
Journal of Machine Learning Research 23 (2022) 1-97 Submitted 9/21; Revised 3/22; Published 5/22

Structure Learning for Directed Trees

Martin Emil Jakobsen m.jakobsen@math.ku.dk
Department of Mathematical Sciences
University of Copenhagen
Copenhagen, Denmark

Rajen D. Shah r.shah@statslab.cam.ac.uk
Statistical Laboratory
University of Cambridge
Cambridge, UK
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Abstract

Knowing the causal structure of a system is of fundamental interest in many areas of sci-
ence and can aid the design of prediction algorithms that work well under manipulations to
the system. The causal structure becomes identifiable from the observational distribution
under certain restrictions. To learn the structure from data, score-based methods evaluate
different graphs according to the quality of their fits. However, for large, continuous, and
nonlinear models, these rely on heuristic optimization approaches with no general guaran-
tees of recovering the true causal structure. In this paper, we consider structure learning
of directed trees. We propose a fast and scalable method based on Chu–Liu–Edmonds’
algorithm we call causal additive trees (CAT). For the case of Gaussian errors, we prove
consistency in an asymptotic regime with a vanishing identifiability gap. We also introduce
two methods for testing substructure hypotheses with asymptotic family-wise error rate
control that is valid post-selection and in unidentified settings. Furthermore, we study the
identifiability gap, which quantifies how much better the true causal model fits the obser-
vational distribution, and prove that it is lower bounded by local properties of the causal
model. Simulation studies demonstrate the favorable performance of CAT compared to
competing structure learning methods.
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1. Introduction

Learning the underlying causal structure of a stochastic system involving the random vector
X = (X1, . . . , Xp) is an important problem in economics, industry, and science. Knowing
the causal structure allows researchers to understand whether Xi causes Xj (or vice versa)
and how a system reacts under an intervention. However, it is not generally possible to
learn the causal structure (or parts thereof) from the observational data of a system alone.
Without further restrictions on the system of interest there might exist another system with
a different causal structure inducing the same observational distribution, i.e., the structure
might not be identifiable from observed data.

Common structure learning methods using observational data are constraint-based (e.g.,
Pearl, 2009; Spirtes et al., 2000), score-based (e.g., Chickering, 2002), or a mix thereof (e.g.,
Nandy et al., 2018). Each of these approaches requires different assumptions to ensure
identifiability of the causal structure and consistency of the approach. In structural causal
models, one assumes that there are (causal) functions f1, . . . , fp such that for all

1 ≤ i ≤ p : Xi := fi(XPA(i), Ni),

for subsets PA(i) ⊂ {1, ..., p} and jointly independent noise variables N = (N1, ..., Np) ∼ PN
(see Definition 1 for a precise definition including further restrictions). The causal graph is
constructed as follows: for each variable Xi one adds directed edges from its direct causes or
parents PA(i) into i. For such models, system assumptions concerning the causal functions
can make the causal graph identified from the observational distribution. Specific assump-
tions that guarantee identifiability of the causal graph have been studied for, e.g., linear
additive Gaussian noise models with equal noise variance (Peters and Bühlmann, 2014),
linear additive non-Gaussian noise models (Shimizu et al., 2006), nonlinear additive noise
models (Hoyer et al., 2008; Peters et al., 2014), post-nonlinear additive noise models (Zhang
and Hyvärinen, 2009), partially-linear additive Gaussian noise models (Rothenhäusler et al.,
2018) and discrete models (Peters et al., 2011).

Score-based structure learning usually starts with a function ` assigning a population
score to causal structures. Depending on the assumed model class, this function is minimized
by the true structure. For example, when considering directed acylic graph (DAGs), the
true causal DAG G satisfy

G ∈ arg min
G̃ : G̃ is a DAG

`(G̃). (1)

The idea is then to estimate the score from a finite sample and minimize the empirical score
over all DAGs. As the cardinality of the space of all DAGs grows super-exponentially in the
number of nodes p (Chickering, 2002), brute-force minimization becomes computationally
infeasible even for moderately large systems.1

For linear additive Gaussian noise models, assuming the Markov conditions and faith-
fulness, one can recover the correct Markov equivalence class (MEC) of G, which can be
represented by a unique completed partially directed acyclic graph (CPDAG) (Pearl, 2009).
The optimization can be done greedily over MECs with greedy equivalent search (GES,
Chickering, 2002) or over DAGs (Tsamardinos et al., 2006) and in the former case, the

1. For example, there are over 10275 distinct directed acyclic graphs over 40 nodes (Sloane, 2021).

2



Structure Learning for Directed Trees

method is known to be consistent. More specifically, the output of GES search is not guar-
anteed, for a fixed sample size, to solve the empirical version of Equation (1) but it solves
the problem with probability tending to one in the large sample limit.

Chickering (1996) showed that, in general, solving the problem in Equation (1) is an
NP-hard problem, even if we restrict the search to MECs for structures with fixed causal
indegree of K > 2. Several exact exponential runtime algorithms have been proposed, for
example, A∗ search (Yuan et al., 2011; Yuan and Malone, 2013) and CPBayes (van Beek
and Hoffmann, 2015) for discrete systems, algorithms based on integer linear programming
(Jaakkola et al., 2010; Cussens et al., 2017; Cussens, 2011), and algorithms based on dynamic
programming (Koivisto and Sood, 2004; Silander and Myllymäki, 2006; Parviainen and
Koivisto, 2009).

In the nonlinear additive Gaussian noise case, Bühlmann et al. (2014) show that non-
parametric maximum-likelihood estimation consistently estimates the correct causal order.
However, the greedy search algorithm minimizing the score function does not come with
any theoretical guarantees. Other heuristic approaches (for discrete or linear Gaussian sys-
tems) include acyclic selection ordering-based search (Scanagatta et al., 2015), memetic
insert neighbourhood ordering-based search (Lee and Beek, 2017), and max-min hill-climb
(Tsamardinos et al., 2006). Recently, methods have been proposed that perform continu-
ous, non-convex optimization (Zheng et al., 2018) but such methods are without guarantees
and it is currently debated whether they exploit some artifacts in simulated data (Reisach
et al., 2021). Thus, for nonlinear models, there is currently no score-based method that
provably guarantees recovery of the true causal graph with high probability.

In this paper we focus on models of reduced complexity, namely models with directed
trees as causal graphs. This complexity reduction allow for polynomial runtime minimiza-
tion of the score-function using the Chu–Liu–Edmonds’ algorithm (proposed independently
by Chu and Liu, 1965; Edmonds, 1967) and it allows for the derivation of hypothesis testing
theory. As such the structure learning problem remains computationally feasible even for
very large systems. Our method is called causal additive trees (CAT). The method is easy to
implement and consists of two steps. In the first step, we employ user-specified (univariate)
regression methods to estimate the conditional expectations x 7→ E[Xi|Xj = x] for all i 6= j.
We then use these to construct edge weights as inputs to the Chu–Liu–Edmonds’ algorithm.
This algorithm then outputs a directed tree with minimal edge weight, corresponding to a
directed tree minimizing the score in Equation (1).

1.1 Contributions

We now highlight four main contributions of the paper:

(i) Computational feasibility: Assuming an identifiable model class, such as additive
noise, allows us to infer the causal DAG by minimizing Equation (1) for a suitable score func-
tion. However, even for trees, the cardinality of the search space grows super-exponentially
in the number of variables p. Hence, brute-force minimization (exhaustive search) in Equa-
tion (1) remains computationally infeasible for large systems. We propose the score-based
method CAT (based on Chu–Liu–Edmonds’ algorithm) and prove that it recovers the causal
tree with a run-time complexity of O(p2). This method can be useful even when not re-
stricting onself to the class of directed trees: e.g., when using a heuristic method such as
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greedy search for aiming to find an optimal scoring DAG, one can use the score of the
optimal scoring tree as a sanity check or the corresponding tree for initialization.

(ii) Consistency: We prove that CAT is pointwise consistent in an identified additive
Gaussian noise setup. That is, we recover the causal directed tree with probability tending to
one as the sample size increases. Consistency only requires that the regression methods for
estimating the conditional mean functions have mean squared prediction error converging
to zero in probability. This property that is satisfied by many nonparametric regression
methods such as nearest neighbors, neural networks, or kernel methods (see e.g. Györfi et al.,
2002). Moreover, the vanishing estimation error is only required for causal edges for which
the conditional means coincide with the causal functions. We also derive sufficient conditions
that ensure consistency in an asymptotic setup with vanishing identifiability. Specifically,
we show that consistency is retained even when the identifiability gap decreases at a rate
qn with q−1

n = o(
√
n) as long as the conditional expectation mean squared prediction error

corresponding to the causal edges vanishes at a rate op(qn).

(iii) Hypothesis testing: We provide two algorithms for performing hypothesis tests
concerning the presence and absence of substructures, such as particular edges, in the
true causal graph. The type I error is controlled asymptotically when the mean squared
prediction error of the regression corresponding to the true causal edges decays at a relatively
slow op(n

−1/2) rate. The tests are valid post-selection, that is, the hypotheses to be tested
may be chosen after the graph has been estimated, and when multiple tests are performed,
the family-wise error rate is controlled for any number of tests. Furthermore, one of the
two proposed testing procedures is valid in the non-identified setting.

(iv) Identifiability analysis: We analyze the identifiability gap, that is, the smallest
population score difference between an alternative graph and the causal graph. The reduced
system complexity, due to the restriction to trees, allows us to derive simple yet informative
lower bounds. For additive Gaussian noise models, for example, the lower bound can be
computed using only local properties of the underlying model: it is based on a first term
that considers the minimal score gap between individual edge reversals and a second term
involving the minimal mutual information of two neighboring nodes, when conditioning on
another neighbor of the parent node.

1.2 Related Constraint-based Approaches

As an alternative to score-based methods, constraint-based methods such as PC or FCI
(Spirtes et al., 2000) test for conditional independences statements in PX and use these
results to infer (parts of) the causal structure. Such methods usually assume that PX is
both Markov and faithful with respect to the causal graph G. Under these assumptions, the
Markov equivalence class of the causal graph G is identified. In a jointly Gaussian setting
(e.g. linear additive Gaussian noise models), consistency of constraint-based approaches
relies on faithfulness, whereas uniform consistency requires strong faithfulness (see, e.g.,
Zhang and Spirtes, 2002; Kalisch and Bühlman, 2007) – a condition that has been shown
to be strong (Uhler et al., 2013). In nonlinear settings, corresponding guarantees do not
exist. This may at least partially be due to the fact that conditional independence testing
is known to be a hard statistical problem (Shah and Peters, 2020).
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Constraint-based methods have also been studied for polytrees. A polytree is a DAG
whose undirected graph is a tree. Polytrees, unlike directed trees, allow for multiple root
nodes as well as nodes with multiple parents. Rebane and Pearl (1987), inspired by the work
of Chow and Liu (1968), propose a constraint-based structure learning method for polytrees
over discrete variables that can identify the correct skeleton and causal basins, structures
constructed from nodes with at least two parents. More precisely, the skeleton is deter-
mined by the maximum weight spanning tree (MWST) algorithm with mutual information
measure weights, while the directionality of edges is inferred by conditional independence
constraints implied by the observed distribution. In the case of causal trees this constraint-
based structure learning method cannot direct any edges because causal basins do not exist
(Rebane and Pearl, 1987). Dominguez et al. (2013) and Ouerd (2000) extend the Rebane
and Pearl (1987) algorithm for causal discovery to multivariate Gaussian polytree distribu-
tions. Friedman et al. (1997) propose a similar algorithm to learn tree Bayesian networks
by finding a MWST with mutual information weights. This recovers the skeleton of the
causal graph, after which an arbitrary root node is selected and all edges are oriented away
from said root node. As such, the method of Friedman et al. (1997) is only guaranteed to
recover a directed tree that is Markov equivalent to the causal directed tree.

In this work, we employ Chu–Liu–Edmonds’ algorithm, a directed analogue of the
MWST algorithm, to not only recover the skeleton but also the direction of all edges in the
causal graph. This is possible since we consider restricted causal models, e.g., nonlinear
additive Gaussian noise models. More specifically, these restricted causal models allow us
to define edge weights that, unlike the mutual information weights, preserve directionality
information. In fact, when discarding information that allows us to infer directionality of
the edges, one recovers the mutual information weights of Rebane and Pearl (1987), see
Remark 1 in Appendix B for details.

1.3 Organization of the Paper

In Section 2, we define the setup and relevant score functions. We further strengthen ex-
isting identifiability results for nonlinear additive noise models. In Section 3, we propose
CAT, an algorithm solving the score-based structure learning problem that is based on
Chu–Liu–Edmonds’ algorithm. We prove consistency of CAT for a fixed distribution and
for a setup with vanishing identifiability. In Section 4, we provide results on asymptotic
normality of the scores, construct confidence regions and propose feasible testing proce-
dures. Section 5, we analyzes the identifiability gap. Section 6 shows the results of various
simulation experiments. All proofs can be found in Appendix D.

2. Score-based Learning and Identifiability of Trees

In the remainder of this work we use of the following graph terminology (a more detailed
introduction can be found in Appendix A, see also Koller and Friedman, 2009). A directed
graph G = (V, E) consists of p ∈ N>0 vertices (or nodes) V = {1, . . . , p} and a collection of
directed edges E ⊂ {(i → j) ≡ (i, j) : i, j ∈ V, i 6= j}. A directed acyclic graph (DAG) is
a directed graph that does not contain any directed cycles. A directed tree is a connected
DAG in which all nodes have at most one parent. The unique node of a directed tree G
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with no parents is called the root node and is denoted by rt(G). We let Tp denote the set
of directed trees over p ∈ N>0 nodes.

2.1 Identifiability of Causal Additive Tree Models

We now revisit and strengthen known identifiability results on restricted structural causal
models. Consider a distribution that is induced by a structural causal model (SCM) with
additive noise. Then, there are only special cases (such as linear additive Gaussian noise
models) for which alternative models with a different causal structure exist that generate
the same distribution (see Peters et al., 2017, for an overview). To state and strengthen
these results formally, we introduce the following notation.

For any k ∈ N we define the following classes of functions from R to R: M denotes
all measurable functions, Dk denotes the set of all k times differentiable functions and Ck
denotes the k times continuously differentiable functions. We let P denote the set of mean
zero probability measures on R that have a density with respect to Lebesgue measure.
P+ ⊂ P denotes the subset for which a density is strictly positive. For any function class
F ⊆ {f |f : R→ R}, PF ⊂ P denotes the subset with a density function in F . As a special
case, we let PG ⊂ P+C∞ := P+ ∩ PC∞ denote the subset of Gaussian probability measures.
For any set P of probability measures, Pp denotes all p-dimensional product measures on
Rp with marginals in P.

We now define structural causal additive tree models (or causal additive tree models,
for short) as SCMs with a tree structure.2

Definition 1 (Structural causal additive tree models) Consider a class Tp ×Mp ×
Pp. Any tuple (G, (fi), PN ) ∈ Tp ×Mp × Pp induces a structural causal model over X =
(X1, . . . , Xp) given by the following structural assignments

Xi := fi(XpaG(i)) +Ni, for all 1 ≤ i ≤ p,

where frt(G) ≡ 0 and N = (N1, . . . , Np) ∼ PN , which we call a structural causal additive tree
model. By slight abuse of notation, we write Q ∈ Tp×Mp×Pp for a probability distribution
that is induced by a structural causal additive tree model.

Furthermore, we define the set of restricted structural causal additive tree models. We
will see later that for these models, the causal graph is identifiable from the observable
distribution of the system. When the causal graph of a sufficiently nice additive noise SCM is
not identifiable, then certain differential equations must hold (see the proof of Proposition 4
for details). The definition of restricted structural causal additive tree models ensures that
this does not happen.

Definition 2 (Restricted structural causal additive tree models) The collection of
restricted structural causal additive tree models ΘR ⊂ Tp×Dp3 ×P

p
+C3 is given by all models

θ = (G, (fi), PN ) ∈ Tp×Dp3×P
p
+C3 satisfying the following conditions for all i ∈ {1, . . . , p} \

{rt(G)}:

(i) fi is nowhere constant, i.e., it is not constant on any non-empty open set, and

2. This model class comes with the strong assumption on additive noise, which excludes certain types of
hidden confounding, for example.
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(ii) the induced log-density ξ of XpaG(i), noise log-density ν of Ni and causal function fi
are such that there exists x, y ∈ R with ν ′′(y − fi(x))f ′i(x) 6= 0 such that

ξ′′′ 6= ξ′′
(
f ′′i
f ′i
− ν ′′′f ′i

ν ′′

)
− 2ν ′′f ′′i f

′
i + ν ′f ′′′i +

ν ′ν ′′′f ′′i f
′
i

ν ′′
− ν ′(f ′′′i )2

f ′
, (2)

where the derivatives of ξ, ν and fi are evaluated in x, y − fi(x) and x, respectively.

The following lemma, due to Hoyer et al. (2008), shows that for causal additive tree
models with Gaussian noise, the differential equation constraints of Definition 2 simplify.3

Lemma 3 Let θ = (G, (fi), PN ) ∈ Tp×Dp3×P
p
G. Assume that for all i ∈ {1, . . . , p}\{rt(G)}

the following two conditions hold (a) fi is nowhere constant and (b) fi is not linear. Then,
θ ∈ ΘR.

Existing identifiability results for causal graphs in restricted SCMs (Hoyer et al., 2008;
Peters et al., 2014) are stated and proven in terms of the ability to distinguish the induced
distributions of two restricted structural causal models: For all θ = (G, . . .) ∈ ΘR and
θ̃ = (G̃, . . .) ∈ ΘR, if G 6= G̃, then L(Xθ) 6= L(Xθ̃) (where L denotes the distribution of a
random variable), that is, Xθ and Xθ̃ do not have the same distribution. We now prove a

stronger identifiability result that does not assume that θ̃ is a restricted causal model.

Proposition 4 (Identifiability of causal additive tree models) Suppose that Xθ and
Xθ̃ are generated by the SCMs θ = (G, (fi), PN ) ∈ ΘR ⊂ Tp × Dp3 × P

p
+C3 and θ̃ =

(G̃, (f̃i), P̃N ) ∈ Tp ×Dp1 × P
p
C0, respectively. It holds that

L(Xθ) = L(Xθ̃) =⇒ G = G̃.

We prove Proposition 4 using the techniques of Peters et al. (2014). While we prove the
statement only for restricted causal additive tree models, which suffices for this work, we
conjecture that a similar extension holds for restricted structural causal DAG models. The
extension of Proposition 4 is important for the following reason. Given a finite data set,
practical methods usually assume that the true distribution is induced by an underlying
restricted SCM. One can then fit different causal structures and output the structure that
fits the data best. The above extension accounts for the fact that regression methods hardly
represent all such restrictions: e.g., most nonlinear regression techniques can also fit linear
models.

2.2 Score Functions

We now define population score functions which are later used to recover the causal tree.
We henceforth assume that X ∈ Rp is a random vector with distribution PX generated
by a restricted causal additive tree model θ = (G, (fi), PN ) ∈ ΘR ⊂ Tp × Dp3 × P

p
+C3 with

G = (V, E) ∈ Tp such that E‖X‖22 <∞. Thus, G denotes the causal tree. We use G̃ ∈ Tp to
denote an arbitrary, different (directed) tree. For the remainder of this paper, we assume

3. For completeness, we include the proof of Lemma 3 in Appendix D, using the approach of Zhang and
Hyvärinen (2009) but expressed in our notation.
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that for any i 6= j it holds that Xi − E[Xi|Xj ] has a density with respect to Lebesgue
measure.4 We often refer to one of the following two scenarios: either, (i), we have limited
a priori information that PN ∈ Pp+C3 , or, (ii), we know that the noise innovations are
Gaussian, that is, PN ∈ PpG.

Definition 5 For any graph G̃ ∈ Tp we define for each node i ∈ V the

(i) local Gaussian score as `G(G̃, i) := log
(

Var
(
Xi − E

[
Xi|XpaG̃(i)

]))
/2,

(ii) local entropy score as `E(G̃, i) := h
(
Xi − E

[
Xi|XpaG̃(i)

])
,

(iii) local conditional entropy score as `CE(G̃, i) := h
(
Xi|XpaG̃(i)

)
.

Here, we use the convention that E(Xi|∅) = 0 and h(Xi|∅) = h(Xi); the functions h(·),
h(·|·), and h(·, ·) (used below) denote the differential entropy, conditional entropy, and cross
entropy, respectively. The Gaussian, entropy and conditional entropy score of G̃ are, respec-
tively, given by the sum of local scores:

`G(G̃) :=

p∑
i=1

`G(G̃, i), `E(G̃) :=

p∑
i=1

`E(G̃, i), `CE(G̃) :=

p∑
i=1

`CE(G̃, i).

(See Polyanskiy and Wu (2019) or Cover and Thomas (2006) for the basic information-
theoretic concepts used in this paper.) Similar scores have been considered by Bühlmann
et al. (2014) and Mooij et al. (2016), for example. For linear additive Gaussian noise
systems, the Gaussian score of Definition 5 is proportional to the large sample limit of the
Gaussian log-likelihood score function commonly used in for Bayesian network learning (see,
e.g., Koller and Friedman, 2009).

The following lemma shows that the Gaussian score of the graph G̃ ∈ Tp arises naturally
as a translated infimum cross entropy between PX and all Q induced by causal additive
tree models with Gaussian noise. Similarly, the entropy score can be seen as an infimum
cross entropy between PX and all Q induced by another class of SCMs.

Lemma 6 For any G̃ ∈ Tp it holds that

`G(G̃) = inf
Q∈{G̃}×Dp1×P

p
G

h(PX , Q)− p log(
√

2πe).

Furthermore, with F(G̃) := (Fi(G̃))1≤i≤p, where Fi(G̃) := {x 7→ E[Xi|XpaG̃(i)
= x]} for all

1 ≤ i ≤ p, it holds that

`E(G̃) = inf
Q∈{G̃}×F(G̃)×Pp

h(PX , Q).

4. This ensures that the entropy score function introduced in Definition 5 below is well-defined and that
the analysis of the identifiability gap in Section 5 is valid.
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Score-based methods identify the underlying structure by evaluating the score functions
(or estimates thereof) on different graphs and choosing the best scoring graph. The dif-
ference between the score `·(G) of the true graph and the score `·(G̃) of the best scoring
alternative graph G̃ is an important property of the problem: e.g., if it would be zero, we
could not identify the true graph from the scores. We, therefore, refer to expressions of the
form minG̃∈Tp\{G} `·(G̃)− `·(G) as the identifiability gap. In the remainder of this paper, we
refer to strict positivity of the identifiability gap as Assumption 1.

Assumption 1 If θ ∈ ΘR ⊂ Tp ×Dp3 × P
p
G or θ ∈ ΘR ⊂ Tp ×Dp3 × P

p
+C3 it holds that

min
G̃∈Tp\{G}

`G(G̃)− `G(G) > 0 or min
G̃∈Tp\{G}

`E(G̃)− `E(G) > 0, (3)

respectively.

Assumption 1 does not trivially follow from the results further above. By arguments
similar to those in Lemma 6 we have that, if the true data-generating model is a restricted
causal additive tree model with Gaussian noise, θ ∈ ΘR ⊂ Tp × Dp3 × P

p
G, then `G(G) =

h(PX) − p log(
√

2πe). Hence, the Gaussian score gap between G̃ and the causal graph G
equals

`G(G̃)− `G(G) = inf
Q∈{G̃}×Dp1×P

p
G

h(PX , Q)− h(PX) = inf
Q∈{G̃}×Dp1×P

p
G

DKL(PX‖Q),

where DKL denotes the Kullback-Leibler divergence measure. Proposition 4 implies that

∀G̃ 6= G, ∀Q ∈ {G̃} × Dp1 × P
p
G : DKL(PX‖Q) > 0.

However, this does not immediately imply that the identifiability gap (where we take the
infimum over such Q) is strictly positive. Similar considerations5 hold for the entropy score
gap

`E(G̃)− `E(G) = inf
Q∈{G̃}×F(G̃)×Pp

DKL(PX‖Q).

In Section 5 we derive informative lower bounds on the Gaussian and entropy identifiability
gaps (i.e., the infimum KL-divergence) of Equation (3). It is possible to enforce Assump-
tion 1 indirectly by the assumptions and modifications detailed in the following lemma.

Lemma 7 Assumption 1 holds if one of the following conditions is satisfied.

(a) We have a restricted causal additive tree model with Gaussian noise θ ∈ ΘR ⊂ Tp ×
Dp3 ×P

p
G and for all i 6= j it holds that x 7→ E[Xi|Xj = x] has a differentiable version.

(b) We have a restricted causal additive tree model with Gaussian noise θ ∈ ΘR ⊂ Tp ×
Dp3 × P

p
G and for all 1 ≤ i ≤ p it holds that the causal function fi is contained within

a function class Fi ⊆ D1 which satisfies arg minf ′∈Fi E[(Xi − f ′(Xj))
2] ∈ Fi for all

j 6= i, and we consider a modified Gaussian score function `G.mod : Tp → R with local
score given by `G.mod(G̃, i) := log(minf̃∈Fi E[(Xi − f̃(X

paG̃(i)
))2])/2.

5. In fact, Proposition 4 does not immediately imply that DKL(PX‖Q) > 0 for Q ∈ {G̃} × F(G̃)×Pp as it
does not necessarily hold that the causal functions in F(G̃) are differentiable or that the noise innovation
densities in Pp are continuous.
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(c) We have a restricted causal additive tree model θ ∈ ΘR ⊂ Tp×Dp3×P
p
+C3, for all i 6= j

it holds that x 7→ E[Xi|Xj = x] has a differentiable version and for all i 6= j it holds
that Xi − E[Xi|Xj ] has a continuous density.

The modified Gaussian score function and restrictions of condition (b) in Lemma 7
coincides with the working conditions of Bühlmann et al. (2014). Alternative information-
theoretic conditions guaranteeing that Assumption 1 holds are derived in Section 5. If
Assumption 1 is satisfied, then we can use the score functions to identify the true causal
graph of a restricted structural model: In the Gaussian noise setting, for example, we have

G = arg min
G̃∈Tp

`G(G̃). (4)

In practice, we consider estimates of the above quantities and optimize the corresponding
empirical loss function. Solving Equation (4) (or its empirical counterpart) using exhaustive
search is computationally intractable already for moderately large choices of p.6 We now
introduce CAT, a computationally efficient method that solves the optimization exactly.

3. Causal Additive Trees (CAT)

We introduce the population version of our algorithm CAT in Section 3.1 and discuss its
finite sample version and asymptotic properties in Sections 3.2 and 3.3.

3.1 An Oracle Algorithm

Similarly as for the case of DAGs, the problem in Equation (4) is a combinatorial optimiza-
tion problem, for which the cardinality of the search space grows super-exponentially with
p. Indeed, the number of undirected trees on p labelled nodes is pp−2 (Cayley, 1889) and
therefore pp−1 is the corresponding number of labelled trees. For the class of DAGs (which
includes directed trees), existing structure learning such as Bühlmann et al. (2014) propose
a greedy search technique that iteratively selects the lowest scoring directed edge under the
constraint that no cycles is introduced in the resulting graph. In general, greedy search
procedures do not come with any guarantees and there are indeed situations in which they
fail. By exploiting the assumption of a tree structure, we will see that the optimization
problem of Equation (4) can be solved computationally efficiently without the need for
heuristic optimization techniques.

Provided with a connected directed graph with edge weights, Chu–Liu–Edmonds’ algo-
rithm finds a minimum edge weight directed spanning tree, given that such a directed tree
exists. That is, for a connected directed graph H = (V, EH) on the nodes V = {1, . . . , p}
with edge weights w := {wji : (j → i) ∈ EH}, Chu–Liu–Edmonds’ algorithm recovers a
minimum edge weight directed spanning tree (MWDST) subgraph of H,

arg min
G̃=(V,Ẽ)∈Tp∩H

∑
(j→i)∈Ẽ

wji,

6. In the context of linear Gaussian noise models, Chickering (2002) proves consistency of greedy equivalent
search towards the correct Markov equivalence class. This, however, does not imply that the optimization
problem in Equation (4) is solved: for a given sample, the method is not guaranteed to find the optimal
scoring graph (but the output will converge to the correct graph).

10
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where Tp ∩ H denotes all directed spanning trees of H. The runtime of the original algo-
rithms of Chu and Liu (1965) and Edmonds (1967) is O(|EH| · p) ≤ O(p3). Karp (1971)
presented an alternative proof for the correctness of the algorithm of Edmonds (1967).
Tarjan (1977) devised a modification (corrected by Camerini et al., 1979) with runtime
O(min{|EH| log(p), p2}).7 Gabow et al. (1986) devised yet another modification with run-
time O(p log p+|EH |) and noted that no further improvements to the algorithm can be made
(since it uses only binary decisions and can be used to sort p numbers). In our experiments,
we use the C++ implementation of Tarjans modification by Tofigh and Sjölund (2007) which
is contained in the R-package RBGL (Carey et al., 2021) and the Python implementation of
Edmonds’ version from the Python-package NetworkX (Hagberg et al., 2022).

The causal graph recovery problem in Equation (4) is equivalently solved by finding a
minimum edge weight directed tree, i.e., a minimum edge weight directed spanning tree
of the fully connected graph on the nodes V . For example, finding the minimum of the
Gaussian score function is equivalent to minimizing a translated version of the Gaussian
score function

arg min
G̃∈Tp

`G(G̃) = arg min
G̃∈Tp

p∑
i=1

1

2
log(Var(Xi − E[Xi|XpaG̃(i)

]))−
p∑
i=1

1

2
log(Var(Xi))

= arg min
G̃∈Tp

p∑
i=1

1

2
log

(
Var(Xi − E[Xi|XpaG̃(i)

])

Var(Xi)

)
. (5)

Since the summand for the root node in Equation (5) note equals zero, we only need to
sum over all nodes with an incoming edge in G̃. Now define the Gaussian edge weights
wG := (wG

ji)j 6=i by

wG
ji :=

1

2
log

(
Var(Xi − E[Xi|Xj ])

Var(Xi)

)
, (6)

for all j 6= i. Hence, for a causal additive tree model with Gaussian noise satisfying As-
sumption 1 it holds that the causal directed tree is given by the MWDST with respect to
the Gaussian edge weights,

G = arg min
G̃∈Tp

`G(G̃) = arg min
G̃=(V,Ẽ)∈Tp

∑
(j→i)∈Ẽ

wG
ji.

Similarly, the minimum of the entropy score function is given by the MWDST with respect
to the entropy edge weights wE := (wE

ji)j 6=i given by wE
ji := h(Xi−E[Xi|Xj ])−h(Xi), for all

j 6= i. We will henceforth denote the method where we apply Chu–Liu–Edmonds’ algorithm
to find the MWDST with respect to the Gaussian and entropy edge weights as CAT.G and
CAT.E, respectively.

7. The algorithm presented in both Edmonds (1967) and Tarjan (1977) find minimum branchings of H, i.e.,
directed forest spanning subgraphs of H with minimum edge weight. Note that the MWDST problem is
invariant to identical translation of all edge weights. If H is a fully connected graph and we translate all
edge weights w′ji := wji − εmax{wji : j 6= i} for ε > 1, then a minimum branching using edge weights
(w′ji) is a MWDST subgraph of H. For testing purposes, we also need to be able to find MWDST
subgraphs of non-fully connected graphs H, hence, as noted by Edmonds (1967), if we translate all edge
weights w′ji := wji −

∑
j 6=i |wji|, then a minimum branching using edge weights (w′ji) is a MWDST

subgraph of H.

11
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3.2 Finite Sample Algorithm

Given an n×p data matrix Xn, representing n i.i.d. copies of X = (X1, . . . , Xp), we estimate
the edge weights by simple plug-in estimators. Let us denote the conditional expectation
function and its estimate by

ϕji(x) := E[Xi|Xj = x], ϕ̂ji(x) := Ê[Xi|Xj = x], (7)

for all j 6= i. The empirical Gaussian edge weights ŵG = (ŵG
ji)j 6=i are then given by

ŵG
ji :=

1

2
log

(
V̂ar(Xi − ϕ̂ji(Xj))

V̂ar(Xi)

)
, (8)

for all i 6= j, where V̂ar(·) denotes a variance estimator using the sample Xn. We now
propose to combine the Chu–Liu–Edmonds’ algorithm described above with the Gaussian
score as detailed in Algorithm 1. It is also possible to combine CAT with standard pruning
techniques (see, e.g., Bühlmann et al., 2014) that, e.g., based on approximate p-values,
remove insignificant edges and output directed forests. An R implementation of CAT with
options for cross-fitting and pruning is available on GitHub.8

Algorithm 1 Causal additive trees (CAT)

1: procedure CAT(Xn, regression method)
2: Run regression method to obtain ϕ̂ji for all j 6= i.
3: Compute empirical edge weights ŵG, see Equation (8).
4: Apply Chu–Liu–Edmonds’ algorithm to find MWDST with respect to ŵG.
5: return MWDST Ĝ.
6: end procedure

By default we suggest to use the empirical Gaussian edge weights as described in Algo-
rithm 1. However, it is also possible to run Chu–Liu–Edmonds’ algorithm on the empirical
entropy edge weights ŵE = (ŵE

ji)j 6=i given by

ŵE
ji := ĥ(Xi − ϕ̂ji(Xj))− ĥ(Xi),

for all j 6= i, where ĥ(·) denotes a user-specific entropy estimator using the observed data Xn.
Estimating differential entropy is a difficult statistical problem but we will later in Section 6
demonstrate by simulation experiments that it can be beneficial to use the estimated entropy
edge weights when the additive noise distributions are highly non-Gaussian.

Under suitable conditions on the (possibly nonparametric) regression technique, we now
show that the proposed algorithm consistently recovers the true causal graph of a causal
additive tree model with Gaussian noise using the empirical Gaussian edge weights.

3.3 Consistency

We study a version of the CAT.G algorithm applied to a causal additive tree model with
Gaussian noise where the regression estimates are trained on auxiliary data, simplifying

8. https://github.com/MartinEmilJakobsen/CAT
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the theoretical analysis. We believe that consistency without sample splitting holds but
may require some stronger conditions (in the experimental section, we do not use sample
splitting). As such, we only view the sample splitting as a theoretical device for simplifying
proofs but we do not recommend it in practical applications. For each n we let Xn =
((X1,i)1≤i≤p, . . . , (Xn,i)1≤i≤p) and X̃n = ((X̃1,i)1≤i≤p, . . . , (X̃n,i)1≤i≤p) denote independent
datasets each consisting of n i.i.d. random variables with distribution identical to that of
X = (X1, ..., Xp) ∈ Rp. We suppose that the regression estimates ϕ̂ji have been trained on
X̃n and then compute the edge weights using Xn as in step 3 of Algorithm 1:

ŵG
ji :=

1

2
log

(
1
n

∑n
k=1 (Xk,i − ϕ̂ji(Xk,j))

2

1
n

∑n
k=1X

2
k,i − ( 1

n

∑n
k=1Xk,i)2

)
. (9)

The consistency results may be extended to cross-fitted edge weight estimators formed as
an average of estimators of the form in (9) with the roles of the Xn and X̃n samples in-
terchanged, which would make full use of the available data. The following result shows
pointwise consistency of CAT.G whenever the conditional mean estimation is weakly con-
sistent.

Theorem 8 (Pointwise consistency) Suppose that for all j 6= i the following two con-
ditions hold:

(a) if (j → i) ∈ E, E[(ϕ̂ji(Xj)− ϕji(Xj))
2|X̃n]

P−→n 0;

(b) if (j → i) 6∈ E, E[(ϕ̂ji(Xj)− ϕ̃ji(Xj))
2|X̃n]

P−→n 0 for some fixed ϕ̃ji : R→ R,

where ϕji and ϕ̂ji are defined in Equation (7). Furthermore, suppose that Assumption 1
holds. In the large sample limit, we recover the causal graph with probability one, that is

P (Ĝ = G)→n 1,

where Ĝ is the output of Algorithm 1 using weights ŵG given by Equation (9).

Theorem 8 states that under the given assumptions, the estimated graph will converge
to the true causal graph with probability tending to one. In fact, the assumptions are
fairly week: we only require weakly consistent estimation of the conditional means for edges
that are present in the causal graph; these represent causal relationships and are often
assumed to be smooth. This distinction allow us to employ regression techniques that are
consistent only for those function classes that we consider reasonable for modeling the causal
mechanisms. For non-causal edges, (j → i) 6∈ E , the estimator ϕ̂ji only needs to converge
to a function ϕ̃ji, which does not necessarily need to be the conditional mean.

3.3.1 Consistency under Vanishing Identifiability

We now consider an asymptotic regime involving a sequence (θn)n∈N of SCMs with poten-
tially changing conditional mean functions ϕji and a vanishing identifiability gap. We have
the following result.

Theorem 9 (Consistency under vanishing identifiability) Let (θn)n∈N be a sequence
of SCMs on p ∈ N nodes all with the same causal directed tree G = (V, E) such that

13
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(i) for qn := minG̃∈Tp\{G} `G(G)− `G(G̃) (the gap of model θn), we have q−1
n = o(

√
n);

(ii) for all (j → i) ∈ E and ε > 0, Pθn

(
q−1
n Eθn

[
(ϕji(Xj)− ϕ̂ji(Xj))

2|X̃n

]
> ε
)
→n 0;

(iii) for all j 6= i and ε > 0, Pθn

(
q−2
n
n Eθn

[
(ϕji(Xj)− ϕ̂ji(Xj))

4|X̃n

]
> ε
)
→n 0; and

(iv) there exists C > 0 such that for all j 6= i infn Pθn(Varθn(Xi|Xj) ≤ C) = 1 and
supn Eθn‖X‖42 <∞.

Then it holds that

P (Ĝ = G)→n 1.

Condition (i) asks that the identifiability gap qn goes to zero more slowly than the stan-
dard convergence rate 1/

√
n of estimators in regular parametric models. Such a requirement

would be necessary in almost any structure identification problem. Condition (ii) requires
the mean squared error of the regression estimates corresponding to true causal edges to be
oP (qn). We regard this as a fairly mild assumption: indeed, the minimax rate of estimation
of regression functions in Hölder balls with smoothness β is n−2β/(2β+1) (Tsybakov, 2009).
Thus, we can expect that if the causal regression functions have smoothness β ≥ 1/2 and
all lie in a Hölder ball, (ii) can be satisfied for any qn satisfying (i). Condition (iii) allows
the fourth moments of the estimation errors to increase at any rate slower than nq2

n →∞;
of course, we would typically expect this error to decay, at least for the causal edges.

4. Hypothesis Testing

This section presents two procedures to test any substructure hypothesis regarding the
causal directed tree of a causal additive tree model with Gaussian noise. We continue our
analysis using the sample split estimators of Equation (9), where the conditional expec-
tations are estimated on an auxiliary dataset. Our approach makes use of the fact that
the estimated weights in Equation (9) are logarithms of ratios of i.i.d. quantities, and thus
the joint distribution of the estimated edge weights should, with appropriate centering and
scaling, be asymptotically Gaussian; see Lemma D.4 in Appendix D for the precise state-
ment. This allows us to create a (biased) confidence region of the true edge weights, which
in turn gives a confidence set for the true graph. This confidence set of graphs is not
necessarily straightforward to compute and list. However, we show that it can be queried
to test hypotheses of interest, such as the presence or absence of a particular edge. As
these hypothesis tests are derived from a confidence region, they are valid even when the
hypothesis to test has been chosen after examining the data.

Similar to the results in the previous sections, we avoid making assumptions on the per-
formance of regressions corresponding to non-causal edges. Unlike the consistency analysis,
however, here we do not, in general, require identifiability of the true graph.

In order to state our results and assumptions, we introduce the following notation. For
a collection of variables (Kji)j 6=i, we let Ki := (K1i, . . . ,K(i−1)i,K(i+1)i, . . . ,Kpi)

ᵀ ∈ Rp−1,
furthermore, for any collection (Ki)1≤i≤p, we let K := (K1, . . . ,Kp)

ᵀ. With this notation,

14
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let, for all k ∈ {1, . . . , n}, the vectors of squared residuals and squared centered observations
be given by

M̂k := {(Xk,i − ϕ̂ji(Xk,j))
2}j 6=i ∈ Rp(p−1), V̂k =

{(
Xk,i −

1

n

n∑
m=1

Xm,i

)2}
1≤i≤p

∈ Rp.

Further let

µ̂ :=
1

n

n∑
k=1

M̂k, ν̂ =:
1

n

n∑
k=1

V̂k.

Note that with this notation, the empirical Gaussian edge weight for j → i is given by
log(µ̂ji/ν̂i)/2. Let us denote by Σ̂M ∈ Rp(p−1)·p(p−1), Σ̂V ∈ Rp·p and Σ̂MV ∈ Rp(p−1)·p, the
empirical variances of the M̂k and V̂k and their empirical covariance respectively, so

Σ̂ :=

(
Σ̂M Σ̂MV

Σ̂ᵀ
MV Σ̂V

)
:=

1

n

n∑
k=1

(
M̂kM̂

ᵀ
k − µ̂µ̂

ᵀ M̂kV̂
ᵀ
k − µ̂ν̂

ᵀ

V̂kM̂
ᵀ
k − ν̂µ̂

ᵀ VkV
ᵀ
k − ν̂ν̂

ᵀ

)
.

With this, we may now present our construction of confidence intervals for the edge weights.
(For simplicity, all proofs in this section assume the variables to have mean zero.)

4.1 Confidence Region for the Causal Tree

We use the delta method to estimate the variances of the ŵG
ji, and a simple Bonferroni

correction to ensure simultaneous coverage of the confidence intervals we develop. Writing
zα for the upper α/{2p(p− 1)} quantile of a standard normal distribution, we set

ûji, l̂ji :=
1

2
log

(
µ̂ji
ν̂i

)
± zα

σ̂ji
2
√
n

= ŵG
ji ± zα

σ̂ji
2
√
n
, (10)

where

σ̂2
ji :=

Σ̂M,ji,ji

µ̂2
ji

+
Σ̂V,i,i

ν̂2
i

− 2
Σ̂MV,ji,i

µ̂jiν̂i
.

We treat [l̂ji, ûji] as a confidence interval for the true edge weight wG
ji and define the following

region of directed trees formed of minimizers of the score with edge weights in the confidence
hyperrectangle:

ĈBon := Ĉ
(
l̂, û
)

:=

{
arg min
G̃=(V,Ẽ)∈Tp

∑
(j→i)∈Ẽ

w′ji, : ∀j 6= i, w′ji ∈ [l̂ji, ûji]

}
.

We have the following coverage guarantee for ĈBon.

Theorem 10 (Confidence region) Suppose the following conditions hold:

(i) there exists ξ > 0 such that E‖X‖4+ξ <∞;

(ii) there exists ξ > 0 such that for all j 6= i, E[|ϕ̂ji(Xj)− ϕji(Xj)|4+ξ|X̃n] = Op(1);
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(iii) Var((M̂ᵀ
1 , V̂

ᵀ
1 )ᵀ|X̃n)

P−→n Σ, where Σ is constant with strictly positive diagonal;

(iv) for (j → i) ∈ E,
√
nE[(ϕ̂ji(Xk,j)− ϕji(Xk,j))

2|X̃n]
P−→n 0.

Then

lim inf
n→∞

P
(
G ∈ ĈBon

)
≥ 1− α.

The second condition requires little more than 4th moments for the absolute errors in
the regression (they do not need to converge to zero). Condition (iv) requires that the
mean squared prediction errors corresponding to the true causal edges decay faster than a
relatively slow 1/

√
n rate. If the causal graph is unidentifiable, then when (iv) holds for all

edges corresponding to population score minimizing graphs, ĈBon covers every such graph
with a probability of at least 1− α.

4.2 Testing of Substructures

Whilst the confidence region ĈBon has attractive coverage properties, it will typically not be
possible to compute it in practice (due to the ranges of w′ji one would need to try). We now

introduce two computationally feasible schemes for querying whether ĈBon satisfies certain
constraints such as containing or not containing a given substructure. More precisely, we
propose a conservative exact query scheme called CheckC (for ‘check confidence region’),
and an asymptotically valid query scheme called ConvB (for ‘converging bounds’), which
we will see in the simulation experiments is less conservative. The ConvB test gains power
at the expense of generality. While the CheckC test works in both the identified and the
non-identified setup, the ConvB test needs both identifiability and stronger assumptions in
order to hold level.

The idea is as follows: by Theorem 10 the confidence region for the causal graph ĈBon

contains the causal graph with probability tending to at least 1− α. Thus, if we can verify
that no graph in ĈBon contains a certain substructure, we are able to test the hypothesis
that the causal graph satisfies said substructure with asymptotically valid 1−α level control.

4.2.1 Substructure Hypotheses

A substructure restriction R = (ER, Emiss
R , r) on the nodes V contains specified sets ER of

existing edges, Emiss
R of missing edges, and a specific root node r (any of such restrictions

may be void, too). For example, a substructure restriction could be that a single edge is
present (such as X1 → X2), or that a single edge is not present (such as X1 6→ X2); the
restriction can also specify a directed tree. Our approach allows us to conclude that at least
one of the constraints in R does not hold for the true graph G = (V, E). More precisely, we
propose a test for the null hypothesis

H0(R) : ER \ E = ∅, E \ Emiss
R = E , r = rt(G),

i.e, that all constraints in a substructure restriction R are satisfied in the causal graph. We
henceforth assume that a proposed substructure R has no internal inconsistencies, i.e., that
there exists at least one directed tree over the nodes V satisfying all conditions of H0(R).
Example 1 illustrates how substructure restrictions allow us to test various hypotheses about
the causal graph.
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Example 1 In Figure 1 we illustrate a true causal graph and five examples of substructure
hypotheses that we can test.

• Hypothesis 1 (true) consists of the restriction R = ER, where ER := {(X4 → X5)}.
This substructure restriction specifies that (X4 → X5) is present in the causal graph.

• Hypothesis 2 (false) consists of the restriction R = Emiss
R , where Emiss

R := {(X6 →
X3)}. This restriction specifies that (X6 → X3) is not in the causal graph.

• Hypothesis 3 (true) consists of the restriction R := (ER, Emiss
R ) with multiple present

edges and a single missing edge. Here, the substructure restriction specifies that all
edges in ER := {(X3 → X2), (X4 → X5), (X4 → X7), (X6 → X3)} are present, and
that the edge in Emiss

R := {(X8 → X9)} is not present in the causal graph.

• Hypothesis 4 (false) consists of the restriction R := (ER, Emiss
R ) with multiple present

edges and multiple missing edges. This substructure restriction specifies that all edges
in ER := {(X1 → X2), (X1 → X4), (X5 → X5)} are present, and that all edges in
Emiss
R := {(X3 → X6), (X8 → X7)} are not present in the causal graph.

• Hypothesis 5 (false) contains the substructure R := ER with multiple present edges,
specifying that all edges in ER := {(X1 → X2), (X2 → X3), (X1 → X4), (X4 →
X5), (X4 → X7), (X5 → X6), (X5 → X8), (X6 → X9)} are present in the causal graph.
This substructure restriction uniquely specifies a specific complete directed tree.

1 2

Truth

3

4 5 6

7 8 9

1 2

Hypothesis 1

3

4 5 6

7 8 9

1 2

Hypothesis 2

3

4 5 6

7 8 9

1 2

Hypothesis 3

3

4 5 6

7 8 9

1 2

Hypothesis 4

3

4 5 6

7 8 9

1 2

Hypothesis 5

3

4 5 6

7 8 9

Figure 1: Illustration of six graphs, see Example 1. Colored edges represent testing the
presence of edges (green, ER) or whether edges are missing (red, Emiss

R ).
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4.2.2 Checking the Confidence Region

In order to present the first method, we introduce some notation. For any non-empty
subset of directed trees T ⊂ Tp, let ST (w) be the score attained by the minimum edge
weight directed tree recovered by Chu–Liu–Edmonds’ algorithm with input edge weights
w := (wji)j 6=i, when restricting the search to all directed trees in T . That is, if we denote
the minimum edge weight directed spanning tree (MWDST) as recovered by Chu–Liu–
Edmonds’ algorithm, when searching over all directed trees in T by

G∗T (w) := arg min
G̃=(V,Ẽ)∈T

∑
(j→i)∈Ẽ

wji, (11)

then with G∗T (w) = (V, E∗T (w)) the associated score is given by

ST (w) :=
∑

(j→i)∈E∗T (w)

wji. (12)

Now let Tp(R) ⊂ Tp be the set of all directed trees satisfying the substructure restriction
R and suppose that the causal directed tree G satisfies R, i.e., G ∈ Tp(R). Hence with
probability tending to at least 1 − α we know that there exists a graph in ĈBon satisfying
the substructure restriction R. That is, there exist edge weights w′ = (w′ji)j 6=i, with l̂ji ≤
w′ ≤ ûji for all j 6= i, such that G∗Tp(w

′) satisfies the substructure restriction R. Hence,

it must hold that STp(R)(w
′) = STp(w

′). Since the score function is weakly monotone, we
have, with probability tending to at least 1− α, that

STp(R)(l̂) ≤ STp(R)(w
′) = STp(w

′) ≤ STp(û).

On the other hand, if STp(R)(l̂) > STp(û), then we know for certain that ĈBon does not
contain any graph satisfying the substructure restriction R. We thus define our CheckC
test function as

ψCheckC
R :=

{
0 if STp(R)(l̂) ≤ STp(û)

1 otherwise.
(13)

Recall that Chu–Liu–Edmonds’ algorithm recovers a minimum edge weight directed span-
ning tree subgraph of a connected graph H. We can construct a specific connected graph
H for which the set of directed spanning tree subgraphs coincides with Tp(R). In pseudo-
algorithm of Algorithm 2 we detail how to test substructure hypotheses with CheckC test.

This testing procedure is conservative as seen by the simulation experiments in Sec-
tion 6.3. While Theorem 11 proves that hypothesis testing using the CheckC test achieves
pointwise asymptotic level, the simulation experiments show that the finite sample power of
the test is low for small to moderately large sample sizes. For example, if max{l̂ji : j 6= i} ≤
min{ûji : j 6= i}, then no false substructure hypothesis can be rejected. In Section 4.2.3 we
propose an alternative test which exhibits improved finite sample power.

4.2.3 Converging Bounds

We now present the ConvB test which is based on an asymptotically valid query scheme, that
is, with probability increasing to one (in the large sample limit) it makes a valid choice on
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Algorithm 2 Hypothesis testing of H0(R) using the CheckC test

1: procedure CheckC(R = (ER, Emiss
R , r), l̂ = (l̂ji)j 6=i, û = (ûji)j 6=i)

2: Initialize fully connected graph H := {(j → i) : i, j ∈ V, j 6= i}.
3: For each (j → i) ∈ ER, delete from H the edges {(k → i) : k ∈ V \ {j}} ∪ {i→ j}.
4: For each (j → i) ∈ Emiss

R , delete from H the edge (j → i).
5: If root r ∈ R, delete from H the edges {(j → r) : j ∈ V }.
6: Apply Chu–Liu–Edmonds’ algorithm to find STp(R)(l̂) and G∗Tp(R)(l̂), the minimum
û-weighted directed spanning subtree of H.

7: Apply Chu–Liu–Edmonds’ algorithm to find STp(û) and G∗Tp(û), the minimum l̂-
weighted directed spanning subtree of the fully connected graph.

8: If STp(R)(l̂) ≤ STp(û), then set ψCheckC
R := 0, otherwise set ψCheckC

R := 1.

9: return ψCheckC
R .

10: end procedure

whether any graph in ĈBon satisfies a substructure restriction R. We call this test ConvB
for ‘converging bounds’ because it requires that all lower edge weight bounds converge
towards the Gaussian population edge weights. Consider a true null hypothesis H0(R),
i.e., a substructure restriction R which is satisfied by the causal graph G. Suppose that
G ∈ ĈBon, which implies the existence of edge weights w′ = (w′ji)j 6=i, with l̂ji ≤ w′ji ≤ ûji
for all j 6= i, such that the minimum edge weight directed spanning tree,

G∗Tp(w
′) := arg min

G̃=(V,Ẽ)∈Tp

∑
(j→i)∈Ẽ

w′ji,

satisfies the restrictions R. The intuition for our approach is as follows: We propose a
method that ‘helps’ all edge weights that are not in direct disagreement with R, and ‘pe-
nalizes’ all edge weights that are in disagreement with R, more precisely, we define the edge
weights w̌ = (w̌ji)j 6=i by

w̌ji =

{
ûji if [∃k 6= j : (k → i) ∈ ER] ∨ [(i→ j) ∈ ER] ∨ [(j → i) ∈ Emiss

R ] ∨ [i = r],

l̂ji otherwise,
.

We can then expect that G∗Tp(w̌) still satisfies the restriction R (with probability tending

to one, see Theorem 11). Conversely, the probability that G∗Tp(w̌) does not satisfy the
restriction R is, in the large sample limit, bounded by the probability that G is not in the
confidence region ĈBon. We may set our test function

ψConvB
R =

{
0, if G∗Tp(w̌) satisfies R
1, otherwise.

The pseudo-algorithm in Algorithm 3 details how to test any substructure hypothesisH0(R)
using the asymptotic query scheme of the ConvB test.

Our GitHub repository (see Footnote 8) contains R implementations of both testing
procedures. The following theorem shows that both substructure hypothesis tests achieve
pointwise asymptotic level. Any number of null hypotheses may be tested simultaneously,
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Algorithm 3 Hypothesis testing of H0(R) using the ConvB test

1: procedure ConvB(R = (ER, Emiss
R , r), l̂ = (l̂ji)j 6=i, û = (ûji)j 6=i)

2: Initialize w̌ := l̂.
3: For each (j → i) ∈ ER and all k ∈ V \ {j}, set w̌ki := ûki.
4: For each (j → i) ∈ Emiss

R , set w̌ji := ûji.
5: If root r ∈ R, then for all j ∈ V , set w̌jr := ûlr.
6: Apply Chu–Liu–Edmonds’ algorithm to find G∗Tp(w̌).

7: If G∗Tp(w̌) satisfies R, then set ψConvB
R := 0, otherwise set ψConvB

R := 1.

8: return ψConvB
R .

9: end procedure

without the need for any multiple testing correction. This is because the tests may be
viewed as simply querying the properties of the single confidence region of Theorem 10,
which has coverage of the truth with probability at least 1− α.

Theorem 11 (Pointwise asymptotic level) Let α ∈ (0, 1) and let R1,R2, . . . be any
collection of potentially data-dependent substructure restrictions. Suppose that conditions
of Theorem 10 are satisfied. If either

(a) ψRk = ψCheckC
Rk for all k ≥ 1, or

(b) ψRk = ψConvB
Rk for all k ≥ 1, Assumption 1 holds, and for all (j → i) 6∈ E it holds that

√
nE[(ϕ̂ji(Xk,j)− ϕji(Xk,j))

2|X̃n]
P−→ 0,

then it holds that

lim sup
n→∞

P

 ⋃
k :H0(Rk) is true

(ψRk = 1)

 ≤ α.
The ConvB test requires stronger conditions than the CheckC test. Additionally to

the assumptions made by the CheckC test, it requires identifiability of the causal graph
and

√
n-convergence of the mean squared estimation error for the non-causal edges. On

the other hand, it would be possible to give uniform asymptotic level guarantees for the
CheckC test as it only relies on the coverage properties of confidence intervals for the true
weights.

5. Bounding the Identifiability Gap

We have seen in Section 3.3 that the identifiability gap, that is, the smallest score difference
between the causal tree G and any alternative graph G̃ ∈ Tp \ {G}, plays an important
role when identifying causal trees from observational data. It provides information about
whether the causal graph is identifiable through the corresponding score function, for ex-
ample, if we can establish that the smallest Gaussian score gap is strictly positive, i.e.,

min
G̃∈Tp\{G}

`G(G̃)− `G(G) = inf
Q∈{G̃}×F(G̃)×Pp

DKL(PX‖Q) > 0, (14)
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then G is identified by the Gaussian score function. Lemma 7 lists conditions guaranteeing
that Assumption 1, i.e., Equation (14) holds. However, postitivity of the identifiability gap
for a single model is not sufficient for uniform consistency or consistency under vanishing
identifiability.

For consistency under vanishing identifiability we need to ensure that the identifiability
gap vanishes at a slower rate than 1/

√
n; see Theorem 9. Similarly, for uniform consistency

over a class of causal additive noise models Θ ⊂ Tp ×Mp × Pp, one needs the existence of
a strictly positive constant c > 0 uniformly lower bounding the identifiability gap, i.e.,

inf
θ∈Θ

min
G̃∈Tp\{G}

`G(G̃)− `G(G) > c. (15)

The identifiability gap is an involved quantity. In this section, we derive a lower bound that
is based on local properties of the underlying structural causal models (such as the ability
to reverse edges), using information-theoretic quantities.

We first consider the special cases of bivariate models (Section 5.1) and multivariate
Markov equivalent trees (Section 5.2) and then turn to general trees (Section 5.3). However,
before we venture into the derivation of the specific lower bounds we first examine the
connection between the identifiability gaps associated with the different score functions. In
this section, we assume that X ∼ PX is generated by a structural causal additive tree model
with E‖X‖2 <∞ such that the local Gaussian, entropy and conditional entropy scores are
well-defined. We neither assume that θ is a restricted structural causal additive model, i.e.,
θ ∈ ΘR, nor strict positivity of the identifiability gap, i.e., Assumption 1. The following
result shows that the local node-wise score gaps associated with the different score functions
are ordered.

Lemma 12 For any G̃ ∈ Tp and for all i ∈ V

`CE(G̃, i)− `CE(G, i) ≤ `E(G̃, i)− `E(G, i).

If the underlying model is an causal additive tree model with Gaussian noise, then

`E(G̃, i)− `E(G, i) ≤ `G(G̃, i)− `G(G, i).

It follows that the full graph score gaps and identifiability gaps associated with the
different score functions satisfy a similar ordering. Thus, given that the underlying model
is an causal additive tree model with Gaussian noise, a strictly positive entropy identifia-
bility gap implies that the Gaussian identifiability gap is strictly positive. It is, however,
not possible to establish strict positivity of the conditional entropy identifiability gap; see
Remark 1 in Appendix B. Therefore, we focus on establishing a lower bound for the entropy
identifiability gap that is tighter than that given by the conditional entropy identifiability
gap.

In general, we cannot use node-wise comparisons of the scores of two graphs to bound
the identifiability gap (the reason is that in general a node receives a better score in a
graph, where it has a parent, compared to a graph, where it does not; see Example 3 in
Appendix B for a formal argument). We start by analyzing the identifiability gap in models
with two variables.
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5.1 Bivariate Models

We now consider two nodes V = {X,Y }, and graphs T2 = {(X → Y ), (Y → X)}. Without
loss of generality assume that (X,Y ) ∈ L2(P ) is generated by an additive noise SCM
θ = (G, (fi), PN ) with causal graph G = (X → Y ) ∈ T2 to which the only alternative graph
is G̃ = (Y → X). That is,

X := NX , Y := f(X) +NY , (16)

where (NX , NY ) ∼ PN ∈ P2. The bivariate entropy identifiability gap, which we will later
refer to as the edge reversal entropy score gap, is defined as

∆`E(X −→L99 Y ) : = `E(G̃)− `E(G)

= h(Y ) + h(X − E[X|Y ])− h(X)− h(Y − E[Y |X]),

where the fully drawn arrow symbolizes the true causal relationship and the dashed arrow
the alternative. The following lemma simplifies the bivariate entropy identifiability gap
to a single mutual information between the effect and the residual of the minimum mean
squared prediction error regression of cause on the effect.

Lemma 13 Consider the bivariate setup of Equation (16) and assume that f(X) has den-
sity. It holds that

∆`E(X −→L99 Y ) = I(X − E[X|Y ];Y ) ≥ 0.

Thus, the causal graph is identified in a bivariate setting if one maintains dependence
between the predictor and minimum mean squared error regression residual in the anti-
causal direction. This result is in accordance with the previous identifiability results. For
example, in the linear additive Gaussian noise case, I(X − E[X|Y ];Y ) = 0. Consequently,
the causal graph is not identified from the entropy score function.

Whenever the conditional mean in the anti-causal direction vanishes, e.g., with symmet-
ric causal function and symmetric noise distribution, it is possible to derive a more explicit
lower bound with more intuitive sufficient conditions for identifiability of the causal graph.

Proposition 14 Consider the bivariate setup of Equation (16) and assume that f(X) has
density. If the reversed direction conditional mean E[X|Y ] almost surely vanishes (e.g.,
because f , X and NY are symmetric), then

∆`E(X −→L99 Y ) = I(X; f(X) +NY ),

which is strictly positive if and only if X 6⊥⊥ f(X) +NY . In addition, we have the following
statements.

(a) Let f(X)G and NG
Y be independently normally distributed with the same mean and

variance as f(X) and NY , respectively. If DKL(f(X)‖f(X)G) ≤ DKL(NY ‖NG
Y ), then

∆`E(X −→L99 Y ) ≥ 1

2
log

(
1 +

Var(f(X))

Var(NY )

)
.
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(b) If the density of f(X) +NY is log-concave, then

∆`E(X −→L99 Y ) ≥ 1

2
log

(
2

πe
+

2

πe

Var(f(X))

Var(NY )

)
.

This lower bound is non-trivial only if Var(f(X)) > (πe/2−1)Var(NY ) ≈ 3.27Var(NY ).

Thus, if the conditional mean E[X|Y ] in the anti-causal direction vanishes, then under
certain conditions, the causal direction is identified by the entropy score function (as long
as Var(f(X)) is sufficiently large relative to Var(NY )). The edge reversal score gap for the
Gaussian score is given by

∆`G(X −→L99 Y ) :=
1

2
log

(
Var(X − E[X|Y ])

Var(X)

)
− 1

2
log

(
Var(Y − E[Y |X])

Var(Y )

)
=

1

2
log

(
Var(X − E[X|Y ])

Var(X)

)
+

1

2
log

(
1 +

Var(f(X))

Var(NY )

)
,

which reduces to the lower bound in point (a) of Proposition 14 if the conditional mean
E[X|Y ] in the anti-causal direction vanishes.

Example 2 Consider the bivariate setup of Equation (16). Suppose that the causal function
f is a quadratic function f(x) = αx2 + β for some α, β,∈ R and that NX ∼ N (0, σ2

X) and
NY ∼ N (0, σ2

Y ). It holds that E[X|Y ] vanishes, and the bivariate Gaussian identifiability
gap reduces to

∆`G(X −→L99 Y ) =
1

2
log

(
1 + 2α2σ

4
X

σ2
Y

)
.

5.2 Multivariate Markov Equivalent Trees

Two Markov equivalent trees differ in precisely one directed path that is reversed in one
graph relative to the other.9 The entropy score gap of Markov equivalent trees therefore
reduces to the binary case.

Proposition 15 Consider any G̃ ∈ Tp \ {G} that is Markov equivalent to the causal tree G.
Let c1 → · · · → cr be the unique directed path in G that is reversed in G̃. Then

`E(G̃)− `E(G) =
r−1∑
i=1

∆`E(ci −→L99 ci+1) ≥ min
1≤i≤r−1

∆`E(ci −→L99 ci+1).

Thus, a lower bound of the entropy score gap that holds uniformly over the Markov
equivalence class is given by the smallest possible edge reversal in the causal directed graph:

min
G̃∈MEC(G)\{G}

`E(G̃)− `E(G) ≥ min
(j→i)∈E

∆`E(j −→L99 i).

9. To see this, note that any two directed trees are Markov equivalent if and only if they satisfy the exact
same d-separations or equivalently they share the same skeleton (there are no v-structures in directed
trees). Distinct directed trees sharing the same skeleton must have distinct root nodes. Consequently,
there exist exactly one directed path in G from rt(G) to rt(G̃) that is reversed in G̃; see Lemma D.6
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5.3 General Multivariate Trees

We now derive a lower bound of the entropy identifiability gap, i.e., a lower bound of the
entropy score gap that holds uniformly over all alternative trees Tp \ {G}. To do so, we
exploit a graph reduction technique (introduced by Peters et al., 2014) which enables us to
reduce the analysis to three distinct scenarios. This graph reduction works as follows. Fix
any alternative graph G̃ ∈ Tp \ {G}, and iteratively remove any node (from both G and G̃)
that has no children and the same parents in both G and G̃. The score gap is unaffected by
the graph reduction.10

Applying this iteration scheme, until no such node can be found, results in two reduced
graphs GR = (VR, ER) and G̃R = (VR, ẼR). These reduced graphs cannot be empty, for that
would only happen if G̃ = G. Further, they have identical vertices but different edges. And
they can be categorized into one of three cases. To do so, consider a node L that is a sink
node, i.e., a node without children, in GR and consider its parent in GR. Now, considering
G̃R, one of the following conditions must hold: the parent is also a parent of L in G̃R (we
then call it Z), the parent is not connected to L in G̃R (we then call it W ), or the parent is
a child of L in G̃R (we then call it Y ). Figure 2 visualizes these three scenarios.

W Y Z

L

anGR(W ) anGR(Y ) anGR(Z)

subgraph of GR

D L Z

Y O1 Ok

anG̃R(D) anG̃R(Z)

deG̃R(Y ) deG̃R(O1) deG̃R(Ok)

subgraph of G̃R

Figure 2: Schematic illustration of parts of two reduced graphs produced by the graph
reduction technique described in Section 5.3. Consider a sink node L in GR. Its parent (in
GR) must either be a parent in G̃R, too, it must be a child in G̃R, or it is unconnected to
L in G̃R. Thus, exactly one of the sets Z, Y , and W is non-empty. This case distinction is
used to compute the three bounds in Theorem 16. D, O1, . . . , Ok denote further (possibly
existing) nodes in G̃R.

10. All removed nodes V \ VR have identical incoming edges in both graphs and therefore have identical
local scores. That is, for any loss function l ∈ {`CE, `E, `G} we have that l(G̃)− `(G) =

∑
i∈VR

`(G̃, i)−
`(G, i) +

∑
i∈V \VR

`(G̃, i)− `(G, i) =
∑
i∈VR

`(G̃, i)− `(G, i) = `(G̃R)− l(GR).
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We can now obtain bounds for each of the three case individually. For the case with a
node Z (a ‘staying parent’), define

ΠZ(G) :=
{

(z, l, o) ∈ V 3 s.t. (z → l) ∈ E and o ∈ ndG(l) \ {z, l}
}
.

The score gap can then be lower bounded by min(z,l,o)∈ΠZ(G) I(Xz;Xo|Xl) (see Lemma D.7).
Intuitively, I(Xz;Xo|Xl) quantifies the strength of the connection between z and o, when
conditioning on l (which does not lie on the path between z and o). This is a non-local
bound in that it does not constrain the length of the path connecting z and o. Analyzing
or bounding this term might be difficult. We will see in Section 5.4 that this part is not
needed for causal additive tree models with Gaussian noise.

For the case with a node W (‘removing parent’), define

ΠW (G) :=
{

(w, l, o) ∈ V 3 s.t. (w → l) ∈ E and o ∈ (chG(w) \ {l}) ∪ paG(w)
}
.

This case results in the lower bound min(w,l,o)∈ΠW (G) I(Xw;Xl|Xo) (see Lemma D.8). Here,
w is a parent of l and o is directly connected to w. Intuitively, I(Xw;Xl|Xo) quantifies the
strength of the edge w → l. We condition on o but that node is not directly connected
to l (only via w). For the first two cases, faithfulness (Spirtes et al., 2000) implies that
these terms are non-zero and bounding them away from zero reminds of strong faithfulness
(Zhang and Spirtes, 2002). However, in the second case, one considers individual edges,
which reminds more of a strong version of causal minimality (Spirtes et al., 2000; Peters
et al., 2017).

For the case with a node Y (‘parent to child’), a lower bound is given by the minimal
edge reversal score gap min(j→i)∈E ∆`E(j −→L99 i) (see Lemma D.9). The term ∆`E(j −→L99 i)
measures the identifiability of the direction of an individual edge. It is zero in the linear
additive Gaussian noise case, for example. We provide more details on the reduced graphs
and on the arguments in the three cases in Section D.4.2 of Appendix D.

Combining the three bounds from above, we obtain the following theorem.

Theorem 16 It holds that

min
G̃∈Tp\{G}

`E(G̃)− `E(G) ≥ min

{
min

(z,l,o)∈ΠZ(G)
I(Xz;Xo|Xl),

min
(w,l,o)∈ΠW (G)

I(Xw;Xl|Xo),

min
(j→i)∈E

∆`E(j −→L99 i)
}
. (17)

This result lower bounds the identifiability gap using information-theoretic quantities.
Corresponding results for the Gaussian score follow immediately by Lemma 12. The last two
terms are local properties of the underlying structural causal model; the first term is not. As
seen in Section 5.2, the last term on the right-hand side is required when considering only
Markov equivalent trees; if it is non-zero, it allows us to orient all edges in the skeleton. The
first two terms (non-zero under faithfulness) are additionally required when the considered
trees are not Markov equivalent.

We now turn to the case of causal additive tree models with Gaussian noise innovations.
Here, the first term is not needed; the bound then depends only on local properties of the
structural causal model.
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5.4 Gaussian Multivariate Trees

The score gap lower bound in Equation (17) consists of local dependence properties except
for the node tuples ΠZ(G) (Lemma D.7) that arise when considering alternative graphs
that result in reduced graphs with a node Z (‘staying parents’). However, we show that
for additive Gaussian noise models, the score gap for such alternative graphs can be lower
bounded by the score gaps already considered in alternative graphs with a node Y (‘parent
to child’) and a node W (‘removing parent’). Thus, we have the following theorem, with a
bound consisting only of local properties of the model.

Theorem 17 (Gaussian localization of the identifiability gap) For causal additive
tree models with Gaussian noise, we have that

min
G̃∈Tp\{G}

`G(G̃)− `G(G) ≥ min

{
min

(w,l,o)∈ΠW (G)
I(Xw;Xl |Xo), min

(j→i)∈E
∆`E(j −→L99 i)

}
.

6. Simulation Experiments

In this section, we investigate the finite-sample performance of CAT and perform simula-
tion experiments investigating the identifiability gap and its lower bound. In Section 6.1
we compare the performance of CAT to CAM of Bühlmann et al. (2014) for causal addi-
tive tree models with Gaussian and non-Gaussian noise. In Section 6.2 we compare the
CAT and CAM for causal discovery on non-tree DAG models (CAT always outputs a di-
rected tree). In Section 6.3 we investigate the finite sample power and level of the proposed
hypothesis testing procedures. In Section 6.4 we perform simulation experiments that high-
light the behavior of the identifiability gap and its corresponding lower bound derived in
Section 5. The code scripts (R) for the simulation experiments, empirical applications and
the implementation of CAT and the two testing procedures are available on GitHub (see
Footnote 8).

6.1 Causal Structure Learning for Trees

In this section, we compare the performance of the structure learning methods CAT and
CAM when employed on additive noise models with causal graphs given by directed trees.

6.1.1 Tree Generation Schemes

We employ two different random directed tree generation schemes: Type 1 (many leaf
nodes) and Type 2 (many branch nodes). Figure 3 illustrates two directed trees generated
in accordance with the two generation schemes. For more details, see Algorithms 4 and 5
in Section C.1 of Appendix C.

6.1.2 Gaussian Experiment

In this experiment, we generate data similarly to the experimental setup of Bühlmann
et al. (2014). For any given directed tree we generate causal functions by sample paths
of Gaussian processes with radial basis function (RBF) kernel and bandwidth parameter
of one. Sample paths of Gaussian processes with radial basis function kernels are almost
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Type 1 Type 2

Figure 3: Illustration of Type 1 (many leaf nodes) and Type 2 (many branch nodes) directed
trees over p = 100 nodes. The green nodes are leaf nodes, the brown nodes are branch nodes,
and the black nodes are root nodes. The Type 1 tree contains 70 leaf nodes, while the Type
2 tree only contains 49 leaf nodes.

surely infinitely continuous differentiable (e.g., Kanagawa et al., 2018), non-constant and
nonlinear, so they satisfy the requirements of Lemma 3. See Figure 10 in Section C.2 of
Appendix C for illustrations of random draws of such functions. Root nodes are mean zero
Gaussian variables with standard deviation sampled uniformly on (1, 2). Furthermore, for
each fixed tree and set of causal functions, we introduce at each non-root node additive
Gaussian noise with mean zero and standard deviation sampled uniformly on (1/5,

√
2/5).

We first compare our method CAT with Gaussian score function (CAT.G) against the
method CAM of Bühlmann et al. (2014) on the previously detailed nonlinear additive Gaus-
sian noise tree setup. We use CAT.G without both cross-fitting and pruning. Note that with
cross-fitting the results do not change much but, as expected, cross-fitting yields slightly
worse results for small sample sizes (see Figure 11 in Appendix C). We use the R-package
mgcv (Mixed GAM Computation Vehicle, Wood, 2022) with default settings to construct
a thin plate regression spline estimate of the conditional expectations (Wood, 2003). We
use the implementation of Chu–Liu–Edmonds’ algorithm from the R-package RBGL.11 CAM
is employed with a maximum number of parents set to one (restricting the output to di-
rected trees), without preliminary neighborhood selection and subsequent pruning. We
measure the performance of the methods by computing the Structural Hamming Distance
(SHD, Tsamardinos et al., 2006) and Structural Intervention Distance (SID, Peters and
Bühlmann, 2015) to the causal tree.

11. The RBGL implementation finds maximum edge weight directed trees and requires all positive edge
weights. As such, we take the negative of our edge weights and shift them all by the absolute value of
smallest edge weight. If an edge weight is set to zero this edge can not be chosen.
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For each system size p ∈ {16, 32, 64, 128} we generate a causal tree, corresponding
causal functions and noise variances and sample n ∈ {50, 100, 200, 500} observations. This
is repeated 200 times and the SHD results are summarized in the boxplot of Figure 4.
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Figure 4: Causal additive tree models with Gaussian noise: Boxplots of the SHD perfor-
mance of CAM and CAT.G (Gaussian score) for varying sample sizes, system sizes, and
tree types. CAT.G outperforms CAM in a wide range of scenarios.

Both methods perform better on trees of Type 2 than on trees of Type 1. CAT.G out-
performs CAM in terms of SHD to the true graph both in median distance and IQR length
and position for all sample sizes, system sizes and tree types. Considering the SID to the
causal tree yields similar conclusions; see Figure 12 in Section C.2 of Appendix C. In their
default versions, CAM and CAT.G use different estimation techniques of the conditional
expectations, but this does not seem to be the source of the performance difference: Fig-
ure 13 in Section C.2 of Appendix C illustrates a similar SHD performance difference when
forcing CAT.G to use the edge weights produced by the CAM implementation.

6.1.3 Non-Gaussian Experiment

We now compare the performance of CAM and CAT with Gaussian (CAT.G) and entropy
(CAT.E) score functions in a setup with varying noise distributions. The entropy edge
weights used by CAT.E are estimated with the differential entropy estimator of Berrett
et al. (2019) as implemented in the CRAN R-package IndepTest (Berrett et al., 2018). We
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use the same simulation setup as in Section 6.1.2 but now we only consider trees of Type 1
and parameterize the setup by α > 0, which controls the deviation of the additive noise
innovations from a Gaussian distribution. More precisely, we generate the additive noise
variables Ni(α) as

Ni(α) = sign(Zi)|Zi|α,

where Zi ∼ N (0, σ2
i ) with σi sampled uniformly on (1/5,

√
2/5) or uniformly on (1, 2) if i =

rt(G). For α = 1 this yields Gaussian noise, while for alpha α 6= 1 the noise is non-Gaussian.
We conduct the experiment for all combinations of α ∈ {0.1, 0.2, . . . , 2, 2.5, 3, 3.5, 4} and
sample sizes n ∈ {50, 500} for a fixed system size of p = 32. Each setting is repeated 500
times and the results are illustrated in Figure 5.
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Figure 5: Deviations from Gaussianity: The parameter α controls the noise deviation from
the Gaussian distribution. CAT.G and CAT.E are instances of CAT with edge weights
derived from Gaussian and entropy score functions, respectively. The solid lines represent
the median SHD and the shaded (dashed) region represents the interquartile range. Using
the entropy score yields better results for noise distributions that deviate strongly from
Gaussian noise.

For Gaussian noise, both CAM and CAT.G outperform CAT.E. This can (at least) be
attributed to two factors: (i) CAT.E does not, unlike CAM and CAT.G, explicitly use the
Gaussian noise specification and (ii) differential entropy estimation is a difficult statistical
problem (see, e.g., Paninski, 2003; Han et al., 2020) For small and moderate deviations from
Gaussianity, CAT.G outperforms both CAM and CAT.E. For larger deviations, CAT.E
outperforms both CAT.G and CAM in terms of median SHD. Finally, we note that CAT.G
always outperforms CAM in terms of median SHD.
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6.2 Robustness: CAT on DAGs

This experiment analyzes how CAT performs compared to CAM and the max-min hill-
climbing (MMHC, Tsamardinos et al., 2006) structure learning method using the Bayesian
Gaussian equivalent score (BGe, Geiger and Heckerman, 1994; Heckerman and Geiger, 1995)
(the latter method is not expected to work well in our setting, as it does not exploit the
additional identifiability). We compare the performance of these structure learning methods
when applied to data generated from an additive Gaussian noise model with a non-tree DAG
as a causal graph. More specifically, we analyze the behavior on single-rooted DAGs.

For any fixed p ∈ N we generate a directed tree of Type 1 and for each zero in the upper
triangular part of the adjacency matrix we add an edge with 5% probability. The causal
functions and Gaussian noise innovations are generated according to the specifications given
in the experiment of Section 6.4.2. The structural assignment for each node is additive in
each causal parent, i.e., for all i ∈ {1, . . . , p}, Xi :=

∑
j∈paG(i) fji(Xj)+Ni, with (N1, . . . , Np)

mutually independent Gaussian distributed noise innovations. For each p ∈ {16, 32, 64} and
sample size n ∈ {50, 250, 500} we randomly generate 200 single-rooted Gaussian additive
models according to the above specifications. For this experiment, we employ CAM with
preliminary neighborhood selection and subsequent pruning.

As CAT.G outputs trees, we do not expect it to output the correct graph. In Figure 15 of
Section C.2 of Appendix C we have illustrated boxplot comparisons of the SHD between the
estimated and true graph for CAM, CAT.G and the MMHC with BGe score (MMHC.BGe).
We see a clear ranking of the methods in terms of SHD performance. The best performance
is seen for CAM, followed by CAT.G, and finally the worst performing method is that of
MMHC.BGe. Note that the BGe score (and various other Bayesian network learning scores)
is only suitable for jointly Gaussian data, e.g., for linear additive Gaussian noise systems.

Figure 6 illustrates the performance in terms of ancestor relations. For small to mod-
erately sized systems (p ∈ {16, 32}) CAM slightly outperforms CAT.G in terms of median
precision (TP/(TP + FP)) when classifying causal ancestors. However, for large systems
(p = 64) CAT.G outperforms CAM for median precision. On the other hand, CAM is not
limited to trees which allows it to find a more significant proportion of the true ancestor,
as seen by median recall (TP/P) performance. MMHC.BGe shows subpar performance in
terms of ancestor classification, except for large systems and sample sizes when considering
recall. CAT.G seems to be a viable alternative for practical non-tree applications where
precision more important than recall for classifying causal ancestor relations.

Figure 14 in Section C.2 of Appendix C illustrates similar comparisons when focusing
on causal edges. The precision of CAT.G is larger than that of CAM only for small sample
sizes, while the opposite is true for large sample sizes. As expected, and as seen for ancestor
relations, CAM outperforms both CAT.G and MMHC.BGe in terms of recall.

Finally, while both methods are computationally efficient, CAT has a slightly lower
runtime than the greedy search algorithm of CAM. The average runtime of CAM and
CAT.G in this experiment for p = 64 and n = 500 was 288 and 199 seconds, respectively.
For both methods, the most time consuming part is estimating the conditional expectations
that are used to compute the edge weights.
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Figure 6: Evaluating the robustness of CAT by estimating ancestor relations in non-tree
DAGs, see Section 6.2. CAT.G slightly outperforms CAM in terms of true positive rates
for large graphs (top) but finds less ancestor relationships (bottom) due to fitting a tree.
As expected, CAT.G and CAM outperform MMHC in terms of precision.

6.3 Hypothesis Testing

In this experiment, we experimentally analyze the finite sample size and power properties
of the two substructure hypothesis testing procedures proposed in Section 4.2. We generate
the underlying models and data similarly to the experimental setup of the Gaussian noise
experiment of Section 6.1.2. We generate a random tree of Type 2 (see Section 6.1.1) of
size p with Gaussian process causal functions and Gaussian noise innovations generated in
accordance with the description in Section 6.1.2.

Given a finite sample of size n we use the first bn/2c observations to estimate all possible
conditional mean functions x 7→ E[Xi|Xj = x] for j 6= i with thin plate regression splines
(R-package mgcv with default settings). The remaining n − bn/2c observations are used
to estimate the upper and lower Bonferroni corrected confidence bounds l̂ = (l̂ji)j 6=i and
û = (ûji)j 6=i as defined in Equation (10) of Section 4. Using the two testing procedures
proposed in Algorithms 2 and 3 of Section 4.2, with a significance level of 5%, we test all
simple hypotheses, i.e., all hypotheses of the form H0 : (j → i) and H0 : (j 6→ i) for all j 6= i.
We repeat this procedure 400 times to observe the average behavior of the testing procedure
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for the previously mentioned system generation scheme. We do this for all combinations of
sample sizes n ∈ {500, 1000, 5000, 10000, 20000} and system sizes p ∈ {2, 4, 6, 8, 16}.

Figure 7 illustrates the resulting power properties of the two tests CheckC and ConvB.
Both testing procedures have better small sample power when testing a false hypothesis of
the form H0 : (j → i) compared to testing a false hypothesis of the form H0 : (j 6→ i).
Furthermore, the finite sample power of CheckC is inferior to the ConvB. The power of
ConvB is only slightly negatively affected by an increase in system size p, when testing a
false hypothesis of the form H0 : (j 6→ i) . On the other hand, CheckC suffers for both
types of hypotheses when increasing the system size. For example, the CheckC method has
almost zero power when the system size is 16 and the samplesize is 20000.
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Figure 7: This figure illustrates the power of the proposed testing procedure for simple
hypotheses. The left plot shows the empirical probability of rejecting a false hypothesis of
the form H0 : (j → i) as a function of the sample size n. Similarly, the right plot shows the
empirical probability of rejecting a false hypothesis of the form H0(j 6→ i). For both tests
the power increases with growing sample size with ConvB outperforming CheckC.

In Table 1, we further detail the power and level achieved by the ConvB test in the above
experiment. Both tests seems to hold level in all settings. For false hypotheses of the form
H0 : (j → i) we have split the hypotheses into three groups based on Distance(j, i) being
‘negative’, ‘positive’ or ‘no path’. If j is a descendant of i, then Distance(j, i) is ‘negative’,
if j is a non-parent ancestor of i, then Distance(j, i) is ‘positive’, and if there is no directed
path between j and i, then Distance(j, i) equals ‘no path’. For moderately large sample
sizes the test exhibits high power. However, the power of the test for a false hypothesis of
the form (j → i) when j is a non-parent ancestor of i is relatively low.

6.4 Identifiability Gap

We now investigate the behavior of the identifiability gap in bivariate models (Section 6.4.1)
and evalute the lower bound derived in Section 5 empirically for multivariate models (Sec-
tion 6.4.2).
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Property: Power of test Size of test

H0: (j → i) (j 6→ i) (j → i) (j 6→ i)

Distance(j, i)

p n Negative Positive No Path Total Total Total Total

2 500 0.68 — — 0.68 0.68 0.00 0.00
2 1000 0.82 — — 0.82 0.82 0.00 0.00
2 5000 0.97 — — 0.97 0.97 0.00 0.00
2 10000 0.99 — — 0.99 0.99 0.00 0.00
2 20000 0.99 — — 0.99 0.99 0.00 0.00

4 500 0.69 0.32 0.85 0.69 0.34 0.01 0.01
4 1000 0.79 0.54 0.92 0.80 0.54 0.00 0.00
4 5000 0.93 0.86 0.98 0.94 0.87 0.00 0.01
4 10000 0.97 0.93 0.99 0.97 0.95 0.00 0.00
4 20000 0.99 0.96 0.99 0.99 0.97 0.00 0.00

8 500 0.73 0.38 0.85 0.75 0.18 0.01 0.01
8 1000 0.78 0.53 0.91 0.83 0.35 0.01 0.01
8 5000 0.92 0.86 0.98 0.95 0.79 0.01 0.01
8 10000 0.96 0.94 0.99 0.97 0.90 0.00 0.01
8 20000 0.98 0.97 0.99 0.99 0.96 0.00 0.00

16 500 0.77 0.40 0.86 0.79 0.09 0.01 0.01
16 1000 0.80 0.54 0.92 0.86 0.21 0.01 0.01
16 5000 0.91 0.85 0.98 0.96 0.70 0.01 0.01
16 10000 0.95 0.93 0.99 0.98 0.85 0.01 0.01
16 20000 0.97 0.97 0.99 0.99 0.93 0.00 0.00

Table 1: This table contains further details on the average power and size of the ConvB
hypothesis test under the data generation described in Section 6.3.

6.4.1 Bivariate Identifiability Gap

In this experiment, we investigate the behavior of the bivariate identifiability gap and
analyze setups with both Gaussian and non-Gaussian noise innovations. Let us consider an
additive noise model over (X,Y ) with causal graph X → Y . The causal functions will be
chosen from the following function class. For any λ ∈ [0, 1], define fλ : R→ R as

fλ(x) = (1− λ)x3 + λx.

That is, λ 7→ fλ interpolates between a cubic function x 7→ x3 and a linear function x 7→ x.
For any (α, λ) ∈ (0,∞)× [0, 1] we consider the following bivariate structural causal additive
model

X := sign(NX)|NX |α, Y := fλ(X) +NY ,

33



Jakobsen, Shah, Bühlmann and Peters

where NX , NY are independent standard normal distributed random variables. Recall that
the bivariate identifiability gap is given by

`E(Y → X)− `E(X → Y ) =h(X − E[X|Y ]) + h(Y )− h(X − E[X|Y ], Y )

= I(X − E[X|Y ];Y ),

by Lemma 13. Thus, the causal graph X → Y is identified by the entropy score function if
I(X − E[X|Y ];Y ) > 0.

For any fixed λ and α we now estimate the identifiability gap; we also calculate the
p-value associated with the null hypothesis that the identifiability gap is zero (based on
50000 observations). Similarly to the previous experiment, we estimate the conditional
expectations using thin-plate spline regression. We estimate (without sample splitting) the
identifiability gap and construct p-values using the CRAN R-package IndepTest (Berrett
et al., 2018). More specifically, we use the differential entropy estimator of Berrett et al.
(2019) and the mutual information based independence test of Berrett and Samworth (2019),
respectively.

The heatmap of Figure 8 illustrates the behavior of the identifiability gap for all combi-
nations of λ ∈ {0, 0.05, . . . , 1} and α ∈ {0.3, 0.4, . . . , 1.7}. It suggests that the identifiability
gap only tends to zero when we approach the linear additive Gaussian noise setup. Only in
the models closest to the linear additive Gaussian noise setup are we unable to reject the
null-hypothesis of a vanishing identifiability gap.

This is also what the theory predicts, namely that for bivariate linear additive Gaussian
noise models, the causal direction is not identified. It is known that for linear models,
non-Gaussianity is helpful for identifiability. The empirical results indicate that the same
holds for nonlinear models, i.e., that the identifiability gap increases with the degree of
non-Gaussianity of the noise innovations.
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Figure 8: Heatmap of the identifiability gap for varying λ and α. Tiles with a red boundary
correspond to the models for which the mutual information based independence test cannot
reject the null hypothesis of a vanishing identifiability gap.

34



Structure Learning for Directed Trees

6.4.2 Multivariate Identifiability Gap

In this experiment, we investigate the identifiability gap and its relation to the lower bounds
established in Theorem 17. For a causal additive tree model with Gaussian noise, it holds
that

min
G̃∈Tp\{G}

`G(G̃)− `G(G) ≥ min

{
min

(w,l,o)∈ΠW (G)
I(Xw;Xl |Xo), min

i→j∈E
∆`E(i −→L99 j)

}
.

In other words, the identifiability gap is lower bounded by the minimum of the smallest local
faithfulness measures and the smallest edge-reversal score difference. We now investigate
empirically how important the first term is for the inequality to hold. More specifically,
for a given model generation scheme, we quantify how often the minimum edge reversal is
sufficiently small to establish the lower bound without the conditional mutual information
term, that is, how often the identifiability constant minG̃∈Tp\{G} `G(G̃)−`G(G) is larger than
the minimum edge reversal.

The minimum edge reversal can be estimated using the same conditional expectation and
entropy estimators of the experiment in Section 6.4.1. However, estimating the identifiability
gap between the second-best scoring tree and the causal tree needs further elaboration. We
know that the best scoring (causal) tree can be found by Chu–Liu–Edmonds’ (a directed
MWST) algorithm. The second-best scoring tree differs from the best scoring tree in at
least one edge. Thus, given the best scoring graph, we remove one of the p− 1 edges of the
best scoring tree from the pool of possible edges and rerun Chu–Liu–Edmonds’ algorithm.
We do this for each of the p − 1 edges in the best scoring tree which leaves us with p − 1
possibly different sub-optimal trees of which the minimum score is attained by the second-
best scoring graph.

For the experiment, we randomly sample data generating models similarly to the ex-
periment in Section 6.1.2. However, we change the causal functions from explicit sample
paths of a Gaussian process to a thin-plate spline regression model estimating the sample
paths due to memory constraints when generating large sample sizes. Figure 9 illustrates,
for p ∈ {8, 16}, boxplots of the difference between the identifiability gap and the minimum
edge reversal for 100 randomly generated causal additive tree models with Gaussian noise.
For each model, the identifiability gap and corresponding minimum edge reversal is esti-
mated from 200000 independent and identically distributed observations. The illustration
suggests that it is in general necessary to also consider the conditional mutual information
term in order to establish a lower bound. However, it also shows that in the majority (90%)
of the models, the minimum edge reversal is indeed a lower bound for the identifiability
gap.

7. Empirical Application

We consider the well-known non-synthetic bio-informatics data set considered by Sachs
et al. (2005). The data set contains simultaneous measurements of expression levels of 11
different phosphorylated proteins and phospholipids of human immune system cells under
both observational and interventional experimental settings. Sachs et al. (2005) present
(based on expert consensus and experiments) a causal directed acyclic graph with 11 nodes
and 20 edges for the 11 phosphorylated proteins and phospholipids.
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Figure 9: Empirical analysis of the lower bound on the identifiability gap, see Section 6.4.2.
In most of the simulated settings, we see that the estimated identifiability gap is larger
than the smallest edge-reversal score difference. This suggests that in many cases, the
latter term is sufficient for establishing a lower bound on the identifiability gap. We have
also implemented CAT.G and CAT.E with the heuristic pruning procedure introduced in
Bühlmann et al. (2014).

We compare our structure learning methods CAT.G and CAT.E with the score-based
methods of CAM (Bühlmann et al., 2014), GES (Chickering, 2002), NoTears (Zheng et al.,
2018) and the mixed method MMHC (Tsamardinos et al., 2006). The structure learning
methods are applied to observational data (853 observations using reagents anti-CD3 and
anti-CD28). The results of the structure learning methods can be seen in Table 2. Learning
causal structure from observational data is a difficult problem but several methods seem
to outperform estimating an empty graph or a random graph. CAM is superior in terms
of SHD, SID, and recall of edge and root predictions, suggesting that in this data set, one
may indeed exploit nonlinearities for indentifying causal structure. However, we also see
that CAT.G shows competitive performance and ranks in first or second place with respect
to all reported performance measures. Interestingly, even though CAT.G approximates the
non-tree causal DAG by a directed tree, it outperforms various DAG structure learning
methods such as classical approaches of GES and MMHC and the more recent continuous
optimization approach of NoTears. CAT.E does not perform well on these data, witnessing
that estimating entropies is a difficult statistical problem.

Finally, we also evaluate the proposed hypothesis testing procedures on this data set,
even though the asymptotic guarantees of the hypothesis tests derived in Section 4 are
not guaranteed to hold as the true underlying graph is not a directed tree. We test every
possible simple hypothesis of the form H0(j → i) and H0(j 6→ i). The results can be seen in
Table 3 (the CheckC test holds level but has zero power). The ConvB test shows reasonable
power against false hypothesis of the form H0(j → i), however, it has no power against the
false hypotheses of the form H0(j 6→ i). Rejection rates of the true hypotheses of the form
H0(j → i) are larger than the asymptotically guaranteed rate of 0.05, possibly because of
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the model violation; this phenomenon is not as expressed for true hypotheses of the form
H0(j 6→ i).

Method Prune Score SHD SHD-C SID Precision Recall

CAM Yes `G 14.00 15.00 72.0 0.571 0.381
CAT No `G 14.00 14.00 79.0 0.636 0.333
CAT Yes `G 15.00 16.00 83.0 0.545 0.286
MMHC — BGe 15.00 14.00 84.0 0.417 0.238
MMHC — BIC 15.00 14.00 84.0 0.417 0.238
GES — BIC 17.00 16.00 107.0 0.231 0.143
CAT Yes `E 18.00 19.00 92.0 0.273 0.143
NoTears — — 19.00 17.00 99.0 0.182 0.095
EmptyGraph — — 20.00 20.00 94.0 0.091 0.048
RandomGraph — — 22.32 21.93 94.7 0.271 0.170
CAT No `E 24.00 25.00 104.0 0.273 0.143

Table 2: Results of the empirical application of various structure learning methods to the
data set of Sachs et al. (2005). Here we report the structural hamming distance (SHD),
structural hamming distance of the respective CPDAGs (SHD-C), and structural inter-
vention distance (SID) between the causal graph and the estimated graph. The latter two
columns show the precision and recall for edge and root classification. The methods Empty-
Graph always outputs the empty graph and the method RandomGraph outputs a random
single-rooted tree generated according to the generation scheme outlined in Section 6.2.
We have implemented CAT.G and CAT.E both with and without the heuristic pruning
technique introduced in Bühlmann et al. (2014)

Nulls incorrect Nulls correct

H0 : (j → i) (j 6→ i) (j → i) (j 6→ i)

Distance(j, i)

Negative Positive No Path Total Total Total Total

Rejection rates: 0.58 0.53 0.66 0.58 0.00 0.30 0.02
N : 46 26 18 90 20 20 90

Table 3: Further details on the average power and level of the ConvB test with a significance
level of 0.05. Here, we have tested every simple hypothesis of the Sachs et al. (2005) data
set; see Section 6.3 for further explanations of the distance metric. N denotes the number
of hypothesis tests that have been averaged.
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8. Summary and Future Work

This paper shows that exact structure learning is possible for systems of lesser complexity,
i.e., for restricted structural causal models with additive noise and causal graphs given by
directed trees. We propose the method CAT, which is guaranteed to consistently recover
the causal directed tree of a causal additive tree model with Gaussian noise under mild
assumptions on the regression methods used to estimate conditional means. Furthermore,
we argue that CAT is consistent in an asymptotic setup with vanishing identifiability. We
present a computationally feasible procedure to test substructure hypotheses and provide
an analysis of the identifiability gap. Simulation experiments show that CAT outperforms
other (more general) structure learning methods for the specific task of recovering the
causal graph in additive noise structural causal models when the causal structure is given
by directed trees.

The proof of Proposition 4 is based on the fact that the causal functions of alternative
models are differentiable and that the noise densities are continuous. We conjecture that it is
possible to get even stronger identifiability statements under weaker assumptions; proving
such a result necessitates new proof strategies. We believe that it could be possible to
prove uniform consistency under suitable conditions when requiring that the infimum of
the identifiability gap is strictly positive and that the mean squared errors of the regression
estimates converge uniformly. Furthermore, we believe that it could inspire future research
on more general identifiability conditions (e.g., relaxing the smoothness assumptions) for
directed trees and DAGs under the assumption of additive noise. Furthermore, it should
be possible to use a wild bootstrap approach to construct a simultaneous hyperrectangle
confidence region for the Gaussian edge weights. This would, however, require a sufficiently
fast convergence rate of the estimation error of the conditional expectations corresponding
to non-causal edges. Compared to the Bonferroni correction, this approach could increase
the power of the test. We hypothesize that the ConvB test holds level even in many generic,
non-identifiable settings.
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Appendix A. Graph Terminology

A directed graph G = (V, E) consists of p ∈ N>0 vertices (nodes) V = {1, . . . , p} and a
collection of directed edges E ⊂ {(j → i) ≡ (j, i) : i, j ∈ V, i 6= j}. For any graph G = (V, E)
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we let paG(i) := {v ∈ V : ∃(v, i) ∈ E} and chG(i) := {v ∈ V : ∃(j, v) ∈ E} denote the
parents and children of node i ∈ V and we define root nodes rt(G) := {v ∈ V : paG(i) = ∅}
as nodes with no parents (that is, no incoming edges). A path in G between two nodes
i1, ik ∈ V consists of a sequence (i1, i2), . . . , (ik−1, ik) of pairs of nodes such that for all
j ∈ {1, . . . , k − 1}, we have either (ij → ij+1) ∈ E or (ij+1 → ij) ∈ E . A directed path in G
between two nodes i1, ik ∈ V consists of a sequence (i1, i2), . . . , (ik−1, ik) of pairs of nodes
such that for all j ∈ {1, . . . , k−1}, we have (ij → ij+1) ∈ E . Furthermore, we let anG(i) and
deG(i) denote the ancestors and descendants of node i ∈ V , consisting of all nodes j ∈ V
for which there exists a directed path to and from i, respectively. We let ndG(i) denote the
non-descendants of i.

A directed acyclic graph (DAG) is a directed graph that does not contain any directed
cycles, i.e., directed paths visiting the same node twice. We say that a graph is connected
if a (possibly undirected) path exists between any two nodes. A directed tree is a connected
DAG in which all nodes have at most one parent. More specifically, every node has a unique
parent except the root node, which has no parent. The root node rt(G) is the unique node
such there exists a directed path from rt(G) to any other node in the directed tree. In graph
theory, a directed tree is also called an arborescence, a directed rooted tree, and a rooted
out-tree. A graph G = (V ′, E ′) is a subgraph of another graph G = (V, E) if V ′ ⊆ V , E ′ ⊆ E
and for all (j → i) ∈ E ′ it holds that j, i ∈ V ′. A subgraph is spanning if V ′ = V . For any
DAG G = (V, E) and three mutually distinct subsets A,B,C ⊂ V we let A⊥⊥GB |C denote
that A and B are d-separated by C in G (see, e.g., Pearl, 2009).

Appendix B. Further Details on Section 5

Remark 1 The conditional entropy score gap is not strictly positive when considering the
alternative graphs G̃ that are Markov equivalent to the causal graph G, G̃ ∈ MEC(G). A
simple translation of the conditional entropy score function reveals that

`CE(G̃) + C =
∑

(j→i)∈Ẽ

h(Xi|Xj)− h(Xi) = −
∑

(j→i)∈Ẽ

I(Xi;Xj),

for a constant C ∈ R. By symmetry of the mutual information, it holds that `CE(G̃) =
`CE(G), for any G̃ ∈ MEC(G), since G̃ and G share the same skeleton. Thus, the conditional
entropy score function can, at most, identify the Markov equivalence class of the causal
graph. In fact, the polytree causal structure learning method of Rebane and Pearl (1987)
uses the above translated conditional entropy score function to recover the skeleton of the
causal graph.

Example 3 (Negative local Gaussian score gap) Consider two graphs G and G̃ with
different root nodes, i.e., rt(G) 6= rt(G̃). If x 7→ E[Xrt(G)|XpaG̃(rt(G))

= x] is not almost surely

constant, then it holds that

`G(G̃, rt(G))− `G(G, rt(G)) = E[(Xrt(G) − E[Xrt(G)|XpaG̃(rt(G))
])2]−Var(Xrt(G))

= E[Var(Xrt(G)|XpaG̃(rt(G))
)]−Var(Xrt(G))

= −Var(E[Xrt(G)|XpaG̃(rt(G))
]) < 0.
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Appendix C. Further Details on the Simulation Experiments

This section contains further details on the simulation experiments.

C.1 Tree Generation Algorithms

The following two algorithms, Algorithm 4 (many leaf nodes) and Algorithm 5 (many branch
nodes), details how the Type 1 and Type 2 trees are generated, respectively.

Algorithm 4 Generating type 1 trees

procedure Type1(p)
A := 0 ∈ Rp×p
for j ∈ {1, . . . , p} do

for i ∈ {j + 1, . . . , p} do
if
∑p

k=1Aki = 0 then
if i = j + 1 then

Aji := 1
else

Aji := Binomial(success = 0.1)
end if

else
Aji := 0

end if
end for

end for
return A

end procedure

Algorithm 5 Generating type 2 trees

procedure Type2(p)
for i ∈ {2, . . . , p} do

j := sample({1, . . . , i− 1})
Aji := 1

end for
return A

end procedure

C.2 Additional Illustrations

This section contains some additional illustrations of the simulation experiments.
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Figure 10: Four causal functions as modeled by the RBF kernel Gaussian Process.
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Figure 11: Boxplot illustrating the SHD performance of CAM and CAT for varying sample
sizes, system sizes and tree types in the experiment of Section 6.1.2 with 200 repetitions.
CAT.G.cf is the CAT.G method with cross-fitted edge weights. We see that cross-fitting
has no positive impact on the performance. It seems to worsen the performance for small
sample sizes.
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Figure 12: Boxplot illustrating the SID performance of CAM and CAT for varying sample
sizes, system sizes and tree types in the experiment of Section 6.1.2. CAT.G is CAT with
edge weights derived from the Gaussian score function.
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Figure 13: Boxplot illustrating the SHD performance of CAM and CAT for varying sample
sizes, system sizes and tree types in the experiment of Section 6.1.2. Here CAT.G is run
on the CAM edge weights , so that any difference in nonparametric regression technique is
ruled out as the source of the performance difference.
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Figure 14: Boxplot of edge relations for the experiment in Section 6.2.
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Figure 15: Boxplot of SHD for the experiment in Section 6.2.
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Appendix D. Proofs

This section contains the proofs of all results presented in the main text.

D.1 Proofs of Section 2

Proof of Lemma 3. Let θ = (G, (fi), PN ) ∈ Tp × Dp3 × P
p
G. Furthermore, let all causal

functions (fi) be nowhere constant and nonlinear. The additive noise is Gaussian, so the
log density of Ni for all i ∈ {1, . . . , p} is given by

νi(x) = −1

2
log(2πσ2

i )−
x2

2σ2
i

, ν ′i(x) = − x

σ2
i

, ν ′′i (x) = − 1

σ2
i

, ν ′′′i (x) = 0.

By assumption we have that condition (i) of Definition 2 is satisfied, hence assume for
contradiction that condition (ii) of Definition 2 is not satisfied. That is, we assume that
there exists an i ∈ {1, ..., p} \ {rt(G)} such that for all

(x, y) ∈ J := {(x, y) ∈ R2 : ν ′′i (y − fi(x))f ′i(x) 6= 0}
= {(x, y) ∈ R2 : f ′i(x) 6= 0},

it holds that

ξ′′′(x)− ξ′′(x)
f ′′i (x)

f ′i(x)
− 2f ′′i (x)f ′i(x)

σ2
= −y − fi(x)

σ2

(
f ′′′i (x)− (f ′′i (x))2

f ′i(x)

)
. (18)

Henceforth, suppress the subscript i of fi and σi. First note that {x ∈ R : f ′(x) = 0} is
closed by continuity of f ′. The complement is open, hence there exists a countable collection
of mutually disjoint open intervals (Ok)k∈Z such that {x ∈ R : f ′(x) 6= 0} = ∪k∈ZOk. Since
f is nowhere constant we know that {x ∈ R : f ′(x) = 0} has empty interior which implies
that ∪k∈ZOk = R. Now let (Ok)k∈Z be indexed by Z such that for any k, j ∈ Z with k < j
and x ∈ Ok, y ∈ Oj it holds that x < y. As the left-hand side of Equation (18) is constant
in y it must hold that

0 = f ′′′(x)− (f ′′(x))2

f ′(x)
=

∂f ′′(x)
∂x f ′(x)− f ′′(x)∂f

′(x)
∂x

(f ′(x))2
=

∂

∂x

(
f ′′(x)

f ′(x)

)
,

i.e., f ′′(x)/f ′(x) is constant, for all x ∈ ∪k∈ZOk.
On each Ok we have that ∂/∂x log(sign(f ′(x))f ′(x)) = ck,1 ⇐⇒ log(sign(f ′(x))f ′(x)) =

ck,1x + ck,2 ⇐⇒ sign(f ′(x))f ′(x) = exp(ck,1x + ck,2) ⇐⇒ f ′(x) = ± exp(ck,1x + ck,2).
Recall that we have assumed continuous differentiability of f ′. That is, for any k ∈ Z
and tk := sup(Ok) = inf(Ok+1) we have limx↑tk f

′(x) = limx↓tk f
′(x) and limx↑tk f

′′(x) =
limx↓tk f

′′(x). Assume without loss of generality that f ′(x) = exp(ck,1x + ck,2) for all
x ∈ Ok and k ∈ Z. These conditions impose the restrictions (ck,1 − ck+1,1)tk = ck+1,2 − ck,2
and log(ck,1/ck+1,1) + (ck,1 − ck+1,1)tk = ck+1,2 − ck,2 which entails that ck,1 = ck+1,1 and
ck,2 = ck+1,2. This proves that there exists c1, c2 ∈ R such that f ′(x) = exp(c1x + c2) for
all x ∈ R. Thus, the differential equation holds for all x ∈ R,

0 = ξ′′′(x)− ξ′′(x)
f ′′(x)

f ′(x)
− 2f ′′(x)f ′(x)

σ2
=

∂

∂x

(
ξ′′(x)

f ′(x)

)
− 2

f ′′(x)

σ2
,
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by division with f ′(x). By integration this implies that 0 = ξ′′(x)/f ′(x) − 2f ′(x)/σ2 + c3

such that ξ′′(x) = 2 exp(2c1x+2c2)/σ2−c3 exp(c1x+c2) and ξ′(x) = exp(2c1x+2c2)/c1σ
2−

c3 exp(c1x+ c2)/c1 + c4 and

ξ(x) =
exp(2c1x+ 2c2)

2c2
1σ

2
− c3 exp(c1x+ c2)

c2
1

+ c4x+ c5.

We see that ξ(x) → ∞ ⇐⇒ pX
paG(i)

(x) → ∞ as x → sign(c1) · ∞, in contradiction with

the assumption that pX
paG(i)

(x) is a probability density function if c1 6= 0. Thus, it must

hold that f ′′(x)/f ′(x) = 0 for all x ∈ R, or equivalently, that f is a linear function, yielding
a contradiction.

This proves that whenever fi ∈ D3 is a nowhere constant and nonlinear function and
the additive noise is Gaussian then condition (ii) of Definition 2 is satisfied, so θ ∈ ΘR.

Proof of Proposition 4. First, we consider the bivariate setting. Let (X,Y ) be generated
by an additive noise SCM θ ∈ ΘR ⊂ T2×D2

3×P2
C3 given by X := NX and Y := f(X) +NY

with PX = pX · λ and PNY = pNY · λ having three times differentiable strictly positive
densities and f is a three times differentiable nowhere constant function such that condition
(ii) of Definition 2 holds.

Assume for contradiction that we do not have observational identifiability of the causal
structure G = (V = {X,Y }, E = {(X → Y )}). That is, there exists θ̃ ∈ T2 × Dp1 × P

p
C0

with causal graph G̃ 6= G or, equivalently, a differentiable function g and noise distributions
PÑX = pÑX · λ and PÑY = pÑY · λ with continuous densities such that the structural

assignments Ỹ := ÑY and X̃ := g(Ỹ ) + ÑX induce the same distribution, i.e.,

PX,Y = PX̃,Ỹ . (19)

By the additive noise structural assignments we know that both PX,Y and PX̃,Ỹ have den-

sities with respect to λ2 given by

pX,Y (x, y) = pX(x)pNY (y − f(x)),

pX̃,Ỹ (x, y) = pÑX (x− g(y))pỸ (y),

for all (x, y) ∈ R2. By the equality of distributions in Equation (19) and strict positivity of
pX and pNY we especially have that for λ2-almost all (x, y) ∈ R2

0 < pX,Y (x, y) = pX̃,Ỹ (x, y). (20)

However, as both pX,Y and pX̃,Ỹ are continuous we realize that the inequality in Equa-
tion (20) holds for all (x, y) ∈ R (if they were not everywhere equal there would exists a
non-empty open ball in R2 on which they differ in contradiction with λ2-almost everywhere
equality). Furthermore, by the assumption that f is three times differentiable and pX ,
pNY are three times continuously differentiable we have that ∂3π/∂x3 and ∂3π/∂x2∂y are
well-defined partial-derivatives of

π(x, y) := log pX,Y (x, y) = log pX(x) + log pNY (y − f(x)) =: ξ(x) + ν(y − f(x)),
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With π̃(x, y) := log pX̃,Ỹ we have that

π̃(x, y) = log pÑX (x− g(y)) + log pỸ (y) =: ξ̃(x− g(y)) + ν̃(y).

Since it holds that π = π̃ by Equation (20) the partial-derivatives ∂3π̃/∂x3 and ∂3π̃/∂x2∂y
are also well-defined. Now note that for any x, y ∈ R

0 = lim
h→0
|π̃(x+ h, y)− π̃(x, y)|/h = lim

h→0
|ξ̃(x− g(y) + h)− ξ̃(x− g(y))|/h,

implying that ξ̃ is differentiable in x−g(y) for any x, y ∈ R or, equivalently, ξ̃ is everywhere
differentiable. Similar arguments yield that ξ̃ is at least three times differentiable. We
conclude that ∂2π̃(x, y)/∂x2 = ξ̃′′(x− g(y)) and ∂2π̃(x, y)/∂x∂y = −ξ̃′′(x− g(y))g′(y) and
for any (x, y) ∈ R2 such that ∂2π̃(x, y)/∂x∂y 6= 0 or, equivalently,

∀(x, y) ∈ J :=

{
(x, y) :

∂2π(x, y)

∂x∂y
= −ν ′′(y − f(x))f ′(x) 6= 0

}
,

it holds that

∂

∂x

(
∂2

∂x2
π̃(x, y)

∂2

∂x∂y π̃(x, y)

)
=

∂

∂x

(
−1

g′(y)

)
= 0.

It is worth noting that J 6= ∅ to ensure that the following derivations are not void of
meaning. (This can be seen by noting that f is nowhere constant, i.e., f ′(x) 6= 0 for λ-almost
all x ∈ R. Hence, J = ∅ if and only if pNY is a density such that {(x, y) ∈ R2 : f ′(x) 6= 0} 3
(x, y) 7→ ν ′′(y − f(x)) is constantly zero or, equivalently, R 3 y 7→ ν ′′(y) is constantly zero.
This holds if and only if pNY is either exponentially decreasing or exponentially increasing
everywhere, which is a contradiction as no continuously differentiable function integrating
to one has this property.) For any (x, y) ∈ J we also have that

0 =
∂

∂x

(
∂2

∂x2
π(x, y)

∂2

∂x∂yπ(x, y)

)
=

∂

∂x

(
ξ′′(x) + ν ′′(y − f(x))f ′(x)2 − ν ′(y − f(x))f ′′(x)

−ν ′′(y − f(x))f ′(x)

)
= −2f ′′ +

ν ′f ′′′

ν ′′f ′
− ξ′′′

ν ′′f ′
+
ν ′′′ν ′f ′′

(ν ′′)2

− ν ′′′ξ′′

(ν ′′)2
− (f ′′)2ν ′

ν ′′(f ′)2
+

f ′′ξ′′

ν ′′(f ′)2
,

which implies that

ξ′′′ = ξ′′
(
f ′′

f ′
− f ′ν ′′′

ν ′′

)
− 2ν ′′f ′′f ′ + ν ′f ′′′ +

ν ′′′ν ′f ′′f ′

ν ′′
− ν ′(f ′′)2

f ′
,

in contradiction with the assumption that condition (ii) of Definition 2 holds. We conclude
that PX,Y 6= PX̃,Ỹ .

Now consider a multivariate restricted causal model θ ∈ ΘR over X = (X1, . . . , Xp)
with causal directed tree graph G = (V, E). Assume for contradiction that there exists an
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alternative SCM θ̃ = (G̃, (f̃i), PÑ ) ∈ Tp ×Dp1 × P
p
C0 inducing X̃ = (X̃1, . . . , X̃p) with causal

graph G̃ = (V, Ẽ) 6= G, such that PX = PX̃ .

Any SCM induced distribution is Markov with respect to the underlying causal graph.
As such, we have that PX is Markov with respect to both G and G̃. Furthermore, since (in θ)
the causal functions are non-constant and the noise innovations have strictly positive density,
we have, by Proposition 17 of Peters et al. (2014), that PX satisfies causal minimality with
respect to causal graph G of θ, i.e., it is globally Markov with respect to G but not any
proper subgraph of G. If PX also satisfies causal minimality with respect to G̃, then, by
Proposition 29 of Peters et al. (2014), there exist i, j ∈ V such that (j → i) ∈ E and
(i→ j) ∈ Ẽ .

Assume for contradiction that PX does not satisfy causal minimality with respect
to G̃. By Proposition 4 of Peters et al. (2014), we have that there exists (j′ →
i′) ∈ Ẽ such that Xj′ ⊥⊥ Xi′ . Define A := ndG̃(j′) ∪ {j′} and B := deG̃(i′) ∪ {i′}.
It holds that A⊥⊥G̃(B \ {i′}) | i′, i.e., A and B \ {i′} are d-separated by i′ in

the directed tree G̃. Since PX is Markov with respect G̃ it holds that XA ⊥⊥
XB\{i′} |Xi′ , hence XA ⊥⊥ XB |Xi′ . Similarly, it holds that XA ⊥⊥ XB |Xj′

which implies that XA ⊥⊥ Xi′ |Xj′ . By applying the contraction property of
conditional independence, we get that

XA ⊥⊥ Xi′ |Xj′ and Xi′ ⊥⊥ Xj′ =⇒ XA ⊥⊥ Xi′ , and

XA ⊥⊥ XB |Xi′ and XA ⊥⊥ Xi′ =⇒ XA ⊥⊥ XB.

Since A ∪ B = V,A ∩ B = ∅ and G is a directed tree (that spans V ) there
exist either an edge (j′′ → i′′) ∈ E with j′′ ∈ A and i′′ ∈ B or j′′ ∈ B and
i′′ ∈ A. In either case, we have that Xi′′ ⊥⊥ Xj′′ , which contradicts PX satisfying
causal minimality with respect to G. We conclude that PX also satisfies causal
minimality with respect to the alternative graph G̃.

Hence, the following structural equations hold for (Xi, Xj) and (X̃i, X̃j)

Xi = fi(Xj) +Ni, with Xj ⊥⊥ Ni,

X̃j = f̃j(X̃i) + Ñj , with X̃i ⊥⊥ Ñj ,

with PXj ,Xi = PX̃j ,X̃i . We can apply the same arguments as in the bivariate setup if we

can argue that a density of Xj is three times differentiable and that a density of X̃i is a
continuous density.

To this end, note that the density pXj is given by the convolution of two densities

pXj (y) =

∫ ∞
−∞

pfj(XpaG(j))
(t)pNj (y − t) dt, (21)

as Xj := fj(XpaG(j)) + Nj with XpaG(j) ⊥⊥ Nj . Here we used that fj(XpaG(j)) has density
with respect to the Lebesgue measure.

47



Jakobsen, Shah, Bühlmann and Peters

To realize this note that fj ∈ C3 and it is nowhere constant. By arguments
similar to those in the proof of Lemma 3, this implies that f ′(x) = 0 at only
countably many points (dk). Now let (Ok) be the countable collection of mutu-
ally disjoint open intervals that cover R except for the points (dk). By continuity
of f ′ we know that f ′(x) is either strictly positive or strictly negative on each
Ok. That is, f is continuously differentiable and strictly monotone on each Ok.
Thus, f has a continuously differentiable inverse on each Ok by, e.g., the inverse
function theorem. This ensures that fj(XpaG(j)) has a density with respect to
the Lebesgue measure whenever XpaG(j) does. By starting at the root node
Xrt(G) = Nrt(G), which by assumption has a density, we can iteratively apply the
above argumentation down the directed path from rt(G) to j in order to con-
clude that any Xj for j ∈ {1, . . . , p} has a density with respect to the Lebesgue
measure.

Since pNj is assumed strictly positive three times continuous differentiable, the represen-
tation in Equation (21) furthermore yields that pXj is three times differentiable; see, e.g.,
Theorem 11.4 and 11.5 of Schilling (2017).

Now we argue that X̃i has a continuous density. First note that PXi at least has a
continuous density pXi by arguments similar to those applied for Equation (21). By the
assumption that PX = PX̃ we especially have that PXi = PX̃i which implies that also X̃i

has a continuous density. By virtue of the arguments for the bivariate setup we arrive at a
contradiction, so it must hold that PX 6= PX̃ .

Proof of Lemma 6. Consider an SCM θ̃ = (G̃, (f̃i), PÑ ) ∈ {G̃} × Dp1 × P
p
G with G̃ 6= G

and let Qθ̃ be the induced distribution. As Qθ̃ is Markov with respect to G̃ and generated
by an additive noise model the density qθ̃ factorizes as

qθ̃(x) =

p∏
i=1

qθ̃(xi|xpaG̃(i)
) =

p∏
i=1

qÑi(xi − f̃i(xpaG̃(i)
)).

The cross entropy between PX and Qθ̃ is then given by

h(PX , Qθ̃) := E
[
− log

(
qθ̃(X)

)]
=

p∑
i=1

E
[
− log

(
qÑi

(
Xi − f̃i(XpaG̃(i)

)
))]

=

p∑
i=1

h
(
Xi − f̃i(XpaG̃(i)

), Ñi

)
,

where the latter is a sum of the cross entropies between the distribution of Xi− f̃i(XpaG̃(i)
)

and the distribution of Ñi. As Qθ̃ is generated by a causal additive tree model with Gaussian
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noise, we have for all 1 ≤ i ≤ p that Ñi ∼ N (0, σ̃2
i ) for some σ̃2

i > 0. Hence for all 1 ≤ i ≤ p,

h
(
Xi − f̃i(XpaG̃(i)

), Ñi

)
=E

− log

 1√
2πσi

exp

−
(
Xi − f̃i(XpaG̃(i)

)
)2

2σ̃2
i





= log(
√

2πσ̃i) +

E
[(
Xi − f̃i(XpaG̃(i)

)
)2
]

2σ̃2
i

.

Thus, for given set of causal functions (f̃i) and a fixed i, the noise variance that minimizes
the cross entropy is given by

σ̃i =

√
E
[(
Xi − f̃i(XpaG̃(i)

)
)2
]
.

We thus have

inf
σ̃i>0

log(
√

2πσ̃i) +

E
[(
Xi − f̃i(XpaG̃(i)

)
)2
]

2σ̃2
i


= log

(√
2π
)

+
1

2
log

(
E
[(
Xi − f̃i(XpaG̃(i)

)
)2
])

+
1

2
.

We conclude that

inf
Q∈{G̃}×Dp1×P

p
G

h(PX , Q)

= p log(
√

2π) +
p

2
+

p∑
i=1

1

2
log

(
inf
f̃i∈D1

E
[(
Xi − f̃i(XpaG̃(i)

)
)2
])

.

Finally, as D1 is dense in L2(PX
paG̃(i)

), we have that

inf
f̃i∈D1

E
[(
Xi − f̃i(XpaG̃(i)

)
)2
]

= E
[(
Xi − E[Xi|XpaG̃(i)

])
)2
]

+ inf
f̃i∈D1

E
[(

E[Xi|XpaG̃(i)
]− f̃i(XpaG̃(i)

)
)2
]

= E
[(
Xi − E[Xi|XpaG̃(i)

])
)2
]
.

Here we used that X
paG̃(i)

has density with respect to the Lebesgue measure, PX
paG̃(i)

� λ,

and that the density is differentiable (see proof of Proposition 4). This concludes the first
part of the proof.
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For the second statement, we note that for any Q ∈ {G̃} ×F(G̃)×Pp there exists some
noise innovation distribution PÑ ∈ P such that Q is the distribution of X̃ generated by
structural assignments

X̃i := f̃i(XpaG̃(i)
) + Ñi = E[Xi|XpaG̃(i)

] + Ñi,

for all 1 ≤ j ≤ p and mutually independent noise innovations Ñ = (Ñ1, . . . , Ñp) ∼ PÑ ∈ P
p.

Let q denote the density of Q with respect to the Lebesgue measure and let qÑi denote the

density of Ñi for all 1 ≤ i ≤ p. As Q is Markov with respect to G̃ and generated by an
additive noise model the density factorizes as

q(x) =

p∏
i=1

q(xi|xpaG̃(i)
) =

p∏
i=1

qÑi(xi − E[Xi|XpaG̃(i)
= x

paG̃(i)
]).

The cross entropy between PX and Q is given by

h(PX , Q) = E [− log (q(X))]

=

p∑
i=1

E
[
− log

(
q(Xi|XpaG̃(i)

)
)]

=

p∑
i=1

E
[
− log

(
qÑi

(
Xi − E

[
Xi|XpaG̃(i)

]))]
=

p∑
i=1

h
(
Xi − E

[
Xi|XpaG̃(i)

]
, Ñi

)
.

Note that h(P,Q) = h(P )+DKL(P‖Q) ≥ h(P ) with equality if and only ifQ = P . Thus, the
infimum is attained at noise innovations that are equal in distribution to Xi−E[Xi|XpaG̃(i)

]

(which has a density by assumption). That is,

inf
Q∈{G̃}×F(G̃)×Pp

h(PX , Q) =

p∑
i=1

inf
Ñj∼PÑj∈P

h
(
Xi − E

[
Xi|XpaG̃(i)

]
, Ñi

)

=

p∑
i=1

h
(
Xi − E

[
Xi|XpaG̃(i)

])
= `E(G̃).

Proof of Lemma 7. Let θ ∈ ΘR ⊂ Tp × Dp3 × P
p
G and assume that condition (a) is

satisfied, i.e., that for all i 6= j it holds that x 7→ E[Xi|Xj = x] has a differentiable version.
Note that

`G(G̃)− `G(G) = inf
Q∈{G̃}×Dp1×P

p
G

h(PX , Q)− h(PX). (22)
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Furthermore, by the considerations in the proof of Lemma 6 the infimum in Equation (22)
is attained for Q∗, where the functions are given by the conditional expectation functionals.
When condition (a) is satisfied we therefore know that Q∗ ∈ {G̃} × Dp1 × P

p
G. Finally,

`G(G̃)− `G(G) = h(PX , Q
∗)− h(PX) = DKL(PX ‖Q∗) > 0,

where the last strict inequality follows from Proposition 4.
Now let θ ∈ ΘR ⊂ Tp × Dp3 × P

p
G. Assume that condition (b) is satisfied, i.e., for all

1 ≤ i ≤ p it holds that the causal function fi is contained within a function class Fi ⊆ D1,
which for all j 6= i satisfies

arg min
f̃i∈Fi

E
[(
Xi − f̃i(Xj)

)2
]
∈ Fi. (23)

Define the modified Gaussian score function

`G.mod(G̃) :=

p∑
i=1

1

2
log
(

Var
(
Xi − fpaG̃(i)i

(X
paG̃(i)

)
))

,

where fji : R→ R is given by

fji := arg min
f̃∈Fi

E
[(
Xi − f̃(Xj)

)2
]
,

for all i 6= j. Now, for any G̃ ∈ Tp \ {G}, it holds that

`G.mod(G̃)− `G.mod(G) = inf
Q∈{G̃}×(Fi)1≤i≤p×PpG

h(PX , Q)− h(PX)

= h(PX , Q
∗)− h(PX)

= DKL(PX ‖Q∗) > 0.

Here we used the closedness in Equation (23) to argue that the infimum is attained for
Q∗ ∈ {G̃} × (Fi)1≤i≤p × PpG. Finally, since (Fi)1≤i≤p ⊂ Dp1, Proposition 4 guarantees the
strict inequality.

Now let θ ∈ ΘR ⊂ Tp×Dp3×P
p
+C3 . Assume that for all i 6= j it holds that x 7→ E[Xi|Xj =

x] has a differentiable version, and assume that for all i 6= j it holds that Xi−E[Xi|Xj ] has
a continuous density. With these assumptions we note that for any G̃ ∈ Tp \ {G} it holds,
by the arguments in the proof of Lemma 6, that

`E(G̃)− `E(G) = inf
Q∈{G̃}×F(G̃)×Pp

h(PX , Q)− h(PX) = h(PX , Q
∗)− h(PX),

where Q∗ is generated by an additive noise model G̃ × (fi)× (PÑi)1≤i≤p with causal graph

G̃ ∈ Tp, with causal functions fi ≡ x 7→ E[Xi|XpaG̃(i)
= x] ∈ D1 and noise innovations

given by Ñi
D
= Xi−E[Xi|Xj ] ∼ PNi ∈ PC0 , i.e., noise innovations with continuous densities.

Proposition 4 now yields that

`E(G̃)− `E(G) = DKL(PX ‖Q∗) > 0,
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since PX is induced by a restricted causal additive tree model and Q∗ is induced by a causal
additive tree model {G̃} × (fi)× (PÑi)1≤i≤p ⊂ Tp ×Dp1 × P

p
C0 .

D.2 Proofs of Section 3

Proof of Theorem 8. Assume that θ = (G, (fi), PN ) ∈ ΘR with PN ∈ PpG and G = (V, E).
For simplicity of the proof, we assume that E[X] = 0 such that the Gaussian edge weight
estimators simplify to

ŵji := ŵG
ji =

1

2
log

(
1
n

∑n
k=1 (Xk,i − ϕ̂ji(Xk,j))

2

1
n

∑n
k=1X

2
k,i

)
,

for all j 6= i. Furthermore, define the Gaussian population (for i 6= j) and auxiliary (for
(j → i) 6∈ E) edge weights by

wji :=
1

2
log

(
E[(Xi − ϕji(Xj))

2]

E[X2
i ]

)
, w∗ji :=

1

2
log

(
E[(Xi − ϕ̃ji(Xj))

2]

E[X2
i ]

)
,

respectively, where ϕ̃ji : R→ R is a fixed function satisfying E[(ϕ̂ji(Xj)−ϕ̃ji(Xj))
2|X̃n]

P−→n

0. Furthermore, for any G̃ = (V, Ẽ) ∈ Tp denote

ŵ(G̃) :=
∑

(j→i)∈Ẽ

ŵji, w(G̃) :=
∑

(j→i)∈Ẽ

wji, w∗(G̃) :=
∑

(j→i)∈Ẽ\E

w∗ji +
∑

(j→i)∈Ẽ∩E

wji,

as the total estimated, population and auxiliary edge weights for G̃. As the conditional ex-
pectation minimizes the MSPE among measurable functions, i.e., ϕji = arg minf :R→R E[(Xi−
f(Xj))

2], we especially have, for any i 6= j, that

E[(Xi − ϕ̃ji(Xj))
2] ≥ E[(Xi − ϕji(Xj))

2].

This construction entails, for any G̃ ∈ Tp, that

w∗(G̃) ≥ w(G̃), and w∗(G) = w(G). (24)

Assumption 1 implies that there exists an m > 0 such that

min
G̃∈Tp\{G}

`G(G̃)− `G(G) = m > 0. (25)

Thus, for any G̃ ∈ Tp \ {G} it holds that

`G(G) +
m

2
≤ `G(G̃)− m

2
, (26)

by the identifiability assumption of Equation (25). Now note that `G(G̃) = w(G̃) + C with
C =

∑p
i=1 log(E[X2

i ])/2 for all G̃ ∈ Tp. Hence, we have, for all G̃ ∈ Tp \ {G}, that

w∗(G)− m

2
= w(G) +

m

2
≤ w(G̃)− m

2
≤ w∗(G̃)− m

2
,
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by the equality and inequalities in (26) and (24). Thus, we have that

P (Ĝ = G) = P

 arg min
G̃=(V,Ẽ)∈Tp

∑
(j→i)∈Ẽ

ŵji = G


≥ P

 ⋂
G̃∈Tp

(
|ŵ(G̃)− w∗(G̃)| < m

2

) .

We conclude that it suffices to show that

sup
G̃∈Tp

|ŵ(G̃)− w∗(G̃)| P−→n 0.

To this end, let E∗ := {(j → i) : i, j ∈ V, i 6= j} \ E and note that

sup
G̃∈Tp

|ŵ(G̃)− w∗(G̃)|

≤ sup
G̃∈Tp

( ∑
(j→i)∈Ẽ\E

∣∣∣∣ŵji − 1

2
log

(
E[(Xi − ϕ̃ji(Xj))

2]

E[X2
i ]

)∣∣∣∣
+

∑
(j→i)∈Ẽ∩E

∣∣∣∣ŵji − 1

2
log

(
E[(Xi − ϕji(Xj))

2]

E[X2
i ]

)∣∣∣∣ )

≤
∑

(j→i)∈E∗

∣∣∣∣ŵji − 1

2
log

(
E[(Xi − ϕ̃ji(Xj))

2]

E[X2
i ]

)∣∣∣∣
+

∑
(j→i)∈E

∣∣∣∣ŵji − 1

2
log

(
E[(Xi − ϕji(Xj))

2]

E[X2
i ]

)∣∣∣∣ . (27)

Now consider a fixed term (j → i) ∈ E in the second sum of (27). We can upper bound the
absolute difference by

∣∣∣∣ŵji − 1

2
log

(
E[(Xi − ϕji(Xj))

2]

E[X2
i ]

)∣∣∣∣
≤ 1

2

∣∣∣∣∣log

(
1

n

n∑
k=1

(Xk,i − ϕ̂ji(Xk,j))
2

)
− log

(
E[(Xi − ϕji(Xj))

2]
)∣∣∣∣∣

+
1

2

∣∣∣∣∣log(E[X2
i ])− log

(
1

n

n∑
k=1

X2
k,i

)∣∣∣∣∣ . (28)

In the upper bound of (28), the last absolute difference vanishes in probability due to the
law of large numbers and the continuous mapping theorem. The first absolute difference
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also vanishes by the following arguments. Note that,

0 ≤ 1

n

n∑
k=1

(Xk,i − ϕ̂ji(Xk,j))
2

=
1

n

n∑
k=1

(Xk,i − ϕji(Xk,j))
2 +

1

n

n∑
k=1

(ϕji(Xk,j)− ϕ̂ji(Xk,j))
2

+
2

n

n∑
k=1

(Xk,i − ϕji(Xk,j)) (ϕji(Xk,j)− ϕ̂ji(Xk,j)) .

Hence, it holds that∣∣∣∣∣ 1n
n∑
k=1

(Xk,i − ϕ̂ji(Xk,j))
2 − 1

n

n∑
k=1

(Xk,j − ϕji(Xk,j))
2

∣∣∣∣∣
=

∣∣∣∣ 1n
n∑
k=1

(ϕji(Xk,j)− ϕ̂ji(Xk,j))
2

+
2

n

n∑
k=1

(Xk,j − ϕji(Xk,j)) (ϕji(Xk,j)− ϕ̂ji(Xk,j))

∣∣∣∣
≤ 1

n

n∑
k=1

(ϕji(Xk,j)− ϕ̂ji(Xk,j))
2

+ 2

√√√√ 1

n

n∑
k=1

(Xk,j − ϕji(Xk,j))
2

√√√√ 1

n

n∑
k=1

(ϕji(Xk,j)− ϕ̂ji(Xk,j))
2, (29)

by Cauchy-Schwarz inequality. By the law of large numbers, we have that the first factor
of the second term of (29) converges in probability to a constant,

1

n

n∑
k=1

(Xk,j − ϕji(Xk,j))
2 P−→n E[X1,i − ϕji(X1,j))

2].

The first term and latter factor of the second term of Equation (29) vanish in probability
by assumption. That is, for any ε > 0 we have that

P

(∣∣∣∣∣ 1n∑
k=1

(ϕji(Xk,j)− ϕ̂ji(Xk,j))
2

∣∣∣∣∣ > ε

)
= P

(∣∣∣∣∣ 1n∑
k=1

(ϕji(Xk,j)− ϕ̂ji(Xk,j))
2

∣∣∣∣∣ ∧ ε > ε

)

≤
E
[(

1
n

∑n
k=1 (ϕji(Xk,j)− ϕ̂ji(Xk,j))

2
)
∧ ε
]

ε

≤
E
[
E
[
(ϕji(X1,j)− ϕ̂ji(X1,j))

2
∣∣X̃n

]
∧ ε
]

ε
→n 0,

54



Structure Learning for Directed Trees

using conditional Jensen’s inequality (x 7→ min(x, ε) = x∧ ε is concave) and the dominated
convergence theorem. This proves that

1

n

n∑
k=1

(Xk,j − ϕ̂ji(Xk,j))
2 P−→n E[X1,i − ϕji(X1,j))

2].

Thus, we have shown that the second term of (27) converges to zero in probability. Finally,
the above arguments apply similarly to the first term of Equation (27) by exchanging every

ϕji with ϕ̃ji. We have shown that supG̃∈Tp |ŵ(G̃) − w∗(G̃)| P−→n 0, which concludes the
proof.

Proof of Theorem 9. Assume that for each sample size n ∈ N that θn = (G, ...) ∈ ΘR

with G = (V, E), additive Gaussian noise, and identifiability gap

min
G̃∈Tp\{G}

`G(G)− `G(G̃) = qn > 0,

with q−1
n = o(

√
n). For simplicity of the proof, we assume that Eθn [X] = 0 such that the

edge weight estimators simplify to

ŵji := ŵG
ji = ŵG

ji(Xn, X̃n) =
1

2
log

(
1
n

∑n
k=1 (Xk,i − ϕ̂ji(Xk,j))

2

1
n

∑n
k=1X

2
k,i

)
.

Furthermore, we continue with the notation and population quantities introduced in the
proof of Theorem 8, i.e., wji = log(Eθn [(Xi−E[Xi|Xj ])

2])/Eθn [X2
i ])/2, where we notionally

have suppressed the dependence on n. We know that for each SCM θn it holds that

`G(G) + qn ≤ `G(G̃), hence w(G) + qn ≤ w(G̃),

for all G̃ ∈ Tp \ {G}. Thus,

Pθn

 arg min
G̃=(V,Ẽ)∈Tp

∑
(j→i)∈Ẽ

ŵji = G


≥ Pθn

(|ŵ(G)− w(G)| < qn
2

)
∩

⋂
G̃∈Tp\{G}

(
ŵ(G̃)− w(G̃) ≥ −qn

2

) .

For any G̃ = (V, Ẽ) ∈ Tp we have that

ŵ(G̃)− w(G̃) =
∑

(j→i)∈Ẽ∩E

ŵji − wji +
∑

(j→i)∈Ẽ\E

ŵji − wji,

where ŵji and wji denote the estimated and population Gaussian weights for the edge
(j → i), respectively. Hence, it suffices to show that

∀(j → i) ∈ E ,∀ε > 0 : Pθn(|ŵji − wji| < qnε)→n 1,

∀(j → i) 6∈ E ,∀ε > 0 : Pθn (ŵji − wji ≥ −qnε)→n 1.
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To see this, note that if the above statements hold, then

Pθn

(
|ŵ(G)− w(G)| < qn

2

)
≥ Pθn

 ∑
(j→i)∈E

|ŵji − wji| <
qn
2


≥ Pθn

 ⋂
(j→i)∈E

(
|ŵji − wji| <

qn
2(p− 1)

)
→n 1,

and for any G̃ = (V, Ẽ) ∈ Tp

Pθn

(
ŵ(G̃)− w(G̃) ≥ −qn

2

)
= Pθn

 ∑
(j→i)∈Ẽ∩E

ŵji − wji +
∑

(j→i)∈Ẽ\E

ŵji − wji ≥ −
qn
2


≥ Pθn

 ⋂
(j→i)∈Ẽ∩E

(
|ŵji − wji| ≤

qn
2(p− 1)

)

∩
⋂

(j→i)∈Ẽ\E

(
ŵji − wji ≥ −

qn
2(p− 1)

)
→n 1,

hence the probability of the intersections also converges to one.

The causal edges: Now fix (j → i) ∈ E . We want to show that for all ε > 0 it holds that

Pθn(|ŵji − wji| < qnε)→n 1.

First note that

|ŵji − wji| ≤
1

2

∣∣∣∣∣log

(
1

n

n∑
k=1

(Xk,i − ϕ̂ji(Xk,j))
2

)
− log

(
Eθn [(Xi − ϕji(Xj))

2]
)∣∣∣∣∣

+
1

2

∣∣∣∣∣log(Eθn [X2
i ])− log

(
1

n

n∑
k=1

X2
k,i

)∣∣∣∣∣ ,
where ϕ̂ji for each n is the estimated conditional expectation x 7→ Eθn [Xi|Xj = x] based
on samples from the auxiliary data set. It suffices to show the desired convergence in
probability for each of the above terms. Furthermore, for all sequences of positive random
variables (Zn) and positive constants c > 0 and for all ε > 0 there exists δ > 0 such that

(q−1
n | log(Zn)− log(c)| ≥ ε) ⊆ (q−1

n |Zn − c| ≥ δ),

for sufficiently large n. To see this, note that if q−1
n (log(Zn) − log(c)) ≥ ε, then Zn >

exp(log(c) + qnε) = c exp(qnε) ≥ c(1 + qnε), so q−1
n (Zn − c) ≥ cε. On the other hand, if

q−1
n (log(Zn) − log(c)) ≤ −ε, then Zn ≤ c exp(−εqn) ≤ c(1 − εqn + ε2q2

n), so q−1
n (Zn − c) ≤

56



Structure Learning for Directed Trees

−cε + cε2qn. In summary, if q−1
n | log(Zn) − log(c)| ≥ ε, then q−1

n |Zn − c| ≥ cε − cε2qn >
cε(1−M) =: δ where 1 > M > εqn for sufficiently large n. We conclude that it suffices to
show that for all ε > 0 it holds that

Pθn

(∣∣∣∣∣ 1n
n∑
k=1

(Xk,i − ϕ̂ji(Xk,j))
2 − Eθn [(Xi − ϕji(Xj))

2]

∣∣∣∣∣ ≥ qnε
)
→n 0 (30)

and that

Pθn

(∣∣∣∣∣ 1n
n∑
k=1

X2
k,i − Eθn [X2

i ]

∣∣∣∣∣ ≥ qnε
)
→n 0, (31)

Equation (31) is satisfied as the summands are mean zero i.i.d. Therefore, with

Wn :=
1

n

n∑
k=1

X2
k,i − Eθn [X2

i ],

where Eθn [q−1
n Wn] = 0, we have that Eθn [q−2

n W 2
n ] = q−2

n
n Eθn [(X2

i − Eθn [X2
i ])2], hence

Pθn(q−1
n Wn ≥ ε) ≤ q−2

n

Eθn [W 2
n ]

ε2

≤ q−2
n

n

supn∈N Eθn [(X2
i − Eθn [X2

i ])2]

ε2

→n 0,

for any ε > 0 as supn∈N Eθn‖X‖42 <∞ and q−1
n = o(

√
n).

Now we show Equation (30). First, we simplify the notation by letting Zk := Xk,i,

Yk := Xk,j f := ϕji and f̂ := ϕ̂ji for all k ∈ N. Note that we have suppressed the
dependence of f = ϕji on θn. We have that

1

n

n∑
k=1

(
Zk − f̂(Yk)

)2
=

1

n

n∑
k=1

(Zk − f(Yk))
2 +

1

n

n∑
k=1

(f(Yk)− f̂(Yk))
2

+
2

n

n∑
k=1

(Zk − f(Yk))(f(Yk)− f̂(Yk))

=: T1,n + T2,n + T3,n.

It suffices to show that for all ε > 0 it holds that

(a) Pθn
(
|T1,n − Eθn [(Z1 − f(Y1))2]| ≥ qnε

)
→n 0,

(b) Pθn (|T2,n| ≥ qnε)→n 0, and

(c) Pθn (|T3,n| ≥ qnε)→n 0.
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First we show (a). Each term in the sum of T1,n−Eθn [(Z1−f(Y1))2] is mean zero and i.i.d.,
i.e.,

q−1
n Eθn [(Zk − f(Yk))

2 − Eθn [(Z1 − f(Y1))2]] = 0.

Furthermore,

Varθn(q−1
n (T1,n − Eθn [(Z1 − f(Y1))2]))

=Varθn

(
q−1
n

n

n∑
k=1

(Zk − f(Yk))
2 − Eθn [(Z1 − f(Y1))2]

)

=
q−2
n

n2

n∑
k=1

Varθn

(
(Zk − f(Yk))

2 − Eθn [(Z1 − f(Y1))2]
)

≤q
−2
n

n
sup
n∈N

Varθn

(
(Z1 − f(Y1))2

)
→n0,

since q−1
n = o(

√
n) and supn∈N Eθn‖X‖42 <∞. Hence,

Pθn
(
|q−1
n (T1,n − E[(Z1 − f(Y1))2])| ≥ ε

)
≤ Varθn(q−1

n (T,n − E[(Z1 − f(Y1))2]))

ε2

→n 0.

by Chebyshev’s inequality, proving (a).
Now we show (b). To that end, note that the terms of T2,n is i.i.d. conditional on X̃n.

For a fixed 1 > ε > 0 we have

Pθn
(
|q−1
n T2,n| ≥ ε

)
= Eθn

[
Pθn

(
q−1
n T2,n ≥ ε|X̃n

)
∧ 1
]

≤
Eθn

[
Eθn

[
q−1
n T2,n|X̃n

]
∧ 1
]

ε

=
Eθn

[
q−1
n Eθn

[
(f(Y1)− f̂(Y1))2|X̃n

]
∧ 1
]

ε
,

where we used the conditional Markov’s inequality. Now fix 1 > δ > 0 and define An,δ :=

(q−1
n Eθn

[
(f(Y1)− f̂(Y1))2|X̃n

]
> δ) and note that by assumption there exists an Nδ ∈ N

such that ∀n ≥ Nδ : Pθn(An,δ) < δ. Hence, for n ≥ Nδ we have that

Eθn
[
q−1
n Eθn

[
(f(Y1)− f̂(Y1))2|X̃n

]
∧ 1
]

= Eθn
[
1An,δq

−1
n Eθn

[
(f(Y1)− f̂(Y1))2|X̃n

]
∧ 1
]

+ Eθn
[
1Acn,δq

−1
n Eθn

[
(f(Y1)− f̂(Y1))2|X̃n

]
∧ 1
]

≤ Eθn
[
1An,δq

−1
n Eθn

[
(f(Y1)− f̂(Y1))2|X̃n

]
∧ 1
]

+ Eθn
[
1Acn,δδ

]
≤ Eθn

[
1An,δ

]
+ δ

= Pθn(An,δ) + δ < 2δ, (32)
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hence lim supn→∞ Pθn
(
|q−1
n T2,n| ≥ ε

)
< 2δ/ε, i.e., Pθn

(
|q−1
n T2,n| ≥ ε

)
→ 0 as δ > 0 was

chosen arbitrarily, proving (b).

Now we prove (c). To this end, recall that

T3,n :=
2

n

n∑
k=1

(Zk − f(Yk))(f(Yk)− f̂(Yk)),

is, conditional on X̃, an i.i.d. sum with conditional mean zero

Eθn [T3,n|X̃n] = 2Eθn [(Zk − f(Yk))(f(Yk)− f̂(Yk))|X̃n]

= 2Eθn [(Eθn [Zk|Yk, X̃n]− f(Yk))(f(Yk)− f̂(Yk))|X̃n]

= 2Eθn [(f(Yk)− f(Yk))(f(Yk)− f̂(Yk))|X̃n] = 0,

and conditional second moment given by

Eθn [T 2
3,n|X̃n] =

4

n2

n∑
k=1

Eθn [(Zk − f(Yk))
2(f(Yk)− f̂(Yk))

2|X̃n]

=
4

n
Eθn

[
(Zk − f(Yk))

2(f(Yk)− f̂(Yk))
2|X̃n

]
=

4

n
Eθn

[
Eθn

[
(Zk − f(Yk))

2|X̃n, Yk

]
(f(Yk)− f̂(Yk))

2|X̃n

]
=

4

n
Eθn

[
Varθn(Zk|Yk)(f(Yk)− f̂(Yk))

2|X̃n

]
≤ C

n
Eθn

[
(f(Yk)− f̂(Yk))

2|X̃n

]
,

Pθn-almost surely. Hence, w.l.o.g. assume that 0 < ε < 1 and note that the conditional
Markov’s inequality yields

Pθn(|q−1
n T3,n| ≥ ε) = Eθn [Pθn(|q−1

n T3,n| ≥ ε|X̃n) ∧ 1]

≤ 1

ε2
Eθn

[
Eθn

[
q−2
n T 2

3,n|X̃n

]
∧ 1
]

(33)

≤ C

ε2
Eθn

[
q−2
n

n
Eθn

[
(f(Yk)− f̂(Yk))

2|X̃n

]
∧ 1

]
.

By conditional Jensen’s inequality, we have that

Eθn
[
(f(Yk)− f̂(Yk))

2|X̃n

]
≤ 1 + Eθn

[
(f(Yk)− f̂(Yk))

2|X̃n

]2

≤ 1 + Eθn
[
(f(Yk)− f̂(Yk))

4|X̃n

]
.

Fix δ > 0 and let An,δ :=
(
q−2
n
n Eθn

[
(f(Yk)− f̂(Yk))

4|X̃n

]
> δ
)

and note that Pθn(An,δ)→n

0, hence there exists an Nδ ∈ N such that ∀n ≥ Nδ : Pθn(An,δ) < δ. Furthermore, as
q−1
n = o(

√
n) there exists an N ∈ N such that q−2

n /n < δ for all n ≥ N . Similar to the
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arguments in Equation (32) we then have that

ε2

C
Pθn(|q−1

n T3,n| ≥ ε) ≤ Eθn
[
q−2
n

n

(
1 + Eθn

[
(f(Yk)− f̂(Yk))

4|X̃n

])
∧ 1

]
≤ q−2

n

n
+ Eθn

[
q−2
n

n
Eθn

[
(f(Yk)− f̂(Yk))

4|X̃n

]
∧ 1

]
≤ q−2

n

n
+ Eθn [1An,δ ] + Eθn [1Acn,δδ]

< δ + Pθn(An,δ) + δ < 3δ,

for any n ≥ Nδ ∨N , so Pθn(q−1
n T3,n ≥ ε)→n 0, proving (c).

The non-causal edges: Now fix (j → i) 6∈ E , we want to show, for any ε > 0 that

Pθn(ŵji − wji ≥ −qnε)→n 1,

where

ŵji − wji =
1

2

([
log

(
1

n

n∑
k=1

(Xk,i − ϕ̂ji(Xk,j))
2

)
− log

(
E[(Xi − ϕji(Xj))

2]
)]

+

[
log(E[X2

i ])− log

(
1

n

n∑
k=1

X2
k,i

)])
=:

1

2
(D1,n +D2,n).

We have that Pθn(ŵji − wji ≥ −qnε) ≥ Pθn ((D1,n ≥ −qnε) ∩ (|D2,n| < qnε)), where the
second event has already been shown to have probability converging to one in Equation (31).
Thus, it suffices to show that

Pθn (D1,n ≥ −qnε)→n 1.

By similar arguments as above we have for any sequence of positive random variables
(Kn)n≥1 and a positive constant K that for all ε > 0 there exists an δ > 0 such that
Pθn (log(Kn)− log(K) < −qnε) ≤ Pθn(Kn−K < −qnδ), for sufficiently large n ∈ N. To see
this, note that if log(Kn)− log(K) < −qnε, then Kn < K exp(−εqn) ≤ K(1− εqn + ε2q2

n),
so q−1

n (Kn−K) < −Kε+Kε2qn < −Kε(1−M) =: −δ where 1 > M > εqn for sufficiently
large n, since qn ↓ 0. Thus, it suffices to show that for any ε > 0 it holds that

Pθn

(
1

n

n∑
k=1

(Xk,i − ϕ̂ji(Xk,j))
2 − Eθn [(Xi − ϕji(Xj))

2] ≥ −qnε

)
→n 1.
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Again, we simplify the notation Zk := Xk,i, Yk := Xk,j , f = ϕji and f̂ := ϕ̂ji for all k ∈ N.
Now define the following terms

1

n

n∑
k=1

(
Zk − f̂(Yk)

)2
=

1

n

n∑
k=1

(Zk − f(Yk))
2

+
1

n

n∑
k=1

{(f(Yk)− f̂(Yk))
2 − δ2

n,θn}

+
2

n

n∑
k=1

{(Zk − f(Yk))(f(Yk)− f̂(Yk)) + δ2
n,θn/2}

=: T1,n + T̃2,n + T̃3,n,

where δ2
n,θn

:= Eθn [(f(Y1)− f̂(Y1))2|X̃n] = Eθn [(ϕji(Xj)− ϕ̂ji(Xj))
2|X̃n]. It suffices to show

that for all ε > 0 it holds that

(d) Pθn
(
|T1,n − Eθn [(Z1 − f(Y1))2]| ≥ qnε

)
→n 0,

(e) Pθn

(
|T̃2,n| ≥ qnε

)
→n 0, and

(f) Pθn

(
T̃3,n ≥ −qnε

)
→n 1.

Condition (d) holds by arguments similar to (a) for the causal edges.
Now we prove (e). The expansion, conditional on X̃n, is a sum of mean zero i.i.d. terms,

hence

Eθn
(
q−2
n T̃ 2

2,n

∣∣∣ X̃n

)
=
q−2
n

n
Eθn

[
{(f(Yk)− f̂(Yk))

2 − δ2
n,θn}

2|X̃n

]
=
q−2
n

n
Eθn

[
(f(Yk)− f̂(Yk))

4 + (δ2
n,θn)2 − 2(f(Yk)− f̂(Yk))

2δ2
n,θn |X̃n

]
=
q−2
n

n

(
Eθn

[
(f(Yk)− f̂(Yk))

4|X̃n

]
− (δ2

n,θn)2
)

≤ q−2
n

n
Eθn

[
(f(Yk)− f̂(Yk))

4|X̃n

]
,

using that (δ2
n,θn

)2 ≥ 0. Fix 1 > δ > 0 and let An,δ :=
(
q−2
n
n Eθn

[
(f(Yk)− f̂(Yk))

4|X̃n

]
> δ
)

and note that there exists an Nδ ∈ N such that ∀n ≥ Nδ : Pθn(An,δ) < δ. Similar to the
previous arguments we have for any 1 > ε > 0 and n ≥ Nδ that

Pθn

(∣∣∣T̃2,n

∣∣∣ ≥ qnε) = Eθn
[
Pθn

(∣∣∣q−1
n T̃2,n

∣∣∣ ≥ ε∣∣∣ X̃n

)
∧ 1
]

≤ 1

ε2
Eθn

[
Eθn

[
q−2
n T̃ 2

2,n|X̃n

]
∧ 1
]

≤ 1

ε2
Eθn

[
q−2
n

n
Eθn

[
(f(Yk)− f̂(Yk))

4|X̃n

]
∧ 1

]
≤ 1

ε2

(
Eθn [1An,δ ] + Eθn [1Acn,δδ]

)
<

2δ

ε2
,
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by the conditional Markov’s inequality. Since δ > 0 was chosen arbitrarily, we conclude
that (e) holds.

Finally we show (f). Recall that in the analysis of the causal edges, we defined

T3,n :=
2

n

n∑
k=1

(Zk − f(Yk))(f(Yk)− f̂(Yk)).

Hence, we have that T̃3,n = T3,n + δ2
n,θn

. We realize that for any 0 < ε < 1

Pθn(T̃3,n < −qnε) ≤ Pθn(T3,n + δ2
n,θn ≤ −qnε)

= Pθn
(
T3,n ≤ −

(
qnε+ δ2

n,θn

))
≤ Pθn

(
T 2

3,n ≥
(
qnε+ δ2

n,θn

)2)
≤ Pθn

(
T 2

3,n ≥ (qnε)
2
)

= Pθn
(
q−2
n T 2

3,n ≥ ε2
)

= Eθn
[
Pθn

(
q−2
n T 2

3,n ≥ ε2|X̃n

)
∧ 1
]

≤ 1

ε2
Eθn

[
Eθn

[
q−2
n T 2

3,n

∣∣ X̃n

]
∧ 1
]

→n 0,

where we used the convergence shown in the proof of (c); see Equation (33). To see that
the former arguments apply to non-causal edges, simply note that they did not use any
conditions restricted to causal edges. This concludes the proof.

D.3 Proofs of Section 4

Lemma D.1 Consider an i.i.d. sequence (Xm)m≥1 of random variables with Xm ∈ Rd
independent from a random infinite sequence X̃ ∈

∏∞
i=1 Rd. Let (ψn)n≥1 be a sequence of

measurable functions s.t. for all n ≥ 1, ψn : Rd × (
∏∞
i=1 Rd) → Rq satisfies the following

conditions:

(a) E[ψn(Xm, X̃)|X̃] = 0 almost surely,

(b) ∃Σ ∈ Rq×q :
∑n

m=1 Var(ψn(Xm, X̃)|X̃)
P−→n Σ, and

(c) ∃ ε > 0 :
∑n

m=1 E[‖ψn(Xm, X̃)‖2+ε
2 |X̃]

P−→n 0.

It holds that

n∑
m=1

ψn(Xm, X̃)
D−→n N (0,Σ),
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Proof of Lemma D.1. Let the random sequences be defined on a common probability
space (Ω,F, P ) and define

Anm := E[ψn(Xm, X̃)|X̃],

Bn := Σ−
n∑

m=1

Var(ψn(Xm, X̃)|X̃),

Cn :=
n∑

m=1

E[‖ψn(Xm, X̃)‖2+ε
2 |X̃].

By assumption we have that P (∩n,m(Anm = 0)) = 1, Bn
P−→ 0 and Cn

P−→ 0 as n →
∞. First, note that for any subsequence (nk)k≥1 of the positive integers, there exists a
subsequence (nkl)l∈N such that

P ( lim
l→∞

Bnkl = 0) = 1 for ( lim
l→∞

Bnkl = 0) := {ω ∈ Ω : lim
l→∞

Bnkl (ω) = 0},

and

P ( lim
l→∞

Cnkl = 0) = 1 for ( lim
l→∞

Cnkl = 0) := {ω ∈ Ω : lim
l→∞

Cnkl (ω) = 0}.

Thus, define

G := (∩n,m(Anm = 0) ∩ ( lim
l→∞

Bnkl = 0) ∩ ( lim
l→∞

Cnkl = 0)) ⊆ Ω, with P (G) = 1.

Now fix x̃ ∈ X̃(G) := {X̃(ω) ∈
∏∞
j=1 Rd : ω ∈ G} and note that

∀l ≥ 1, ∀1 ≤ m ≤ nkl : E[ψnkl (Xm, x̃)] = 0,

nkl∑
m=1

Var(ψnkl (Xm, x̃))→l Σ, and

nkl∑
m=1

E[‖ψnkl (Xm, x̃)‖2+ε
2 ]→l 0.

Furthermore, for any l ≥ 1

ψnkl (X1, x̃), ..., ψnkl (Xnkl
, x̃), are jointly independent,

hence by Lyapunov’s central limit theorem for triangular arrays (see, e.g., Van der Vaart,
2000, Proposition 2.27, and recall that Lyapunov’s condition implies the Lindeberg–Feller
condition) that

nkl∑
m=1

ψnkl (Xm, x̃)
D−→l Z ∼ N (0,Σ).
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The above convergence in distribution is equivalent to the following statement: for any
continuous bounded function g : Rq → R it holds that

lim
l→∞

E

[
g

( nkl∑
m=1

ψnkl (Xm, x̃)

)]
= E [g(Z)] .

Fix a continuous and bounded g and note that the above convergence holds for all x̃ ∈ X̃(G)
with P (G) = 1. Thus, it must hold that

E

[
g

( nkl∑
m=1

ψnkl (Xm, X̃)

)∣∣X̃] a.s.−→l E [g(Z)] .

Finally, as (nkl)l≥1 is a subsequence of an arbitrary subsequence of positive integers, we
have that

E

[
g

(
n∑

m=1

ψn(Xm, x̃)

)∣∣X̃] P−→n E [g(Z)] ,

and since g is bounded the dominated convergence theorem yields that

E

[
g

(
n∑

m=1

ψn(Xm, X̃)

)]

=E

[
E

[
g

(
n∑

m=1

ψn(Xm, X̃)

)∣∣X̃]]→n E [g(Z)] .

As g was chosen arbitrarily, the above convergence holds for any continuous bounded g. We
conclude that

n∑
m=1

ψn(Xm, X̃)
D−→n N (0,Σ),

proving the theorem.

Lemma D.2 (Shah and Peters, 2020, Lemma 19) Let P be a family of distributions
for a random variable ζ ∈ R and suppose ζ1, ζ2, . . . are i.i.d. copies of ζ. For each n ∈ N let
Sn = n−1

∑n
i=1 ζi. Suppose that for all P ∈ P we have EP (ζ) = 0 and EP

(
|ζ|1+η

)
< c for

some η, c > 0. We have that for all ε > 0,

lim
n→∞

sup
P∈P

P (|Sn| > ε) = 0.

Lemma D.3 Let U be a random element and let (Zn)n≥1 be an i.i.d. sequence of random
variables such that U ⊥⊥ (Zn)n≥1 and let ((Wnm)m≤n)n≥1 be a triangular array of random
variables and (gn)n≥1 be measurable mappings with the following properties:

(a) ∀n ≥ 1, ∀m ≤ n : Wnm = gn(Zm, U),
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(b) ∃η > 0 : E
(
|Wn1|1+η | U

)
= Op(1), as n→∞.

Then, writing W̄n :=
∑n

m=1Wnm/n, we have∣∣W̄n − E (Wn1 | U)
∣∣ P−→n 0.

Proof of Lemma D.3. Denote

jn(Zm, U) := gn(Zm, U)− E[gn(Z1, U)|U ],

for any n ≥ 1 and m ≤ n. Let δ > 0 be given. Pick M > 0 and N ∈ N such that the events

Ωn :=
{
E
[
|gn(Z1, U)|1+η | U

]
≤M

}
,

satisfy P (Ωc
n) < δ for n ≥ N . Notice that

U(Ωn) =
{
ũn : E

[
|gn(Z1, ũn)|1+η

]
≤M

}
,

since U ⊥⊥ (Zn)n≥1. Fix ε > 0. Then, for all n ≥ N

P
(∣∣W̄n − E (Wn | U)

∣∣ > ε
)

= P

(∣∣∣∣∣ 1n
n∑

m=1

jn(Zm, U)

∣∣∣∣∣ > ε

)

< E

[
P

(∣∣∣∣∣ 1n
n∑

m=1

jn(Zm, U)

∣∣∣∣∣ > ε | U

)
1Ωn

]
+ δ.

By the dominated convergence theorem, the first term on the RHS converges to 0 if

sup
ω∈Ωn

P

(∣∣∣∣∣ 1n
n∑

m=1

jn(Zm, U)

∣∣∣∣∣ > ε | U

)
(ω)

= sup
ũn∈U(Ωn)

P

(∣∣∣∣∣ 1n
n∑

m=1

jn(Zm, ũn)

∣∣∣∣∣ > ε

)
→n 0,

which implies the desired statement as δ > 0 was chosen arbitrarily. Now note that for any
n ∈ N, ũn ∈ U(Ωn) and all m ∈ N it holds that

E[|jn(Zm, ũn)|1+η] = E[|gn(Zm, ũn)− E[gn(Z1, ũn)]|1+η]

≤ 2η
(
E[|gn(Zm, ũn)|1+η] + |E[gn(Z1, ũn)]|1+η

)
≤ 2η

(
E[|gn(Zm, ũn)|1+η] + E[|gn(Z1, ũn)|1+η]

)
< 2η+1M =: c

by the cr and Jensen’s inequalities, and

E[jn(Zm, ũn)] = 0.
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For any n ∈ N, define the following set of pushforward measures

Pn := {P ′ = (jn(Z1, ũn))(P ) : ũn ∈ U(Ωn)}.

For any P ′ ∈ Pn, let (Ym)m≥1 be a sequence of i.i.d. random variables such that Y1
D
=

jn(Z1, ũn) for some ũn ∈ U(Ωn). Notice that for all n ∈ N and P ′ ∈ Pn it holds that
EP ′ |Y1|1+η < c and EP ′ [Y1] = 0. Thus,

sup
ũn∈U(Ωn)

P

(∣∣∣∣∣ 1n
n∑

m=1

jn(Zm, ũn)

∣∣∣∣∣ > ε

)
= sup

P ′∈Pn
P ′

(∣∣∣∣∣ 1n
n∑

m=1

Ym

∣∣∣∣∣ > ε

)

≤ sup
P ′∈∪kPk

P ′

(∣∣∣∣∣ 1n
n∑

m=1

Ym

∣∣∣∣∣ > ε

)
→n 0,

by the weak uniform law of large numbers, Lemma D.2.

Lemma D.4 (Asymptotic normality of edge weight components) Let for each sam-
ple size n ∈ N, ϕ̂nji denote the estimated conditional mean function ϕji based on the auxiliary

sample X̃n. For any j 6= i and m ≤ n, define

R̂nm,ji := {Xm,i − ϕ̂nji(Xm,j)}, µ̂n,ji :=
1

n

n∑
m=1

R̂2
nm,ji,

Rm,ji := {Xm,i − ϕji(Xm,j)}, µji := E[R2
1,ji],

V̂m,i :=

(
Xm,i −

1

n

n∑
k=1

Xk,i

)2

, ν̂n,i :=
1

n

n∑
m=1

V̂m,i,

νi := Var(X1,i), δ2
n,ji := E[(ϕ̂nji(X1,j)− ϕji(X1,j))

2|X̃n].

Let

Σ̂n :=

[
Σ̂n,R Σ̂n,RV

Σ̂ᵀ
n,RV Σ̂n,V

]
:=

1

n

n∑
m=1

[
R̂2
nm(R̂2

nm)ᵀ − µ̂nµ̂ᵀn R̂2
nmV̂

ᵀ
m − µ̂nν̂ᵀn

V̂m(R̂2
nm)ᵀ − ν̂nµ̂ᵀn V̂mV̂

ᵀ
m − ν̂nν̂ᵀn

]
,

denote the p2× p2 matrix empirical covariance matrix, where the squaring of vectors means
that each entry is squared. Suppose there exists ξ > 0 such that for all j 6= i, the following
three conditions hold:

(i) E‖X‖4+ξ <∞.

(ii) E[|ϕ̂nji(Xj)− ϕji(Xj)|4+ξ|X̃n] = Op(1), as n→∞.

(iii) ∃Σ ∈ Rp2×p2 : Var

([
R̂2
n1 − δ2

n − µ
V̂1 − ν

] ∣∣∣∣X̃n

)
P−→n Σ, where Σ is constant.
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Then we have that Σ̂n
P−→ Σ ∈ Rp2×p2 and

1√
n

n∑
m=1

[
R̂2
nm − δ2

n − µ
V̂m − ν

]
=
√
n

[
µ̂n − δ2

n − µ
ν̂n − ν

]
D−→ N (0,Σ). (34)

Proof of Lemma D.4. We prove the lemma under the assumption that E[X] = 0 under
which the variance estimator simplify to V̂m,i := X2

m,i and ν̂n,i := 1
n

∑n
m=1 V̂m,i for all

1 ≤ i ≤ p. The proof only gets more notionally cumbersome without this assumption.
It should follow in all generality by applying expansion techniques and Slutsky’s theorem
similar to the standard arguments showing asymptotic normality of the regular sample
variance.

Let X̃ denote the auxilliary i.i.d. process such that X̃n is the first n-coordinates of said
process. Note that conditioning ϕ̂nji on X̃ it is equivalent to conditioning on X̃n by the i.i.d.

structure of X̃ and that ϕ̂nji only depends on X̃n. First, we define for all j 6= i, n ∈ N andm ≤
n the following conditional expectation regression error δ̂nm,ji := {ϕji(Xm,j)− ϕ̂nji(Xm,j)}.
Furthermore, for each n ∈ N and m ≤ n define

Ψn(Xm, X̃) :=

[
R̂2
nm − δ2

n − µ
V̂m − ν

]
∈ Rp

2
,

where only X̃n (containing the first n coordinates of X̃) is used, and

ψn(Xm, X̃) :=
1√
n

Ψn(Xm, X̃).

Note that the desired conclusion of Equation (34) follows by verifying condition (a), (b)
and (c) of Lemma D.1. First, we show (a), the conditional mean zero condition. To that
end, note that for any i ∈ {1, . . . , p} and j ∈ {1, . . . , p} \ {i} it holds that

R̂2
nm,ji = (Xm,i − ϕji(Xm,j) + ϕji(Xm,j)− ϕ̂nji(Xm,j))

2

= (Rm,ji + δ̂nm,ji)
2

= R2
m,ji + δ̂2

nm,ji + 2Rm,jiδ̂nm,ji.

Hence, we have that

R̂2
nm,ji − µji − δ2

n,ji = (R2
m,ji − µji) + (δ̂2

nm,ji − δ2
n,ji) + 2Rm,jiδ̂nm,ji. (35)

The terms of Equation (35) are mean zero conditionally on X̃, since E[R2
m,ji|X̃] = E[R2

m,ji] =

µji, E[δ̂2
nm,ji|X̃] = δ2

n,ji and

E[Rm,jiδ̂nm,ji|X̃] = E[E[Rm,jiδ̂nm,ji|X̃, Xm,j ]|X̃]

= E[E[Xm,i − ϕji(Xm,j)|X̃, Xm,j ]δ̂nm,ji|X̃]

= E[(E[Xm,i|Xm,j ]− ϕji(Xm,j))δ̂nm,ji|X̃]

= 0,
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as ϕji(Xm,j) = E[Xm,i|Xm,j ] almost surely. Furthermore,

E[X2
m,i −Var(Xi)|X̃] = E[X2

m,i]−Var(Xi) = 0.

We conclude that

E[ψn(Xm, X̃)|X̃] =
1√
n
E
[[
R̂2
nm − δ2

n − µ
V̂m − ν

] ∣∣∣∣X̃] = 0,

almost surely. With respect to (b), convergence of the sum of variances, we have, by
assumption, that

Σn :=

[
Σn,R Σn,RV

Σᵀ
n,RV Σn,V

]
:= Var

(
Ψn(X1, X̃)|X̃

)
P−→n Σ,

where Σ is a positive semi-definite matrix. Furthermore, we have that (Xm)m≥1 is an i.i.d.
sequence independent of X̃. Therefore,

n∑
m=1

Var(ψn(Xm, X̃)|X̃) =
n∑

m=1

1

n
Var(Ψn(Xm, X̃)|X̃)

=

n∑
m=1

1

n
Σn

= Σn

P−→n Σ.

Finally, we show that condition (c), a conditional Lindeberg-Feller condition, is fulfilled. To
this end, note that with ε := ξ/2 > 0 we have that

E
[
‖ψn(Xm, X̃)‖2+ε

2

∣∣X̃]
= E

[∥∥∥∥ 1√
n

[
R̂2
nm − δ2

n − µ
V̂m − ν

]∥∥∥∥2+ε

2

∣∣∣∣X̃
]

=
1

n
2+ε
2

E

[∥∥∥∥[R̂2
nm − δ2

n − µ
V̂m − ν

]∥∥∥∥2+ε

2

∣∣∣∣X̃
]

≤ 1

n
2+ε
2

2( 2+ε
2
−1)

(∑
i 6=j

E
[
|R̂2

nm,ji − µji − δ2
n,ji|2+ε|X̃

]
+

p∑
i=1

E|X2
m,i −Var(Xi)|2+ε

)
, (36)

by the cr inequality. We now realize that the second factor of Equation (36) is stochastically
bounded. To see this, note that for any j 6= i it holds that

E
[
|R̂2

nm,ji − µji − δ2
n,ji|2+ε|X̃

]
≤ 21+ε(E[|R̂nm,ji|4+2ε|X̃] + µ2+ε

ji + E[|δ2
n,ji(X̃)|2+ε|X̃]).

(37)
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The first term of the upper bound in Equation (37) is Op(1),

E[|R̂nm,ji|4+2ε|X̃] = E[|Xm,i − ϕ̂nji(Xm,j)|4+2ε|X̃]

≤ 23+2ε(E|Xm,i − ϕji(Xm,j)|4+2ε + E[|ϕji(Xm,i)− ϕ̂nji(Xm,j)|4+2ε|X̃])

= 23+2ε(E[|Rm,ji|4+ξ] + E[|δ̂nm,ji|4+ξ|X̃]) = Op(1),

as E‖X‖4+ξ
2 < ∞ and E[|δ̂nm,ji|4+ξ|X̃] = Op(1). This holds because Rm,ji = {Xm,i −

E[Xm,i|Xm,j ]} and both terms are in L4+ξ(P ) if Xm,i ∈ L4+ξ(P ) which is guaranteed as

E‖X‖4+ξ
2 < ∞. For the third term in the upper bound of Equation (37), we note that by

the conditional Jensen’s inequality, we have that

E[|δ2
n,ji|2+ε|X̃] ≤ E[|ϕji(Xm,i)− ϕ̂nji(Xm,j)|4+2ε|X̃] = E[|δ̂nm,ji|4+ξ|X̃] = Op(1),

by assumption. Therefore, we have that

n∑
m=1

E
[
‖Ψn(Xm, X̃)‖2+ε

2

∣∣X̃] ≤ n

n
2+ε
2

Op(1) = n−ε/2Op(1)
P−→n 0,

proving the conditional Lindeberg-Feller condition. By Lemma D.1 it holds that

1√
n

n∑
m=1

ψn(Xm, X̃)
D−→n N (0,Σ).

Now it only remains to prove that

‖Σ̂n − Σn‖
P−→ 0,

or, equivalently, that each entry converges to zero in probability. For example, for the
entries of the first block matrix with j 6= i and l 6= r we prove that

|Σ̂n,R,ji,lr − Σn,R,ji,lr|
P−→ 0.

Now note that the observable estimated covariance matrix entry is given by

Σ̂n,R,ji,lr =
1

n

n∑
m=1

R̂2
nm,jiR̂

2
nm,lr − µ̂n,jiµ̂n,lr,

while the unobservable conditional covariance matrix is given by

Σn,R,ji,lr = E[(R̂2
nm,ji − µji − δ2

n,ji)(R̂
2
nm,lr − µlr − δ2

n,lr)|X̃]

= E[R̂2
nm,jiR̂

2
nm,lr|X̃]− (µji + δ2

n,ji)(µlr + δ2
n,lr)

= E[R̂2
nm,jiR̂

2
nm,lr|X̃]− E[R̂2

nm,ji|X̃]E[R̂2
nm,lr|X̃],
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where we have used that E[R̂2
nm,ji|X̃] = µji + δ2

n,ji; see Equation (35) and its discussion.
Note that the second term of the covariance matrix estimator expands to

µ̂n,jiµ̂n,lr =

(
1

n

n∑
m=1

R̂2
nm,ji

)(
1

n

n∑
m=1

R̂2
nm,lr

)

=

(
1

n

n∑
m=1

R̂2
nm,ji − E[R̂2

nm,ji]

)(
1

n

n∑
m=1

R̂2
nm,lr − E[R̂2

nm,lr]

)
− E[R̂2

nm,ji]E[R̂2
nm,lr]

+
1

n

n∑
m=1

R̂2
nm,jiE[R̂2

nm,lr]

+
1

n

n∑
m=1

R̂2
nm,lrE[R̂2

nm,ji],

Thus

|Σ̂n,R,ji,lr − Σn,R,ji,lr|

=

∣∣∣∣ 1n
n∑

m=1

(R̂2
nm,jiR̂

2
nm,lr − E[R̂2

nm,jiR̂
2
nm,lr|X̃])

−

(
1

n

n∑
m=1

R̂2
nm,ji − E[R̂2

nm,ji|X̃]

)(
1

n

n∑
m=1

R̂2
nm,lr − E[R̂2

nm,lr|X̃]

)

− 1

n

n∑
m=1

(R̂2
nm,jiE[R̂2

nm,lr|X̃]− E[R̂2
nm,ji|X̃]E[R̂2

nm,lr|X̃])

− 1

n

n∑
m=1

(R̂2
nm,lrE[R̂2

nm,ji|X̃]− E[R̂2
nm,ji|X̃]E[R̂2

nm,lr|X̃])

∣∣∣∣. (38)

Each of these terms tends to zero in probability by Lemma D.3. For example, for the first
term of Equation (38) it suffices to show that

E
[
|R̂2

nm,jiR̂
2
nm,lr|1+ε|X̃

]
= Op(1),

for some ε > 0. Fix ε = ξ/4 and note, by the cr-inequality, that

R̂2
nm,jiR̂

2
nm,lr = (Xm,i − ϕ̂nji(Xm,j))

2(Xm,r − ϕ̂nlr(Xm,l))
2

≤ 4(R2
m,ji + δ̂2

nm,ji)(R
2
m,lr + δ̂2

nm,lr).

70



Structure Learning for Directed Trees

Thus, by the cr-inequality and the conditional Cauchy-Schwarz inequality we have, with
c = 41+ε22ε, that

c−1E[|R̂2
nm,jiR̂

2
nm,lr|1+ε|X̃]

≤ c−141+εE[|R2
m,ji + δ̂2

nm,ji|1+ε|R2
m,lr + δ̂2

nm,lr|1+ε|X̃]

≤E[(|Rm,ji|2+2ε + |δ̂nm,ji|2+2ε)(|Rm,lr|2+2ε + |δ̂nm,lr|2+2ε)|X̃]

≤E[|Rm,ji|2+2ε|Rm,lr|2+2ε|X̃] + E[|Rm,ji|2+2ε|δ̂nm,lr|2+2ε|X̃]

+ E[|δ̂nm,ji|2+2ε|Rm,lr|2+2ε|X̃] + E[|δ̂nm,ji|2+2ε|δ̂nm,lr|2+2ε|X̃]

≤E[|Rm,ji|4+ξ]E[|Rm,lr|4+ξ] + E[|Rm,ji|4+ξ]E[|δ̂nm,lr|4+ξ|X̃]

+ E[|δ̂nm,ji|4+ξ|X̃]E[|Rm,lr|4+ξ] + E[|δ̂nm,ji|4+ξ|X̃]E[|δ̂nm,lr|4+ξ|X̃]

=Op(1),

as E[|δ̂nm,ji|4+ξ|X̃] = Op(1) for all j 6= i by assumption and E[|Rm,ji|4+ξ] < ∞ since

E‖X‖4+ξ
2 <∞.

Similar arguments show convergence in probability of the entries in the other block
submatrices of Σ̂n less Σn, yielding the desired conclusion.

Proof of Theorem 10. We prove the theorem under the simplifying assumption that
E[X] = 0 for which we can simplify the variance estimator by V̂m,i := X2

m,i and ν̂n,i :=
1
n

∑n
m=1 V̂m,i for all 1 ≤ i ≤ p.

First, note (using the notation introduced in Lemma D.4) that M̂1 = {R̂2
n1,ji}j 6=i, µ̂ =

µ̂n, ν̂ = ν̂n and Σ̂ = Σ̂n. The conditional mean of M̂1 given X̃n is given by

E[M̂1|X̃n] = E[{R̂2
n1,ji}j 6=i|X̃n] = µ+ δ2

n,

see Equation (35). Similarly we have that E[V̂1|X̃n] = E[V̂1] = ν. Subtracting a constant
(conditional on X̃n) does not change the conditional variance, hence

Var

([
R̂2
n1 − δ2

n − µ
V̂1 − ν

] ∣∣∣∣X̃n

)
= Var

(
(M̂ᵀ

1 , V̂
ᵀ

1 )ᵀ
∣∣∣∣X̃n

)
P−→n Σ.

Σ is constant and positive semi-definite with strictly positive diagonal. As such, the condi-
tions of Lemma D.4 is satisfied, which yields that

1√
n

n∑
m=1

[
R̂2
nm − δ2

n − µ
V̂m − ν

]
=
√
n

[
µ̂− δ2

n − µ
ν̂ − ν

]
D−→n N (0,Σ), (39)

and that

Σ̂ =

[
Σ̂M Σ̂MV

Σ̂ᵀ
MV Σ̂V

]
P−→ Σ =:

[
ΣM ΣMV

Σᵀ
MV ΣV

]
∈ Rp

2×p2 .
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For any j 6= i we denote

ŵji :=
1

2
log

(
µ̂ji
ν̂i

)
, w̃ji :=

1

2
log

(
µ̂ji − δ2

n,ji

ν̂i

)
, wji :=

1

2
log

(
µji
νi

)
,

where the latter is a shorthand notation for the Gaussian edge weight wG
ji. Fix α ∈ (0, 1).

First, consider (j → i) ∈ E and note that

√
n

([
µ̂ji − µji
ν̂i − νi

]
−
[
µ̂ji − δ2

n,ji − µji
ν̂i − νi

])
=
√
n

[
δ2
n,ji

0

]
=
√
n

[
E[δ̂2

nm,ji|X̃n]

0

]
P−→n 0, (40)

by assumption (iv). Hence, Equation (39), Equation (40) and the delta method yields that

√
n (ŵji − wji) =

√
n

(
log

(
µ̂ji
ν̂i

)
− log

(
µji
νi

))
=
√
n(log(µ̂ji)− log(µji)− log(ν̂i) + log(νi))

D−→n N (0, σ2
ji),

where

σ̂2
ji :=

Σ̂M,ji

µ̂2
ji

+
Σ̂V,i

ν̂2
i

− 2
Σ̂MV,ji,i

µ̂jiν̂i

P−→ σ2
ji :=

ΣM,ji

µ2
ji

+
ΣV,i

ν2
i

− 2
ΣMV,ji,i

µjiνi
≥ 0.

Here Σ̂M,ji and Σ̂V,i and their limits use a shorthand notation that denote the corresponding

diagonal element, e.g., Σ̂M,ji := Σ̂M,ji,ji.
An asymptotically valid marginal confidence interval for wji with level α is, by virtue

of the above convergence in distribution, given by

ŵji ± σ̂ji
q(1− α

2 )

2
√
n

,

where q(1− α
2 ) is the 1− α/2 quantile of the standard normal distribution. That is,

P

(
ŵji − σ̂ji

q(1− α
2 )

2
√
n
≤ wji ≤ ŵji + σ̂ji

q(1− α
2 )

2
√
n

)
−→n 1− α.

On the other hand, for any (j → i) 6∈ E we have, by similar arguments, except that no
assumption guarantees that

√
nδ2

n,ji vanishes, that

P

(
w̃ji − σ̃ji

q(1− α
2 )

2
√
n
≤ wji ≤ w̃ji + σ̃ji

q(1− α
2 )

2
√
n

)
−→n 1− α,

where

σ̃2
ji :=

Σ̂M,ji

(µ̂ji − δ2
n,ji)

2
+

Σ̂V,i

ν̂2
i

− 2
Σ̂MV,ji,i

(µ̂ji − δ2
n,ji)ν̂i

P−→ σ2
ji :=

ΣM,ji

µ2
ji

+
ΣV,i

ν2
i

− 2
ΣMV,ji,i

µjiνi
≥ 0,
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by the convergence in Equation (39). Note that σ̃2
ji is not observable since δ2

n,ji is not
observable. Now define

ûα,ji, l̂α,ji := ŵji ± σ̂ji
q
(

1− α
2p(p−1)

)
2
√
n

,

ũα,ji, l̃α,ji := w̃ji ± σ̃ji
q
(

1− α
2p(p−1)

)
2
√
n

,

for all j 6= i. Thus, we have the following Bonferroni corrected simultaneous confidence
interval for the Gaussian edge weights

lim inf
n→∞

P

 ⋂
(j→i)∈E

(
wji ∈

[
l̂α,ji, ûα,ji

]) ⋂
j→i 6∈E

(
wji ∈

[
l̃α,ji, ũα,ji

]) ≥ 1− α.

The above confidence region has the correct asymptotic level, but it is infeasible to compute
in that w̃ji, σ̃ji and E are not directly observable from data. Furthermore, define

C(l̂α, l̃α, ûα, ũα) :=

{
arg min
G̃=(V,Ẽ)∈Tp

∑
(j→i)∈Ẽ

w′ji :∀(j → i) ∈ E , w′ji ∈ [l̂α,ji, ûα,ji],

∀(j → i) 6∈ E , w′ji ∈ [l̃α,ji, ũα,ji]

}
,

and note that this is an unobservable confidence region for the causal graph. That is,

lim inf
n→∞

P (G ∈ C(l̂α, l̃α, ûα, ũα))

≥ lim inf
n→∞

P

 ⋂
(j→i)∈E

(wji ∈ [l̂α,ji, ûα,ji])
⋂

(j→i) 6∈E

(wji ∈ [l̃α,ji, ũα,ji])


≥ 1− α.

Our proposed confidence region has the form

Ĉ := C(l̂α, ûα) :=

{
arg min
G̃=(V,Ẽ)∈Tp

∑
(j→i)∈Ẽ

w′ji :∀j 6= i, w′ji ∈ [l̂α,ji, ûα,ji]

}
,

which corresponds to the biased but computable confidence region

∏
j 6=i

[l̂α,ji, ûα,ji] =
∏
j 6=i

ŵji ± σ̂ji q
(

1− α
2p(p−1)

)
2
√
n

 .
for the Gaussian edge weights, where the product is over all combinations of possible edges
1 ≤ j 6= i ≤ p. The biased confidence region

∏
j 6=i[l̂α,ji, ûα,ji] does not necessarily contain

the population Gaussian edge weights with a probability of at least 1−α in the large sample
limit. However, it can be used to construct a conservative confidence region for the causal
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Jakobsen, Shah, Bühlmann and Peters

graph. To see this, note that by further penalizing the wrong (non-causal) edge weights,
the causal graph still yields the minimum edge weight directed spanning tree. Hence,

lim inf
n→∞

P (G ∈ C(l̂α, ûα))

≥ lim inf
n→∞

P

 ⋂
(j→i)∈E

(wji ∈ [l̂α,ji, ûα,ji])
⋂

(j→i) 6∈E

(wji ∈ [l̃α,ji, ũα,ji])
⋂

(j→i) 6∈E

(ũα,ji ≤ ûα,ji)


≥1− α,

as P (ũα,ji ≤ ûα,ji)→n 1 for all (j → i) 6∈ E by Lemma D.5 below.

Lemma D.5 Suppose that the assumptions of Lemma D.4 hold. It holds that

∀(j → i) 6∈ E ,∀α ∈ (0, 1) : P (ũα,ji ≤ ûα,ji)→n 1.

Proof of Lemma D.5. Fix any (j → i) 6∈ E and α ∈ (0, 1) and note that we want to
show that

ũα,ji ≤ ûα,ji

⇐⇒ w̃ji + c
σ̃ji√
n
≤ ŵji + c

σ̂ji√
n

⇐⇒ 0 ≤ log (µ̂ji) + c
σ̂ji√
n
− log

(
µ̂ji − δ2

n,ji

)
− c σ̃ji√

n

holds with probability converging to one, where c is a strictly positive constant. It suffices
to show that an even smaller quantity is non-negative with probability converging to one.
That is, it suffices to show that

0 ≤ log (µ̂ji) + c
σ̂ji√
n
− log

(
µ̂ji − δ2

n,ji

)
− c

σ̃∗ji√
n
,

with increasing probability, where

σ̃∗ji :=

√
Σ̂M,ji

(µ̂ji − δ2
n,ji)

2
+

Σ̂V,i

ν̂2
i

+ 2
|Σ̂MV,ji,i|

(µ̂ji − δ2
n,ji)ν̂i

≥ σ̃ji,

with P (σ̃∗ji > 0)→n 1. Let dn(t) : [0,∞)→ R denote the random function given by

dn(t) := log (µ̂ji) + c
σ̂ji√
n
− log (µ̂ji − t)

− c√
n

√
Σ̂M,ji

(µ̂ji − t)2
+

Σ̂V,i

ν̂2
i

+ 2
|Σ̂MV,ji,i|
(µ̂ji − t)ν̂i

.

It holds that dn(0) = 0 surely, so by the mean value theorem, the desired conclusion holds
if it with probability one (as n tends to infinity) holds, for all t ∈ [0, δ2

n,ji], that d′n(t) ≥ 0 .
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Now fix η > 0 and choose Mη, ε1, . . . , ε5 > 0 such that the constant lower bounds in the
following inequalities are strictly positive

Ωn(1) : = (µ̂ji ≤Mη),

Ωn(2) : = (ΣM,ji − ε1 ≤ Σ̂M,ji ≤ ΣM,ji + ε1),

Ωn(3) : = (ΣV,i − ε2 ≤ Σ̂V,i ≤ ΣV,i + ε2),

Ωn(4) : = (0 ≤ |Σ̂MV,ji,i| ≤ |ΣMV,ji,i|+ ε3),

Ωn(5) : = (µji − ε4 ≤ µ̂ji − δ2
n,ji ≤ µji + ε4),

Ωn(6) : = (νi − ε5 ≤ ν̂i ≤ νi + ε5),

and lim infn→∞ P (Ωn(1)) > 1− η. This is possible as µ̂ji − δ2
n,ji

P−→n µji > 0 and

δ2
n,ji = E[|δ̂nm,ji|2|X̃] = E[|δ̂nm,ji|

4+ξ
2+ξ/2 |X̃]

≤ E[|δ̂nm,ji|4+ξ|X̃]
1

2+ξ/2 = Op(1),

by the conditional Jensen’s inequality and concavity of [0,∞) 3 x 7→ x
1

2+ξ/2 , which implies
that µ̂ji = (µ̂ji − δ̂2

n,ji − µji) + (δ̂2
n,ji + µji) = op(1) +Op(1) = Op(1). Furthermore, as

Σ̂M,ji
P−→n ΣM,ji > 0, Σ̂V,i

P−→n ΣV,i > 0,

|Σ̂MV,ji,i|
P−→n |ΣMV,ji,i| ≥ 0, ν̂i

P−→n νi > 0,

it holds that

lim sup
n→∞

P

 ⋃
1≤k≤6

Ωn(k)c

 ≤ ∑
1≤k≤6

lim sup
n→∞

P (Ωn(k)c)

= lim sup
n→∞

P (Ωn(1)c) ≤ η.

Here we used that the diagonal elements of the limit covariance matrix are assumed strictly
positive. That µji, νi > 0 follows from the fact that Xi − E[Xi|Xj ] is assumed to have a
density (w.r.t. Lebesgue measure) and that the variables are non-degenerate νi = Var(Xi) >
0. Thus, we have that

lim inf
n→∞

P

 ⋂
1≤k≤6

Ωn(k)

 > 1− η.

Now consider a fixed ω ∈
⋂

1≤k≤6 Ωn(k) and note that with gn : [0, δ2
n,ji] → R given by

gn(t) = µ̂ji − t we have that gn is decreasing and that

gn([0, δ2
n,ji]) ⊂ [µji − ε4, µ̂ji] ⊂ (0,Mη]
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We have for any t ∈ [0, δ2
n,ji] that

d′n(t) =
1

µ̂ji − t
− c√

n

(
Σ̂M,ji

(µ̂ji − t)2
+

Σ̂V,i

ν̂2
i

+
2|Σ̂MV,ji,i|
(µ̂ji − t)ν̂i

)−1/2

×

(
Σ̂M,ji

(µ̂ji − t)3
+
|Σ̂MV,ji,i|

(µ̂ji − t)2ν̂i

)
,

hence,

d′n(t) =
1

µ̂ji − t
− c√

n

(
Σ̂M,ji

gn(t)2
+

Σ̂V,i

ν̂2
i

+
2|Σ̂MV,ji,i|
gn(t)ν̂i

)−1/2

×

(
Σ̂M,ji

gn(t)3
+
|Σ̂MV,ji,i|
gn(t)2ν̂i

)

≥ 1

µ̂ji
− c√

n

(
Σ̂M,ji

µ̂2
ji

+
Σ̂V,i

ν̂2
i

)−1/2

×

(
Σ̂M,ji

(µ̂ji − δ2
n,ji)

3
+

|Σ̂MV,ji,i|
(µ̂ji − δ2

n,ji)
2ν̂i

)

≥ 1

Mη
− c√

n

(
ΣM,ji − ε1

M2
η

+
ΣV,i − ε2

(νi + ε5)2

)−1/2

×
(

ΣM,ji + ε1

(µji − ε4)3
+

|ΣMV,ji,i|+ ε3

(µji − ε4)2(νi − ε5)

)
=:

1

Mη
−
CMη ,ε1,ε2,ε3,ε4,ε5√

n

≥ 0,

for n ≥ (CMη ,ε1,ε2,ε3,ε4,ε5Mη)
2. We conclude that for n ≥ (CMη ,ε1,ε2,ε3,ε4,ε5Mη)

2

P (ũα,ji ≤ ûα,ji) = P

(
0 ≤ log (µ̂ji) + c

σ̂ji√
n
− log

(
µ̂ji − δ2

n,ji

)
− c σ̃ji√

n

)
≥ P

(
∀t ∈ [0, δ2

n,ji] : d′n(t) ≥ 0
)

≥ P

 ⋂
1≤k≤6

Ωn(k)

 .

Hence,

lim inf
n→∞

P (ũα,ji ≤ ûα,ji) ≥ lim inf
n→∞

P

 ⋂
1≤k≤6

Ωn(k)

 ≥ 1− η,

and as η > 0 was chosen arbitrarily, we have the desired conclusion

P (ũα,ji ≤ ûα,ji)→n 1.
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Proof of Theorem 11. Consider a collection of arbitrary and possibly data-dependent
substructures R1,R2, ... and level α ∈ (0, 1). First, we note that the score associated with
two sets of edge weights w1 and w2 is weakly monotone, that is, STp(w1) ≤ STp(w2) if w1

and w2 satisfy the component-wise partial ordering w1 ≤ w2. Furthermore, the restricted
score function w 7→ STp(R)(w) is also weakly monotone for any set of restrictions R.

Let k ∈ N and suppose that the null hypothesis

H0(Rk) : ERk \ E = ∅, E \ Emiss
Rk = ∅, rk = rt(G),

corresponding to the restriction Rk = (ERk , Emiss
Rk , rk) is true.

If there is a graph in ĈBon := Ĉ(l̂α, ûα) satisfying the restrictions imposed by the
substructure Rk, then there exist l̂α ≤ w′ ≤ ûα such that STp(w

′) attains its minimum
value in a graph satisfying Rk. Penalizing (or removing) edges that are not present in the
minimum edge weight directed tree does not affect the score of the minimum edge weigh
directed tree. Hence, it holds that

STp(Rk)(w
′) = STp(w

′).

Monotonicity of STp(Rk) and STp in the edge weights imply that

STp(Rk)(l̂α) ≤ STp(Rk)(w
′) = STp(w

′) ≤ STp(ûα).

Hence, STp(Rk)(l̂α) > STp(ûα) entails that no graph in Ĉ satisfies the restrictions of Rk.
(This is a slightly conservative criterion as STp(Rk)(l̂α) ≤ STp(ûα) does not necessarily

guarantee that a graph in ĈBon satisfies the restrictions of Rk.)
Therefore, if ψCheckC

Rk = 1, then we know that there is no graph in ĈBon satisfying the
restrictions of Rk. As the causal graph G satisfies the restriction Rk we conclude that G is
not contained in ĈBon. Thus for any true Rk we have that

(ψCheckC
Rk = 1) ⊆ (G 6∈ ĈBon).

Since this holds for any true Rk, the conclusion follows by noting that

lim sup
n→∞

P

 ⋃
k:H0(Rk) is true

(ψCheckC
Rk = 1)

 ≤ lim sup
n→∞

P (G 6∈ ĈBon) ≤ α,

where we used Theorem 10.

For the claim about the level guarantee of the ConvB test, let k ∈ N and consider a true
substructure restriction Rk = (ERk , Emiss

Rk , rk). Suppose that G ∈ ĈBon. This implies that

there exist l̂α ≤ w′ ≤ ûα such that STp(w
′) attains its minimum value in a graph satisfying

Rk. Now let w′′ = (w′′ji)j 6=i be given by

w′′ji =

{
ûji if [∃l 6= j : (l→ i) ∈ ERk ] ∨ [(i→ j) ∈ ERk ] ∨ [(j → i) ∈ Emiss

Rk ] ∨ [i = r],

w′ji otherwise,
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where we penalize edges that are in disagreement with the substructure restriction Rk. It
is clear that the MWDST using the edge weights w′ and w′′, i.e., G∗Tp(w

′) and G∗Tp(w
′′), both

satisfy the substructure restriction Rk. However, as w′ is unknown, so is w′′. We lower
bound the unknown w′ by l̂ and define w̌ = (w̌ji)j 6=i as

w̌ji =

{
ûji if [∃l 6= j : (l→ i) ∈ ERk ] ∨ [(i→ j) ∈ ERk ] ∨ [(j → i) ∈ Emiss

Rk ] ∨ [i = r],

l̂ji otherwise,

Now, the MWDST G∗Tp(w̃) may use edges that are in disagreement with Rk or not satisfy

Rk. (For example, consider a three node causal graph V = {1, 2, 3} with edges 1→ 2→ 3
and consider the substructure restriction ERk = {(1 → 2)}. Now it may happen that
l̂12 + l̂23 > l̂13 + û32 or l̂12 + l̂23 > l̂23 + l̂31, that is, the MWDST G∗Tp(w̃) does not satisfy

the substructure restriction.) We now argue that this happens with probability tending to
zero.

By the assumed identifiability, i.e., that Assumption 1 holds, we have that

∆ := min
G̃∈Tp\G

`G(G̃)− `G(G) > 0. (41)

Now consider the events (An)n∈N (that are independent of k) given by

An :=
⋂
j 6=i

(
|l̂ji − wG

ji| <
∆

p− 1

)
, n ∈ N.

We realize that on An it must hold that the MWDST G∗Tp(w̃) satisfies Rk. Thus, for a true
substructure restriction Rk we have that

An ∩ (G ∈ ĈBon) ⊆ (ψConvB
Rk = 0) ⇐⇒ Acn ∪ (G 6∈ ĈBon) ⊇ (ψConvB

Rk = 1),

for all n ∈ N. Hence, we have that

lim sup
n→∞

P

 ⋃
k:H0(Rk) is true

(ψConvB
Rk = 1)

 = lim sup
n→∞

P
(

(G 6∈ ĈBon) ∪Acn
)

≤ lim sup
n→∞

P (G 6∈ ĈBon) + lim sup
n→∞

P (Acn)

≤ α,

by Theorem 10, proving the claim. It only remains to argue that lim supn→∞ P (Acn) = 0.

To that end, note that by Theorem 10 it holds that Σ̂
P−→n Σ and that

√
n

((
µ̂− δ2

n

ν̂

)
−
(
µ
ν

))
D−→n N (0,Σ).

By the strengthened assumptions, i.e., the
√
n-convergence for the non-causal edges, we

have that (see the arguments for the causal edges from Theorem 10)

√
n

((
µ̂
ν̂

)
−
(
µ
ν

))
D−→n N (0,Σ).
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Thus, for any j 6= i, that

ûji, l̂ji =
1

2
log

(
µ̂ji
ν̂i

)
± zα

σ̂ji
2
√
n

P−→n
1

2
log

(
µji
νji

)
= wG

ji, (42)

since µ̂
P−→n µ, ν̂

P−→n ν, and σ̂ji
P−→n σji. The convergence statements in Equation (42)

obviously implies that P (An) →n 1, since ∆ is strictly positive, see Equation (41)). This
concludes the proof.

D.4 Proofs of Section 5

D.4.1 Proofs of first results in Section 5

Proof of Lemma 12. As conditioning reduces entropy we always have that

`CE(G̃, i) = h(Xi|XpaG̃(i)
) = h(Xi − E[Xi|XpaG̃(i)

]|X
paG̃(i)

)

≤ h(Xi − E[Xi|XpaG̃(i)
])

= `E(G̃, i).

Furthermore, note that when conditioning we ‘throw out’ dependence information cap-
tured by the mutual information I(Xi − E[Xi|XpaG̃(i)

];X
paG̃(i)

), which is zero if and only

if Xi − E[Xi|XpaG̃(i)
] ⊥⊥ X

paG̃(i)
. This is especially the case for the true graph, i.e.,

Xi − E[Xi|XpaG(i)] ⊥⊥ XpaG(i), implying that `CE(G, i) = `E(G, i). Consequently, we have
that the local conditional entropy score gap lower bounds the local entropy score gap,

`CE(G̃, i)− `CE(G, i) ≤ `E(G̃, i)− `E(G, i).

Furthermore, from the arguments in the proof of Lemma 6 we have that

`E(G̃, i) = inf
Ñi∼PÑi∈P

h
(
Xi − E

[
Xi|XpaG̃(i)

]
, Ñi

)
≤ inf

Ñi∼PÑi∈PG
h
(
Xi − E

[
Xi|XpaG̃(i)

]
, Ñi

)
= `G(G̃, i) + log(

√
2πe).

If X is generated by a causal additive tree model with Gaussian noise, i.e., with generating
SCM θ = (G, (fi), PN ) with PN ∈ PpG, then `E(G, i) = h(Xi − E[Xi|XpaG(i)]) = h(Ni) =

log(
√

2πeσi) = log(
√

2πe) + 1
2 log(E[N2

i ]) = log(
√

2πe) + lG(G, i), in which case the local
entropy score gap lower bounds the local Gaussian score gap

`E(G̃, i)− `E(G, i) ≤ `G(G̃, i)− `G(G, i).
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Proof of Lemma 13. Note that E[Y |X] = E[f(X) + NY |X] = f(X) + E[NY |X] =
f(X) + E[NY ], since NY ⊥⊥ NX = X. Hence, the score difference can be written as

`E(G̃)− `E(G) = `E(G̃, X)− `E(G, X) + `E(G̃, Y )− `E(G, Y )

=h(X − E(X|Y ))− h(X) + h(Y )− h(Y − E(Y |X))

=h(X − E(X|Y ))− h(X) + h(Y )− h(NY + E[NY ])

=h(X − E(X|Y ))− h(X) + h(Y )− h(NY ),

as the differential entropy is translation invariant. Now note that as NY ⊥⊥ NX it holds
that NY ⊥⊥ f(X), so conditioning on f(X) yields that

h(Y ) = h(Y |f(X)) + I(Y ; f(X))

= h(f(X) +NY |f(X)) + I(Y ; f(X))

= h(NY ) + I(Y ; f(X)).

Similarly, conditioning on X yields that

h(Y ) = h(Y |X) + I(Y ;X)

= h(NY ) + I(Y ;X),

which proves that

I(Y ; f(X)) = I(Y ;X).

This equality is normally derived by restricting f to be bijective, but here it holds regardless
by the structural assignment form, as Y only depends on X through f(X). Furthermore,
we have that

h(X − E[X|Y ]) = I(X − E[X|Y ];Y ) + h(X − E[X|Y ]|Y )

= I(X − E[X|Y ];Y ) + h(X|Y ).

Hence,

h(X − E[X|Y ])− h(X) = I(X − E[X|Y ];Y ) + h(X|Y )− h(X)

= I(X − E[X|Y ];Y )− I(Y ;X).

Thus

`E(G̃)− `E(G) = h(X − E[X|Y ])− h(X) + h(Y )− h(NY )

= I(X − E[X|Y ];Y )− I(Y ;X) + h(NY ) + I(Y ; f(X))− h(NY )

= I(X − E[X|Y ];Y )− I(Y ;X) + I(Y ; f(X))

= I(X − E[X|Y ];Y ),

proving the claim.
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Proof of Proposition 14. As the conditional mean E[X|Y ] vanishes, we have that

`E(G̃)− `E(G) = I(X − E(X|Y );Y )

= I(X;Y )

= I(Y ;X)

= I(Y ; f(X)),

where the last equality was derived in the proof of Lemma 13. Now let f(X)G and NG
Y

be independent normal distributed random variables with the same mean and variance as
f(X) and NY . That is, f(X)G ∼ N (E[f(X)],Var(f(X))), NG

Y ∼ N (E[NY ],Var(NY )) with
NG
Y ⊥⊥ f(X)G such that f(X)G +NG

Y ∼ N (E[f(X)] + E[NY ],Var(f(X)) + Var(NY )).

(a) If DKL(f(X)‖f(X)G) ≤ DKL(NY ‖NG
Y ) then by Lemma C.1 of Silva (2009) we have,

since X ⊥⊥ NY , that

I(Y ; f(X)) = I(f(X) +NY ; f(X)) ≥ I(f(X)G +NG
Y ; f(X)G),

Note, we have equality if and only if f(X) and NY are jointly Gaussian. Furthermore,

I(f(X)G +NG
Y ; f(X)G) = h(f(X)G +NG

Y )− h(f(X)G +NG
Y |f(X)G)

= h(f(X)G +NG
Y )− h(NG

Y )

= log(
√

2π(Var(f(X)) + Var(NY )))− log(
√

2πVar(NY ))

=
1

2
log

(
Var(f(X)) + Var(NY )

Var(NY )

)
=

1

2
log

(
1 +

Var(f(X))

Var(NY )

)
.

(b) If f(X)+NY is log-concave distributed, then by Theorem 3 of Marsiglietti and Kostina
(2018) we have that

h(f(X) +NY ) ≥ 1

2
log (4Var(f(X) +NY )) =

1

2
log (4(Var(f(X)) + Var(NY )) .

Furthermore, it is well known that for fixed variance, the normal distribution maxi-
mizes entropy, hence

h(NY ) ≤ h(NG
Y ) =

1

2
log (2πVar(NY )) .

Therefore, we get that

I(Y ; f(X)) = I(f(X) +NY ; f(X))

= h(f(X) +NY )− h(f(X) +NY |f(X))

= h(f(X) +NY )− h(NY )

≥ 1

2
log (4(Var(f(X)) + Var(NY ))− 1

2
log (2πeVar(NY ))

=
1

2
log

(
2

πe
+

2

πe

Var(f(X))

Var(NY )

)
,
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which yields a strictly positive lower bound if and only if

2

πe
+

2

πe

Var(f(X))

Var(NY )
> 1 ⇐⇒ Var(f(X))

Var(NY )
>
πe

2
− 1 ≈ 3.27.

Lemma D.6 Two different but Markov equivalent trees G̃ and Ĝ share the exact same edges
except for a single reversed directed path between the two root nodes of the graphs,

Ĝ : c1 → c2 → · · · → cr−1 → cr,

G̃ : cr → cr−1 → · · · → c2 → c1,

with c1 = rt(Ĝ) and cr = rt(G̃).

Proof of Lemma D.6. First, note that there always exists a unique directed path in Ĝ
from rt(Ĝ) to rt(G̃)

Ĝ : rt(Ĝ) = c1 → · · · → cr−1 → cr = rt(G̃).

Since G̃ and Ĝ are Markov equivalent, they share the same skeleton, so in G̃ the above path
must be reversed. That is, there exists a unique directed path in G̃ from rt(G̃) to rt(Ĝ)
given by

G̃ : rt(G̃) = cr → cr−1 → · · · → c1 = rt(Ĝ),

If r = p we are done, so assume r < p. As Ĝ is a directed tree there must exists a node z2

which is not a part of the above path but is a child of a node in the path. That is, there
exists a node z1 ∈ {c1, . . . , cr} such that Ĝ contains the edge

Ĝ : z1 → z2.

Furthermore, by equality of skeleton, this edge must also be present in G̃,

G̃ : z1 − z2.

Assume for contradiction that z2 → z1 in G̃. As such, it must hold that z1 = cr = rt(G̃) for
otherwise if z1 ∈ {c1, . . . , cr−1} then z1 would have two parents in G̃, a contradiction since
G̃ is a directed tree. However, if z1 = cr = rt(G̃) then there is an incoming edge into the
root node, a contradiction. We conclude that the directed edge z1 → z2 also is present in
G̃.

Any paths further out on this branch will coincide in both graphs for otherwise there
exists nodes with two parents. These arguments show that any paths branching out from
the main reversed path will coincide in both Ĝ and G̃. Thus, the two graphs coincide up to
a directed path between root nodes that is reversed.
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Proof of Proposition 15. By Lemma D.6 there exists a path reversal

G : rt(G) = c1 → c2 → · · · → cr−1 → cr = rt(G̃),

G̃ : rt(G̃) = cr → cr−1 → · · · → c2 → c1 = rt(G),

while all other edges in G = (V, E) and G̃ = (V, Ẽ) coincide. Hence, the entropy score
difference reduces to

`E(G̃)− `E(G) = h(Xrt(G̃)) +
∑

(j,i)∈Ẽ

h(Xi − E[Xi|Xj ])

− h(Xrt(G))−
∑

(j,i)∈E

h(Xi − E[Xi|Xj ])

= h(Xcr) +

r−1∑
i=1

h(Xci − E[Xci |Xci+1 ])

− h(Xc1)−
r∑
i=2

h(Xci − E[Xci |Xci−1 ]).

Note that

h(Xcr)− h(Xc1) =

r∑
i=2

h(Xci)−
r−1∑
i=1

h(Xci) =

r−1∑
i=1

h(Xci+1)− h(Xci).

Hence,

`E(G̃)− `E(G)

=
r−1∑
i=1

h(Xci − E[Xci |Xci+1 ]) + h(Xci+1)− h(Xci+1 − E[Xci+1 |Xci ])− h(Xci)

=
r−1∑
i=1

∆`E(ci −→L99 ci+1)

≥ min
1≤i≤r−1

∆`E(ci −→L99 ci+1),

which concludes the proof.

D.4.2 Proof of Theorem 16

We first describe the graphs that result from the reduction technique described in 5.3. To
do so, define

L(G, G̃) := {L ∈ VR : chGR(L) = ∅ ∧ (paG̃R(L) 6= paGR(L) ∨ chG̃R(L) 6= ∅)},

83



Jakobsen, Shah, Bühlmann and Peters

containing the sink nodes in GR that are either not sink nodes in G̃R or sink nodes in G̃R
with different parents: paGR(L) 6= paG̃R(L). Now fix any L ∈ L(G, G̃) ⊂ VR and note that
its only parent in GR, paGR(L), is either also a parent of L, a child of L or not adjacent to
L, in G̃R. That is, one and only one of the following sets is non-empty

Z(L) : = paGR(L) ∩ paG̃R(L), (‘staying parents’)

Y (L) : = paGR(L) ∩ chG̃R(L), (‘parents to children’)

W (L) : = paGR(L) ∩ (V \ {L ∪ chG̃R(L) ∪ paG̃R(L)}) (‘removing parents’)

We define the G̃R parent and children of L that are not adjacent to L in GR as

D(L) : = paG̃R(L) ∩ (V \ {L ∪ chGR(L) ∪ paGR(L)}), and

O(L) : = chG̃R(L) ∩ (V \ {L ∪ chGR(L) ∪ paGR(L)}),

respectively. All such sets contain at most one node and by slight abuse of notation, we use
the same letters to refer to the nodes. We will henceforth suppress the dependence on L if
the choice is clear from the context. Figure 2 visualizes the above sets.

Now partition Tp \ {G} into the three following disjoint partitions for which there exists
a reduced graph sink node L ∈ L(G, G̃) such that W (L), Y (L) and Z(L) is non-empty,
respectively. That is, we define

Tp(G,W ) : = {G̃ ∈ Tp \ {G} : ∃L ∈ L(G, G̃) s.t. W (L) 6= ∅},
Tp(G, Y ) : = {G̃ ∈ Tp \ {G} : ∃L ∈ L(G, G̃) s.t. Y (L) 6= ∅} \ Tp(G,W ),

Tp(G, Z) : = {G̃ ∈ Tp \ {G} : ∃L ∈ L(G, G̃) s.t. Z(L) 6= ∅} \ (Tp(G,W ) ∪ Tp(G, Y )).

Using that Tp(G,W ) ∪ Tp(G, Y ) ∪ Tp(G, Z) = Tp(G), we can now find a lower bound for the
score gap that holds uniformly over all alternative directed tree graphs Tp \ {G}:

min
G̃∈Tp\{G}

`E(G̃)− `E(G) = min

{
min

G̃∈Tp(G,Z)
`E(G̃)− `E(G),

min
G̃∈Tp(G,W )

`E(G̃)− `E(G), min
G̃∈Tp(G,Y )

`E(G̃)− `E(G)

}
.

We now turn to each of these three terms individually and first consider alternative graphs
in the partitioning Tp(G, Z). The following lower bound consists of possibly non-localized
conditional dependence properties of the observable distribution PX . (That is, the bound
may involve nodes that are not close to each other in the graph G.)

Lemma D.7 Let ΠZ(G) denote all tuples (z, l, o) ∈ V 3 of adjacent nodes (z → l) ∈ E for
which there exists a node o ∈ ndG(l) \ {z, l}. It holds that

min
G̃∈Tp(G,Z)

`E(G̃)− `E(G) ≥ min
(z,l,o)∈ΠZ(G)

I(Xz;Xo|Xl).

The next result proves a lower bound that holds uniformly over all alternative graphs in
Tp(G,W ). The lower bound consists only of local conditional dependence properties. That
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is, for any subgraph of the causal graph G of the form Xo → Xw → Xl or Xo ← Xw → Xl

we measure, by means of conditional mutual information, the conditional dependence of the
two adjacent nodes Xw and Xl conditional on Xo, I(Xw;Xl|Xo). The lower bound consists
of the smallest of all such local conditional dependence measures.

Lemma D.8 Let ΠW (G) denote all tuples (w, l, o) ∈ V 3 of adjacent nodes (w → l) ∈ E
and o ∈ (chG(w) \ {l}) ∪ paG(w). It holds that that

min
G̃∈Tp(G,W )

`E(G̃)− `E(G) ≥ min
(w,l,o)∈ΠW (G)

I(Xw;Xl|Xo).

A uniform lower bound of the score gap over all alternative graphs in the final partition
Tp(G, Y ) is given by the smallest edge-reversal of any edge in the causal graph G.

Lemma D.9 It holds that

min
G̃∈Tp(G,Y )

`E(G̃)− `E(G) ≥ min
(j→i)∈E

∆`E(j −→L99 i).

An immediate consequence of Lemmas D.7 to D.9 is that the entropy identifiability gap
is given by the smallest of the lower bounds derived for each partition, see Theorem 16.
Thus, it only remains to prove Lemmas D.7 to D.9.

Proof of Lemma D.7. Let G̃ ∈ ΠZ(G) such that Z 6= ∅. This implies that Y = W = ∅
as L can only have one parent in G. Furthermore, D = ∅ as L can only have one parent
in G̃ and O 6= ∅ for otherwise L would have been deleted by the deletion procedure in
Section 5. Assume without loss of generality that O = {O1, . . . , Ok} for some k ∈ N. The
two subgraphs are illustrated in Figure 16.

V1 = {Z,L}c

Z L

GR

Ṽ1 = {Z,L,O,A1, . . . ,Ak}c

Z L ...

O1

Ok

A1

Ak

G̃R

Figure 16: Illustration of the reduced form graphs GR and G̃R for the case G̃ ∈ ΠZ(G).
A1, . . . ,Ak are possibly empty sets of nodes, and dashed rectangle nodes denotes a possibly
multi-node subgraph over the variables enclosed. The bi-directed edges means that the
edge can be directed in both directions. An edge pointing into the multi-node subgraph,
can possibly be multiple edges into distinct nodes of the subgraph.
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For ease of notation, fix any 1 ≤ i ≤ k and denote O := Oi. We note that in G̃ the
following d-separation holds

Z ⊥⊥G̃O |L.

Thus, we have for all probability measures Q ∈ {G̃}×F(G̃)×Pp over nodes V that Z ⊥⊥ O |L
(as the path between Z and O is blocked by L and all probability measures generated in
accordance with an SCM are Markovian with respect to the generating graph G̃). Recall
that

`E(G̃)− `E(G) = inf
Q∈{G̃}×F(G̃)×Pp

DKL(PX‖Q)

= inf
Q∈{G̃}×F(G̃)×Pp

h(PX , Q)− h(PX).

Now fixQ = q·λp ∈ {G̃}×F(G̃)×Pp and note that it factorizes asQ = QA|Z,O,LQZ|LQO|LQL,
i.e., the density q factorizes as

q(x) = qA|Z,O,L(a|z, o, l)qZ,O,L(z, o, l)

= qA|Z,O,L(a|z, o, l)qZ|L(z|l)qO|L(o|l)qL(l),

for λp-almost all x = (a, z, o, l) ∈ Rp where A = V \ {Z,O,L}. Hence, the cross entropy
splits additively into

h(PX , Q) ≥ E[− log(qA|Z,O,L(A|Z,O,L))]

+ E[− log(qZ|L(Z|L))]

+ E[− log(qO|L(O|L))]

+ E[− log(qL(L))]. (43)

Now note, e.g., that for a conditional distribution (Markov kernel) QZ|L it holds that

0 ≤ DKL(PZ|LPL‖QZ|LPL) = E
[
− log

(
qZ|L(Z|L)pL(L)

pZ|L(Z|L)pL(L)

)]
= E[− log(qZ|L(Z|L))]− E[− log(pZ|L(Z|L))],

proving that
E[− log(qZ|L(Z|L))] ≥ E[− log(pZ|L(Z|L))].

By similar arguments, we get that the three other terms in the lower bound of Equation (43)
are bounded below by

E[− log(qA|Z,O,L(A|Z,O,L))] ≥ E[− log(pA|Z,O,L(A|Z,O,L))],

E[− log(qO|L(O|L))] ≥ E[− log(pO|L(O|L))],

E[− log(qL(L))] ≥ E[− log(pL(L))].

This implies that

inf
Q∈{G̃}×F(G̃)×Pp

h(PX , Q) ≥ h(PX , Q
∗),
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where Q∗ = PA|Z,O,LPZ|LPO|LPL. On the other hand, we know that PX factorizes as
PX = PA|Z,O,LPZ,O|LPL. Thus we have the following entropy score gap lower bound

`E(G̃)− `E(G) ≥ h(PX , Q
∗)− h(PX)

= DKL(PX‖Q∗)
= DKL(PA|Z,O,LPZ,O|LPL‖PA|Z,O,LPZ|LPO|LPL)

= DKL(PZ,O|LPL‖PZ|LPO|LPL)

= DKL(PZ,O|L‖PZ|LPO|L|PL)

= I(Z;O|L).

ΠZ(G) denotes all tuples (z, l, o) ∈ V 3 of adjacent nodes (z → l) ∈ E for which there exists
a node o ∈ ndG(l) \ {z, l}. For any graph G̃ ∈ Tp(G, Z) we can, by the above considerations,
find a tuple (z, l, o) ∈ ΠZ(G) such that

`E(G̃)− `E(G) ≥ I(Xo;Xz |Xl).

We conclude that

min
G̃∈Tp(G,Z)

`E(G̃)− `E(G) ≥ min
(z,l,o)∈ΠZ(G)

I(Xo;Xz|Xl).

Proof of Lemma D.8. Fix any G̃ ∈ Tp(G,W ) and L withW 6= ∅ such that Z = Y = ∅. We
have illustrated the subgraph GR in Figure 17 and the possible subgraphs G̃R in Figure 18.

{W,L}c W L

GR

Figure 17: Illustrations of the GR subgraph for for G̃ ∈ Tp(G,W ).

Note that for any of the three possible local graph structures presented in Figure 18
there exists an A ∈ {O1, . . . , Ok, D} such that L⊥⊥G̃RW |A, i.e., A blocks the path between

L and W . Thus, for all probability measures Q ∈ {G̃}×F(G̃)×Pp over nodes V = {1, .., p}
it always holds that L ⊥⊥W |A. By arguments similar to those in the proof of Lemma D.7,
we note that

`E(G̃)− `E(G) = inf
Q∈{G̃}×F(G̃)×Pp

h(PX , Q)− h(PX),

and that

inf
Q∈{G̃}×F(G̃)×Pp

h(PX , Q) ≥ h(PX , Q
∗),
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L ...

O1

Ok

A1

Ak

G̃R: D = ∅, O 6= ∅

{L,D}c D L

G̃R: D 6= ∅, O = ∅

{D,L,O,A1, . . . ,Ak}c D L ...

O1

Ok

A1

Ak

G̃R: D 6= ∅, O 6= ∅

Figure 18: Illustrations of the possible G̃R subgraphs for G̃ ∈ Tp(G,W ).

for PX = PK|W,L,APW,L|APA and Q∗ = PK|W,L,APL|APW |APA where K = V \{W,L,A}. To
that end, we now have that

`E(G̃)− `E(G) ≥ h(PX , Q
∗)− h(PX)

= DKL(PX‖Q∗)
= DKL(PK|W,L,APW,L|APA‖PK|W,L,APL|APW |APA)

= DKL(PW,L|APA‖PL|APW |APA)

= DKL(PW,L|A‖PL|APW |A|PA)

= I(W ;L|A).

Let Π̂W (G) denote all tuples (w, l, a) ∈ V 3 of adjacent nodes (w → l) ∈ E for which there
exists a node a ∈ ndG(l) \ {w}. Now note that for any graph G̃ ∈ Tp(G,W ) we can, by the
above considerations, find a tuple (w, l, a) ∈ Π̂W (G) such that

`E(G̃)− `E(G) ≥ I(Xw;Xl |Xa). (44)

(Conversely for any tuple (w, l, a) ∈ Π̂W (G) we can construct a graph G̃ ∈ Tp(G,W ) such
that (44) holds. To see this, fix (w, l, a) ∈ Π̂W (G) and construct G̃ such that the subtree
with root node l is identical in both G and G̃ and a blocks the path between l and w in G̃.)
Therefore, the following lower bound holds (and it is not unnecessarily small).

min
G̃∈Tp(G,W )

`E(G̃)− `E(G) ≥ min
(w,l,a)∈Π̂W (G)

I(Xw;Xl |Xa).

For any (w, l, a) ∈ Π̂W (G) it either holds that a ∈ (chG(w) \ {l}) ∪ paG(w) or that there
exists an o ∈ (chG(w) \ {l}) ∪ paG(w) blocking the path between a and l in G such that
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Xl ⊥⊥ Xa|Xo. Furthermore, we note that as Xl ⊥⊥ (Xo, Xa) |Xw we have that

I(Xw;Xl|Xa) = h(Xl|Xa)− h(Xl|Xa, Xw)

= h(Xl|Xa)− h(Xl|Xw)

= h(Xl|Xa)− h(Xl|Xo, Xw)

≥ h(Xl|Xa, Xo)− h(Xl|Xo, Xw)

= h(Xl|Xo)− h(Xl|Xo, Xw)

= I(Xw;Xl |Xo),

as further conditioning reduces conditional entropy. Let ΠW (G) denote all tuples (w, l, o) ∈
V 3 of adjacent nodes (w → l) ∈ E and o ∈ (chG(w) \ {l})∪ paG(w). By the above consider-
ations we conclude that

min
G̃∈Tp(G,W )

`E(G̃)− `E(G) ≥ min
(w,l,o)∈ΠW (G)

I(Xw;Xl |Xo).

Proof of Lemma D.9. Fix G̃ ∈ Tp(G, Y ) and L such that Y 6= ∅. It holds that W = Z = ∅.
We have illustrated the GR in Figure 19 and the three possible subgraphs G̃R in Figure 20.

{Y,L}c Y L

GR

Figure 19: Illustrations of the GR subgraph for G̃ ∈ Tp(G, Y ).

Note that for any of the three possible local graph structures of G̃R illustrated in
Figure 20 we have that for all probability measures Q ∈ {G̃} × F(G̃) × Pp factorizes as
QA|L,YQL,Y , where A = V \ {L, Y }. It always holds that QL,Y is the distribution of (L̃, Ỹ )
generated in accordance with a structural causal model of the form

Ỹ := f̃Y (L̃) + ÑY , (45)

where f̃Y (l) = E[Y |L = l] for all l ∈ R, and any L(ÑY ),L(L̃) ∈ P with ÑY ⊥⊥ L̃. Now
recall that

`E(G̃)− `E(G) = inf
Q∈{G̃}×F(G̃)×Pp

h(PX , Q)− h(PX),

and notice that by arguments similar to those in the proof of Lemma D.7 we get

h(PX , Q) = h(PX , QA|L,YQL,Y )

= E[− log(qA|L,Y (A|L, Y ))] + h(PL,Y , QL,Y )

≥ E[− log(pA|L,Y (A|L, Y ))] + h(PL,Y , QL,Y ),
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{Y,L,O}c

LY O

G̃R: D = ∅, O 6= ∅

{Y, L,D}c D L Y

G̃R: D 6= ∅, O = ∅

{D,L, Y,O,A,B}c

D L

Y

O

A

B

G̃R: D 6= ∅, O 6= ∅

Figure 20: Illustrations of the possible G̃R subgraphs for G̃ ∈ Tp(G, Y ).

and that h(PX) = E[− log(pA|L,Y (A|L, Y ))] + h(PL,Y ). Thus, we have that

`E(G̃)− `E(G) ≥ inf
Q∈{G̃}×F(G̃)×Pp

h(PL,Y , QL,Y )− h(PL,Y ).

For any Q = QA|L,YQL,Y ∈ {G̃} × F(G̃) × Pp we have that QL,Y is uniquely determined

by a marginal distribution QL ∈ P and the noise distribution of ÑY ∼ qÑY · λ ∈ P from

the additive noise structural assignment in Equation (45) for Ỹ and the causal function f̃Y .
Thus, the density qL,Y of QL,Y is given by

qL,Y (l, y) = qY |L(y|l)qL(l) = qÑY (y − f̃Y (l))qL(l) = qÑY (y − E[Y |L = l])qL(l).

Hence,

h(PL,Y , QL,Y ) = E [− log (qL,Y (L, Y ))]

= E
[
− log

(
qY |L(Y |L)

)]
+ E [− log (qL(L))]

= E
[
− log

(
qÑY (Y − E[Y |L])

)]
+ h(PL, QL)

= h(Y − E[Y |L], ÑY ) + h(PL, QL)

≥ h(Y − E[Y |L]) + h(L),

where we used that h(P,Q) = DKL(P,Q) + h(P ) ≥ h(P ). Thus, we have that

`E(G̃)− `E(G) ≥ inf
Q∈{G̃}×F(G̃)×Pp

h(PL,Y , QL,Y )− h(PL,Y )

≥ h(Y − E[Y |L]) + h(L)− h(L− E[L|Y ])− h(Y )

= ∆`E(Y −→L99 L).
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We conclude that

min
G̃∈Tp(G,Y )

`E(G̃)− `E(G) ≥ min
(i→j)∈E

∆`E(j −→L99 i).

D.4.3 Remaining proof of Section 5

Proof of Theorem 17.
Consider a graph G̃ ∈ Tp(G, Z) and let GR,1 = (ER,1, VR,1) and G̃R,1 = (ẼR,1, VR,1) be

the reduced graphs after the initial edge and node deletion procedure of Section 5.3. The
deletion procedure does not change the score gap, that is,

`G(G̃)− `G(G) = `G(G̃R,1)− `G(GR,1).

For any i ≥ 1 and fixed GR,i and G̃R,i we define

LR,i := {L ∈ VR,i : chGR,i(L) = ∅ ∧ (paG̃R,i(L) 6= paGR,i(L) ∨ chG̃R,i(L) 6= ∅)}.

Now fix L1 ∈ LR,1 such that Z1 6= ∅, where Y1, Z1,W1, D1 and O1 are defined similarly to
the variables in Section 5. Let O1 = {O1,1, . . . , O1,k1}, for some k1 ∈ N.

Assume that there exists an i ∈ {1, . . . , k1} such that (Z1 → O1,i) ∈ ER,1 in which case
we have the following two paths in GR,1 and G̃R,1

GR,1 : O1,i ← Z1 → L1, and G̃R,1 : Z1 → L1 → O1,i.

Since O1,i ⊥⊥ G̃R,1Z1 |L1, an entropy score gap lower bound is given by

`G(G̃R,1)− `G(GR,1) ≥ `E(G̃R,1)− `E(GR,1)

= inf
Q∈{G̃}×F(G̃)×Pp

h(PX , Q)− PX

≥ DKL(PX‖Q∗)
= I(O1,i;Z1|L1),

with PX = PK|O,Z,LPO,Z|LPL and Q∗ = PK|O,Z,LPZ|LPO|LPL for K = V \ {O,Z,L}, by
arguments similar to those from the proof of Lemma D.8. Now note that (Z1, O1,i, L1) ∈
ΠW (GR,1) ⊆ ΠW (G) as (Z1 → O1,i) ∈ ER,1 and L1 ∈ chGR,1(Z1) \ {O1,i} ⊆ (chGR,1(Z1) \
{O1,i}) ∪ paGR,1(Z1). Hence,

`G(G̃R,1)− `G(GR,1) ≥ min
(w,l,o)∈ΠW (G)

I(Xw;Xl|Xo). (46)

Assume now that for all i ∈ {1, .., k1} we have (Z1 → O1,i) 6∈ ER,1. Let ĜR,1 = (ÊR,1, VR,1)

denote an intermediate graph where ÊR,1 is identical to ẼR,1 except the edges {(L1 → O1,i) :
1 ≤ i ≤ k1} ⊂ ẼR,1 are replaced by the edges {(Z1 → O1,i) : 1 ≤ i ≤ k1}. It holds that

`G(G̃R,1)− `G(GR,1) = `G(G̃R,1)− `G(ĜR,1) + `G(ĜR,1)− `G(GR,1)

≥ `G(ĜR,1)− `G(GR,1).
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Note that this score gap lower bound is still strictly positive as ĜR,1 6= GR,1. To realize the
last inequality, simply note that as O1,i ⊥⊥ L1 |Z1 we have for all i ∈ {1, . . . , k1} that

2`G(G̃R,1, O1,i) = logE[(O1,i − E[O1,i|L1])2]

≥ logE[(O1,i − E[O1,i|Z1, L1])2]

= logE[(O1,i − E[O1,i|Z1])2]

= 2`G(ĜR,1, O1,i). (47)

Now since all edges in G̃R,1 and ĜR,1 coincide except the incoming edges into O1,1, . . . , O1,k1

we get that

`G(G̃R,1)− `G(ĜR,1) =

k1∑
i=1

`G(G̃R,1, O1,i)− `G(ĜR,1, O1,i) ≥ 0,

where the inequality follows from Equation (47). Now both ĜR,1 and GR,1 have a childless
node L1 with the same parent Z1, so we let G̃R,2 and GR,2 denote these two graphs where
the node L1 and its incoming edge are deleted. This deletion does not change the graph
scores, i.e.,

`G(ĜR,1)− `G(GR,1) = `G(G̃R,2)− `G(GR,2).

Now fix L2 ∈ LR,2 and define Y2, Z2,W2, D2 and O2 = {O2,1, . . . , O2,k2} accordingly.
If either Y2 or W2 is non-empty, we use the score gap lower bound previously discussed

in Lemma D.8 and Lemma D.9. If Z2 is non-empty, we can repeat the above procedure and
iteratively move edges and delete nodes until we arrive at the first i ∈ N with G̃R,i and GR,i
being the iteratively reduced graphs and LR,i ∈ LR,i where either

i) Yi or Wi is non-empty, here, we get that `G(G̃)− `G(G) is lower bounded by a bound
similar to the form of Lemma D.8 or Lemma D.9. That is,

`G(G̃R,i)− `G(GR,i) ≥ `E(G̃R,i)− `E(GR,i)

≥ min

{
min
j→i∈E

∆`E(i −→L99 j), min
(w,l,o)∈ΠW (G)

I(Xw;Xl |Xo)

}
.

ii) Zi is non-empty and there exists a j ∈ {1, . . . , ki} such that (Zi → Oi,j) ∈ GR,i. As
previously argued, the score gap lower bound of Equation (46) applies. That is

`G(G̃R,i)− `G(GR,i) ≥ `E(G̃R,i)− `E(GR,i) ≥ min
(w,l,o)∈ΠW (G)

I(Xw;Xl |Xo).

Note that whenever we do not meet scenario i) or ii) we remove a node in both graphs that
is a sink node in the reduced true causal graph GR,i and the intermediate graph ĜR,i. After
at most p − 2 graph reduction iterations of not encountering scenario i) or ii) we are left
with two different graphs on two nodes, in which case the score gap is an edge reversal. We
conclude that

`G(G̃)− `G(G) ≥ min

{
min
i→j∈E

∆`E(j −→L99 i), min
(w,l,o)∈ΠW (G)

I(Xw;Xl |Xo)

}
.
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C. Uhler, G. Raskutti, P. Bühlmann, and B. Yu. Geometry of the faithfulness assumption in
causal inference. The Annals of Statistics, 41(2):436–463, 2013. doi: 10.1214/12-aos1080.

96

oeis.org/A003024
oeis.org/A003024
github.com/atofigh/edmonds-alg
github.com/atofigh/edmonds-alg


Structure Learning for Directed Trees

P. van Beek and H.-F. Hoffmann. Machine learning of Bayesian networks using constraint
programming. In G. Pesant, editor, Principles and Practice of Constraint Programming,
pages 429–445, Cham, 2015. Springer International Publishing.

A. W. Van der Vaart. Asymptotic statistics. Cambridge University Press, Cambridge, UK,
3 edition, 2000.

S. Wood. CRAN R-package ‘mgcv’: Mixed GAM Computation Vehicle with
GCV/AIC/REML smoothness estimation, 2022. URL cran.r-project.org/web/

packages/mgcv.

S. N. Wood. Thin-plate regression splines. Journal of the Royal Statistical Society (B), 65
(1):95–114, 2003.

C. Yuan and B. Malone. Learning optimal Bayesian networks: A shortest path perspective.
Journal of Artificial Intelligence Research, 48:23–65, 2013.

C. Yuan, B. Malone, and X. Wu. Learning optimal Bayesian networks using a* search. In
Twenty-Second International Joint Conference on Artificial Intelligence, 2011.

J. Zhang and P. Spirtes. Strong faithfulness and uniform consistency in causal inference. In
Proceedings of the Nineteenth Conference on Uncertainty in Artificial Intelligence, page
632–639, 2002.

K. Zhang and A. Hyvärinen. On the identifiability of the post-nonlinear causal model.
In Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence,
page 647–655, 2009.

X. Zheng, B. Aragam, P. Ravikumar, and E. P. Xing. DAGs with no tears: Continuous
optimization for structure learning. In Proceedings of the 32nd International Conference
on Neural Information Processing Systems, page 9492–9503, 2018.

97

cran.r-project.org/web/packages/mgcv
cran.r-project.org/web/packages/mgcv

	Introduction
	Contributions
	Related Constraint-based Approaches
	Organization of the Paper

	Score-based Learning and Identifiability of Trees 
	Identifiability of Causal Additive Tree Models
	Score Functions

	Causal Additive Trees (CAT)
	An Oracle Algorithm
	Finite Sample Algorithm
	Consistency
	Consistency under Vanishing Identifiability


	Hypothesis Testing
	Confidence Region for the Causal Tree
	Testing of Substructures
	Substructure Hypotheses
	 Checking the Confidence Region
	Converging Bounds


	Bounding the Identifiability Gap
	Bivariate Models
	Multivariate Markov Equivalent Trees
	General Multivariate Trees 
	Gaussian Multivariate Trees

	Simulation Experiments
	Causal Structure Learning for Trees
	Tree Generation Schemes
	Gaussian Experiment
	Non-Gaussian Experiment

	Robustness: CAT on DAGs
	Hypothesis Testing
	Identifiability Gap
	Bivariate Identifiability Gap
	Multivariate Identifiability Gap


	Empirical Application
	Summary and Future Work
	Graph Terminology
	Further Details on Section 5
	Further Details on the Simulation Experiments
	Tree Generation Algorithms
	Additional Illustrations

	Proofs
	Proofs of Section 2
	Proofs of Section 3
	Proofs of Section 4
	Proofs of Section 5
	Proofs of first results in Section 5
	Proof of lm:thm:scoreGapEntropy
	Remaining proof of Section 5



