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Abstract

We make an attempt to understand convolutional neural network by exploring the relation-
ship between (deep) convolutional neural networks and Volterra convolutions. We propose
a novel approach to explain and study the overall characteristics of neural networks without
being disturbed by the horribly complex architectures. Specifically, we attempt to convert
the basic structures of a convolutional neural network (CNN) and their combinations to
the form of Volterra convolutions. The results show that most of convolutional neural
networks can be approximated in the form of Volterra convolution, where the approximated
proxy kernels preserve the characteristics of the original network. Analyzing these proxy
kernels may give valuable insight about the original network. Based on this setup, we
present methods to approximate the order-zero and order-one proxy kernels, and verify the
correctness and effectiveness of our results.
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1. Introduction

Deep neural networks (DNNs) can effectively characterize most complex data as long as the
training data is large enough and the capable models are well-trained. Nevertheless, a deep
neural network often has a horribly complex structure, the results are hard to interpret in
some sense, and the neural network is likely to be deceived by adversarial examples. We are
eager to search for methods that allow us to analyze the neural network.

There is a vast number of excellent researches focusing on theoretically understanding
neural networks. Some take the statistical perspective. Deep neural networks can be
thought of as being discrete dynamical systems (E, 2017). Instead of thinking about features
and neurons, one focus on representation of functions, calculus of variation problems, and
continuous gradient flow (E et al., 2020). Besides, others take a geometric perspective
(grids, groups, graphs, geodesics, and gauges), which shows that deep neural networks can
be understood in a unified manner as methods that respect the structure and symmetries
(invariants and equivalents) of the geometric domains (Bronstein et al., 2021). Moreover,
we can study how modern deep neural networks transform topologies of data sets (Naitzat
et al., 2020), or draw the phase diagram for the two-layer ReLU neural network at the
infinite-width limit (Luo et al., 2021).

Most of these works focus on certain classes of structures, such as two-layer neural
network, multilayer fully connected network, ResNet, pure abstract network, and fully
connected network with specific activation functions, i.e., ReLU, sigmoid, tanh, and so on.
It seems that it is unlikely to represent and analyze an arbitrarily complex neural network
from a theoretical point of view.

In this paper, we attempt to build a generic and unified model for analyzing most deep
convolutional neural networks rather than thinking about features and layers. The neural
network is a universal approximator that is able to approximate any Borel measurable
function (Cybenko, 1989; Hornik et al., 1989; Barron, 1993; Zeng et al., 2021). The proposed
model is expected to be a universal approximator. Additionally, it is supposed to ensure
that most networks can be represented by this kind of model. Furthermore, it should be
expressed as superposition of submodules, which makes it convenient to be analyzed.

The Volterra convolution or Volterra series operator (Volterra, 1932) owns exactly such
features. Briefly, Volterra convolution has the form of

y = H0 + H1 ∗ x + H2 ∗ x2 + · · · =
+∞∑
n=0

Hn ∗ xn, (1)

where x is the input signal, H0,H1,H2, · · · are kernels, y is the output signal, and Hn ∗ xn

is the order-n convolution (All of these will be precisely defined in Section 2).
Firstly, it has been proved that any time-invariant continuous nonlinear operator can

be approximated by a Volterra series operator and any time invariant operator with fading
memory can be approximated (in a strong sense) by a nonlinear moving-average operator,
the finite term Volterra series operator (Boyd and Chua, 1985). Secondly, a certain class
of artificial neural networks (feed-forward network or multilayer perceptron) are equivalent
to a finite memory Volterra series (Wray and Green, 1994; Fung et al., 1996). In addition
to this certain class of artificial neural networks, we show that neural networks, including
convolutional neural networks and their numerous variants, can be approximated in the

2



Toward Understanding CNNs from Volterra Convolution Perspective

form of Volterra convolution. Thirdly, this is an accumulation of multiple submodules
H1 ∗ x,H2 ∗ x2, · · ·, which can be analyzed independently and without being disturbed by
the complex network architecture.

Suppose the well-trained neural network is f(x) or g(f(x)), we are looking for a Volterra
convolution to approximate this network f(x). The functions learned by practical convo-
lutional neural networks (i.e., ReLU-based, sigmoid-based) often can only be represented
by Volterra convolution with infinite series. Nevertheless, if small truncation errors are
allowed in practice, we can use finite term Volterra convolution via truncating the infinite
counterpart to approximate the functions, which is mainly considered in this paper. Formally,
for a function f(x), we are looking for N + 1 proxy kernels H0,H1, · · · ,HN such that

f(x) ≈
N∑
n=0

Hn ∗ xn. (2)

If a neural network can be approximated in this form, its kernels H0,H1, · · · ,HN shall
preserve characteristics of the original network, and they will probably help us to analyze
the stability or robustness or other useful properties of a well-trained network.

The Volterra convolution looks like a polynomial network (Giles and Maxwell, 1987;
Shin and Ghosh, 1995, 1992; Fallahnezhad et al., 2011). They are similar in the sense of
“polynomial”. Nevertheless, they are quite different. A polynomial network learns a function
f : Rn → R, but Volterra convolution is a map f : Rn → Rm. Besides, we are not interested
in training this Volterra convolution by raw data. Instead, we will just approximate a
well-trained network in this formulation of Volterra convolution.

In summary, the main contribution of this paper include:

• We show that most convolutional neural networks can be represented in the form of
Volterra convolutions. This formulation provides a novel perspective on understanding
neural networks, and will probably help us to analyze a neural network without being
disturbed by its complex architecture.

• We study some important properties of this representation, including the effects of
perturbations and the rank of combining two order-n convolutions.

• We show that a convolutional neural network can be well approximated by finite term
Volterra convolutions. All we need in this approximation are the proxy kernels. We
propose two methods to infer the proxy kernels. The first is the direct calculation,
provided that the original network is a white-box to users, whereas the second one is
to train a hacking network, for the case where the original network is a black-box.

The main structure of this article is listed as follows. In Section 2, we introduce
and review the definition and properties of order-n convolution, outer convolution and
Volterra convolution. In Section 3, we show that most convolutional neural networks can
be approximated in the form of Volterra convolutions, and validate this approximation on
simple structures. In Section 4, we propose a hacking network to approximate the order-zero
and order-one proxy kernels.

Notations. In most situations, vectors are notated in lower case bold face letters x,y, · · ·,
while matrices and tensors are notated in upper case bold face letters H,G, · · ·. We will not
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deliberately distinguish between them, as this does not affect the generality of our discussion.
Elements are notated by regular letters with brackets x(i), X(i, j, k), · · ·. The ith-slice of X
is noted by X(:, i, :) using the colon notation.

The vector like notation is ~x = dx1,x2, · · ·c, which is nothing but a list of objects
and the addition and subtraction are defined as ~x ± l = dx1 ± l, x2 ± l, · · ·c and ~x ± ~y =
dx1 ± y1, x2 ± y2, · · ·c.

2. Extension of Convolutions

In this section, four kinds of convolutions are introduced in both continuous and discrete
time, including the well-known convolution (Equation 3), order-n convolution (Definition 2),
Volterra convolution (Definition 3), and outer convolution (Definition 4).

Without loss of generality, all kernels and signals are bounded by a constant M1 <∞
and have Lipschitz constant M2 <∞,

{x ∈ C(R) : |x(t)| ≤M1, |x(s)− x(t)| ≤M2(s− t), for t ≤ s} ,

where C(R) : R → R is the space of bounded continuous functions, and all kernels are
absolute integrable

∫ +∞
−∞ |h(t)|dt <∞ or

∑
t |h(t)| <∞.

The well known one-dimensional convolution (Gonzalez and Woods, 2017) of kernel h
and signal x is

(h ∗ x)(t) =

∫ +∞

−∞
h(τ)x(t− τ)dτ (continuous),

(h ∗ x)(t) =
∑
τ

h(τ)x(t− τ) (discrete).
(3)

Remark 1 If kernel size equals to signal size and padding is zero, the one-dimensional
discrete order-one convolution is equivalents to vector inner product with flipped kernel at
t = 0, ∑

τ

h(τ)x(t− τ)⇒
∑
τ

h(−τ)x(τ).

In signal processing, discrete convolution is notated in minus type, such as
∑

τ h(τ)x(t−τ),
and correlation is defined in plus type, like

∑
τ h(τ)x(t+τ). While in convolutional networks,

we prefer to notate convolution in plus type. These two operations can be converted from
one to the other by flipping kernels and shifting time (see Figure 1). Discussing only in
minus type does not affect generality of the results.

x(t)

h(0) h(1)

∑
τ h(τ)x(t+ τ)

h(2) · · · · · · h(2) h(1)

∑
τ h(τ)x(t− τ)

h(0)

x(t)

Figure 1: Differences between addition type and subtraction type.
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2.1 Order-n Convolution

Nonlinearities of convolutional neural networks come from their nonlinear activation functions.
Theoretically, it is possible to embed nonlinearity in convolutional operation by taking order-n
convolution.

For a simple example, a curve can be approximated by a two-layer network with activation
σ(·), i.e., w2σ(w1x+ b1) + b2, or it can be expressed in polynomial α0 + α1x+ α2x

2 + · · ·.
This type of “polynomial” can also be applied to convolutional operation. For instance,

αx2 �
∫ +∞

−∞
H(τ1, τ2)x(t− τ1)x(t− τ2)dτ1dτ2,

αxy �
∫ +∞

−∞
H(τ1, τ2)x(t− τ1)y(t− τ2)dτ1dτ2,

αx3 �
∫ +∞

−∞
H(τ1, τ2, τ3)x(t− τ1)x(t− τ2)x(t− τ3)dτ1dτ2dτ3.

With these basic concepts in mind, formal definition of order-n convolution is presented
in Definition 2.

Definition 2 Order-n convolution (Volterra, 1932; Rugh, 1981) of kernel H and n signals
dx1,x2, · · · ,xnc ≡ ~x is

H ∗ dx1,x2, · · · ,xnc ≡ H ∗ ~x, (4)

where ~x is vector like notation and all xi have the same dimension.

If x1,x2, · · · ,xn are all one-dimensional signals and H is an n-dimensional signal, the
continuous order-n convolution for one-dimensional signal is

(H ∗ ~x) (t) = (H ∗ dx1,x2, · · · ,xnc) (t)

=

∫ +∞

−∞
· · ·
∫ +∞

−∞
H(τ1, τ2, · · · , τn)

n∏
i=1

(xi(t− τi)dτi)

≡
∫ +∞

−∞
· · ·
∫ +∞

−∞
H(~τ)

n∏
i=1

(xi(t− τi)dτi) .

(5)

If x1,x2, · · · ,xn are all m-dimensional signals and H is an nm-dimensional signal, and
vector like notations have the form ~τ1 = dτ1,1, τ1,2, · · · , τ1,mc; · · ·; ~τn = dτn,1, τn,2, · · · , τn,mc
and ~t = dt1, t2, · · · , tmc, order-n convolution for m-dimensional signal is

(H ∗ ~x) (t1, · · · , tm) = (H ∗ dx1,x2, · · · ,xnc) (t1, · · · , tm)

=

∫ +∞

−∞
· · ·
∫ +∞

−∞
H(τ1,1, · · · , τ1,m; · · · ; τn,1, · · · , τn,m)

n∏
i=1

(xi(t1 − τi,1, · · · , tm − τi,m)dτi,1 · · · dτi,m)

≡
∫ +∞

−∞
· · ·
∫ +∞

−∞
H(~τ1, ~τ2, · · · , ~τn)

n∏
i=1

(
x(~t− ~τi)d~τi

)
.

(6)
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With the vector like notation, discrete order-n convolution for m-dimensional signal is
simplified as

(H ∗ ~x) (~t) ≡
∑

~τ1,··· ,~τn

H(~τ1, ~τ2, · · · , ~τn)
n∏
i=1

xi(~t− ~τi). (7)

If n = 0, order-zero convolution H ∗ x0 = H ∗ δ = H, where δ is the Dirac delta,

δ(t) =

{
∞, t = 0
0, t 6= 0

(continuous), δ(t) =

{
1, t = 0
0, t 6= 0

(discrete).

If n = 1, this is order-one (first-order) convolution (Equation 3), and n = 2, this is
order-two (second-order) convolution H ∗ dx,yc. The order-two convolution does not come
from void, as it is an extension of order-one convolution. (Please read Appendix A for more
details.)

For better understanding this notation, few examples are expressed as follows.

H ∗ dx,y, z, · · ·c

The number of signal equals the order.

Besides, if all signals are equal x1 = x2 = · · · = xn = x, it can be written as H ∗ xn for
short.

H ∗ dx,x, · · · ,xc = H ∗ xn
n equals the order.

Dimension of this convolution is determined by its signals. If xj , j = 1, 2, · · · , n are all
m-dimensional signals, H ∗ ~x is called order-n convolution for m-dimensional signal.

H ∗ d· · · , [xj(i1, i2, · · · , im)] , · · ·c
m equals the dimension of signal.

If signals are grouped and n1 + n2 + · · ·+ nm equals the order, it can simplify as

H ∗

x1, · · · ,x1︸ ︷︷ ︸
n1 terms

,x2, · · · ,x2︸ ︷︷ ︸
n2 terms

, · · · ,xm, · · · ,xm︸ ︷︷ ︸
nm terms

 = H ∗ dxn1
1 ,x

n2
2 , · · · ,x

nm
m c .

In the following, we will illustrate two observations of H ∗ xn, where x is discrete
one-dimensional signal.

The first observation is that each dimension of H is equal, i.e., H ∈ Rm×m×···×m.
The second observation is that there exists symmetric Ĥ such that Ĥ ∗ xn = H ∗ xn,
where symmetry means Ĥ(· · · , τi, · · · , τj , · · · ) = Ĥ(· · · , τj , · · · , τi, · · · ) for any τi, τj at any
dimension. The first is obvious, and the second is demonstrated as below.

Expanding H ∗ xn as

· · ·+H(· · · , τi, · · · , τj , · · · ) · · ·x(t− τi) · · ·x(t− τj) · · ·
+H(· · · , τj , · · · , τi, · · · ) · · ·x(t− τj) · · ·x(t− τi) · · ·+ · · · ,
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and take Ĥ(· · · , τi, · · · , τj , · · · ) =
1

2
(H(· · · , τi, · · · , τj , · · · ) +H(· · · , τi, · · · , τj , · · · )), we

have Ĥ ∗ xn = H ∗ xn. Therefore, without further notice, this kind of kernels are al-
ways symmetric.

2.2 Volterra Convolution

In this subsection, we sum these convolutions from order-zero to order-n or order-∞. If the
order is finite, it is called the finite term Volterra convolution or order-n Volterra convolution,
otherwise it is called the infinity term Volterra convolution or Volterra convolution. For
instance, the order-two Volterra convolution is sum of order-zero, order-one and order-two
convolutions, H0 ∗ x0 + H1 ∗ x1 + H2 ∗ x2.

For simplicity and the fact that a neural network takes only one input (multiple inputs are
packed to one tensor), input signals of each order are set to be the same x1 = x2 = · · · = xn.
If the input signals are one-dimensional, all kernels are symmetric.

Definition 3 Let x be signal and Hn as kernels, Volterra convolution (Volterra, 1932; Rugh,
1981) is defined as

+∞∑
n=0

Hn ∗ xn =
+∞∑
n=0

Hn ∗ dx,x, · · ·c︸ ︷︷ ︸
n terms

. (8)

If n = 0, x0 = δ, i.e., the Dirac delta.

If x is a one-dimensional signal and each Hn is an n-dimensional signal, continuous
Volterra convolution for one-dimensional signal is(

+∞∑
n=0

Hn ∗ xn

)
(t) =

+∞∑
n=0

∫ +∞

−∞
· · ·
∫ +∞

−∞
Hn(τ1, · · · , τn)

n∏
i=1

(x(t− τi)dτi) . (9)

According to previous discussion, here the kernels Hn, n = 1, 2, 3, . . ., are symmetric.
If x is an m-dimensional signal and Hn is an nm-dimensional signal for each n =

0, 1, · · ·, and ~τ1 = dτ1,1, τ1,2, · · · , τ1,mc; · · ·; ~τn = dτn,1, τn,2, · · · , τn,mc and~t = dt1, t2, · · · , tmc,
continuous Volterra convolution for m-dimensional signal is(

+∞∑
n=0

Hn ∗ xn

)
(t1, · · · , tm) =

+∞∑
n=0

∫ +∞

−∞
· · ·
∫ +∞

−∞
Hn(τ1,1, · · · , τ1,m; · · · ; τn,1, · · · , τn,m)

n∏
i=1

(x(t1 − τi,1, · · · , tm − τi,m)dτi,1 · · · dτi,m)

≡
+∞∑
n=0

∫ +∞

−∞
· · ·
∫ +∞

−∞
Hn(~τ1, ~τ2, · · · , ~τn)

n∏
i=1

(
x(~t− ~τi)d~τi

)
.

(10)

With the vector like notation, discrete Volterra convolution for m-dimensional signal is
simplified as (

+∞∑
n=0

Hn ∗ xn

)
(~t) =

+∞∑
n=0

∑
~τ1,··· ,~τn

Hn(~τ1, ~τ2, · · · , ~τn)

n∏
i=1

x(~t− ~τi). (11)
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2.3 Outer Convolution

Stacking two order-one one-dimensional convolutions will produce a one-dimensional convo-
lution with a longer kernel. How do we stack order-n convolutions? In this subsection, an
operation, the outer convolution, is introduced to combine these convolutions. Moreover,
the rank properties for outer convolutions are described in Appendix D.

Let G and dH1,H2, · · · ,Hnc ≡ ~H are the kernels for convolutions of one-dimensional
signal. The outer convolution of G and ~H, denoted by

G~ dH1,H2, · · · ,Hnc ≡ G~ ~H, (12)

is defined as follows.

Definition 4 (Continuous outer convolution of kernels) Let G be an n-dimensional
kernel and each dimension of Hi no less than one, then the continuous outer convolution
yields an L-dimensional kernel satisfying

(
G~ ~H

)
(t1,1, t1,2, · · · ; t2,1, t2,2, · · · ; · · · ; tn,1, tn,2, · · · )

=

∫ +∞

−∞
· · ·
∫ +∞

−∞
G(τ1, τ2, · · · , τn)

n∏
i=1

(Hi(ti,1 − τi, ti,2 − τi, · · · )dτi)

≡
∫ +∞

−∞
· · ·
∫ +∞

−∞
G(~τ)

n∏
i=1

(
Hi(~ti − τi)dτi

)
,

(13)

where L is the sum of the dimensions of Hi, ~τ = dτ1, τ2, · · · , τnc, ~t1 = dt1,1, t1,2, · · ·c,
~t2 = dt2,1, t2,2, · · ·c, · · ·, ~tn = dtn,1, tn,2, · · ·c, using the vector like notations.

With Equation 13, we can compute the convolution between G~ ~H and one-dimensional
signals x. Since most signals in this article are one-dimensional, we prefer to express the
outer convolution in the form of Equation 13.

Note that Equation 13 allows us to combine multiple convolution layers, and detailed
rules will be described in Subsection 2.7. Two of these rules are quick previewed as follows:

• G ∗ (H ∗ x) = (G~H) ∗ x (Property 7),

• G ∗ dH1 ∗ x1,H2 ∗ x2c = (G~ dH1,H2c) ∗ dx1,x2c (Property 9).

More generally, we consider the layers involving the convolution of m-dimensional signals
x. To this end, suppose that G is an nm-dimensional kernel, and each dimension of Hi is

8
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no less than m, continuous outer convolution of G and Hi can be expressed as

(
G~ ~H

)
t1,1,1, t1,1,2, · · · t1,1,m; t1,2,1, · · · t1,2,m; · · · ;
t2,1,1, t2,1,2, · · · t2,1,m; t2,2,1, · · · t2,2,m; · · · ;

· · · ; · · · ;
tn,1,1, tn,1,2, · · · tn,1,m; tn,2,1, · · · tn,2,m; · · · ;


=

∫ +∞

−∞
· · ·
∫ +∞

−∞
G (τ1,1, τ1,2, · · · , τ1,m; τ2,1, τ2,2, · · · , τ2,m; · · · ; · · · ; τn,1, τn,2, · · · , τn,m; )

n∏
i=1

Hi

 ti,1,1 − τi,1, ti,1,2 − τi,2, · · · , ti,1,m − τi,m;
ti,2,1 − τi,1, ti,2,2 − τi,2, · · · , ti,2,m − τi,m;

· · ·

 dτi,1dτi,2 · · · dτi,m

 .

≡
∫ +∞

−∞
· · ·
∫ +∞

−∞
G(~τ1, ~τ2, · · · , ~τn)

n∏
i=1

(
Hi(~ti,1 − ~τi,~ti,2 − ~τi, · · · )d~τi

)
.

(14)

The outer convolution (Equation 14) will yield a new kernel whose convolution with m-
dimentional signals is given by Equation 6.

Using the vector like notation, discrete outer convolution for one-dimensional signal is
simplified as (

G~ ~H
)

(~t1,~t2, · · · ,~tn) =
∑
~τ

G(~τ)
n∏
i=1

Hi(~ti − τi), (15)

and discrete outer convolution for m-dimensional signal is simplified as(
G~ ~H

)
(~t1,1,~t1,2, · · · ;~t2,1, · · · ; · · · ;~tn,1, · · · )

=
∑
~τ1,···

G(~τ1, ~τ2, · · · , ~τn)
n∏
i=1

Hi(~ti,1 − ~τi,~ti,2 − ~τi, · · · ).
(16)

The shorthand notations of outer convolution are similar to that of order-n convolution.
If all signals are equal H1 = H2 = · · · = Hn, we have G~ dH1,H2, · · · ,Hnc = G~Hn.

If signals are grouped and n1 + n2 + · · · + nm equals the order, the notation can be
simplified as

G~

H1, · · · ,H1︸ ︷︷ ︸
n1 terms

,H2, · · · ,H2︸ ︷︷ ︸
n2 terms

, · · · ,Hm, · · · ,Hm︸ ︷︷ ︸
nm terms

 = G ∗ dHn1
1 ,H

n2
2 , · · · ,H

nm
m c .

Remark 5 In discrete outer convolution G~ ~H, kernels H1, · · · ,Hn are all zero padded on
both heads and tails. The padding size of Hi is si − 1, where si is shape of G at dimension
i. For instance, one-dimensional Hi is zero padded as · · · 0 · · ·︸ ︷︷ ︸

si−1

Hi(0) · · ·Hi(n) · · · 0 · · ·︸ ︷︷ ︸
si−1

 .
For example, if G has shape (s1, s2), H1 has shape (z1) and H2 has shape (z2, z3, z4),

outer convolution (with zero padded) G~ dH1,H2c will have shape (s1 + z1 − 1, s2 + z2 −
1, s2 + z3 − 1, s2 + z4 − 1).

9
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Remark 6 G~H has the same operation as the “ConvTranspose”, which is a deep learning
operator 1.

Remark 7 If h1,h2, · · · ,hn are all one-dimensional vectors, and tensor H(t1, t2, · · · , tn) =
h1(t1)h2(t2) · · ·hn(tn), outer convolution can be transformed to multidimensional convolution
G~ dh1,h2, · · · ,hnc = G ∗H.

The super diagonal kernel G has only non-zero elements on the diagonal, G(0, 0, · · · , 0),
G(1, 1, · · · , 1), · · ·, and all other elements are set to zero. More specifically, we define the
G = diag(n,g), where g is a vector, and

G(τ1, τ2, · · · , τn) = diag(n,g)(τ1, τ2, · · · , τn) =
∑
k

g(k)
n∏
i=1

δ(τi − k). (17)

For better understanding, this diag(·) operator is visualized in Figure 2.

0

(a) one-dimensional g ∈ R5

0

(b) diag(2,g) ∈ R5×5

0

(c) diag(3,g) ∈ R5×5×5

Figure 2: A brief preview of the diag(·) operator.

Specially, if G is a super diagonal tensor kernel, its outer convolution has the form of

(G~ dH1,H2, · · · ,Hnc) (~t1,~t2, · · · ,~tn)

=
∑
~τ

G(~τ)

n∏
i=1

Hi(~ti − τi) =
∑
k

g(k)

n∏
i=1

δ(τi − k)Hi(~ti − τi) =
∑
k

g(k)

n∏
i=1

Hi(~ti − k).

(18)

2.4 Convolution With Stride Grater Than One

Convolution with stride grater than one is commonly used to replace convolution-pooling
structure. If the stride equals one, filters move one point at a time. If the stride equals two,
filters jump two points at a time. In addition, convolution with stride s is

(h ∗s x) (t) =
∑
τ

h(τ)x(st− τ),

where subscript of asterisk ∗s indicates stride.

1. https://pytorch.org/docs/stable/generated/torch.nn.functional.conv_transpose1d.html
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This operation can be applied to order-n convolution and outer convolution. With vector
like notation, let s~t = dst1, st2, · · · , stnc. Discrete order-n convolution for m-dimensional
signal with stride s is

(H ∗s ~x) (~t) =
∑

~τ1,··· ,~τn

H(~τ1, ~τ2, · · · , ~τn)
n∏
i=1

xi(s~t− ~τi). (19)

Similarly, the discrete outer convolution for m-dimensional signal with stride s is(
G~s ~H

)
(~t1,1,~t1,2, · · · ;~t2,1, · · · ; · · · ;~tn,1, · · · )

=
∑
~τ1,···

G(~τ1, ~τ2, · · · , ~τn)
n∏
i=1

Hi(s~ti,1 − ~τi, s~ti,2 − ~τi, · · · ).
(20)

The combination of two convolutions with strides is also equivalent to the outer convolu-
tion with strides, G ∗s (H ∗z x) = (G~z H) ∗sz x (Property 8 in Subsection 2.7).

Remark 8 If G has shape (z1, z2, · · · , zm) and H has shape c1, c2, · · · , cm, the shape of
G~s H is

(c1 + (z1 − 1)s, c2 + (z2 − 1)s, · · · , cm + (zm − 1)s) .

2.5 Visualization of Outer Convolution

For the following cases, three examples are provided to help understand the outer convolution.

Let G ∈ {1}8×8 be a 8× 8 matrix with all elements are one, and h ∈ {1}8 be a vector of
length eight with all elements are one. Figure 3a demonstrates

(G~ dh,hc) (t1, t2) =

7,7∑
τ1=0,τ2=0

G(τ1, τ2)h(t1 − τ1)h(t2 − τ2).

Let g ∈ {1}8 and H ∈ {1}8×8. Figure 3b demonstrates

(g ~H) (t1, t2) =

7,7∑
t1=0,t2=0

g(τ)H(t1 − τ, t2 − τ).

Assume G ∈ {1}8×8 and H ∈ {1}8×8, Figure 3c demonstrates

(G~ dH,Hc) (t1, t2, t3, t4) =

7,7∑
τ1=0,τ2=0

G(τ1, τ2)H(t1 − τ1, t2 − τ1)H(t3 − τ2, t4 − τ2).

It is clear that G~ dH,Hc is a four-dimensional tensor with shape (15, 15, 15, 15), and it is
flattened to shape (225, 225) and drawn in Figure 3c.

11
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(a) G~ dh,hc (b) g ~H (c) flattened G~ dH,Hc

Figure 3: Examples of outer Convolution.

2.6 Convolution for Multi-dimensional Signals

In this subsection, we show that the multidimensional (outer) convolution can be analyzed
via one-dimensional (outer) convolution. With this transformation, only (outer) convolution
for one-dimensional signals will be studied hereafter, if not specified.

Definition 9 (Flatten-operator) The flatten-operator is a bijection T (x) = x̂, such that
x(t1, t2, · · · ) = x̂(t1w1 + t2w2 + · · · ) and w1, w2 are scalars for locating non-overlap elements.
The inverse of T is denoted by T −1 with T −1 (T (x)) = x.

Proposition 10 The flatten-operator is homomorphic,

T (H ∗ ~x) = T (H) ∗ T (~x),

T (G~ ~H) = T (G)~ T (~H).
(21)

Proof A continuous case of this proposition is proved here, and the discrete one can be
obtained in the similar way. Recall order-n convolution for m-dimensional signal (Equation
7), and let flattened index ~τi be υi, flattened index ~t be ι. We have

T (H ∗ ~x)(~t) = T

 ∑
~τi,··· ,~τn

H(~τ1, ~τ2, · · · , ~τn)

n∏
i=1

xi(~t− ~τi)


=

∑
υ1,··· ,υn

Ĥ(υ1, υ2, · · · , υn)
n∏
i=1

x̂i(ι− υi)

= (T (H) ∗ T (~x)) (ι).

The flatten-operator of outer convolution for m-dimensional signal is also homomorphic.
Recall outer convolution for m-dimensional signal (Equation 11), and let flattened index ~ti,j

12
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be ιi,j , flattened index ~τi be υi. We have

T (G~ ~H)(~t1,1,~t1,2, · · · ; ,~t2,1, · · · ; · · · ;~tn,1, · · · )

=
∑

~τ1,··· ,~τn

G(~τ1, ~τ2, · · · , ~τn)
n∏
i=1

Hi(~ti,1 − ~τi,~ti,2 − ~τi, · · · )

=
∑

υ1,··· ,υn
Ĝ(υ1, υ2, · · · , υn)

n∏
i=1

Ĥi(ιi,1 − υ1, ιi,2 − υ1, · · · )

=
(
T (G)~ T (~H)

)
(ι1,1, ι1,2, · · · ; ι2,1, · · · ; · · · ; ιn,1, · · · ).

With Proposition 10, it could be easily verified

H ∗ ~x = T −1 (T (H) ∗ T (~x)) ,

G~ ~H = T −1
(
T (G)~ T (~H)

)
.

To help visualize this process, Figure 4 is an example of flattening a two-dimensional signal
to a one-dimensional signal.

Figure 4: Flattening a two-dimensional signal to a one-dimensional signal.

2.7 Combination Properties

With all definitions above, some useful properties are concluded in this subsection. All
proofs are presented in Appendix B.

Since the multidimensional signals can be analyzed via one-dimensional signals, all signals
here are set to be one-dimensional and are notated as x or y. H and G are kernels. α is a
scalar.

The following Property 1, 2 and 3 are about linearity of order-n convolutions. In
continuous time, notation

∑
G is replaced with

∫ +∞
−∞· · ·

∫ +∞
−∞ G(~t)d~t.

1. G ∗ (~x + ~y) = G ∗ ~x + G ∗ ~y;

2. G ∗ (~x + α) = G ∗ ~x + α
∑

G;

3. (G + H) ∗ ~x = G ∗ ~x + H ∗ ~x;

13
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Property 4, 5 and 6 are combination properties of order-n convolution. Based on previous
discussion, the kernel G here is symmetric. The multinomial coefficient in Property 6 can
be obtained from textbook of combinatorial mathematic (Brualdi, 2004).

4. G ∗ (x + y)2 = G ∗ x2 + 2G ∗ dx,yc+ G ∗ y2;

5. G∗ (x+y)n =
∑n

k=0

(
n
k

)
G∗

⌈
xk,yn−k

⌋
, where

(
n
k

)
=

n!

k!(n− k)!
is binomial coefficient;

6. G ∗ (x1 + x2 + · · ·+ xm)n =
∑(

n
n1n2···nm

)
G ∗ dxn1

1 ,x
n2
2 , · · · ,xnm

m c, where multinomial

coefficient
(

n
n1n2···nm

)
=

n!

n1!n2! · · ·nm!
, and

∑m
i=1 ni = m,ni ≥ 0, for all i = 1, 2, · · · ,m.

Properties below are for combining convolutions. The symbol “#” indicates summa-
tion along a specific dimension. For example,

∑
#α (G~ dH, αc) =

∑
i(G ~ dH, αc)(:, i)

and
∑

#α (G~ dH1, α,H2c) =
∑

i(G~ dH1, α,H2c)(:, i, :). In continuous space, they are

replaced by
∫ +∞
−∞ (G~ dH, αc) (:, tα)dtα and

∫ +∞
−∞ (G~ dH1, α,H2c) (:, tα, :)dtα.

7. G ∗ (H ∗ ~x) = (G~H) ∗ ~x;

8. G ∗s (H ∗z x) = (G~z H) ∗sz x;

9. G ∗ dH1 ∗ ~x,H2 ∗ ~yc = (G~ dH1,H2c) ∗ d~x, ~yc;

10. G ∗ dH1 ∗ ~x1,H2 ∗ ~x2, · · ·c = (G~ dH1,H2, · · ·c) ∗ d~x1, ~x2, · · ·c;

11. G1 ~ (G2 ~G3) = (G1 ~G2)~G3;

12. G ∗ dα,H ∗ ~xc =
(∑

#α (G~ dα,Hc)
)
∗ ~x;

13. G ∗ dH ∗ ~x, αc =
(∑

#α (G~ dH, αc)
)
∗ ~x;

14. G ∗ dH1 ∗ ~x, α,H2 ∗ ~yc =
(∑

#α (G~ dH1, α,H2c)
)
∗ d~x, ~yc;

Property 15 and 16 focus on convolution with signal that is element-wise power n,
([x]n) (t) = (x(t))n.

15. h ∗ [x]n = diag(n,h) ∗ xn;

16. g ∗ [h ∗ x]n = (diag(n,g)~ hn) ∗ xn.

In addition to all properties above, some special properties could be obtained via setting
special kernels. For example, by setting G as the identity matrix, we have

(G~ dH1,H2c) (~t1,~t2) =
∑
i1,i2

G(i1, i2)H1(~t1 − i1)H2(~t2 − i2) = H1(~t1)H2(~t2).

14
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3. Transformation from Neural Networks to Volterra Convolutions

Previous section discussed the definition of Volterra convolution and some useful properties
of combining two order-n convolutions. In this section, we will go further and try to represent
some common convolutional networks in the form of Volterra convolutions.

Theorem 11 Most convolutional neural networks can be represented in the form of Volterra
convolutions.

Both convolutional networks and Volterra convolutions have the operation of convolution.
The convolutional neural network extend this operation by stacking layers and the Volterra
convolution extend this by increasing the order. Apart from the convolution, a convolutional
neural network is a universal approximator, as it happens, a Volterra convolution is also
a universal approximator. Theoretically, if two approximators can approximate the same
function, it is possible to approximate one by the other. In light of this, roughly speaking,
most convolutional neural network can be approximated in the form of Volterra convolution,
and vice versa.

The proof contains two major parts. The first part is about the small neural network
structures, and the second part is about the combination of multiple layers, i.e., the whole
network. Since both the small structures and their combinations can be represented in this
form, we conclude that most convolutional neural networks build of these structures can
also be represented in the form of Volterra convolution.

3.1 Conversion of Small Structures

3.1.1 Conv-Act-Conv Structure

The “conv — act — conv” structure means the stacking of a convolutional layer, an activation
layer, and a convolutional layer.

Lemma 12 The “conv — act — conv” structure can be converted to the form of Volterra
convolution.

Proof Suppose this structure has the form g ∗ σ(h ∗x), where σ(·) is a nonlinear activation
function.

A polynomial approximation, i.e., Taylor expansion, of this activation function σ(t) at α
is

σ(t) = σ(α) + σ′(α)(t− α) +
σ′′(α)

2!
(t− α)2 +

σ′′′(α)

3!
(t− α)3 + · · · .

We can assume without loss of generality that α = 0, and g ∗ σ(h ∗ x) becomes

g ∗
(
σ(0) + σ′(0)[h ∗ x] +

σ′′(0)

2!
[h ∗ x]2 +

σ′′′(0)

3!
[h ∗ x]3 + · · ·

)
, (22)

where the square brackets stand for

[h ∗ x]n(t) =

(∑
τ

h(τ)x(t− τ)

)n
.
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By linearity of convolution, Equation 22 can be separated by terms. The first term is∑
g. The second term is g ∗ [h ∗ x]1 = (g ~ h) ∗ x. For the third term and above, recall

Property 16, we have the n-th term,

g ∗ [h ∗ x]n = (diag(n,g)~ hn) ∗ xn.

If α = 0, we conclude that

g ∗ σ(h ∗ x) = σ(0)
∑

g + σ′(0)(g ~ h) ∗ x

+
σ′′(0)

2!
(diag(2,g)~ h2) ∗ x2 +

σ′′′(0)

3!
(diag(3,g)~ h3) ∗ x3 + · · · .

(23)

More generally, if α 6= 0, the n-th term is

g ∗ [h ∗ x− α]n

= diag(n,g) ∗ (h ∗ x− α)n (Property 15)

=
n∑
k=0

(
n

k

)
diag(n,g) ∗

⌈
(h ∗ x)k, (−α)n−k

⌋
(Property 5)

=
n∑
k=0

(
n

k

) ∑
#(−α)n−k

(
diag(n,g)~

⌈
hk, (−α)n−k

⌋) ∗ xk (Property 13),

which implies that the sum from the 0-th term to the ∞-th term is also the form of Volterra
convolution. This proof is completed.

The Taylor expansion of a function often has infinite terms. However, if small truncation
errors are allowed in applications, we can truncate the infinite term Taylor expansion to a
finite term Taylor expansion. The idea of truncation can also be applied to the Volterra
convolution. According to the universal approximation property of Volterra convolution
with fading memory (Boyd and Chua, 1985), for any given ε > 0, there always exists n such
that ∥∥∥∥∥f(x)−

n∑
i=0

Fi ∗ xi

∥∥∥∥∥
2

< ε,

where f(·) is a time invariant operation, and Fi, i = 0, 1, · · ·n are kernels. The fading
memory theory means that the outputs are close if two inputs are close in the recent past,
but not necessarily close in the remote past (Boyd and Chua, 1985). If g ∗ σ(h ∗ x) is time
invariant and small truncation errors are allowed, it is reasonable to approximate g ∗σ(h ∗x)
by a finite term Volterra convolution.

In the following, we will consider the width of a two-layer network. Suppose a two-layer
network has M hidden neurons, and the neurons of distinct channels are independent and
identically distributed,

y(t) =
M−1∑
i=0

W2(i)σ

(∑
τ

W1(i, τ)x(t− τ)

)
.
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Recall Lemma 12, each channel can be represented in the form of Volterra convolution,
and this network can also be approximated by the sum of M Volterra convolutions, the
order-n term is ∑

n=0

F0,n ∗ xn +
∑
n=0

F1,n ∗ xn + · · ·+
∑
n=0

FM−1,n ∗ xn,

where Fi,n, i = 0, 1, · · · ,M − 1; is the proxy kernel of each channel.

Based on the previous independent assumptions, these proxy kernels of different channels
are also independent and identically. Recall Hoeffding’s inequality (Vershynin, 2018), we
have

P

{∣∣∣∣∣ 1

M

M−1∑
i=0

Fi,n − µn

∣∣∣∣∣ ≥ η
}
≤ 2 exp

(
−2Mη2

(b− a)2

)
,

where a, b are the minimum and maximum values of all proxy kernels, a ≤ Fi,n(· · · ) ≤ b. We

can observe that for any ε ∈ (0, 1), 1/M
∑M−1

i=0 Fi,n will converge to µn, with probability at
least 1− ε as long as

M ≥ 1

2η2
ln

(
2

ε

)
(b− a)2. (24)

3.1.2 Other Structures

Some commonly used structures can also be represented in the form of Volterra convolution,
including some activations, normalize layers, inception modules, residual connection and
pooling layers.

ReLU activation. The ReLU activation, max(x, 0) (Nair and Hinton, 2010), is not
differentiable at point 0. This is quite a panic when taking Taylor expansion at that position.
Nonetheless, it can be approximated by

ReLU(x) = lim
α→∞

1

α
ln (1 + eαx) .

Other activations of the ReLU family can be approximated in the same way.

Fully connected layers. A fully connected layer is a matrix multiplication with bias. It
can be thought as discrete convolution with equal kernel length and signal length.∑

j

W (i, j)x(j) + c =
∑
j

W (i, 0− j)x(j) + c,

where W (i, 0− j) = W (i, j).

Normalization. The normalization layer (Ioffe and Szegedy, 2015; Ba et al., 2016) scales
and shifts the input signal

x→ ax + b.

This is a linear transformation, and this will not change the generality. Nevertheless, a and
b are input related, which implies that the corresponded proxy kernels are also input related.
In other words, the Volterra convolution is dynamic and will be updated if input differs. We
will pause here and left this dynamic Volterra convolution to future work.
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Inception. Main idea of inception module (Szegedy et al., 2015) is to apply convolution
to different sizes of kernels parallelly and then concatenate, which is

g ∗ (h1 ∗ x + h2 ∗ x + · · ·+ hn ∗ x) .

If we zero pad those kernels to the same size, recalling Property 7, it becomes a convolutional
layer,

(g ~ (h1 + h2 + · · ·+ hn)) ∗ x.

Residual connection. A residual connection (He et al., 2016) proposes f(x) + x, where
f(·) is a neural network. If f(·) can be transformed to Volterra convolution, we have

f(x) + x =
N∑
n=0

Hn ∗ xn + x

= H0 + (H1 ∗ x + δ ∗ x) +
N∑
n=2

Hn ∗ xn

= H0 + (H1 + δ) ∗ x +
N∑
n=2

Hn ∗ xn,

where δ is the Dirac delta and H1 + δ =

{
H1(t) + 1, t = 0
H1(t), t 6= 0

.

Pooling. Another family is the pooling layers. They are down sample or up sample
operations. Average pooling is convolution with kernel filled by one. Max pooling picks
the maximum value in a small region. It is data dependent, the equivalent kernels changes
synchronously with input signal, and the proxy kernels are also dynamic.

3.2 Conversion of Layer Combination

In the previous subsection, we focused on small structures, and in this section, we will
combine Volterra convolution layers, showing that the combinations also have the same
format.

3.2.1 Order-Two-Order-Two Structure

Before going further, a simple structure is presented in this subsection. The “order-2 —
order-2” structure is stacking two order-two Volterra convolutions.

Lemma 13 The “order-2 — order-2” structure can be converted to the form of order-4
Volterra convolution.

Proof Suppose Hi,Gj are two groups of kernels, x,y, z are the signals, these two Volterra
convolutions are

y =
2∑
i=0

Hi ∗ xi, z =

2∑
j=0

Gj ∗ yj .

18
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Combining these two convolutions, we have

z =
2∑
j=0

Gj ∗
(
H0 + H1 ∗ x1 + H2 ∗ x2

)j
.

The first term is G0 ∗ y0 = G0.
Recall Property 1 and 7, the second term is

G1 ∗ y1 = H0

∑
G1 + G1 ∗ (H1 ∗ x) + G1 ∗ (H2 ∗ x2)

= H0

∑
G1 + (G1 ~H1) ∗ x + (G1 ~H2) ∗ x2.

Recall Property 4, the last term is

G2 ∗ y2 = G2 ∗
(
H0 + H1 ∗ x + H2 ∗ x2

)2
= G2 ∗ dH0,H0c+ G2 ∗ dH0,H1 ∗ xc+ G2 ∗ dH1 ∗ x,H0c

+ G2 ∗
⌈
H0,H2 ∗ x2

⌋
+ G2 ∗

⌈
H2 ∗ x2,H0

⌋
+ G2 ∗ dH1 ∗ x,H1 ∗ xc

+ G2 ∗
⌈
H1 ∗ x,H2 ∗ x2

⌋
+ G2 ∗

⌈
H2 ∗ x2,H1 ∗ x

⌋
+ G2 ∗

⌈
H2 ∗ x2,H2 ∗ x2

⌋
.

And recall Property 7, 9, 12, 13, 14, it becomes

G2 ∗ y2 = H2
0

∑
G2 +

∑
#H0

G2 ~ dH0,H1c

 ∗ x +

∑
#H0

G2 ~ dH1,H0c

 ∗ x

+ (G2 ~ dH1,H1c) ∗ x2 +

∑
#H0

G2 ~ dH0,H2c

 ∗ x2 +

∑
#H0

G2 ~ dH2,H0c

 ∗ x2

+ (G2 ~ dH2,H1c) ∗ x3 + (G2 ~ dH1,H2c) ∗ x3 + (G2 ~ dH2,H2c) ∗ x4.

In summary, we have

z =
4∑

k=0

Fk ∗ xk,

where the new kernels are

F0 = G0 + H0

∑
G1 + H2

0

∑
G2

F1 = G1 ~H1 +
∑
#H0

G2 ~ dH0,H1c+
∑
#H0

G2 ~ dH1,H0c

F2 = G1 ~H2 + G2 ~ dH1,H1c+
∑
#H0

G2 ~ dH0,H2c+
∑
#H0

G2 ~ dH2,H0c

F3 = G2 ~ dH1,H2c+ G2 ~ dH2,H1c
F4 = G2 ~ dH2,H2c .

(25)

Notice that it is possible for some i such that ‖Fi ∗ xi‖ = 0, but we will also call it the
form of order-four Volterra convolution.
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3.2.2 Order-n-order-m Structure

In the following, we generalize “order-2 — order-2” structure (Lemma 13) to “order-n —
order-m” structure. This structure is to stack order-n Volterra convolution and order-m
Volterra convolution.

Lemma 14 The “order-n — order-m” structure with n,m > 0 can be converted to the form
of order-nm Volterra convolution.

Proof Suppose Hi,Gj are two groups of kernels, x,y, z are signals, these two Volterra
convolutions have the form of

y =
n∑
i=0

Hi ∗ xi, z =
m∑
j=0

Gj ∗ yj .

Combining these two Volterra convolutions, we have

z =

m∑
j=0

Gj ∗

(
n∑
i=0

Hi ∗ xi

)j
.

Recall Property 6, we have

z =

m∑
j=0

∑(
j

j0j1 · · · jn

)
Gj ∗

⌈
(H0 ∗ x0)j0 , (H1 ∗ x1)j1 , · · · , (Hn ∗ xn)jn

⌋
,

where
(

j
j0j1···jn

)
=

j!

j0!j1! · · · jn!
is multinomial coefficient and

∑n
k=0 jk = j, jk ≥ 0, for all

k = 0, 1, · · · , j.
Recall Property 10, we have

Gj ∗
⌈
(H0 ∗ x0)j0 , (H1 ∗ x1)j1 , · · · , (Hn ∗ xn)jn

⌋
=
(
Gj ~

⌈
Hj0

0 ,H
j1
1 , · · · ,H

jn
n

⌋)
∗
⌈
x0,xj1 ,x2j2 · · · ,xnjn

⌋
=
(
Gj ~

⌈
Hj0

0 ,H
j1
1 , · · · ,H

jn
n

⌋)
∗ xj1+2j2+···+njn .

In conclusion, the combination is

z =

m∑
j=0

(∑(
j

j0j1 · · · jn

)(
Gj ~

⌈
Hj0

0 ,H
j1
1 , · · · ,H

jn
n

⌋)
∗ xj1+2j2+···+njn

)
. (26)

Clearly, j1 + 2j2 + · · ·njn is sequential values from 0 to nm, which implies that this
structure can also be converted to the form of order-nm Volterra convolution.

This conversion does not convince that all terms are non-zero. It is possible that the nm
term is zero, ‖Fnm ∗ xnm‖ = 0, where Fnm is the proxy kernel. To keep the coherent, we
would prefer to call it the form of order-nm Volterra convolution.
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Apart from the order, we also care about the number of terms, Gj~
⌈
Hj0

0 ,H
j1
1 , · · · ,H

jn
n

⌋
,

that added to a proxy kernel. For a given order o, 0 ≤ p ≤ nm, how many combinations of
j0, j1, · · · , jn,

∑n
k=0 jk = 0, 1, · · · ,m such that j1 + 2j2 + · · ·+ njn = o? This number can

be obtained by counting the terms in Equation 26. We plot a figure for some combinations
of n,m in Figure 5.
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Figure 5: The number of terms that added to proxy kernels. The horizontal axis is the order
and the vertical axis is the number of terms.

3.2.3 Multiple Channels and Layers

In the following, we show that multichannel and multi-layer structure can also be represented
in the form of Volterra convolution. Moreover, we also measure the change of kernel size
during this conversion.

Lemma 15 Multichannel convolution can be represented in the form of Volterra convolution.

Proof Suppose that a multichannel convolution for signal x and kernel h is

y(c, t) =
∑
u,τ

h(c, u, τ)x(u, t− τ) =
∑
u

h(c, u) ∗ x(u).

It can be considered as sum of multiple convolutions, which have exactly the same form.

Lemma 16 Stacked order o1, o2, · · · , on Volterra convolutions can be converted to the form
of order-

∏n
i=1 oi Volterra convolution, where o1, o2, · · · , on > 0.

Proof To prove this, we recursively apply Lemma 14. Taking the first two layers into
consideration, we have order-(o1o2) Volterra convolution. Appending the third layer, we
have order-(o1o2o3) Volterra convolution. Recursively, after appending the n-th layer, the
order becomes

∏k+1
i=1 oi, which completes this proof.
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Remark 17 With number of stacked layers increases, the order of converted Volterra
convolution grows exponentially.

Previous lemmas show us the change of orders. The following lemma will measure the
change of kernel size. This lemma will be helpful if we want to compute the overall sizes,
strides, and paddings of proxy kernels.

Lemma 18 Suppose that size of kernels are z1, z2, · · · , zn, strides are s1, s2, · · · , sn, and
paddings are p1, p2, · · · , pn, size of combined kernel is z1+(z2−1)s1+(z3−1)s1s2+· · ·+(zn−
1)
∏n−1
k=1 sk, combined stride is

∏n
k=1 sk and combined padding is p1 +p2s1 + · · ·+pn

∏n−1
k=1 sk.

Proof Size of convolution is 2

out size =
in size + 2 padding− kernel size

stride
+ 1.

Stacking the first two layers, we have

out size =
(in size + 2p1 − z1) /s1 + 1 + 2p2 − z2

s2
+ 1

=
in size + 2(p1 + p2s1)− (z1 + (z2 − 1)s1)

s1s2
+ 1.

Equivalent size is z1 + (z2 − 1)s1, stride is s1s2, and padding is p1 + p2s1. Stacking the first
three layers, we have

out size =
in size + 2(p1 + p2s1 + p3s1s2)− (z1 + (z2 − 1)s1 + (z3 − 1)s1s2)

s1s2s3
+ 1.

Equivalent size is z1+(z2−1)s1+(z3−1)s1s2, stride is s1s2s3, and padding is p1+p2s1+p3s1s2.
Recursively, this proof is completed.

3.3 Validation of Lemma 12 and Lemma 13

In this subsection, we validate the approximation of two simple structures (truncated version
of Lemma 12 and Lemma 13), which are two fundamental structures in our proof and which
can show the effectiveness and correctness of our results.

The set M is defined for numerical validation in this subsection and below,

M =

{
x : x =

y

‖y‖2
, y(·) ∼ N (0, 1)

}
, (27)

where N (0, 1) is standard Gaussian distribution with mean zero and variance one and ‖y‖2
is L2 norm of y. The upper script of these symbols indicates the shape, i.e., H ∈M9×9 is a
matrix taken from M and the shape is (9, 9).

2. https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html
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Validate Lemma 12. We will check whether the “conv — act — conv” structure can be
approximated in the form of Volterra convolution. Take the first four terms into consideration
and activation function σ(t) = 1/(1 + e−t), we have

g ∗σ(h ∗x) ≈ 1

2

∑
g +

1

4
(g~h) ∗x− (diag(3,g)~ h3) ∗ x3

48
+

(diag(5,g)~ h5) ∗ x5

480
. (28)

This approximation relies on the Taylor expansion, which is valid only in a small neighbor
of zero. Therefore, we need to make sure that h∗x is located in such neighbor. We randomly
generate x ∈M64, h ∈M9 and g ∈M5. Convolution with sigmoid activation is plotted in
Figure 6a and the approximated order-five Volterra convolution is plotted in Figure 6b.
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(a) g ∗ σ(h ∗ x)
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(b)
1

2

∑
g +

1

4
(g ~ h) ∗ x + · · ·

Figure 6: (6a) The output of convolution with activation (left-hand side of Equation 28);
(6b) The output of the approximated Volterra convolution (right-hand side of Equation 28).
The reconstruct error (L2-norm) between left and right is 5.64877e−07.

Validate Lemma 13. We will check whether the “order-2 — order-2” structure can be
converted to the form of order-four Volterra convolution,

2∑
i=0

Gi ∗

 2∑
j=0

Hj ∗ xj

i

=
4∑

k=0

Fk ∗ xk, (29)

where Fk are kernels from Equation 25.
We randomly generate H0, G0 ∼ N (0, 1), H1,G1 ∈ M5 and H2,G2 ∈ M5×5, and

x ∈M64. The left-hand side of Equation 29 is plotted in Figure 7a and the right-hand side
is plotted in Figure 7b. It shows that these two are exactly the same.

4. Inferring the Proxy Kernels

All we need to approximate a convolutional neural network to finite term Volterra convolution
are the proxy kernels. If the structures and all parameters of a well-trained network is
known, i.e., white box, the proxy kernels can be explicitly computed, just as demonstrated in
Subsection 3.3. However, in some cases, the structure or parameters are not accessible and
only the input output pairs are known, i.e., the network is a black box. This may happen
when we want to approximate a network using black-box mode. In such cases, the proxy
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∑4
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Figure 7: (7a) The output of stacking two order-two Volterra convolutions (left-hand side
of Equation 29); (7b) The output of order-four Volterra convolutions (right-hand side of
Equation 29). The reconstruct error (L2-norm) between left and right is 1.79705e−15.

kernels can be approximated by training a hacking network, which will be described in detail
below.

Basically, a hacking network is a neural network that has the structure of finite term
Volterra convolution. The number of terms of the hacking network controls the order of
Volterra convolution and hence the approximation precision. To train the hacking network,
we feed the input-output pairs generated by target network (or its parts) to the hacking
network, and minimize the mean square error between the output of the hacking network
and that of the target network.

To validate the effectiveness of hacking network, we build a network and compute its
order-zero and order-one proxy kernels manually. Then, we train a hacking network to
infer these kernels and compare whether they are the same. To infer the order-zero and
order-one terms, we need to build a hacking network with the structure of order-one Volterra
convolution, i.e., w ∗ x + b. This structure can be implemented by a single convolutional
layer. If the hacking network is well-trained, the order-zero proxy kernel is the bias of the
convolutional layer, and the order-one proxy kernel is the weight.

4.1 Two Examples

As our first example, we consider a simple two-layer network with sigmoid activation.
Suppose that a two-layer network is represented as g ∗ σ(h ∗ x). Without loss of generality,
we use the same settings as Equation 28,

g ∗ σ(h ∗ x) ≈ 1

2

∑
g +

1

4
(g ~ h) ∗ x− (diag(3,g)~ h3) ∗ x3

48
+

(diag(5,g)~ h5) ∗ x5

480
.

It is clear that, the order-zero proxy kernel is
1

2

∑
g, and the order-one proxy kernel is

1

4
(g ~ h).

We randomly pick two kernels,

h =
[
0.0381 −0.2047 0.3097 0.0693 −0.3405 0.7618 −0.1190 −0.1089 0.3657

]
;

g =
[
0.5280 −0.3684 −0.2644 −0.3412 −0.2461 −0.1377 −0.3077 0.4540 −0.1369

]
.
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The hacking network is a single layer convolutional network. While training, we randomly
generate the input data x ∈ Mbatch size×1×length and minimize mean square error of the
output of the hacking network and the output of g ∗ σ(h ∗ x).

By straightforward calculation, the order-zero proxy kernel is −4.10236e−01, and that
obtained from the hacking network is −4.10295e−01, and the inferred order-one proxy kernels
respectively obtained by direct calculation and by training the hacking network are compared
in Figure 8. In summary, the hacking network can approximate the true order-zero and
order-one proxy kernels very well.
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(b) kernel from the trained hacking network

Figure 8: The inferred order-one proxy kernels from the two-layer network. The reconstruc-
tion error (L2-norm) between left and right is 3.04194e−04.

For the second example, we consider a three-layer network with sigmoid activation.
Suppose that a three-layer network is represented as f ∗ σ(g ∗ σ(h ∗ x)). Using the same
settings as previous example and approximating this three-layer network into the form of
Volterra convolution, we have

f ∗ σ(g ∗ σ(h ∗ x))

=
1

2

∑
f +

1

4
f ∗ [g ∗ σ(h ∗ x)]− 1

48
f ∗ [g ∗ σ(h ∗ x)]3 +

1

480
f ∗ [g ∗ σ(h ∗ x)]5

=
1

2

∑
f +

1

4
f ∗ (g ∗ σ(h ∗ x))− 1

48
diag(3, f) ∗ (g ∗ σ(h ∗ x))3

+
1

480
diag(5, f) ∗ (g ∗ σ(h ∗ x))5. (Property 15)

Substituting Equation 28 and reordering the terms, we obtain the order-zero proxy kernel,

(∑
f
)(1

2
+

1

4

(
1

2

∑
g

)
− 1

48

(
1

2

∑
g

)3

+
1

480

(
1

2

∑
g

)5
)
,

and the order-one proxy kernel,

1

4

(
1

4
− 3

48

(
1

2

∑
g

)2

+
5

480

(
1

2

∑
g

)4
)

(f ~ g ~ h) . (30)
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We randomly pick three kernels,

h =
[

0.4830 −0.3142 −0.2219 0.0361 0.2659 0.4040 0.3978 0.3628 0.3061
]

;

g =
[
−0.1271 0.1521 0.6264 −0.2576 0.3027 −0.1574 0.1009 0.3923 0.4705

]
;

f =
[

0.7160 −0.3866 −0.1870 −0.0566 0.3057 −0.0062 −0.4463 −0.0395 0.0735
]
.

The training process of the hacking network is the same as the previous example. The
order-zero proxy kernel by direct calculation is −1.83091e−02, and that by training the
hacking network is −1.82950e−02, and the order-one proxy kernels obtained by these two
ways shown in Figure 9. The figure shows again that the proxy kernels obtained training
the hacking network is almost the same as that obtained by direct calculation.
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(b) kernel from the trained hacking network

Figure 9: The inferred order-one proxy kernels of the three-layer network. The reconstruction
error (L2-norm) between left and right is 1.94667e−03.

These two examples show that the order-zero and order-one proxy kernels inferred by
direct calculation and by training the hacking network are very close to each other. To cover
a broader selection of parameters, we analyze the statistics of the reconstruction errors of
the proxy kernels inferred from these two methods. The results are illustrated in Figure 10.
It shows that the choice of parameters has a less effect on the reconstruction error and these
two methods are comparable.
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Figure 10: The boxplot of reconstruction errors between two methods.
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4.2 An Application of the Order-one Proxy Kernels

Why do we need to infer the proxy kernels?

We think the proxy kernels shall contain some useful information about the original
network. It is possible to carefully design special inputs according to the inferred proxy
kernels to change the behavior of the original network. Below, we provide a toy example to
illustrate this interesting application of order-one proxy kernels. First, we build a hacking
network to approximate the order-one proxy kernel of a classifier network trained on the
MNIST data set (Lecun et al., 1998). Then, we add visually imperceptible perturbations to
the inputs for cheating the classifier to give wrong labels.

The structure of the classifier network is shown in the left of Table 1. Training images
are all scaled to [0, 1]. To obtain a network that is robust to noise, uniform noise U(0, 0.2)
and Gaussian noise N (0, 0.2) are respectively added to training images with a probability of
5%. After 512 training episodes, the network achieved 98.280% accuracy on test set.

The hacking network is illustrated in the right of Table 1. We only approximate the
first six layers of the classifier network. This is because approximating the entire classifier
network to a linear network will result in high fitting errors, and these errors will make it
harder for hacking network to converge. From Table 1, the hacking network has ten output
channels. Hence, we have ten proxy kernels h1, · · · ,h10, corresponding to the ten output
channels.

classifier network hacking network

input input

1 conv2d(1, 10, k=3, s=2, p=1)

conv2d(1, 10, k=15, s=8, p=3)

2 sigmoid
3 conv2d(10, 10, k=3, s=2, p=1)
4 sigmoid
5 conv2d(10, 10, k=3, s=2, p=0)
6 sigmoid
7 conv2d(10, 10, k=3, s=1, p=0)

output
8 sigmoid
9 flatten, linear(10, 10)

output

Table 1: Structure of classifier network and hacking network. Parameters of conv2d layers
are input channels, output channels, kernel size, stride, and padding.

The training of the hacking network is similar to the procedure discussed in the previous
subsection. The training images and their outputs of the classifier network from input-label
pairs, and the hacking network is trained with these pairs until convergence. Compared
to the outputs of the first six layers of the classifier network, the mean square error of the
hacking network is about 3.19016e−02. In other words, these two networks have the similar
behavior.

Suppose that some neurons in the network are suppressed when feeding input image x.
To change the behavior of this network, we need to activate some extra neurons. Specifically,
in this application, we try to increase the energy of these extra neurons to activate them.
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One important advantage of the hacking network is its simple structure: only convolutions
are involved. Hence, to largely change the outputs, for given order-one proxy kernel h and
input signal x, we search for perturbation ε such that

argmax
ε
‖h ∗ (x + ε)‖2, s.t. ‖ε‖2 ≤ c, (31)

where c is a constant. If h and x + ε are close to each other in the frequency domain, the
energy ‖h ∗ (x + ε)‖2 should be large.

Recall Parseval’s Theorem and Convolution Theorem, convolution in time domain equals
multiplication in frequency domain and the energy is preserved, ε can be obtained via Fourier
transform F(·),

F(ε) ∝ F(h)−F(x). (32)

Applying the bounded condition, we scale it by α and take inverse Fourier transform
F−1(·),

ε = αF−1 (F(h)−F(x)) . (33)

Recall Equation 33, we can compute a perturbation as

εi = F−1 (F(wi)−F(x)) .

Since each pixel of the input image is in the range of [0, 1], the perturbation should be
adjusted to the same range. In this application, to make the perturbation hard to be seen,
εi is scaled by a factor α. The value of α is 0.55 in the experiment below. In short, the
perturbation εi is normalized as

εi ← α
εi −min(εi)

max(εi)−min(εi)
.

Besides the ten proxy kernels estimated by the hacking network, we also append two
fake kernels to check whether the fake kernels can behave similarly. The fake kernels
are h11 ∼ U(0, 1) and h12 ∼ N (0, 1). We randomly choose twelve images from the test
set, xi, i = 1, 2, · · · , 12, and feed both image xi and xi + εi into classifier network, where
ε1, ε2, · · · , ε10 are computed from the approximated order-one proxy kernels, and ε11, ε12 are
computed from two fake kernels. Results are illustrated in Figure 11. The images with
patches computed from the approximated order-one proxy kernels are more likely to change
the output than the images with patches computed from fake kernels.

This phenomenon is similar to the adversarial example (Szegedy et al., 2014; Goodfellow
et al., 2015), adding a human invisible perturbation to an image can mislead the network.
Nevertheless, these two methods are different. They iteratively compute perturbations that
mislead the network with or without specific objects. Our method is to maximize the energy
of order-one convolution, and this increases the probability to change output of the network.
More details about the perturbations are presented in Appendix C.

5. Discussion

This paper presents a new perspective on the analysis of convolutional neural networks.
It shows that a convolutional neural network can be represented in the form of Volterra
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Figure 11: Predictions of MNIST digits polluted by perturbations. For each frame, top left
is the original image xi, top right is the patched image xi + εi, and table below is prediction.
Block “C” indicate top two predict values of xi, and block “P” indicate top two predict
values of xi + εi. Line “L” indicate labels and Line “V” indicate values.

convolution. By approximating infinite Volterra convolution using the finite one, we can
analyze the proxy kernels of Volterra convolution rather than directly analyze the original
network, even if the structure and the parameters of the network are unknown. The proxy
kernels can be computed from the weights of a neural network, or be approximated by
building and training a hacking network. The method of approximating the proxy kernels is
more intuitive and easier to implement if the number of layers is large, and the approximated
proxy kernels are comparable with the actual kernels.

In future work, we plan to do further research on the proxy kernels. For example, how
to compute the high order kernels efficiently, how to determine the order of kernels with
given approximation accuracy, and so on. We will also investigate the kernels that are input
related, i.e., the dynamic networks, as well as practical applications of the hacking network.

All codes associated with this article are accessible publicly at GitHub https://github.

com/tenghuilee/nnvolterra.git.

Acknowledgments

The authors thank Dr. Andong Wang for helpful discussions. Sincere thanks to all anonymous
reviewers, that greatly helped to improve this paper. This work was supported in part by
the Natural Science Foundation of China under Grants 62073087, 62071132, 61973090, and
62203124, and JSPS KAKENHI Grant Number 20H04249, 20H04208.

29

https://github.com/tenghuilee/nnvolterra.git
https://github.com/tenghuilee/nnvolterra.git


Li, Zhou, Qiu, and Zhao

Appendix A. Convolution From Order One to Two

In Appendix A, we show how to convert a one-dimensional order-one convolution to a
one-dimensional order-two convolution in continuous time domain only. By the well-known
continuous one-dimensional convolution (Equation 3), and the differential property of one-
dimensional convolution, we have

(h ∗ x) (t) =

∫ +∞

−∞
h(τ)x(t− τ)dτ

=

∫ +∞

−∞
h(t− τ)x(τ)dτ

=

∫ +∞

−∞

dh(t− τ)

dτ

(∫ τ

−∞
x(l)dl

)
dτ.

Applying the integration,
∫ τ
−∞ x(l)dl = 1/2x(τ)x(τ)− 0, we have

(h ∗ x) (t) =

∫ +∞

−∞

1

2

dh(t− τ)

dt
x(τ)x(τ)dτ

=

∫ +∞

−∞

∫ +∞

−∞

1

2

dh(t− τ)

dt
x(τ)x(ι)δ(τ − ι)dτdι,

where Dirac delta δ(t) =

{
∞, t = 0
0, t 6= 0

. Let g(t− τ, t− ι) =
1

2

dh(t− τ)

dt
δ(τ − ι). We have

(h ∗ x) (t) =

∫ +∞

−∞

∫ +∞

−∞
g(t− τ, t− ι)x(τ)x(ι)dτdι

=

∫ +∞

−∞

∫ +∞

−∞
g(τ, ι)x(t− τ)x(t− ι)dτdι

= (g ∗ dx,xc) (t).

During this, we are surprised to find that g is insensitive to time irrelevant additive noise.

Suppose ĥ(τ) = h(τ) + n(τ), with
dn(τ)

dτ
= 0, we have

g(t− τ, t− ι) =
1

2

dĥ(t− τ)

dt
δ(τ − ι) =

1

2

dh(t− τ)

dτ
δ(τ − ι).

Appendix B. Proof for Combination Properties

In this appendix, only properties of discrete one-dimensional signals are proved, and this
proof can be generalized to other situations. To prevent indexing out of bound, zero padding
is always considered.
Proof

Property 1 and 3. They can be proved by linearity of integration or summation.
Property 2. Due to linear property of integration or summation, we can separate these

two terms as
G ∗ (~x + α) = G ∗ ~x + α

∑
~t

G(~t).
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Property 4, 5 and 6. We will prove Property 6. Noticing that G is symmetric, swapping
order of xi does not change the result.

(G ∗ (x1 + x2 + · · ·+ xm)n) (t)

=
∑

τ1,··· ,τn
G(τ1, · · · , τn)

n∏
i=1

(x1(t− τi) + x2(t− τi) + · · ·+ xm(t− τi))

=
∑

τ1,··· ,τn

∑(
n

n1n2 · · ·nm

)
G(τ1, · · · , τn)

x1(t− τ1)x1(t− τ2) · · ·x1(t− τn1)

x2(t− τ1+n1)x2(t− τ2+n1) · · ·x2(t− τn2+n1)

· · ·
xm(t− τ1+∑m−1

k=1 nk
)xm(t− τ2+∑m−1

k=1 nk
) · · ·xm(t− τnm+

∑m−1
k=1 nk

)

=

(∑(
n

n1n2 · · ·nm

)
G ∗ dxn1

1 ,x
n2
2 , · · · ,x

nm
m c

)
(t),

where
(

n
n1n2···nm

)
=

n!

n1!n2! · · ·nm!
, the multinomial coefficient, and

∑m
i=1 ni = m,ni ≥ 0, for

all i = 1, 2, · · · ,m. If m = 2, this is Property 5, and if m = 2 and n = 2, this is Property 4.
Property 7 and 8. Only Property 8 is proved, and we can prove Property 7 by setting

stride equal to one.

(G ∗s (H ∗z ~x)) (t) =
∑
l

G(l)
∑
~τ

H(~τ)
n∏
i=1

xi(z(st− l)− τi)

=
∑
~τ

(∑
l

G(l)H(~τ − zl)

)
n∏
i=1

xi(szt− τi)

=
∑
~τ

(G~z H)(~τ)
n∏
i=1

xi(szt− τi)

= ((G~z H) ∗sz ~x) (t).

Property 9 and 10. We will prove Property 9 here and this proof could be intuitively
extended to Property 10.

(G ∗ dH1 ∗ ~x,H2 ∗ ~yc) (t)

=
∑
l1,l2

G(l1, l2)

∑
~τ1

H1(~τ1)

n∏
i=1

xi(t− τ1,i − l1)

∑
~τ2

H2(~τ2)
m∏
j=1

yj(t− τ2,j − l2)


=
∑
~τ1,~τ2

∑
l1,l2

G(l1, l2)H1(~τ1 − l1)H2(~τ2 − l2)

( n∏
i=1

xi(t− τ1,i)

) m∏
j=1

yj(t− τ2,j)


=
∑
~τ1,~τ2

(G~ dH1,H2c)(~τ1, ~τ2)

(
n∏
i=1

xi(t− τ1,i)

) m∏
j=1

yj(t− τ2,j)


= ((G~ dH1,H2c) ∗ d~x, ~yc) (t).
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Property 11.

(G1 ~ (G2 ~G3)) (~τ) =
∑
k

G1(k)

(∑
l

G2(l)G3(~τ − k − l)

)

=
∑
l

(∑
k

G1(k)G2(l − k)

)
G3(~τ − l)

= ((G1 ~G2)~G3) (~τ).

Property 12, 13, and Property 14. We will only prove Property 14 here, and we can
prove Property 12 and 13 in the same way.

(G ∗ dH1 ∗ ~x, α,H2 ∗ ~yc) (t)

= α
∑
l1,l2,l3

G(l1, l2, l3)

∑
~τ1

H1(~τ1)
∏
i=1

xi(t− τ1,i − l1)

∑
~τ3

H2(~τ3)
∏
i=1

yi(t− τ3,i − l3)


= α

∑
~τ1,~τ2

∑
l1,l2,l3

G(l1, l2, l3)H1(~τ1 − l1)H2(~τ3 − l3)

(∏
i=1

xi(t− τ1,i − l1)

)(∏
i=1

yi(t− τ3,i − l3)

)

=

∑
#α

(G~ dH1, α,H2c)

 ∗ d~x, ~yc
 (t).

Property 15.

(h ∗ [x]n) (t) =
∑
l

h(l) (x(t− l))n

=
∑

τ1,τ2,··· ,τn
h(l)

n∏
i=1

(δ(τi − l)x(t− τi))

=
∑

τ1,τ2,··· ,τn
(diag(n,h)) (τ1, τ2, · · · , τn)

n∏
i=1

x(t− τi)

= (diag(n,h) ∗ xn) (t).

Property 16.

g ∗ [h ∗ x]n = diag(n,g) ∗ (h ∗ x)n = (diag(n,g)~ hn) ∗ xn.

Appendix C. Perturbations in Volterra Convolution

During practice, it has been found that some specific perturbations have the potential to
make neural networks behave abnormally (Szegedy et al., 2014; Goodfellow et al., 2015). An
observation of how perturbations influence the proxy kernels will be theoretically explored in
this appendix. The neural network is extremely complex, our analysis limits on its impacts
on the proxy kernels.
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C.1 Perturbation Upper Bound

In this subsection, we express the upper bound for perturbation of ideal Volterra convolution,
showing that how the perturbation change the output.

Theorem 19 Assume input signal is x, and the perturbation is ε, the approximated neural
network is f(x) =

∑N
n=0 Hn ∗ xn, we have

‖f(x + ε)− f(x)‖2 ≤ min


N∑
n=0

‖Hn‖2
n−1∑
k=0

(en
k

)k
‖x‖k1‖ε‖n−k1 ,

N∑
n=0

‖Hn‖1
n−1∑
k=0

(en
k

)k
‖x‖k2k‖ε‖n−k2(n−k)

 , (34)

where e = 2.718281828 · · ·, the base of the natural logarithm.

Proof In appendix C.3.

The following is an example of the effects of perturbations for each convolution from
order one to eight. We randomly generate x ∈M32 (M has defined in Equation 27). Two
perturbations are produced to simulate these two different cases. To make the plot more
clear, we add a considerably large number 3.0 or a considerably small value 0.5 to the middle
point of x. For each perturbation and each convolution with order from one to eight, we
compute ‖Hn ∗ (x + ε)n −Hn ∗ xn‖2 one thousand times with random Hn ∈M5×···×5. The
boxplot is shown in Figure 12.
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(a) add 3.0

1 2 3 4 5 6 7 8
0.0

0.1

0.2

0.3

0.4

0.5

(b) add 0.5

Figure 12: Boxplot of ‖Hn ∗ (x + ε)n − Hn ∗ xn‖2, n = 1, 2, · · · , 8. The horizontal axis
indicates the order and the vertical axis indicates the error.

Figure 12 shows that the bound is reasonable. It seems that the impact of perturbation
will cause exponential blowup or decay. Nevertheless, this result is obtained under the
context of ideal Volterra convolution. In reality, the situation will be more complicated, we
need to consider the kernels, input signals, and so on.

If the impact decays, this means that the related neural network are robust to such
perturbation, which is exactly what we want.

As for the exponential blowup, we need to consider the neural network before the
approximation. If the neural network is Lipschitz in some domains, the approximated
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Volterra convolution must be Lipschitz in the same domains. The upper bound of change of
output is bounded by the Lipschitz constant, and the bound is not exponential. Otherwise, if
the neural network is non-Lipschitz, but the output is bounded, this impact is also bounded.
If the output of the neural network is not bounded, something wrong must have happened
to this neural network. This is because all operations in a neural network is bounded, i.e.,
the convolutions are bounded if both kernel and signal are bounded, and the normalization
operations are also bounded if not divide by zero. In conclusion, the impact of perturbation
will increase but won’t exponential blowup in practice.

C.2 Perturbation on Order-n Volterra Convolution

The following is an example of how perturbations affect the order-n Volterra convolution.
Due to the computation complexity, n is set to be eight,

f(x) =
8∑
i=1

Hi ∗ xi,H0 = 0.

Kernels are randomly generated as H1 ∈M5,H2 ∈M5×5, · · ·H8 ∈M5×···×5 (M is defined
in Equation 27). Input signal is selected as a sin function x = sin(t), 0 ≤ t ≤ 8π. Thirty
spots are picked from x and added 0.2 as perturbation x + ε. The perturbations are denser
in the head and sparser in the tail. Result is illustrated in Figure 13.

0 100 200 300 400 500
−1

0

1

x
x+ ε

0 100 200 300 400 500
−4

−2

0

f(x)
f(x+ ε)

Figure 13: Example for perturbation of order-eight Volterra convolution.

This result is influenced by both parameters and perturbations. Different parameters
will cause different results. Some are sensitive to perturbations while others are not.

As can be seen in Figure 13, regions in the head are more influenced by perturbations,
while regions in the tail are not. This is because perturbations are denser in the head
than in the tail, and short time energy is larger than that in the tail. It can also be seen
that some special regions, such as mountain peaks or valleys, are more affected by the
disturbance, while other regions are less affected. Not all perturbations are effective. The
effective perturbations are determined by both kernels and input signals.

C.3 Proof for Theorem 19

In the following, we prove Theorem 19. For proving this Lemma, we will first introduce
Young’s Inequality (Theorem 20), Corollary 21, Lemma 22 and Lemma 23.
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Theorem 20 (Young’s Inequality for Convolutions (Henry, 1912)) Let p, q, r ∈ R,

p, q, r ≥ 1 and 1 +
1

r
=

1

p
+

1

q
. For signals h and x, following inequality is satisfied,

‖h ∗ x‖r ≤ ‖h‖p‖x‖q. (35)

Corollary 21 Let r = p = 2, q = 1. Theorem 20 is simplified as

‖h ∗ x‖2 ≤ min (‖h‖2‖x‖1, ‖h‖1‖x‖2) . (36)

Lemma 22 Suppose that Hn is the kernel, and x,y are two signals. We have

∥∥∥Hn ∗
⌈
xk,yn−k

⌋∥∥∥
2
≤ min

(
‖Hn‖2‖x‖n1‖y‖n−k1 ,

‖Hn‖1‖x‖k2k‖y‖n−k2(n−k)

)
, k = 0, 1, · · · , n.

Proof By definition of order-n convolution, we have

(
Hn ∗

⌈
xk,yn−k

⌋)
(t) =

∑
τ1,··· ,τn

Hn(τ1, τ2, · · · , τn)
k∏
i=1

x(t− τi)
n∏

i=k+1

y(t− τi) (37)

Let Z(t1, t2, · · · , tn) =
∏k
i=1 x(ti)

∏n
i=k+1 y(ti). Equation 37 becomes(

Hn ∗
⌈
xk,yn−k

⌋)
(t) =

∑
τ1,··· ,τn

Hn(τ1, τ2, · · · , τn)Z(t− τ1, t− τ2, · · · , t− τn)

= (Hn ∗ Z) (t, t, · · · , t).

Recall Young’s Inequality (Theorem 20),

‖Hn ∗ Z‖2 ≤ min (‖Hn‖2‖Z‖1, ‖Hn‖1‖Z‖2) ,

where ‖Z‖1 is

‖Z‖1 =
∑
~t

|Z(t1, t2, · · · , tn)|

=
∑
~t

∣∣∣∣∣
k∏
i=1

x(ti)
n∏

i=k+1

y(ti)

∣∣∣∣∣
=

(
k∏
i=1

∑
t1···
|x(ti)|

) n∏
i=k+1

∑
tk+1···

|y(ti)|


= ‖x‖k1‖y‖n−k1 ,
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and ‖Z‖2 is

‖Z‖2 =

√ ∑
t1,t2,··· ,tn

(Z(t1, t2, · · · , tn))2

=

√√√√√ ∑
t1,t2,··· ,tn

(
k∏
i=1

x(ti)

n∏
i=k+1

y(ti)

)2

=

√√√√√(∑
t1···

x2k(ti)

) ∑
tk+1···

y2(n−k)(ti)


= ‖x‖k2k‖y‖n−k2(n−k).

This proof is finished.

Lemma 23 Suppose that Hn is the kernel, and x,y are two signals. We have

‖Hn ∗ (x + y)n −Hn ∗ xn‖2 ≤ min


‖Hn‖2

n−1∑
k=0

(en
k

)k
‖x‖k1‖y‖n−k1 ,

‖Hn‖1
n−1∑
k=0

(en
k

)k
‖x‖k2k‖y‖n−k2(n−k)

 , (38)

where k = 0, 1, · · · , n., and e = 2.718281828 · · ·, the base of the natural logarithm.

Proof Recall Property 5,

Hn ∗ (x + y)n =
n∑
k=0

(
n

k

)
Hn ∗

⌈
xk,yn−k

⌋
. (39)
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We move Hn ∗ xn to the left and take the L2-norm. By Lemma 22, the L2-norm is

‖Hn ∗ (x + y)n −Hn ∗ xn‖2 =

∥∥∥∥∥
n−1∑
k=0

(
n

k

)
Hn ∗

⌈
xk,yn−k

⌋∥∥∥∥∥
2

≤
n−1∑
k=0

(
n

k

)∥∥∥Hn ∗
⌈
xk,yn−k

⌋∥∥∥
2

≤ min


‖Hn‖2

n−1∑
k=0

(
n

k

)
‖x‖k1‖y‖n−k1 ,

‖Hn‖1
n−1∑
k=0

(
n

k

)
‖x‖k2k‖y‖n−k2(n−k)



≤ min


‖Hn‖2

n−1∑
k=0

(en
k

)k
‖x‖k1‖y‖n−k1 ,

‖Hn‖1
n−1∑
k=0

(en
k

)k
‖x‖k2k‖y‖n−k2(n−k)

 ,

where binomial coefficient
(
n
k

)
≤
(en
k

)k
(Exercise 0.0.5 of Vershynin (2018)).

The following is the proof of Theorem 19.
Proof [Proof of Theorem 19]

‖f(x + ε)− f(x)‖2 =

∥∥∥∥∥
N∑
n=0

(Hn ∗ (x + ε)n −Hn ∗ xn)

∥∥∥∥∥
2

≤
N∑
n=0

‖(Hn ∗ (x + ε)n −Hn ∗ xn)‖2 (apply Lemma 23)

≤ min


N∑
n=0

‖Hn‖2
n−1∑
k=0

(en
k

)k
‖x‖k1‖ε‖n−k1 ,

N∑
n=0

‖Hn‖1
n−1∑
k=0

(en
k

)k
‖x‖k2k‖ε‖n−k2(n−k)

 .

Appendix D. Rank for Outer Convolution

In this appendix, we discuss the rank of the outer convolution in discrete time. The rank of a
matrix equal to the number of non-zero eigenvalues. It is of major importance, which tells us
linear dependencies of column or row vectors, and is one of the fundamental building block
of matrix completion and compress sensing (Candès et al., 2006; Donoho, 2006; Sidiropoulos
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et al., 2017). The rank of a tensor could be defined in various ways, such as the rank based on
CANDECOMP/PARAFACT decomposition and Tucker decomposition and others (Kolda
and Bader, 2009).

Before discussing the rank, let’s first take a look at linear dependence and independence
(Horn and Johnson, 1985). Vectors v1,v2, · · · ,vn are linear independence if α1v1 + α2v2 +
· · ·+ αnvn = 0 only implies all scalars are zero α1 = α2 = · · · = 0. Similar to that, we call
G1,G2, · · · ,Gn are linear independence if α1G1 + α2G2 + · · · + αnGn = 0 only implies
α1 = α2 = · · · = αn = 0. If k vectors span a space of dimension r, any of these k vectors
can be represented as a linear combination of r linear independence vectors in that space.

To express the rank of matrix, Tucker rank (Sidiropoulos et al., 2017) of tensor, and
others, we denote

rank(k,G) =


1, if G is 1 dimension
column rank of G, if G is 2 dimension, k = 1
row rank of G, if G is 2 dimension, k = 2
k-th Tucker rank of G, others

. (40)

Especially, if G is a matrix or one-dimensional vector, this notation can be rewritten as
rank(G). Besides, a tensor G is non-zero means that its arbitrary Lp-norm ‖G‖p 6= 0, p ≥ 1.

Before talking about the rank, we would like to introduce the zero result of convolutions.
By the definition of one-dimensional convolution, we can rewrite it into matrix multiplication
format,

y(t) =
T∑
τ=0

g(τ)h(t− τ)⇔


...

y(t)
...

 =


...

...
...

h(t− 0) h(t− 1) · · · h(t− T )
...

...
...



g(0)
g(1)

...
g(T )

 ,
where matrix generated by shifting h(·) is the Hankel matrix. It is clear that the convolution
g ∗ h is zero if g is in the null space (Horn and Johnson, 1985) of the Hankel matrix. For
example, the zero padding one-dimensional convolution is zero if kernel and signal have the
following format,

g =
[

1 1 1 1 1
]

;

h =
[

1 −1 0 −1 1 1 −1 0 −1 · · ·
]
.

The high-dimensional convolution also follows the same rule. We can rewrite this kind
of convolutions into matrix multiplication format by flattening G and the patches of H.
A patch of H is H(~t − dτ1, τ2, · · · , τkc), where τi = 0, 1, · · · , Ni with i = 1, 2, · · · , k and
G ∈ RN1×N2×···×Nk . For instance, a two-dimensional convolution can be rewritten into the
following format,

...
...

...
...

H(t1 − 0, t2 − 0) H(t1 − 0, t2 − 1) H(t1 − 1, t2 − 0) H(t1 − 1, t2 − 1)
...

...
...

...



G(0, 0)
G(0, 1)
G(1, 0)
G(1, 1)

 .
If the flatted G is in the null space of the matrix generated by flattening patches of H, the
result of this high-dimensional convolution is zero.
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D.1 Linear Independence in Convolutions

Lemma 24 There are r ≤ min (rank(H), rank(G)) linear independence tensors in the linear
combinations of Gi ∗H, i = 1, · · ·, where H is the matrix generated by flattening patches
of H, and G is the matrix generated by flattening G1,G2, · · ·. If H is full column rank,
r = rank(G).

Proof

Suppose Yi(~t) =
∑

~τ H(~t−~τ)Gi(~τ), we rewrite this convolution into matrix multiplication
format,

 | |
Y1(~t) Y2(~t) · · ·
| |

 =


...

−− H(~t− ~τ) −−
...


 | |
G1(~τ) G2(~τ) · · ·
| |

 = HG.

Let matrix Y be the matrix generated by flattening Y1,Y2, · · ·. We have (Horn and
Johnson, 1985)

r = rank(Y) = rank(HG) ≤ min (rank(H), rank(G)) .

If H is not full column rank, it is possible that some linear combinations of the columns
of G are in the null space of H. The matrix multiplication with H and these combinations
are zero, which implies that the convolution of H and the same combinations of Gi are zero.

Otherwise, if H is full column rank, left multiplication by a full column rank matrix
leaves rank unchanged, r = rank(HG) = rank(G), and rank(G) equals the number of linear
independence tensors in the linear combinations of G1,G2, · · ·. It means that there are no
combinations of Gi that lead to a zero convolution result.

By Lemma 24, if the H is full column rank, the number of linear independent tensors in
linear combinations of G1 ∗H,G2 ∗H, · · · equals to that of G1,G2, · · ·. For instance, if H
meets the condition, and G1 6= αG2 for any scalar α, we have G1 ∗H 6= αG2 ∗H.

D.2 Matrix Rank for Two-dimensional Signals

Lemma 25 rank(G ~ dh1,h2c) ≤ min (rank(G), rank(H1), rank(H2)) ≤ rank(G), where
G ∈ Rn1×n2, and h1 ∈ Rl1 ,h2 ∈ Rl2. We get equality, rank(G ~ dh1,h2c) = rank(G), if
H1 ∈ R(l1+2p1−n1)×n1 and H2 ∈ R(l2+2p2−n2)×n2 , the two matrices generated by shifting h1(·)
and h2(·) with padding size p1 and p2, are full column rank.

Proof Since the rank of G is rank(G), we can factorize G into the form of summation by
outer product of linear independent vectors,

G(τ1, τ2) =

rank(G)∑
r=1

pr(τ1)qr(τ2).
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By the definition of outer convolution (Definition 12), we have

(G~ dh1,h2c)(t1, t2) =
∑
τ1,τ2

G(τ1, τ2)h1(t1 − τ1)h2(t2 − τ2)

=

rank(G)∑
r=1

(∑
τ1

pr(τ1)h1(t1 − τ1)

)(∑
τ2

qr(τ2)h2(t2 − τ2)

)
.

=

rank(G)∑
r=1

(pr ∗ h1)(t1)(qr ∗ h2)(t2),

which is a summation of the outer product of vectors pr ∗ h1 and qr ∗ h2.
Recall Lemma 24, we have

rank(G~ dh1,h2c) ≤ min (min(rank(G), rank(H1)),min(rank(G), rank(H2)))

≤ min (rank(G), rank(H1), rank(H2))

≤ rank(G).

If H1 is full column rank, there is no such vector v ∈ Rn1 such that v ∗ h1 is zero, and
p1,p2, · · · ,prank(G) are linear independence. If H2 is full column rank, the same rule can
also be applied to H2. Under this assumption, we have

rank(G~ dh1,h2c) = rank(G).

Let H(t1, t2) = h1(t1)h2(t2). It becomes a two-dimensional convolution,

(G~ dh1,h2c) (t1, t2) =
∑
τ1,τ2

G(τ1, τ2)h1(t1 − τ1)h2(t2 − τ2)

=
∑
τ1,τ2

G(τ1, τ2)H(t1 − τ1, t2 − τ2).

More generally, we extend this to the H of rank grater than or equal to one.

Lemma 26 rank(G ∗ H) ≤ min (s1, s2, rank(G)rank(H)), where both G and H are two-
dimensional matrices, and G ∗H ∈ Rs1×s2.

Proof
Suppose that Ĥ1, Ĥ2, · · · , Ĥrank(H) are linear independence matrices, and H =

∑rank(H)
r=1 Ĥr.

The convolution becomes

G ∗H = G ∗

rank(H)∑
r=1

Ĥr

 =

rank(H)∑
r=1

G ∗ Ĥr.

By Lemma 25, the rank of this convolution is

rank (G ∗H) = rank

rank(H)∑
r=1

G ∗ Ĥr

 ≤ rank(H)∑
r=1

rank(G) ≤ rank(H)rank(G).
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In addition, the rank of a matrix must be bounded by its size, implying that

rank(G ∗H) ≤ min(s1, s2, rank(G)rank(H)).

Remark 27 The two-dimensional convolution often increase the rank of a two-dimensional
image.

Remark 28 Dilated convolutions (Yu and Koltun, 2016) still follow Lemma 26, since adding
zero-filled rows or columns will not alter the rank.

D.3 Tucker Rank for Multi-dimensional Signals

Lemma 29 rank(k,G~~h) ≤ rank(k,G), where k = 1, 2, · · · , n, and ~h = dh1,h2, · · · ,hnc is
a list of non-zero one-dimensional signals, and G is an n-dimensional tensor, and rank(k,G)
is the k-th Tucker rank of G.

Proof If n = 2, this has been proved in Lemma 25.
If n > 2, suppose that G ∈ Rs1×s2×···×sn . Focusing on the k-th dimension, we have

(G~ ~h)(~t) =
∑
~τ

G(~τ)

n∏
i=1

hi(ti − τi)

=
∑
τk

 ∑
τ1,··· ,τk−1

∑
τk+1,··· ,τn

G(~τ)
n∏

i=1,i 6=k
hi(ti − τi)

hk(tk − τk).

Let

P (t1, · · · , tk−1, τk, tk+1, · · · , tn) =
∑

τ1,··· ,τk−1

∑
τk+1,··· ,τn

G(~τ)

n∏
i=1,i 6=k

hi(ti − τi).

The convolution becomes

(G~ ~h)(· · · , tk, · · · ) =
∑
τk

P (· · · , τk, · · · )hk(tk − τk).

We permute and reshape P into matrix format P̂ ∈ Rsk×·, and rewrite the convolution into
matrix multiplication format,

...
...

...
hk(tk − 0) hk(tk − 1) · · · hk(tk − sk)

...
...

...



P̂ (0, 1) P̂ (0, 2) · · ·
P̂ (1, 1) P̂ (1, 2) · · ·

...
...

P̂ (sk, 1) P̂ (sk, 2) · · ·

 ≡ HkP̂.
By the rank inequality of matrix multiplication, we have

rank(k,G~ ~h) ≤ min(rank(Hk), rank(P̂))

≤ min(rank(Hk), rank(k,G)) (Lemma 24)

≤ rank(k,G).
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Let H(t1, t2, · · · , tn) = h1(t1)h2(t2) · · ·hn(tn), which is a tensor with Tucker rank equals
[1, 1, · · · , 1]. We have G~ ~h = G ∗H, and we extend this to a more general H in Lemma 30.

Lemma 30 rank(k,G ∗H) ≤ min(sk, rank(k,G)rank(k,H)), where G,H are both non-zero
n-dimensional tensors, and G ∗H ∈ Rs1×s2×···×sn.

Proof If n = 2, it has been proved in Lemma 26.

If n > 2, suppose that

H =

rank(k,H)∑
r=1

Ĥr,

where H1,H2, · · · ,Hrank(k,H) are linear independent and all rank(k, Ĥr) = 1. The n-
dimensional convolution becomes,

G ∗H = G ∗

rank(k,H)∑
r=1

Ĥr

 =

rank(k,H)∑
r=1

G ∗ Ĥr.

By Lemma 30, the k-th Tucker rank of this convolution is

rank (k,G ∗H) = rank

k, rank(k,H)∑
r=1

G ∗ Ĥr


≤

rank(k,H)∑
r=1

rank (k,G)

≤ rank(k,H)rank(k,G).

In addition, the k-th Tucker rank is bounded by the size, which implies that

rank(k,G ∗H) ≤ min(sk, rank(k,G)rank(k,H)).

D.4 Main Theorem of Rank for Outer Convolution

Now, all previous discussion of outer convolutions are combined, expanding Lemma 29 to
Theorem 31. To simplify discussions, outer convolution is divided into groups,

(G~ ~H)

((1, 1), (1, 2), · · · )︸ ︷︷ ︸
group 1, (H1)

, · · · , ((i, 1), (i, 2), · · · )︸ ︷︷ ︸
group k, (Hk)

,

 .
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Theorem 31 (Rank for outer convolution)

rank(dk, ic ,G~ ~H) ≤
{

min (sk,1, rank(k,G)) , Hk is one-dimensional
min (sk,i, zkrank(i,Hk)) , otherwise

,

where ~H = dH1,H2, · · · ,Hnc is a list of tensors, and G ∈ Rz1×z2×···×zn, and G ~ ~H ∈
Rs1,1×s1,2×···×s2,1×s2,2×···.

Proof
If Hk is one-dimensional, this proof is similar to that of Lemma 29. The k-th Tucker

rank is
rank(dk, 1c ,G~ ~H) ≤ min (sk,1, rank(k,G)) .

If Hk is not one-dimensional, we focus on the operations in group k. By the definition of
outer convolution (Equation 13), we have

(G~ ~H)(~t1,~t2, · · · ,~tn) =
∑
~τ

G(~τ)
n∏
i=1

Hi(~ti − τi)

=
∑
τk

 ∑
τ1,··· ,τk−1

∑
τk+1,··· ,τn

G(~τ)
n∏

i=1,i 6=k
Hi(~ti − τi)

Hk(~tk − τk).

Let

P (~t1, · · · ,~tk−1, τk,~tk+1, · · · ,~tn) =
∑

τ1,··· ,τk−1

∑
τk+1,··· ,τn

G(~τ)
n∏

i=1,i 6=k
Hi(~ti − τi).

The convolution becomes

(G~ ~H)(· · · ,~tk, · · · ) =
∑
τk

P (· · · , τk, · · · )Hk(~tk − τk)

=
∑
ι1,ι2,···

P̂ (· · · ; ι1, ι2, · · · ; · · · )Hk(tk,1 − ι1, tk,2 − ι2, · · · ),

where P̂ is a super-diagonal format of G,

P̂ (· · · ; ι1, ι2, · · · ; · · · ) =

{
P (· · · , τk, · · · ), τk = ι1 = ι2 = · · ·
0, otherwise

.

This operation can be considered as a collection of multidimensional convolutions in group k,
where all kernels are super-diagonal tensors. The Tucker rank of these super-diagonal tensors

are rank
(
dk, ic , P̂

)
≤ zk, with equality if and only if all diagonal entries are non-zero.

Recall Lemma 30, we conclude that Tucker rank of this group is

rank
(
dk, ic ,G~ ~H

)
≤ min(sk,i, rank

(
dk, ic , P̂

)
rank(i,Hk))

≤ min(sk,i, zkrank(i,Hk)).

In conclusion, we complete this proof.
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D.5 Validation of the Rank Properties

Data description. To cover more situations, the following tensors are taken from three sets,
M, U and O.

The first set is the Gaussian distribution with normalization,

M =

{
x : x =

y

‖y‖2
, y(·) ∼ N (0, 1)

}
,

where N (0, 1) is standard Gaussian distribution with mean zero and variance one. This is
the same as Equation 27.

The second set is the uniform distribution with normalization,

U =

{
x : x =

y

‖y‖2
, y(·) ∼ U(0, 1)

}
,

where U(0, 1) is the uniform distribution from zero to one.
The third set is

O = {h : ∃g, g ∗ h is zero,g and h are non-zero} .

One method for generating the desired signal h with a known kernel g is illustrated as
follows. For any fixed index t, if (g ∗ h)(t) = 0, we have

T∑
τ=0

g(τ)h(t− τ) = g(0)h(t) +
T∑
τ=1

g(τ)h(t− τ) = 0.

If the weighted sum
∑T

τ=1 g(τ)h(t− τ) is known, and g(0) is non-zero, h(t) can be uniquely
determined by

h(t) =
−1

g(0)

T∑
τ=1

g(τ)h(t− τ). (41)

We can iteratively compute the upcoming sequence h(T ), h(T + 1), · · ·, if all initial terms,
h(0), h(1), · · · , h(T − 1), are manually specified. It is clear that we cannot pad any other
elements to the head or tail of h, because the new elements may not follow Equation 41,
and padding these elements may leave g ∗ h non-zero.

Let the matrix generated by shifting h be

H =


h(0) h(1) · · · h(T − 1)
h(1) h(2) · · · h(T + 0)
h(2) h(3) · · · h(T + 1)

...
...

...

h(T + 0) · · ·
h(T + 1) · · ·
h(T + 2) · · ·

...

 .
According to the computing process, the columns in the right of vertical line are linear
combinations of the columns in the left. It implies that rank(H) ≤ T , with equality if the
columns in the left of vertical line are linear independence.

Validation process. The main object is to compare the numerical rank with the theoretical
rank. To begin with, we compute the convolutions of the generated kernels and signals. After
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that, we clip the singular values of the convolution output to range [1e−16, 1e16]. At last, we
plot the singular values to a figure with y-axis scaled by log10. We can easily distinguish
the zero singular values from the non-zero ones in the figures. If there is a sharp slope, the
singular values in the left of this slop are non-zero, and the number of the non-zero singular
values equals the rank.

Validate Lemma 25. rank(G~ dh1,h2c) ≤ min (rank(G), rank(H1), rank(H2)).

G is randomly generated with rank(G) = rg. h1 is iteratively computed by T1 random
initial terms and kernel [1, 1, · · · , 1]. h2 is computed in the same way. Since zero padding
of h1 or h2 is not allowed here, the outer convolution G ~ dh1,h2c is zero padded. The
singular values are plotted in Figure 14. As shown in figure, rank(G~ dh1,h2c) is less than
the smallest number of rg, T1, T2, and rg = rank(G), rank(H1) ≤ T1, rank(H2) ≤ T2.
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(a) G ∈ M9×9, h1,h2 ∈ O27

0 2 4 6 8 10 12 14 16

10−14

10−11

10−8

10−5

10−2

101

sin
gu

la
r v

al
ue

 (l
og

10
)

min(3, 1, 1)= 1
min(3, 3, 2)= 2
min(3, 3, 5)= 3
min(7, 5, 3)= 3
min(7, 5, 5)= 5
min(7, 5, 9)= 5
min(7, 7, 7)= 7
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Figure 14: The singular values of G ~ dh1,h2c with no padding. The min operator with
three numbers is min(rg, T1, T2).

Validate Lemma 26. Regardless of size, the rank of a two-dimensional convolution G ∗H
is rank(G ∗H) ≤ rank(G)rank(H).

Two matrices G and H are randomly generated with rank(G) = rg and rank(H) = rh.
The singular values of G ∗H are plotted in Figure 15. As the figure shows, rank(G ∗H) is
less than or equal to the multiplication of rank(G) and rank(H).
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(a) G ∈ M7×7, H ∈ M32×32
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Figure 15: Singular values of two-dimensional convolutions G ∗H.

45



Li, Zhou, Qiu, and Zhao

Validate Lemma 30. Regardless of size, the Tucker rank of an n-dimensional convolution
is rank(k,G ∗H) ≤ rank(k,G)rank(k,H). This inequality of three-dimensional convolution
is validated below.

G is randomly generated with Tucker rank equals [2, 4, 3], and H is randomly generated
with Tucker rank equals [3, 2, 4]. The k-th Tucker rank of a tensor equals to the matrix
rank of mode-k matricization of that tensor, where the mode-k matricization is to permute
and reshape the tensor with shape (· · · , s, · · · ) to (· · · , s) (Kolda and Bader, 2009). The
singular values of mode-(one, two, three) matricization of G ∗H are plotted in Figure 16.
The k-th Tucker rank of G ∗H is less than or equal to the multiplication of the k-th Tucker
rank of G and H.
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(a) G ∈ M6×6×6, H ∈ M28×28×28

0 5 10 15 20

10−5

10−3

10−1

101

sin
gu

la
r v

al
ue

 (l
og

10
)

rg1rh1=2×3=6
rg2rh2=4×2=8
rg3rh3=3×4=12

(b) G ∈ U6×6×6, H ∈ U28×28×28

Figure 16: Singular values of mode-(one, two, three) matricization of three-dimensional
convolution G ∗H.

Validate Theorem 31 and Lemma 29. Since Lemma 29 is a special case of Theorem 31
with all signals are one-dimensional, Theorem 31 is mainly validate below. Regardless of
size, The Tucker rank of outer convolution is

rank(dk, ic ,G~ ~H) ≤
{

rank(k,G), Hk is one-dimensional
zkrank(i,Hk), otherwise

,

where ~H = dH1,H2, · · · ,Hnc is a list of tensors, and G ∈ Rz1×z2×···×zn . This inequality of
outer convolution G~ dh1,h2,H3,H4c is validated below.

Four-dimensional tensor G is randomly generated with Tucker rank equals [2, 3, 3, 2]. h1

and h2 are one-dimensional vectors, H3 is a two-dimensional matrix with rank(H3) = 2,
and H4 is a three-dimensional tensor with Tucker rank equals [2, 3, 4]. The singular values
of mode-k matricization of G ~ dh1,h2,H3,H4c is plotted in Figure 17. h1 and h2 are
one-dimensional, the first and second Tucker rank of G ~ dh1,h2,H3,H4c is less than or
equal to that of G. H3 and H4 are not one-dimensional, the corresponding Tucker rank of
G~ dh1,h2,H3,H4c is not grater than zk times the Tucker rank of H3 and H4.
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Figure 17: Singular values of mode-k, k = 1, 2, · · · , 7, matricization of G~ dh1,h2,H3,H4c.

References

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer Normalization. 2016. URL
http://arxiv.org/abs/1607.06450.

Andrew R. Barron. Universal approximation bounds for superpositions of a sigmoidal
function. IEEE Transactions on Information Theory, 39(3):930–945, may 1993. ISSN
00189448. doi: 10.1109/18.256500.

Stephen Boyd and Leon O. Chua. Fading Memory and the Problem of Approximating
Nonlinear Operators With Volterra Series. IEEE transactions on circuits and systems,
CAS-32(11):1150–1161, 1985. ISSN 00984094. doi: 10.1109/tcs.1985.1085649.

Michael M. Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric Deep
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