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Abstract

Statistical divergences (SDs), which quantify the dissimilarity between probability distri-
butions, are a basic constituent of statistical inference and machine learning. A modern
method for estimating those divergences relies on parametrizing an empirical variational
form by a neural network (NN) and optimizing over parameter space. Such neural es-
timators are abundantly used in practice, but corresponding performance guarantees are
partial and call for further exploration. We establish non-asymptotic absolute error bounds
for a neural estimator realized by a shallow NN, focusing on four popular f-divergences—
Kullback-Leibler, chi-squared, squared Hellinger, and total variation. Our analysis relies on
non-asymptotic function approximation theorems and tools from empirical process theory
to bound the two sources of error involved: function approximation and empirical estima-
tion. The bounds characterize the effective error in terms of NN size and the number of
samples, and reveal scaling rates that ensure consistency. For compactly supported distri-
butions, we further show that neural estimators of the first three divergences above with
appropriate NN growth-rate are minimax rate-optimal, achieving the parametric conver-
gence rate.

Keywords: Approximation theory, minimax estimation, empirical process theory, f-
divergence, neural estimation, neural network, statistical divergence, variational form.

1. Introduction

Statistical divergences (SDs) measure the discrepancy between probability distributions. A
variety of inference tasks, from generative modeling (Kingma and Welling, 2014; Nowozin
et al., 2016; Arjovsky et al., 2017; Tolstikhin et al., 2018; Goldfeld et al., 2020a; Nietert
et al., 2021) to homogeneity/goodness-of-fit/independence testing (Kac et al., 1955; Zhang
et al., 2018b; Hallin et al., 2021) can be posed as measuring or optimizing a SD between
the data distribution and the model. Popular SDs include f-divergences (Ali and Silvey,
1966; Csiszár, 1967), integral probability metrics (IPMs) (Zolotarev, 1983; Müller, 1997),
and Wasserstein distances (Villani, 2008; Santambrogio, 2015). A common formulation that
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captures many of these is1

Dh,F (µ, ν) = sup
f∈F

Eµ[f ]− Eν [h ◦ f ], (1.1)

where F is a function class of ‘discriminators’ and h is sometimes called a ‘measurement
function’ (cf., e.g., Arora et al., 2017). This variational form is at the core of various
learning algorithms implemented based on SDs (Nowozin et al., 2016; Arjovsky et al., 2017),
and has been recently leveraged for estimating SDs from samples—a technique termed
neural estimation. While neural estimators (NEs) are popular in practice due to their
computational scalability, a theoretic account of corresponding performance guarantees is
missing. To address the deficit, this work provides a through study of consistency and
non-asymptotic absolute error bounds for NEs realized by shallow neural networks (NNs).

1.1 Neural Estimation of Statistical Divergences

Typical applications to machine learning, e.g., generative adversarial networks (GANs)
(Goodfellow et al., 2014; Arjovsky et al., 2017) or anomaly detection (Póczos et al., 2011;
Zenati et al., 2018; Schlegl et al., 2019), favor estimators whose computation scales well with
number of samples and is compatible with backpropagation and minibatch-based optimiza-
tion. Neural estimation is a modern technique that adheres to these requirements (Arora
et al., 2017; Zhang et al., 2018a; Belghazi et al., 2018; Mroueh et al., 2021). Neural estima-
tors (NEs) parameterize the discriminator class F in (1.1) by a NN, approximate expecta-
tions by sample means, and then optimize the resulting empirical objective over parameter
space. Denoting the samples from µ and ν by Xn := (X1, . . . , Xn) and Y n := (Y1, . . . , Yn),
respectively, the said NE is

D̂h,G(Xn, Y n) := sup
g∈G

1

n

n∑
i=1

[
g(Xi)− h ◦ g(Yi)

]
, (1.2)

where G is the class of functions realized by a NN.

The performance of a NE is dictated by the quality of the NN approximation to
the original function class F from (1.1), and the sample size needed to accurately es-
timate the parametrized form Dh,G(µ, ν). The former is measured by the approxima-
tion error,

∣∣Dh,F (µ, ν) − Dh,G(µ, ν)
∣∣, whereas the latter by the empirical estimation error,∣∣D̂h,G(Xn, Y n) − Dh,G(µ, ν)

∣∣. While approximation needs G to be rich and expressive, ef-
ficient estimation relies on controlling its complexity. Past works on NEs provide only a
partial account of estimation performance. Belghazi et al. (2018) proved consistency of
mutual information neural estimation, which boils down to estimating KL divergence, but
do not quantify approximation errors. Non-asymptotic sample complexity bounds for the
parameterized form, i.e., when F in (1.1) is the NN class G to begin with, were derived in
(Arora et al., 2017; Zhang et al., 2018a). These objects are known as NN distances and, by
definition, overlook the approximation error. Also related is (Nguyen et al., 2010), where
KL divergence estimation rates are provided under the assumption that the approximating
class is large enough to contain an optimizer of (1.1). This assumption is often violated in

1. Specifically, (1.1) accounts for f-divergences, IPMs and the 1-Wasserstein distance.
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practice, e.g., when using a NN class as done herein, or a reproducing kernel Hilbert space,
as considered in (Nguyen et al., 2010).

Quantification of the approximation error, alongside the empirical estimation error, is
pivotal for a complete account of neural estimation performance. This work thus studies
non-asymptotic effective (approximation plus empirical estimation) error bounds for NEs
realized by a k-neuron shallow NN and n samples from each distribution. Results are
specialized to four popular f-divergences: Kullback-Leibler (KL), chi-squared (χ2), squared
Hellinger (H2) distance, and total variation (TV) distance.

1.2 Contributions

This work extends our earlier conference paper (Sreekumar et al., 2021), where the first
non-asymptotic effective error bounds for NEs of f -divergences was derived. Consistency
results for appropriate scaling rates of the NN and the sample sizes were also provided.
However, the analysis therein resulted in sub-optimal error rates, only considered compactly
supported distributions, and was not applicable for TV distance estimation. These aspects
are key for a complete account of the neural estimation performance, and serve to motivate
the present work, which closes all the aforementioned gaps.

We first consider compactly supported distributions and show that the effective error of
a NE based on k neurons and n samples for the KL divergence, χ2 divergence, or the H2

distance scales as
O
(
k−1/2 + n−1/2

)
. (1.3)

Our bound is sharp in the sense that by scaling k proportional to n, NEs achieve minimax
optimality, converging at the parametric n−1/2 rate. The results assume a spectral norm
bound on the optimal potential (i.e., maximizer of (1.1)) of the SD, which, in particular, is
satisfied when the distributions have sufficiently smooth densities . Notably, this condition
suffices to avoid the so-called curse of dimensionality (CoD) and attain parametric rates
that do not degrade exponentially with dimension.2

The derivation of (1.3) relies on two key technical results that separately account for the
approximation and estimation errors. The first is a sup-norm O(k−1/2) universal approxi-
mation bound for shallow NNs (Klusowski and Barron, 2018), and the second is a O(n−1/2)
bound on the empirical estimation error of the parametrized form. Derivation of the latter
result leverages tools from empirical process theory and bounds the entropy integral (Van
Der Vaart and Wellner, 1996) associated with the NN class. To that end, we bound the
covering number of the NN class by noting that it can be represented as (a subset of) the
symmetric convex hull (Van Der Vaart and Wellner, 1996)) of a composition of a monotone
function with a VC subgraph class.

Equipped with these results, we treat neural estimation of the KL and χ2 divergences,
and the H2 and TV distances. We establish consistency and obtain (1.3) as a finite-sample
absolute-error bound by combining the approximation and empirical estimation bounds and
identifying the appropriate scaling of the NN width k and parameter norms with the sample
size n for each f-divergence. Our analysis results in the parametric absolute-error conver-
gence rate for the NEs of KL divergence, χ2 divergence, and H2 distance. We also show

2. A similar behavior was observed in (Kandasamy et al., 2015) for classic f-divergence estimators between
densities with high (Hölder) smoothness.
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an Ω(n−1/2) lower bound on the minimax absolute error risk for KL divergence estimation
problem by reducing it to differential entropy estimation and using the lower bound from
Goldfeld et al. (2020b) for the latter problem. This establishes minimax optimality of KL
divergence NE, with similar claims holding for NEs of χ2 divergence and H2 distance. Our
method also accounts for the mutual information neural estimator (MINE) (Belghazi et al.,
2018), and provides the first non-asymptotic effective error bound and minimax optimality
claim for it. Different from these, the TV distance NE requires a modified approach because
the spectral norm of the optimal potential is infinite. To circumvent the issue, we apply
Gaussian smoothing to this potential, and control the approximation error as the smoothing
parameters shrinks with the NN size k. This results in an approximation-estimation error
bound that depends on dimension, i.e., the CoD applies in this case.

We then extend our results to distributions with unbounded support. To that end, we
exploit the fact that our approximation error bound depends on the support of the target
function only via its spectral norm. Thus, bounds on the effective error in the unbounded
case are obtained by quantifying the spectral norm of the optimal potential inside a ball and
growing its radius appropriately with k. The resulting bound depends on the scaling of the
radius and the tail decay of the underlying distributions (as quantified by the Orlicz norm
of the densities). The results are specialized to the aforementioned divergences, focusing on
Gaussian and sub-Gaussian distributions. We note that our analysis applies to distributions
whose densities need not be bounded away from zero (see also, Berrett et al., 2019; Berrett
and Samworth, 2019)—an assumption that is often imposed for f-divergence estimation.

1.3 Related Work

Many non-parametric estimators of SDs are available in the literature (Wang et al., 2005;
Perez-Cruz, 2008; Sriperumbudur et al., 2012; Krishnamurthy et al., 2014; Singh and Póczos,
2014a,b; Kandasamy et al., 2015; Singh and Póczos, 2016; Noshad et al., 2017; Moon et al.,
2018; Wisler et al., 2018; Berrett et al., 2019; Berrett and Samworth, 2019; Liang, 2019;
Han et al., 2020). These estimators typically rely on classic methods (or their variants) such
as plug-in, kernel density estimation (KDE) or k-nearest neighbors (kNN) techniques, and
are known to achieve optimal estimation error rates for specific SDs, subject to smoothness
and/or regularity conditions on the densities (see Remark 21). However, kernel-based meth-
ods usually require at least one of the following to achieve optimal rates: (i) boundary bias
correction mechanism such as the usage of a mirror image kernel which assumes knowledge
of the boundaries of the support of the distributions (cf., e.g., Singh and Póczos, 2014a,b);
(ii) assumptions ensuring smooth behaviour of densities at the boundaries (cf., e.g., Moon
et al., 2018; Han et al., 2020). As will be evident later, smoothness assumptions imposed
by the aforementioned spectral norm condition are sufficient for (1.3) to hold for the NE.
Thus, knowledge of the support of distributions or boundary bias correction is not needed.

Focussing on NEs, the tradeoffs between approximation and estimation errors was pre-
viously studied for non-parametric regression using NNs (cf., e.g., Barron, 1994; Bach,
2017; Suzuki, 2019). The goal there is to fit the best NN proxy to an (unknown) target
function based on data generated from it by minimizing a prescribed loss function. As-
suming that the target function satisfies certain smoothness or spectral norm constraints,
the approximation-estimation tradeoff in such problems has been analyzed for different loss
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functions. In particular, Barron (1994) derived upper bounds on the minimax mean squared
error rate for shallow NN models under a spectral norm condition on the Fourier transform
of the target function. Density estimation under general loss functions was considered in
(Yang and Barron, 1999), where minimax rate bounds in terms of covering/packing entropy
were established. In (Suzuki, 2019), the minimax rate for non-parametric regression using
deep NNs (DNNs) when the target function is Besov was determined. More recently, (Uppal
et al., 2019) established the minimax rate for density estimation under a so-called Besov
IPM loss.

1.4 Organization

The paper is organized as follows. Section 2 provides background and preliminary defini-
tions. Technical results characterizing the approximation error and empirical estimation
error are stated in Section 3. In Section 4, we apply these results to obtain upper bounds
on the neural estimation error of the aforementioned f-divergences. Corresponding error
bounds for distributions with unbounded support are the topic of Section 5. Section 6
provides concluding remarks and discusses future research directions. Proofs are deferred
to appendices.

2. Background and Definitions

2.1 Notation

Let ‖·‖ denote the Euclidean norm on Rd and x ·y designate the inner product. The `m ball
of radius r ≥ 0 in Rd centered at 0 is Bm

d (r); in particular, the Euclidean ball is designated
as Bd(r). We use R̄ := R ∪ {−∞,∞} for the extended reals. For 1 ≤ r <∞, the Lr space
over X ⊆ Rd with respect to (w.r.t.) the measure µ is denoted by Lr(X , µ), with ‖ · ‖r,µ
representing the norm. When µ is the Lebesgue measure λ, we use the shorthand Lr(X )
with norm ‖ · ‖r,X , or even Lr and ‖ · ‖r when X is clear from the context. For r = ∞,
we use ‖ · ‖∞,µ and ‖ · ‖∞,X for the essential supremum norm and the standard sup-norm,
respectively. Slightly abusing notation, for X ⊆ Rd, we set ‖X‖ := supx∈X ‖x‖∞.

The probability space on which all random variables are defined is denoted by (Ω,A,P)
(assumed to be sufficiently rich), with E designating the corresponding expectation. The
class of Borel probability measures on X ⊆ Rd is denoted by P(X ). To stress that the
expectation of f is taken w.r.t. µ ∈ P(X ), we write Eµ[f ] :=

∫
fdµ. For µ, ν ∈ P(X )

with µ � ν, i.e., µ is absolutely continuous w.r.t. ν, we use dµ
dν for the Radon-Nikodym

derivative of µ w.r.t. ν. For n ∈ N, µ⊗n denotes the n-fold product measure of µ.

We assume that all functions are Borel measurable. For a multi-index α = (α1 , · · · , αd) ∈
Zd≥0, the partial derivative operator of order ‖α‖1 :=

∑d
j=1 αj is designated by Dα :=

∂α1

∂α1x1
· · · ∂αd

∂αdxd
. For an open set U ⊆ Rd and an integer m ≥ 0, the class of functions such

that all partial derivatives of order m exist and are continuous on U are denoted by Cm(U).
In particular, C(U) := C0(U) and C∞(U) denotes the class of continuous functions and
infinitely differentiable functions. For b ≥ 0 and an integer m ≥ 0, Cmb (U) :=

{
f ∈ Cm(U) :

maxα:‖α‖1≤m ‖D
αf‖∞,U ≤ b

}
denotes the subclass of Cm(U) with partial derivatives of order

up to m uniformly bounded by b. The restriction of f : Rd → R to a subset X ⊆ Rd is
denoted by f |X . The Fourier transform of f ∈ L1(X ) is denoted by F[f ]. For a function
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class F and a function g, g ◦ F := {g ◦ f : f ∈ F} and |g ◦ F| := {|g ◦ f | : f ∈ F}, where ◦
denotes function composition (domains assumed to be compatible for composition).

We denote universal constants by c (or c1, c2, etc.) while constants that depend on
a parameter x are denoted by cx. The values of c and cx may change between different
instances even within the same line of an equation. We use the shorthand a .x b for
a ≤ cxb for some cx > 0 (a . b means a ≤ cb for a universal constant c > 0); similarly,
a �x b stands for a = cxb. We also employ standard asymptotic notations such as O, Ω, Õ,
etc., where the tilde designates hidden logarithmic factors. For a, b ∈ R, a∨ b := max{a, b}
and a∧ b := min{a, b}. We proceed with preliminary definitions and technical background.

2.2 Statistical Divergences

Let X ⊆ Rd. A common variational formulation of a SD between µ, ν ∈ P(X ) is

Dh,F (µ, ν) = sup
f∈F

Eµ[f ]− Eν [h ◦ f ], (2.1)

where h : R → R̄, and F is a class of measurable functions f : Rd → R for which the last
expectation is finite. This formulation captures f-divergences, IPMs (for h(x) = x), as well
as the 1-Wasserstein distance (which is an IPM w.r.t. the 1-Lipschitz function class). We
next specialize the above variational form to the f-divergences for which we derive neural
estimation error bounds.

KL divergence: The KL divergence between µ, ν ∈ P(X ) is

DKL (µ‖ν) :=

{
Eµ
[
log dµ

dν

]
, µ� ν,

∞, otherwise.

A variational form for DKL (µ‖ν) is obtained via Legendre-Fenchel duality, yielding:

DKL (µ‖ν) = sup
f :X→R

Eµ[f ]− Eν
[
ef − 1

]
, (2.2)

where the supremum is over all measurable functions such that the last expectation in (2.2)
is finite. This fits the framework of (2.1) with h(x) = hKL(x) := ex − 1. When µ� ν, the
supremum in (2.2) is achieved by fKL := log dµ

dν .
χ2 divergence: The χ2 divergence between µ, ν ∈ P(X ) is

χ2 (µ‖ν) :=

Eν
[(

dµ
dν − 1

)2 ]
, µ� ν,

∞, otherwise.

It admits the dual form:

χ2 (µ‖ν) = sup
f :X→R

Eµ[f ]− Eν
[
f + f2/4

]
, (2.3)

where the supremum is over all measurable functions such that the last expectation in (2.3)
is finite. This dual form corresponds to (2.1) with h(x) = hχ2(x) := x + x2/4 and the

supremum is achieved by fχ2 := 2
(

dµ
dν − 1

)
, whenever µ� ν.
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Squared Hellinger distance: Let η ∈ P(X ) be a probability measure that dominates both
µ, ν ∈ P(X ), i.e., µ, ν � η (e.g., η = (µ+ ν)/2), and denote the corresponding densities by
p = dµ

dη and q = dν
dη . The squared Hellinger distance between µ, ν is3

H2(µ, ν) := Eη
[(√

p−√q
)2]

. (2.4)

When µ� ν, the above expression can be written as

H2(µ, ν) = Eν

(√dµ

dν
− 1

)2
 ,

with the corresponding dual form

H2(µ, ν) = sup
f :X→R,

f(x)<1,∀x∈X

Eµ[f ]− Eν
[

f

1− f

]
, (2.5)

where the supremum is over all functions such that the expectations are finite. This form
corresponds to (2.1) with h(x) = hH2(x) := x/(1 − x), and the supremum in (2.5) is

achieved by fH2 := 1 −
(

dµ
dν

)−1/2
. Also note that

√
H2 defines a metric on P(X ) and that

0 ≤ H2(µ, ν) ≤ 2, for any µ, ν ∈ P(X ).
Total variation distance: The TV distance between µ, ν ∈ P(X ) is

δTV(µ, ν) := sup
C

2 |µ(C)− ν(C)| , (2.6)

where the supremum is over all Borel subsets of X . The corresponding variational form is

δTV(µ, ν) = sup
f :X→R,
‖f‖∞≤1

Eµ[f ]− Eν [f ], (2.7)

which pertains to (2.1) with h(x) = hTV(x) := x. Denoting the densities of µ and ν w.r.t.
a common dominating measure η ∈ P(X ) by p and q, respectively, the supremum in (2.7)
is achieved by fTV := 1C∗ − 1X\C∗ , where

C∗ :=
{
x ∈ X : p(x) ≥ q(x)

}
. (2.8)

Furthermore, δTV is a metric on P(X ) with 0 ≤ δTV(µ, ν) ≤ 2.

2.3 Stochastic Processes

Our analysis of the estimation error needs the following definitions.

Definition 1 (Sub-Gaussian process) A real-valued stochastic process (Xθ)θ∈Θ on a
metric space (Θ, d) is sub-Gaussian if it is centered, i.e., E[Xθ] = 0 for all θ ∈ Θ, and

E
[
et(Xθ−Xθ̃)

]
≤ e

1
2
t2d(θ,θ̃)2

, ∀ θ, θ̃ ∈ Θ, t ≥ 0.

3. The standard definition of the squared Hellinger distance has an extra factor of 0.5. We use the current
definition as it simplifies the statements of some results and proofs, while clearly having no effect on the
qualitative conclusions. The same applies for the TV distance given in (2.6).
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Definition 2 (Separable process) A stochastic process (Xθ)θ∈Θ on a metric space (Θ, d)
is said to be separable if there exists a null set N and a countable subset Θ0 ⊆ Θ, such that
for every ω /∈ N and θ ∈ Θ, there is a sequence (θm)m∈N in Θ0 with d(θm, θ) → 0 and
Xθm(ω)→ Xθ(ω).

Definition 3 (Covering and packing numbers) Let (Θ, d) be a metric space.

(i) A set Θ′ ⊆ Θ is an ε-covering of (Θ, d) if for every θ ∈ Θ, there exists θ̃ ∈ Θ′ such that
d(θ, θ̃) ≤ ε; the ε-covering number is N(ε,Θ, d) := inf {|Θ′| : Θ′ is an ε-covering of Θ}.

(ii) A set Θ′ ⊆ Θ is an ε-packing of (Θ, d) if d(θ, θ̃) > ε for every θ, θ̃ ∈ Θ′ such that
θ 6= θ̃; the ε-packing number is T (ε,Θ, d) := sup{|Θ′| : Θ′ is an ε-packing of Θ}.

2.4 Function Classes

Our approximation result requires the target function on X to have an extension to Rd,
whose spectral norm (as introduced in (Barron, 1993) and (Klusowski and Barron, 2018))
is finite. The class of functions with such bounded spectral norm is defined next.

Definition 4 (Approximation class) Let m ∈ N. Consider a function f : Rd → R that
has a Fourier representation f(x) =

∫∞
0 eiω·xF (dω), where i =

√
−1 is the imaginary unit

and F (dω) is a complex Borel measure over Rd with magnitude |F | (dω) that satisfies

Sm(f) :=

∫
Rd
‖ω‖m1 |F | (dω) <∞. (2.9)

For c ≥ 0, m = 1, 2, and X ⊆ Rd, define

Bc,m,X
(
Rd
)

:=
{
f : Rd → R : ‖X‖Sm(f) ∨ |f(0)| ∨ ‖∇f(0)‖1 1{m=2} ≤ c

}
,

and for f : X → R, set

c?(f,m,X ) := inf
{
c : ∃ f̃ ∈ Bc,m,X

(
Rd
)
, f = f̃ |X

}
.

We refer to Bc,1,X
(
Rd
)
, Bc,2,X

(
Rd
)
, c?B(f,X ) := c?(f, 1,X ) and c?KB(f,X ) := c?(f, 2,X ) as

the Barron class, Klusowski-Barron class, Barron coefficient, and Klusowski-Barron coeffi-
cient, respectively.

For TV distance neural estimation, analysis of the NN approximation error for step functions
is required. Such functions naturally belong to the Lipschitz function class defined below.

Definition 5 (Lipschitz class) For r ∈ (0,∞], m ∈ N, and f ∈ Lr
(
Rd
)
, the mth modulus

of smoothness of f is
ξm,r(f, t) := sup

u∈Rd,‖u‖≤t
‖∆m

u f‖r,Rd , (2.10)

where ∆m
u f(x) =

∑m
j=0(−1)m−jf(x + ju). For X ⊆ Rd and 0 < s ≤ 1, the Lipschitz class

with smoothness parameter s is

Lips,r,b(X ) :=
{
f ∈ Lr

(
Rd
)

: ‖f‖Lip(s,r) ≤ b, supp (f) = X
}
,

where ‖f‖Lip(s,r) := ‖f‖r + supt>0 t
−sξ1,r(f, t) is the Lipschitz seminorm.
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Note that norm in (2.10) is taken over Rd (despite the assumption that f nullifies outside
of X ). For d = 1, the class of functions of bounded variation over X ⊂ R is contained in
∪b∈RLip1,1,b(X ).

The Vapnik-Chervonenkis (VC) type class of functions will play a prominent role in our
empirical estimation error analysis.

Definition 6 (VC-type class) Let F be a class of Borel measurable functions with do-
main X and a finite measurable envelope F , i.e., supf∈F |f(x)| ≤ F (x) < ∞, ∀x ∈ X .
Then, F is a VC-type class with envelope F if there exists finite constants lvc(F) = lvc(F , F )
and uvc(F) = uvc(F , F ) such that

sup
γ∈P(X )

N
(
ε ‖F‖2,γ ,F , ‖ · ‖2,γ

)
≤
(
lvc(F)ε−1

)uvc(F)
, ∀ 0 < ε ≤ 1. (2.11)

Finally, we introduce the function class of shallow NNs.

Definition 7 (NN class) Let φ : R→ R be a (non-linear) measurable activation function.
The class of shallow NNs (i.e., with a single hidden layer) with k neurons and bounds on
its parameters specified by a = (a1, a2, a3, a4) ∈ R4

≥0 is

Gk(a, φ) :=

g : Rd→ R :
g(x) =

k∑
i=1

βiφ (wi · x+ bi) + w0 · x+ b0,

max
1≤i≤k

‖wi‖1 ∨ |bi| ≤ a1, max
1≤i≤k

|βi| ≤ a2, |b0| ≤ a3, ‖w0‖1 ≤ a4

 .

Let φS(z) = (1 + e−z)−1 and φR(z) = z ∨ 0 denote the logistic sigmoid 4 and the rec-
tified linear unit (ReLU) activation functions, respectively. Further, for a ≥ 0, define
the shorthands GSk (a) := Gk

(
k1/2 log k, 2k−1a, a, 0, φS

)
, GRk (a) := Gk

(
1, 2k−1a, a, a, φR

)
, and

G∗k(φ) := Gk
(
a∗, φ

)
with a∗ = (1, 1, 1, 0). Throughout, we will assume φ ∈ {φS, φR}.

2.5 Minimax Estimation Risk

To investigate the decision-theoretic fundamental limit of estimating a SD Dh,F as defined
in (2.1), we now define the minimax risk. Let P2

X ⊆ P(X ) × P(X ) be a class of pairs of
distributions between which Dh,F is finite and fix (µ, ν) ∈ P2

X . Let Xn := (X1, . . . , Xn)
and Y n := (Y1, . . . , Yn) be n independently and identically distributed (i.i.d.) samples
from µ and ν, respectively.5 An estimator of Dh,F based on these samples is denoted by

D̂h,F (Xn, Y n). The minimax absolute-error risk is

R?h,F (n,P2
X ) := inf

D̂h,F

sup
(µ,ν)∈P2

X

E
[∣∣∣Dh,F (µ, ν)− D̂h,F (Xn, Y n)

∣∣∣] . (2.12)

4. The results that follow with φS as activation straightforwardly applies to any continuous monotone
bounded activation, e.g., any sigmoidal activation with φ(z)→ 1 as z →∞ and φ(z)→ 0 as z → −∞.

5. For simplicity, we restrict attention to the case where an equal number of samples is available from both
µ and ν, but our analysis readily extends to the mismatched scenario with the corresponding bounds
obtained by replacing n−1/2 by (m−1 + n−1)1/2, where m denotes the number of samples from µ (say).

9



Sreekumar and Goldfeld

We explore the performance of the NE

D̂h,Gk(ak,φ)(X
n, Y n) := sup

g∈Gk(ak,φ)

1

n

n∑
i=1

[
g(Xi)− h ◦ g(Yi)

]
, (2.13)

under the above framework. By appropriately scaling the NN size k (and parameter norm)
with the sample size n, we show that NEs of KL and χ2 divergences as well as H2 distance
converges at the parametric n−

1
2 rate uniformly over certain classes of distribution pairs

satisfying regularity conditions. We further show (see, e.g., Corollary 18) that the minimax
risk is at least Ω(n−1/2) over this class, thus establishing the minimax optimality of NEs.

3. Preliminary Technical Results

We next present two technical results that account for the NN approximation error and
the empirical estimation error of the parametrized SD. These results are later leveraged
to derive effective error bounds for neural estimation of KL and χ2 divergences, squared
Hellinger distance and TV distance.

3.1 Sup-norm Function Approximation

We start with a bound on the approximation error of a target function f with a compact
domain X for which c?(f,m,X ) <∞, m = 1, 2. A reminiscent result for the case m = 1 was
given in (Barron, 1992), albeit without explicitly quantifying the dependence on dimension
or addressing how the NN parameters scale with k. The bounds for m = 2 are taken from
(Klusowski and Barron, 2018).

Theorem 8 (Approximation error bound) Let X be compact. Given f : X → R with
c?KB(f,X ) ≤ a, there exists g ∈ GRk (a) such that

‖f − g‖∞ . ad
1
2k−

1
2 . (3.1)

Similarly, given f : X → R such that c?B(f,X ) ≤ a, there exists g ∈ GSk (a) satisfying (3.1).

The above theorem states that a k-neuron shallow NN can approximate a function f on X
within an O(k−1/2) gap in the sup-norm, provided f is the restriction of some f̃ from the
Barron class or Klusowski-Barron class. The bound in (3.1) follows from (Klusowski and
Barron, 2018, Theorem 2), up to rescaling the domain therein. The proof of the second
claim pertaining to approximation by NN class GSk (a) is provided in Appendix A.1.1, and is
based on ideas from (Barron, 1992, 1993; Yukich et al., 1995). The error bounds stated in
Theorem 8 are representative of the approximation capabilities of shallow NNs with ReLU
(unbounded) and sigmoid (bounded) activations, respectively. Note that GRk (a) has bounded
parameters independent of k, albeit with an extra affine term (see Definition 7) compared
to functions in GSk (a). On the other hand, achieving O(k−1/2) approximation error using the
latter class requires the bounds on the hidden layer weights and biases to scale as k1/2 log k.

Remark 9 (Related approximation results) Several related approximation bounds to
Theorem 8 are available in the literature, which can also be leveraged to analyze the approx-
imation error of NEs. In particular, Yukich et al. (1995, Theorem 2.2) provides sup-norm

10
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error bounds for approximating a target function and its derivatives by a sigmoidal NN with
unbounded input weights and biases. A further improvement over (Barron, 1992, Theorem
2) by a k−1/2d factor is reported in (Makovoz, 1998) for NNs with step activation func-
tions, under a different regularity condition on the Fourier transform of target function.
A sup-norm approximation result for squared ReLU activation is given in (Klusowski and
Barron, 2018, Theorem 3) for functions f with bounded S3(f) (see (2.9)). Also related are
NN approximation bounds derived in (Domingo-Enrich and Mroueh, 2021) for a function
with bounded R,U-norm, where the latter is based on R-norm introduced in (Ongie et al.,
2020).

The next proposition shows that a sufficiently smooth function over a compact domain
can be approximated to within O(k−1/2) error by a shallow NN.

Proposition 10 (Approximation of smooth functions) Let X ⊆ Rd be compact and
f : X → R. Suppose that there exists an open set U ⊃ X , b ≥ 0, and f̃ ∈ CsKBb (U),

sKB := bd/2c+ 3, such that f = f̃ |X . Then, there exists g ∈ GRk
(
c̄b,d,‖X‖

)
, where c̄b,d,‖X‖ is

given in (A.15), such that ‖f − g‖∞ . cb,d,‖X‖d
1/2k−1/2. The same holds with sKB and GRk

replaced with sB := bd/2c+ 2 and GSk , respectively.

The proof of Proposition 10 (see Appendix A.1.2) shows that any sufficiently smooth
function on X can be extended to a function in the Barron or the Klusowksi-Barron class
with domain Rd. This is done by nullifying the partial derivatives of order sKB (or sB)
outside X and multiplying by a smooth bump function that equals 1 on X and smoothly
decays outside. Note that for an integer s ≥ 0 and a real number s̃ ≥ s, Csb(U) contains the
Hölder class with smoothness s̃ and radius b.

3.2 Estimation of Parameterized Divergences

For µ, ν ∈ P(X ), consider the SD Dh,F (µ, ν) defined in (2.1). Let Xn and Y n be n i.i.d.
samples from µ and ν, respectively. Consider a NE for Dh,F (µ, ν) realized by a shallow NN,

i.e., D̂h,Gk(ak,φ)(X
n, Y n) (see (2.13)). Our next result provides a tail inequality for the error

in estimating the parametrized divergence Dh,G∗k(φ)(µ, ν) by D̂h,G∗k(φ)(X
n, Y n), which will be

used to prove consistency of the NE. To state it, given a class of functions F with domain
X , define

¯
C(F ,X ) := infx∈X ,f∈F f(x) and C̄(F ,X ) := supx∈X ,f∈F f(x).

Theorem 11 (Empirical estimation error tail bound) Let µ, ν ∈ P(X ) and consider
the NN class G∗k(φ) given in Definition 7. Assume X and φ are such that C̄

(
|G∗k(φ)|,X

)
<

∞, h is differentiable in
[
¯
C
(
G∗k(φ),X

)
, C̄
(
G∗k(φ),X

)]
with derivative h′, Dh,G∗k(φ)(µ, ν) <∞,

and

C̄
(∣∣h′ ◦ G∗k(φ)

∣∣ ,X ) <∞. (3.2)

Then there exists a constant c > 0 such that for any δ ≥ 0, we have

sup
µ,ν∈P(X ):

Dh,G∗
k

(φ)(µ,ν)<∞

P
(∣∣∣D̂h,G∗k(φ)(X

n, Y n)−Dh,G∗k(φ)(µ, ν)
∣∣∣≥ δ+Ek,h,φ,Xn

− 1
2

)
≤ ce

− nδ2

Vk,h,φ,X , (3.3)

with upper bounds for Vk,h,φ,X and Ek,h,φ,X available in (A.20) and (A.21), respectively.
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The proof of Theorem 11 (see Appendix A.1.3) relies on upper bounding the estimation
error by a separable sub-Gaussian process and invoking the chaining tail inequality (see
Theorem 56 in Appendix A.1.3).

The next theorem provides an upper bound on the expected empirical estimation error.
It will be used to obtain effective error bounds for the NE in the forthcoming sections.

Theorem 12 (Empirical estimation error bound) Let a > 0 and Gk ∈
{
GRk (a),GSk (a)

}
.

Suppose h is differentiable in
[
¯
C
(
Gk,X

)
, C̄
(
Gk,X

)]
with derivative h′, C̄ (|h′ ◦ Gk| ,X ) ∨

C̄(|h ◦ Gk|,X ) ∨C̄
(
|Gk|,X

)
.a,h,‖X‖ 1 for all k ∈ N. Then, for all k, n ∈ N,

sup
µ,ν∈P(X )

E
[∣∣∣D̂h,Gk(Xn, Y n)− Dh,Gk(µ, ν)

∣∣∣] .h,a,‖X‖ d
3
2n−

1
2 . (3.4)

Theorem 12 follows from a more general result that we establish in Appendix A.1.4 (namely,
Theorem 58), where Gk as above is replaced by an arbitrary VC-type class satisfying certain
technical conditions. The proof of the latter relies on standard maximal inequalities from
empirical process theory. To prove (3.4), we also require a bound on the entropy integral of
the NN class. This is obtained by noting that Gk is a subset of the symmetric convex hull
of the composition of a monotone function with a VC subgraph class, and upper bounding
the covering numbers of such convex hulls.

Remark 13 (NN distances) The SD Dh,Gk(a,φ)(µ, ν) is the so-called NN distance, studied
in (Arora et al., 2017; Zhang et al., 2018a) in the context of GANs. Theorem 11 and 12
can thus be understood, respectively, as a tail bound and as an error bound for NN distance
estimation from data, and implies that the estimation error rate is parametric in n.

For Gk ∈
{
GRk (a),GSk (a)

}
, we have C̄ (|Gk|) ≤ 3a(‖X‖ + 1), C̄ (|h ◦ Gk|) ≤ sup{|h(z)| , z ∈

[−3a(‖X‖+ 1), 3a(‖X‖+ 1)]} <∞ and Dh,Gk <∞ for all k and h ∈ {hKL, hχ2}. Similarly,
C̄ (|h′ ◦ Gk|) is finite and bounded by a quantity independent of k for these h (see (B.3)
and (B.5)). Hence, hKL and hχ2 satisfies the assumptions in Theorem 12, and consequently,
(3.4) applies for KL and χ2 divergences. These bounds also hold for H2 and TV distances
for appropriate NN classes (see Theorems 27 and 32 below). In the next section, we use the
above results to analyze the effective error for neural estimation of SDs.

4. Neural Estimation of f-Divergences

We now turn to analyze neural estimation performance of several important f-divergences,
encompassing KL, χ2, H2, and TV. Throughout this section, we assume for simplicity
that X = [0, 1]d, but the results and proof techniques readily extend to arbitrary compact
domains. Further, we present results for ReLU NNs, although all statements also hold
for sigmoid nets with a slightly modified spectral norm condition defining the class of
distributions. We comment about this once in Remark 15 below, but omit further mention
to avoid repetition.

4.1 KL Divergence

Let D̂Gk(ak,φ)(X
n, Y n) := D̂hKL,Gk(ak,φ)(X

n, Y n) be a NE of DKL (µ‖ν), where ak ∈ R4
≥0 for

all k ∈ N. To state performance guarantees for this NE, some definitions are needed. Let

12



Neural Estimation of Statistical Divergences

P2
KL(X ) be the set of all pairs (µ, ν) ∈ P(X )×P(X ) such that µ� ν and DKL (µ‖ν) <∞,

and for any M ≥ 0 define

P2
KL(M,X ) :=

{
(µ, ν) ∈ P2

KL(X ) : c?KB(fKL,X ) ∨ DKL (µ‖ν) ≤M
}
. (4.1)

For appropriately chosenM, b ≥ 0, P2
KL(M,X ) contains (µ, ν) ∈ P2

KL(X ) for which DKL (µ‖ν)

≤ M and fKL = log dµ
dν ∈ CsKBb (U) for some U ⊇ X . To see this, note that a smoothness

order of sKB for fKL ensures that c?KB(fKL,X ) ≤ c̄b,d,‖X‖ (see Proposition 10). Hence, for
any (µ, ν) ∈ P2

KL(X ) and M ≥ c̄b,d,‖X‖ ∨ DKL (µ‖ν), (µ, ν) ∈ P2
KL(M,X ). In particular,

P2
KL(M,X ), for sufficiently large M , contains Gaussian densities, truncated and normalized

to be supported on X .
Since the class P2

KL(M,X ) becomes larger as M increases, it is to be expected that a
larger NN class would be required for accurate neural estimation of KL divergence between
distributions in this class. This means that the range of the NN parameters has to be selected
depending on M . However, often it is hard to ascertain such an M for the distributions of
interest. To account for this, we do not assume that M is known in advance. Instead, we
take a NN class GRk (mk) for some non-decreasing positive sequence (mk)k∈N with mk →∞,
for obtaining neural estimation error bounds.

The following theorem establishes the consistency of KL divergence NE and uniformly
bounds the effective error in terms of the NN and sample sizes.

Theorem 14 (KL divergence neural estimation) The following hold:

(i) Let (µ, ν) ∈ P2
KL(X ) be such that fKL ∈ C (X ). Then, for any 0 < ρ < 1, (kn)n∈N with

kn →∞, kn ≤ 1
4(1− ρ) log n and Gn = G∗kn(φ),

D̂Gn(Xn, Y n) −−−→
n→∞

DKL (µ‖ν) , P− a.s. (4.2)

(ii) For any M ≥ 0, mk = log log k ∨ 1, Gk = GRk (mk),

sup
(µ,ν)∈P2

KL(M,X )

E
[∣∣∣D̂Gk(Xn, Y n)− DKL (µ‖ν)

∣∣∣] .M d
1
2k−

1
2 + d

3
2 (log k)7n−

1
2 . (4.3)

The proof of Theorem 14 is presented in Appendix A.2.1. The consistency result in Part (i)
relies on G∗k(φ) being a universal approximator for the class of continuous functions on
compact sets as k →∞ and Theorem 11. For Part (ii), we derive (4.3) by utilizing Theorems
8 and 12 to bound the sum of the approximation and estimation errors. From Theorem 8,
the former is O(k−1/2) if c?KB (fKL,X ) ≤M and k is such that M ≤ log log k∨1. On the other
hand, for k violating this condition, the effective error is bounded by DKL (µ‖ν) ≤M . The
growing NN parameters contribute an extra polylog(k) factor to the empirical estimation
error bound.

Remark 15 (Effective error bound for sigmoid NN class) It can be seen from the
proof of (4.3) that the same bound applies to sigmoid NN class GSk (mk) when P2

KL(M,X )
is replaced by P2

KL,B(M,X ) :=
{

(µ, ν) ∈ P2
KL(X ) : c?B(fKL,X ) ∨ DKL (µ‖ν) ≤M

}
. Similar

remarks apply for all the effective error bounds henceforth, which we omit to avoid repetition.
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Remark 16 (Effective error bound based on M) If M in the definition of the class
P2
KL(M,X ) is known when picking the NN parameters (i.e., they can depend on M), then

with mk = M and Gk = GRk (M), we have (see (A.44) and the last statement in the proof of
Theorem 14 in Appendix A.2.1)

sup
(µ,ν)∈P2

KL(M,X )

E
[∣∣∣D̂Gk(Xn, Y n)− DKL (µ‖ν)

∣∣∣] .M d
1
2k−

1
2 + d

3
2n−

1
2 , (4.4)

which removes the polylog factor in the empirical estimation bound (2nd term in (4.3)).

Remark 17 (L2 neural estimation of a function) In (Barron, 1994), a reminiscent
approximation-estimation error analysis for learning a NN approximation of a bounded
range function is presented. This differs from our setup since SDs are given as a supremum
over a function class, as opposed to a single function. As such, our results require stronger
sup-norm approximation results, as opposed to the L2 bound used in (Barron, 1994).

The error bounds in (4.4) and (4.3) imply that the KL divergence NE achieves the para-
metric and near parametric error rates, respectively.

Corollary 18 (Minimax optimality) The KL divergence NE D̂Gn(Xn, Y n) is minimax
rate-optimal over P2

KL(M,X ) and P2
KL,B(M,X ) with Gn = GRn (M) and Gn = GSn(M), re-

spectively, achieving the O
(
n−1/2

)
minimax risk. If M is unknown, then this NE with M

replaced by mn = log log n ∨ 1, is near minimax optimal achieving Õ
(
n−1/2

)
minimax risk.

The corollary is proven in Appendix A.2.2, where the upper bound follows directly from
Theorem 16, Remark 15 and (4.4) by setting k = n. For the lower bound, we present a
reduction of the KL divergence estimation problem to differential entropy estimation, and
invoke the Ω(n−1/2) lower bound from Goldfeld et al. (2020b) for the latter problem.

Theorem 14 and Corollary 18 impose conditions on fKL to bound the effective neural
estimation error (namely, assuming that c?KB(fKL,X ) ≤ M , for some M). A primitive
sufficient condition in terms of the densities p and q of µ and ν, respectively, w.r.t. an
arbitrary common dominating measure η is given next.

Proposition 19 (Sufficient condition for Theorem 14) For b ≥ 0 and sKB = bd/2c+
3, consider the class P̃2

KL(b,X ) of pairs of distributions given by

P̃2
KL(b,X ) :=

{
(µ, ν) ∈ P2

KL(X ) :
∃ p̃, q̃ ∈ CsKBb (U) for some open set U ⊃ X
s.t. log p = p̃|X , log q = q̃|X

}
.

Then, (4.3) and (4.4) hold with M = 2c̄b,d,‖X‖ ∨ 2b, where c̄b,d,‖X‖ is given in (A.15),6 and

P̃2
KL(b,X ) in place of P2

KL(M,X ).

Remark 20 (Feasible distributions) P̃2
KL(·,X ) contains distributions (µ, ν) ∈ P2

KL(X )
whose densities (p, q) are bounded (from above and below) on X with a smooth extension
on an open set covering X . In particular, this includes uniform distributions, truncated
Gaussians, truncated Cauchy distributions, etc.

6. Although X is taken to be [0, 1]d, we will retain the dependence of X in the error bounds, which will be
used later for extending the results to the unbounded support case.
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Remark 21 (Relation to other works) Corollary 18 and Proposition 19 together imply
that the KL divergence NE achieves the parametric minimax error rate over the class of
densities with at least sKB = bd/2c+3 derivatives (or sB = bd/2c+2 derivatives in the case
of sigmoid activation). To compare with existing results, it is known that variants of classic
kernel-based estimators (Kandasamy et al., 2015; Singh and Póczos, 2014a; Moon et al.,
2018; Berrett et al., 2019) achieve the optimal minimax risk of O(n−1/2) when the densities
are Hölder smooth with at least d/2 or d derivatives. We also note that the parametric rate
achieved by NE is an improvement over the n−1/4 rate shown in Sreekumar et al. (2021).
Furthermore, we observe that (4.3), (4.4) and minimax rate optimality holds for the class of
distributions obtained by replacing c?KB(fKL,X ) ≤M in (4.1) with ‖X‖ ‖fKL‖R,U ∨|fKL(0)|∨
‖∇fKL(0)‖1 ≤ M , where R,U-norm is defined in (Domingo-Enrich and Mroueh, 2021,
Equation 6). This follows by using (Domingo-Enrich and Mroueh, 2021, Theorem 2) in
place of Theorem 8 to analyze the approximation error. Similar conclusions hold for NEs
of other SDs considered below.

4.1.1 Neural Estimation via Donsker-Varadhan Formula

Another well known variational representation for KL divergence is the Donsker-Varadhan
(DV) formula:

DKL (µ‖ν) = sup
f∈F

Eµ[f ]− logEν
[
ef
]
,

where the supremum is over all measurable f such that the last expectation is finite.
Parametrizing F by a NN and replacing expectation with sample means leads to the DV-NE
for KL, given by

ĎDV,G(Xn, Y n) := sup
g∈G

1

n

n∑
i=1

g(Xi)− log
1

n

n∑
i=1

eg(Yi).

In (Belghazi et al., 2018), the authors studied the special case of DV-NE pertaining
to estimation of mutual information, termed MINE. They established consistency along
with sample complexity bounds (without accounting for the approximation error). In Ap-
pendix C, we show that consistency of the DV-NE holds under similar conditions as in
Theorem 14 (see (C.1)). We also prove that the effective error bound given in (4.3) applies
to DV-NE, albeit with different constants (see (C.2)). In particular, the latter establishes
the minimax optimality of DV-NE with the scaling k = n. Instantiating these results for
µ = PAB and ν = PA⊗PB (i.e., a joint probability law versus the product of its marginals),
translates these performance guarantees to MINE, now accounting for finite-size NNs, the
associated approximation error, and minimax convergence rates.

4.2 χ2 Divergence

Let χ̂2
Gk(ak,φ)(X

n, Y n) := D̂hχ2 ,Gk(ak,φ)(X
n, Y n) denote the NE of χ2 (µ‖ν). Set P2

χ2(X ) as

the collection of all (µ, ν) ∈ P(X )× P(X ) such that µ� ν and χ2 (µ‖ν) <∞, and let

P2
χ2(M,X ) :=

{
(µ, ν) ∈ P2

χ2(X ) : c?KB
(
fχ2 ,X

)
∨ χ2 (µ‖ν) ≤M

}
.

The next theorem establishes consistency of the NE and bounds its effective absolute-error.
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Theorem 22 (χ2 divergence neural estimation) The following hold:

(i) Let (µ, ν) ∈ P2
χ2(X ) be such that fχ2 ∈ C (X ). Then, for any 0 < ρ < 1, (kn)n∈N with

kn →∞, kn = O
(
n(1−ρ)/5

)
and Gn = G∗kn(φ), we have

χ̂2
Gn(Xn, Y n) −−−→

n→∞
χ2 (µ‖ν) , P− a.s. (4.5)

(ii) For any M ≥ 0, mk = log k, and Gk = GRk (mk), we have

sup
(µ,ν)∈P2

χ2 (M,X )

E
[∣∣χ̂2
Gk(Xn, Y n)− χ2 (µ‖ν)

∣∣] .M dk−
1
2 + d

3
2 (log k)2n−

1
2 . (4.6)

The proof strategy for Theorem 22 is similar to that of Theorem 14, with appropriate adap-
tations to account for the difference between fχ2 and fKL (see Appendix A.2.4). Comparing
(4.5)-(4.6) to (4.2)-(4.3), we see that consistency for χ2 divergence estimation holds under
milder conditions and that the effective error bound is better in terms of dependence on k
than for KL divergence.

Remark 23 (Effective error based on M) If the NN parameters can depend on M ,
then setting mk = M in (4.6) yields

sup
(µ,ν)∈P2

χ2 (M,X )

E
[∣∣χ̂2
Gk(Xn, Y n)− χ2 (µ‖ν)

∣∣] .M dk−
1
2 + d

3
2n−

1
2 . (4.7)

Choosing k = n in (4.7) (resp. (4.6)), we have that the χ2 NE achieves the parametric
(resp. near parametric) error rate over the class P2

χ2(M,X ). The proof is similar to that of

Corollary 18, and is omitted for brevity. Let P2
χ2,B(M,X ) :=

{
(µ, ν) ∈ P2

χ2(X ) : c?B
(
fχ2 ,X

)
∨

χ2 (µ‖ν) ≤M
}

.

Corollary 24 (Minimax optimality) The χ2 NE χ̂2
Gn(Xn, Y n) is minimax rate-optimal

over P2
χ2(M,X ) and P2

χ2,B(M,X ) with Gn = GRn (M) and Gn = GSn(M), respectively, achiev-

ing the O(n−1/2) risk. This NE achieves the near parametric Õ
(
n−1/2

)
minimax risk when

M is replaced by log n, which is applicable to the scenario of unknown M .

Given next is the counterpart of Proposition 19 for χ2 divergence (proven in Appendix A.2.5),
which provides primitive conditions in terms of densities under which the effective error
bounds in Theorem 22 and Corollary 24 hold.

Proposition 25 (Sufficient condition for Theorem 22) For b ≥ 0 and sKB = bd/2c+
3, let

P̃2
χ2(b,X ) :=

{
(µ, ν) ∈ P2

χ2(X ) :
∃ p̃, q̃ ∈ CsKBb (U) for some open set U ⊃ X
s.t. p = p̃|X , q−1 = q̃|X

}
.

Then, (4.6) and (4.7) hold with M = (κdd
3/2 ‖X‖ ∨ 1)

(
2 + 2sKB+1c̄2

b,d,‖X‖
)
∨ (b2 + 1),

where κd and c̄b,d,‖X‖ are given in (A.3) and (A.15), respectively, and P̃2
χ2(b,X ) in place of

P2
χ2(M,X ),
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Remark 26 (Feasible distributions) The class P̃2
χ2(·,X ) contains (µ, ν) ∈ P2

χ2(X ), whose

densities p, q, are bounded (upper bounded for p and bounded away from zero for q) on X
with an extension that is sufficiently smooth on an open set covering X . This includes the
distributions mentioned in Remark 20.

4.3 Squared Hellinger Distance

Let Ĥ2
G̃k,t(ak,φ)

(Xn, Y n) := D̂hH2 ,G̃k,t(ak,φ)(X
n, Y n), where for t > 0, G̃k,t(a, φ) is the NN class

G̃k,t (a, φ) :=
{
g : Rd → R : g(x) = (1− t) ∧ g̃(x), g̃ ∈ Gk(a, φ)

}
.

Set P2
H2(X ) as the collection of all (µ, ν) ∈ P(X )× P(X ) such that µ� ν, and

P2
H2(M,X ) :=

{
(µ, ν) ∈ PH2(X ) : c?KB(fH2 ,X ) ∨

∥∥∥∥dµ

dν

∥∥∥∥
∞,η
≤M

}
. (4.8)

Also, let G̃∗k,t(φ) := G̃k,t
(
1, 1, 1, 0, φ

)
, and for a ≥ 0, define

G̃Rk,t(a) := G̃k,t
(
1, 2k−1a, a, a, φR

)
. (4.9)

The next theorem establishes consistency of the NE and bounds its effective absolute-error.

Theorem 27 (Squared Hellinger distance neural estimation) The following hold:

(i) If (µ, ν) ∈ P2
H2(X ) is such that fH2 ∈ C (X ) and there exists M > 0 such that ‖dµ/dν‖∞,η

≤ M , then, for any 0 < ρ < 1, (kn)n∈N with kn → ∞, kn = O
(
n(1−ρ)/3

)
and Gn =

G̃∗
kn,M−1/2(φ), we have

Ĥ2
Gn(Xn, Y n) −−−→

n→∞
H2(µ, ν), P− a.s. (4.10)

(ii) For any M ≥ 0, mk = log k, tk = (log k)−1, and Gk = G̃Rk,tk(mk), we have

sup
(µ,ν)∈P2

H2 (M,X )

E
[∣∣∣Ĥ2
Gk(Xn, Y n)− H2(µ, ν)

∣∣∣] .M d
1
2k−

1
2 log k + d

3
2 (log k)3n−

1
2 . (4.11)

The proof of Theorem 27 is presented in Appendix A.2.6. To prove consistency and establish
effective error bounds for H2 NE, we use a truncated NN class G̃k,t (a, φ) that saturates the
NN output to 1− t for some t > 0. This is done since hH2(x) has a singularity at x = 1 and
the NN outputs must be truncated below 1 so as to satisfy (3.2) for bounding the empirical
estimation error. To get the effective error bounds under this constraint, we take t = tk for
some non-increasing positive sequence tk → 0. The bound in (4.11) uses tk = (log k)−1.

Remark 28 (Effective error based on M) If M is known when selecting the NN pa-
rameters, then for Gk = G̃R

k,M−1/2(M), we have (see (A.58))

sup
(µ,ν)∈P2

H2 (M,X )

E
[∣∣∣Ĥ2
Gk(Xn, Y n)− H2(µ, ν)

∣∣∣] .M d
1
2k−

1
2 + d

3
2n−

1
2 .
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Addressing minimax optimality, we set k = n in the above equation (resp.(4.11)) to
attain the parametric (resp. near parametric) rate for the H2 NE over the class P2

H2(M,X ).

Let G̃Sk,t(a) := G̃k,t
(
k1/2 log k, 2k−1a, a, 0, φS

)
, and P2

H2,B(M,X ) denote the class of distribu-

tion pairs with c?KB(fH2 ,X ) in (4.8) replaced with c?B(fH2 ,X ).

Corollary 29 (Minimax optimality) The H2 NE Ĥ2
Gn(Xn, Y n) is minimax rate-optimal

over the class P2
H2(M,X ) and P2

H2,B(M,X ) with Gn = G̃R
n,M−1/2(M) and Gn = G̃S

n,M−1/2(M),

respectively, achieving O
(
n−1/2

)
minimax risk. Further, relevant to the case when M is

unknown, the same NE achieves Õ
(
n−1/2

)
risk, when M is replaced with log n and M−1/2

with (log n)−1.

Below, we provide a sufficient condition in terms of densities under which the effective error
bounds in Theorem 27 as well as Corollary 29 applies, similar in spirit to Proposition 19
(see Appendix A.2.7 for the proof).

Proposition 30 (Sufficient condition for Theorem 27) For b ≥ 0 and sKB = bd/2c+
3, consider the class P̃2

H2(b,X ) of pairs of distributions given by

P̃2
H2(b,X ) :=

{
(µ, ν) ∈ P2

H2(X ) :
∃ p̃, q̃ ∈ CsKBb (U) for some open set U ⊃ X

s.t. p−
1
2 = p̃|X , q

1
2 = q̃|X , and

∥∥p ∨ q−1
∥∥
∞,η ≤ b

}
.

Then, (4.11) and Remark 28 hold with M =
(
κdd

3
2 ‖X‖ ∨ 1

)(
1 + 2sKB c̄2

b,d,‖X‖
)
∨b2, where

c̄b,d,‖X‖ and κd are given in (A.15) and (A.3), respectively, and P̃2
H2(b,X ) in place of

P2
H2(M,X ).

Remark 31 (Feasible distributions) P̃2
H2(·,X ) includes (µ, ν) ∈ P2

H2(X ), whose densi-
ties p, q, are bounded (from above and away from zero) on X with an extension that is
sufficiently smooth on an open set covering X . This contains the distributions mentioned
in Remark 20.

4.4 Total Variation Distance

Consider the NN class obtained by truncating the functions in Gk(a, φ) to [−1, 1], i.e.,

Ḡk(a, φ) :=
{
g : g(x) = 1{|g̃(x)|≤1}g̃(x) + 1{g̃(x)>1} − 1{g̃(x)<−1} for some g̃ ∈ Gk(a, φ)

}
.

(4.12)
Also, let δ̂Ḡk(a,φ)(X

n, Y n) := D̂hTV,Ḡk(a,φ)(X
n, Y n), and set ḠRk (a) := Ḡk

(
1, 2k−1a, a, a, φR

)
,

and Ḡ∗k(φ) := Ḡk
(
1, 1, 1, 0, φ

)
. Denote the densities of µ and ν w.r.t. λ by p and q, respec-

tively, and for M ≥ 0 define

P2
TV(M,X ) :=

{
(µ, ν) ∈ P(X )× P(X ) : µ, ν � λ, ‖p ∨ q‖∞,X ≤M

}
. (4.13)

The following theorem bounds the effective error for TV distance neural estimation.

Theorem 32 (TV distance neural estimation) The following hold:
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(i) For any µ, ν ∈ P(X ), 0 < ρ < 1, (kn)n∈N with kn → ∞, kn = O
(
n(1−ρ)/2

)
and

Gn = Ḡ∗kn(φ), we have

δ̂Gn(Xn, Y n) −−−→
n→∞

δTV(µ, ν) , P− a.s. (4.14)

(ii) For any 0 < s ≤ 1, M ≥ 0, c̃k,d,s,M,‖X‖ = Od,M,‖X‖
(
k(d+2)/2(s+d+2)

)
as defined in (A.75)

and Gk = ḠRk
(
c̃k,d,s,M,‖X‖

)
, we have

sup
(µ,ν)∈P2

TV(M,X ):
fTV∈Lips,1,M (X )

E
[∣∣∣δ̂Gk(Xn, Y n)− δTV(µ, ν)

∣∣∣] .d,M,s k
− s

2(s+d+2) + k
d+2

2(s+d+2)n−
1
2 . (4.15)

The proof of Theorem 32 is provided in Appendix A.2.8. A key technical challenge arises
from the fact that fTV = 1C∗ −1X\C∗ (see (2.8)) contains step discontinuities in its domain,
and hence, it does not belong to the Klusowski-Barron class. Consequently, Theorem 8
is not directly applicable for bounding the approximation error as was done for the SDs
considered until now. To overcome this issue, we apply a Gaussian smoothing kernel to
fTV so that the smoothed version belongs to the Klusowski-Barron class. The width of the
kernel is then adjusted as a function of k such that L1 norm of the difference between fTV
and its smoothed version decreases as k increases. The need for the smoothing operation
results in a slower approximation and empirical estimation error rate that depends on d.

Remark 33 (Curse of dimensionality) Setting k = n in (4.15), we achieve the effective
error rate O

(
n−s/2(s+d+2)

)
. Note that this rate suffers from CoD, different from NEs of

other SDs considered above where the parametric rate is achieved.

In practice, the condition fTV ∈ Lips,1,M (X ) required for (4.15) may be hard to verify. A
simple sufficient condition in terms of the densities of µ and ν is given below. To state it,
we need the following definition.

Definition 34 (Critical zero) Given f : X → R, a point x0 ∈ X is called a critical zero
of f if f(x0) = 0 and every neighbourhood Ux0 of x0 contains an x ∈ Ux0 ∩ X such that
f(x) 6= 0. In particular, if f(x0) = 0 and f is differentiable at x0 with derivative f ′(x0) > 0,
then x0 is a critical zero. Let Z(f) denote the set of critical zeros of f .

Based on the above, for N ∈ N and b ≥ 0, define

Tb,N (X ) :=
{
f : X → R : ‖x− x′‖ ≥ b,∀ x, x′ ∈ Z(f), |Z(f)| ≤ N

}
, (4.16)

as the class of functions on X with at most N critical zeros at pairwise (Euclidean) distance
of at least b from each other. We are now ready to state the sufficient condition for TV
distance estimation; see Appendix A.2.9 for proof.

Proposition 35 (Sufficient condition for Theorem 32) For N ∈ N and b ≥ 0, con-
sider the class

P̃2
TV(b,N,X ) :=

{
(µ, ν) ∈ P2

TV(b,X ) : ∃ f ∈ Tb,N (X ) s.t. p− q = f
}
.

Then, for any 0 < s ≤ 1, (4.15) holds with M = λ(X ) +
(
2b−sλ(X ) ∨ 2Nπd/2bd−sΓ(d/2 +

1)−1
)

and supremum over (µ, ν) ∈ P̃2
TV(b,N,X ) in place of that over (µ, ν) ∈ P2

TV(M,X ),
where λ(X ) is the Lebesgue measure of X and Γ is the gamma function.
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Remark 36 (Feasible distributions) The set P̃2
TV(·, ·,X ) includes generalized Gaussian

distributions, Gaussian mixtures, exponential families, Cauchy distributions, etc., truncated
and normalized to be supported on X . It also includes distributions whose densities are
analytic functions, e.g., non-negative polynomials on X . These inclusions are easy to verify
since p−q has finitely many separated critical zeros for such distributions (cf., e.g., (Smale,
1986; Kalantari, 2004) for the case of analytic functions).

5. Neural Estimation for Distributions with Unbounded Support

Thus far, we considered compactly supported µ and ν. In this section, we consider neural
estimation of KL, χ2, H2 and TV with µ, ν ∈ P

(
Rd
)
. Throughout, unless stated otherwise,

we will assume that µ, ν � λ with p, q denoting the respective Lebesgue densities. For
each SD, we first prove consistency of the NE under certain regularity conditions on the
densities. Then, we present effective error bounds under an Orlicz norm constraint on the
densities, which are subsequently specialized to multivariate Gaussian distributions. We
next introduce the required definitions below.

Definition 37 (Orlicz space) An increasing convex function ψ : [0,∞) → [0,∞) with
ψ(0) = 0 and limx→∞ ψ(x) = ∞ is called an Orlicz function. For a given ψ and M ≥ 0,
the bounded Orlicz space7 is

Lψ(M) =
{
f : Rd → R : ‖f‖ψ ≤M

}
,

where ‖f‖ψ := inf
{
c > 0 :

∫
Rd ψ (‖x‖ /c) f(x)dx ≤ 1

}
.

Examples of Orlicz functions include ψ̂r(z) = zr and ψr(z) = ez
r − 1, z ∈ R, for r ≥ 1; in

particular, ψr with r = 2 correspond to the sub-Gaussian class defined next.

Definition 38 (Sub-Gaussian distribution) A distribution µ ∈ P
(
Rd
)

is σ2-sub-Gaussian
for σ > 0 if X ∼ µ satisfies

E
[
eu·(X−E[X])

]
≤ e

σ2‖u‖2
2 , ∀ u ∈ Rd.

For M ≥ 0, let SG(M) be the set of all σ2-sub-Gaussian distributions with σ2∨‖E[X]‖ ≤M .

With some abuse of notation, we henceforth use boldface letters to denote infinite se-
quences, e.g., v = (vk)k∈N; this will simplify some of the subsequent notation. In par-
ticular, we use r = (rk)k∈N for an increasing positive divergent sequence (i.e., rk → ∞)
with rk ≥ 1, and m = (mk)k∈N for a non-decreasing positive sequence with mk ≥ 1.
Let Ĝk(a, φ, r) :=

{
g1Bd(r) : g ∈ Gk(a, φ)

}
, ĜRk (a, r) :=

{
g1Bd(r) : g ∈ GRk (a)

}
, and

Ĝ∗k(φ, r) :=
{
g1Bd(r) : g ∈ G∗k(φ)

}
denote the NN classes Gk(a, φ), GRk (a), and G∗k(φ), respec-

tively, after nullifying the functions outside of Bd(r).

7. It is possible to generalize the results in this section to µ, ν � γ, where γ is an arbitrary positive
σ-finite Borel measure. Accordingly, the Orlicz norm in Definition 37 is replaced with ‖f‖ψ,γ :=

inf
{
c ∈ [0,∞] :

∫
Rd ψ

(
‖x‖ /c

)
f(x)dγ(x) ≤ 1

}
. We adopt the current definition for simplicity.
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5.1 KL Divergence

For M ≥ 0, ` ∈ N, r and m as above, consider the following class of distributions:

P̄2
KL,ψ (M, `, r,m) :=

{
(µ, ν) ∈ P2

KL

(
Rd
)

:
µ, ν � λ, p, q ∈ Lψ(M), ‖fKL‖`,µ ≤M,

c?KB
(
fKL|Bd(rk), Bd(rk)

)
≤ mk, k ∈ N

}
.

In words, the class above contains pairs of distributions whose (i) densities have a ψ-Orlicz
norm bounded by M , (ii) fKL has L`(µ) norm at most M , and (iii) the restriction of fKL to
Bd(rk) has a Klusowski-Barron coefficient that is at most mk.

The following is the counterpart of Theorem 14 for distributions supported on Rd; the
proof is provided in Appendix A.3.1.

Theorem 39 (KL divergence neural estimation) For any 0 < ρ < 1, the following
hold:

(i) Let (µ, ν) ∈ P2
KL(Rd) be such that fKL ∈ C

(
Rd
)

and
∥∥fKL∥∥1,µ

< ∞. Then, for kn, rn, n

satisfying kn →∞, rn →∞, k
3/2
n rne

kn(rn+1) = O
(
n(1−ρ)/2

)
and Gn = Ĝ∗kn(φ, rn),

D̂Gn(Xn, Y n) −−−→
n→∞

DKL (µ‖ν) , P− a.s.

(ii) Let ` > 1, M ≥ 0, `∗ = `/(` − 1), and m be such that 1 ≤ mk . k(1−ρ)/2. Then, for
Gk = ĜRk (mk, rk), we have

sup
(µ,ν)∈P̄2

KL,ψ(M,`,r,m)

E
[∣∣∣D̂Gk(Xn, Y n)− DKL (µ‖ν)

∣∣∣]
.d,M,ρ,ψ,` mkk

− 1
2 +mkrke

3mk(rk+1) n−
1
2 +

(
ψ
(
rkM

−1
))−1

`∗ . (5.1)

The proof of the consistency claim in Part (i) follows similar to (4.2) by using the universal
approximation property of Ĝ∗kn(φ, rn) on Euclidean balls, controlling the residual approx-
imation error via integrability assumption on fKL, and using Theorem 11 to bound the
empirical estimation error. The proof of (5.1) is based on the following observations. First,
we note that if c?KB

(
fKL|Bd(rk), Bd(rk)

)
can be bounded for every k, then Theorem 8 implies

that the NN class ĜRk (mk, rk) with mk, rk → ∞ at an appropriate rate can approximate
fKL to within an error of . d1/2mkk

−1/2 inside the Euclidean ball Bd(rk). An upper bound
on c?KB

(
fKL|Bd(rk), Bd(rk)

)
is guaranteed, for instance, by Proposition 10 when fKL is suffi-

ciently smooth on Bd(rk). Moreover, since every Borel probability measure on Rd is tight,
µ
(
Bc
d(rk)

)
∨ ν
(
Bc
d(rk)

)
→ 0 for every rk →∞. The proof then follows by an analysis of the

approximation error outside Bd(rk) under the Orlicz norm constraint on the densities of µ
and ν, along with an account of the empirical estimation error. The Orlicz norm constraint
controls the rate of tail decay of the densities.

Remark 40 (Feasible distributions) Based on Proposition 10, (5.1) holds for distribu-
tions (µ, ν) ∈ P2

KL

(
Rd
)
, µ, ν � λ, such that their densities are sufficiently smooth and

bounded (from above and away from zero) on Euclidean balls Bd(r) for any r > 0, and
‖fKL‖`,µ is finite for some ` > 1. This includes multivariate Gaussians, Gaussian mixtures,
Cauchy distributions, etc., to name a few.
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As an instance of an explicit effective error bound, we now specialize Theorem 39 to the
important case of Gaussian distributions. Define the class

P2
N(M) :=

{(
N (mp,Σp),N (mq,Σq)

)
:
‖mp‖ , ‖mq‖ ≤M
‖Σp‖op, ‖Σ−1

p ‖op, ‖Σq‖op, ‖Σ−1
q ‖op < M

}
,

of pairs of non-singular multivariate Gaussian distributions with appropriate bounded op-
erator norm (denoted by ‖ · ‖op). The following corollary quantifies the effective error for
pairs of Gaussian distributions. However, as the proof (see Appendix A.3.2) requires a
tedious evaluation of a bound on the Klusowski-Barron coefficient, we restrict attention
to isotropic Gaussians, i.e., whose covariance matrix is Σ = σ2Id, for some σ > 0. The
(sub)class of isotropic Gaussian measures is denoted by P̄2

N(M). Nevertheless, we stress
that the argument can be generalized to account for the entire P2

N(M) class above.

Corollary 41 (Gaussian effective error) For any 1 < M < ∞, there exists cd,M > 0

such that for mk �d,M (log k)0.5(d+3), rk := 1∨M+r̃k, r̃k �d,M
√

log k and Gk = ĜRk (mk, rk),

sup
(µ,ν)∈P̄2

N(M)

E
[∣∣∣D̂Gk(Xn, Y n)−DKL (µ‖ν)

∣∣∣].d,M (log k)
d+4

2

(
k−

1
2 + kcd,M (log k)

d+2
2 n−

1
2

)
.

Remark 42 (Gaussian error rate) Optimizing over k in the above equation yields an
effective error rate of n−(logn)

cd,M
log n for some cd,M > −1. Despite the dependence of this

rate on d, in Appendix D.1 we show that for certain classes of sub-Gaussian distributions,
a NE effective error rate of n−1/3 can be achieved independent of dimension. This is to
stress that the NE can produce dimension-free convergence rates even when supports are
unbounded.

5.2 χ2 Divergence

We next consider χ2 divergence. Consider the following class of distributions:

P̄2
χ2,ψ (M, `, r,m) :=

{
(µ, ν) ∈ P2

χ2

(
Rd
)

:
µ, ν � λ, p, q ∈ Lψ(M),

∥∥fχ2

∥∥
`,µ
≤M,

c?KB
(
fχ2 |Bd(rk), Bd(rk)

)
≤ mk, k ∈ N

}
.

The following theorem states consistency of the χ2 NE and bounds the effective error.

Theorem 43 (χ2 neural estimation) The following hold:

(i) Let (µ, ν) ∈ P2
χ2

(
Rd
)

satisfy fχ2 ∈ C
(
Rd
)

and
∥∥fχ2

∥∥
1,µ
∨
∥∥hχ2 ◦ fχ2

∥∥
1,ν

< ∞. Then,

for kn → ∞, rn → ∞, n satisfying k
5/2
n r2

n = O
(
n(1−ρ)/2

)
for some 0 < ρ < 1 and

Gn = Ĝ∗kn(φ, rn), we have

χ̂2
Gn(Xn, Y n) −−−→

n→∞
χ2 (µ‖ν) , P− a.s.

(ii) For any M ≥ 0, ` > 1, `∗ = `/(`− 1) and Gk = ĜRk (mk, rk), we have

sup
(µ,ν)∈P̄2

χ2,ψ
(M,`,r,m)

E
[∣∣χ̂2
Gk(Xn, Y n)− χ2 (µ‖ν)

∣∣] .M,ψ,` m
2
kdk
− 1

2 + d
3
2m2

kr
2
kn
− 1

2

+
(
ψ
(
rkM

−1
))− 1

`∗
.
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The proof of Theorem 43 is similar to that of Theorem 39 and is given in Appendix A.3.3.

Remark 44 (Feasible distributions) Theorem 43 (ii) holds for any distributions (µ, ν) ∈
P2
χ2

(
Rd
)
, µ, ν � λ, such that their densities are sufficiently smooth and bounded (from above

for p and away from zero for q) on Euclidean balls, and
∥∥fχ2

∥∥
`,µ

is finite for some ` > 1.
This encompasses the distributions mentioned in Remark 40 for certain parameter ranges.

The corollary below (see Appendix A.3.4 for proof) provides effective error bounds for the
following class of Gaussian distributions:

P̄2
χ2,N(M) :=

{(
N (mp, σ

2
pId),N (mq, σ

2
q Id)

)
:

1/M < σ2
p < 2σ2

q < M,

2σ2
q − σ2

p > 1/M, ‖mp‖ ∨ ‖mq‖ ≤M

}
,

where the constraint σ2
p < 2σ2

q is required for χ2 (µ‖ν) to be finite.

Corollary 45 (Gaussian effective error) For 1 < M < ∞, we have with mk �d,M
k2M5/(4M5+1)(log k)0.5(sKB+d+1), rk = 1 ∨M + r̃k, r̃k �M

√
log k and Gk = ĜRk (mk, rk) that

sup
(µ,ν)∈P̄2

χ2,N
(M)

E
[∣∣χ̂2
Gk(Xn, Y n)− χ2 (µ‖ν)

∣∣] .d,M (log k)2(sKB+d+1)
(
k
− 1

2+8M5 + k
4M5

1+4M5 n−
1
2

)
.

Remark 46 (Gaussian error rate) The optimum in the right hand side (RHS) of the
equation above over (k, n) is attained at k = n(1+4M5)/(1+8M5), and results in an effective
error rate of n−1/(2+16M5) (log n)2(sKB+d+1). Note that this rate degrades with increasing
d or M . Nevertheless, in Proposition 70 in Appendix D.2, we show that a dimension-free
improvement of n−1/2 (up to logarithmic factors) can be achieved for a certain class of
sub-Gaussian distributions with unbounded support.

5.3 Squared Hellinger Distance

Next, we consider the squared Hellinger distance. For M, r,m as above, let

P̄2
H2,ψ(M, r,m) :=

(µ, ν)∈P2
H2

(
Rd
)

:

µ, ν � λ, p, q ∈ Lψ(M),

c?KB
(
fH2 |Bd(rk), Bd(rk)

)
∨
∥∥∥∥dµ

dν

∥∥∥∥
∞,Bd(rk)

≤ mk, ∀ k ∈ N

.
Also, consider the following NN class obtained from G̃Rk,t(·) (see (4.9)) by nullifying the
functions outside of Bd(r):

ǦR
k,t(a, r) :=

{
g1Bd(r) : g ∈ G̃Rk,t(a)

}
. (5.2)

The next theorem provides conditions under which consistency holds for H2 neural estima-
tion and bounds the effective error; see Appendix A.3.5 for the proof.

Theorem 47 (Squared Hellinger distance neural estimation) Let m satisfy mk =
o(k1/4). The following hold:
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(i) For (µ, ν) ∈ P̄2
H2,ψ (M, r,m), and k, r, m, n such that kn →∞, rkn →∞, mkn →∞,

k
1/2
n m2

kn
rkn = O

(
n(1−ρ)/2

)
for some 0 < ρ < 1 and Gn = ǦR

kn,m
−1/2
kn

(mkn , rkn), we have

Ĥ2
Gn(Xn, Y n) −−−→

n→∞
H2(µ, ν), P− a.s.

(ii) For any M ≥ 0 and Gk = ǦR

k,m
−1/2
k

(mk, rk), we obtain

sup
(µ,ν)∈P̄2

H2,ψ
(M,r,m)

E
[∣∣∣Ĥ2
Gk(Xn, Y n)− H2(µ, ν)

∣∣∣]
.M,ψ m

2
kd

1
2k−

1
2 + d

3
2m2

krkn
− 1

2 +
(
ψ
(
rkM

−1
))− 1

2
.

The proof of Theorem 47 follows along similar lines to Theorem 39. Notice that the NN
class ǦR

k,t is used to overcome the issue of singularity of fH2 as in Theorem 27.

Remark 48 (Feasible distributions) Theorem 47 applies for any distributions (µ, ν) ∈
P2
H2

(
Rd
)
, µ, ν � λ, such that their densities p, q are sufficiently smooth and bounded (from

above and below) on Euclidean balls. To list a few, this includes multivariate Gaussians,
mixture Gaussians, Cauchy distributions, etc.

The next corollary provides effective error bounds for the class of isotropic Gaussian distri-
butions with bounded parameters, P̄2

N(M), considered in Section 5.1; see Appendix A.3.6
for the proof.

Corollary 49 (Gaussian effective error) For 1 < M < ∞, rk = 1 ∨ M + (M +
8M2)−1/2(log k)1/2, mk �d,M k2M/(1+8M)(log k)0.5(sKB+d+1), and Gk = ǦR

k,m
−1/2
k

(mk, rk),

sup
(µ,ν)∈P̄2

N(M)

E
[∣∣∣Ĥ2
Gk(Xn, Y n)− H2(µ, ν)

∣∣∣] .d,M (log k)sKB+d+2k−
1

2+16M

(
1 + k

1
2n−

1
2

)
.

Remark 50 (Gaussian error rate) Setting k = n in the equation above yields an effec-
tive error rate of n−1/(2+16M)(log n)sKB+d+2. While this rate deteriorates with M and d, in
Proposition 72 in Appendix D.3, we show that a rate of n−1/2 (up to logarithmic factors)
is possible independent of dimension for a certain class of sub-Gaussian distributions with
unbounded support.

5.4 TV Distance

Finally, we consider neural estimation of TV distance for distributions with unbounded
support. For M ≥ 0, s ≥ 0, b ≥ 0, N ∈ N, sequences r and m as above, let

P̄2
TV,ψ(M, s, r,m) :=

{
(µ, ν) ∈ P2

TV(M,Rd) :
µ, ν � λ, p, q ∈ Lψ(M),

fTV1Bd(rk) ∈ Lips,1,mk(Bd(rk))

}
,

P̂2
TV(b,M,N) :=

{
(µ, ν) ∈ P2

TV(M,Rd) : µ, ν ∈ SG(M), ∃ f ∈ Tb,N
(
Rd
)

s.t. p− q = f
}
,
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where P2
TV(M,Rd) and Tb,N

(
Rd
)

are defined in (4.13) and (4.16), respectively. Also, define

the NN classes ~G R
k (a, r) :=

{
g1Bd(r) : g ∈ Ḡ R

k (a)
}

, and ~G∗k(φ, r) :=
{
g1Bd(r) : g ∈ Ḡ∗k(φ)

}
,

where Ḡk is given in (4.12).
The next theorem is the analogue of Theorem 39 for TV distance neural estimation. Its

proof is presented in Appendix A.3.7.

Theorem 51 (TV distance neural estimation) The following hold:

(i) For µ, ν ∈ P
(
Rd
)
, any 0 < ρ < 1, and k, r, n such that kn → ∞, rn → ∞, knr

1/2
n =

O
(
n(1−ρ)/2

)
and Gn = ~G∗kn(φ, rn), we have

δ̂Gn(Xn, Y n) −−−→
n→∞

δTV(µ, ν) , P− a.s.

(ii) For any M ≥ 0 and 0 < s ≤ 1, Gk = ~G R
k

(
~ck,d,s,m,r, rk

)
, where ~ck,d,s,m,r is given in

(A.98), we obtain

sup
(µ,ν)∈P̄2

TV,ψ(M,s,r,m)

E
[∣∣∣δ̂Gk(Xn, Y n)− δTV(µ, ν)

∣∣∣]
.d,M,s,ρ

(
md+2
k r

s(d+1)
k k−

s
2

) 1
s+d+2

+ n−
1
2

(
mkr

s+1
k k

1
2

) d+2
s+d+2

+ ψ
(
(rkM

−1)
)−1

.

The following corollary (see Appendix A.3.8 for proof) provides effective error bounds
for sub-Gaussian distributions such that p − q has finite number of critical zeros pairwise
separated by Euclidean distance bounded away from zero.

Corollary 52 (Sub-Gaussian effective error) For any 0 < s ≤ 1, b ≥ 0, M ≥ 0, N ∈
N, rk = M ∨ 1 + 4

√
dM log k, mk = cd,s,b,N,rk (see (A.101)) and Gk = ~G R

k

(
~ck,d,s,m,r, rk

)
, we

have

sup
(µ,ν)∈P̂2

TV(b,M,N)

E
[∣∣∣δ̂Gk(Xn, Y n)− δTV(µ, ν)

∣∣∣]
.d,s,b,N (log k)

(s+d)(d+2)
2(s+d+2) k

−s
2(s+d+2) + (log k)

d+2
2 k

d+2
2(s+d+2)n−

1
2 .

Remark 53 (Sub-Gaussian error rate) Setting k = n in the bound above, the effective
error rate is n−s/2(s+d+2)(log n)(d+2)/2.

Remark 54 (Feasible distributions) P̂2
TV(·, ·, ·) includes generalized Gaussian distribu-

tions, mixture Gaussians, and in general, distributions pairs with smooth bounded densities
having finite number of modes and sub-Gaussian tails.

6. Concluding Remarks

This paper studied neural estimation of SDs, aiming to characterize the performance of NEs
via an approximation-estimation error analysis. We showed that NEs of f-divergences, such
as the KL and χ2 divergences, squared Hellinger distance, and TV distance are consistent,
provided the appropriate scaling of the NN size k with the sample size n. We further
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derived non-asymptotic absolute-error upper bounds that quantify the dependence on k and
n. In the compactly supported case, the derived bounds enabled to establish the minimax
optimality of NEs for KL divergence, χ2 divergence, and H2 distance. The key results
leading to these bounds are Theorems 8 and 12, which, respectively, bound the sup-norm
approximation error by NNs and the empirical estimation error of the parametrized SD. Our
theory covers distributions whose densities belong to an appropriate Orlicz class (e.g., sub-
Gaussian distributions), but faster (optimal) parametric rates are attained when supports
are compact.

Going forward, we aim to extend our results to additional SDs such as Wasserstein dis-
tances and IPMs. While our analysis strategy extends to these examples, new approxima-
tion bounds for the appropriate function classes (e.g., 1-Lipschitz) are needed. Generalizing
our results to NEs based on deep nets is another natural direction. Recent results on the
approximation capabilities of DNNs (e.g., Yarotsky, 2017) appears useful for this purpose.
While our analysis does not account for the optimization error, this is another important
component of the overall error and we plan to examine it in the future. Through the results
herein and the said future directions, we hope to couple neural estimators with the theory
to guarantee their performance and/or elucidate their limitations.
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Appendix A. Proofs

This section contains proofs of the results presented in Section 3-5, each given in a differ-
ent subsection. For fluidity, derivations of lemmas used in those proofs are relegated to
Appendix B.

We first state an auxiliary result which will be useful in several proofs that follow. For
b ≥ 0 and an integer s ≥ 0, define the function classes:

LKBs,b
(
Rd
)
:=

{
f∈L1

(
Rd
)
∩L2

(
Rd
)

:
|f(0)| ∨ ‖∇f(0)‖1≤ b,

∥∥Dα̃f
∥∥

1
<∞,∀ ‖α̃‖1≤ s

‖Dαf‖2 ≤ b,∀ ‖α‖1 ∈ {2, s}

}
,

(A.1)

LBs,b
(
Rd
)

:=

{
f ∈ L1

(
Rd
)
∩ L2

(
Rd
)

:
|f(0)| ≤ b,

∥∥Dα̃f
∥∥

1
<∞, ∀ ‖α̃‖1 ≤ s

‖Dαf‖2 ≤ b,∀ ‖α‖1 ∈ {1, s}

}
. (A.2)

The next lemma states that functions in LKBs,b
(
Rd
)

(resp. LBs,b
(
Rd
)
) with sufficient smooth-

ness order s belong to the Klusowski-Barron (resp. Barron) class. Its proof is given in
Appendix B.1 and borrows arguments from (Barron, 1993).
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Lemma 55 (Smoothness and Klusowksi-Barron class) Recall sKB = b0.5dc + 3 and
sB := b0.5dc+ 2. If f ∈ LKBsKB,b

(
Rd
)
, then we have S2(f) ≤ bd3/2κd, while if f ∈ LsB,b

(
Rd
)
,

then S1(f) ≤ bd1/2κd , where

κ2
d :=

(
d+ dsB

) ∫
Rd

(
1 + ‖ω‖2(sB−1)

)−1
dω <∞. (A.3)

Consequently, for X ⊆ Rd, LsKB,b
(
Rd
)
⊆ Bc,2,X

(
Rd
)

and LsB,b
(
Rd
)
⊆ Bc,1,X

(
Rd
)

with

c = b ∨ bd3/2κd ‖X‖ and c = b ∨ bd1/2κd ‖X‖, respectively.

A.1 Proofs for Section 3

A.1.1 Proof of Theorem 8

For a = (a1, a2, a3, a4), we denote the set of feasible parameters of Gk(a, φ) by Θk(a), i.e.,

Θk(a) :=

({βi, wi, bi}ki=1, w0, b0

)
:

wi ∈ Rd, bi, βi ∈ R, max
1≤i≤k

‖wi‖1 ∨ |bi| ≤ a1,

max
1≤i≤k

|βi| ≤ a2, |b0| ≤ a3, ‖w0‖1 ≤ a4

 .

(A.4)
Also, throughout this section, we write gθ(x) to denote g(x) =

∑k
i=1 βiφ (wi · x+ bi) +w0 ·

x+ b0 with θ =
(
{βi, wi, bi}ki=1, w0, b0

)
, whenever the underlying θ is to be emphasized.

We prove the second claim in Theorem 8. The proof relies on arguments from (Barron,
1992) and (Barron, 1993), along with the uniform central limit theorem (CLT) for uniformly
bounded VC-type classes. Fix an arbitrary (small) δ > 0, and let f̃ : Rd → R be such that
f = f̃ |X and ‖X‖S1(f̃)∨ f̃(0) ≤ a+ δ. Such an f̃ exists since c?B(f,X ) ≤ a. Then, since X
is compact, it follows from the proof of (Barron, 1993, Theorem 2) that

f̃0(x) := f̃(x)− f̃(0) =

∫
ω∈Rd\{0}

%(x, ω)γ(dω),

where

%(x, ω) :=
L
(
f̃,X

)
supx∈X |ω · x|

(
cos(ω · x+ ζ(ω))− cos(ζ(ω))

)
,

γ(dω) :=
supx∈X |ω · x|

∣∣F̃ ∣∣(dω)

L
(
f̃,X

) ,

with L
(
f̃,X

)
:=
∫
Rd supx∈X |ω · x|

∣∣F̃ ∣∣(dω). Here
∣∣F̃ ∣∣(dω) and ζ(ω) are the magnitude and

phase of the complex Borel measure in the Fourier representation of f̃ , respectively. Note
that γ defined above is a probability measure on Rd.

Let Θ̃ := Θ̃
(
k, L

(
f̃,X

))
:= Θ1

(
k1/2 log k, 2L

(
f̃,X

)
, 0, 0

)
(see (A.4)). Then, it further

follows from the proofs of (Barron, 1993, Lemma 2-Lemma 4,Theorem 3) that there exists
a probability measure γk ∈ P̃k := P

(
Θ̃
)

(see Barron, 1993, Eqns. (28)-(32)) such that∥∥∥∥f̃0 −
∫
θ̃∈Θ̃

gθ̃(·) γk
(
dθ̃
)∥∥∥∥
∞,X

. L
(
f̃,X

)
k−

1
2 , (A.5)
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where gθ̃(x) = β̃φS
(
w̃ · x + b̃

)
for θ̃ = (β̃, w̃, b̃, 0, 0) and φS is the logistic sigmoid. The

previous step needs further elaboration. The claims in (Barron, 1993, Lemma 2- Lemma 4,
Theorem 3) are stated for L2 norm, but it is not hard to see from the proof therein that
the same also holds for sup-norm, apart from the following subtlety. In the proof of Lemma
3, it is shown that %(x, ω), ω ∈ Rd, lies in the convex closure of a certain class of step
functions, whose discontinuity points are adjusted to coincide with the continuity points of
the underlying measure η. While this can be shown to account for universal approximation
under the essential supremum w.r.t. η, to obtain a sup-norm bound one additional step is
needed. Specifically, by using modified step functions whose value at 0 is 0.5 (instead of
1), using their linear combinations for approximation of the target function in Lemma 3,
and subsequently replacing each such step function by sigmoids with coinciding values at
zero, it can be seen that %(x, ω) lies in the point-wise closure of convex hull of the desired
sigmoid function class.

Next, for each fixed x, let υx : Θ̃ → R be given by υx(θ̃) := β̃φS
(
w̃ · x + b̃

)
for θ̃ =

(β̃, w̃, b̃, 0, 0), and consider the function class F̃k :=
{
υx, x ∈ Rd

}
. Note that every υx ∈ F̃k

is a composition of an affine function in (w̃, b̃) with the bounded monotonic function β̃φS(·).
Hence, (Van Der Vaart and Wellner, 1996, Lemma 2.6.15, Lemma 2.6.18) yields that F̃k is
a VC type class with index at most d+ 3 for each k ∈ N. Hence, it follows from (Van Der
Vaart and Wellner, 1996, Theorem 2.6.7) that for every 0 < ε ≤ 1,

sup
γ∈P̃k

N
(

2εL
(
f̃,X

)
, F̃k, ‖ · ‖2,γ

)
≤ sup
γ∈P̃∞

N
(

2εL
(
f̃,X

)
, F̃∞, ‖ · ‖2,γ

)
.(d+ 3)(16e)d+3ε−2(d+2).

Moreover, by (Van Der Vaart and Wellner, 1996, Theorem 2.8.3), F̃k is a uniform Donsker
class (in particular, γk-Donsker) for all probability measures γ ∈ P̃k. Consequently, the
uniform CLT (Dudley, 1999) applied to a VC-type class uniformly bounded by 2L

(
f̃,X

)
yields that there exists k parameter vectors, θ̃i := (β̃i, w̃i, b̃i, 0, 0) ∈ Θ̃, 1 ≤ i ≤ k, such that
(see also Yukich et al., 1995, Theorem 2.1)∥∥∥∥∥

∫
θ̃∈Θ̃

gθ̃(·) γk(dθ̃)−
1

k

k∑
i=1

gθ̃i(·)

∥∥∥∥∥
∞,Rd

. d
1
2L
(
f̃,X

)
k−

1
2 . (A.6)

The RHS above is independent of γk and depends on f̃ and X only through L
(
f̃,X

)
.

From (A.5)-(A.6) and triangle inequality, we obtain∥∥∥∥∥f̃0 −
1

k

k∑
i=1

gθ̃i

∥∥∥∥∥
∞,X

. d
1
2L
(
f̃,X

)
k−

1
2 .

Setting θ =
({

(β̃i/k, w̃i, b̃i)
}k
i=1
, 0, f̃(0)

)
and gθ(x) = k−1

∑k
i=1 β̃iφS(w̃i · x+ b̃i) + f̃(0) and

noting that L
(
f̃,X

)
≤ ‖X‖S1(f̃) by Cauchy-Schwartz, we have∥∥∥f̃ − gθ∥∥∥

∞,X
. d

1
2 ‖X‖S1(f̃)k−

1
2 ≤ d

1
2 (a+ δ)k−

1
2 .

Next, note that
∥∥f̃ − gθ∥∥∞,X = ‖f − gθ‖∞,X and gθ ∈ GSk

(
‖X‖S1(f̃) ∨ f̃(0)

)
⊆ GSk (a+ δ).

Since δ > 0 is arbitrary and φS is continuous, we obtain that there exists gθ ∈ GSk (a) with

‖f − gθ‖∞,X . ad
1
2 k−

1
2 . (A.7)
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A.1.2 Proof of Proposition 10

To prove the first claim, consider f̃ ∈ CsKBb (U) such that f = f̃ |X . By Theorem 8, it suffices

to show that there exists an extension fext of f̃ from U to Rd such that ‖X‖S2(fext) ∨
|fext(0)| ∨ ‖∇fext(0)‖1 ≤ c̄b,d,‖X‖. Let α|j denote a multi-index of order j. Consider an

extension of Dα|sKB f̃ from U to Rd, which is zero outside U . Fixing Dα|sKB f̃ on Rd induces
an extension of all lower order derivatives Dα|jf, 0 ≤ j < sKB to Rd, which can be defined
recursively as Dα|1Dα|sKB−j f̃(x) = Dα|1+α|sKB−j f̃(x), x ∈ Rd, for all α|1, α|sKB−j and 1 ≤
j ≤ sKB.

Let U ′ :=
{
x′ ∈ Rd : ∃x ∈ X , ‖x′ − x‖ < 1

}
and first assume the strict inclusion U ( U ′.

In that case, the mean value theorem yields that for any x, x′ ∈ U ′ and 1 ≤ j ≤ sKB, we have∣∣∣Dα|sKB−j f̃(x′)
∣∣∣ ≤ ∣∣∣Dα|sKB−j f̃(x)

∣∣∣+
√
d max
x̃∈U ′, α|1

∣∣∣Dα|sKB−j+α|1 f̃(x̃)
∣∣∣ ∥∥x− x′∥∥ , (A.8)

where we also used the fact that ‖x− x′‖1 ≤
√
d ‖x− x′‖. Further, note that

∥∥Dα|sKB f̃
∥∥
∞,U ′

≤ b (Dα|sKB f̃ equals zero outside U), and since f̃ ∈ CsKBb (U), we have
∥∥Dα|sKB−j f̃(x)

∥∥
∞,U ≤ b.

Then, for any x′ ∈ U ′, taking x ∈ X with ‖x− x′‖ ≤ 1 (such an x exists by definition of
U ′) in (A.8) yields

∣∣Dα|sKB−1 f̃(x′)
∣∣ ≤ b + b

√
d. Having this, we recursively apply (A.8) to

obtain for 1 ≤ j ≤ sKB that

∥∥Dα|sKB−j f̃
∥∥
∞,U ′ ≤ b

j∑
i=1

d
i−1

2 + bd
j
2 ≤ b1− d

sKB
2

1−
√
d

+ bd
sKB

2 =: b̃. (A.9)

If U ′ ⊆ U , then
∥∥Dα|sKB−j f̃

∥∥
∞,U ′ ≤ b by definition since f̃ ∈ CsKBb (U). Hence, (A.9) holds in

both cases as b̃ ≥ b.
The desired final extension is fext := f̃ · fc, where fc is the smooth cut-off function

fc(x) := 1X ′ ∗Ψ 1
2
(x) :=

∫
Rd
1X ′(y)Ψ 1

2
(x− y)dy, x ∈ Rd, (A.10)

with X ′ :=
{
x′ ∈ Rd : ∃x ∈ X ,

∥∥x′ − x∥∥ ≤ 0.5
}

and Ψ(x) ∝ exp
(
− 1

0.5−‖x‖2

)
1{‖x‖<0.5}

as the canonical mollifier normalized to have unit mass. Since Ψ ∈ C∞
(
Rd
)
, we have

fc ∈ C∞
(
Rd
)
. Also, observe that fc(x) = 1 for x ∈ X , fc(x) = 0 for x ∈ Rd \ U ′ and

fc(x) ∈ (0, 1) for x ∈ U ′ \ X . Hence, fext(x) = f̃(x) for x ∈ X , fext(x) = 0 for x ∈ Rd \ U ′
and |fext(x)| ≤

∣∣f̃(x)
∣∣ for x ∈ U ′\X , thus satisfying fext|X = f̃ |X = f as required. Moreover,

for all 0 ≤ j ≤ sKB, we have Dα|jfext(x) = 0, for x /∈ U ′, and∥∥Dα|jfext
∥∥
∞,U ′ ≤ 2j b̃ max

α:‖α‖1≤j

∥∥Dαfc
∥∥
∞,U ′ ≤ 2sKB b̃ max

α:‖α‖1≤sKB

∥∥DαΨ
∥∥
∞,Bd(0.5)

=: b̂, (A.11)

where the first inequality follows using product rule for differentiation and (A.9), while the
second is due to (A.10).

Consequently, for 0 ≤ j ≤ sKB and i = 1, 2, we have

‖Dα|jfext‖ii =

∫
U ′

(Dα|jfext)
i(x)dx ≤ b̂i λ

(
Bd(rad(X ) + 1)

)
= b̂i

π
d
2

Γ(0.5d+ 1)

(
rad(X ) + 1

)d
,

(A.12)
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where λ denotes the Lebesgue measure, rad(X ) = 0.5 supx,x′∈X ‖x− x′‖, and Γ denotes the

gamma function. Defining b′ := b̂dπd/2Γ(d/2 + 1)−1
(
rad(X ) + 1

)d
and noting that b′ ≥ b̂,

we have from (A.11)-(A.12) that fext ∈ L̃sKB,b′
(
Rd
)
, where

L̃sKB,b′
(
Rd
)
:=

{
f∈L1

(
Rd
)
∩L2

(
Rd
)

:
|f(0)| ≤ b′, ‖Dαf‖2 ≤ b

′ for 1 ≤ ‖α‖1 ≤ sKB
‖∇f(0)‖1≤ b

′,
∥∥Dα̃f

∥∥
1
<∞ for ‖α̃‖1 ≤ sKB

}
.

(A.13)

Since L̃sKB,b′
(
Rd
)
⊆ LKBsKB,b′

(
Rd
)

(see (A.1)), Lemma 55 yields S2(fext) ≤ κdd3/2b′ and

fext ∈ Bc̄b,d,‖X‖,2,X
(
Rd
)
∩ L̃sKB,b′

(
Rd
)
⊆ Bc̄b,d,‖X‖,2,X

(
Rd
)
∩ LKBsKB,b′

(
Rd
)
, (A.14)

where

c̄b,d,‖X‖ := (κdd
3
2 ‖X‖ ∨ 1)

× π
d
2 Γ

(
d

2
+ 1

)−1(
rad(X ) + 1

)d
2sKBbd

(
1− d

sKB
2

1−
√
d

+ d
sKB

2

)
max

‖α‖1≤sKB

∥∥DαΨ
∥∥
∞,Bd(0.5)︸ ︷︷ ︸

=:b′

,

(A.15)

and κ2
d :=

(
d+ dsB

) ∫
Rd

(
1 + ‖ω‖2(sB−1)

)−1
dω. It then follows from Theorem 8 that there

exists g ∈ GRk
(
c̄b,d,‖X‖

)
such that ‖f − g‖∞,X . c̄b,d,‖X‖d

1/2k−1/2. This proves the first claim

of the proposition. Repeating the same arguments starting with f̃ ∈ CsBb (U), the second
claim follows again from Theorem 8, thus completing the proof.

A.1.3 Proof of Theorem 11

We require the following theorem which gives a tail probability bound for the deviation of
supremum of a sub-Gaussian process from its associated entropy integral.

Theorem 56 (Van Handel, 2016, Theorem 5.29) Let (Xθ)θ∈Θ be a separable sub-Gaussian
process on the metric space (Θ, d). Then, there exists c > 0 such that for any θ0 ∈ Θ and
δ ≥ 0, we have

P
(

sup
θ∈Θ

Xθ −Xθ0 ≥ c
∫ ∞

0

√
logN(ε,Θ, d)dε+ δ

)
≤ ce−

δ2

cdiam(Θ,d)2 ,

where diam(Θ, d) := sup
θ,θ̃∈Θ

d(θ, θ̃).

We will also use the following lemma which bounds the covering number of Gk(ak, φ) w.r.t.
to metric induced by ‖·‖∞,X .

Lemma 57 Let φ be a continuous monotone activation whose Lipschitz constant is bounded
by L, and Ua,X (φ) := φ

(
a(‖X‖+ 1)

)
∨ φ
(
− a(‖X‖+ 1)

)
. Then

N
(
ε,Gk(ak, φ), ‖·‖∞,X

)
≤
(
1 + 10ka2,kUa1,k,X (φ)ε−1

)k(
1 + 10a4,k ‖X‖ ε−1

)d(
1 + 10a3,kε

−1
)
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×
(
1 + 10Lka1,ka2,k ‖X‖ ε−1

)dk(
1 + 10Lka1,ka2,k ‖X‖ ε−1

)k
.

In particular, for φ ∈ {φR, φS}, we have

N
(
ε,GRk (a), ‖·‖∞,X

)
≤
(
1 + 20a(‖X‖+ 1)ε−1

)(d+2)k+d+1
, (A.16)

N
(
ε,GSk (a), ‖·‖∞,X

)
≤
(

1 + 20a(‖X‖+ 1)k
1
2 (log k + 1)ε−1

)(d+2)k+1
, (A.17)

N
(
ε,G∗k(φ), ‖·‖∞,X

)
≤
(
1 + 10k(‖X‖+ 1)ε−1

)(d+2)k+1
. (A.18)

The proof of Lemma 57 (see Appendix B.2) is based on the fact that the covering number
of Bm

d (r) w.r.t. ‖ · ‖m norm, m ≥ 1, satisfies

N
(
ε, Bm

d (r), ‖·‖m
)
≤
(
2rε−1 + 1

)d
. (A.19)

Continuing with the proof of Theorem 11, we will show that the claim holds with

Vk,h,φ,X . C̄
(
|G∗k(φ)|,X

)2 (
C̄
(∣∣h′ ◦ G∗k(φ)

∣∣ ,X )+ 1
)2
, (A.20)

Ek,h,φ,X . k
√
d(‖X‖+ 1)

(
C̄
( ∣∣h′ ◦ G∗k(φ)

∣∣ ,X )+ 1
)√

C̄
(
|G∗k(φ)|,X

)
, (A.21)

where we recall that C̄ (|F|,X ) := supx∈X ,f∈F |f(x)|. In the following, we will suppress the
dependence of φ, h, and X for simplicity (unless explicitly needed), e.g., Gk(ak) instead of
Gk(ak, φ).

Fix µ, ν ∈ P(X ) such that Dh,Gk(ak)(µ, ν) <∞. We have

D̂h,Gk(ak)(x
n, yn)− Dh,Gk(ak)(µ, ν)

= sup
gθ∈Gk(ak)

1

n

n∑
i=1

gθ(xi)−
1

n

n∑
i=1

h ◦ gθ(yi)−

(
sup

gθ∈Gk(ak)
Eµ
[
gθ
]
− Eν

[
h ◦ gθ

])

≤ sup
gθ∈Gk(ak)

1

n

n∑
i=1

gθ(xi)−
1

n

n∑
i=1

h ◦ gθ(yi)− Eµ
[
gθ
]

+ Eν
[
h ◦ gθ

]
. (A.22)

Consider the stochastic process (Zgθ)gθ∈Gk(ak) defined by

Zgθ :=
1

n

n∑
i=1

gθ(Xi)−
1

n

n∑
i=1

h ◦ gθ(Yi)− Eµ
[
gθ
]

+ Eν
[
h ◦ gθ

]
. (A.23)

To apply Theorem 56, we now show that (Zgθ)gθ∈Gk(ak) is a separable sub-Gaussian process
on
(
Gk(ak), dk,ak,n

)
, where dk,ak,n will be defined below. Note that E [Zgθ ] = 0 for all

gθ ∈ Gk(ak), and

∣∣Zgθ − Zgθ̃ ∣∣ ≤ n∑
i=1

1

n

∣∣gθ(Xi)− gθ̃(Xi)− Eµ
[
gθ − gθ̃

]∣∣
+

1

n

∣∣h ◦ gθ(Yi)− h ◦ gθ̃(Yi)− Eν
[
h ◦ gθ − h ◦ gθ̃

]∣∣ . (A.24)
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By an application of the mean value theorem, we have for all gθ, gθ̃ ∈ Gk(ak),∣∣h ◦ gθ(x)− h ◦ gθ̃(x̃)
∣∣ ≤ C̄ (∣∣h′ ◦ Gk(ak)∣∣) ∣∣gθ(x)− gθ̃(x̃)

∣∣ . (A.25)

Hence, we have that almost surely

1

n

∣∣gθ(Xi)− gθ̃(Xi)− Eµ
[
gθ − gθ̃

]∣∣+
1

n

∣∣h ◦ gθ(Yi)− h ◦ gθ̃(Yi)− Eν
[
h ◦ gθ − h ◦ gθ̃

]∣∣
≤ 1

n

[ ∣∣gθ(Xi)− gθ̃(Xi)
∣∣+
∣∣Eµ[gθ − gθ̃]∣∣+

∣∣h ◦ gθ(Yi)− h ◦ gθ̃(Yi)∣∣+
∣∣Eν [h ◦ gθ − h ◦ gθ̃]∣∣ ]

≤ 2n−1
(
C̄
(∣∣h′ ◦ Gk(ak)∣∣)+ 1

) ∥∥gθ − gθ̃∥∥∞,X . (A.26)

Let dk,ak,n
(
gθ, gθ̃

)
:= Rk,ak‖gθ−gθ̃‖∞,Xn

− 1
2 , where Rk,ak := 2

(
C̄ (|h′ ◦ Gk(ak)|) + 1

)
. Then,

it follows from (A.24) and (A.26) via Hoeffding’s lemma that

E
[
e
t
(
Zgθ−Zgθ̃

)]
≤ e

1
2
t2dk,ak,n

(
gθ,gθ̃

)2

.

Thus, (Zgθ)gθ∈Gk(ak) is a separable sub-Gaussian process on the metric space
(
Gk(ak), dk,ak,n

)
,

where the separability follows from (A.26) by the denseness of the countable subset of Gk(ak)
obtained by quantizing each of the finite number of bounded NN parameters to rational
numbers (recall that a finite union of countable sets is countable and the activation φ is
assumed continuous).

Specializing to the NN class G∗k(φ) := Gk(a∗, φ), we next bound its covering number
w.r.t. dk,a∗,n, where a∗ = (1, 1, 1, 0). We have

N
(
ε,G∗k , dk,a∗,n

)
:= N

(
ε,G∗k , Rk,a∗n−

1
2 ‖ · ‖∞,X

)
= N

(
ε/(Rk,a∗n

− 1
2 ),G∗k , ‖ · ‖∞,X

)
≤
(
1 + 10k(‖X‖+ 1)Rk,a∗n

− 1
2 ε−1

)(d+2)k+1
,

where the last inequality uses (A.18). Also, we have that N
(
ε,G∗k , dk,a∗,n

)
= 1 for ε ≥

diam
(
G∗k , dk,a∗,n

)
:= maxgθ,gθ̃∈G

∗
k
dk,a∗,n

(
gθ, gθ̃

)
. Then,∫ ∞

0

√
logN

(
ε,G∗k , dk,a∗,n

)
dε

=

∫ diam
(
G∗k ,dk,a∗,n

)
0

√
logN

(
ε,G∗k , dk,a∗,n

)
dε

.
√
kd

∫ diam
(
G∗k ,dk,a∗,n

)
0

√
log
(
1 + 10k(‖X‖+ 1)Rk,a∗n

− 1
2 ε−1

)
dε

. k
√
d(‖X‖+ 1)Rk,a∗

√
C̄
(
|G∗k |

)
n−

1
2 ,

where the last step uses log(1+x) ≤ x, x ≥ −1, and diam
(
G∗k , dk,a∗,n

)
≤ 2Rk,a∗C̄

(
|G∗k |

)
n−1/2.
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It follows from Theorem 56 with Z0 = 0 and the definitions of Vk and Ek (see (A.20)
and (A.21)) that there exists a constant c > 0 such that

P

(
sup
gθ∈G∗k

Zgθ ≥ cEkn
− 1

2 + δ

)
≤ ce

− δ2

cdiam(G∗k,dk,a∗,n)
2

= ce
−nδ

2

Vk , ∀ δ ≥ 0.

Noting that this also holds with −Zgθ in place of Zgθ , the union bound gives

P

(
sup
gθ∈G∗k

|Zgθ | ≥ δ + cEkn
− 1

2

)
≤ 2ce

−nδ
2

Vk .

From (A.22)-(A.23) and the above equation, we obtain that for δ ≥ 0

P
(∣∣∣Dh,G∗k (µ, ν)− D̂h,G∗k (Xn, Y n)

∣∣∣≥ δ+cEkn
− 1

2

)
≤P

(
sup
gθ∈G∗k

|Zgθ | ≥ δ + cEkn
− 1

2

)
≤ 2ce

−nδ
2

Vk .

Taking supremum over µ, ν ∈ P(X ) such that Dh,G∗k (µ, ν) <∞ yields (3.3).

By following similar steps with (A.16) and (A.17) in place of (A.18), we have for Gk ∈{
GRk (a),GSk (a)

}
that

P
(∣∣∣Dh,Gk(µ, ν)− D̂h,Gk(Xn, Y n)

∣∣∣ ≥ δ + cĒk,a,h,Xn
− 1

2

)
≤ 2 c e−nδ

2/V̄k,a,h,X , (A.27)

where V̄k,a,h,X . C̄
(
|GRk (a)|,X

)2(
C̄
(∣∣h′ ◦ GRk (a)

∣∣,X )+ 1
)2

and Ēk,a,h,X .
√
dk log ka(‖X‖+

1)
(
C̄
(∣∣h′ ◦ GRk (a)

∣∣,X )+ 1
)
. To establish (A.27), we use∫ δ

0

√
log
(
1 +Aε−1

)
. δ
√

log
(
(A+ δ)/δ

)
, (A.28)

for A ≥ e and 0 ≤ δ ≤ 1, which can be shown via integration by parts.

A.1.4 Proof of Theorem 12

We establish a more general upper bound with Gk replaced by an arbitrary VC-type class
Fk satisfying certain assumptions. This result is also applicable to deep NNs with finite
width in each layer, continuous activation and bounded parameters, and hence, may be of
independent interest.

Theorem 58 (Estimation error bound) Let µ, ν ∈ P(X ) and Xn ∼ µ⊗n and Y n ∼
ν⊗n. Suppose h : R→ R̄ and (Fk)k∈N (with domain X ) satisfy the following conditions for
each k ∈ N:

(i) h is differentiable at every point in
[
¯
C(Fk,X ), C̄ (Fk,X )

]
with derivative h′;

(ii) C̄ (|h′ ◦ Fk| ,X ) ∨ C̄ (|Fk| ,X ) <∞;

(iii) Fk is a VC-type class with constants lvc(Fk) ≥ e and uvc(Fk) ≥ 1 satisfying (2.11) w.r.t.
a constant envelope Mk (note that this implies C̄(|Fk|,X ) ≤Mk);
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(iv) Fk is point-wise measurable, i.e., there exists a countable subclass F ′k ⊆ Fk of measurable
functions such that for any f ∈ Fk, there is a sequence of functions {fj}j∈N ⊂ F ′k for
which limj→∞ fj(x) = f(x), ∀x ∈ X .

Then, for every k, n ∈ N, we have

sup
µ,ν∈P(X ):

Dh,Fk (µ,ν)<∞

E
[∣∣∣D̂h,Fk(Xn, Y n)− Dh,Fk(µ, ν)

∣∣∣]

.Mk

(
C̄
(∣∣h′ ◦ Fk∣∣ ,X )+ 1

)
n−

1
2

∫ 1

0

√
sup

γ∈P(X )
logN (Mkε,Fk, ‖ · ‖2,γ)dε (A.29)

.
(
uvc(Fk) log lvc(Fk)

) 1
2 Mk

(
C̄
(∣∣h′ ◦ Fk∣∣ ,X )+ 1

)
n−

1
2 . (A.30)

The proof of this theorem is based on standard maximal inequalities from empirical process
theory, and is presented in Appendix A.1.5 below.

To prove (3.4), we first verify that the relevant assumptions given in Theorem 58 hold
with Fk = GRk (a) and a constant envelope Mk = 3a(‖X‖+1). The proof for GSk (a) is similar,
and hence omitted. Conditions (i) and (ii) are satisfied by the hypotheses in the theorem.
Condition (iii) holds as

sup
γ∈P(X )

N
(
Mkε,GRk (a), ‖ · ‖2,γ

)
≤ N

(
Mkε,GRk (a), ‖·‖∞,X

)
≤
(
1 + 7ε−1

)(d+2)k+d+1
, (A.31)

for any 0 < ε ≤ 1, where the last inequality follows from (A.16). To verify condition (iv),
note that g ∈ GRk (a) is measurable since it is a finite linear combination of compositions
of an affine function with a continuous activation. Moreover, point-wise measurability of
GRk (a) follows by the continuity of activation and the fact that each of the finite number of
parameters of GRk (a) can be approximated arbitrary well by rational numbers.

Next, we evaluate the entropy integral term in (A.29) by bounding N
(
Mkε,GRk (a), ‖ ·

‖2,γ
)
. For this purpose, let G†k(a) := Gk(1, 2k−1a, 0, 0, φR). For any gθ, gθ̃ ∈ G

R
k (a), where

gθ =
∑k

i=1 βiφR (wi · x+ bi) +w0 · x+ b0 and gθ̃ =
∑k

i=1 β̃iφR

(
w̃i · x+ b̃i

)
+ w̃0 · x+ b̃0, we

have

∥∥gθ − gθ̃∥∥2,γ
≤

∥∥∥∥∥
k∑
i=1

βiφR (wi · x+ bi)−
k∑
i=1

β̃iφR(w̃i · x+ b̃i)

∥∥∥∥∥
2,γ

+ ‖w0 − w̃0‖1‖X‖+ |b0 − b̃0|.

Hence,

N
(
ε,GRk (a), ‖ · ‖2,γ

)
≤ N

(
ε/3,G†k(a), ‖ · ‖2,γ

)
N(ε/3, B1

d(a), ‖X‖ ‖·‖1)N
(
ε/3, B1(a), | · |

)
≤ N

(
ε/3,G†k(a), ‖ · ‖2,γ

)
(1 + 6a(‖X‖+ 1)ε−1)d+1, (A.32)

where (A.32) uses (A.19).

Consider g =
∑k

i=1 βiφR (wi · x+ bi) ∈ G†k(a). Let F = 2aφR ◦ F̃ , where F̃ = {f : X →
R : f = w ·x+b, w ∈ Rd, b ∈ R, ‖w‖1∨|b| ≤ 1}. By considering the d coordinate projections
fi(x) = xi, 1 ≤ i ≤ d, and fd+1(x) = 1 spanning the finite dimensional vector space F̃ , we
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have from (Van Der Vaart and Wellner, 1996, Lemma 2.6.15) that F is a VC subgraph class
of index atmost d+ 3. This uses the fact that if F̃ is a VC subgraph class of index v and φ
is monotone, then φ ◦ F̃ is a VC subgraph class of index at most v, which follows from the
proof of (Van Der Vaart and Wellner, 1996, Lemma 2.6.18 (viii)). Then, (Van Der Vaart and
Wellner, 1996, Theorem 2.6.7) yields N

(
2a(‖X‖+1)ε,F ′, ‖·‖2,γ

)
. (d+3)(16e)d+3ε−2(d+2),

where F ′ := F ∪−F . Further, by a careful inspection of the proof of (Giné and Nickl, 2015,
Theorem 3.6.17), we obtain that logN

(
2a(‖X‖ + 1)ε, co(F ′), ‖ · ‖2,γ

)
. dε−2(d+2)/(d+3),

where co(F ′) denotes the sequential closure of the convex hull of F ′ given by co(F ′) :=

{
∑k

i=1 λifi : fi ∈ F ′,
∑k

i=1 λi = 1, λi ≥ 0, ∀ 1 ≤ i ≤ k, k ∈ N}. Since G†k(a) ⊆ co(F ′), we

have logN
(
2a(‖X‖+ 1)ε,G†k(a), ‖ · ‖2,γ

)
. dε−2(d+2)/(d+3). Hence,∫ 1

0

√
sup

γ∈P(X )
logN

(
Mkε,GRk (a), ‖ · ‖2,γ

)
dε

(a)

≤
∫ 1

0

√
sup

γ∈P(X )
logN

(
Mkε/3,G†k(a), ‖ · ‖2,γ

)
dε+

√
d+ 1

∫ 1

0

√
log
(
1 + 2ε−1

)
dε

.
√
d

∫ 1

0
(0.5ε)−(d+2)/(d+3)dε+

√
d

∫ 1

0

√
log
(
1 + 2ε−1

)
dε

. d
3
2 , (A.33)

where (a) uses (A.32) and
√
x+ y ≤

√
x +
√
y for x, y ≥ 0; and the second integral in the

penultimate step can be evaluated by applying log(1 + x) ≤ x for x ≥ 0. This completes
the proof of (3.4) via (A.29).

A.1.5 Proof of Theorem 58

To simplify notation, we will denote C̄ (|Fk| ,X ) by C̄ (|Fk|). Fix µ, ν ∈ P(X ) such that
Dh,Fk(µ, ν) <∞. Note that

D̂h,Fk(Xn, Y n)− Dh,Fk(µ, ν) ≤ 1√
n

sup
f∈Fk

1√
n

n∑
i=1

(
f(Xi)− Eµ[f ]− h ◦ f(Yi) + Eν [h ◦ f ]

)
.

Let µn and νn denote the empirical measures n−1
∑n

i=1 δXi and n−1
∑n

i=1 δYi , where δx
denotes the Dirac measure centered at x ∈ X . Then, we have

E
[∣∣∣D̂h,Fk(Xn, Y n)− Dh,Fk(µ, ν)

∣∣∣]
≤ n−

1
2 E

[
sup
f∈Fk

n−
1
2

∣∣∣∣∣
n∑
i=1

(
f(Xi)− Eµ[f ]

∣∣∣∣∣
]

+ n−
1
2 E

[
sup
f∈Fk

n−
1
2

∣∣∣∣∣
n∑
i=1

h ◦ f(Yi)− Eν [h ◦ f ]
)∣∣∣∣∣
]

(a)

. n−
1
2E
[∫ ∞

0

√
logN

(
ε,Fk, ‖ · ‖2,µn

)
dε+

∫ ∞
0

√
logN

(
ε, h ◦ Fk, ‖ · ‖2,νn

)
dε

]
(b)

≤ n−
1
2

∫ ∞
0

√
sup

γ∈P(X )
logN (ε,Fk, ‖ · ‖2,γ)dε

+ n−
1
2

∫ ∞
0

√
sup

γ∈P(X )
logN

(
ε,Fk, C̄ (|h′ ◦ Fk|) ‖ · ‖2,γ

)
dε
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(c)
= n−

1
2

∫ 2Mk

0

√
sup

γ∈P(X )
logN (ε,Fk, ‖ · ‖2,γ)dε

+ n−
1
2

∫ 2MkC̄(|h′◦Fk|)

0

√
sup

γ∈P(X )
logN

(
ε
(
C̄ (|h′ ◦ Fk|)

)−1
,Fk, ‖ · ‖2,γ

)
dε

.Mk

(
C̄
(∣∣h′ ◦ Fk∣∣)+ 1

)
n−

1
2

∫ 1

0

√
sup

γ∈P(X )
logN (Mkε,Fk, ‖ · ‖2,γ)dε (A.34)

(d)

≤ Mk(uvc(Fk))
1
2

(
C̄
(∣∣h′ ◦ Fk∣∣)+ 1

)
n−

1
2

∫ 1

0

√
log
(
1 + lvc(Fk)ε−1

)
dε

(e)

. Mk

(
uvc(Fk) log lvc(Fk)

) 1
2

(
C̄
(∣∣h′ ◦ Fk∣∣)+ 1

)
n−

1
2 , (A.35)

where

(a) follows via an application of (Van Der Vaart and Wellner, 1996, Corollary 2.2.8) since

for fixed (Xn, Y n) = (xn, yn), Hoeffding’s inequality implies that n−
1
2
∑n

i=1 σif(xi) and

n−
1
2
∑n

i=1 h ◦ f(yi)σi are sub-Gaussian w.r.t. pseudo-metrics ‖ · ‖2,µn and ‖ · ‖2,νn , re-
spectively;

(b) is due to

N
(
ε, h ◦ Fk, ‖ · ‖2,γ

)
≤ N

(
ε,Fk, C̄

(∣∣h′ ◦ Fk∣∣) ‖ · ‖2,γ)
= N

(
ε
(
C̄
( ∣∣h′ ◦ Fk∣∣ ))−1

,Fk, ‖ · ‖2,γ
)
, (A.36)

which in turn follows from (A.25), and taking supremum w.r.t. to γ ∈ P(X );

(c) follows sinceN
(
ε,Fk, C̄ (|h′ ◦ Fk|) ‖ · ‖2,γ

)
= 1 for ε ≥ 2MkC̄ (|h′ ◦ Fk|), N (ε,Fk, ‖ · ‖2,γ) =

1 for ε ≥ 2Mk, and N
(
ε,Fk, C̄ (|h′ ◦ Fk|) ‖ · ‖2,γ

)
= N

(
(C̄ (|h′ ◦ Fk|))−1ε,Fk, ‖ · ‖2,γ

)
(note that both sides equal 1 when C̄ (|h′ ◦ Fk|) = 0).

(d) is because Fk is assumed to be a VC-type class with constants lvc(Fk) ≥ e and uvc(Fk)
corresponding to envelope Mk;

(e) is since
∫ δ

0

√
log(A/ε)dε . δ

√
log(A/δ) for A ≥ e and 0 ≤ δ ≤ 1, which in turn follows

via integration by parts.

Taking supremum on both sides of (A.35) over µ, ν such that Dh,Fk(µ, ν) < ∞ proves
(A.30).

A.2 Proofs for Section 4

A.2.1 Proof of Theorem 14

Let DGk(ak,φ)(µ, ν) := DhKL,Gk(ak,φ)(µ, ν) be the parametrized (by the NN class Gk(ak, φ))
KL divergence. We will use the following lemma which proves consistency of parametrized
KL divergence estimator.
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Lemma 59 (Parametrized KL divergence estimation) Let (µ, ν) ∈ P2
KL(X ). Then,

for any 0 < ρ < 1, and n, kn, such that k
3/2
n (‖X‖+ 1)ekn(‖X‖+1) = O

(
n(1−ρ)/2

)
,

D̂G∗k(φ)(X
n, Y n) −−−→

n→∞
DG∗k(φ)(µ, ν), P− a.s. (A.37)

Lemma 59 is proven using Theorem 11; see Appendix B.3 for details.

We proceed with the proof of (4.2). Since X is compact and fKL ∈ C (X ), it follows
from (Stinchcombe and White, 1990, Theorem 2.1 and 2.8) that for any ε > 0, there is a
k0(ε) ∈ N, such that for any k ≥ k0(ε), there exists a gθk ∈ G∗k(φ) with

‖fKL − gθk‖∞,X ≤ ε. (A.38)

This implies

lim
k→∞

DG∗k(φ)(µ, ν) = DKL (µ‖ν) . (A.39)

To see this, note that

DG∗k(φ)(µ, ν) ≤ DKL (µ‖ν) , ∀ k ∈ N, (A.40)

by (2.2) since g ∈ G∗k(φ) is continuous and bounded (‖g‖∞,X ≤ k(‖X‖+ 1) + 1 ≤ 2k+ 1 for

X = [0, 1]d). Moreover, the left-hand side (LHS) of (A.40) is monotonically increasing in k,
and being bounded, it has a limit point. Thus, to establish (A.39), it suffices to show that
this limit point is DKL (µ‖ν).

Assume to the contrary that limk→∞DG∗k(φ)(µ, ν) < DKL (µ‖ν). Note that G∗k(φ) is a
compact set and hence the supremum in the variational form of the LHS of (A.40) is a
maximum. Then, defining D(g) := 1 +Eµ[g]−Eν [eg], it follows that there exists δ > 0 and
gθ̄k ∈ arg maxgθ∈G∗k(φ)D(gθ) such that for all k,

DKL (µ‖ν)−D
(
gθ̄k
)
≥ δ. (A.41)

However, we have for all k ≥ k0(ε) that

DKL (µ‖ν)−D(gθ̄k) ≤ DKL (µ‖ν)−D(gθk)

≤ Eµ [|fKL − gθk |] + Eν
[∣∣∣efKL − egθk ∣∣∣]

≤ Eµ [|fKL − gθk |] + Eν
[

dµ

dν

] ∥∥∥1− egθk−fKL
∥∥∥
∞,ν

≤ ε+ eε − 1,

where the final inequality follows from (A.38) and Eν [dµ/dν] ≤ 1. Then, taking ε sufficiently
small contradicts (A.41), thus proving (A.39). From this and (A.37) with k = kn → ∞,
(4.2) follows since k3/2ek(‖X‖+1) < ek(2+δ) for X = [0, 1]d, any δ > 0, and k sufficiently large.

Next, we prove (4.3). Fix (µ, ν) ∈ P2
KL(M,X ), and with some abuse of notation, let m =

(mk)k∈N be a non-decreasing positive divergent sequence, and note that since c?KB (fKL,X ) ≤
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M , we have from (3.1) that for k such that mk ≥ M , there exists gθk ∈ GRk (mk) and c > 0
satisfying ∥∥fKL − gθk∥∥∞,X ≤ cd 1

2Mk−
1
2 . (A.42)

Also, since gθk ∈ GRk (mk) is bounded, we have that DKL (µ‖ν) ≥ DGRk (mk)(µ, ν). Then, the

following hold for k such that mk ≥M and c2dM2 ≤ k/2:∣∣∣DKL (µ‖ν)− DGRk (mk)(µ, ν)
∣∣∣ = DKL (µ‖ν)− DGRk (mk)(µ, ν)

≤ Eµ
[∣∣fKL − gθk ∣∣]+

∥∥∥1− egθk−fKL
∥∥∥
∞,ν

Eν
[
efKL

]
. d

1
2Mk−

1
2 ,

where the last bound follows from (A.42), Eν
[
efKL

]
= Eν [dµ/dν] = 1, and since

∥∥∥1− egθk−fKL
∥∥∥
∞,ν
≤
∞∑
j=1

(
cd

1
2Mk−

1
2

)j
j!

≤
∞∑
j=1

(
cd

1
2Mk−

1
2

)j
. d

1
2Mk−

1
2 . (A.43)

Next, note that DGRk (mk)(µ, ν) ≥ 0 as g = 0 ∈ GRk (mk). This implies that for k with mk < M

or c2dM2 > k/2, we have
∣∣DKL (µ‖ν)− DGRk (mk)(µ, ν)

∣∣ ≤ DKL (µ‖ν) ≤M . Consequently∣∣∣DKL (µ‖ν)− DGRk (mk)(µ, ν)
∣∣∣ .m,M d

1
2k−

1
2 , ∀ k ∈ N.

On the other hand, since C̄
(∣∣GRk (mk)

∣∣ ,X ) ≤ 3mk(‖X‖ + 1) and C̄
(∣∣hKL ◦ GRk (mk)

∣∣ ,X ) ≤
e3mk(‖X‖+1), it follows from the above, (A.29) and (A.33) that

E
[∣∣∣D̂GRk (mk)(X

n, Y n)− DKL (µ‖ν)
∣∣∣]

≤
∣∣∣DGRk (mk)(µ, ν)− DKL (µ‖ν)

∣∣∣+ E
[∣∣∣DGRk (mk)(µ, ν)− D̂GRk (mk)(X

n, Y n)
∣∣∣]

.m,M d
1
2k−

1
2 + d

3
2mk(‖X‖+ 1)e3mk(‖X‖+1) n−

1
2 . (A.44)

Since ‖X‖ = 1, choosing mk = log log k ∨ 1 in (A.44) yields

E
[∣∣∣D̂GRk (mk)(X

n, Y n)− DKL (µ‖ν)
∣∣∣] .M d

1
2k−

1
2 + d

3
2 (log k)7 n−

1
2 .

Noting that the above bound holds independent of (µ, ν) ∈ P2
KL(M,X ), the proof is com-

pleted by taking supremum w.r.t. such µ, ν. Note that setting mk = M in (A.44) and
taking supremum w.r.t. such µ, ν yields (4.4) from Remark 16.

A.2.2 Proof of Corollary 18

To show that the minimax risk is Ω(n−1/2), it suffices to consider d = 1. Recall that the
minimax risk for differential entropy estimation over the class of one-dimensional Gaussian
distributions with unknown variance in a non-empty interval is Ω(n−1/2) (cf., e.g., Appendix
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A, Goldfeld et al., 2020b). Take X = [a, b], for some a, b ∈ R with b > a, and let PAC(X ) be
the class of (Lebesgue absolutely continuous) distributions on X . The differential entropy
of µ ∈ PAC(X ) is defined as h(µ) := −Eµ [log (dµ/dλ)], and can be equivalently written as
h(µ) = log(b − a) − DKL

(
µ‖u[a,b]

)
, where u[a,b] is the uniform distribution on X . Hence,

the minimax rate of KL divergence estimation for distributions in the class {(µ, u[a,b]) : µ ∈
PAC(X )} for any P̃AC(X ) ⊆ PAC(X ) is the same as that of differential entropy estimation
for distributions in P̃AC(X ).

Let PTG(X ) ⊂ P̃AC(X ) be a class of truncated Gaussians supported on X with zero
mean and variance in an non-empty interval. Note that the minimax rate for differential
entropy estimation over PTG(X ) equals to that over untrucated Gaussian distribution with
zero mean and the same variance constraints. This is since both differential entropies are
elementary functions of the variance parameter, when the mean (equals zero) and a, b are
given. By Proposition 19 (see Remark 20), P2

KL(M,X ) contains pairs of truncated Gaussians
(with variance and means within an interval that depends on M) and uniform distributions,
which implies that the associated KL divergence minimax estimation risk is Ω(n−1/2). The
corollary then follows by noting that the NE achieves O

(
n−1/2

)
error rate by setting k = n

in (4.4).

A.2.3 Proof of Proposition 19

The proof of Proposition 10 (see (A.14)) shows that there exists extensions p̃ext, q̃ext ∈
Bc̄b,d,‖X‖,2,X

(
Rd
)
∩LKBsKB,b′

(
Rd
)

of p̃, q̃, respectively, where c̄b,d,‖X‖ = (κdd
3/2 ‖X‖ ∨ 1)b′, with

b′ as defined in (A.15). Set f ext
KL := p̃ext − q̃ext, and note that since p̃ext, q̃ext ∈ LKBsKB,b′

(
Rd
)
,

their Fourier transforms exist and the corresponding Fourier inversion formulas hold (see
proof of Lemma 55). Also, we have

S2

(
f ext
KL

)
‖X‖ ≤ S2 (p̃ext) ‖X‖+ S2 (q̃ext) ‖X‖ ≤ 2c̄b,d,‖X‖,

where the first inequality uses the definition in (2.9) and linearity of the Fourier transform,
while the second is because p̃ext, q̃ext ∈ Bc̄b,d,‖X‖,2,X

(
Rd
)
. Moreover, note that

DKL (µ‖ν) = Eµ [fKL] = Eµ [log p− log q] ≤ 2b,

where the final inequality is due to log p = p̃|X and log q = q̃|X , for p̃, q̃ ∈ CsKBb (U). Lastly,
since fKL = f ext

KL

∣∣
X , it follows that (µ, ν) ∈ P2

KL(M,X ) with M = 2c̄b,d,‖X‖ ∨ 2b, and the
proposition then follows from Theorem 14.

A.2.4 Proof of Theorem 22

Let χ2
Gk(ak,φ)(µ, ν) := Dhχ2 ,Gk(ak,φ)(µ, ν). We will use the lemma below which proves consis-

tency of parametrized χ2 divergence estimator (see Appendix B.4 for proof).

Lemma 60 (Parametrized χ2 divergence estimation) Let (µ, ν) ∈ P2
χ2(X ). Then,

for any 0 < ρ < 1, and n, kn such that k
5/2
n (‖X‖+ 1)2 = O

(
n(1−ρ)/2

)
, we have

χ̂2
G∗k(φ)(X

n, Y n) −−−→
n→∞

χ2
G∗k(φ)(µ, ν), P− a.s. (A.45)
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Proceeding with the proof of Theorem 22, (4.5) follows from (A.45) using arguments
similar to those used to establish (4.2) and steps leading to (A.49) below; details are omitted.

To prove (4.6), fix (µ, ν) ∈ P2
χ2(M,X ), and let m = (mk)k∈N be a non-decreasing

positive divergent sequence. Since c?KB
(
fχ2 ,X

)
≤ M , we have from (3.1) that for k such

that mk ≥M , there exists gθk ∈ GRk (mk) with∥∥fχ2 − gθk
∥∥
∞,X .Md

1
2k−

1
2 . (A.46)

Also, χ2 (µ‖ν) ≥ χ2
GRk (mk)

(µ, ν) because g ∈ GRk (mk) is bounded. Then, we have∣∣χ2 (µ‖ν)− χ2
GRk (mk)

(µ, ν)
∣∣ = χ2 (µ‖ν)− χ2

GRk (mk)
(µ, ν)

≤ χ2 (µ‖ν)− Eµ
[
gθk
]
− Eν

[
gθk + 0.25g2

θk

]
≤ Eµ

[∣∣fχ2 − gθk
∣∣]+ Eν

[∣∣fχ2 − gθk
∣∣+ 0.25

∣∣f2
χ2 − g2

θk

∣∣] (A.47)

.Md
1
2k−

1
2 + Eν

[
0.25

∣∣fχ2 − gθk
∣∣∣∣fχ2 + gθk

∣∣]
.Md

1
2k−

1
2 + Eν

[
0.25

∣∣fχ2 − gθk
∣∣2+0.5

∣∣fχ2 − gθk
∣∣ ∣∣fχ2

∣∣ ]
.Md

1
2k−

1
2 +M2dk−1 + 0.5

∥∥fχ2 − gθk
∥∥
∞,νEν

[
|fχ2 |

]
(A.48)

.M(M + 1)dk−
1
2 ,

where the final inequality is due to (A.46) and since Eν
[∣∣fχ2

∣∣] ≤ Eν [2(dµ/dν) + 2] ≤ 4.

Since g = 0 ∈ GRk (mk), for k such that mk < M , we have∣∣∣χ2 (µ‖ν)− χ2
GRk (mk)

(µ, ν)
∣∣∣ = χ2 (µ‖ν)− χ2

GRk (mk)
(µ, ν) ≤ χ2 (µ‖ν) ≤M.

Hence, ∣∣∣χ2 (µ‖ν)− χ2
GRk (mk)

(µ, ν)
∣∣∣ .m,M dk−

1
2 , ∀k ∈ N. (A.49)

Since C̄
(∣∣GRk (mk)

∣∣ ,X ) ≤ 3mk(‖X‖+ 1) and C̄
(∣∣h′χ2 ◦ GRk (mk)

∣∣,X ) ≤ 1.5mk(‖X‖+ 1) + 1,

E
[∣∣∣χ̂2
GRk (mk)

(Xn, Y n)− χ2 (µ‖ν)
∣∣∣]

≤
∣∣∣χ2
GRk (mk)

(µ, ν)− χ2 (µ‖ν)
∣∣∣+ E

[∣∣∣χ2
GRk (mk)

(µ, ν)− χ̂2
GRk (mk)

(Xn, Y n)
∣∣∣]

.M,m dk−
1
2 + d

3
2m2

k(‖X‖+ 1)2n−
1
2 , (A.50)

where the last inequality uses (A.29), (A.33) and (A.49). Setting mk = log k in (A.50) and
taking supremum w.r.t. (µ, ν) ∈ P2

χ2(M,X ) yields (4.6).

A.2.5 Proof of Proposition 25

It follows from (A.14) that there exists extensions p̃ext, q̃ext ∈ Bc̄b,d,‖X‖,2,X
(
Rd
)
∩ L̃sKB,b′

(
Rd
)

of p̃, q̃ ∈ CsKBb (U), respectively, where L̃sKB,b′
(
Rd
)

is defined in (A.13) and c̄b,d,‖X‖ :=
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(κdd
3/2 ‖X‖ ∨ 1)b′, with b′ from (A.15). Let f ext

χ2 = 2
(
p̃ext q̃ext − 1

)
and recall that α|j

denotes a multi-index of order j. We have from the product rule of derivatives that for any
j ∈ Z≥0,

Dα|jf ext
χ2 = 2

∑
α|j1+α|j2=α|j

α|j !

α|j1 !α|j2 !
Dα|j1 p̃extD

α|j2 q̃ext −Dα|j2,

where α! :=
∏d
i=1 αi!. Also, note from (A.11) and (A.12) that for 0 ≤ j ≤ sKB, p̃ext, q̃ext

satisfies ∥∥Dα|j p̃ext
∥∥
∞,Rd ∨

∥∥Dα|j q̃ext
∥∥
∞,Rd ≤ b̂ ≤ b

′,

∥∥Dα|j p̃ext
∥∥

2,Rd ∨
∥∥Dα|j q̃ext

∥∥
2,Rd ≤ b

′.

Combining these observations, we have for 0 ≤ j ≤ sKB that∥∥∥Dα|jf ext
χ2

∥∥∥
2,Rd
≤ 2 + 2

∥∥∥∥∥ ∑
α|j1+α|j2=α|j

α|j !

α|j1 !α|j2 !
Dα|j1 p̃extD

α|j2 q̃ext

∥∥∥∥∥
2,Rd

≤ 2 + 2j+1b′2. (A.52)

Similarly, we have
∥∥Dα|jf ext

χ2

∥∥
1
< ∞ for 0 ≤ j ≤ sKB. Hence, f ext

χ2 ∈ L̃sKB,2+2sKB+1b′2
(
Rd
)
.

From Lemma 55, it follows that S2

(
f ext
χ2

)
≤ (2 + 2sKB+1b′2)κdd

3/2. Since fχ2 = f ext
χ2

∣∣
X , this

implies that c?KB
(
fχ2 ,X

)
≤ (2 + 2sKB+1b′2)(κdd

3/2 ‖X‖ ∨ 1). Also,

χ2 (µ‖ν) = Eν
[(
pq−1 − 1

)2] ≤ Eν
[
p2q−2 + 1

]
≤ b2 + 1.

The claim then follows from Theorem 22 by noting that b′2 ≤ c̄2
b,d,‖X‖ and (µ, ν) ∈ P2

χ2(M,X )

with M =
(
2 + 2sKB+1c̄2

b,d,‖X‖
)
(κdd

3/2 ‖X‖ ∨ 1) ∨ (b2 + 1).

A.2.6 Proof of Theorem 27

Let H2
G̃k,t(ak,φ)

(µ, ν) := DhH2 ,G̃k,t(ak,φ)(µ, ν). We need the following lemma (see Appendix

B.5 for proof) which shows that parametrized H2 distance estimation is consistent.

Lemma 61 (Parametrized H2 distance estimation) Let (µ, ν) ∈ P2
H2(X ). Then, for

any 0 < ρ < 1, tn → 0, and n, kn, such that k
3/2
n (‖X‖+ 1)t−2

n = O
(
n(1−ρ)/2

)
,

Ĥ2
G̃∗kn,tn (φ)

(Xn, Y n) −−−→
n→∞

H2
G̃∗kn,tn (φ)

(µ, ν), P− a.s. (A.53)

Continuing with the proof of Theorem 27, we first prove (4.10). Fix (µ, ν) ∈ P2
H2(X ).

Recall that fH2 = 1 − (dµ/dν)−1/2. Since ‖dµ/dν‖∞,η ≤ M by assumption, we have

‖(1− fH2)‖∞,η ≥ M−1/2. It follows from (Stinchcombe and White, 1990, Theorem 2.1

and 2.8) and the definition of G̃∗k,t(φ) that for any ε > 0, there exists k0(ε) ∈ N and

gθk ∈ G̃∗k,M−1/2(φ) such that for all k ≥ k0(ε),

‖fH2 − gθk‖∞,η ≤ ε. (A.54)
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Then, noting that H2(µ, ν) ≥ H2
G̃∗
k,M−1/2

(φ)
(µ, ν), we have

∣∣∣H2(µ, ν)− H2
G̃∗
k,M−1/2

(φ)
(µ, ν)

∣∣∣ = H2(µ, ν)− H2
G̃∗
k,M−1/2

(φ)
(µ, ν)

≤ Eµ
[∣∣fH2 − gθk

∣∣]+ Eν
[∣∣∣fH2(1− fH2)−1 − gθk

(
1− gθk

)−1
∣∣∣]

≤ Eµ
[∣∣fH2 − gθk

∣∣]+Eν
[∣∣∣(fH2 − gθk

)
(1− fH2)−1

(
1− gθk

)−1
∣∣∣]

≤ ε+Mε, (A.55)

where the final inequality uses (A.54),
∥∥1− fH2

∥∥
∞,η ∧

∥∥1− gθk
∥∥
∞,η ≥ M−1/2. Since ε > 0

is arbitrary, this implies (similarly to (A.39) in Theorem 14) that

lim
k→∞

H2
G̃∗
k,M−1/2

(φ)
(µ, ν) = H2(µ, ν).

Then, (4.10) follows from (A.53) and (A.55).

Next, we prove (4.11). Fix (µ, ν) ∈ P2
H2(M,X ). By some abuse of notation, let

m = (mk)k∈N and t = (tk)k∈N denote a non-decreasing positive divergent sequence and
a non-increasing sequence tending to zero, respectively. Since ‖dµ/dν‖∞,η ≤ M , we have

‖1− fH2‖∞,η ≥ M−1/2. Using tk → 0, it then follows from (3.1) that for k such that

tk ≤M−1/2 and mk ≥M , there exists gθk ∈ G̃Rk,tk(mk) with

‖fH2 − gθk‖∞,η .Md
1
2k−

1
2 . (A.56)

Then, following the arguments leading to the penultimate step in (A.55), we have∣∣∣H2(µ, ν)− H2
G̃Rk,tk (mk)

(µ, ν)
∣∣∣

≤ Eµ
[∣∣fH2 − gθk

∣∣]+ Eν
[∣∣∣(fH2 − gθk

)(
1− fH2

)−1(
1− gθk

)−1
∣∣∣]

≤ ‖fH2 − gθk‖∞,µ + ‖fH2 − gθk‖∞,ν Eν
[∣∣∣(1− fH2

)−1(
1− gθk

)−1
∣∣∣]

.M d
1
2 (1 + t−1

k )k−
1
2 ,

where the final inequality is due to (A.56), 1− gθk(x) ≥ tk for any x ∈ Rd, and

Eν
[∣∣∣(1− fH2

)−1
∣∣∣] = Eν

[√
dµ

dν

]
≤

√
Eν
[

dµ

dν

]
= 1.

Moreover, since g = 0 ∈ G̃Rk,tk(mk), for k such that mk < M or tk > M−1/2, we obtain∣∣∣H2(µ, ν)− H2
G̃Rk,tk (mk)

(µ, ν)
∣∣∣ = H2(µ, ν)− H2

G̃Rk,tk (mk)
(µ, ν) ≤ H2(µ, ν) ≤ 2,

where the last inequality follows from

H2(µ, ν) = Eν

(√dµ

dν
− 1

)2
 ≤ Eν

[
dµ

dν
+ 1

]
≤ 2.
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Thus, for all k, we have∣∣∣H2(µ, ν)− H2
G̃Rk,tk (mk)

(µ, ν)
∣∣∣ .M,m,t d

1
2 (1 + t−1

k )k−
1
2 . (A.57)

Noting that C̄
(∣∣G̃Rk,tk(mk)

∣∣,X ) ≤ 3mk(‖X‖+1) and C̄
(∣∣h′H2 ◦G̃Rk,tk(mk)

∣∣,X ) ≤ t−2
k , it follows

from (A.29), (A.33) and (A.57) that

E
[∣∣∣Ĥ2

G̃Rk,tk (mk)
(Xn, Y n)− H2(µ, ν)

∣∣∣]
≤
∣∣∣H2(µ, ν)− H2

G̃Rk,tk (mk)
(µ, ν)

∣∣∣+ E
[∣∣∣Ĥ2

G̃Rk,tk (mk)
(Xn, Y n)− H2

G̃Rk,tk (mk)
(µ, ν)

∣∣∣]
.M,m,t d

1
2 (1 + t−1

k )k−
1
2 + d

3
2 (‖X‖+ 1)mkt

−2
k n−

1
2 . (A.58)

Noting that the above bound holds for any (µ, ν) ∈ P2
H2(M,X ), and setting mk = log k,

tk = (log k)−1, we obtain (4.11).

A.2.7 Proof of Proposition 30

As in the proof of Proposition 25, (A.14) yields that there exists extensions p̃ext, q̃ext ∈
Bc̄b,d,‖X‖,2,X

(
Rd
)
∩ L̃sKB,b′

(
Rd
)

of p̃, q̃, respectively. Let f ext
H2 = 1− p̃ext · q̃ext. Then, following

steps leading to (A.52), we obtain for 0 ≤ j ≤ sKB that

∥∥Dα|jf ext
H2

∥∥
2
≤ 1 +

∥∥∥∥∥ ∑
α|j1+α|j2=α|j

α|j !

α|j1 !α|j2 !
Dα|j1 p̃ext D

α|j2 q̃ext

∥∥∥∥∥
2

≤ 1 + 2jb′2.

Similarly,
∥∥Dα|jf ext

H2

∥∥
1
<∞ for 0 ≤ j ≤ sKB. Hence, f ext

H2 ∈ L̃sKB,1+2sKBb′2
(
Rd
)
, which yields

via Lemma 55 that S2

(
f ext
H2

)
≤ (1 + 2sKBb′2)κdd

3/2. Since fH2 = f ext
H2

∣∣
X , this implies that

c?KB (fH2 ,X ) ≤ (1+2sKBb′2)(κdd
3/2 ‖X‖∨1). Moreover, we have ‖dµ/dν‖∞,η =

∥∥pq−1
∥∥
∞,η ≤

b2. Hence, (µ, ν) ∈ P2
H2(M,X ) with M = (κdd

3/2 ‖X‖ ∨ 1)
(
1 + 2sKB c̄2

b,d,‖X‖
)
∨ b2 since

b′2 ≤ c̄2
b,d,‖X‖. The claim then follows from Theorem 27.

A.2.8 Proof of Theorem 32

Let δḠk(a,φ)(µ, ν) := DhTV,Ḡk(a,φ)(µ, ν). The proof of Theorem 32 is based on the follow-
ing lemma which establishes consistency of the parametrized TV distance estimator (see
Appendix B.6 for proof).

Lemma 62 (Parametrized TV distance estimation) Let µ, ν ∈ P(X ). Then, for any
0 < ρ < 1, and n, kn such that kn(‖X‖+ 1)1/2 = O

(
n(1−ρ)/2

)
,

δ̂Ḡ∗kn (φ)(X
n, Y n) −−−→

n→∞
δḠ∗kn (φ)(µ, ν) , P− a.s. (A.59)

Equipped with Lemma 62, we first prove (4.14). Since fTV is not continuous, the
universal approximation property of NNs used in the consistency proofs until now cannot
be used directly in this case. However, we will show that there exists a continuous function
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approximating fTV to any desired accuracy, which can in turn be approximated by Ḡ∗k(φ)
arbitrary well.

Fix µ, ν ∈ P(X ). Let p and q denote the densities of µ and ν w.r.t. η = 0.5(µ + ν) ∈
P(X ), and let C∗ be the set defined in (2.8). Note that ‖p ∨ q‖∞,η ≤ 2. Also, observe that
C∗ and X \ C∗ are Borel sets, since p(x) and q(x) are Borel measurable by definition, and
hence so is p(x) − q(x). Since η ∈ P(X ) is a regular probability measure, for any ε > 0,
there exists compact sets C, C̄, open sets U , Ū such that C ⊆ C∗ ⊆ U , C̄ ⊆ X \ C∗ ⊆ Ū and

η(U \ C) ∨ η(Ū \ C̄) ∨ η(Ū ∩ C∗) ∨ η(U ∩ (X \ C∗)) ≤ 0.25ε,

along with continuous (Urysohn) functions ζC∗ : Rd → [0, 1], ζX\C∗ : Rd → [0, 1] such that

ζC∗(x) =

{
1, x ∈ C,
0, x ∈ Rd \ U ,

ζX\C∗(x) =

{
1, x ∈ C̄,
0, x ∈ Rd \ Ū .

Hence,

Eµ [|1C∗ − ζC∗ |] ∨ Eν [|1C∗ − ζC∗ |] ≤ Eη [(p ∨ q) |1C∗ − ζC∗ |] ≤ 0.25 ‖p ∨ q‖∞,η ε, (A.61)

Eµ
[∣∣1X\C∗ − ζX\C∗∣∣] ∨ Eν

[∣∣1X\C∗ − ζX\C∗∣∣] ≤ Eη
[
(p ∨ q)

∣∣1X\C∗ − ζX\C∗∣∣]
≤ 0.25 ‖p ∨ q‖∞,η ε. (A.62)

Let ζ(x) = ζC∗(x)−ζX\C∗(x). Note that ζ(x) ∈ [−1, 1], ζ(x) = 1 for x ∈ C\Ū and ζ(x) = −1
for x ∈ C̄ \ U . Since ζ(·) is a continuous function, it follows from (Stinchcombe and White,
1990, Theorem 2.1 and 2.8) that for any ε > 0 and k ≥ k0(ε), there exists a g̃ ∈ G∗k(φ) such
that ‖ζ − g̃‖∞,X ≤ ε. Since ‖ζ‖∞ ≤ 1, it then follows from the definition of Ḡ∗k(φ) that

there exists g∗ ∈ Ḡ∗k(φ) such that

‖ζ − g∗‖∞,X ≤ ε. (A.63)

Let δ̃TV(g) := Eµ[g]− Eν [g]. Then, we have for k ≥ k0(ε) that∣∣δTV(µ, ν)− δḠ∗k(φ)(µ, ν)
∣∣

= δTV(µ, ν)− δḠ∗k(φ)(µ, ν)

≤ δTV(µ, ν)− δ̃TV(g∗)

≤ Eµ [|fTV − g∗|] + Eν [|fTV − g∗|]
≤ Eµ [|fTV − ζ|+ |ζ − g∗|] + Eν [|fTV − ζ|+ |ζ − g∗|]
≤ Eµ [|1C∗ − ζC∗ |] + Eν [|1C∗ − ζC∗ |] + Eµ

[∣∣1X\C∗ − ζX\C∗∣∣]+ Eν
[∣∣1X\C∗ − ζX\C∗∣∣]

+ Eµ [|ζ − g∗|] + Eν [|ζ − g∗|]
≤ ε
(
‖p ∨ q‖∞,η + 2

)
≤ 4ε, (A.64)
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where (A.64) follows from (A.61), (A.62), (A.63) and ‖p ∨ q‖∞,η ≤ 2. Since ε > 0 is
arbitrary, we have from (A.64) that

lim
k→∞

δḠ∗k(φ)(µ, ν) = δTV(µ, ν) .

Taking kn, n satisfying kn = O
(
n(1−ρ)/2

)
, (4.14) follows from the above equation and (A.59).

Next, we prove (4.15). Fix (µ, ν) ∈ P2
TV(M,X ) such that fTV ∈ Lips,1,M (X ). Since

fTV does not belong to the Klusowski-Barron class, we consider approximation of an inter-

mediate function f
(t)
TV, which is a smoothed version of fTV and belongs to this class. The

smoothing parameter t is then decreased as a function of k at an appropriate rate such

that the L1 error between f
(t)
TV and fTV vanishes as k → ∞. For this purpose, consider

a non-negative smoothing kernel Φ ∈ L1
(
Rd
)
, Φ ≥ 0, such that

∫
Rd Φ(x)dx = 1. Let

Φt(x) := t−dΦ(t−1x), t > 0, and

f
(t)
TV(x) := fTV ∗ Φt(x) =

∫
Rd
fTV(x− y)Φt(y)dy,

denote the smoothing of fTV using Φt.
Recalling that δ̃TV(f) := Eµ[f ]− Eν [f ], we have∣∣δTV(µ, ν)− δḠk(a,φ)(µ, ν)

∣∣ = δTV(µ, ν)− δḠk(a,φ)(µ, ν)

= δTV(µ, ν)− δ̃TV
(
f

(t)
TV

)
+ δ̃TV

(
f

(t)
TV

)
− δḠk(a,φ)(µ, ν) , (A.65)

The first term in (A.65) can be written as follows:

δTV(µ, ν)− δ̃TV
(
f

(t)
TV

)
= Eµ

[
fTV − f

(t)
TV

]
− Eν

[
fTV − f

(t)
TV

]
. (A.66)

Denoting by p, q, the respective densities of µ, ν w.r.t. Lebesgue measure, we have

Eµ
[
fTV − f

(t)
TV

]
=

∫
Rd

[
fTV(x)− t−d

∫
Rd
fTV(y)Φ

(
(x− y)t−1

)
dy

]
p(x)dx

=

∫
Rd

[
fTV(x)−

∫
Rd
fTV(x− tu)Φ(u)du

]
p(x)dx

=

∫
Rd

[∫
Rd

[fTV(x)Φ(u)− fTV(x− tu)Φ(u)] du

]
p(x)dx

≤
∫
Rd

[∫
Rd
|fTV(x)− fTV(x− tu)| p(x)dx

]
Φ(u)du

=

∫
Rd

[∫
Rd
|fTV(x+ tu)− fTV(x)| p(x+ tu)dx

]
Φ(u)du

≤ ‖p‖∞,X
∫
Rd

[∫
Rd
|fTV(x+ tu)− fTV(x)|dx

]
Φ(u)du

(a)

≤ M

∫
Rd
ξ1,1 (fTV, t ‖u‖) Φ(u)du

(b)

≤ M2

∫
Rd
ts ‖u‖s Φ(u)du, (A.67)
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where (a) and (b) are due to (µ, ν) ∈ P2
TV(M,X ) and fTV ∈ Lips,1,M (X ), respectively. Since

(A.67) also holds for ν in place of µ, we have from (A.66) that∣∣∣δTV(µ, ν)− δ̃TV
(
f

(t)
TV

)∣∣∣ ≤ 2M2

∫
Rd
ts ‖u‖s Φ(u)du. (A.68)

Next, note that∥∥∥f (t)
TV

∥∥∥
1
≤
∫
Rd

∫
Rd
|fTV(x− y)Φt(y)| dydx

(a)

≤ ‖fTV‖1 ‖Φt‖1
(b)

≤ ‖fTV‖1
(c)
< ∞,

where

(a) follows from Minkowski’s integral inequality;

(b) is due to
∫
Rd |Φt(y)|dy = 1;

(c) is since fTV ∈ L1(X ).

Hence, the Fourier transform of f
(t)
TV exists, and is given by

F
[
f

(t)
TV

]
= F[fTV]F[Φt]. (A.69)

Choose Φ to be standard Gaussian kernel, i.e., Φ = ΦN := (2π)−d/2e−0.5‖x‖2 . Then, we
have∥∥∥F [f (t)

TV

]∥∥∥
1

(a)

≤ ‖fTV‖1
∫
Rd
|F[Φt](ω)| dω

(b)

≤ M

∫
Rd
|F[Φ](tω)|dω

(c)

≤ M

∫
Rd
e−

1
2
t2‖ω‖2dω <∞,

where

(a) follows from (A.69) and
∥∥F [fTV]

∥∥
∞ ≤ ‖fTV‖1;

(b) is via the formula F
[
Φ
(
t−1·

) ]
(ω) = tdF[Φ] (tω), and ‖fTV‖1 ≤ M by the definition of

Lipschitz seminorm;

(c) is since F
[
ΦN
]
(ω) = e−

1
2
‖ω‖2 .

Hence, the Fourier representation in Definition 4 holds via the Fourier inversion formula for

f
(t)
TV. Then, we can bound the spectral norm as

S2

(
f

(t)
TV

)
:=

∫
Rd
‖ω‖21

∣∣F[f (t)
TV

]
(ω)
∣∣dω

≤ ‖fTV‖1
∫
Rd
‖ω‖21 |F[Φt](ω)| dω

≤Md

∫
Rd
‖ω‖2 e−

1
2
t2‖ω‖2dω.

Evaluating the integral above by converting to hyperspherical coordinates, we obtain

‖X‖S2

(
f

(t)
TV

)
≤ ‖X‖Md

∫
Rd
‖ω‖2 e−

1
2
t2‖ω‖2dω =: cd,M,‖X‖,t, (A.70)
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where

cd,M,‖X‖,t :=

{
(2π)

1
2 ‖X‖Mt−3, d = 1,

2
d+3

2 π ‖X‖Mdt−(d+2)Γ((d+ 2)/2)
∏d−2
j=1

∫ π
0 sind−1−j(ϕj)dϕj , d ≥ 2.

Moreover, ‖fTV‖∞ ≤ 1 and
∫
Rd |Φt(y)|dy = 1 implies∣∣∣f (t)

TV(x)
∣∣∣ ≤ ∫

Rd
|fTV(x− y)Φt(y)|dy ≤

∫
Rd
|Φt(y)|dy = 1. (A.71)

Since
∣∣f (t)

TV(0)
∣∣∨∥∥∇f (t)

TV(0)
∥∥ ≤ 1∨ (2dπ−d)1/2Γ

(
0.5(d+ 1)

)
t−1 and (A.70) holds, there exists

gθk ∈ ḠRk
(
ĉd,M,‖X‖,t

)
such that for all 0 < t ≤ 1,∥∥∥f (t)

TV − gθk
∥∥∥
∞,X

. ĉd,M,‖X‖,td
1
2k−

1
2 , (A.72)

where ĉd,M,‖X‖,t := cd,M,‖X‖,t ∨ 1∨ (2dπ−d)1/2Γ
(
0.5(d+ 1)

)
t−1. The existence of gθk follows

by truncating g ∈ GRk
(
ĉd,M,‖X‖,t

)
satisfying (3.1) to [−1, 1], and noting that truncation only

decreases the approximation error as
∥∥f (t)

TV

∥∥
∞ ≤ 1. Hence, we have

δ̃TV

(
f

(t)
TV

)
− δḠRk (ĉd,M,‖X‖,t)

(µ, ν) ≤ δ̃TV
(
f

(t)
TV

)
− δ̃TV

(
gθk
)

≤ Eµ
[∣∣∣f (t)

TV − gθk
∣∣∣]+ Eν

[∣∣∣f (t)
TV − gθk

∣∣∣] (A.73)

. ĉd,M,‖X‖,td
1
2k−

1
2 . (A.74)

Next, observe that (A.68) with Φ = ΦN yields∣∣∣δTV(µ, ν)− δ̃TV
(
f

(t)
TV

)∣∣∣ ≤ cd,M,st
s,

where cd,M,s := 2M2(2π)−d/2
∫
Rd ‖u‖

s e−0.5‖u‖2du. From this, (A.65) and (A.74), we obtain∣∣∣δTV(µ, ν)− δḠRk (ĉd,M,‖X‖,t)
(µ, ν)

∣∣∣ = δTV(µ, ν)− δḠRk (ĉd,M,‖X‖,t)
(µ, ν) .d,M,s t

s + ‖X‖ t−(d+2)k−
1
2 .

Setting t = t∗k := k−1/2(s+d+2) and

c̃k,d,s,M,‖X‖ := ĉd,M,‖X‖,t∗k = Od,M
(
‖X‖ k(d+2)/2(s+d+2)

)
, (A.75)

yields ∣∣∣∣δTV(µ, ν)− δ
ḠRk
(
c̃k,d,s,M,‖X‖

)(µ, ν)

∣∣∣∣ .d,M,s (‖X‖+ 1)k−s/2(s+d+2). (A.76)

Finally, we bound the expected empirical estimation error. Note that C̄
(∣∣ḠRk (a)

∣∣,X ) ≤ 1
and C̄

(∣∣h′TV ◦ ḠRk (a)
∣∣,X ) = 1. Then, we have

E
[∣∣∣∣δ̂ḠRk(c̃k,d,s,M,‖X‖)(Xn, Y n)− δ

ḠRk
(
c̃k,d,s,M,‖X‖

)(µ, ν)

∣∣∣∣]
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(a)

. n−
1
2

∫ 1

0

√
sup

γ∈P(X )
logN

(
ε, ḠRk

(
c̃k,d,s,M,‖X‖

)
, ‖ · ‖2,γ

)
dε

(b)

≤ n−
1
2

∫ 1

0

√
sup

γ∈P(X )
logN

(
ε,GRk

(
c̃k,d,s,M,‖X‖

)
, ‖ · ‖2,γ

)
dε

(c)

≤ n−
1
2

∫ 1

0

√
sup

γ∈P(X )
logN

(
ε/3,G†k

(
c̃k,d,s,M,‖X‖

)
, ‖ · ‖2,γ

)
dε

+ n−
1
2 (d+ 1)

1
2

∫ 1

0

√
log(1 + 6c̃k,d,s,M,‖X‖(‖X‖+ 1))dε

(d)

. n−
1
2d

3
2
(
c̃k,d,s,M,‖X‖(‖X‖+ 1)

) d+2
d+3 + n−

1
2d

1
2
(
c̃k,d,s,M,‖X‖(‖X‖+ 1)

) 1
2 ,

. n−
1
2d

3
2
(
c̃k,d,s,M,‖X‖(‖X‖+ 1) + 1), (A.77)

where (a) follows from (A.29); (b) is since the pointwise difference between functions in
ḠRk (a) (with range [−1, 1]) is less than the difference between the corresponding untruncated
functions in GRk (a); (c) is due to (A.32); and (d) is via steps leading to (A.33). Then, (A.76)
and (A.77) implies that

E
[∣∣∣δ̂ḠRk (c̃k,d,s,M,‖X‖)

(Xn, Y n)− δTV(µ, ν)
∣∣∣]

.d,M,s (‖X‖+ 1)k−s/2(s+d+2) + n−
1
2k(d+2)/2(s+d+2)

(
‖X‖2 + 1

) 1
2 . (A.78)

Recalling that X = [0, 1]d and taking supremum over (µ, ν) ∈ P2
TV(M,X ) such that fTV ∈

Lips,1,M (X ), we obtain (4.15).

A.2.9 Proof of Proposition 35

Since p− q ∈ Tb,N (X ) and fTV = 1{p−q≥0} − 1{p−q<0}, the definition of ξ1,1(fTV, t) yields

ξ1,1(fTV, t) ≤

{
2Nλ(Bd(t)), t ≤ b
2 ‖fTV‖1 , otherwise.

Hence, for any 0 < s ≤ 1, it holds that

‖fTV‖Lip(s,1) = ‖fTV‖1 + sup
t>0

t−sξ1,1(fTV, t)

= ‖fTV‖1 + sup
0<t≤b

t−sξ1,1(fTV, t) ∨ sup
t>b

t−sξ1,1(fTV, t)

= ‖fTV‖1 + sup
0<t≤b

t−s2Nλ(Bd(t)) ∨ sup
t>b

t−s2 ‖fTV‖1

= λ(X ) + 2Nπ
d
2 bd−s (Γ(0.5d+ 1))−1 ∨ 2b−sλ(X ), (A.79)

where λ denotes the Lebesgue measure and Γ is the gamma function. Hence, fTV ∈
Lips,1,M (X ) with M = λ(X ) + 2N

(
Γ(0.5d + 1)

)−1
π
d
2 bd−s ∨ 2b−sλ(X ) and any 0 < s ≤ 1,

thus proving the claim via Theorem 32.
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A.3 Proofs for Section 5

A.3.1 Proof of Theorem 39

To prove part (i), fix some 0 < ε < 1. Let Bc
d(r) = Rd \ Bd(r), and r(ε) be sufficiently

large such that Eµ
[
|fKL|1Bcd(r(ε))

]
∨ Eν

[
|dµ/dν − 1|1Bcd(r(ε))

]
≤ ε. Since fKL ∈ C(Rd), from

(Stinchcombe and White, 1990, Theorem 2.1 and 2.8), there is a k0(ε, r(ε)) ∈ N, such that
for any k ≥ k0(ε, r(ε)), there exists a gθk ∈ Ĝ∗k(φ, r(ε)) with

‖fKL − gθk‖∞,Bd(r(ε)) ≤ ε. (A.80)

Then, we have∣∣∣DKL (µ‖ν)− DĜ∗k(φ,r(ε))(µ, ν)
∣∣∣

≤ Eµ [|fKL − gθk |] + Eν
[∣∣efKL − egθk ∣∣]

= Eµ
[
|fKL − gθk |1Bd(r(ε))

]
+ Eµ

[
|fKL − gθk |1Bcd(r(ε))

]
+ Eν

[∣∣efKL − egθk ∣∣1Bcd(r(ε))

]
+ Eν

[∣∣efKL − egθk ∣∣1Bd(r(ε))

]
≤
∥∥(fKL − gθk)1Bd(r(ε))

∥∥
∞,µ + Eµ

[
|fKL|1Bcd(r(ε))

]
+ Eν

[∣∣∣∣dµdν
− 1

∣∣∣∣1Bcd(r(ε))

]
+ Eν

[∣∣efKL∣∣1Bd(r(ε))

] ∥∥∥(1− egθk−fKL
)
1Bd(r(ε))

∥∥∥
∞,ν

(A.81)

. ε, (A.82)

where the final inequality is due to (A.80), the choice of r(ε), and Eν
[∣∣efKL∣∣1Bd(r(ε))

]
≤ 1.

On the other hand, for any 0 < ρ < 1, and n, kn, rn such that k
3/2
n (rn + 1)ekn(rn+1) =

O
(
n(1−ρ)/2

)
, Lemma 59 yields

D̂Ĝ∗kn (φ,rn)(X
n, Y n) −−−→

n→∞
DĜ∗kn (φ,rn)(µ, ν), P− a.s.

This along with (A.82) completes the proof of Part (i).

To prove part (ii), we first state a general error bound for KL neural estimation based on
the tail behaviour of random variables fKL(X) and hKL ◦fKL(Y ) := efKL(Y )−1 outside Bd(r)
for X ∼ µ and Y ∼ ν. For an increasing positive divergent sequence r = (rk)k∈N, rk ≥ 1,
(rk →∞), a positive non-decreasing sequence m = (mk)k∈N, mk ≥ 1, and a non-increasing
non-negative sequence v = (vk)k∈N with vk → 0, set

P̆2
KL(M, r,m,v)

:=

(µ, ν) ∈ P2
KL

(
Rd
)

:
Eµ
[
|fKL|1Bcd(rk)

]
∨ Eν

[
|hKL ◦ fKL|1Bcd(rk)

]
≤ vk,

DKL (µ‖ν) ≤M, c?KB
(
fKL|Bd(rk), Bd(rk)

)
≤ mk, k ∈ N

 .

Then, we have the following lemma.
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Lemma 63 (KL divergence neural estimation) Suppose there exists M ≥ 0, 0 < ρ <
1, and r,m,v as above satisfying 1 ≤ mk . k(1−ρ)/2, such that (µ, ν) ∈ P̆2

KL(M, r,m,v).

Then, for Gk = ĜRk (mk, rk), we have

sup
(µ,ν)∈

P̆2
KL(M,r,m,v)

E
[∣∣∣D̂Gk(Xn, Y n)− DKL (µ‖ν)

∣∣∣] .d,M,ρ mkk
− 1

2 + vk +mkrke
3mk(rk+1) n−

1
2 .

The proof of the above lemma is based on an application of Theorem 8 to bound the
NN approximation error on balls Bd(rk), leveraging tail integrability assumptions in the
definition of P̆2

KL to bound the approximation error outside Bd(rk), and using Theorem 12
to control the empirical estimation error. Its proof is given in Appendix B.7.

Continuing with the proof of the Theorem, we will show that (µ, ν) ∈ P̄2
KL,ψ (M, `, r,m)

implies (µ, ν) ∈ P̆2
KL(M, r,m,v) for some v that will be specified below. Then, Part (ii)

will follow from Lemma 63.
Note that ‖fKL‖`,µ ≤M , where ` > 1 (or equivalently ` ≥ 2 since ` ∈ N), implies

DKL (µ‖ν) = Eµ [fKL] ≤
√

Eµ
[
f2
KL

]
≤M. (A.83)

Also,

Eµ
[
|fKL|1Bcd(rk)

] (a)

≤ ‖fKL‖`,µ
(
µ (‖X‖ > rk)

) 1
`∗ (A.84)

(b)

≤ Mµ
(
ψ
(
‖X‖M−1

)
> ψ

(
rkM

−1
)) 1

`∗

(c)

≤ M
(
Eµ
[
ψ
(
‖X‖M−1

)] ) 1
`∗
(
ψ
(
rkM

−1
))− 1

`∗

(d)

≤ M
(
ψ
(
rkM

−1
))− 1

`∗
,

Eν
[
|hKL ◦ fKL|1Bcd(rk)

]
= Eν

[∣∣∣∣dµdν
− 1

∣∣∣∣1Bcd(rk)

]
≤ Eν

[(
dµ

dν
+ 1

)
1Bcd(rk)

]
= µ

(
Bc
d(rk)

)
+ ν
(
Bc
d(rk)

)
(A.85)

(e)

≤
(
Eµ
[
ψ
(
‖X‖M−1

)]
+ Eν

[
ψ
(
‖Y ‖M−1

)] )(
ψ
(
rkM

−1
))−1

(f)

≤ 2
(
ψ
(
rkM

−1
))−1

,

where

(a) follows by Hölder’s inequality;

(b) is since ‖fKL‖`,µ ≤M and ψ is increasing;

(c) and (e) are due to Markov’s inequality;
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(d) and (f) are since p, q ∈ Lψ(M) implies that Eµ
[
ψ
(
‖X‖M−1

)]
∨Eν

[
ψ
(
‖Y ‖M−1

)]
≤ 1.

It follows that (µ, ν) ∈ P̆2
KL(M, r,m,v) with vk �M,ψ,`

(
ψ(rkM

−1)
)−1/`∗

since rk ≥ 1. Note
that vk → 0 as rk →∞. This completes the proof of Part (ii) via Lemma 63.

A.3.2 Proof of Corollary 41

Fix (µ, ν) =
(
N (mp, σ

2
pId),N (mq, σ

2
q Id)

)
∈ P̄2

N(M) and r =
(
rk)k∈N =

(
1 ∨M + r̃k

)
k∈N,

where r̃k ≥ 0, k ∈ N, will be specified below. Note that

fKL(x) = d log

(
σq
σp

)
+
‖x−mq‖2

2σ2
q

− ‖x−mp‖2

2σ2
p

,

DKL (µ‖ν) = d log

(
σq
σp

)
− 0.5d+ 0.5d

σ2
p

σ2
q

+
‖mp −mq‖2

2σ2
q

.

Also, fKL is infinitely differentiable on Rd, and it can be seen by computing derivatives that
for any multi-index α of dimension d and arbitrary order ‖α‖1 ∈ N,

‖DαfKL‖∞,Bd(rk) ≤ b
∗
k,d,M := cd,M

(
1 + r̃2

k

)
,

for some constant cd,M (polynomial in M). Hence, fKL|Bd(rk) ∈ CsKBb∗k,d,M
, which implies via

Proposition 10 that

c?KB
(
fKL|Bd(rk), Bd(rk)

)
≤ mKL

k := cd,M

(
1 + r̃d+3

k

)
.

By a straightforward calculation by using 1/M < σp, σq < M, ‖mp‖ ∨ ‖mq‖ ≤ M , it
follows from Gaussian integral formulas that there exists some cd,M such that

‖fKL‖2,µ ∨ ‖p‖ψ2
∨ ‖q‖ψ2

≤ cd,M ,

where ψ2(z) = ez
2 − 1. Hence, P̄2

N(M) ⊆ P̄2
KL,ψ2

(
cd,M , 2, r,m

KL
)
, and we have from Part

(ii) of Theorem 39 with mk = mKL
k and Gk = ĜRk

(
mKL
k , rk

)
that

E
[∣∣∣D̂Gk(Xn, Y n)− DKL (µ‖ν)

∣∣∣].d,M,ρ mkk
− 1

2 + e
− r̃2k
c2
d,M +mkr̃ke

3mk r̃k n−
1
2 .

Then, setting rk = rKLk := 1 ∨ M + r̃k with r̃k = (c log k/3cd,M )1/(d+4) yields for Gk =

ĜRk
(
mKL
k , rKLk

)
that

E
[∣∣∣D̂Gk(Xn, Y n)− DKL (µ‖ν)

∣∣∣] .d,M ck−
1
2 log k + e−(c log k/cd,M)

2
d+4

+ ckc log k n−
1
2 .

Solving for the value of c such that the first two terms in the RHS of the equation above
are equal (up to logarithmic factors) yields c = cd,M2−(d+4)/2(log k)(d+2)/2. Substituting c
and taking supremum over (µ, ν) ∈ P̄2

N(M), we obtain the claim in the Corollary.
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A.3.3 Proof of Theorem 43

Let r(ε) be sufficiently large such that Eµ
[
|fχ2 |1Bcd(r(ε))

]
∨ Eν

[
|hχ2 ◦ fχ2 |1Bcd(r(ε))

]
≤ ε.

Similar to (A.80), there exists gθk ∈ Ĝ∗k(φ, r(ε)) satisfying
∥∥fχ2 − gθk

∥∥
∞,Bd(r(ε))

≤ ε for

k ≥ k0(ε, r(ε)). Then, we have∣∣∣χ2 (µ‖ν)− χ2
Ĝ∗kn (φ,rn)

(µ, ν)
∣∣∣

≤ Eµ
[∣∣fχ2 − gθk

∣∣]+ Eν
[∣∣hχ2 ◦ fχ2 − hχ2 ◦ gθk

∣∣]
= Eµ

[∣∣fχ2 − gθk
∣∣1Bd(r(ε))

]
+ Eν

[∣∣hχ2 ◦ fχ2 − hχ2 ◦ gθk
∣∣1Bd(r(ε))

]
+ Eµ

[∣∣fχ2 − gθk
∣∣1Bcd(r(ε))

]
+ Eν

[∣∣hχ2 ◦ fχ2 − hχ2 ◦ gθk
∣∣1Bcd(r(ε))

]
≤
∥∥(fχ2 − gθk

)
1Bd(r(ε))

∥∥
∞,µ + Eν

[∣∣∣hχ2 ◦ fχ2 − hχ2 ◦ gθk
∣∣∣1Bd(r(ε))

]
+ Eµ

[∣∣fχ2

∣∣1Bcd(r(ε))

]
+ Eν

[∣∣hχ2 ◦ fχ2

∣∣1Bcd(r(ε))

]
(A.86)

(a)

. ε+ Eν
[∣∣hχ2 ◦ fχ2 − hχ2 ◦ gθk

∣∣1Bd(r(ε))

]
(b)

. ε+ Eν
[∣∣fχ2 − gθk

∣∣1Bd(r(ε))

]
+ Eν

[
0.25

∣∣fχ2 − gθk
∣∣2 1Bd(r(ε))

]
+ 0.5Eν

[ ∣∣fχ2 − gθk
∣∣ ∣∣fχ2

∣∣1Bd(r(ε))

]
. ε+

∥∥(fχ2 − gθk
)
1Bd(r(ε))

∥∥
∞,ν Eν

[∣∣fχ2

∣∣]
(c)

. ε,

where (a) follows by definition of r(ε) and gθk above; (b) is via steps leading to (A.48); (c) is
due to definition of r(ε), gθk and Eν

[ ∣∣fχ2

∣∣ ] ≤ 4. From this and Lemma 60, Part (i) follows.

Next, we prove Part (ii). For sequences m, r and v as in Appendix A.3.1, let

P̆2
χ2(r,m,v) :=

(µ, ν) ∈ P2
χ2

(
Rd
)

:
Eµ
[∣∣fχ2

∣∣1Bcd(rk)

]
∨Eν

[∣∣hχ2 ◦ fχ2

∣∣1Bcd(rk)

]
≤ vk

c?KB
(
fχ2 |Bd(rk), Bd(rk)

)
≤ mk, k ∈ N

 .

We will use the following lemma which bounds the χ2 neural estimation error for distribu-
tions satisfying general tail integrability conditions (see Appendix B.8 for proof).

Lemma 64 (χ2 neural estimation error) For Gk = ĜRk (mk, rk), we have

sup
(µ,ν)∈P̆2

χ2 (r,m,v)

E
[∣∣χ̂2
Gk(Xn, Y n)− χ2 (µ‖ν)

∣∣] . mkd
1
2k−

1
2 +m2

kdk
−1 + vk + d

3
2m2

kr
2
kn
− 1

2 .

(A.87)

Armed with Lemma 64, we next show that (µ, ν) ∈ P̄2
χ2,ψ (M, `, r,m) implies that (µ, ν) ∈

P̆2
χ2(r,m,v) for some v that will be identified below. We have

Eµ
[∣∣fχ2

∣∣1Bcd(rk)

] (a)

≤
∥∥fχ2

∥∥
`,µ

(
µ (‖X‖ > rk)

) 1
`∗

(b)

≤ M
(
ψ
(
rkM

−1
))− 1

`∗
, (A.88)
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Eν
[∣∣hχ2 ◦ fχ2

∣∣1Bcd(rk)

]
= Eν

[
2

∣∣∣∣dµdν
− 1

∣∣∣∣1Bcd(rk)

]
+ Eν

[(
dµ

dν
− 1

)2

1Bcd(rk)

]

≤ 2Eν
[(

dµ

dν
+ 1

)
1Bcd(rk)

]
+ Eν

[(
dµ

dν

)2

1Bcd(rk)

]
+ ν
(
Bc
d(rk)

)
= 2µ

(
Bc
d(rk)

)
+ 3ν

(
Bc
d(rk)

)
+ Eµ

[
dµ

dν
1Bcd(rk)

]
= 2µ

(
Bc
d(rk)

)
+ 3ν

(
Bc
d(rk)

)
+ Eµ

[
(0.5fχ2 + 1)1Bcd(rk)

]
(c)
= 3µ

(
Bc
d(rk)

)
+ 3ν

(
Bc
d(rk)

)
+ 0.5

∥∥fχ2

∥∥
`,µ

(
µ
(
Bc
d(rk)

)) 1
`∗ (A.89)

(d)

≤ 6
(
ψ
(
rkM

−1
))−1

+ 0.5M
(
ψ
(
rkM

−1
))− 1

`∗
,

where

(a) and (c) is by Hölder’s inequality;

(b) and (d) follows via Markov’s inequality since Eµ
[
ψ
(
‖X‖M−1

)]
∨ Eν

[
ψ
(
‖Y ‖M−1

)]
≤

1, and
∥∥fχ2

∥∥
`,µ
≤M by assumption.

Hence, (µ, ν) ∈ P̆2
χ2(r,m,v) with

vk = 6
(
ψ
(
rkM

−1
))−1

+M
(
ψ
(
rkM

−1
))− 1

`∗
.M,ψ,`

(
ψ
(
rkM

−1
))− 1

`∗
.

This implies Part (ii) via Lemma 64 (since mkk
− 1

2 +m2
kk
−1 ≤ 2m2

kk
− 1

2 due to mk ≥ 1).

A.3.4 Proof of Corollary 45

We will require the following lemma which bounds the tail probability of an isotropic Gaus-
sian distribution outside a Euclidean ball Bd(r) of radius r. This is a straighforward con-
sequence of Gaussian concentration (Ledoux and Talagrand, 1991, Eqn. 1.4) and the fact
that ‖·‖ is 1-Lipschitz function on the metric space (Rd, ‖·‖).

Lemma 65 (Gaussian tail integral bound) For any mp ∈ Rd such that ‖mp‖ ≤ M ,
σ2 > 0 and r ≥M ,

(
2πσ2

)− d
2

∫
Bcd(r)

e−
‖x−mp‖2

2σ2 dx ≤ 2e−
(r−M)2

2σ2 . (A.90)

Proceeding with the proof of the corollary, fix (µ, ν) =
(
N (mp, σ

2Id),N (mq, σ
2Id)

)
∈

P̄2
χ2,N(M), and r =

(
rk)k∈N =

(
1∨M+ r̃k

)
k∈N, where r̃k ≥ 0, k ∈ N, will be specified below.

Note that since

fχ2(x) = 2

(
p(x)

q(x)
− 1

)
= 2

((
σq
σp

)d
e
‖x−mq‖2

2σ2
q
−‖x−mp‖2

2σ2
p − 1

)
,
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it is infinitely differentiable on Rd. A straightforward computation shows that for any
multi-index α ∈ Zd≥0 of order ‖α‖1 ≤ sKB,∥∥Dαfχ2

∥∥
∞,Bd(rk)

≤ b̃Rk := cd,M
(
1 + r̃sKBk

)
e2M2r̃2

k .

Hence, fχ2 |Bd(rk) ∈ CsKB
b̃Rk

, which implies via Proposition 10 that

c?KB
(
fχ2 |Bd(rk), Bd(rk)

)
≤ mχ2

k := cd,M

(
1 + r̃sKB+d+1

k

)
e2M2r̃2

k . (A.91)

Furthermore, letting σ̃−2 :=
(
σ−2
p − 0.5σ−2

q

)
∧ 0.5σ−2

q ∧ 0.5σ−2
p and noting that σ̃−2 ≥

0.5M−3 by definition of P̄2
χ2,N(M) and M > 1, we have

Eµ
[∣∣fχ2

∣∣1Bcd(rk)

]
≤ 2

(2πσ2
p)
d/2

∫
Bcd(rk)

((
σq
σp

)d
e
‖x−mq‖2

2σ2
q
−‖x−mp‖2

2σ2
p + 1

)
e
−‖x−mp‖2

2σ2
p dx

≤ 2

(2πσ2
p)
d/2

∫
Bcd(rk)

(
σq
σp

)d
e
‖x−mq‖2

2σ2
q
−‖x−mp‖2

σ2
p dx+ e

−‖x−mp‖2
2σ2
p dx

(a)

.d,M e−
r̃2k
σ̃2 ≤ e−

r̃2k
2M3 ,

Eν
[∣∣hχ2 ◦ fχ2

∣∣1Bcd(rk)

]
=

1

(2πσ2
q )
d/2

(∫
Bcd(rk)

2

((
σq
σp

)d
e
‖x−mq‖2

2σ2
q
−‖x−mp‖2

2σ2
p − 1

)
e
−‖x−mq‖2

2σ2
q dx

+

∫
Bcd(rk)

((
σq
σp

)d
e
‖x−mq‖2

2σ2
q
−‖x−mp‖2

2σ2
p − 1

)2

e
−‖x−mq‖2

2σ2
q dx

)
(b)

.d,M

∫
Bcd(rk)

e
−‖x−mp‖2

2σ2
p dx+

∫
Bcd(rk)

e
‖x−mq‖2

2σ2
q
−‖x−mp‖2

σ2
p dx+

∫
Bcd(rk)

e
−‖x−mq‖2

2σ2
q dx

(c)

.d,M e−
r̃2k
σ̃2 ≤ e−

r̃2k
2M3 ,

where

(a) and (c) follows by an application of Lemma 65 via completion of squares since σ2
p < 2σ2

q

by assumption;

(b) uses (aex − 1)2 ≤ a2e2x + 1 for x ∈ Rd and a ≥ 0.

Hence, (µ, ν) ∈ P̆2
χ2

(
r,mχ2

,vχ
2)

with mχ2
as defined in (A.91) and vχ

2

k := cd,Me
−r̃2

k/2M
3
,

and the error bound in (A.87) applies. Setting rk = rχ
2

k := 1 ∨ M + r̃k = 1 ∨ M +
2−0.5M−1

√
c log k for some constant c in (A.87), optimizing the resulting bound w.r.t. c

(achieved at c = 2M5/(4M5 + 1) < 0.5), we obtain for Gk = ĜRk
(
mχ2

k , r
χ2

k

)
that

E
[∣∣χ̂2
Gk(Xn, Y n)− χ2 (µ‖ν)

∣∣] .d,M (log k)2(sKB+d+1)

(
k
− 1

2+8M5 + k
4M5

1+4M5 n−
1
2

)
.

Taking supremum over (µ, ν) ∈ P̄2
χ2,N(M) completes the proof.
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A.3.5 Proof of Theorem 47

For sequences m, r and v as in Appendix A.3.1, let

P̆2
H2(r,m,v) :=

(µ, ν) ∈ P2
H2

(
Rd
)

:

Eµ
[
|fH2 |1Bcd(rk)

]
∨ Eν

[
|hH2 ◦ fH2 |1Bcd(rk)

]
≤ vk,

c?KB
(
fH2 |Bd(rk), Bd(rk)

)
∨
∥∥∥∥dµ

dν

∥∥∥∥
∞,Bd(rk)

≤ mk, k ∈ N

 .

The following lemma proves consistency of the NE for H2 estimation and bounds its effective
error for distributions satisfying general tail integrability conditions; see Appendix B.9 for
proof.

Lemma 66 (H2 neural estimation) Let (µ, ν) ∈ P̆2
H2(r,m,v), where m satisfies mk =

o(k1/4). Then, the following hold:

(i) For kn,mkn , rkn , n satisfying kn → ∞, rkn → ∞, k
1/2
n m2

kn
rkn = O

(
n(1−ρ)/2

)
, and

Gn = ǦR

kn,m
−1/2
kn

(mkn , rkn), we have

Ĥ2
Gn(Xn, Y n) −−−→

n→∞
H2(µ, ν), P− a.s. (A.92)

(ii) For Gk = ǦR

k,m
−1/2
k

(mk, rk), we have

sup
(µ,ν)∈P̆2

H2 (r,m,v)

E
[∣∣∣Ĥ2
Gk(Xn, Y n)− H2(µ, ν)

∣∣∣] . m2
kd

1
2k−

1
2 + vk + d

3
2m2

krkn
− 1

2 . (A.93)

To prove the theorem, we will show that (µ, ν) ∈ P̄2
H2,ψ (M, r,m) implies that (µ, ν) ∈

P̆2
H2(r,m,v) for some v stated below. Then, Part (i) and (ii) will follow from the corre-

sponding Parts in the above lemma. We have

Eµ
[
|fH2 |1Bcd(rk)

]
= Eµ

[∣∣∣1−√qp−1
∣∣∣1Bcd(rk)

]
≤ µ

(
Bc
d(rk)

)
+ Eµ

[√
qp−11Bcd(rk)

]
(a)

≤ µ
(
Bc
d(rk)

)
+
√
ν
(
Bc
d(rk)

)
(A.94)

(b)

≤
(
ψ
(
rkM

−1
))−1

+
(
ψ
(
rkM

−1
))− 1

2
,

Eν
[
|hH2 ◦ fH2 |1Bcd(rk)

]
= Eν

[∣∣∣√pq−1 − 1
∣∣∣1Bcd(rk)

]
(c)

≤ ν
(
Bc
d(rk)

)
+
√
µ
(
Bc
d(rk)

)
(A.95)

(d)

≤
(
ψ
(
rkM

−1
))−1

+
(
ψ
(
rkM

−1
))− 1

2
,

where
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(a) and (c) follows from Cauchy-Schwarz inequality and Eµ
[
qp−1

]
= Eν

[
pq−1

]
= 1;

(b) and (d) follows from Markov’s inequality as Eµ
[
ψ
(
‖X‖M−1

)]
∨Eν

[
ψ
(
‖Y ‖M−1

)]
≤ 1.

Hence, (µ, ν) ∈ P̆2
H2(r,m,v) with vk =

(
ψ
(
rkM

−1
))−1

+
(
ψ
(
rkM

−1
))−1/2

.ψ,M(
ψ
(
rkM

−1
))−1/2 → 0. This completes the proof via Lemma 66.

A.3.6 Proof of Corollary 49

Fix (µ, ν) =
(
N (mp, σ

2Id),N (mq, σ
2Id)

)
∈ P̄2

N(M), and r =
(
rk)k∈N =

(
1 ∨M + r̃k

)
k∈N,

where r̃k ≥ 0, k ∈ N, will be specified below. Observe that

fH2(x) = 1−
(
p(x)

q(x)

)− 1
2

= 1−
(
σp
σq

)d/2
e
‖x−mp‖2

4σ2
p
−‖x−mq‖2

4σ2
q ,

is infinitely differentiable on Rd. Then, for any multi-index α ∈ Zd≥0 of order ‖α‖1 ≤ sKB,
it is easy to see by computing partial derivatives that

‖DαfH2‖∞,Bd(rk) ≤ b̂
R
k := cd,M

(
1 + r̃sKBk

)
eM

2r̃2
k .

Hence, fH2 |Bd(rk) ∈ CsKB
b̂Rk

, which yields via Proposition 10 that

c?KB
(
fH2 |Bd(rk), Bd(rk)

)
≤ cd,M

(
1 + r̃sKB+d+1

k

)
eM

2r̃2
k .

Also, we have∥∥∥∥dµ

dν

∥∥∥∥
∞,Bd(rk)

= sup
x∈Bd(rk)

(
σq
σp

)d
e
‖x−mq‖2

2σ2
q
−‖x−mp‖2

2σ2
p ≤ cd,M

(
1 + e2M2r2

k

)
.

Furthermore, defining σ̂2 := 4σ2
pσ

2
q/(σ

2
p + σ2

q ) ∨ 2σ2
p ∨ 2σ2

q = 2σ2
p ∨ 2σ2

q ≥ 2M−1, we obtain

Eµ
[
|fH2 |1Bcd(rk)

]
≤ 1

(2πσ2
p)
d/2

∫
Bcd(rk)

(
1 +

(
σp
σq

)d/4
e
‖x−mp‖2

4σ2
p
−‖x−mq‖2

4σ2
q

)
e
−‖x−mp‖2

2σ2
p dx

≤ 1

(2πσ2
p)
d/2

∫
Bcd(rk)

(
e
−‖x−mp‖2

2σ2
p +

(
σp
σq

)d/4
e
−‖x−mq‖2

4σ2
q
−‖x−mp‖2

4σ2
p

)
dx

(a)

.d,M e−
r̃2k
σ̂2 ≤ e−0.5Mr̃2

k ,

Eν
[
|hH2 ◦ fH2 |1Bcd(rk)

]
= Eν

[∣∣∣∣∣
√

dµ

dν
− 1

∣∣∣∣∣1Bcd(rk)

]

≤ 1

(2πσ2
q )
d/2

∫
Bcd(rk)

((
σq
σp

)d/4
e
‖x−mq‖2

4σ2
q
−‖x−mp‖2

4σ2
p + 1

)
e
−‖x−mq‖2

2σ2
q dx

≤ 1

(2πσ2
q )
d/2

∫
Bcd(rk)

(
σp
σq

)d/4
e
−‖x−mq‖2

4σ2
q
−‖x−mp‖2

4σ2
p dx+ e

−‖x−mq‖2
2σ2
q dx
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(b)

.d,M e−
r̃2k
σ̂2 ≤ e−0.5Mr̃2

k ,

where (a) and (b) above follows from Lemma 65. Hence, P̄2
N(M) ⊆ P̆2

H2

(
r,mH2

,vH2)
with mH2

k �d,M
(
1 + r̃sKB+d+1

k

)
e2M2r̃2

k and vH
2

k �d,M e−0.5Mr̃2
k , and (A.93) applies. Setting

rk = 1 ∨ M + r̃k with r̃k =
√

2cM−1 log k, c > 0, and optimizing the resulting bound

in (A.93) w.r.t. c (optimum achieved at c = 0.5/(1 + 8M)) yields with mk = mH2

k and
Gk = ǦR

k,m
−1/2
k

(mk, rk) that

E
[∣∣∣Ĥ2
Gk(Xn, Y n)− H2(µ, ν)

∣∣∣] .d,M (log k)sKB+d+2k−
1

2+16M

(
1 + k

1
2n−

1
2

)
.

Taking supremum over (µ, ν) ∈ P̄2
N(M) completes the proof.

A.3.7 Proof of Theorem 51

Fix ε > 0 and let r(ε) denote r such that µ
(
Bc
d(r)

)
∨ ν
(
Bc
d(r)

)
≤ ε. Then, following steps

leading to (A.64), there exists g∗ ∈ ~G∗k(φ, r(ε)) for k ≥ k0(ε) such that the following holds:∣∣δTV(µ, ν)− δ~G∗k(φ,r(ε))(µ, ν)
∣∣

≤ Eµ
[
|fTV − g∗|1Bd(r(ε))

]
+ Eν

[
|fTV − g∗|1Bd(r(ε))

]
+ Eµ

[
|fTV − g∗|1Bcd(r(ε))

]
+ Eν

[
|fTV − g∗|1Bcd(r(ε))

]
. ε+ Eµ

[
|fTV|1Bcd(r(ε))

]
+ Eν

[
|fTV|1Bcd(r(ε))

]
≤ ε+ µ

(
Bc
d(r)

)
+ ν
(
Bc
d(r)

)
. ε,

This combined with (A.59) proves Part (i).

Next, we prove Part (ii). Fix (µ, ν) ∈ P̄2
TV,ψ(M, s, r,m). For t > 0, let fTV,rk :=

fTV1Bd(rk) and f
(t)
TV,rk

= fTV,rk∗ΦNt , where ΦNt (x) := t−dΦN (t−1x) and ΦN = (2π)−d/2e−0.5‖x‖2 .
Then, similar to (A.70), we have

S2

(
f

(t)
TV,rk

)
rk := rk

∫
Rd
‖ω‖21

∣∣∣F [f (t)
TV,rk

]
(ω)
∣∣∣dω

≤ rk ‖fTV,rk‖1 d
∫
Rd
‖ω‖2 |F[Φt](ω)| dω

= rd+1
k

dπ0.5d

Γ(0.5d+ 1)

∫
Rd
‖ω‖2 e−

1
2
t2‖ω‖2dω,

=: čd,rk,t,

where

čd,rk,t :=

{√
2πr2

kt
−3
(
Γ(3/2)

)−1
, d = 1,

2
d+3

2 π0.5d+1drd+1
k t−(d+2)

∏d−2
j=1

∫ π
0 sind−1−j(ϕj)dϕj , d ≥ 2.

Then, noting that
∣∣f (t)

TV(0)
∣∣ ∨ ∥∥∇f (t)

TV(0)
∥∥ ≤ 1 ∨ (2dπ−d)1/2Γ

(
0.5(d+ 1)

)
t−1, it follows from

(3.1) that there exists gθk ∈ ~GRk
(
c̆d,rk,t, rk

)
such that∣∣∣f (t)

TV,rk
(x)− gθk(x)

∣∣∣ . {c̆d,rk,td 1
2k−

1
2 , x ∈ Bd(rk),

1, otherwise,
(A.96)
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where c̆d,rk,t := čd,rk,t ∨ 1 ∨ (2dπ−d)1/2Γ
(
0.5(d+ 1)

)
t−1.

On the other hand, we have similar to steps leading to (A.67) that∣∣∣Eµ [fTV,rk − f (t)
TV,rk

] ∣∣∣ ≤ ∫
Rd

[∫
Rd
|fTV,rk(x)− fTV,rk(x− tu)| p(x)dx

]
Φ(u)du

=

∫
Rd

[∫
Rd
|fTV,rk(x+ tu)− fTV,rk(x)| p(x+ tu)dx

]
Φ(u)du

≤ ‖p‖∞,Rd
∫
Rd

[∫
Rd
|fTV,rk(x+ tu)− fTV,rk(x)|dx

]
Φ(u)du

≤M
∫
Rd
ξ1,1(f, t ‖u‖)Φ(u)du

≤Mmk

∫
Rd
ts ‖u‖s Φ(u)du = c∗s,dMmkt

s,

where c∗s,d =
∫
Rd ‖u‖

s Φ(u)du. Then, defining vk = µ
(
Bc
d(rk)

)
∨ ν
(
Bc
d(rk)

)
, we have∣∣∣Eµ [fTV − f (t)

TV,rk

]∣∣∣ ≤ ∣∣Eµ [fTV − fTV,rk ]
∣∣+
∣∣∣Eµ [fTV,rk − f (t)

TV,rk

]∣∣∣
≤ 2µ

(
Bc
d(rk)

)
+ c∗s,dMmkt

s

≤ 2vk + c∗s,dMmkt
s.

Noting that the above holds with ν in place of µ, we obtain∣∣∣δTV(µ, ν)− δ̃TV
(
f

(t)
TV,rk

)∣∣∣ ≤ 4vk + 2c∗s,dMmkt
s. (A.97)

Recalling that δ̃TV(g) := Eµ[g]− Eν [g], we have∣∣∣δTV(µ, ν)− δ~G R
k

(
c̆d,rk,t,rk

)(µ, ν)
∣∣∣

(a)
= δTV(µ, ν)− δ~G R

k

(
c̆d,rk,t,rk

)(µ, ν)

= δTV(µ, ν)− δ̃TV
(
f

(t)
TV,rk

)
+ δ̃TV

(
f

(t)
TV,rk

)
− δ~G R

k (c̆d,rk,t)
(µ, ν)

(b)

≤ 4vk + 2c∗s,dMmkt
s + Eµ

[∣∣∣f (t)
TV,rk

− gθk
∣∣∣]+ Eν

[∣∣∣f (t)
TV,rk

− gθk
∣∣∣]

(c)

.d,M,s vk +mkt
s + rd+1

k t−(d+2)k−
1
2 + µ

(
Bc
d(rk)

)
+ ν
(
Bc
d(rk)

)
. vk +mkt

s + rd+1
k t−(d+2)k−

1
2 ,

where (a) follows since
∥∥g∥∥∞ ≤ 1 for g ∈ ~G R

k

(
c̆d,rk,t, rk

)
and (2.7); (b) uses (A.73) and

(A.97); and (c) is due to (A.96). Setting t = t∗k,s =
(
rd+1
k k−1/2m−1

k

)1/(s+d+2)
yields∣∣∣∣δTV(µ, ν)− δ~G R

k

(
c̆d,rk,t

∗
k,s
,rk

)(µ, ν)

∣∣∣∣ .d,M,s m
d+2
s+d+2

k r
s(d+1)
s+d+2

k k
− s

2(s+d+2) + vk.
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Then, defining

~ck,d,s,m,r := c̆d,rk,t∗k,s = Od

((
r
s(d+1)
k k0.5(d+2)md+2

k

) 1
s+d+2

)
, (A.98)

we have from the above equation and (A.77) that

E
[∣∣∣δ̂~G R

k

(
~ck,d,s,m,r,rk

)(Xn, Y n)− δTV(µ, ν)
∣∣∣].d,M,s,ρ m

d+2
s+d+2

k r
s(d+1)
s+d+2

k k
− s

2(s+d+2) + vk

+ n−
1
2

(
mkr

s+1
k k

1
2

) d+2
s+d+2

. (A.99)

This completes the proof of Part (ii) by taking supremum w.r.t. (µ, ν) ∈ P̄2
TV,ψ(M, s, r,m)

and noting that vk ≤
(
ψ
(
rkM

−1
))−1

by Markov’s inequality.

A.3.8 Proof of Corollary 52

We will use the following relation between sub-Gaussian and norm sub-Gaussian distribu-
tions. µ ∈ P

(
Rd
)

is σ2-norm sub-Gaussian for σ > 0 if X ∼ µ satisfies

µ
(
‖X − E[X]‖ > t

)
≤ 2e

−t2
2σ2 , ∀ t ∈ R.

Lemma 67 (Jin et al., 2019, Lemma 1) If µ ∈ P
(
Rd
)

is σ2-sub-Gaussian, then it is 8dσ2-
norm sub-Gaussian.

Continuing with the proof of the Corollary, fix (µ, ν) ∈ P̂2
TV(b,M,N). From the above

lemma, we have for µ ∈ SG(M) and t ≥M that

µ
(
Bc
d(t)

)
≤ µ (‖X − Eµ[X]‖+ ‖Eµ[X]‖ > t) ≤ 2e

−(t−‖Eµ[X]‖)2
16dσ2 ≤ 2e

−(t−M)2

16dM . (A.100)

Similar bound holds with ν in place of µ. Next, since (µ, ν) ∈ P̂2
TV(b,M,N), following the

steps leading to (A.79) yields

‖fTV,rk‖Lip(s,1) = λ(Bd(rk)) + 2N
π
d
2 bd−s

Γ
(
d
2 + 1

) ∨ 2b−sλ(Bd(rk))

=
π
d
2 rdk

Γ
(
d
2 + 1

) + 2N
π
d
2 bd−s

Γ
(
d
2 + 1

) ∨ 2b−s
π
d
2 rdk

Γ
(
d
2 + 1

) =: cd,s,b,N,rk . (A.101)

Then, it follows from (A.99) with rk = M ∨ 1 + 4
√
dM log k, vk = 2e−(rk−M)2/16dM and

mk = cd,s,b,N,rk that

E
[∣∣∣∣δ̂~G R

k

(
~ck,d,s,m,r,rk

)(Xn, Y n)− δTV(µ, ν)

∣∣∣∣]
.d,s,b,N (log k)

(s+d)(d+2)
2(s+d+2) k

− s
2(s+d+2) + k−1 + (log k)

d+2
2 k

d+2
2(s+d+2)n−

1
2

.d,s,b,N (log k)
(s+d)(d+2)
2(s+d+2) k

− s
2(s+d+2) + (log k)

d+2
2 k

d+2
2(s+d+2)n−

1
2 .

This completes the proof by taking supremum w.r.t. (µ, ν) ∈ P̂2
TV(b,M,N).
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Appendix B. Proofs of Lemmas in Appendix A

B.1 Proof of Lemma 55

Suppose f ∈ LKBsKB,b
(
Rd
)
. Since f ∈ L1

(
Rd
)
, its Fourier transform F[f ] : Rd → R is well-

defined. Also,

∫
Rd
|F[f ](ω)| dω

(a)

≤
(∫

Rd

dω

1 + ‖ω‖2sKB

) 1
2
(∫

Rd

(
1 + ‖ω‖2sKB

)
|F[f ](ω)|2 dω

) 1
2

(b)

≤
(∫

Rd

dω

1 + ‖ω‖2sKB

) 1
2
(
‖f‖22 + dsKB max

α:‖α‖1=sKB
‖Dαf‖22

) 1
2 (c)
< ∞,

where

(a) follows from Cauchy-Schwarz inequality;

(b) is by Plancherel’s theorem since F[Dαf ](ω) = F[f ](ω)
∏d
j=1(iωj)

αj , ∀ ‖α‖1 ≤ sKB,

where i denotes the imaginary unit
√
−1, and f ∈ LKBsKB,b

(
Rd
)
. The above identity

holds because ‖Dαf‖1 <∞ for all ‖α‖1 ≤ sKB by assumption.

(c) follows since the first integral is finite and f ∈ LKBsKB,b
(
Rd
)
.

Hence, F[f ] ∈ L1
(
Rd
)

and the Fourier inversion formula holds (at every x ∈ Rd since f ∈
LsKB,b

(
Rd
)

is necessarily continuous) with F (dω) = F[f ](ω)dω, i.e., f(x) =
∫∞

0 eiω·xF[f ](ω)dω.

Then, it follows from ‖ω‖1 ≤
√
d ‖ω‖ that

S2(f) :=

∫
Rd
‖ω‖21

∣∣F[f ](ω)
∣∣dω ≤ d∫

Rd
‖ω‖2

∣∣F[f ](ω)
∣∣dω. (B.1)

If ‖Dαf‖2 ≤ b for all α with ‖α‖1 ∈ {1, sKB}, then we have

∫
Rd
‖ω‖2

∣∣F[f ](ω)
∣∣dω (a)

≤

(∫
Rd

dω

1 + ‖ω‖2(sB−1)

) 1
2 (∫

Rd

(
‖ω‖4 + ‖ω‖2sKB

) ∣∣F[f ](ω)
∣∣2dω

) 1
2

(b)

≤

(∫
Rd

dω

1 + ‖ω‖2(sB−1)

) 1
2 (
d2 + dsKB

) 1
2 b, (B.2)

where

(a) follows from Cauchy-Schwarz inequality;

(b) is due to Plancherel’s theorem and f ∈ LKBsKB,b
(
Rd
)
.

Combining (B.1) and (B.2) yields S2(f) ≤ bd3/2κd. Following similar steps, it can be shown
that if f ∈ LBsB,b

(
Rd
)
, then S1(f) ≤ bd1/2κd. The final claims follows from these and

definition of the classes LBsB,b
(
Rd
)
, LKBsKB,b

(
Rd
)
, Bc,1,X

(
Rd
)

and Bc,2,X
(
Rd
)
.
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B.2 Proof of Lemma 57

Assume that φ is monotone increasing. Let g, g̃ ∈ Gk(ak, φ) be arbitrary, where g(x) =∑k
i=1 βiφ (wi · x+ bi) + w0 · x + b0 and g̃(x) =

∑k
i=1 β̃iφ

(
w̃i · x+ b̃i

)
+ w̃0 · x + b̃0. Define

β := (β1, . . . , βk), β̃ := (β̃1, . . . , β̃k), w = (w1, . . . , wk), w̃ = (w̃1, . . . , w̃k), b = (b1, . . . , bk)
and b̃ = (b̃1, . . . , b̃k). Note that β, β̃,b, b̃ ∈ Rk and w, w̃ ∈ Rkd. For any x ∈ X , we have

|g(x)− g̃(x)|

≤

∣∣∣∣∣
k∑
i=1

βiφ (wi · x+ bi)−
k∑
i=1

β̃iφ
(
w̃i · x+ b̃i

)∣∣∣∣∣+ |(w0 − w̃0) · x|+
∣∣b0 − b̃0∣∣

≤

∣∣∣∣∣
k∑
i=1

βiφ (wi · x+ bi)−
k∑
i=1

β̃iφ (wi · x+ bi)

∣∣∣∣∣+ ‖w0 − w̃0‖1 ‖X‖+
∣∣b0 − b̃0∣∣

+

∣∣∣∣∣
k∑
i=1

β̃iφ (wi · x+ bi)−
k∑
i=1

β̃iφ
(
w̃i · x+ b̃i

)∣∣∣∣∣
(a)

≤
∥∥∥β − β̃

∥∥∥
1
φ

(
sup

x∈X ,1≤i≤k
|wi · x+ bi|

)
+ ‖w0 − w̃0‖1 ‖X‖+

∣∣b0 − b̃0∣∣
+ L

k∑
i=1

∣∣β̃i∣∣∣∣(wi − w̃i) · x+ bi − b̃i
∣∣

(b)

≤
∥∥∥β − β̃

∥∥∥
1
φ
(
a1,k(‖X‖+ 1)

)
+ ‖w0 − w̃0‖1 ‖X‖+

∣∣b0 − b̃0∣∣+ La2,k ‖X‖ ‖w − w̃‖1
+ La2,k

∥∥b− b̃
∥∥

1
,

where

(a) is since φ is monotone increasing function with Lipschitz constant bounded by L;

(b) is because max1≤i≤k ‖wi‖1 ∨ |bi| ≤ a1,k and max1≤i≤k |β̃i| ≤ a2,k.

Defining uk = φ
(
a1,k(‖X‖+ 1)

)
, it follows by application of (A.19) that

N
(
ε,Gk(ak, φ), ‖·‖∞,X

)
≤ N

(
ε/5, [−a2,k, a2,k]

k, uk ‖·‖1
)
N
(
ε/5, B1

d(a4,k), ‖X‖ ‖·‖1
)

N
(
ε/5, [−a3,k, a3,k], | · |

)
N
(
ε/5, B1

kd(ka1,k), La2,k ‖X‖ ‖·‖1
)

N
(
ε/5, B1

k(ka1,k), La2,k ‖·‖1
)

≤
(
1 + 10ka2,kukε

−1
)k(

1 + 10a4,k ‖X‖ ε−1
)d(

1 + 10a3,kε
−1
)(

1 + 10Lka1,ka2,k ‖X‖ ε−1
)dk(

1 + 10Lka1,ka2,kε
−1
)k
.

If φ is monotone decreasing, the above holds with uk = φ
(
− a1,k(‖X‖ + 1)

)
. This proves

the first bound in Lemma 57. Specializing to NN classes GRk (a), GSk (a), G∗k(φR), and G∗k(φS)
by noting that the Lipschitz constant L ≤ 1 for φR and φS, |φR(x)| ≤ x, and |φS(x)| ≤ 1,
yields (A.16)-(A.18).
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B.3 Proof of Lemma 59

We will use Theorem 11 for the proof. Fix any (µ, ν) ∈ P2
KL(X ). Note that for hKL(x) =

ex − 1, we have C̄
(
|G∗k(φ)|,X

)
≤ k(‖X‖+ 1) + 1,

C̄
(∣∣h′KL ◦ G∗k(φ)

∣∣ ,X ) ≤ ek(‖X‖+1)+1, (B.3)

Vk,h,φ,X .
(
k(‖X‖+ 1) + 1

)2(
ek(‖X‖+1)+1 + 1

)2
,

where h′KL denotes the derivative of hKL and Vk,h,φ,X is given in (A.20). Also, observe that
since g ∈ G∗k(φ) is continuous and bounded, DG∗k(φ)(µ, ν) ≤ DKL (µ‖ν) <∞. Then, since

Ek,h,φ,X n
− 1

2 . n−
1
2k
√
d(‖X‖+ 1)

√
k(‖X‖+ 1) + 1

(
ek(‖X‖+1)+1 + 1

)
−−−→
n→∞

0,

for k such that k3/2(‖X‖ + 1)ek(‖X‖+1) = O
(
n(1−ρ)/2

)
for 0 < ρ < 1, it follows from (3.3)

that for any k ∈ N, δ > 0, and n sufficiently large,

P
(∣∣∣DG∗k(φ)(µ, ν)− D̂G∗k(φ)(X

n, Y n)
∣∣∣ ≥ δ) ≤ ce−n

(
δ−Ek,h,φ,Xn

−1/2
)2

Vk,h,φ,X .

Hence, for kn such that k
3/2
n (‖X‖+ 1)ekn(‖X‖+1) = O

(
n(1−ρ)/2

)
,

∞∑
n=1

P
(∣∣∣DG∗k(φ)(µ, ν)− D̂G∗k(φ)(X

n, Y n)
∣∣∣ ≥ δ) ≤ c ∞∑

n=1

e

−n
(
δ−Ekn,h,φ,Xn

−1/2
)2

Vkn,h,φ,X <∞, (B.4)

where the final inequality in (B.4) can be established via integral test for sum of series.
This implies (A.37) via the first Borel-Cantelli lemma by taking supremum w.r.t. (µ, ν) ∈
P2
KL(X ).

B.4 Proof of Lemma 60

Fix (µ, ν) ∈ P2
χ2(X ). Recalling the quantities defined in Theorem 11, we have for hχ2(x) =

x+ 0.25x2 that

C̄
(∣∣h′χ2 ◦ G∗k(φ)

∣∣,X ) ≤ 0.5k(‖X‖+ 1) + 1.5, (B.5)

Vk,h,φ,X . (k(‖X‖+ 1) + 1)2(0.5k(‖X‖+ 1) + 1.5)2,

Ek,h,φ,X . k
√
d(‖X‖+ 1)

(
0.5k(‖X‖+ 1) + 1.5

)√
k(‖X‖+ 1) + 1,

where h′χ2 denotes the derivative of hχ2 . Also, note that χ2
G∗k(φ)(µ, ν) ≤ χ2 (µ‖ν) < ∞.

Then, since

0 ≤ Ek,h,φ,X n−
1
2 . k

5
2 (‖X‖+ 1)2n−

1
2 −−−→
n→∞

0,

for k5/2(‖X‖ + 1)2 = O
(
n(1−ρ)/2

)
, 0 < ρ < 1, it follows from (3.3) that for any k ∈ N,

δ > 0, and n sufficiently large,

P
(∣∣∣χ̂2

G∗k(φ)(X
n, Y n)− χ2

G∗k(φ)(µ, ν)
∣∣∣ ≥ δ) ≤ ce−n

(
δ−Ek,h,φ,Xn

−1/2
)2

Vk,h,φ,X .

Then, (A.45) follows using similar steps used to prove (A.37) (see (B.4)). This completes
the proof.
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B.5 Proof of Lemma 61

Fix (µ, ν) ∈ P2
H2(X ). Note that hH2(x) = x/(1− x) and

C̄
(∣∣h′H2 ◦ G̃∗k,t(φ)

∣∣) = sup
gθ∈G̃∗k,t(φ),x∈X

(1− gθ(x))−2 ≤ t−2,

where h′H2 denotes derivative of hH2 . By examining the proof, it can be seen that Theorem

11 continues to hold with G∗k(φ) in (3.2) and (3.3) replaced with G̃∗k,t(φ). We have Vk,h,φ,X .

(k(‖X‖+ 1) + 1)2
(
t−2
k + 1

)2
, and

0 ≤ Ek,h,φ,Xn−
1
2 . n−

1
2k
√
d(‖X‖+ 1)

(
t−2
k + 1

)√
k(‖X‖+ 1) + 1 −−−→

n→∞
0,

for k, tk such that k3/2(‖X‖+ 1)t−2
k = O

(
n(1−ρ)/2

)
. Further, H2

G̃∗k,t(φ)
(µ, ν) < H2(µ, ν) ≤ 2.

It then follows from (3.3) that for any k ∈ N, δ > 0, and n sufficiently large,

P
(∣∣∣Ĥ2

G̃∗k,tk (φ)
(Xn, Y n)− H2

G̃∗k,tk (φ)
(µ, ν)

∣∣∣ ≥ δ) ≤ ce−n
(
δ−Ek,h,φ,Xn

−1/2
)2

Vk,h,φ,X .

Then, (A.53) follows via similar steps used to prove (A.37) (see (B.4)).

B.6 Proof of Lemma 62

Fix µ, ν ∈ P(X ). We have δḠ∗k(φ)(µ, ν) ≤ δTV(µ, ν) ≤ 2, C̄
(∣∣Ḡ∗k(φ)

∣∣) ≤ 1, and

C̄
(∣∣h′TV ◦ Ḡ∗k(φ)

∣∣) = 1,

where h′TV denotes the derivative of hTV. Also, it can be seen from the proof of Theorem
11 that it holds with G∗k(φ) in (3.2) and (3.3) replaced by Ḡ∗k(φ). Further, Vk,h,φ,X . 1, and

0 ≤ Ek,h,φ,Xn−
1
2 . n−

1
2k
√
d(‖X‖+ 1) −−−→

n→∞
0,

for k, n such that k(‖X‖ + 1)1/2 = O
(
n(1−ρ)/2

)
. It follows from (3.3) that for any k ∈ N,

δ > 0, and n sufficiently large,

P
(∣∣∣δ̂Ḡ∗k(φ)(X

n, Y n)− δḠ∗k(φ)(µ, ν)
∣∣∣ ≥ δ) ≤ ce−n

(
δ−Ek,h,φ,Xn

−1/2
)2

Vk,h,φ,X .

Then, (A.59) follows using similar steps used to prove (A.37). This completes the proof.

B.7 Proof of Lemma 63

Fix (µ, ν) ∈ P̆2
KL(M, r,m,v). Recall that ĜRk (a, r) = {g1Bd(r) : g ∈ GRk (a)}. Since

c?KB
(
fKL|Bd(rk), Bd(rk)

)
≤ mk, it follows from (3.1) that there exists gθk ∈ ĜRk (mk, rk) and

c > 0 such that ∥∥∥fKL − gθk∥∥∥∞,Bd(rk)
≤ cd

1
2mkk

− 1
2 . (B.6)
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Then, following steps leading to (A.81), we have for k with c2dm2
k < 0.5k that∣∣∣DKL (µ‖ν)− DĜRk (mk,rk)(µ, ν)

∣∣∣
≤
∥∥(fKL − gθk)1Bd(rk)

∥∥
∞,µ + Eµ

[
|fKL|1Bcd(rk)

]
+ Eν

[∣∣∣∣dµdν
− 1

∣∣∣∣1Bcd(rk)

]
+ Eν

[∣∣efKL∣∣1Bd(rk)

] ∥∥∥(1− egθk−fKL
)
1Bd(rk)

∥∥∥
∞,ν

. mkd
1
2k−

1
2 + vk,

where the final inequality is due to (B.6), ecd
1
2mkk

−1/2 − 1 ≤ cd
1
2mkk

−1/2 which follows
similar to (A.43) (since c2dm2

k < 0.5k), Eµ
[
|fKL|1Bcd(rk)

]
∨ Eν

[
|(dµ/dν) − 1|1Bcd(rk)

]
≤ vk,

and Eν
[
|efKL |1Bd(rk)

]
≤ 1.

On the other hand, for k such that c2dm2
k ≥ 0.5k, g = 0 ∈ ĜRk (mk, rk) implies that∣∣∣DKL (µ‖ν)− DĜRk (mk,rk)(µ, ν)

∣∣∣ = DKL (µ‖ν)− DĜRk (mk,rk)(µ, ν) ≤ DKL (µ‖ν) ≤M.

Since m2
k . k1−ρ, k such that c2dm2

k ≥ 0.5k necessarily satisfies kρ . d. Thus, for all k ∈ N,∣∣∣DKL (µ‖ν)− DĜRk (mk,rk)(µ, ν)
∣∣∣ .d,M,ρ mkk

− 1
2 + vk. (B.7)

Note that the RHS above tends to zero as k →∞ since vk → 0 and m2
k . k1−ρ.

Next, it follows from (A.29), (A.33), and (B.7) that for k,mk satisfying m2
k . k1−ρ,

E
[∣∣∣D̂ĜRk (mk,rk)(X

n, Y n)− DKL (µ‖ν)
∣∣∣]

≤
∣∣∣DĜRk (mk,rk)(µ, ν)− DKL (µ‖ν)

∣∣∣+ E
[∣∣∣DĜRk (mk,rk)(µ, ν)− D̂ĜRk (mk,rk)(X

n, Y n)
∣∣∣]

.d,M,ρ mkk
− 1

2 + vk +mkrke
3mk(rk+1)n−

1
2 .

Taking supremum w.r.t. (µ, ν) ∈ P̆2
KL(M, r,m,v) completes the proof.

B.8 Proof of Lemma 64

Fix (µ, ν) ∈ P̆2
χ2(r,m,v). Since c?KB

(
fχ2 |Bd(rk), Bd(rk)

)
≤ mk, there exists gθk ∈ ĜRk (mk, rk)

such that ∥∥fχ2 − gθk
∥∥
∞,Bd(rk)

. d
1
2mkk

− 1
2 . (B.8)

Then, following steps leading to (A.86), we have for all k ∈ N that∣∣∣χ2 (µ‖ν)− χ2
ĜRk (mk,rk)

(µ, ν)
∣∣∣

≤
∥∥(fχ2 − gθk

)
1Bd(rk)

∥∥
∞,µ + Eµ

[∣∣fχ2

∣∣1Bcd(rk)

]
+ Eν

[∣∣hχ2 ◦ fχ2 − hχ2 ◦ gθk
∣∣1Bd(rk)

]
+ Eν

[∣∣hχ2 ◦ fχ2

∣∣1Bcd(rk)

]
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(a)

. d
1
2mkk

− 1
2 + vk + Eν

[∣∣hχ2 ◦ fχ2 − hχ2 ◦ gθk
∣∣1Bd(rk)

]
(b)

. d
1
2mkk

− 1
2 + vk + Eν

[∣∣fχ2 − gθk
∣∣1Bd(rk)

]
+ Eν

[
0.25

∣∣fχ2 − gθk
∣∣21Bd(rk)

]
+ 0.5Eν

[∣∣fχ2 − gθk
∣∣ ∣∣fχ2

∣∣1Bd(rk)

]
. d

1
2mkk

− 1
2 + vk + dm2

kk
−1 +

∥∥(fχ2 − gθk)1Bd(rk)

∥∥
∞,ν Eν

[∣∣fχ2

∣∣]
(c)

. d
1
2mkk

− 1
2 + dm2

kk
−1 + vk,

where

(a) follows from (B.8) and since (µ, ν) ∈ P̆2
χ2(r,m,v);

(b) is via steps leading to (A.48);

(c) is due to (B.8) and Eν
[ ∣∣fχ2

∣∣ ] ≤ 4.

Then, it follows from the above equation, (A.29) and (A.33) that

E
[∣∣∣χ̂2
ĜRk (mk,rk)

(Xn, Y n)− χ2 (µ‖ν)
∣∣∣]

≤
∣∣∣χ2
ĜRk (mk,rk)

(µ, ν)− χ2 (µ‖ν)
∣∣∣+ E

[∣∣∣χ2
ĜRk (mk,rk)

(µ, ν)− χ̂ĜRk (mk,rk)(X
n, Y n)

∣∣∣]
. d

1
2mkk

− 1
2 + dm2

kk
−1 + vk + d

3
2m2

kr
2
kn
− 1

2 .

Taking supremum w.r.t. (µ, ν) ∈ P̆2
χ2(r,m,v) completes the proof.

B.9 Proof of Lemma 66

Fix (µ, ν) ∈ P̆2
H2(r,m,v). Since

∥∥∥dµ
dν

∥∥∥
∞,Bd(rk)

≤ mk, we have

1− fH2(x) =

(
dµ

dν
(x)

)− 1
2

≥ m−
1
2

k , x ∈ Bd(rk). (B.9)

Hence, c?KB
(
fH2 |Bd(rk), Bd(rk)

)
≤ mk implies via (3.1) and (5.2) that there exists gθk ∈

ǦR

k,m
−1/2
k

(mk, rk) such that

‖fH2 − gθk‖∞,Bd(rk) . mkd
1
2k−

1
2 . (B.10)

Following the derivation leading to the penultimate step in (A.55), we have∣∣∣∣H2(µ, ν)− H2
Ǧ R

k,m
−1/2
k

(mk,rk)
(µ, ν)

∣∣∣∣
≤ Eµ

[∣∣fH2 − gθk
∣∣1Bd(rk)

]
+ Eν

[∣∣∣∣ fH2 − gθk
(1− fH2)(1− gθk)

∣∣∣∣1Bd(rk)

]
+ Eµ

[
|fH2 |1Bcd(rk)

]
+ Eν

[∣∣∣∣ fH2

(1− fH2)

∣∣∣∣1Bcd(rk)

]
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(a)

. mkd
1
2k−

1
2 +m2

kd
1
2k−

1
2 + vk

(b)

. m2
kd

1
2k−

1
2 + vk, (B.11)

where (a) follows from (B.9), (B.10), (µ, ν) ∈ P̆2
H2(r,m,v), and 1− gθk(x) ≥ m

−1/2
k by the

definition of ǦR

k,m
−1/2
k

(mk, rk), while (b) is due to mk ≥ 1.

Next, using (A.27) and following steps similar to proof of Lemma 59, we obtain that for
k,mk, rk, n such that k1/2m2

krk = O
(
n(1−ρ)/2

)
,

Ĥ2
Ǧ R

k,m
−1/2
k

(mk,rk)
(Xn, Y n) −−−→

n→∞
H2
Ǧ R

k,m
−1/2
k

(mk,rk)
(µ, ν), P− a.s.

Then, (A.92) follows from this and (B.11) since mk = o(k1/4) and vk → 0 by assumption.
Also,

E

[∣∣∣∣∣Ĥ2
Ǧ R

k,m
−1/2
k

(mk,rk)
(Xn, Y n)−H2(µ, ν)

∣∣∣∣∣
]

≤

∣∣∣∣∣H2(µ, ν)− H2
Ǧ R

k,m
−1/2
k

(mk,rk)
(µ, ν)

∣∣∣∣∣+E

[∣∣∣∣∣Ĥ2
Ǧ R

k,m
−1/2
k

(mk,rk)
(Xn, Y n)−H2

Ǧ R

k,m
−1/2
k

(mk,rk)
(µ, ν)

∣∣∣∣∣
]

. m2
kd

1
2k−

1
2 + vk + d

3
2m2

krkn
− 1

2 ,

where the final inequality uses (A.29), (A.33) and (B.11) to bound the last term. Taking
supremum over (µ, ν) ∈ P̆2

H2(r,m,v) yields (A.93).

Appendix C. Consistency and effective error bounds for DV-NE

Defining DDV,G(µ, ν) := supg∈G
(
Eµ[g]− logEν [eg]

)
and

Z̃g :=
1

n

n∑
i=1

g(Xi)− log

(
1

n

n∑
i=1

eg(Yi)

)
− Eµ

[
g
]

+ logEν
[
eg
]
,

we have similar to (A.22) that

ĎDV,G(Xn, Y n)− DDV,G(µ, ν) ≤ sup
g∈G

Z̃g.

Moreover, since the Lipschitz constant of logarithm is bounded by eC̄(|G|,X ) in
[
e−C̄(|G|,X ),

eC̄(|G|,X )
]
, we have almost surely that

|Zg − Zg̃| ≤ n−1
n∑
i=1

∣∣g(Xi)− g̃(Xi)− Eµ
[
g − g̃

]∣∣+ eC̄(G,X )
∣∣∣eg(Yi) − eg̃(Yi) − Eν

[
eg − eg̃

]∣∣∣ ,
where each term inside the summation is bounded by 2

(
e2C̄(|G|) + 1

)∥∥gθ − gθ̃∥∥∞,X similar

to (A.26). Then, following the steps in the proof of Theorem 11, we have

sup
µ,ν∈P(X ):

DDV,G∗
k

(φ)(µ,ν)<∞

P
( ∣∣∣ĎDV,G∗k(φ)(X

n, Y n)− DDV,G∗k(φ)(µ, ν)
∣∣∣ ≥ δ + Ẽk,h,φ,Xn

− 1
2

)
≤ c e

− nδ2

Ṽk,h,φ,X ,
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where Ṽk,h,φ,X . (k(‖X‖ + 1) + 1)2e4k(‖X‖+1) and Ẽk,h,φ,X . k3/2d1/2(‖X‖ + 1)e2k(‖X‖+1).

Then, similar to Lemma 59, we obtain that for any 0 < ρ < 1, and n, kn such that k
3/2
n (‖X‖+

1)e2kn(‖X‖+1) = O
(
n(1−ρ)/2

)
,

ĎDV,G∗k(φ)(X
n, Y n) −−−→

n→∞
DDV,G∗k(φ)(µ, ν), P− a.s.

Moreover, limn→∞DDV,G∗k(φ)(µ, ν) = DKL (µ‖ν) follows identical to (A.39) provided fKL ∈
C(X ). Hence, for X = [0, 1]d, we obtain that for any 0 < ρ < 1, (kn)n∈N with kn →∞ and
kn ≤ 1

8(1− ρ) log n, we have

ĎDV,G∗k(φ)(X
n, Y n) −−−→

n→∞
DKL (µ‖ν) , P− a.s. (C.1)

Next, we bound the expected error of the DV-NE estimator. Note that

ĎDV,GRk (a)(X
n, Y n)− DDV,GRk (a)(µ, ν)

= sup
g∈GRk (a)

1

n

n∑
i=1

g(Xi)− log

(
1

n

n∑
i=1

eg(Yi)

)
− sup
g∈GRk (a)

(Eµ[g]− logEν [eg])

≤ sup
g∈GRk (a)

1

n

n∑
i=1

g(Xi)− log

(
1

n

n∑
i=1

eg(Yi)

)
− (Eµ[g]− logEν [eg]) .

Thus,

E
[∣∣∣ĎDV,GRk (a)(X

n, Y n)− DDV,GRk (a)(µ, ν)
∣∣∣]

≤ E

[
sup

g∈GRk (a)

∣∣∣∣∣ 1n
n∑
i=1

g(Xi)− Eµ[g]

∣∣∣∣∣
]

+ E

[
sup

g∈GRk (a)

∣∣∣∣∣log

(
1

n

n∑
i=1

eg(Yi)

)
− logEν [eg]

∣∣∣∣∣
]

(a)

≤ E

[
sup

g∈GRk (a)

∣∣∣∣∣ 1n
n∑
i=1

g(Xi)− Eµ[g]

∣∣∣∣∣
]

+ e3a(‖X‖+1)E

[
sup

g∈GRk (a)

∣∣∣∣∣ 1n
n∑
i=1

eg(Yi) − Eν [eg]

∣∣∣∣∣
]

(b)

. a(‖X‖+ 1)
(
e6a(‖X‖+1) + 1

)
n−

1
2

∫ 1

0

√
sup

γ∈P(X )
logN

(
3a(‖X‖+ 1)ε,GRk (a), ‖ · ‖2,γ

)
dε,

(c)

. a(‖X‖+ 1)
(
e6a(‖X‖+1) + 1

)
d

3
2n−

1
2 , (C.2)

where

(a) is since C̄(|GRk (a)|,X ) ≤ 3a(‖X‖+ 1) and the Lipschitz constant of log x is bounded by

e3a(‖X‖+1) in
[
e−C̄(|GRk (a)|,X ), eC̄(|GRk (a)|,X )

]
;

(b) follows using steps akin to (A.34) and (Van Der Vaart and Wellner, 1996, Corollary
2.2.8);

(c) is due to (A.33).
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Appendix D. CoD-Free Error Rate in the Unbounded Support Case

D.1 KL Divergence

Consider the NN class ĜSk (a, r) =
{
g1Bd(r) : g ∈ GSk (a)

}
(see Definition 7) and the following

class of sub-Gaussian distributions:

P̂2
KL(M, `) :=

{
(µ, ν) ∈ P2

KL

(
Rd
)

: µ, ν ∈ SG(M), fKL ∈ Î(M), ‖fKL‖`,µ ≤M
}
,

Î(M) := {f : S1(f) ∨ |f(0)| ≤M} . (D.1)

Proposition 68 (KL CoD-free error bound) Let M ≥ 0, ` > 1 and `∗ = `/(` − 1).
Then, for zk = 12

√
`∗dM3/2(log k)−1/2 and rk = M ∨ 1 + 4

√
dM`∗ log k,

sup
(µ,ν)∈P̂2

KL(M,`)

E
[∣∣∣D̂ĜSk(Mrk,rk)(X

n, Y n)− DKL (µ‖ν)
∣∣∣] .d,M,` (log k)

3
2

(
k−

1
2 + kzk n−

1
2

)
.

Setting k = n in the above bound gives an effective error bound O
(
n−1/3

)
.

Proof Fix (µ, ν) ∈ P̂2
KL(M, `). From (A.100), we have for µ, ν ∈ SG(M) and r ≥M that

µ
(
Bc
d(r)

)
∨ ν
(
Bc
d(r)

)
≤ 2e

−(r−M)2

16dM . (D.2)

Then, it follows from (A.84) and (A.85) that for rk ≥M ,

Eµ
[
|fKL|1Bcd(rk)

]
∨ Eν

[
|hKL ◦ fKL|1Bcd(rk)

]
.M e

−(rk−M)2

16dM`∗ .

Moreover, fKL ∈ Î(M) implies c?B
(
fKL|Bd(rk), Bd(rk)

)
≤Mrk for rk ≥ 1.

Next, note that C̄(|ĜSk (mk, rk)|, Bd(rk)) ≤ 3Mrk, and C̄
(∣∣h′KL ◦ ĜSk (mk, rk)

∣∣, Bd(rk))
≤ e3Mrk . Also, similar to (A.33), we have∫ 1

0

√
sup

γ∈P(X )
logN

(
3Mrkε, ĜSk (Mrk, rk), ‖ · ‖2,γ

)
dε . d

3
2 , (D.3)

Then, (A.29) implies

E
[∣∣∣DĜSk(Mrk,rk)(µ, ν)− D̂ĜSk(Mrk,rk)(X

n, Y n)
∣∣∣] .M d

3
2 rke

3Mrkn−
1
2 .

Thus, we have similar to Lemma 63 (by using Theorem 8 for the sigmoid NN class) for
1 ≤Mrk . k(1−ρ)/2 for some ρ > 0 that

E
[∣∣∣D̂ĜSk(Mrk,rk)(X

n, Y n)− DKL (µ‖ν)
∣∣∣] .d,M,ρ rkk

− 1
2 + rke

3Mrkn−
1
2 + e

−(rk−M)2

16dM`∗ .

Taking rk = M ∨ 1 + 4
√
dM`∗ log k and noting that 1 ≤Mrk . k1/4 (say), we obtain

E
[∣∣∣D̂ĜSk(Mrk,rk)(X

n, Y n)− DKL (µ‖ν)
∣∣∣]
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.d,M,` k
− 1

2 (log k)
1
2 + k−1 + (log k)

3
2 e12M3/2

√
`∗d log k n−

1
2

.d,M,` k
− 1

2 (log k)
1
2 + k

12
√
`∗dM3/2
√

log k (log k)
3
2 n−

1
2 .

Taking supremum w.r.t. (µ, ν) ∈ P̂2
KL(M, `) yields the claim.

Remark 69 (CoD-free rate) P̂2
KL(M, `), for example, includes M -sub-Gaussian distri-

butions (µ, ν) such that ‖fKL‖`,µ ≤ M and fKL ∈ LBsB,b
(
Rd
)

(for appropriate value of b),

where sB = bd/2c + 2 and LBsB,b
(
Rd
)

is given in (A.2). It also contains certain M -sub-

Gaussian distributions (µ, ν) such that fKL = c + f for some c ∈ R and f ∈ S
(
Rd
)
, where

S
(
Rd
)

=
{
f ∈ C∞

(
Rd
)

: supx∈Rd
∣∣xαDα̃f(x)

∣∣ < ∞, ∀α, α̃ ∈ Zd≥0

}
is the Schwartz space of

rapidly decreasing functions and α, α̃ are multi-indices of dimension d. An example would

be some M -sub-Gaussian distributions (µ, ν) with pq−1 = cee
−x2

, where c is normaliza-

tion constant (e.g., take q to be multivariate Gaussian, p(x) = cee
−x2

q(x) and c such that∫
Rd q(x)dx = 1 ). We note that f ∈ S

(
Rd
)

implies existence of Fourier transforms and
Fourier inversion formula such that S1(f) <∞.

D.2 χ2 Divergence

With Î(M) as defined in (D.1), let

P̂2
χ2(M, `) :=

{
(µ, ν) ∈ P2

χ2

(
Rd
)

: µ, ν ∈ SG(M), fχ2 ∈ Î(M),
∥∥fχ2

∥∥
`,µ
≤M

}
.

Proposition 70 (χ2 CoD-free error bound) Let M ≥ 0, ` > 1 and `∗ = `/(` − 1).
Then, for rk = M ∨ 1 + 4

√
dM`∗ log k,

sup
(µ,ν)∈P̂2

χ2 (M,`)

E
[∣∣∣χ̂2
ĜSk(Mrk,rk)

(Xn, Y n)− χ2 (µ‖ν)
∣∣∣] .d,M,` k−

1
2 (log k)

1
2 + log k n−

1
2 .

Setting k = n yields an effective error bound Õ
(
n−1/2

)
.

Proof Fix (µ, ν) ∈ P̂2
χ2(M, `). From (D.2), (A.88) and (A.89), we have

Eµ
[∣∣fχ2

∣∣1Bcd(rk)

]
∨ Eν

[∣∣hχ2 ◦ fχ2

∣∣1Bcd(rk)

]
.M e

−(rk−M)2

16dM`∗ .

Note that c?B
(
fχ2 |Bd(rk), Bd(rk)

)
≤ Mrk for rk ≥ 1, C̄(|ĜSk (mk, rk)|, Bd(rk)) ≤ 3Mrk, and

C̄
(∣∣h′χ2◦ḠSk (mk, rk)

∣∣, Bd(rk)) ≤ 1.5Mrk+1. Then we obtain similar to (A.87) using Theorem

8 and (D.3) that

E
[∣∣∣χ̂2
ĜSk(Mrk,rk)

(Xn, Y n)− χ2 (µ‖ν)
∣∣∣] .M rkd

1
2k−

1
2 + r2

kdk
−1 + e

−(rk−M)2

16dM`∗ + d
3
2 r2
kn
− 1

2 .

Setting rk = M ∨ 1 + 4
√
dM`∗ log k, and taking supremum w.r.t. (µ, ν) ∈ P̂2

χ2(M, `) proves
the claim.
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Remark 71 (CoD-free rate) P̂2
χ2(M, `) contains certain M -sub-Gaussian distributions

(µ, ν) such that
∥∥fχ2

∥∥
`,µ
≤ M , and fχ2 ∈ S

(
Rd
)
∪ LBsB,b

(
Rd
)

for appropriate value of b.

In particular, this includes certain Gaussian distributions pairs
(
N (mp, σ

2
pId), N (mq, σ

2
q Id)

)
with 0 < σp < σq ≤ M and ‖mp‖ ∨ ‖mq‖ ≤ M . To see this, recall fχ2 = 2(pq−1 − 1),
and note σq > σp ensures that

∥∥fχ2

∥∥
∞,Rd < ∞ implying that

∥∥fχ2

∥∥
`,µ

< ∞. Also, since

pq−1 is again (upto constants) a Gaussian density, F[pq−1] exist which is again a Gaussian
density (upto constants). Hence, F[pq−1] is integrable and this implies the Fourier inversion
formula holds. Moreover, it is easy to verify that S1

(
pq−1

)
< ∞. Hence, such Gaussian

pairs satisfies the conditions defining P̂2
χ2(M, `) for large enough M , and the claim follows.

D.3 Squared Hellinger Distance

Let ǦSk,t(a, r) :=
{
g1Bd(r) : g ∈ Gk

(
k1/2 log k, 2k−1a, a, 0, φS

)}
, and

P̂2
H2(M) :=

{
(µ, ν) ∈ P2

H2

(
Rd
)

: µ, ν ∈ SG(M), fH2 ∈ Î(M),

∥∥∥∥dµ

dν

∥∥∥∥
∞,Rd

≤M
}
,

where Î(m) is given in (D.1).

Proposition 72 (H2 CoD-free error bound) For M ≥ 0, mk = Mrk and rk = M ∨1+√
32dM log k,

sup
(µ,ν)∈P̂2

H2 (M)

E

[∣∣∣∣∣Ĥ2
ǦS
k,m
−1/2
k

(mk,rk)
(Xn, Y n)− H2(µ, ν)

∣∣∣∣∣
]
.d,M k−

1
2 log k + n−

1
2 log k.

Setting k = n yields an effective error bound Õ(n−1/2).

Proof Fix (µ, ν) ∈ P̂2
H2(M). From (D.2), (A.94) and (A.95), we obtain

Eµ
[
|fH2 |1Bcd(rk)

]
∨ Eν

[
|hH2 ◦ fH2 |1Bcd(rk)

]
≤ e

−(rk−M)2

32dM .

We have c?B
(
fH2 |Bd(rk), Bd(rk)

)
≤ Mrk for rk ≥ 1, C̄(|ǦSk,t(mk, rk)|, Bd(rk)) ≤ 3Mrk, and

C̄
(∣∣h′H2 ◦ǦSk,t(mk, rk)

∣∣, Bd(rk)) ≤ t−2. Then, for k, rk satisfying rk = o(k1/4), we have similar
to (A.93) using Theorem 8 and (D.3) that

E

[∣∣∣∣∣Ĥ2
ǦS
k,m
−1/2
k

(mk,rk)
(Xn, Y n)− H2(µ, ν)

∣∣∣∣∣
]
.M r2

kd
1
2k−

1
2 + e

−(rk−M)2

32dM + d
3
2 r2
kn
− 1

2 .

Setting rk = M ∨1 +
√

32dM log k and taking supremum w.r.t. (µ, ν) ∈ P̂2
H2(M), we obtain

the claim in the Proposition.

Remark 73 (CoD-free rate) P̂2
H2(M) includes certain M -sub-Gaussian pairs (µ, ν) such

that
∥∥pq−1

∥∥
∞,Rd ≤M and qp−1 = (ef + c)2 for some f ∈ S

(
Rd
)
, where c is the normaliza-

tion constant to ensure that p and q are probability densities. To see this, note that
√
qp−1

and
√
pq−1 are both bounded on Rd. Moreover, fH2 = 1 −

√
qp−1 = −c + 1 − ef . Noting

that 1− ef ∈ S
(
Rd
)

if f ∈ S
(
Rd
)
, it follows as discussed in Remark 69 that S1(fH2) <∞,

thus implying the claim.
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