
Journal of Machine Learning Research 23 (2022) 1-6 Submitted 9/21; Revised 12/21; Published 1/22

solo-learn: A Library of Self-supervised Methods
for Visual Representation Learning

Victor G. Turrisi da Costa∗ vg.turrisidacosta@unitn.it
University of Trento - Trento, Italy

Enrico Fini∗ enrico.fini@unitn.it
University of Trento - Trento, Italy

Moin Nabi m.nabi@sap.com
SAP AI Research - Berlin, Germany

Nicu Sebe niculae.sebe@unitn.it
University of Trento - Trento, Italy

Elisa Ricci e.ricci@unitn.it

University of Trento and Fondazione Bruno Kessler - Trento, Italy

Editor: Alexandre Gramfort

Abstract

This paper presents solo-learn, a library of self-supervised methods for visual rep-
resentation learning. Implemented in Python, using Pytorch and Pytorch lightning, the
library fits both research and industry needs by featuring distributed training pipelines
with mixed-precision, faster data loading via Nvidia DALI, online linear evaluation for
better prototyping, and many additional training tricks. Our goal is to provide an easy-to-
use library comprising a large amount of Self-supervised Learning (SSL) methods, that
can be easily extended and fine-tuned by the community. solo-learn opens up av-
enues for exploiting large-budget SSL solutions on inexpensive smaller infrastructures and
seeks to democratize SSL by making it accessible to all. The source code is available at
https://github.com/vturrisi/solo-learn.

Keywords: Self-supervised methods, contrastive learning

1. Introduction

Deep networks trained with large annotated datasets have shown stunning capabilities in
the context of computer vision. However, the need for human supervision is a strong lim-
iting factor. Unsupervised learning aims to mitigate this issue by training models from
unlabeled datasets. The most prominent paradigm for unsupervised visual representation
learning is Self-supervised Learning (SSL), where the intrinsic structure of the data provides
supervision for the model. Recently, the scientific community devised increasingly effective
SSL methods that match or surpass the performance of supervised methods. Nonetheless,
implementing and reproducing such works turns out to be complicated. Official repositories
of state-of-the-art SSL methods have very heterogeneous implementations or no implemen-
tation at all. Although a few SSL libraries (Goyal et al., 2021; Susmelj et al., 2020) are
available, they assume that larger-scale infrastructures are available or they lack some re-
cent methods. When approaching SSL, it is hard to find a platform for experiments that

∗. Victor G. Turrisi da Costa and Enrico Fini contributed equally.

c©2022 Victor G. Turrisi da Costa, Enrico Fini, Moin Nabi, Nicu Sebe, and Elisa Ricci.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v23/21-1155.html.

https://github.com/vturrisi/solo-learn
https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v23/21-1155.html


Turrisi da Costa, Fini, Nabi, Sebe, and Ricci

allows running all current state of the art methods with low engineering effort and at the
same time is effective and straightforward to train. This is especially problematic because,
while the SSL methods seem simple on paper, replication of published results can involve a
huge time and effort from researchers. Sometimes official implementations of SSL methods
are available, however, releasing standalone packages (often incompatible with each other)
is not sufficient for the fast-paced progress in research and emerging real-world applications.
There is no toolbox offering a genuine off-the-shelf catalog of state-of-the-art SSL techniques
that is computationally efficient, which is essential for in-the-wild experimentation.

To address these problems, we present solo-learn, an open-source framework that
provides standardized implementations for a large number of state-of-the-art SSL methods.
We believe solo-learn will enable a trustworthy and reproducible comparison between
the state of the art methods. The code that powers the library is written in Python,
using Pytorch (Paszke et al., 2019) and Pytorch Lightning(PL) (Team, 2019) as back-ends
and Nvidia DALI1 for fast data loading, and supports more modern methods than related
libraries. The library is highly modular and can be used as a complete pipeline, from
training to evaluation, or as standalone modules.

2. The solo-learn Library: An Overview

Currently, we are witnessing an explosion of works on SSL methods for computer vision.
Their underlying idea is to unsupervisedly learn feature representations by enforcing similar
feature representations across multiple views from the same image while enforcing diverse
representations for other images. To help researchers have a common testbed for repro-
ducing different results, we present solo-learn, which is a library of self-supervised meth-
ods for visual representation learning. The library is implemented in Pytorch, providing
state-of-the-art self-supervised methods, distributed training pipelines with mixed-precision,
faster data loading, online linear evaluation for better prototyping, and many other training
strategies and tricks presented in recent papers. We also provide an easy way to use the
pre-trained models for object detection, via DetectronV2 (Wu et al., 2019). Our goal is to
provide an easy-to-use library that can be easily extended by the community, while also
including additional features that make it easier for researchers and practitioners to train
on smaller infrastructures.

2.1 Self-supervised Learning Methods

We implemented 13 state-of-the-art methods, namely, Barlow Twins (Zbontar et al., 2021),
BYOL (Grill et al., 2020), DeepCluster V2 (Caron et al., 2020), DINO (Caron et al., 2021),
MoCo V2+ (Chen et al., 2020b), NNCLR (Dwibedi et al., 2021), ReSSL (Zheng et al.,
2021), SimCLR (Chen et al., 2020a), Supervised Contrastive Learning (Khosla et al., 2020),
SimSiam (Chen and He, 2021), SwAV (Caron et al., 2020), VICReg (Bardes et al., 2021)
and W-MSE (Ermolov et al., 2021).

2.2 Architecture

In Figure 1, we present an overview of how a training pipeline with solo-learn is car-
ried out. In the bottom, we show the packages and external data at each step, while at
the top, we show all the defined variables on the left and an example of the newest defined

1. https://github.com/NVIDIA/DALI

2



solo-learn: A Library of Self-supervised Methods for Visual Representation Learning

solo.args

--dataset imagenet
--dali

--gpus 0,1,2,3
--lr 0.1

--optimizer sgd
--lars

Args

solo.methods

solo.losses

Args

Method

Data
Callbacks

Extras AutoUMAP

...

Pretrain
dataloader

Checkpointer

Dataset

solo.utils

Hardware
GPU

support
TPU

support

CPU

Extra features
Mixed

precision
Gradient

accumulation

Loggers
Distributed

training

Pytorch Lightning
Trainer

User

Args

Method

BYOL

Momentum

Figure 1: Overview of solo-learn.

variable on the right. First, the user interacts with solo.args, a subpackage that is respon-
sible for handling all the parameters selected by the user and providing automatic setup.
Then, solo.methods interacts with solo.losses to produce the selected self-supervised
method. While solo.methods contains all implemented methods, solo.losses contains
the loss functions for each method. Afterwards, solo.utils handles external data to pro-
duce the pretrain dataloader, which contains all the transformation pipelines, model check-
pointer, automatic UMAP visualization of the features, other backbone networks, such as
ViT (Dosovitskiy et al., 2021) and Swin (Liu et al., 2021), and many other utility function-
alities. Lastly, this is given to a PL trainer, which provides hardware support and extra
functionality, such as, distributed training, automatic logging results, mixed precision and
much more. We note that although we show all subpackages working together, they can
be used in a standalone fashion with minor modifications. Apart from that, we have docu-
mentations in the folder docs, downstream tasks in downstream, unit tests in tests and
pretrained models in zoo.

2.3 Comparison to Related Libraries

The most related libraries to ours are VISSL (Goyal et al., 2021) and Lightly (Susmelj
et al., 2020), which lack some of our key features. First, we support more modern SSL
methods, such as BYOL, NNCLR, SimSiam, VICReg, W-MSE and others. Second, we
target researchers with fewer resources, namely from 1 to 8 GPUs, allowing much faster data
loading via DALI. Lastly, we provide additional utilities, such as automatic linear evaluation,
support to custom datasets and automatically generating UMAP (McInnes et al., 2020)
visualizations of the features during training.

3. Experiments

Benchmarks. We benchmarked the available SSL methods on CIFAR-10 (Krizhevsky
et al., 2009), CIFAR-100 Krizhevsky et al. (2009) and ImageNet-100 (Deng et al., 2009) and
made public the pretrained checkpoints. For Barlow Twins, BYOL, MoCo V2+, NNCLR,
SimCLR and VICReg, hyperparameters were heavily tuned, reaching higher performance
than reported on original papers or third-party results. Tab. 1 presents the top-1 and top-5
accuracy values for the online linear evaluation. For ImageNet-100, traditional offline linear
evaluation is also reported. We also compare with the results reported by Lightly in Tab. 3.

3



Turrisi da Costa, Fini, Nabi, Sebe, and Ricci

Nvidia DALI vs traditional data loading. We compared the training speeds and
memory usage of using traditional data loading via Pytorch Vision2 against data loading
with DALI. For consistency, we ran three different methods (Barlow Twins, BYOL and
NNCLR) for 20 epochs on ImageNet-100. Tab. 2 presents these results.

Table 1: Online linear evaluation accuracy on CIFAR-10, CIFAR-100 and ImageNet-100.
In brackets, offline linear evaluation accuracy is also reported for ImageNet-100.

Method
CIFAR-10 CIFAR-100 ImageNet-100

Acc@1 Acc@5 Acc@1 Acc@5 Acc@1 Acc@5

Barlow Twins 92.10 99.73 70.90 91.91 80.38 (80.16) 95.28 (95.14)
BYOL 92.58 99.79 70.46 91.96 80.16 (80.32) 94.80 (94.94)
DeepCluster V2 88.85 99.58 63.61 88.09 75.36 (75.40) 93.22 (93.10)
DINO 89.52 99.71 66.76 90.34 74.84 (74.92) 92.92 (92.78)
MoCo V2+ 92.94 99.79 69.89 91.65 78.20 (79.28) 95.50 (95.18)
NNCLR 91.88 99.78 69.62 91.52 79.80 (80.16) 95.28 (95.28)
ReSSL 90.63 99.62 65.92 89.73 76.92 (78.48) 94.20 (94.24)
SimCLR 90.74 99.75 65.78 89.04 77.04 (77.48) 94.02 (93.42)
Simsiam 90.51 99.72 66.04 89.62 74.54 (78.72) 93.16 (94.78)
SwAV 89.17 99.68 64.88 88.78 74.04 (74.28) 92.70 (92.84)
VICReg 92.07 99.74 68.54 90.83 79.22 (79.40) 95.06 (95.02)
W-MSE 88.67 99.68 61.33 87.26 67.60 (69.06) 90.94 (91.22)

Table 2: Speed and memory comparison with and without
DALI on ImageNet-100.

Method DALI 20 epochs 1 epoch Speedup Memory

Barlow
Twins

1h 38m 27s 4m 55s - 5097 MB
3 43m 2s 2m 10s 56% 9292 MB

BYOL
1h 38m 46s 4m 56s - 5409 MB

3 50m 33s 2m 31s 49% 9521 MB

NNCLR
1h 38m 30s 4m 55s - 5060 MB

3 42m 3s 2m 6s 64% 9244 MB

Table 3: Comparison with
Lightly on CIFAR10.

Method Ours Lightly

SimCLR 90.74 89.0
MoCoV2+ 92.94 90.0
SimSiam 90.51 91.0

4. Conclusion

Here, we presented solo-learn, a library of self-supervised methods for visual represen-
tation learning, providing state-of-the-art self-supervised methods in Pytorch. The library
supports distributed training, fast data loading and provides many utilities for the end-user,
such as online linear evaluation for better prototyping and faster development, many train-
ing tricks, and visualization techniques. We are continuously adding new SSL methods,
improving usability, documents, and tutorials. Finally, we welcome contributors to help us
at https://github.com/vturrisi/solo-learn.

Acknowledgments. This work was supported by a joint project under Grant No.
JQ18012, by the EU H2020 AI4Media No. 951911 project and the European Institute
of Innovation & Technology (EIT).

2. https://github.com/pytorch/vision

4

https://github.com/vturrisi/solo-learn


solo-learn: A Library of Self-supervised Methods for Visual Representation Learning

References

Adrien Bardes, Jean Ponce, and Yann LeCun. Vicreg: Variance-invariance-covariance reg-
ularization for self-supervised learning. arXiv:2105.04906, 2021.

Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand
Joulin. Unsupervised learning of visual features by contrasting cluster assignments. In
NeurIPS, 2020.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bo-
janowski, and Armand Joulin. Emerging properties in self-supervised vision transformers.
arXiv:2104.14294, 2021.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple frame-
work for contrastive learning of visual representations. In ICML, 2020a.

Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. In CVPR,
2021.

Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Improved baselines with momen-
tum contrastive learning. arXiv:2003.04297, 2020b.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE conference on computer vision and
pattern recognition, 2009.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain
Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers
for image recognition at scale. ICLR, 2021.

Debidatta Dwibedi, Yusuf Aytar, Jonathan Tompson, Pierre Sermanet, and Andrew Zisser-
man. With a little help from my friends: Nearest-neighbor contrastive learning of visual
representations. arXiv:2104.14548, 2021.

Aleksandr Ermolov, Aliaksandr Siarohin, Enver Sangineto, and Nicu Sebe. Whitening for
self-supervised representation learning. In ICML, 2021.

Priya Goyal, Quentin Duval, Jeremy Reizenstein, Matthew Leavitt, Min Xu, Benjamin
Lefaudeux, Mannat Singh, Vinicius Reis, Mathilde Caron, Piotr Bojanowski, Armand
Joulin, and Ishan Misra. Vissl. GitHub. Note: https://github.com/facebookresearch/vissl,
2021.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Ghesh-
laghi Azar, Bilal Piot, koray kavukcuoglu, Remi Munos, and Michal Valko. Bootstrap
your own latent - a new approach to self-supervised learning. In NeurIPS, 2020.

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola,
Aaron Maschinot, Ce Liu, and Dilip Krishnan. Supervised contrastive learning. NeurIPS,
2020.

5



Turrisi da Costa, Fini, Nabi, Sebe, and Ricci

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Learning multiple layers of features
from tiny images. 2009.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and
Baining Guo. Swin transformer: Hierarchical vision transformer using shifted windows.
International Conference on Computer Vision (ICCV), 2021.

Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation
and projection for dimension reduction. arXiv:1802.03426, 2020.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, An-
dreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank
Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An
imperative style, high-performance deep learning library. In NeurIPS, 2019.

Igor Susmelj, Matthias Heller, Philipp Wirth, Jeremy Prescott, and Malte Ebner et al.
Lightly. GitHub. Note: https://github.com/lightly-ai/lightly, 2020.

Pytorch Lightning Development Team. Pytorch lightning. GitHub. Note:
https://github.com/PyTorchLightning/pytorch-lightning, 3, 2019.

Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo, and Ross Girshick. Detec-
tron2. https://github.com/facebookresearch/detectron2, 2019.

Jure Zbontar, Li Jing, Ishan Misra, Yann Lecun, and Stephane Deny. Barlow twins: Self-
supervised learning via redundancy reduction. In ICML, 2021.

Mingkai Zheng, Shan You, Fei Wang, Chen Qian, Changshui Zhang, Xiaogang Wang,
and Chang Xu. Ressl: Relational self-supervised learning with weak augmentation.
arXiv:2107.09282, 2021.

6

https://github.com/facebookresearch/detectron2

	Introduction
	The solo-learn Library: An Overview
	Self-supervised Learning Methods
	Architecture
	Comparison to Related Libraries

	Experiments
	Conclusion

