖tk+1
j −∇H(xk+1

j )‖2 − ρ− γ
2
‖xk+1

j+1 − x
k+1
j ‖2.

By taking conditional expectation with respect to Pk+1
j ,

E(F (xk+1
j+1)|Pk+1

j ) ≤ F (xk+1
j )− ρ− γ

2
E(‖xk+1

j+1 − x
k+1
j ‖2|Pk+1

j )

+
1

2γ
E(‖tk+1

j −∇H(xk+1
j )‖2|Pk+1

j ).

10
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If option is sample with replacement, the set Ib consists of independent indexes, we therefore
evaluate E(‖tk+1

j −∇H(xk+1
j )‖2|Pk+1

j ) as follows,

E(‖tk+1
j −∇H(xk+1

j )‖2|Pk+1
j )

= EIb

∥∥∥∥∥∥1

b

∑
i∈Ib

∇hi(xk+1
j )− 1

b

∑
i∈Ib

∇hi(x̃k) +∇H(x̃k)−∇H(xk+1
j )

∥∥∥∥∥∥
2

=
1

b
Ei
(∥∥∥∇hi(xk+1

j )−∇hi(x̃k) +∇H(x̃k)−∇H(xk+1
j )

∥∥∥2
)
, where i

uni∼ [N ]

≤ 1

b
Ei‖∇hi(xk+1

j )−∇hi(x̃k)‖2 ≤
L2

b
‖xk+1

j − x̃k‖2. (1)

Together with Lemma 3, the following inequality holds for two options

E(‖tk+1
j −∇H(xk+1

j )‖2|Pk+1
j ) ≤ L2

b
‖xk+1

j − x̃k‖2. (2)

Therefore,

E(F (xk+1
j+1)|Pk+1

j ) ≤ F (xk+1
j ) +

L2

2bγ
‖xk+1

j − x̃k‖2 − ρ− γ
2

E(‖xk+1
j+1 − x

k+1
j ‖2|Pk+1

j ).

Consider the sequence of Lyapunov functions V k+1
j = F (xk+1

j ) + cj‖xk+1
j − x̃k‖2, where

{cj} are non-negative numbers determined later (the idea of such sequence of Lyapunov
functions is adopted from (J. Reddi et al., 2016)). We have

E(V k+1
j+1 |P

k+1
j ) = E(F (xk+1

j+1) + cj+1‖xk+1
j+1 − x̃

k‖2|Pk+1
j )

≤ E(F (xk+1
j+1) + cj+1(1 + β)‖xk+1

j+1 − x
k+1
j ‖2

+ cj+1(1 + 1/β)‖xk+1
j − x̃k‖2|Pk+1

j ), where β > 0

≤ F (xk+1
j ) +

(
L2

2bγ
+ cj+1

(
1 +

1

β

))
‖xk+1

j − x̃k‖2

+

(
cj+1(1 + β)− ρ− γ

2

)
E(‖xk+1

j+1 − x
k+1
j ‖2|Pk+1

j ). (3)

To obtain V k+1
j in the right-hand side of (3), we choose the sequence {cj} in such a way cM =

0 and cj = L2

2bγ +cj+1

(
1 + 1

β

)
if j < M. These relations yield cj = βL2

2bγ

((
1 + 1

β

)M−j
− 1

)
.

Next, to achieve the descent property on the Lyapunov sequence, i.e. E(V k+1
j+1 |P

k+1
j ) <

V k+1
j , we want cj+1(1 + β) + γ

2 ≤
ρ
4 , ∀j = 0,M − 1, or equivalently,

(1 + β)
βL2

2bγ

((
1 +

1

β

)M−j−1

− 1

)
+
γ

2
≤ ρ

4
,∀j = 0,M − 1,

which is further equivalent to

(1 + β)
βL2

2bγ

((
1 +

1

β

)M−1

− 1

)
+
γ

2
≤ ρ

4
. (4)

11
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By choosing β = M−1, and noticing that
(

1 + 1
M−1

)M−1
≤ e and (1+β)β < (1+β)2 = M2,

(4) holds if the following stronger inequality holds

M2L2

2bγ
(e− 1) +

γ

2
≤ ρ

4
. (5)

Now by choosing γ = ML
√
e−1√
b

to optimize the LHS of (5), the inequality (5) becomes
M√
b
≤ ρ

4L
√
e−1

. Consequently, if the minibatch size b and the inner-loop length M satisfy this

inequality, together with (3) we get

E(V k+1
j+1 |P

k+1
j ) ≤ V k+1

j − ρ

4
E(‖xk+1

j+1 − x
k+1
j ‖2|Pk+1

j ). (6)

Note that {V k+1
j } is an adapted process with respect to the filtration {Pk+1

j }, and V k+1
j ≥

F (xk+1
j ) ≥ α,∀k, j. It follows from supermartingale convergence theorem (Bertsekas et al.,

2003) that there exists a random variable V∞ such that the sequence {V k+1
j } converges to

V∞ almost surely. As a consequence, the sequence {F (x̃k)} converges to V∞ almost surely
since V k+1

0 = F (xk+1
0 ) = F (x̃k).

2. From (6), we obtain ρ
4E‖x

k+1
j+1−x

k+1
j ‖2+E(V k+1

j+1 ) ≤ E(V k+1
j ). From this inequality and

the fact that E(V 1
0 ) = E(F (x̃0)) = F (x̃0) < +∞, by induction, one obtains E(V k+1

j ) < +∞,
for all k, j. By telescoping with j and k,

ρ

4

∞∑
k=0

M−1∑
j=0

E‖xk+1
j+1 − x

k+1
j ‖2 ≤ E(V 1

0 )− α < +∞. (7)

3. From the evaluation (2), we obtain

E
∥∥∥tk+1
j −∇H(xk+1

j )
∥∥∥2
≤ L2(M − 1)

b

(
E‖xk+1

1 − xk+1
0 ‖2 + . . .+ E‖xk+1

M−1 − x
k+1
M−2‖

2
)
,

which implies

∞∑
k=0

M−1∑
j=0

E
∥∥∥tk+1
j −∇H(xk+1

j )
∥∥∥2
< +∞. (8)

Let S1 =
(
tk+1
j −∇H(xk+1

j )→ 0
)

. It follows from (8) that P(S1) = 1. On the other hand,

let S2 =
(
xk+1
j+1 − x

k+1
j → 0

)
, it follows from (7) that P(S2) = 1. Furthermore, P(S3) = 1,

where S3 = (ykj is bounded).

Now, consider an event in S1 ∩S2 ∩S3 which gives rise to a realization {xkj } (here, {xkj }
is a sequence of real numbers rather than a sequence of random variables). Let x∗ be a
limit point of {xkj }. Note that the sequence {xkj } generated by the algorithm is expressed
explicitly in the following order

x1
0, x

1
1, . . . , x

1
M−1, x

1
M ≡ x2

0, x
2
1, . . . , x

2
M−1, x

2
M ≡ x3

0, x
3
1, . . .

12
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We observe that a subsequence of {xkj } has the following form {xu(l)
v(l)}l∈N, where u : N→ N∗

and v : N → {0, 1, . . . ,M − 1} satisfy the following relation: for every i < t in N, either
u(i) < u(t) or u(i) = u(t) and v(i) < v(t). Since x∗ is a limit point of {xkj }, there exists

a subsequence {xu(l)
v(l)} converging to x∗ as l → ∞, which implies x

u(l)
v(l)+1 → x∗. As a

consequence, t
u(l)
v(l) → ∇H(x∗). By passing to a subsequence if necessary, we assume that

y
u(l)
v(l) converges to y∗. Since y

u(l)
v(l) ∈ ∂r2

(
x
u(l)
v(l)

)
, we obtain y∗ ∈ ∂r2(x∗) thanks to the

closedness of the graph of the subdifferential operator.

By the definition of x
u(l)
v(l)+1, we obtain z

u(l)
v(l) ∈ ∂(G+r1)

(
x
u(l)
v(l)+1

)
. Since the graph of the

subdifferential operator is closed, by letting l→∞ we derive ∇H(x∗) +y∗ ∈ ∂(G+ r1)(x∗),
hence x∗ is a critical point of F = (G+ r1)− (H + r2).

4. We first evaluate Edist(∇H(xk+1
j+1) + ∇r2(xk+1

j+1), ∂(G + r1)(xk+1
j+1)). Since zk+1

j ∈
∂(G+ r1)(xk+1

j+1), we obtain

Edist(∇H(xk+1
j+1) +∇r2(xk+1

j+1), ∂(G+ r1)(xk+1
j+1))

≤ E‖∇H(xk+1
j+1)− tk+1

j ‖+ E‖∇r2(xk+1
j+1)−∇r2(xk+1

j )‖

≤ E‖∇H(xk+1
j+1)−∇H(xk+1

j )‖+ E‖∇H(xk+1
j )− tk+1

j ‖+ E‖∇r2(xk+1
j+1)−∇r2(xk+1

j )‖

≤ (L+ Lr2)E‖xk+1
j+1 − x

k+1
j ‖+

(
E‖tk+1

j −∇H(xk+1
j )‖2

) 1
2

≤ (L+ Lr2)E‖xk+1
j+1 − x

k+1
j ‖+

L√
b

(
E‖xk+1

j − x̃k‖2
) 1

2
. (9)

Furthermore, we have

‖xk+1
j − x̃k‖2 = ‖xk+1

j − xk+1
0 ‖2

≤ (M − j +M − j − 1 + . . .+M − 1)×(
1

M − j
‖xk+1

j − xk+1
j−1‖

2 + . . .+
1

M − 1
‖xk+1

1 − xk+1
0 ‖2

)
.

Therefore,

M−1∑
j=1

(
E‖xk+1

j − x̃k‖2
) 1

2 ≤
M−1∑
j=1

(
j∑
r=1

(M − r)

) 1
2
(

j∑
r=1

1

M − r
E‖xk+1

r − xk+1
r−1‖

2

) 1
2

≤

M−1∑
j=1

j∑
r=1

(M − r)

 1
2
M−1∑

j=1

j∑
r=1

1

M − r
E‖xk+1

r − xk+1
r−1‖

2

 1
2

=

(
(M − 1)M(2M − 1)

6

) 1
2

(
M−1∑
r=1

E‖xk+1
r − xk+1

r−1‖
2

) 1
2

. (10)
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It follows from (9) and (10) that

K−1∑
k=0

M−1∑
j=0

Edist(∇H(xk+1
j+1) +∇r2(xk+1

j+1), ∂(G+ r1)(xk+1
j+1)) ≤ (L+ Lr2)

K−1∑
k=0

M−1∑
j=0

E‖xk+1
j+1 − x

k+1
j ‖

+
L√
b

(
(M − 1)M(2M − 1)

6

) 1
2
K−1∑
k=0

(
M−1∑
r=1

E‖xk+1
r − xk+1

r−1‖
2

) 1
2

≤
√
K

(
(L+ Lr2)

√
M +

L√
b

(
(M − 1)M(2M − 1)

6

) 1
2

)K−1∑
k=0

M−1∑
j=0

E‖xk+1
j+1 − x

k+1
j ‖2

 1
2

.

As a consequence, the iteration convergence rate is given by dK = O(1/
√
K).

Now we derive the complexity to find ε-criticality as follows. After K iterations, the
output xa is chosen uniformly from {xk+1

j+1}
k=0,...,K−1
j=0,...,M−1, it holds, for some C > 0,

KM · Edist(∇H(xa) +∇r2(xa), ∂(G+ r1)(xa))

≤
√
K

(
(L+ Lr2)

√
M +

L√
b

(
(M − 1)M(2M − 1)

6

) 1
2

)
C.

Let’s choose M = bµ
√
bc, where

µ =
1

4
√
e− 1

ρG+r1 + ρH + ρr2
L

one gets

KM · Edist(∇H(xa) +∇r2(xa), ∂(G+ r1)(xa)) ≤ C
√
K

(
(L+ Lr2)

√
M +

L

2
√
b
M3/2

)
≤ C
√
K

(
(L+ Lr2)

√
M +

Lµ

2

√
M

)
≤ C
√
MK

(
L+ Lr2 +

Lµ

2

)
.

Therefore,

Edist(∇H(xa) +∇r2(xa), ∂(G+ r1)(xa)) = O
(

1√
KM

)
.

By choosing b = bN2/3c, the algorithm needs K = O( 1
ε2N1/3 ) outer iterations to attain an

ε-DC critical point. The total number of gradient evaluations is then:

K (N + 2bM) ≤ K(N + 2N2/3µN1/3) = KN(1 + 2µ) = O

(
N2/3

ε2

)
.

On the other hand, there are KM convex subproblems to be solved, leading to the com-
plexity of O(1/ε2) in terms of the number of convex subproblems.
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Remark 4 About the constraint between b and M , M√
b
≤ 1

4
√
e−1

ρ
L :

i. If the DC decomposition admits a large number ρ
L , we have great flexibility to choose

b and M .
ii. If the DC problem has a very small value of ρ

L , we can adjust the DC decomposition
to increase ρ

L . Indeed, to this end, we add γ
2‖ · ‖

2 (γ > 0) to both DC components, F =(
G+ r1 + γ

2‖ · ‖
2
)
−
(
H + r2 + γ

2‖ · ‖
2
)
. With this new DC decomposition (Ḡ = G, H̄ =

H, r̄1 = r1 + γ
2‖ · ‖

2, r̄2 = r2 + γ
2‖ · ‖

2), the larger value is obtained since

ρ̄

L̄
=
ρ+ 2γ

L
→ +∞ as γ → +∞.

Nevertheless, one should be careful when using the above technique since adding a strongly
convex term to both DC components also yields an increase in the “gap” between the second
DC component and its linear minorant, which potentially leads to bad approximations.

3.2 The Second Stochastic DCA: DCA-SAGA

In this subsection, we propose another stochastic DCA called DCA-SAGA (algorithm 2).
Just as DCA-SVRG, the new scheme is a combination of the deterministic DCA and the
SAGA-style of stochastic gradient update. That is, the gradient of H in the deterministic
DCA is replaced by the stochastic gradient given by SAGA.

Algorithm 2 DCA-SAGA

Initialization: x0 ∈ dom r1, set α0
i = x0,∀i = 1, N, t = 0, option (either with replace-

ment or without replacement).
Compute the full gradient ν0 = 1

N

∑N
i=1∇hi(α0

i ).
repeat

if option is with replacement then
Randomly choose with replacement the set It of b elements of [N ].

else
Randomly choose without replacement the set It of b elements of [N ].

end if
Compute the “stochastic variance reduced gradient” vt,

vt =
1

b

∑
i∈It

∇hi(xt) + νt − 1

b

∑
i∈It

∇hi(αti).

Compute yt ∈ ∂r2(xt), and let zt = vt + yt.
Solve the convex program xt+1 ∈ arg min{G(x) + r1(x)− 〈zt, x〉 : x ∈ Rn}.

Update αt+1
j =

{
xt, if j ∈ It
αtj , otherwise

Update the “full gradient” νt+1 = νt − 1
N

∑
i∈It ∇hi(α

t
i) + 1

N

∑
i∈It ∇hi(α

t+1
i ).

Update t = t+ 1.
until Stopping criterion.

We denote dT = mint=0,1,...,T−1 Edist(∂(H + r2)(xt+1), ∂(G+ r1)(xt+1)). For brevity,
we denote ᾱt = {αt1, αt2, . . . , αtN},∀t ∈ N. We denote the sequence of increasing sigma

15
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algebra {Pt} as Pt = σ(x0, x1, . . . , xt, y0, y1, . . . , yt, ᾱ0, ᾱ1, . . . , ᾱt). The convergence results
of DCA-SAGA is described as follows.

Theorem 5 If the minibatch size b satisfies N
√
N+b
b2

≤ ρH+ρr2+ρG+r1
4L for the option of

sample with replacement or N
√
N+1
b2

≤ ρH+ρr2+ρG+r1
4L for the option of sample without re-

placement, then

1.
∑∞

t=0 E‖xt+1 − xt‖2 <∞.

2.
∑∞

t=0

∑N
i=1 E‖xt − αti‖2 <∞.

3. The sequence {F (xt)} converges almost surely.

4. Suppose the sequence {yt} is bounded almost surely. Then, every limit point of {xt}
is a critical point of F = (G+ r1)− (H + r2) almost surely.

5. If r2 has Lipschitz continuous gradient over dom r1, then dT = O(1/
√
T ). Further-

more, by choosing

b =

⌈
4
√

2
√
µ
N3/4

⌉
, where µ =

ρH + ρr2 + ρG+r1

4L
,

the complexity in terms of number of gradient evaluations to obtain ε-criticality in
expectation is O(N + N3/4/ε2); Meanwhile, the complexity in terms of number of
convex subproblems solved is O(1/ε2).

Proof [Proof of Theorem 5]

Firstly, we will prove the above properties for the option of sample with replacement.
Then, the proof for the option of sample without replacement is sketched, where the main
different arguments are highlighted.

Consider the option of sample with replacement.

1. Since H is ρH -convex, r2 is ρr2-convex, and by the definition of xt+1,

H(xt+1) ≥ H(xt) + 〈∇H(xt), xt+1 − xt〉+
ρH
2
‖xt+1 − xt‖2.

r2(xt+1) ≥ r2(xt) + 〈yt, xt+1 − xt〉+
ρr2
2
‖xt+1 − xt‖2,

(G+ r1)(xt+1) ≤ (G+ r1)(xt) + 〈zt, xt+1 − xt〉 − ρG+r1

2
‖xt+1 − xt‖2.

Combining these inequalities,

F (xt+1) ≤ F (xt) + 〈xt+1 − xt, vt −∇H(xt)〉 − ρ

2
‖xt+1 − xt‖2, (11)

where ρ = ρH + ρr2 + ρG+r1 . By taking conditional expectation with respect to Pt,

EIt(F (xt+1)) ≤ F (xt) + EIt
(
〈xt+1 − xt, vt −∇H(xt)〉

)
− ρ

2
EIt‖xt+1 − xt‖2,
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which implies

EIt(F (xt+1)) ≤ F (xt) +
1

2γ
EIt‖vt −∇H(xt)‖2 − ρ− γ

2
EIt‖xt+1 − xt‖2 (12)

where γ > 0 that will be determined later to gain some advantages.
We now evaluate EIt‖vt −∇H(xt)‖2 as follows,

EIt‖vt −∇H(xt)‖2 = EIt

∥∥∥∥∥1

b

∑
i∈It

∇hi(xt) + νt − 1

b

∑
i∈It

∇hi(αti)−∇H(xt)

∥∥∥∥∥
2

=
1

b
Ei
∥∥∇hi(xt)−∇hi(αti) + νt −∇H(xt)

∥∥2
where i

uni∼ {1, 2, . . . , N}

≤ 1

b
Ei‖∇hi(xt)−∇hi(αti)‖2 ≤

L2

b
Ei‖xt − αti‖2 =

L2

bN

N∑
i=1

‖xt − αti‖2. (13)

Therefore,

EIt(F (xt+1)) ≤ F (xt)− ρ− γ
2

EIt‖xt+1 − xt‖2 +
L2

2γbN

N∑
i=1

‖xt − αti‖2.

We define the sequence of Lyapunov functions V t = F (xt) + ct
∑N

i=1 ‖xt − αti‖2, where the
sequence {ct} will be determined later. For all β > 0,

EIt(V t+1) = EIt

(
F (xt+1) + ct+1

N∑
i=1

‖xt+1 − αt+1
i ‖

2

)

≤ EIt

(
F (xt+1) + ct+1(β + 1)

N∑
i=1

‖xt+1 − xt‖2 + ct+1(1 + 1/β)
N∑
i=1

‖xt − αt+1
i ‖

2

)

≤ EIt
(
F (xt) +

(
Nct+1(β + 1)− ρ− γ

2

)
‖xt+1 − xt‖2

+
L2

2γbN

N∑
i=1

‖xt − αti‖2 + ct+1(1 + 1/β)
∑
i/∈It

‖xt − αti‖2


= F (xt) +

(
Nct+1(β + 1)− ρ− γ

2

)
EIt‖xt+1 − xt‖2

+

(
L2

2γbN
+ ct+1(1 + 1/β)

) N∑
i=1

‖xt − αti‖2 − ct+1

(
1 +

1

β

)
bEi‖xt − αti‖2

= F (xt) +

(
Nct+1(β + 1)− ρ− γ

2

)
EIt‖xt+1 − xt‖2

+

(
L2

2γbN
+ ct+1

(
1 +

1

β

)(
1− b

N

)) N∑
i=1

‖xt − αti‖2.
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Similar to the proof of DCA-SVRG, we set ct = L2

2γbN +ct+1

(
1 + 1

β

) (
1− b

N

)
, or equivalently,

ct+1 =
(
ct − L2

2γbN

)
βN

(β+1)(N−b) . We obtain by recursion that

ct =

(
c0 −

L2β

2γb(βb+ b−N)

)(
βN

(β + 1)(N − b)

)t
+

L2β

2γb(βb+ b−N)
.

From the above recursion, if we choose the initial value c0 = L2β
2γb(βb+b−N) , we will get

c0 = c1 = c2 = . . . = ct = . . . Next, we choose β such that βb+ b−N > 0⇔ β > N−b
b (?)

to make the sequence {ct} nonnegative. With this choice, we obtain EIt(V t+1) ≤ V t +(
Nct+1(β + 1)− ρ−γ

2

)
EIt‖xt+1 − xt‖2.

In order to obtain the “decreasing property” of the sequence {V t}, we want the term
Nct+1(β + 1) − ρ−γ

2 to be negative. More specifically, we want Nct+1(β + 1) + γ
2 ≤

ρ
4 , or

equivalently,

N(β + 1)
L2β

2γb(βb+ b−N)
+
γ

2
≤ ρ

4
. (14)

Now by choosing γ > 0 to make the LHS(14) as small as possible (AM-GM inequality),

γ = L
√

β(β+1)N
b(βb+b−N) , we need

√
N(β+1)L2β
b(βb+b−N) ≤

ρ
4 , or equivalently

√
N(β + 1)β

b(βb+ b−N)
≤ ρ

4L
. (15)

From (?), we choose β = N/b. The inequality (15) becomes

N
√
N + b

b2
≤ ρ

4L
. (16)

Consequently, if b satisfies (16), we obtain EIt(V t+1) ≤ V t− ρ
4EIt‖x

t+1−xt‖2. Since ct ≥ 0,
we obtain V t ≥ F (xt) ≥ α > −∞. By applying supermartingale convergence theorem,
we obtain: there exits V∞ such that V t → V∞ a.s. Next, we have ρ

4E‖x
t+1 − xt‖2 ≤

E(V t) − E(V t+1). By induction based on this inequality, we obtain E(V t) is finite forall t.
By telescoping the above inequality, we derive ρ

4

∑∞
t=0 E‖xt+1 − xt‖2 ≤ E(V 0)− α < +∞.

2. We now evaluate the term E‖xt−αti‖2. This is a key for us to establish the convergence
to critical points. By the definition, we can write αti = xt−1 · 1{i∈It−1} + αt−1

i · 1{i/∈It−1}.
Similarly, we can track back one further step αti = xt−1 · 1{i∈It−1} + xt−2 · 1{i∈Īt−1∩It−2} +

αt−2
i · 1{i∈Īt−1∩Īt−2}.

By doing so repeatedly,

αti =xt−1 · 1{i∈It−1} + xt−2 · 1{i∈Īt−1∩It−2} + xt−3 · 1{i∈Īt−1∩Īt−2∩It−3}

+ . . .+ x0 · 1{i∈Īt−1∩Īt−2···∩Ī1}.
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It is worth noting that {i ∈ It−1}, {i ∈ Īt−1 ∩ It−2}, {i ∈ Īt−1 ∩ Īt−2 ∩ It−3}, . . . , {i ∈
Īt−1 ∩ Īt−2 · · · ∩ Ī1} form a partition of the sample space Ω, and we obtain

αti =



xt−1 on {i ∈ It−1}
xt−2 on {i ∈ Īt−1 ∩ It−2}
xt−3 on {i ∈ Īt−1 ∩ Īt−2 ∩ It−3}
· · ·
x0 on {i ∈ Īt−1 ∩ Īt−2 · · · ∩ Ī1}.

Therefore,

E‖xt − αti‖2 =

∫
Ω
‖xt − αti‖2dP

=

∫
{i∈It−1}

‖xt − xt−1‖2dP +

∫
{i∈Īt−1∩It−2}

‖xt − xt−2‖2dP

+

∫
{i∈Īt−1∩Īt−2∩It−3}

‖xt − xt−3‖2dP + . . .+

∫
{i∈Īt−1∩Īt−2···∩Ī1}

‖xt − x0‖2dP. (17)

Our main aim is to prove
∑∞

t=1 E‖xt − αti‖2 < +∞.
Here we have several remarks playing as guiding light in our proof:

• We already proved
∑∞

t=0 E‖xt+1 − xt‖2 < +∞, therefore, we will find links between
E‖xt − αti‖2 and E‖xt − xt−1‖2,E‖xt−1 − xt−2‖2, . . .

• Our main challenge when dealing with the RHS of (17) is that it is very hard to
compute explicitly those integrals since, for instance, ‖xt − xt−1‖2 and {i ∈ Īt−1} are
not independent.

• We know that if a random variable X is independent to the set of events B, then we
have the property

∫
BXdP = E(X)P(B). We will therefore evaluate in such a way that

after our evaluations, by grouping integrals with the common function integrated, the
combined region is independent to that function. For example, after some evaluations,
we obtain something of the form∫

A1

XdP +

∫
A2

XdP + . . .+

∫
Am

XdP =

∫
A1∪A2∪...∪Am

XdP,

where A1, A2, . . . , Am are pair-wise disjoint. Here our aim is to have A1∪A2∪ . . .∪Am
being independent to X, so we can use the mentioned property.

With these meta-ideas kept in mind, we are back to the proof. We denote {εi} the
sequence as εi = 1

i2
. The sequence {εi} plays a crucial role in our proof. Moreover, we

denote A =
∑∞

i=1 εi =
∑∞

i=1

1

i2
< +∞. We define another sequence {θi} as θi = εi

A , which
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implies
∑∞

i=1 θi = 1. We will evaluate E‖xt−αti‖2, (t ≥ 2) based on (17) as follows. Cauchy-
Schwartz inequality implies∫

{i∈Īt−1∩It−2}
‖xt − xt−2‖2dP ≤ 1

θ1

∫
{i∈Īt−1∩It−2}

‖xt − xt−1‖2dP

+
1

1− θ1

∫
{i∈Īt−1∩It−2}

‖xt−1 − xt−2‖2dP,

∫
{i∈Īt−1∩Īt−2∩It−3}

‖xt − xt−3‖2dP ≤ 1

θ1

∫
{i∈Īt−1∩Īt−2∩It−3}

‖xt − xt−1‖2dP

+
1

θ2

∫
{i∈Īt−1∩Īt−2∩It−3}

‖xt−1 − xt−2‖2dP

+
1

1− θ1 − θ2

∫
{i∈Īt−1∩Īt−2∩It−3}

‖xt−2 − xt−3‖2dP,

. . . ∫
{i∈Īt−1∩...∩Ī1}

‖xt − x0‖2dP ≤ 1

θ1

∫
{i∈Īt−1∩...∩Ī1}

‖xt − xt−1‖2dP

+
1

θ2

∫
{i∈Īt−1∩...∩Ī1}

‖xt−1 − xt−2‖2dP + . . .

+
1

θt−1

∫
{i∈Īt−1∩...∩Ī1}

‖x2 − x1‖2dP

+
1

1− θ1 − θ2 − . . .− θt−1

∫
{i∈Īt−1∩...∩Ī1}

‖x1 − x0‖2dP.

By adding (17) and these inequalities, then grouping integrals sharing common the function
integrated, namely ‖xt − xt−1‖2, ‖xt−2 − xt−1‖2, . . . , ‖x1 − x0‖2, and noticing

{i ∈ Īt−1 ∩ It−2} ∪ {i ∈ Īt−1 ∩ Īt−2 ∩ It−3} . . . ∪ {i ∈ Īt−1 ∩ . . . Ī1} = {i ∈ Īt−1},
{i ∈ Īt−1 ∩ Īt−2 ∩ It−3} ∪ . . . ∪ {i ∈ Īt−1 ∩ . . . Ī1} = {i ∈ Īt−1 ∩ Īt−2},
. . .

we get

E‖xt − αti‖2 ≤
∫
{i∈It−1}

‖xt − xt−1‖2dP +
1

θ1

∫
{i∈Īt−1}

‖xt − xt−1‖2dP

+
1

1− θ1

∫
{i∈Īt−1∩It−2}

‖xt−1 − xt−2‖2dP +
1

θ2

∫
{i∈Īt−1∩Īt−2}

‖xt−1 − xt−2‖2dP

+ . . .+
1

1− θ1 − . . .− θt−2

∫
{i∈Īt−1∩...∩I1}

‖x2 − x1‖2dP

+
1

θt−1

∫
{i∈Īt−1∩...∩Ī1}

‖x2 − x1‖2dP

+
1

1− θ1 − θ2 − . . .− θt−1

∫
{i∈Īt−1∩...∩Ī1}

‖x1 − x0‖2dP.
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By observing that 1 ≤ 1
θ1
, 1

1−θ1 ≤
1
θ2
, . . . , 1

1−θ1−...−θt−2
≤ 1

θt−1
, 1

1−θ1−...−θt−1
≤ 1

θt
, we

have

E‖xt − αti‖2 ≤
1

θ1

∫
Ω
‖xt − xt−1‖2dP +

1

θ2

∫
{i∈Īt−1}

‖xt−1 − xt−2‖2dP

+ . . .+
1

θt−1

∫
{i∈Īt−1∩...∩Ī2}

‖x2 − x1‖2dP +
1

θt

∫
{i∈Īt−1∩...∩Ī1}

‖x1 − x0‖2dP.

By the independence of each pair ‖xt−1 − xt−2‖2 and {i ∈ Īt−1},..., ‖x2 − x1‖2 and {i ∈
Īt−1 ∩ . . . ∩ Ī2}, ‖x1 − x0‖2 and {i ∈ Īt−1 ∩ . . . ∩ Ī1},

E‖xt − αti‖2 ≤
1

θ1
E‖xt − xt−1‖2 +

1

θ2
E‖xt−1 − xt−2‖2P({i ∈ Īt−1}) + . . .

+
1

θt−1
E‖x2 − x1‖2P({i ∈ Īt−1 ∩ . . . ∩ Ī2}) +

1

θt
E‖x1 − x0‖2P({i ∈ Īt−1 ∩ . . . ∩ Ī1})

=
1

θ1
E‖xt − xt−1‖2 +

1

θ2
E‖xt−1 − xt−2‖2

(
N − 1

N

)b
+ . . .

+
1

θt−1
E‖x2 − x1‖2

(
N − 1

N

)b(t−2)

+
1

θt
E‖x1 − x0‖2

(
N − 1

N

)b(t−1)

.

For short, let us denote λ =
(
N−1
N

)b
< 1. The inequality can be written as follows

E‖xt − αti‖2 ≤
t∑

k=1

λt−k

θt−k+1
E‖xk − xk−1‖2.

Therefore,

∞∑
t=1

E‖xt − αti‖2 ≤
∞∑
t=1

t∑
k=1

1

θt−k+1
λt−kE‖xk − xk−1‖2

=

∞∑
k=1

∞∑
t=k

1

θt−k+1
λt−kE‖xk − xk−1‖2 =

∞∑
k=1

E‖xk − xk−1‖2
∞∑
t=k

λt−k

θt−k+1

=

∞∑
k=1

E‖xk − xk−1‖2
∞∑
t=0

λt

θt+1
= A

( ∞∑
t=0

λt

εt+1

) ∞∑
k=1

E‖xk − xk−1‖2

= A

( ∞∑
t=0

(t+ 1)2λt

) ∞∑
k=1

E‖xk − xk−1‖2 < +∞,

since the power series u(x) =
∑∞

t=0 (t+ 1)2λt has the convergence radius 1.
3. As a consequence of properties 1,2 above, we derive that {F (xt)} converges to V∞

almost surely.
4. If follows from (13) and property 2 that E

(∑∞
k=1 ‖vk −∇H(xk)‖2

)
< +∞. Let

S =
(
vk −∇H(xk)→ 0, xk − xk+1 → 0, {yk} is bounded

)
.
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It is evident that P(S) = 1. We consider a fixed event in S to obtain a realization {xk}. Let
x∗ be a limit point of {xk}, there exists a subsequence {xlk} such that xlk → x∗, implying
xlk+1 → x∗. Since H is L-smooth, we obtain ∇H(xlk) → ∇H(x∗), which implies, vlk →
∇H(x∗). Since {ylk} is bounded, by passing to a subsequence if necessary, we assume that
ylk → y∗, therefore, y∗ ∈ ∂r2(x∗). On the other hand, we have zlk ∈ ∂(G + r1)(xlk+1). By
the closedness of the graph subdifferential operator, we obtain ∇H(x∗)+y∗ ∈ ∂(G+r1)(x∗).
Therefore, x∗ is a critical point of F = (G+ r1)− (H + r2).

5. Since zt ∈ ∂(G+ r1)(xt+1),

dist
(
∇H(xt+1) +∇r2(xt+1), ∂(G+ r1)(xt+1)

)
≤ ‖∇H(xt+1) +∇r2(xt+1)− vt − yt‖

≤ ‖∇H(xt+1)−∇H(xt)‖+ ‖∇H(xt)− vt‖+ ‖∇r2(xt+1)−∇r2(xt)‖
≤ (L+ Lr2)‖xt+1 − xt‖+ ‖∇H(xt)− vt‖.

Therefore,

Edist
(
∇H(xt+1) +∇r2(xt+1), ∂(G+ r1)(xt+1)

)
≤ (L+ Lr2)E‖xt+1 − xt‖+

(
E‖∇H(xt)− vt‖2

) 1
2

≤ (L+ Lr2)
(
E‖xt+1 − xt‖2

) 1
2 +

L√
bN

(
N∑
i=1

E‖xt − αti‖2
) 1

2

.

Summing these inequalities for t = 0 to T − 1,

T−1∑
t=0

Edist(∇H(xt+1) +∇r2(xt+1), ∂(G+ r1)(xt+1))

≤ (L+ Lr2)
T−1∑
t=0

(
E‖xt+1 − xt‖2

) 1
2 +

L√
bN

T−1∑
t=0

(
N∑
i=1

E‖xt − αti‖2
) 1

2

≤ (L+ Lr2)
√
T

(
T−1∑
t=0

E‖xt+1 − xt‖2
) 1

2

+
L√
bN

√
T

(
T−1∑
t=0

N∑
i=1

E‖xt − αti‖2
) 1

2

≤ (L+ Lr2)
√
TC +

L
√
TC√
b
≤ (2L+ Lr2)C

√
T , for some C > 0.

It follows that the iteration convergence rate is dT = O(1/
√
T ).

If the output xa is chosen randomly from {xt}Tt=1,

Edist(∇H(xa) +∇r2(xa), ∂(G+ r1)(xa)) = O
(

1√
T

)
.

Therefore, to get ε-criticality, the algorithm needs T = O(1/ε2) iterations. From the condi-
tion for b, if we choose

b =

⌈
4
√

2
√
µ
N3/4

⌉
, where µ =

ρH + ρr2 + ρG+r1

4L
,
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one obtains the complexity of O(N+N3/4/ε2) in terms of the number of gradient evaluations
and the complexity of O(1/ε2) in terms of the number of convex subproblems.

Sketched proof for the option of sample without replacement.
1. By following the arguments of the proof above, we obtain the inequality (12). Then,

we have the following lemma whose proof is similar to the proof of Lemma 3.

Lemma 6 The following inequality holds,

EIt‖vt −∇H(xt)‖2 ≤ L2

bN

(
1− b− 1

N − 1

) N∑
i=1

‖xt − αti‖2.

Similar to the arguments above, by introducing the Lyapunov sequence V t = F (xt) +

ct
∑N

i=1 ‖xt − αti‖2 with ct = βL2(N−b)
2γb(N−1)(b−N+βb) , where β = N/b, and γ is determined by the

AM-GM inequality as above, we want

N
√
N2 − b2

b2
√
N − 1

≤ ρ

4L
. (18)

Consequently, if N
√
N+1
b2

≤ ρ

4L
, (18) holds and we obtain that {V t} converges almost surely

and
∑∞

t=0 E‖xt+1 − xt‖2 <∞.
2. The arguments above can be employed with the following notice: P({i ∈ Īt−1}) =

1− b/N,P({i ∈ Īt−1 ∩ Īt−2}) = (1− b/N)2, etc.
3, 4, 5. These properties are established similar to the option of sample with replacement.

Remark 7 i. We can apply the same technique discussed in Remark 4 to improve the
number ρ

L of the problem if necessary.
ii. The analysis giving links between E‖xt−αti‖2 and

∑∞
t=1 E‖xt+1− xt‖2 is quite novel

in the literature, which is expected to be helpful in analyzing SAGA-type algorithms. The
analysis provides an elegant idea of how to escape the “non-independence” of the function
and the region of an integral.

Remark 8 Some comparisons with related algorithms:
i. From the convergence of the standard DCA (Pham Dinh and Le Thi, 1997), one can

verify that to find an ε-criticality, under the L-smooth assumption of H and r2, it requires
O(1/ε2) iterations. As a result, the standard DCA has the complexity of O(N/ε2) in terms of
gradient evaluations and O(1/ε2) in terms of the number of convex subproblems. While the
proposed DCA-SVRG and DCA-SAGA enjoy the same complexity as the standard DCA in
terms of the number of convex subproblems, they significantly outperform the standard DCA
in terms of gradient evaluations, DCA-SVRG: O(N2/3/ε2), DCA-SAGA: O(N +N3/4/ε2).

ii. (Xu et al., 2019b) considered the following large-sum problem

min
x∈Rn

F (x) = G(x)−H(x) + r(x) :=
1

N̄

N̄∑
i=1

gi(x)− 1

N

N∑
j=1

hj(x) + r(x),
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where gi, hj are convex and the regularizer r is convex. The authors also analyze the case
that r is nonconvex (not necessary to be DC) where the proximal mapping can be efficiently
computed. For simplicity, we only discuss the case that r is convex (note that their com-
plexity for the case of nonconvex r is obviously worse than the convex case). When each hj
is L-smooth, the best gradient complexity to find (nearly) ε-criticality is given in (Xu et al.,
2019b, Corollary 9), which is O((N̄ +N)/ε2). Of course, this complexity takes into account
the cost of solving each large-sum convex subproblem by the SVRG. To compare with our
algorithms, we need to cast this complexity into the number of gradient evaluations of H
and the number of convex subproblems being solved. To obtain a (nearly) ε-critical point,
they need O(1/ε2) stages in total (Xu et al., 2019b, Lemma 3 and Corollary 9). Each stage
consumes a full gradient of H and requires solving inexactly a convex subproblem, resulting
in the complexity of O(N/ε2) in terms of gradient evaluations and O(1/ε2) in terms of the
number of convex subproblems. Our algorithms enjoy better gradient complexity, while the
complexity in terms of convex subproblems is somewhat incomparable since their algorithmic
design also takes into account the inexactness of solving each such problem, while we do not
quantify this issue here.

4. Additional Convergence Analysis for The Composite Structure of r2

In this section, we consider r2(x) =
∑m

i=1 li(pi(x)) where li : R→ R is convex and decreas-
ing, pi : Rn → R is convex and hence continuous, for i = 1,m. The optimization problem
(P ) becomes

(Q) α = min

{
F (x) = G(x)− 1

N

N∑
i=1

hi(x) + r1(x)−
m∑
i=1

li(pi(x))

}
.

By denoting Ω = {(x, z) ∈ Rn × Rm : pi(x) ≤ zi, ∀i = 1,m}, we can solve the following
problem instead

(Q′) α = min

{
ϕ(x, z) = G(x)− 1

N

N∑
i=1

hi(x) + r1(x) + χΩ(x, z)−
m∑
i=1

li(zi)

}
,

since if (x∗, z∗) is the optimal solution of (Q′), x∗ is the optimal solution of (Q). We
observe that the problem (Q′) with respect to the optimization variables (x, z) takes the
form of (P ). Therefore, we can apply the proposed DCA-SVRG and DCA-SAGA to (Q′).
However, the convergence analysis of DCA-SVRG and DCA-SAGA should be modified for
this case since x and z do not play the same role. We see that, due to the newly introduced
optimization variable z, the modulus of convexity of G and H with respect to (x, z) is 0,
which is undesirable. By Remark 4, we can add the convex term γ

2‖(x, z)‖
2 to both DC

components. However, this technique has its own risk of resulting in bad approximations.
Therefore, we still want to use the modulus of strong convexity of G and H with respect to
x only in our analysis, which requires us to adapt the convergence analysis of DCA-SVRG
and DCA-SAGA to this case. For convenience of presentation, we give DCA-SVRG scheme
applied to (Q′) and state the convergence results with its sketched proof. For DCA-SAGA
applied to (Q′), we only present convergence results.
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The DCA-SVRG scheme applied to (Q′) is given in Algorithm 3, where we denote
r3(z) =

∑m
i=1 li(zi).

Algorithm 3 DCA-SVRG applied to (Q′)

Initialization: x̃0 ∈ dom r1, inner-loop length M , minibatch size b, k = 0, option (either
with replacement or without replacement).
repeat

Compute the full gradient ν̃k = 1
N

∑N
i=1∇hi(x̃k) and set xk+1

0 = x̃k, zk+1
0 =

(zk+1
0,1 , zk+1

0,2 , . . . , zk+1
0,m )> with zk+1

0,r = pr(x
k+1
0 ).

for j = 0 : M − 1 do
if option is with replacement then

Randomly choose with replacement the set It of b elements of [N ].
else

Randomly choose without replacement the set It of b elements of [N ].
end if
Compute the “stochastic variance reduced gradient” tk+1

j by

tk+1
j =

1

b

∑
i∈Ib

∇hi(xk+1
j ) + ν̃k − 1

b

∑
i∈Ib

∇hi(x̃k).

Compute yk+1
j ∈ ∂r3(zk+1

j ).
Solve the convex problem

(xk+1
j+1 , z

k+1
j+1 ) = arg min{G(x) + r1(x) + χΩ(x, z)− 〈tk+1

j , x〉 − 〈yk+1
j , z〉}

end for
Set x̃k+1 = xk+1

M , and k = k + 1.
until Stopping criterion.

Henceforth, we still denote ρH , ρG+r1 the modulus of strong convexity of H and G+ r1

and L the Lipschitz constant of ∇hi with respect to x only. We derive the following
convergence results.

Theorem 9 If the minibatch size b and the inner-loop length M satisfy

M√
b
≤ 1

4
√
e− 1

ρG+r1 + ρH
L

,

then

1. The sequence {F (x̃k)} converges almost surely.

2.
∑∞

k=0

∑M−1
j=0 E‖xk+1

j+1 − x
k+1
j ‖2 < +∞.

3. Suppose the sequence {ykj } is bounded almost surely, let x∗ be a limit point of {xkj },
then (x∗, z∗) is a critical point of F = (G + r1 + χΩ) − (H + r3) almost surely, where
z∗ = (p1(x∗), p2(x∗), . . . , pm(x∗))>.
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Proof [Proof of Theorem 9] 1, 2. The convex subproblem can be solved as follows

xk+1
j+1 = arg min

{
G(x) + r1(x)− 〈tk+1

j , x〉 −
m∑
r=1

yk+1
j,r pr(x)

}
(19)

zk+1
j+1,r = pr(x

k+1
j+1), ∀r = 1,m. (20)

It follows from (19) that tk+1
j ∈ ∂

(
G+ r1 −

∑m
r=1 y

k+1
j,r pr

)
(xk+1
j+1), which implies

G(xk+1
j+1) + r1(xk+1

j+1) ≤G(xk+1
j ) + r1(xk+1

j ) + 〈tk+1
j , xk+1

j+1 − x
k+1
j 〉

−
m∑
r=1

yk+1
j,r (pr(x

k+1
j )− pr(xk+1

j+1))− ρG+r1

2
‖xk+1

j+1 − x
k+1
j ‖2. (21)

From the convexity of H and r3, we obtain

H(xk+1
j+1) ≥ H(xk+1

j ) + 〈∇H(xk+1
j ), xk+1

j+1 − x
k+1
j 〉+

ρH
2
‖xk+1

j+1 − x
k+1
j ‖2, (22)

r3(zk+1
j+1 ) ≥ r3(zk+1

j ) + 〈yk+1
j , zk+1

j+1 − z
k+1
j 〉. (23)

From (21), (22) and (23),

F (xk+1
j+1) ≤ F (xk+1

j ) + 〈tk+1
j −∇H(xk+1

j ), xk+1
j+1 − x

k
j 〉 −

ρG+r1 + ρH
2

‖xk+1
j+1 − x

k+1
j ‖2,

by noting that ϕ(xk+1
j+1 , z

k+1
j+1 ) = F (xk+1

j+1), ϕ(xk+1
j , zk+1

j ) = F (xk+1
j ).

Here, by considering the Lyapunov sequence V k+1
j = F (xk+1

j ) + cj‖xk+1
j − x̃k‖2 similar

to the proof of Theorem 2, we arrive at the conclusion 1 and 2.

3. Let S =
(
tk+1
j −∇H(xk+1

j )→ 0, xk+1
j+1 − x

k+1
j → 0, {ykj } is bounded

)
. We see that

P(S) = 1 and let {xkj } be a realization with respect to a fixed event in S. Let x∗ be a limit

point of {xkj }, there exists a subsequent x
u(l)
v(l) → x∗, which further implies x

u(l)
v(l)+1 → x∗.

From (20) and the continuity of pr, we obtain z
u(l)
v(l) → (p1(x∗), . . . , pm(x∗))>. Without loss

of generality, we assume that y
u(l)
v(l) → y∗, which yields y∗ ∈ ∂r3((p1(x∗), . . . , pm(x∗))>). On

the other hand, t
u(l)
v(l) → ∇H(x∗). It follows from

t
u(l)
v(l) ∈ ∂

(
G+ r1 −

m∑
r=1

y
u(l)
v(l),rpr

)
(x
u(l)
v(l)+1)

that ∇H(x∗) ∈ ∂(G+ r1 −
∑m

r=1 y
∗
rpr)(x

∗). Therefore,(
∇H(x∗)
y∗

)
∈ ∂(G(x) + r1(x) + χΩ(x, z))(x∗, z∗),

which implies ∂(G(x) + r1(x) + χΩ(x, z))(x∗, z∗) ∩ ∂(H(x) + r3(z))(x∗, z∗) 6= ∅.

Similarly, we have the following convergence results when applying DCA-SAGA to min-
imize the function ϕ(x, z).
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Theorem 10 If the minibatch size b satisfies N
√
N+b
b2

≤ ρH+ρG+r1
4L for the option of sample

with replacement or N
√
N+1
b2

≤ ρH+ρG+r1
4L for the option of sample without replacement, then

1.
∑∞

t=0 E‖xt+1 − xt‖2 <∞.

2.
∑∞

t=0

∑N
i=1 E‖xt − αti‖2 <∞.

3. The sequence {F (xt)} converges almost surely.

4. Suppose the sequence {yt} is bounded almost surely, let x∗ be a limit point of {xt},
then (x∗, z∗) is a critical point of F = (G+ r1 + χΩ)− (H + r3) almost surely, where
z∗ = (p1(x∗), p2(x∗), . . . , pm(x∗))>.

5. Applications to Nonnegative Principal Component Analysis, Group
Variables Selection in Multi-class Logistic Regression, and Sparse
Linear Regression

In this section, to study our proposed algorithms’ practical behaviors, we apply DCA-SVRG
and DCA-SAGA to three important problems in machine learning: nonnegative principal
component analysis, group variables selection in multi-class logistic regression, and sparse
linear regression.

All numerical experiments in this section are performed on a Processor Intel(R) core(TM)
i7-8700, CPU @ 3.20GHz, RAM 16 GB.

5.1 Nonnegative Principal Component Analysis

Principal component analysis is arguably one of the most successful tools for dimensionality
reduction. Throughout its history, PCA has numerous success stories in a large spectrum
of applied sciences, including neuroscience, medicine, psychology, material science, scien-
tometry, astronomy, geography, and social sciences.

We perform numerical experiments on a special structure of PCA called Non-negative
component analysis (NN-PCA). The term “non-negative” indicates that we restrict the
search domain to be the non-negative part of the whole search space. This restriction
implicitly assumes that we know some additional information on a solution of PCA: the
solution belongs to the non-negative orthant. This additional information offers some the-
oretical advantages as discussed in (Montanari and Richard, 2015). The NN-PCA has the
following form

min
‖x‖≤1,x≥0

− 1

2N

N∑
i=1

〈x, zi〉2, (24)

where {zi}Ni=1 is the given data set.

5.1.1 DCA-SVRG and DCA-SAGA Applied to (24)

We apply DCA-SVRG and DCA-SAGA to (24) with the following DC decomposition
G(x) = ρ

2‖x‖
2, hi(x) = ρ

2‖x‖
2 + 1

2〈x, zi〉
2, r1(x) = χS(x), r2(x) = 0, where S = {x ∈

Rn : x ≥ 0, ‖x‖ ≤ 1}, and ρ > 0. In our experiments, we fix ρ = 1.
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With this setting, we implement two versions of DCA-SAGA and two versions of DCA-
SVRG, namely, DCA-SAGA-v1 (sample with replacement) and DCA-SAGA-v2 (sample
without replacement), DCA-SVRG-v1 (sample with replacement) and DCA-SVRG-v2 (sam-
ple without replacement), respectively.

5.1.2 Numerical Experiments

Data sets. We use standard machine learning data sets in LIBSVM 1, namely, a9a (32561×
123), aloi (108000×128), cifar10 (50000×3072), SensIT Vehicle (78823×100), connect-4
(67557× 126), letter (15000× 16), mnist (60000× 780), protein (17766× 357), shuttle
(43500×9), YearPredictionMSD (463715×90). Each sample of these data sets is normalized
as ‖zi‖ = 1.

Comparative algorithms. We implement stochastic DCA (denoted by SDCA) (Le Thi et al.,
2020). For a more in-depth comparison, we further implement prox-SGD and prox-SAGA
(J. Reddi et al., 2016), prox-SARAH (Pham et al., 2020), prox-SpiderBoost (Wang et al.,
2019). Here we do not compare with the prox-SVRG since - as discussed earlier - the
DCA-SVRG-v1 applied to the above setting recovers a version of the prox-SVRG.

For proximal-type algorithms (prox-SGD, prox-SAGA, prox-SARAH, prox-SpiderBoost),
the convex regularizer is set to be χS(x), while each L-smooth component of the large sum
is set as fi(x) = −1

2〈x, zi〉
2 (fi is 1-smooth).

Experiment setups and results. We study the evolution process of the objective with respect
to the computational resource used. This resource is measured by the number of stochastic
first-order oracle calls (SFO). That is, every time we access one stochastic gradient (the
gradient of one summand) of the large sum, one SFO call is counted. We set the fixed
budget of SFO calls to be 15N . However, we allow all algorithms to use some extra SFO
calls to complete their last iteration.

We observe that each function x 7→ 1
2〈x, zi〉

2 is 1-smooth. Based on theoretical con-
vergence results, we choose hyperparameters for the algorithms as follows. The minibatch

size b is chosen as bN
2
3 c, bN

2
3 c, d2

5
4N

3
4 e, d2

√
N
√
N + 1e for DCA-SVRG-v1, DCA-SVRG-

v2, DCA-SAGA-v1, DCA-SAGA-v2, respectively. We set the inner loop length M for
DCA-SVRG-v1 and DCA-SVRG-v2 to be b 1

4
√
e−1

√
bc. On the other hand, we use a neu-

tral minibatch size of 10%N which usually yields good results (Le Thi et al., 2020) for the
SDCA. For the prox-SGD, η = 1/(2L) (Ghadimi et al., 2016) and we choose a neutral mini-

batch size of 500. For the prox-SAGA, we set η = 1/(5L) and the minibatch size b = bN
2
3 c

(J. Reddi et al., 2016). The hyperparamters of prox-SARAH are chosen as follows (Pham
et al., 2020, Theorem 8): the minibatch size b = b

√
nc, the inner loop length M = bN/bc,

the step size η and the averaging parameter γ:

η =
2
√
ωM

4
√
ωM + 1

, γ =
1

L
√
ωM

, where ω :=
3(N − b)
2b(N − 1)

.

Lastly, for the prox-SpiderBoost, we choose η = 1/(2L) and the inner loop length and the
mini-batch size M = b = b

√
Nc (Wang et al., 2019, Theorem 1).

1. The data sets can be downloaded from https://www.csie.ntu.edu.tw/~cjlin/libsvm/.
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We report the suboptimality of the objective, f(x) − f(x̂), where x̂ is the “optimal”
solution found by running the deterministic DCA 500 iterations (which means that this
deterministic DCA uses 500N SFO calls) 10 times with different initial points. The fi-
nal optimal value f(x̂) is the smallest value found by the deterministic DCA and all the
competitive algorithms in this experiment. To enhance the visibility, we plot this subop-
timality in the logarithmic scale of base 10. Figure 1 shows the results over 10 random
runs of all comparative algorithms. The bold lines represent the mean curves, while the
shaded regions illustrate the mean absolute deviation (MAD). Note that, in the normal
scale, one might plot x±MAD(x); Meanwhile, in the log scale, a reasonable way is to plot
log10(x)± (1/ ln(10)) MAD(x)/x ≈ log10(x)± 0.434 MAD(x)/x (see, e.g., (Stuve, 2004)).

Comments. We observe from Figure 1 that two versions of DCA-SVRG and the prox-
SARAH, prox-SpiderBoost perform very well and usually take the lead, where the sub-
optimality is around 10−15 in most of the cases. It is followed by the sample without
replacement version of DCA-SAGA (DCA-SAGA-v2) who obtains a good suboptimality
(usually less than 10−10 ). While the performance of DCA-SVRG-v1 and DCA-SVRG-v2
are almost identical, DCA-SAGA-v1 is much worse than DCA-SAGA-v2, indicating that
sample strategies are of decisive importance on the performance of DCA-SAGA. In this
experiment, the prox-SAGA also obtains good results with suboptimality less than 10−5 in
most data sets. The SDCA performs a little bit worse than the prox-SAGA, meanwhile,
the prox-SGD fluctuates around 10−5 and can not further decrease the suboptimality.

5.2 Group Variables Selection in Multi-class Logistic Regression

Logistic regression is undoubtedly one of the most successful tools for classification. Logistic
regression has a wide range of applications including cancer detection (Kim et al., 2008),
social sciences (King and Zeng, 2001), medical (Bagley et al., 2001), etc. On the other hand,
for high-dimensional data, feature selection is usually employed in order to select relevant
features and encourage weights corresponding to irrelevant features to go to 0.

Let {(xi, yi) : i = 1, 2, . . . , N} be a training set with feature vectors xi and the labels
yi ∈ {1, 2, . . . , Q} where Q is the number of classes. Let W be the d × Q matrix with
columns W:,1,W:,2, . . . ,W:,Q and b = (b1, b2, . . . , bQ). The conditional probability of class y
given the observation X = x can be modeled by

p(Y = y|X = x) =
exp (by +W>:,yx)∑Q
k=1 exp (bk +W>:,kx)

.

To find (W, b), one minimizes the following negative log-likelihood function over the whole
training set

L(W, b) :=
1

N

N∑
i=1

`(xi, yi,W, b)

where `(xi, yi,W, b) = − log p(Y = yi|X = xi). On the other hand, to select relevant
features, one employs the following `q,0-norm of W

‖W‖q,0 = |{j ∈ {1, 2, . . . , d} : ‖Wj,:‖q 6= 0}|,
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(a) a9a (b) aloi

(c) cifar10 (d) SensIT Vehicle

(e) connect-4 (f) letter
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(g) mnist (h) protein

(i) shuttle (j) YearPredictionMSD

Figure 1: The suboptimality of all algorithms over 10 data sets
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which leads to the following optimization problem

min
W,b

{
1

N

N∑
i=1

`(xi, yi,W, b) + λ‖W‖q,0

}
. (25)

In practice, the discontinuous `q,0-norm is usually approximated by continuous functions.
In this paper, we approximate `q,0 by the following nonconvex functions, which have been
proven to be efficient in several problems including individual variable selection in SVM
(Bradley and Mangasarian, 1998), sparse optimal scoring problem (Le Thi and Phan, 2016),
sparse covariance matrix estimation problem (Phan et al., 2017),

Exponential: ηexp
α (s) = 1− exp(−αs),

Capped− `1 : ηcap−`1
α (s) = min{1, αs}.

The corresponding approximation problem of (25) takes the form

min
W,b

 1

N

N∑
i=1

`(xi, yi,W, b) + λ
d∑
j=1

ηα(‖Wj,:‖q)

 . (26)

5.2.1 DCA-SVRG and DCA-SAGA Applied to (26)

It is worth noting that an L-smooth function ϕ admits the following DC decomposition

ϕ(x) =
γ

2
‖x‖2 −

(γ
2
‖x‖2 − ϕ(x)

)
(27)

whenever γ ≥ L. We can show that `(xi, yi,W, b) is 2
√

2
3
√

3

√
Q(‖xi‖2 + 1)-smooth, so the

DC decomposition (27) can be used. On the other hand, ηα is concave and increasing.
Therefore, the problem (26) takes the form of (Q) with

G(W, b) =
γ

2
‖(W, b)‖2, hi(W, b) =

γ

2
‖(W, b)‖2 − `(xi, yi,W, b),

r1(W, b) = 0, li(s) = −ληα(s), pi(W, b) = ‖Wi,:‖q,∀i = 1, d,

where γ ≥ 2
√

2
3
√

3

√
Q(maxi=1,N ‖xi‖2 + 1). We can apply DCA-SVRG and DCA-SAGA to

solve (26). In general, the convex subproblem of DCA-SVRG and DCA-SAGA requires the
computing of the proximal operator of r‖ · ‖q with q ∈ {1, 2}, where the proximal operator
of a function f is defined by

proxf (x) = arg min
y

{
1

2
‖x− y‖2 + f(y)

}
.

It is worth noting that, these proximal operators can be computed explicitly as follows

proxr‖·‖2(x) =


(

1− r

‖x‖2

)
x if ‖x‖2 ≥ r,

0 otherwise

proxr‖·‖1(x) = max(|x| − r, 0) ◦ sign(x).
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Therefore, the corresponding DCA-SVRG and DCA-SAGA schemes applied to (26) is ex-
plicit, i.e., no convex solver is needed for solving convex subproblems.

In this experiment, we found that DCA-SAGA with replacement performs poorly and
is not numerically stable. Hence, we only study the behaviors of three algorithms: DCA-
SAGA without replacement, DCA-SVRG-v1 (with replacement), DCA-SVRG-v2 (without
replacement).

5.2.2 Numerical Experiments

Data sets. We use standard machine learning data sets obtained from LIBSVM for multi-
class classification, namely, connect-4 (67557× 126, 3 classes), dna (2000× 180, 3 classes),
letter (15000 × 16, 26 classes), SensIT Vehicle (78823 × 100, 3 classes), Sensorless

(58509 × 48, 11 classes), shuttle (43500 × 9, 7 classes). All data sets are normalized by
MinMaxScaler to scale all features into the range [0, 1].

Comparative algorithms. The DCA and the SDCA are chosen as comparative algorithms
in this experiment.

Experiment setups and results. We set the budget of SFO calls to be 20N . Throughout this
experiment, regularization parameter λ and the number α that controls the tightness of
the `q,0 approximation are fixed as 1 and 0.5, respectively. As mentioned, it can be shown

that each function `(xi, yi,W, b) is L-smooth, where L = 2
√

2
3
√

3

√
Q(maxi=1,N ‖xi‖2 + 1). In

order to guarantee the convexity of two DC components, we need to set γ ≥ L. In our
experiment, we fix γ = 2L.

By the convergence analysis above and the numerical experiments in (Le Thi et al.,
2020), we choose hyperparameters for algorithms as follows. The minibatch size b is chosen

as
⌈
2
√
N
√
N + 1

⌉
, bN

2
3 c, bN

2
3 c, b10%Nc for DCA-SAGA, DCA-SVRG-v1, DCA-SVRG-

v2, SDCA, respectively. The inner loop length M of DCA-SVRG-v1 and DCA-SVRG-v2 is
set to be b 1

4
√
e−1

√
bc.

Four Figures 2, 3, 4, and 5 report the mean curves of the objective (averaged over 10
runs) and the mean absolute deviation of five algorithms. To enhance visibility, the MAD
is scaled up by a factor of 20.

Comments. It can be observed that, in all cases, DCA-SAGA is the best algorithm in
both solutions’ quality and convergence rate criteria. It is followed by the two versions of
DCA-SVRG to be the second-best, where the performances of these two versions are almost
identical. These patterns occur consistently over all tested cases. Again, in this experiment,
the sample strategies are of paramount importance in the performance of DCA-SAGA:
while sample with replacement makes DCA-SAGA numerically unstable, sample without
replacement makes DCA-SAGA the best algorithms among all competitors. We see that
the SDCA is the worst algorithm in this experiment where it decreases the objective value
in a quite slow rate, which partially demonstrates the conservative nature of the averaging
feature in its design. The performance of the standard DCA is relatively similar to the
SDCA. The gain of DCA-SAGA over the SDCA varies from 0.71% up to 60.15% and the
gain of DCA-SVRG-v1 over the SDCA ranges from 0.56% to 54.73%.
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(a) shuttle (b) Sensorless (c) letter

(d) dna (e) SensIT Vehicle (f) connect-4

Figure 2: The (averaged) objective value of five algorithms for the case ηexp and q = 1.

(a) shuttle (b) Sensorless (c) letter

(d) dna (e) SensIT Vehicle (f) connect-4

Figure 3: The (averaged) objective value of five algorithms for the case ηexp and q = 2.
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(a) shuttle (b) Sensorless (c) letter

(d) dna (e) SensIT Vehicle (f) connect-4

Figure 4: The (averaged) objective value of five algorithms for the case ηcap−`1 and q = 1.

(a) shuttle (b) Sensorless (c) letter

(d) dna (e) SensIT Vehicle (f) connect-4

Figure 5: The (averaged) objective value of five algorithms for the case ηcap−`1 and q = 2.
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5.3 Sparse Linear Regression

Sparse linear regression is a linear regression model that aims to eliminate redundant, noisy,
and irrelevant features. Given a data set {(xi, yi)}Ni=1, sparse linear regression tries to fit
〈β, xi〉 ≈ yi with a sparse solution β in order to select right features, especially in the
high-dimensional regime. Formally, the optimization problem associated with sparse linear
regression is given by

min
β

1

2N

N∑
i=1

(yi − 〈β, xi〉)2 + λ‖β‖0, (28)

where λ > 0 is a parameter that makes a trade-off between the data-fitting term and the
sparsity-encouraging term.

To make the problem tractable, the discontinuous `0-norm is usually approximated by
a continuous one. In this section, we focus on the Capped-`1 that is used to approximate
the `0-norm to give rise to the following approximation problem

min
β
F (β) =

1

2N

N∑
i=1

(yi − 〈β, xi〉)2 + λ

m∑
j=1

min(1, α|βj |). (29)

5.3.1 DCA-SVRG and DCA-SAGA Applied to (29)

Firstly, each function β 7→ 1
2(yi − 〈β, xi〉)2 is ‖xi‖2-smooth, so it admits the DC decompo-

sition (27). On the other hand, the Capped-`1 function is DC with the DC decomposition
min(1, α|β|) = g̃(β)− h̃(β), where g̃(β) = 1 +α|β|, and h̃(β) = max(1, α|β|). Therefore, the
problem (29) falls into our framework with the following setting

G(β) =
γ

2
‖β‖2, hi(β) =

γ

2
‖β‖2 − 1

2
〈β, xi〉2 + yi〈β, xi〉,

r1(β) = λα‖β‖1, r2(β) = λ
m∑
j=1

max(1, α|βj |),

where γ ≥ maxi=1,N ‖xi‖2. When applying DCA-SAGA and DCA-SVRG to this setting,
the subproblem is nothing but the proximal operator of `1, which has a closed-form solution.

On the other hand, similar to the phenomenon happened in the previous experiment on
Group Variables Selection in Multi-class Logistic Regression, we have found that DCA-
SAGA with replacement performs poorly and numerically unstable in this experiment.
Hence, we only consider the following three algorithms: DCA-SAGA without replacement,
DCA-SVRG-v1, and DCA-SVRG-v2.

5.3.2 Numerical Experiments

Data sets. We use regression data sets, namely, cadata (20640 × 8), YearPredictionMSD
(463715×90) from LIBSVM, and SGEMM GPU kernel performance data set, sgemm product

(241600× 14) (Nugteren and Codreanu, 2015). Each data set is standardized to have mean
(µ) of 0 and standard deviation (σ) of 1.
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(a) cadata (b) sgemm product (c) YearPredictionMSD

Figure 6: The performance of seven algorithms on the sparse linear regression problem

Comparative algorithms. We compare our proposed algorithms with the standard DCA,
the SDCA, the stochastic stagewise DC (SSDC) proposed in (Xu et al., 2019b), and the
mini-batch stochastic proximal gradient (MB-SPG) (Xu et al., 2019a).

Experiment setups and results. The budget of SFO calls is set to be 30N . The regularization
parameter λ and the parameter α of the Capped-`1 are both set to be 1 throughout this
experiment. To guarantee the convexity of DC components, we choose γ = maxi=1,N ‖xi‖2.
On the other hand, the minibatch size b is chosen as bN

2
3 c, bN

2
3 c, d2

√
2
√
N
√
N + 1e,

b10%Nc for DCA-SVRG-v1, DCA-SVRG-v2, DCA-SAGA, and SDCA, respectively. For
two versions of DCA-SVRG, we set M = b 1

8
√
e−1

√
bc. About the SSDC, the nonconvex

regularizer Capped-`1 is replaced by the Moreau envelope rµ (Xu et al., 2019b, Sect. 4).
Moreover, the proximal operator of the Capped-`1 can be efficiently computed (see, e.g.,
(Gong et al., 2013)), which allows the SSDC to work. The parameter µ controlling the
Moreau envelope is required to match the (square) order of the final error ε (Xu et al.,
2019b, Theorem 10c), so it is set to be a relatively small number, µ = 10−6. Note that,
since the convex subproblem has a closed-form solution and the first DC component is not
given as a large sum, no stochastic convex solver is required for the SSDC in this case. On
the other hand, as remarked in (Xu et al., 2019a), the use of the Moreau envelope could be
a bad idea as it introduces the approximation error while slowing down the convergence.
Therefore, we further implement the mini-batch stochastic proximal gradient (MB-SPG)
(Xu et al., 2019a) that uses directly the proximal operator of the Capped-`1. The minibatch
size of MB-SPG is of order O(1/ε2) where ε is the expected final error, so it is proper to set
the minibatch size at b10%Nc. The constant c (see (Xu et al., 2019a)) is in (0, 0.5), so we
set it at 0.25 which is a neutral number between the two extremes; Meanwhile, as discussed
earlier, the Lipschitz smoothness parameter can be chosen as maxi=1,N ‖xi‖2.

We report the mean curve and the mean absolute deviation (over 10 runs) of the objec-
tive value of five comparative algorithms in Figure 6, where the mean absolute deviation is
scaled up by a factor of 20 for visibility.

Comments. It is observed that, once again, DCA-SAGA is the best algorithm over all
tested cases where it decreases the objective value in a fast rate to obtain good solutions.
Meanwhile, the performances of DCA-SVRG-v1 and DCA-SVRG-v2 are almost identical
and are the second best on sgemm product and YearPredictionMSD data sets. On the other
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hand, the MB-SPG is the second best on the cadata data set and pushes the DCA-SVRGs to
the third place in this case. The gain of DCA-SAGA over DCA-SVRG-v1 are 5.22%, 0.24%,
and 0.56% on cadata, sgemm product, and YearPredictionMSD, respectively. On the other
hand, the graphs of DCA and SDCA are also almost the same on all three data sets. The
gain of DCA-SVRG-v1 over SDCA on cadata, sgemm product, and YearPredictionMSD

are 2.11%, 11.45%, and 0.98%, respectively. Finally, in this experiment, while sample
with replacement makes DCA-SAGA numerically unstable, sample without replacement
consistently makes DCA-SAGA the best algorithm over all considered tested cases. Lastly,
the performance of the SSDC is relatively bad in this experiment. Although it still manages
to decrease the objective function, this decrease is not enough to be visible in the decreasing
magnitude of other comparative algorithms. This can be attributed to the slow convergence
caused by the use of the Moreau envelope.

6. Conclusion

In this paper, we have proposed two stochastic DCA schemes integrated variance reduction
techniques called DCA-SVRG and DCA-SAGA for solving a wide class of nonconvex DC
problems including the large-sum case, where both the data-fitting term and the regular-
ization term are given as (nonsmooth) DC functions. The DC structure has been tackled
by the DCA framework while the large-sum structure has been handled by the unbiased
SVRG, SAGA estimators. The advantages of DC programming and DCA in this work are
multiple. DC programming and DCA provide a general look at the considered problems
and advise how to flexibly exploit the structural information of these problems. Together,
they form a flexible deterministic frame on which stochastic techniques are built to handle
the stochastically challenging part of the problems. Our proposed algorithms inherit the
virtues as well as the unavoidable limitations of the stochastic estimators used. The DCA-
SVRG is an epoch-based algorithm whose advantage is the storage requirement: to build
the stochastic variance reduction term, it only needs to keep in the memory one gradient
vector. Intuitively, a weakness of this algorithm is that the pivot point x̃k is not updated
inside its corresponding epoch. Consequently, when the points xk+1

j in an epoch progresses

far away from its pivot x̃k, ∇hi(xk+1
j ) and ∇hi(x̃k) (i is a random index) are no longer

highly correlated, which undermines the effect of the variance reduction term. In contrast,
DCA-SAGA can partially address this issue thanks to the progressive update of the variance
reduction term through iterations. However, DCA-SAGA has its own limitation that is the
storage burden: it needs to store a table of gradients in the memory. Although in some
particular problems, one can manage to keep a vector of scalars only, this issue does not
go away in general and is the bottleneck of the entire algorithm. We have observed that
there is a biased estimator called SARAH (Nguyen et al., 2017) potential to address both
limitations of SVRG and SAGA: it progressively updates the variance reduction term inside
each epoch and does not need to store a table of gradients. This observation motivates our
future works on the combination of DCA and SARAH.

Furthermore, for each proposed algorithm, in the step of choosing a subset of the large
sum we have investigated both sampling strategies, namely, sampling with/without replace-
ment. Sampling with replacement enjoys the independence of chosen items, facilitating sim-
pler convergence analysis. However, the latter strategy is a common practice and it avoids
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some low-probability bad events that happen in sampling with replacement (high repeti-
tion that leads to bad approximations). In our numerical experiments on three problems,
the results of DCA-SAGA with two options are very different from each other: sampling
without replacement makes DCA-SAGA more stable and makes it the best algorithm in
two studied problems. Meanwhile, the performance of DCA-SVRG with the two strategies
are almost identical.

From the theoretical perspective, we establish the almost sure convergence of the pro-
posed algorithms to DC critical points. Some new techniques and ideas introduced in
the analysis of DCA-SAGA are expected to be useful in the analysis of future SAGA-
type algorithms. Furthermore, for the class of problem (P ) where r2 in the regularizer
r(x) = r1(x) − r2(x) has a composite form, we provide additional convergence analysis to
facilitate practical choice of parameters. By exploiting the special composite structure of
r2, we reformulate this problem as a DC program. We then give new relations between the
proposed algorithms’ parameters (minibatch size, inner-loop length) and the problems’ pa-
rameters (strong convexity, Lipschitz smoothness, data set size) that guarantees the almost
sure convergence property to DC critical points of the reformulated problem. The main
advantage of the additional analysis is that it allows more relaxing convergence conditions
than the ones obtained from straightforwardly applying the entire old convergence analysis
to the reformulated problem.

Overall, in three experiments, the proposed algorithms seem to outperform several state-
of-the-art stochastic methods for large-sum nonconvex problems. These experiments also
intensively justify the merits of the SAGA and SVRG estimators inside the proposed algo-
rithms and illustrate the limitation of the SAG estimator used in SDCA.

Appendix

Proof [Proof of Lemma 3] We have,

E

∥∥∥∥∥∥1

b

∑
i∈Ib

∇hi(xk+1
j )− 1

b

∑
i∈Ib

∇hi(x̃k) +∇H(x̃k)−∇H(xk+1
j )

∥∥∥∥∥∥
2

|Pk+1
j


= EIb

∥∥∥∥∥∥1

b

∑
i∈Ib

∇hi(xk+1
j )− 1

b

∑
i∈Ib

∇hi(x̃k) +∇H(x̃k)−∇H(xk+1
j )

∥∥∥∥∥∥
2

=
∑

I⊂[N ],|I|=b

P(Ib = I)
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b

∑
i∈I
∇hi(xk+1

j )− 1

b

∑
i∈I
∇hi(x̃k) +∇H(x̃k)−∇H(xk+1
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∥∥∥∥∥
2

,
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where the probability P(Ib = I) = 1/CbN . For a fixed I, we compute

R =

∥∥∥∥∥1

b

∑
i∈I
∇hi(xk+1

j )− 1

b

∑
i∈I
∇hi(x̃k) +∇H(x̃k)−∇H(xk+1

j )
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2

=
1
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+
1
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∑
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j )−∇hi(x̃k) +∇H(x̃k)−∇H(xk+1

j ),

∇hl(xk+1
j )−∇hl(x̃k) +∇H(x̃k)−∇H(xk+1
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(R1 +R2).
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On the other hand, we have the following computations
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Therefore,

EIb
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