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Abstract

Optimization is important in machine learning problems, and quasi-Newton methods have a
reputation as the most efficient numerical methods for smooth unconstrained optimization.
In this paper, we study the explicit superlinear convergence rates of quasi-Newton methods
and address two open problems mentioned by Rodomanov and Nesterov (2021b). First,
we extend Rodomanov and Nesterov (2021b)’s results to random quasi-Newton methods,
which include common DFP, BFGS, SR1 methods. Such random methods employ a random
direction for updating the approximate Hessian matrix in each iteration. Second, we focus
on the specific quasi-Newton methods: SR1 and BFGS methods. We provide improved
versions of greedy and random methods with provable better explicit (local) superlinear
convergence rates. Our analysis is closely related to the approximation of a given Hessian
matrix, unconstrained quadratic objective, as well as the general strongly convex, smooth,
and strongly self-concordant functions.

Keywords: quasi-Newton methods, superlinear convergence, local convergence, rate of
convergence, Broyden family, SR1, BFGS, DFP

1. Introduction

Many machine learning problems can be formulated to the minimization of an objective
defined as the expectation over a set of random functions (Liu and Nocedal, 1989; Bottou
and Le Cun, 2005; Shalev-Shwartz and Srebro, 2008; Mokhtari and Ribeiro, 2014, 2015).
Specifically, given the training sample z ∼ D, where D is the data distribution, we consider
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an optimization function f : Rd → R:

min
x∈Rd

f(x) = Ez∼D `(x, z) +R(x),

where `(x, z) is the loss with respect to the training sample z, and R(x) is some regularization
function, such as ‖x‖22. When D is the empirical distribution of training samples {zi}ni=1, we
could recover the classical finite-sum empirical risk minimization:

min
x∈Rd

f(x) =
1

n

n∑
i=1

`(x, zi) +R(x).

Such a finite-sum formulation encapsulates a wide variety of machine learning problems
including least squares regression, support vector machines (SVM), logistic regression, neural
networks, and graphical models.

Previous methods mainly use first-order methods by evaluating objective function gra-
dients ∇f(x), such as gradient descent, stochastic gradient descent, accelerated gradient
descent (Nesterov, 2003), Adagrad (Duchi et al., 2011), Adam (Kingma and Ba, 2015), etc.
These methods dominate the current optimization methods of machine learning problems,
and have affordable computation complexity in each iteration. However, these first-order
methods generally only have a linear or sublinear convergence rate even if the objective has
nice properties.

Recently, second-order methods have also received great attention due to their fast
convergence rates compared to first-order methods. But second-order methods, such as
Newton’s method, are impractical because the exact Hessian matrix ∇2f(x) needs high
computation cost in general cases. Common wisdom proposes quasi-Newton methods by
replacing Hessian matrices with some reasonable approximations. The approximation is
updated in iterations based on some special formulas from the previous variation.

Quasi-Newton methods have a broad application in machine learning problems (Bordes
et al., 2009; Yu et al., 2010; Mokhtari and Ribeiro, 2015; Yuan and Li, 2020; Ye et al., 2020;
Liu and Owen, 2021). There exist various quasi-Newton algorithms with different Hessian
approximations. The three most popular versions are the Davidon-Fletcher-Powell (DFP)
method (Fletcher and Powell, 1963; Davidon, 1991), the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) method (Broyden, 1970a,b; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970), and the
Symmetric Rank 1 (SR1) method (Broyden, 1967; Davidon, 1991), all of which belong to the
Broyden family (Broyden, 1967) of quasi-Newton algorithms. The most attractive property
of quasi-Newton methods compared to the classical first-order methods, is their superlinear
convergence, which can trace back to the 1970s (Powell, 1971; Broyden et al., 1973; Dennis
and Moré, 1974). However, the superlinear convergence rates provided in prior work are
asymptotic (Stachurski, 1981; Griewank and Toint, 1982; Byrd et al., 1987; Yabe and Yamaki,
1996; Kovalev et al., 2020). The results only show that the ratio of successive residuals tends
to zero as the running iterations approach to infinity, i.e.,

lim
k→+∞

‖xk+1 − x∗‖
‖xk − x∗‖

= 0, or ‖xk+1 − x∗‖ = o(‖xk − x∗‖),

where {xk} is iterative update sequence, k is the iteration counter, and x∗ is the optimal
solution. It is unknown whether the residuals converge like O(ck

2
), O(k−k), where c ∈ (0, 1)
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is some constant. Hence, the theory is inadequate and there still lacks of a specific superlinear
convergence rate. Additionally, machine learning problems have requirement of the explicit
convergence rates to compare the performance and design better algorithms for applications.
Therefore, to give a better guidance of quasi-Newton methods in machine learning problems,
we are still interested in the explicit rates of quasi-Newton methods.

Recently, Rodomanov and Nesterov (2021b) gave the first explicit local superlinear
convergence for their proposed new quasi-Newton methods. They introduced greedy quasi-
Newton updates by greedily selecting from basis vectors to maximize a certain measure
of progress, and established an explicit non-asymptotic bound on the local superlinear
convergence rate correspondingly. However, as Rodomanov and Nesterov (2021b) stated,
“greedy methods require additional information beyond just the gradient of the objective
function.” A natural idea might be to replace the greedy strategy with a randomized one.
Indeed, the strategy of randomness has almost the same performance as the greedy one,
which has been observed in Rodomanov and Nesterov (2021b)’s experiments. Therefore,
one can expect that it should be possible to establish similar theoretical results about its
superlinear convergence, but they did not provide theoretical guarantees. This raises the
issue: can we give explicit superlinear rates for random quasi-Newton methods theoretically?
In addition, Rodomanov and Nesterov (2021b)’s proofs are mainly applicable to the DFP
methods because they reduced all possible Broyden family to the DFP update based on
the monotonicity property (see Lemma 5). However, the SR1 and BFGS updates are more
popular and faster than the DFP update in practice, which also has been verified in their
experiments. Thus, it is natural to ask can we obtain separate superlinear rates for different
quasi-Newton methods?

In this work, we solve the above two problems rigorously. We extend Rodomanov
and Nesterov (2021b)’s results into random quasi-Newton methods, and improve the local
superlinear convergence rates by our revised greedy or random SR1 and BFGS methods. We
present our contribution in detail as follows:

• First, we extend Rodomanov and Nesterov (2021b)’s results to random quasi-Newton
methods, which use a random direction for updating the approximate Hessian matrix.
Our superlinear convergence rate is of the form (1− 1

dκ+1)k(k−1)/2 with high probability,
which is similar as the greedy-type methods proposed by Rodomanov and Nesterov
(2021b, Theorem 4.9). Here, κ is the condition number of the objective function, k is
the current iteration, and d is the dimension of parameters.

• Second, for specific quasi-Newton methods, including SR1 and BFGS methods, we
provide improved versions of greedy and random methods. We show that for approxi-
mating a fixed Hessian matrix, both the methods share a faster condition-number-free
convergence. Particularly, we can obtain the superlinear convergence rate O((1−k

d )+)
for the SR1 update, and the linear convergence rate O((1−1

d)k) for the BFGS update,
where (x)+ = max{x, 0}. Both the findings improve the original convergence rate
O((1− 1

dκ )k) by Rodomanov and Nesterov (2021b, Theorem 2.5).

• Third, we extend our analysis to a practical scheme, showing (local) superlinear
convergence under our proposed greedy/random SR1 and BFGS update, when applied
to unconstrained quadratic objective or strongly self-concordant functions. We list our
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Quasi-Newton Methods Superlinear Rates k0

Greedy Broyden
(Rodomanov and Nesterov, 2021b)

(
1− 1

dκ
)k(k−1)/2 (1

2

)k(
1− 1

2κ
)k0 O (dκ ln(dκ))

Random Broyden
(Corollary 12)

(
1− 1

dκ+1

)k(k−1)/2 (1
2

)k(
1− 1

2κ
)k0 O (dκ ln(dκ/δ))

Greedy BFGS*/SR1
(Corollary 20)

(
1− 1

d

)k(k−1)/2 (1
2

)k(
1− 1

2κ
)k0 O ((d+ κ) ln(dκ))

Random BFGS/SR1
(Corollary 20)

(
1− 1

d+1

)k(k−1)/2 (1
2

)k(
1− 1

2κ
)k0 O ((d+ κ) ln(dκ/δ))

Table 1: Comparison of the existing specific superlinear convergence rates of the random
or greedy quasi-Newton methods in the view of λf (·) (shown in Eq. (3)) under strongly
self-concordant objective, where d is the dimension of parameters, κ is the condition number
of the objective function, k0 is the iteration number last for the first phase and k is the
iteration number of the subsequent second phase. For the randomized methods, the presented
rates hold with probability at least 1− δ. (*): Our greedy BFGS method is not practical.

results in Table 1 with the same formulation as the work of Rodomanov and Nesterov
(2021b). Note that in general, the convergence goes through two phases. The first phase
lasts for k0 iterations, and only has a linear convergence rate O((1− 1

2κ )k0). The second
phase has a superlinear convergence rate O((1−1

d)k(k−1)/2). Our revised bound takes
fewer first-phase iterations k0 as well as a faster (condition-number-free) superlinear
convergence rate in the second phase compared to Rodomanov and Nesterov (2021b)’s
results.

1.1 Other Related Work

In addition to the work of Rodomanov and Nesterov (2021b), there are other results of
explicit local superlinear convergence analysis along this line of research. Rodomanov and
Nesterov (2021c) analyzed the well-known DFP and BFGS methods, which are based on a
standard Hessian update direction through the previous variation. They demonstrated faster
initial convergence rates, while slower final rates compared to Rodomanov and Nesterov
(2021b)’s results. Rodomanov and Nesterov (2021a) improved Rodomanov and Nesterov
(2021c)’s results by reducing the dependence of the condition number κ to lnκ, though having
similar worse long-history behavior. Jin and Mokhtari (2020) provided a non-asymptotic
dimension-free superlinear convergence rate of the original Broyden family when the initial
Hessian approximation is also good enough. However, the two issues mentioned earlier remain
open.

The remainder of this paper is organized as follows. We present preliminaries in Section
2, and discuss the rates of random quasi-Newton methods in Section 3. In Section 4, we show
faster superlinear convergence rates of our revised greedy/random SR1 and BFGS methods.
Then in Section 5, we show comparison with the work of Rodomanov and Nesterov (2021b)
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in detail. We give some empirical results in Section 6. Finally, we conclude our results in
Section 7.

2. Preliminaries

First of all, we present some notation. We denote vectors by lowercase bold letters (e.g., u,x),
and matrices by capital bold letters (e.g.,W = [wij ]). We use e1, . . . , ed for the d-dimensional
standard coordinate directions, and (x)+ = max{x, 0} for x ∈ R. Let λmax(A) = λ1(A) ≥
· · · ≥ λd(A) be the eigenvalues of a real symmetric matrix A ∈ Rd×d, and ‖ · ‖ denotes the
standard Euclidean norm (`2-norm) for vectors, or induced `2-norm (spectral norm) for a
given matrix: ‖A‖ = sup‖u‖=1,u∈Rd ‖Au‖. We denote Sd−1 := {x ∈ Rd : ‖x‖ = 1} as the
standard Euclidean sphere in Rd, and Unif(Sd−1) as the uniform distribution from Sd−1. We
use N (0, Id) as the standard Gaussian distribution, where Id ∈ Rd×d is the identity matrix.

For two symmetric matrices A and B ∈ Rd×d, we denote A � B (or B � A) if A−B
is a positive semi-definite matrix, and A � B (or B ≺ A) if A −B is a positive definite
matrix. Following Rodomanov and Nesterov (2021b)’s notation, for a given positive definite
matrix A (i.e., A � 0), we induce a pair of conjugate Euclidean norms: ‖x‖A :=

√
x>Ax

and ‖x‖∗A :=
√
x>A−1x. When A = ∇2f(x) � 0 for some x ∈ Rd, we prefer to use notation

‖ · ‖x and ‖ · ‖∗x, provided that there is no ambiguity with the reference function f .
Next, we introduce some common definitions used in this paper below.

Definition 1 (Strongly convex and smooth) A twice differentiable function f : Rd → R
is µ-strongly convex and L-smooth (µ,L > 0), if

µId � ∇2f(x) � LId, ∀x ∈ Rd.

Additionally, the condition number of a µ-strongly convex and L-smooth function is κ := L/µ.

We also need the same assumption of strongly self-concordancy followed by Rodomanov
and Nesterov (2021b). And Rodomanov and Nesterov (2021b, Section 4) have already
mentioned several properties and examples of strongly self-concordant functions, such as a
strongly convex function with Lipschitz continuous Hessians.

Definition 2 (Strongly self-concordant) A twice differentiable function f : Rd → R is
M -strongly self-concordant (M > 0), if the Hessians are close to each other in the sense that

∇2f(y)−∇2f(x) �M‖y − x‖z∇2f(w), ∀x,y, z,w ∈ Rd.

Finally, we recall the rate of convergence used in this paper.

Definition 3 (R-Linear/Superlinear convergence) Suppose a scalar sequence {xk} con-
verges to 0 with

lim
k→+∞

|xk+1|
|xk|

= q ∈ [0, 1).

Now suppose another sequence {yk} converges to y∗ and satisfies that |yk− y∗| ≤ |xk|,∀k ≥ 0.
We say {yk} converges superlinearly if and only if q = 0, linearly if and only if q ∈ (0, 1).
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2.1 Notation for Convergence Analysis

For convergence analysis, we introduce two measures which describe the approximation
precision of the positive definite matrices:

σA(G) := tr
[
(G−A)A−1

]
= tr

(
GA−1

)
− d, where G � A � 0, (1)

and
τA(G) := tr(G−A), where G � A � 0. (2)

Moreover, we estimate the convergence rate of a strongly convex objective f(x) by the local
norm of the gradient:

λf (x) := ‖∇f(x)‖∗x =
√
∇f(x)>[∇2f(x)]−1∇f(x), x ∈ Rd. (3)

Note that σA(G) and λf (x) are also introduced in the work of Rodomanov and Nesterov
(2021b). When applied to the update sequences {xk} and {Gk} from a specific algorithm,
we also denote the following notation for brevity:

λk := λf (xk), σk := σ∇2f(xk)(Gk) and τk := τ∇2f(xk)(Gk). (4)

2.2 Quasi-Newton Updates

Before starting our theoretical results, we briefly review a class of quasi-Newton updating
rules for approximating a positive definite matrix A ∈ Rd×d. We follow the definition
by Rodomanov and Nesterov (2021b), employing the following family of updates which
describes the Broyden family (Nocedal and Wright, 2006, Section 6.3) of quasi-Newton
updates, parameterized by a scalar τ ∈ R.

Definition 4 Let G � A � 0. For any u ∈ Rd, if Gu = Au, we define Broydτ (G,A,u) :=
G. Otherwise, i.e., Gu 6= Au, we define

Broydτ (G,A,u) := τ

[
G− Auu

>G+Guu>A

u>Au
+

(
u>Gu

u>Au
+ 1

)
Auu>A

u>Au

]
+ (1− τ)

[
G− (G−A)uu>(G−A)

u>(G−A)u

]
.

(5)

As mentioned in the work of Rodomanov and Nesterov (2021b), we can recover several
well-known quasi-Newton methods for several choices of τ .

For τ = 0, Eq. (5) corresponds to the well-known SR1 update:

SR1(G,A,u) := G− (G−A)uu>(G−A)

u>(G−A)u
, if Gu 6= Au, (6)

and for τ = 1, it corresponds to the well-known DFP update:

DFP(G,A,u) := G− Auu
>G+Guu>A

u>Au
+

(
u>Gu

u>Au
+ 1

)
Auu>A

u>Au
, if u 6= 0. (7)
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Finally, when τ = u>Au
u>Gu

∈ [0, 1], we recover the famous BFGS update1:

BFGS(G,A,u) := G− Guu
>G

u>Gu
+
Auu>A

u>Au
, if u 6= 0. (8)

The Broyden family has matrix monotonicity below, showing the relationship among
these quasi-Newton methods.

Lemma 5 (Rodomanov and Nesterov, 2021b, Lemmas 2.1 and 2.2) If 0 ≺ A � G � ηA
for some η ≥ 1, then we have for any u ∈ Rd, and τ1, τ2 ∈ R with τ1 ≤ τ2 such that

Broydτ1(G,A,u) � Broydτ2(G,A,u).

And for any τ ∈ [0, 1], we have A � Broydτ (G,A,u) � ηA.

2.3 Greedy and Random Quasi-Newton Updates

Rodomanov and Nesterov (2021b) proposed a greedy version for selecting the direction u:

(Greedy Broyden) ûA(G) := arg max
u∈{e1,...,ed}

u>Gu

u>Au
, (9)

which provides superlinear convergence of the form
(
1− 1

dκ
)k(k−1)/2. They also conducted

experiments to verify the performance of their greedy methods, which actually is competitive
with the standard versions. Moreover, they gave random quasi-Newton updates, that is,

(Random Broyden) u ∼ D

for some predefined distribution D. They observed that choosing a random direction uniformly
from the standard Euclidean sphere, i.e., u ∼ Unif(Sd−1), does not make superlinear
convergence looser, and is only slightly slower than the greedy versions. However, they did
not provide the theory to support their experimental findings. We describe the distribution
D explicitly, and give a rigorous proof of the superlinear rates of such random methods in
this paper.

3. Rates of Random Quasi-Newton Methods

We follow the same roadmap as the work of Rodomanov and Nesterov (2021b). We begin
with the analysis of quasi-Newton methods for approximating a target matrix. Then we
extend the scheme to unconstrained quadratic minimization. Finally, we move to general
strongly self-concordant functions.

3.1 Matrix Approximation

We first consider approximating a positive definite matrix A which satisfies

µId � A � LId, (10)

1. See Eq. (2.6) in the work of Rodomanov and Nesterov (2021b) for derivation.
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Algorithm 1 Random quasi-Newton updates
Initialization: Choose G0 � A.
for k ≥ 0 do
Choose τk ∈ [0, 1] and uk from distribution D which satisfies Eq. (12).
Compute Gk+1 = Broydτk(Gk,A,uk).

end for

where L ≥ µ > 0, and κ := L/µ is the condition number of A. We use the measure σA(G)
to describe the closeness between matrix A and the current approximate matrix G. When
Gu 6= Au, one iteration update of Broyden family leads to

σA(G+)
(1)(5)

= τ

[
σA(G)− 2 · u

>Gu

u>Au
+

(
u>Gu

u>Au
+ 1

)]
+ (1− τ)

[
σA(G)− u

>(G−A)A−1(G−A)u

u>(G−A)u

]
= σA(G)−

[
τ · u

>(G−A)u

u>Au
+ (1− τ) · u

>(G−A)A−1(G−A)u

u>(G−A)u

]
,

where G+ = Broydτ (G,A,u). Note that we always have G+ � A for τ ∈ [0, 1] if G � A
from Lemma 5. Thus, by the Cauchy–Schwarz inequality and G � A, we have

u>(G−A)A−1(G−A)u

u>(G−A)u
≥ u

>(G−A)u

u>Au
.

Hence, we obtain when Gu 6= Au,

σA(G+) ≤ σA(G)− u
>(G−A)u

u>Au

(10)
≤ σA(G)− 1

L
· u
>(G−A)u

u>u

= σA(G)− 1

L
tr

[
(G−A) · uu

>

u>u

]
. (11)

Moreover, Eq. (11) trivially holds when Gu = Au. Therefore, for a random direction u, we
only need Euu>/u>u to preserve some benign property, which leads to our assumption of
the random update distribution.

(Random Broyden) u ∼ D, s.t. Eu∼D
uu>

u>u
=

1

d
Id. (12)

It is easy to verify that common distributions such as N (0, Id) and Unif(Sd−1) satisfy our
requirements. Based on Eq. (12) and update in Algorithm 1, we could show linear convergence
of Gk to A under measure σA(·). The proof of Theorem 6 is shown in Appendix B.1.

Theorem 6 Under the update in Algorithm 1 with a randomly initialized G0, such that
G0 � A always holds, we have that

∀k ≥ 0, Gk � A and 0 ≤ Eσk ≤
(

1− 1

dκ

)k
Eσ0, (13)

Therefore, EσA(Gk) converges to zero linearly.
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Algorithm 2 Random quasi-Newton methods for quadratic minimization

1: Initialization: Choose x0 ∈ Rd and G0 � A.
2: for k ≥ 0 do
3: Update xk+1 = xk −G−1k ∇f(xk).
4: Choose τk ∈ [0, 1] and uk from distribution D which satisfies Eq. (12).
5: Compute Gk+1 = Broydτk(Gk,A,uk).
6: end for

3.2 Unconstrained Quadratic Minimization

Based on the efficiency of random quasi-Newton updates in matrix approximation, we
next turn to minimize the strongly convex quadratic function (with a fixed Hessian):

f(x) =
1

2
x>Ax− b>x, where µId � A � LId with L, µ > 0. (14)

The algorithm is shown in Algorithm 2. As classical quasi-Newton methods do, we need to
use the quasi-Newton step for updating the parameters as well as approximating the true
Hessian matrix A. Moreover, Algorithm 2 is only for theoretical analysis, while we need to
adopt the inverse update rules for G−1k directly in practice.

We adopt {λk} (defined in Eqs. (3) and (4)) to estimate the convergence rate of the
objective in Eq. (14). Note that this measure of optimality is directly related to the functional
residual. Indeed, note that x∗ = A−1b is the minimizer of Eq. (14). Then we obtain

f(x)− f(x∗) =
1

2
(x− x∗)>A (x− x∗) =

1

2
(Ax− b)>A−1 (Ax− b) (3)

=
1

2
λf (x)2.

The following lemma shows how λf (·) changes after one iteration of process in Algorithm 2.

Lemma 7 (Rodomanov and Nesterov, 2021b, Lemma 3.2) Let k ≥ 0, and ηk ≥ 1 be such
that A � Gk � ηkA. Then we have λk+1 ≤

(
1− 1

ηk

)
λk ≤ (ηk − 1)λk.

Thus, to estimate how fast {λk} converges to zero, we need the upper bound ηk, which was
already done in Theorem 6. Therefore, we can guarantee a superlinear convergence of {λk}
(under expectation) using the random quasi-Newton update. The proof of Theorem 8 can be
found in Appendix C.1.

Theorem 8 Under the update in Algorithm 2 with a randomly initialized G0, such that
G0 � A always holds, we have that ∀k ≥ 0, λk+1 ≤ ρkλk, where ρk is a certain nonnegative
random variable such that

Eρk ≤
(

1− 1

dκ

)k
Eσ0, ∀k ≥ 0.

For better understanding the convergent behavior without expectation, we show the
probabilistic version of Theorems 6 and 8 below, and leave the proof in Appendix C.2.

Corollary 9 Under the same assumptions as Theorem 8, for any δ ∈ (0, 1), with probability
at least 1− δ over the random directions {uk}, we have for all k ≥ 0,

σk ≤
2d2κ2Eσ0

δ

(
1− 1

dκ + 1

)k
and λk ≤

(
2d2κ2Eσ0

δ

)k (
1− 1

dκ + 1

)k(k−1)/2
λ0.

9
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Algorithm 3 Random quasi-Newton methods for general strongly self-concordant objective

1: Initialization: Choose x0 ∈ Rd and G0 � ∇2f(x0).
2: for k ≥ 0 do
3: Update xk+1 = xk −G−1k ∇f(xk).
4: Compute rk = ‖xk+1 − xk‖xk and set G̃k = (1 +Mrk)Gk.
5: Choose τk ∈ [0, 1] and uk from distribution D which satisfies Eq. (12).
6: Compute Gk+1 = Broydτk(G̃k,∇2f(xk+1),uk).
7: end for

3.3 Minimization of General Functions

Next, we consider the optimization of a general machine learning objective: minx∈Rd f(x),
where f : Rd → R is anM -strongly self-concordant, µ-strongly convex and L-smooth function
with condition number κ = L/µ. Our goal is to extend the results in the previous sections,
given that the methods can start from a sufficiently good initial point x0. Unlike quadratic
minimization, the true Hessian in each step varies. In order to ensure thatGk+1 � ∇2f(xk+1)
holds for all k ≥ 0, we adjust Gk before doing quasi-Newton update. Instructed from the
work of Rodomanov and Nesterov (2021b), we also use the correction strategy, which enlarges
the approximation Gk properly shown in Line 4 of Algorithm 3. Note that Algorithm 3 is
only for theoretical analysis. We will use the inverse update rules for G−1k and Hessian-vector
products for Broydτk(G̃k,∇2f(xk+1),uk) in practice. For simplicity, we assume that the
constants M and L are available, and d ≥ 2. We first give convergent results in expectation
in Lemma 10, and leave the proof in Appendix D.1.

Lemma 10 Suppose in Algorithm 3, a random initialization G0 always satisfies ∇2f(x0) �
G0 � η∇2f(x0) for some η ≥ 1, and the initial point x0 is sufficiently close to the solution:

Mλ0 ≤
ln 2

4η(2d+ 1)
.

Then for all k ≥ 0, we have ∇2f(xk) � Gk � (1 + δk)∇2f(xk), where δk is a certain
nonnegative random variable such that

Eδk ≤ 2dη

(
1− 1

dκ

)k
,

and λk+1 ≤ ρkλk, where ρk is a certain nonnegative random variable such that

Eρk ≤ 2dη

(
1− 1

dκ

)k
.

We also show the probabilistic version of Lemma 10, which gives superlinear convergence
of {λk} and linear convergence of {δk} directly, and we leave the proof in Appendix D.2.

Theorem 11 Under the same assumptions and notation as in Lemma 10, for any δ ∈ (0, 1),
with probability at least 1− δ over the random directions {uk}, we have for all k ≥ 0,

δk ≤
4d3κ2η

δ

(
1− 1

dκ + 1

)k
and λk ≤

(
4d3κ2η

δ

)k (
1− 1

dκ + 1

)k(k−1)/2
λ0.

10
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Additionally, as mentioned by Rodomanov and Nesterov (2021b), if we adopt a weaker
initialization of x0, then the superlinear rate is valid only after certain iterations, i.e., the total
iteration count k′ ≥ k0 for some k0, while only linear convergence is guaranteed for k′ < k0.
We combine both phases into the following corollary, and leave the proof in Appendix D.3.

Corollary 12 Suppose in Algorithm 3, G0 = LId and x0 satisfies Mλ0 ≤
ln 3

2
4κ , that is, the

initial condition on λ0 here is weaker than that in Lemma 10 with η = κ. Then we could
obtain with probability at least 1− δ over the random directions {uk},

λk0+k ≤
(

1− 1

dκ + 1

)k(k−1)/2
·
(

1

2

)k
·
(

1− 1

2κ

)k0
· λ0, ∀k ≥ 0,

where k0 = O (dκ ln(dκ/δ)).

Hence, we could see random quasi-Newton methods still have explicit superlinear conver-
gence rates. The rate in Corollary 12 is slightly worse than the bounds in greedy methods
(see Table 1) due to the probabilistic version, but is comparable overall.

4. Faster Rates for the BFGS and SR1 Methods

From Lemma 5, if A � G � ηA for some η ≥ 1, it follows that

A � SR1(G,A,u) � BFGS(G,A,u) � DFP(G,A,u) � ηA.

Intuitively, the approximation produced by SR1 is better than that produced by BFGS. And
both of them are better than that produced by DFP. However, Rodomanov and Nesterov
(2021b) reduced the analysis by casting all updates described by Broyden family (τ ∈ [0, 1])
into the slowest DFP update (τ = 1). Moreover, SR1 and BFGS methods also have faster
numerical performance in practice. Therefore, Rodomanov and Nesterov (2021b) conjectured
that SR1 and BFGS methods might have faster superlinear convergence rates. In this section,
we will provide an affirmative answer to this conjecture.

4.1 Superlinear Convergence for SR1 Update

We first describe the SR1 update for approximating a fixed positive definite matrix A ∈ Rd×d.
Let us now justify the efficiency of update Eq. (6) in ensuring convergence G to A. We adopt
another measure τA(·) instead of σA(·). According to τA(G), one iteration update leads to

τA(G+)
(2)(6)

= τA(G)− u
>(G−A)2u

u>(G−A)u
, G+ = SR1(G,A,u), if Gu 6= Au. (15)

Now we revise greedy and random methods based on the progress of measure τA(·).
First, we introduce greedy method proposed in the work of Rodomanov and Nesterov

(2021b), that greedily selects u from the basis vectors to obtain the largest decrease of
τA(G+)− τA(G):

ūrawA (G) := arg max
u∈{e1,...,ed}

u>(G−A)2u

u>(G−A)u
.

11
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Algorithm 4 Greedy/Random SR1 update
1: Initialization: Choose G0 � A.
2: for k = 0, . . . , d− 1 do
3: Choose uk from

1) greedy method : uk = ūA(Gk), or
2) random method : uk ∼ Unif(Sd−1).

4: Compute Gk+1 = SR1(Gk,A,uk).

5: end for

Algorithm 5 Greedy/Random BFGS update
1: Initialization: Set G0 � A, L>0 L0=G

−1
0 .

2: for k ≥ 0 do
3: Compute uk = L>k ũk with ũk from

1) greedy method : ũk = ũA(Lk), or
2) random method : ũk ∼ Unif(Sd−1).

4: Compute Gk+1 = BFGS(Gk,A,uk).
5: Compute Lk+1 based on Eq. (25).
6: end for

However, we may encounter numerical overflow due to division by zero if u>(G−A)u is
nearly 0. Noting that G � A, then from the Cauchy–Schwarz inequality, we have

u>(G−A)2u

u>(G−A)u
≥ u

>(G−A)u

u>u
. (16)

Thus we employ a safer adjustment below:

(Greedy SR1) ūA(G) := arg max
u∈{e1,...,ed}

u>(G−A)u

u>u
= arg max

u∈{e1,...,ed}
u>(G−A)u. (17)

Moreover, we only need to obtain the diagonal elements of A (the current Hessian in practice),
thus generally the total complexity is O(d2) in each iteration2, which is acceptable and the
same as the classical quasi-Newton methods.

Second, from the proof of the greedy method, we find that the random method by
choosing u from a spherically symmetric distribution, e.g.,

(Random SR1) u ∼ N (0, Id) or u ∼ Unif(Sd−1), (18)

also has similar performance and the same running complexity O(d2) in each iteration.
Next, we will show the convergence result below by estimating the decrease in the measure

τA(·). In the following, the expectation considers all the randomness of the directions {uk}
during iterations, and when applied to the greedy method, we can view it with no randomness
for the same notation. We leave the proof of Theorem 13 in Appendix B.2.

Theorem 13 Suppose in Algorithm 4, a random initialization G0 always satisfies G0 � A.
Then we obtain that for the greedy method defined in Eq. (17) or the random method defined
in Eq. (18),

∀k ≥ 0,Gk � A and 0 ≤ Eτk ≤
(

1− k

d

)
+

Eτ0, (19)

where (x)+ = max{0, x}. Hence, EτA(Gk) converges to zero superlinearly. Particularly,
∀k ≥ d,Gk = A for greedy SR1 update, and Gk = A almost surely for random SR1 update.

Previous work (Rodomanov and Nesterov, 2021b) adopted measure σA(·), which only gives
the same rate as general updates of the Broyden family (e.g., Theorem 6, and Rodomanov
and Nesterov, 2021b, Theorem 2.5). Thus we employ a more precise measure τA(·).

2. Note that we can use the Hessian-vector product to obtain Au (or∇2f(x)·u) in practice. For most specific
optimization problems, e.g., two problems in our experiments, one operation of the exact Hessian-vector
product is tractable with O(d) complexity.

12
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4.2 Linear Convergence for BFGS Update

We now consider the classical BFGS update in the same scheme. Reusing the measure σA(·),
we obtain that

σA(G+)
(1)(8)

= σA(G)− u
>GA−1Gu

u>Gu
+ 1, G+ = BFGS(G,A,u), if u 6= 0. (20)

If we directly apply the greedy or random method from the previous content, we could only
obtain the same linear convergence rate as Rodomanov and Nesterov (2021b, Theorem 2.5).
However, if we take advantage of the current G, and choose a scaled direction such that
u = L>ũ where L is a square matrix satisfying L>L = G−1, then we could simplify the
formulation and obtain a faster condition-number-free linear convergence rate. Specifically,
after replacing u with L>ũ and G with L−1L−>, we get

σA(G+)
(20)
= σA(G)− ũ

>L−>A−1L−1ũ

ũ>ũ
+ 1, G+ = BFGS(G,A,u), if u 6= 0. (21)

Thus our modified greedy BFGS update is as follows:

(Greedy BFGS) ũA(L) = arg max
ũ∈{e1,...,ed}

ũ>L−>A−1L−1ũ. (22)

Similar arguments apply to the random method used in Eq. (12):

(Random BFGS) ũ ∼ D, s.t. Eũ∼D
ũũ>

ũ>ũ
=

1

d
Id. (23)

Now we give the linear convergence rate of the BFGS update under our modified method.
We leave the proof of Theorem 14 in Appendix B.3.

Theorem 14 Suppose in Algorithm 5, a random initialization G0 always satisfies G0 � A.
Then we obtain that for the greedy method defined in Eq. (22) or the random method defined
in Eq. (23),

∀k ≥ 0,Gk � A and 0 ≤ Eσk ≤
(

1− 1

d

)k
Eσ0. (24)

Therefore, EσA(Gk) converges to zero linearly.

Remark 15 Note that the complexity in Eq. (22) is O(d3) because we have multiplication-
addition operations with (unknown) A−1. Hence we do not apply this greedy strategy in
practice, but view it as a theoretical result similar to the random strategy. Moreover, the
random method is still practical, and we will show the efficiency of our scaled direction
compared to the original direction in our numerical experiments.

Finally, we can employ an efficient way (with complexity O(d2)) for updating Lk at each
step k ≥ 0, and we leave the proof in Appendix E.

Proposition 16 Suppose we already have L>k Lk = G−1k � 0, where Lk is a square matrix,
and uk = L>k ũk. Then we can construct the square matrix Lk+1 which satisfies L>k+1Lk+1 =

G−1k+1 := [BFGS(Gk,A,uk)]
−1 as below:

Lk+1 = Lk −
[Lk(Auk)− vk]u>k

u>k (Auk)
with vk =

√
u>k · (Auk) ·

ũk
‖ũk‖

. (25)

13
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Algorithm 6 Greedy/Random SR1/BFGS methods for quadratic minimization

1: Initialization: Choose x0 ∈ Rd and G0 � A,L>0 L0 = G−10 .
2: for k ≥ 0 do
3: Update xk+1 = xk −G−1k ∇f(xk). Choose one of the following update rules:
4: (i) SR1: Choose uk following Algorithm 4. Compute Gk+1 = SR1(Gk,A,uk).
5: (ii) BFGS: Choose uk following Algorithm 5. Compute Gk+1 = BFGS(Gk,A,uk).
6: end for

4.3 Unconstrained Quadratic Minimization

Based on the efficiency of the greedy/random SR1 and BFGS updates in matrix approxi-
mation, we next turn to minimize the strongly convex quadratic function in Eq. (14). We
show the detail in Algorithm 6, which is only for theoretical analysis. In practice, we use the
inverse update rules (Nocedal and Wright, 2006, Eqs. (6.17) and (6.25)) to update G−1k :

G−1+ = G−1 +
(Id −G−1A)uu>(Id −AG−1)

u>(A−AG−1A)u
, G+ = SR1(G,A,u); (26)

G−1+ =

(
Id −

uu>A

u>Au

)
G−1

(
Id −

Auu>

u>Au

)
+

uu>

u>Au
, G+ = BFGS(G,A,u). (27)

Based on Lemma 7, we can guarantee a faster superlinear convergence of {λk} (defined in
Eqs. (3) and (4)) using the greedy/random SR1 or BFGS update. The proof of Theorem 17
can be found in Appendix C.1.

Theorem 17 For Algorithm 6 with a randomly initialized G0, such that G0 � A always
holds, we have that ∀k ≥ 0, λk+1 ≤ ρkλk, where ρk is a certain nonnegative random variable
such that for SR1 update,

Eρk ≤
(

1− k

d

)
+

Eτ0
µ
, ∀k ≥ 0,

and for BFGS update,

Eρk ≤
(

1− 1

d

)k
Eσ0, ∀k ≥ 0.

We can also use a similar technique in Corollary 9 to give the probabilistic version of
Theorem 17, but the differences from greedy/random quasi-Newton methods are clear. In
particular, for the SR1 update, our bound recovers the classical result of Nocedal and Wright
(2006, Theorem 6.1), showing that the update stops after finite steps because Gd = A and
λd+1 = 0 almost surely. Moreover, we give an explicit rate during the entire optimization
process. And the main decreasing term

(
1− k

d

)
+
for the SR1 update as well as (1− 1

d)k for
the BFGS update in the k-th iteration are independent of the condition number κ of A,
which improves the bound (1− 1

dκ )k by Rodomanov and Nesterov (2021b, Theorem 3.4).
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Algorithm 7 Greedy/Random SR1/BFGS methods for strongly self-concordant objective

1: Initialization: Choose x0 ∈ Rd and G0 � ∇2f(x0),L
>
0 L0 = G−10 .

2: for k ≥ 0 do
3: Update xk+1 = xk −G−1k ∇f(xk).
4: Compute rk = ‖xk+1 − xk‖xk , G̃k = (1 +Mrk)Gk, L̃k = Lk/

√
1 +Mrk.

5: (i) Greedy/Random SR1: Choose uk = ū∇2f(xk+1)(G̃k), or uk ∼ Unif(Sd−1).
Compute Gk+1 = SR1(G̃k,∇2f(xk+1),uk).

6: (ii) Greedy/Random BFGS: Choose uk = L̃>k ũk with ũk = ũ∇2f(xk+1)(L̃k), or ũk ∼
Unif(Sd−1).
Compute Gk+1 = BFGS(G̃k,∇2f(xk+1),uk), and Lk+1 based on Eq. (25).

7: end for

4.4 Minimization of General Functions

Finally, we consider the optimization of an M -strongly self-concordant, µ-strongly convex and
L-smooth objective as Subsection 3.3 does. We show the entire iteration coupled with our
modified update rules in Algorithm 7. We underline that Algorithm 7 is only for theoretical
analysis, and we will use the inverse update rules (Eqs. (26) and (27)) and Hessian-vector
products in practice. Additionally, we assume that d ≥ 2, and the constants M and L are
available for simplicity. Using the same proof technique, we could obtain faster convergence
rates of {λk} (defined in Eqs. (3) and (4)) for greedy/random SR1 or BFGS method. The
proof of Lemma 18 can be found in Appendix D.1.

Lemma 18 Suppose in Algorithm 7, a randomly initialized G0 always satisfies ∇2f(x0) �
G0 � η∇2f(x0) for some η ≥ 1, and the initial point x0 is sufficiently close to the solution:

Mλ0 ≤
ln 2

4η(2cd+ 1)
,

where c = 1 for BFGS update and c = κ for SR1 update. Then for all k ≥ 0, we have
∇2f(xk) � Gk � (1 + δk)∇2f(xk), where δk is a certain nonnegative random variable such
that

Eδk ≤ 2cdη

(
1− 1

d

)k
,

and λk+1 ≤ ρkλk, where ρk is a certain nonnegative random variable such that

Eρk ≤ 2cdη

(
1− 1

d

)k
.

Similarly, we can give deterministic results of greedy methods and probabilistic results of
randomized methods below. We leave the proof of Theorem 19 in Appendix D.2.

Theorem 19 Under the same assumptions and notation as in Lemma 18, we have the
explicit rates of {λk} and {δk} shown in below:
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• for greedy BFGS/SR1 method, we have

δk ≤ 2cdη

(
1− 1

d

)k
and λk ≤ (2cdη)k

(
1− 1

d

)k(k−1)/2
λ0,∀k ≥ 0;

• for random BFGS/SR1 method, with probability at least 1−δ over the random directions
{uk}, we could obtain

δk ≤
4cd3η

δ

(
1− 1

d+ 1

)k
and λk ≤

(
4cd3η

δ

)k (
1− 1

d+ 1

)k(k−1)/2
λ0,∀k ≥ 0.

Finally, we combine with the linear convergence shown in Theorem 4.7 of Rodomanov
and Nesterov (2021b) to give fair comparison of our superlinear convergence rates. Under
the SR1 update, unlike the measure σA(·) used by Rodomanov and Nesterov (2021b), we
employ a different measure τA(·), requiring a stronger initial point condition to derive the
convergence of {λk} and {δk}. Fortunately, we could obtain the same convergence bound
with a slightly worse k0 below. The proof of Corollary 20 is given in Appendix D.3.

Corollary 20 Suppose in Algorithm 7, G0 = LId and x0 satisfies Mλ0 ≤
ln 3

2
4κ , that is, the

initial condition here is weaker than that in Lemma 18 when η = κ. Then we could obtain:
1) for the greedy BFGS/SR1 method,

λk0+k ≤
(

1− 1

d

)k(k−1)/2
·
(

1

2

)k
·
(

1− 1

2κ

)k0
· λ0, for all k ≥ 0,

where k0 = O ((d+ κ) ln(dκ)); 2) for the random BFGS/SR1 method, with probability at
least 1− δ over the random directions {uk}, we have

λk0+k ≤
(

1− 1

d+ 1

)k(k−1)/2
·
(

1

2

)k
·
(

1− 1

2κ

)k0
· λ0, for all k ≥ 0,

where k0 = O ((d+ κ) ln(dκ/δ)) .

Therefore, both the greedy and random methods have nonasymptotic superlinear convergence
rates. Additionally, our superlinear rates are condition-number-free compared to the rates in
Corollary 12 and the work of Rodomanov and Nesterov (2021b).

5. Discussion and Comparison

For better understanding the difference from the greedy quasi-Newton methods obtained in
Rodomanov and Nesterov (2021b), we give detailed comparison from the scope of the local
convergence region and superlinear rates with G0 = LId, i.e., η = κ in our results.

Local Convergence Region. Because we follow the proof of Rodomanov and Nesterov
(2021b)’work, our linear convergence region is the same as theirs, i.e., Mλ0 = O( 1

κ ). Our
superlinear convergence region of greedy/random BFGS (Lemma 18) and random Broyden
(Lemma 10) is the same as the one obtained in Rodomanov and Nesterov (2021b, Theorem
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Quasi-Newton Methods
with G0 = LId

Local Region
(Mλ0)

Warm-up
(K1)

Starting Moment
(K2)

Greedy/Random Broyden
(Rodomanov and Nesterov, 2021b)

(Lemma 10 and Theorem 11)
O

(
1

dκ

)
O (κ ln d)

O (dκ ln(dκ))
O (dκ ln(dκ/δ))

Greedy/Random BFGS
(Lemma 18 and Theorem 19) O

(
1

dκ

)
O (κ ln d)

O (d ln(dκ))
O (d ln(dκ/δ))

Greedy/Random SR1
(Lemma 18 and Theorem 19) O

(
1

dκ2

)
O (κ ln(dκ))

O (d ln(dκ))
O (d ln(dκ/δ))

Table 2: Comparison of 1) the local superlinear convergence region, 2) the warm-up iterations
from linear rate region to superlinear rate region, and 3) the starting moment of superlinear
rates at the local superlinear convergence region. We all adopt G0 = LId for brevity. For
the randomized methods, the presented rates hold with probability at least 1− δ.

4.9) for greedy Broyden method: Mλ0 = O
(

1
dκ
)
. While our greedy/random SR1 (Lemma

18) needs a slight worse local region Mλ0 = O
(

1
dκ2

)
, because we use a different measure.

Different local regions show different warm-up iterations from linear rate region to
superlinear rate region. Recall that the linear rates of these methods are the same as below:

λk
(36)
≤
(

1− 1

2κ

)k
λ0 ≤ exp

{
− k

2κ

}
λ0, ∀k ≥ 0.

Thus, with beginning from Mλ0 = O( 1
κ ), the linear rate lasts for K1 = O(κ ln d) iterations

for greedy/random Broyden and BFGS methods to make MλK1 = O( 1
dκ ), but a slight worse

K1 = O(κ ln(dκ)) iterations for greedy/random SR1 methods to make MλK1 = O( 1
dκ2 ).

Superlinear Rates. First, it is obvious that our greedy/random BFGS and SR1 methods
have a faster rates than greedy/random Broyden methods because we improve the superlinear
term from (1− 1

dκ )k(k−1)/2 to (1− 1
d)k(k−1)/2.

Second, let us consider the starting moment of superlinear convergence. For random
Broyden methods, from Theorem 11, we have the superlinear convergence is valid after

KR−Broyden
2 := 2(dκ + 1) ln

4d3κ3

δ
+ 1 (28)

iterations. Indeed, from Theorem 11, for all k ≥ KR−Broyden
2 ,

λk ≤
(

4d3κ3

δ

)k (
1− 1

dκ + 1

)k(k−1)/2
λ0 ≤

[
4d3κ3

δ
exp

{
− k − 1

2(dκ + 1)

}]k
λ0(

(28)
≤ λ0).

Similarly, from Theorem 19, we could obtain that the superlinear rates of our random BFGS
and SR1 methods are valid after

KR−BFGS
2 := 2(d+ 1) ln

4d3κ
δ

+ 1 and KR−SR1
2 := 2(d+ 1) ln

4d3κ2

δ
+ 1
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iterations, and the superlinear rates of our greedy BFGS and SR1 methods are valid after

KG−BFGS
2 := 2d ln(2dκ) + 1 and KG−SR1

2 := 2d ln(2dκ2) + 1

iterations. Moreover, based on Rodomanov and Nesterov (2021b, Theorem 4.9), we get

KG−Broyden
2 := 2dκ ln(2dκ) + 1.

Thus, our proposed greedy/random BFGS and SR1 methods improve the factor O(dκ ln(dκ))
and O(dκ ln(dκ/δ)) of greedy/random Broyden methods to O(d ln(dκ)) and O(d ln(dκ/δ)).

Third, we note that the local convergence regions of these methods are different from the
discussion. Thus, we consider the whole convergent phase when Mλ0 = O(1/κ). Based on
Corollary 12, Corollary 20 and Rodomanov and Nesterov (2021b, Theorem 4.9), the starting
moment of superlinear rates of our proposed greedy/random BFGS and SR1 methods at
this time need O((d + κ) ln(dκ)) (or O((d + κ) ln(dκ/δ))), which improves O(dκ ln(dκ))
(or O(dκ ln(dκ/δ))) of greedy/random Broyden methods. For brevity, we summarize the
comparison discussed above to Tables 1 and 2.

6. Numerical Experiments

In this section, we verify our theorems through numerical results for quasi-Newton methods.
Rodomanov and Nesterov (2021b, Section 5) have already compared their proposed greedy
quasi-Newton methods with the classical quasi-Newton methods. They showed that GrDFP,
GrBFGS, GrSR1 (greedy DFP, BFGS, SR1 methods) with directions based on ûA(G)
(defined in Eq. (9)), have quite competitive convergence with the standard versions. They
also presented the results for the randomized versions RaDFP, RaBFGS, RaSR1, which
directly choose directions uniformly from the standard Euclidean sphere. They found that
the randomized methods are slightly slower than the greedy versions. However, the difference
is not really significant.

The difference between our algorithms and their methods mainly comes from the greedy
strategy for SR1 and the random strategy for BFGS3. Hence, we mainly focus on exhibiting
our validity in these schemes. We refer to GrSR1v2 as our revised method and GrSR1v1 as
the previous method (by adopting ûA(G)). Similarly, we denote RaBFGSv2 that uses scaled
directions (L>k ũ) and RaBFGSv1 that directly uses random directions ũ correspondingly.
We choose the random directions from Unif(Sd−1) in all randomized methods for brevity.

Matrix approximation. When using Algorithms 4 and 5 for approximating a matrix
A � 0, we show the measure as proved by Theorems 13 and 14 in Figures 1a, 1c,1d and 1e.
As Figure 1a depicts, our greedy and random SR1 updates (GrSR1v2 and RaSR1) share
superlinear convergence rates under measure τA(·), while our theoretical bound matches them
well. Moreover, Figures 1c, 1d and 1e describe the behavior of the random BFGS update
under different condition numbers. Our theory matches the linear convergence of measure
σA(·) in our modified random BFGS update (RaBFGSv2) across different κs. While directly
choosing a direction without scaling (RaBFGSv1) fails to give such bounds. Particularly, a

3. There is no difference in the random SR1 method compared to Rodomanov and Nesterov (2021b), which
directly selects random directions. And our greedy BFGS method is not efficient (O(d3) in each iteration)
as we mentioned in Remark 15. Thus we leave it out.
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Figure 1: (a, c, d, e) Comparison of different direction choosing methods under the SR1 or
BFGS update for approximating a matrix A that µId � A � LId from G0 = LId. (a) The
variation of τA(Gk) during Random SR1 (RaSR1) and our Greedy SR1 (GrSR1v2) update
with nearly matched upper bound. (c,d,e) The variation of σA(Gk) during our Random
BFGS (RaBFGSv2) update and the original random version (RaBFGSv1) under various
condition numbers. (b) Comparison of SR1 and BFGS methods for quadratic objective. Here
we only depict RaSR1 method, while the other SR1-type methods share similar behavior.

large condition number could cause slow convergence of RaBFGSv1. Hence, our methods
provide effective ways of approaching a positive definite Hessian matrix.

Quadratic minimization. We also consider unconstrained quadratic minimization in
Eq. (14) with the same positive definite matrix A and a randomly selected vector b ∈ Rd.
Running Algorithm 6 with SR1 and BFGS updates, we obtain the superlinear convergence
of λf (·) shown in Figure 1b. Not surprisingly, our RaBFGSv2 runs faster than RaBFGSv1,
while we also have the theoretical guarantee. At the same time, SR1-type methods converge
to zero after d+ 1 steps because of Gd = A almost surely. Here, we only depict the RaSR1
update, while the other SR1-type methods share similar behavior. Although our theoretical
bound can not directly match the experiments due to the related initial terms τA(G0) and
σA(G0), the decay terms: (1− k/d) vs. (1− 1/d)k already show the superiority of the SR1
method over the BFGS method in the quadratic minimization problem.

Regularized Log-Sum-Exp. Following the work of Rodomanov and Nesterov (2021b),
we present computational results for greedy and random quasi-Newton methods, applied to
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the following test function with C = [c1, . . . , cm] ∈ Rd×m, b1, . . . , bm ∈ R, and γ > 0:

f(x) := ln

 m∑
j=1

ec
>
j x−bj

+
1

2

m∑
j=1

(
c>j x

)2
+
γ

2
‖x‖2 ,x ∈ Rd.

We need access to the gradient of function f(x):

∇f(x) = g(x) +

m∑
j=1

(
c>j x

)
cj + γx, with g(x) :=

m∑
j=1

πj(x)cj ,

where

πj(x) :=
ec
>
j x−bj∑m

i=1 e
c>i x−bi

∈ [0, 1], j = 1, . . . ,m.

Moreover, given a point x ∈ Rd, we need to be able to perform the following two actions:

e>i [∇2f(x)]ei =
m∑
j=1

(πj(x) + 1) (c>j ei)
2 − (g(x)>ei)

2 + γ,∀1 ≤ i ≤ d,

and for a given direction h ∈ Rd,

∇2f(x) · h =

m∑
j=1

(πj(x) + 1)
(
c>j h

)
cj −

(
g(x)>h

)
g(x) + γh.

Thus both the above operations have a cost of O(md). Thus, the cost of one iteration for all
the methods is comparable. Furthermore, note that

∇2f(x) =

m∑
j=1

(πj(x) + 1) cjc
>
j − g(x)g(x)> + γId.

We get the Lipschitz constant of ∇f(x) can be taken as L = 2λmax(CC>) +γ, and κ = L/γ.
As mentioned in the work of Rodomanov and Nesterov (2021b, Section 5.1), the strong
self-concordancy parameter is M = 2 with respect to the operator

∑m
j=1 cjc

>
j .

We also adopt the same synthetic data as used by Rodomanov and Nesterov (2021b,
Section 5.1). First, we generate a collection of random vectors ĉ1, . . . , ĉm with entries,
uniformly distributed in the interval [−1, 1]. Then we generate b1, . . . , bm from the same
distribution. Using this data, we define

∀1 ≤ j ≤ m, cj := ĉj −∇f̂(0), where f̂(x) := ln

( m∑
j=1

eĉ
>
j x−bj

)
.

Note that by construction,

∇f(0) =
1∑m

i=1 e
−bi

m∑
j=1

e−bj
(
ĉj −∇f̂(0)

)
= 0.
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Figure 2: Comparison of SR1 and BFGS updates for Regularized Log-Sum-Exp. The
dimension d, the number m of linear functions, the regularization coefficient γ and condition
number κ are displayed in the title of each graph. The lines of GrSR1v1 and GrSR1v2 are
overlapped in each figure.

So the unique minimizer of our test function is x∗ = 0. The starting point x0 for all
methods is the same and generated randomly from the uniform distribution on the standard
Euclidean sphere of radius 1/d centered at the minimizer, i.e., x0 ∼ Unif

(
1
dS

d−1). We
compare ‖∇f(xk)‖ obtained by different methods.

As Figure 2 depicts, the BFGS-type methods are slower than the SR1-type methods,
and the greedy algorithms converge more rapidly than the random algorithms. The only
difference is that our RaBFGSv2 may have slower convergence behavior than RaBFGSv1
under a small κ in Figure 2a.

We consider our scaled direction is more suitable for a constant Hessian matrix as the
quadratic objective has. Thus we still have a better convergence rate in the last few iterations
when Hessians are nearly unchanged in Figure 2a. However, the Hessian varies drastically in
the initial period. Thus there is less benefit under a more accurate Hessian approximation.
When applied to the ill-conditioning setting with a large κ in Figures 2b and 2c, we find our
RaBFGSv2 could be faster than GrBFGSv1 and RaBFGSv1. This implies that our proposed
method has less dependence on the condition number κ.

Regularized Logistic Regression. Finally, we consider a common machine learning
problem: `2-regularized logistic regression, which has the objective as

f(w) =

n∑
i=1

ln
(

1 + e−yiw
>xi
)

+
γ

2
‖w‖2, w ∈ Rd,

where X = [x1, . . . ,xn] ∈ Rd×n are training samples, the corresponding labels are y1, . . . , yn
∈ {+1,−1}, and γ > 0 is the regularization coefficient. The gradient of function f(w) is

∇f(w) = −
n∑
i=1

1

1 + eyiw>xi
· yixi + γw, w ∈ Rd.

Moreover, given a point w ∈ Rd, we need to be able to perform the following two actions:

e>j [∇2f(w)]ej =

n∑
i=1

eyiw
>xi(

1 + eyiw>xi
)2 · (x>i ej)2 + γ,∀1 ≤ j ≤ d,
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Figure 3: Comparison of SR1 and BFGS update for `2-regularized logistic regression applied
with ‘a6a’ data from the LIBSVM collection of real-world datasets. We list the name of
dataset, the dimension d and the condition number κ under the corresponding γ in the title
of each figure. (a,b,c) Comparison of convergence rates with various condition numbers.
The lines of GrSR1v1 and GrSR1v2 are overlapped in some figures, and RaSR1 fails when
γ = 0.01 due to the unsuitable initialization and search directions. (d) Comparison of running
time with AGD when γ = 0.01.

and for a given h ∈ Rd,

∇2f(w) · h =

n∑
i=1

eyiw
>xi(

1 + eyiw>xi
)2 · (x>i h) · xi + γh.

Thus, both the above operations have a cost of O(nd). Furthermore, note that

∇2f(w) =
n∑
i=1

eyiw
>xi(

1 + eyiw>xi
)2 · xix>i + γId, w ∈ Rd.

We obtain that the Lipschitz constant of ∇f(w) can be taken as L = λmax(XX>)
4 + γ,

and κ = L/γ. Additionally, we take data from the LIBSVM collection of real-world datasets
for binary classification problems (Chang and Lin, 2011). And we do not apply the correction
strategy (i.e., G̃k = (1 +Mrk)Gk) shown in Algorithm 7 recommended by Rodomanov and
Nesterov (2021b, Section 5.2). In order to simulate the local convergence, we use the same
initialization after running several standard Newton’s steps to make the measure ‖∇f(w0)‖
small (around 10−2 ∼ 100). We compare ‖∇f(wk)‖ obtained by different methods.
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We show the results in Figure 3. As we can see, the general picture is the same as the
Regularized Log-Sum-Exp. In particular, SR1-type methods are still faster than BFGS-type
methods, and the greedy algorithms also converge more rapidly than the random algorithms.
GrBFGSv1 and RaBFGSv1 are faster than RaBFGSv2 in a small condition number case in
Figure 3a, but they become slower than RaBFGSv2 when the condition number becomes
huge in Figures 3b and 3c. Therefore, we think our RaBFGSv2 which uses scaled direction
indeed has less dependence on the condition number as our theory shows.

In addition, we also compare the running time of each method with a classical first-order
method: accelerated gradient descent (AGD) following Nesterov (2003). We run the standard
AGD algorithm for 25000 epochs with the same setting in Figure 3c. As Figure 3d shows, not
surprisingly, we could discover the benefit of quasi-Newton methods in running time due to
their superlinear convergence rates. Furthermore, we find that GrBFGSv1 takes more time
compared to the other methods because of the greedy step for searching directions. Thus,
the greedy method is time-consuming as Rodomanov and Nesterov (2021b) discussed. But
the random method solves this problem through a random choice of directions. Moreover, we
discover that random methods may fail for unsuitable initialization as the RaSR1 method in
Figure 3c shows, since we may encounter bad random directions during iterations, and our
theoretical guarantee is also a probabilistic description. Hence, we recommend a mixture of
greedy and random strategies in practice to balance the convergence and running complexity.

Overall, our proposed methods do not lose the superlinear convergence rates particularly
in the large condition number schemes, while we also present the theoretical guarantee for
these algorithms.

7. Conclusion

In this work, we have addressed two open problems mentioned by Rodomanov and Nesterov
(2021b). First, we have shown theoretical analysis of the random quasi-Newton methods,
which also preserve a similar nonasymptotic superlinear convergence shown in the work of
Rodomanov and Nesterov (2021b). Second, we have studied the behavior of two specific
famous quasi-Newton methods: the SR1 and BFGS methods. We have presented different
greedy methods in contrast to the work of Rodomanov and Nesterov (2021b), as well as
the random version of these methods. In particular, we have provided the faster Hessian
approximation behavior and the condition-number-free (local) superlinear convergence rates
applied to quadratic or strongly self-concordant objectives. Moreover, the experiments match
our analysis well. We hope that the theoretical analysis and the related work would be useful
for understanding the explicit rates of quasi-Newton methods, and such convergence rates
could benefit machine learning by developing new optimization methods.

Acknowledgments

We would like to thank the anonymous reviewers for their careful work and constructive
comments that greatly help us improve the paper quality. We also thank an anonymous
reviewer for pointing out efficient update in Proposition 16 and concise formulation in
Lemmas 10 and 18, as well as providing a special lemma (Lemma 25) in Appendix.

23



Lin, Ye and Zhang

Haishan Ye has been supported by the National Natural Science Foundation of China
(No. 12101491).

Appendix A. Auxiliary Lemmas and Theorems

In the following, assume the objective f(x) is an M -strongly self-concordant, µ-strongly
convex and L-smooth function as Subsection 3.3 does.

Lemma 21 (Rodomanov and Nesterov, 2021b, Lemma 4.2) Let x,y ∈ Rd, and r := ‖y−x‖x.
Then we have

∇2f(x)

1 +Mr
� ∇2f(y) � (1 +Mr)∇2f(x). (29)

Also, for J :=
∫ 1
0 ∇

2f(x+ t(y − x))dt and any v ∈ {x,y}, we have

∇2f(v)

1 + Mr
2

� J �
(

1 +
Mr

2

)
∇2f(v).

Lemma 22 (Rodomanov and Nesterov, 2021b, Lemmas 4.3 and 4,4) Let x ∈ Rd, and a
symmetric matrix G, such that ∇2f(x) � G � η∇2f(x), for some η ≥ 1. Let x+ ∈ Rd, and
r = ‖x+ − x‖x. Then we have

G̃ := (1 +Mr)G � ∇2f(x+), (30)

and for all u ∈ Rd and τ ∈ [0, 1], we have

∇2f(x+) � Broydτ

(
G̃,∇2f(x+),u

)
�
[
(1 +Mr)2 η

]
∇2f(x+). (31)

More specifically, if x+ = x−G−1∇f(x), and letting λ := λf (x) be such that Mλ ≤ 2, then,

r ≤ λ, and λf (x+) ≤
(

1 +
Mλ

2

)
η − 1 + Mλ

2

η
· λ. (32)

Theorem 23 (Extension of Rodomanov and Nesterov, 2021b, Theorem 4.7) Suppose in
Algorithm 8, a (random) initialization G0 satisfies

∇2f(x0) � G0 � η∇2f(x0) (33)

for some η ≥ 1, and the (random) initial point x0 is sufficiently close to the solution:

Mλ0 ≤
ln 3

2

4η
. (34)

Then, for all k ≥ 0, we have

∇2f(xk) � Gk � e2M
∑k−1
i=0 λiη∇2f(xk) �

3η

2
∇2f(xk), (35)

and

λk ≤
(

1− 1

2η

)k
λ0, (36)

where λk is defined in Eqs. (3) and (4).
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Algorithm 8 Quasi-Newton Method (Rodomanov and Nesterov, 2021b, Scheme (4.17))

1: Initialization: Choose G0 � ∇2f(x0) (such as G0 = LId).
2: for k ≥ 0 do
3: Update xk+1 = xk −G−1k ∇f(xk).
4: Compute rk = ‖xk+1 − xk‖xk and set G̃k = (1 +Mrk)Gk.
5: Choose uk ∈ Rd and τk ∈ [0, 1].
6: Compute Gk+1 = Broydτk

(
G̃k,∇2f(xk+1),uk

)
.

7: end for

Proof The proof is similar as Theorem 4.7 by Rodomanov and Nesterov (2021b). We give
the detail for completeness.

From Eq. (33), both Eqs. (35) and (36) are satisfied for k = 0. Now let k ≥ 0, and
suppose Eqs. (35) and (36) have already been proved for all 0 ≤ k′ ≤ k. Denote

ηk := e2M
∑k−1
i=0 λiη. (37)

Then by inductive hypothesis, we have

∇2f(xk) � Gk � ηk∇2f(xk). (38)

Note that

M
k∑
i=0

λi
(36)
≤ Mλ0

k∑
i=0

(
1− 1

2η

)i
≤ 2ηMλ0

(34)
≤

ln 3
2

2
< 1. (39)

Hence, Mλk < 2, and by Lemma 22, we have

rk := ‖xk+1 − xk‖xk
(32)
≤ λk, (40)

and

λk+1

(32)(38)
≤

(
1 +

Mλk
2

)
ηk − 1 + Mλk

2

ηk
λk ≤

(
1 +

Mλk
2

)(
1−

1− Mλk
2

ηk

)
λk. (41)

Using the inequality 1− t ≥ e−2t when 0 ≤ t ≤ 1/2, we get

1− Mλk
2

ηk

(39)
≥ e−Mλkη−1k

(37)
≥ e−2M

∑k
i=0 λiη−1

(39)
≥ 2

3η
.

Moreover, noting that Mλk
(36)
≤ Mλ0

(34)
≤ 1

8η , we obtain(
1 +

Mλk
2

)(
1−

1− Mλk
2

ηk

)
≤
(

1 +
1

16η

)(
1− 2

3η

)
≤ 1− 2

3η
+

1

16η
≤ 1− 1

2η
.

Consequently,

λk+1

(41)
≤
(

1− 1

2η

)
λk

(36)
≤
(

1− 1

2η

)k+1

λ0.
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Finally, from Eq. (31) in Lemma 22, it follows that

∇2f(xk+1) � Gk+1 � (1 +Mrk)
2 ηk∇2f(xk+1)

(40)
� (1 +Mλk)

2 ηk∇2f(xk+1)

� e2Mλkηk∇2f(xk+1)
(37)
= e2M

∑k
i=0 λiη∇2f(xk+1)

(39)
� 3η

2
∇2f(xk+1).

Thus, Eqs. (35) and (36) are valid for index k + 1, and we can continue by induction.

Remark 24 Note that the choice of {uk} and the update rule in Algorithm 8 are arbitrary,
thus Algorithms 3 and 7 can be viewed as special cases of Algorithm 8. Therefore, Theorem
23 always holds as long as the initial point x0 is always sufficiently close to the solution based
on the initial approximate matrix G0, and Eq. (36) holds without any expectations.

Lemma 25 (Extension of Rodomanov and Nesterov, 2021b, Lemma 4.8)
Following the update in Algorithms 3 or 7, we can obtain

∀k ≥ 0,∇2f(xk) � Gk � (1 + δk)∇2f(xk), (42)

where δk is a random sequence which satisfies the following recurrence:

Eukδk+1 ≤
(
1− t−1

)
(1 +Mrk)

2 (δk + 2cdMrk) (43)

for some constants c, t ≥ 1. Particularly,

1) for the Broyden method in Algorithm 3, one has δk = σk, t = dκ, c = 1;

2) for the BFGS method in Algorithm 7, one has δk = σk, t = d, c = 1;

3) for the SR1 method in Algorithm 7, one has δk = dκτk/tr[∇2f(xk)], t = d, c = κ.

Here, rk := ‖xk+1 − xk‖xk , σk and τk are defined in Eq. (4).

Proof From the update rule in Algorithms 3 and 7, we apply Lemma 22 to obtain

Gk

(30)
� ∇2f(xk), ∀k ≥ 0. (44)

Now for all k ≥ 0, we define ηk =
∥∥[∇2f(xk)]

−1/2Gk[∇2f(xk)]
−1/2∥∥. Then ηk

(44)
≥ 1 and

Gk � ηk∇2f(xk). Hence,

ηk − 1 =
∥∥∥[∇2f(xk)]

−1/2(Gk −∇2f(xk))[∇2f(xk)]
−1/2

∥∥∥
≤ tr

(
[∇2f(xk)]

−1/2 (Gk −∇2f(xk)
)

[∇2f(xk)]
−1/2

) (4)
= σk.

Moreover, from µId � ∇2f(xk) � LId, ∀k ≥ 0, we also have

ηk − 1 =
∥∥∥[∇2f(xk)]

−1/2(Gk −∇2f(xk))[∇2f(xk)]
−1/2

∥∥∥ ≤ ‖Gk −∇2f(xk)‖
µ

≤
tr
[
Gk −∇2f(xk)

]
µ

(4)
=
τk
µ
≤ dL

tr[∇2f(xk)]
· τk
µ

=
dκτk

tr[∇2f(xk)]
.
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Therefore, the choices of δk = σk and dκτk
tr[∇2f(xk)]

are valid to guarantee Eq. (42). Next, we
deduce Eq. (43) based on the specific choice of δk.

1) For the Broyden method in Algorithm 3, by Theorem 6, one step update gives

Eukσk+1
(4)
= Eukσ∇2f(xk+1) (Gk+1)

(13)
≤
(

1− 1

dκ

)
σ∇2f(xk+1)(G̃k),∀k ≥ 0.

We deduce the result by bounding the last term as below:

σ∇2f(xk+1)(G̃k)
(1)
= tr

(
[∇2f(xk+1)]

−1G̃k

)
−d = (1+Mrk) tr

(
[∇2f(xk+1)]

−1Gk

)
−d

(29)
≤ (1+Mrk)

2 tr
(
[∇2f(xk)]

−1Gk

)
−d (4)

= (1+Mrk)
2 (σk+d)−d

= (1+Mrk)
2 σk+d

[
2Mrk+(Mrk)

2
]
≤ (1+Mrk)

2 (σk+2dMrk) . (45)

2) For the BFGS method in Algorithm 7, by Theorem 14, one step update gives

Eukσk+1

(24)
≤
(

1− 1

d

)
σ∇2f(xk+1)(G̃k),∀k ≥ 0.

The remaining proof is the same as Eq. (45).
3) For the SR1 method in Algorithm 7, from Theorem 13, one step update gives

Eukτk+1

(19)
≤
(

1− 1

d

)
τ∇2f(xk+1)(G̃k), ∀k ≥ 0.

Now we can bound the last term as below:

τ∇2f(xk+1)(G̃k)
(4)
= tr

(
G̃k −∇2f(xk+1)

) (29)
≤ tr

(
(1 +Mrk)Gk −

∇2f(xk)

1 +Mrk

)
(4)
= (1 +Mrk) τk +

(
1 +Mrk −

1

1 +Mrk

)
tr
[
∇2f(xk)

]
(i)

≤ (1 +Mrk) τk + 2Mrktr
[
∇2f(xk)

]
≤ (1 +Mrk)

(
τk

tr[∇2f(xk)]
+ 2Mrk

)
tr
[
∇2f(xk)

]
(29)
≤ (1 +Mrk)

2

(
τk

tr[∇2f(xk)]
+ 2Mrk

)
tr
[
∇2f(xk+1)

]
,

where (i) uses inequality 1 + a − 1
1+a ≤ 2a, a ≥ 0. Thus, by replacing δk = dκτk

tr[∇2f(xk)]
, we

obtain

Eukδk+1 ≤
(

1− 1

d

)
(1 +Mrk)

2 (δk + 2κdMrk) .
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Lemma 26 Suppose there exist some constants a ≥ 0, t > 1, and a nonnegative random
sequence {Xk} satisfies

EXk ≤ a
(

1− 1

t

)k
,∀k ≥ 0.

Then for any δ ∈ (0, 1), with probability at least 1− δ, we have

∀k ≥ 0,Xk ≤
at2

δ

(
1− 1

1 + t

)k
.

Proof If a = 0, then by Xk ≥ 0,∀k ≥ 0, we can see Xk = 0, a.s. Then the results trivial
hold. Now we consider a > 0. Noting that Xk ≥ 0 and using Markov’s inequality, we have
for any ε > 0,

P

(
Xk >

a

ε

(
1− 1

t

)k)
≤ P

(
Xk ≥

a

ε

(
1− 1

t

)k)
≤ EXk

a
(
1− 1

t

)k · ε ≤ ε. (46)

Choosing εk = δ(1− q)qk for some q ∈ (0, 1) and applying the union bound, we obtain

P

(
∃k ≥ 0,Xk >

a

εk

(
1− 1

t

)k)
≤

+∞∑
k=0

P

(
Xk >

a

εk

(
1− 1

t

)k) (46)

≤
+∞∑
k=0

εk = δ.

Therefore, with probability at least 1− δ, we have

∀k ≥ 0,Xk ≤
a

δ(1− q)qk

(
1− 1

t

)k
.

If we let q = 1− 1
t2
, then we can simplify the above inequality into

∀k ≥ 0,Xk ≤
at2

δ

(
1 +

1

t

)−k
=
at2

δ

(
1− 1

t+ 1

)k
.

Appendix B. Missing Proofs of Matrix Approximation

B.1 Proof of Theorem 6

Proof From Lemma 5, we have Gk � A and σk
(4)
= σA(Gk) ≥ 0,∀k ≥ 0. Moreover, from

Eqs. (11) and (12), we get

Eukσk+1

(11)
≤ σk −

1

L
tr

[
(Gk −A) · Euk

uku
>
k

u>k uk

]
(12)
= σk −

1

dL
tr(Gk −A)

(10)
≤ σk −

µ

dL
tr
[
(Gk −A)A−1

]
=

(
1− 1

dκ

)
σk.
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Finally, taking the expectation of all randomness, we get

Eσk ≤
(

1− 1

dκ

)
Eσk−1 ≤ · · · ≤

(
1− 1

dκ

)k
Eσ0, ∀k ≥ 1.

B.2 Proof of Theorem 13

Proof Denoting Gk+1 := SR1(Gk,A,uk) and Rk := Gk −A, ∀k ≥ 0, we have the update
rule:

Rk+1
(6)
=

Rk −
Rkuku

>
k Rk

u>k Rkuk
, if Rkuk 6= 0;

Rk, otherwise.
(47)

We also have Rk � 0 by Lemma 5 since R0 � 0. It is easily seen that 1) Ker(Rk) ⊆
Ker(Rk+1) := {v : Rk+1v = 0}, and 2) uk ∈ Ker(Rk+1) from Eq. (47).

For the greedy method, we denote ūk = ūA(Gk), ∀k ≥ 0. If for some k′ < d, Rk′ = 0,
then from Eq. (47), we have Rk = 0,∀k ≥ k′. Thus, Eq. (19) trivially holds for k ≥ k′.

Now we suppose ∀0 ≤ k < d,Rk 6= 0. Then by Rk � 0 and Rk 6= 0, we must have
ūk 6∈ Ker(Rk) in view of Eq. (17) for all 0 ≤ k < d. Additionally, ūi ∈ Ker(Rk),∀0 ≤ i < k
by 1) and 2), so we can see ūi 6= ūk,∀i 6= k. Thus, at least k of the diagonal elements of Rk

must be zero, leading to

max
u∈{e1,...,ed}

u>Rku ≥
1

d− k
· tr(Rk) =

1

d− k
· τk. (48)

Finally, for all 0 ≤ k < d, since ūk 6∈ Ker(Rk), then Eq. (15) is well-defined. Thus, we get

τk+1
(15)
= τk −

ū>kR
2
kūk

ū>kRkūk

(16)
≤ τk −

ū>kRkūk

ū>k ūk

(17)
= τk − max

u∈{e1,...,ed}
u>Rku

(48)
≤
(

1− 1

d− k

)
τk.

Consequently, we have for all 1 ≤ k ≤ d,

τk ≤
d− k

d− k + 1
τk−1 ≤ · · · ≤

 k∏
j=1

d− j
d− j + 1

 τ0 =

(
1− k

d

)
τ0.

Then τd = 0, which leads to Gd = A. Further we obtain Gk = A, ∀k ≥ d following Eq. (47).
Therefore, τk = 0, ∀k ≥ d. We conclude that for all k ≥ 0, τk ≤

(
1− k

d

)
+
τ0.

For the random method, ∀k ≥ 0,uks are independently chosen from an identical
spherically symmetric distribution, such as N (0, Id),Unif(Sd−1).

We first consider 0 ≤ k < d. We have λi := λi(Rk) ≥ 0 since Rk � 0. Suppose
rk := rank(Rk) ≥ 1, i.e., Rk 6= 0. We denote Rk = UkΛkU

>
k as the spectral decomposition

of Rk with an orthogonal matrix Uk and a diagonal matrix Λk = diag{λ1, . . . , λrk , 0, . . . , 0},
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and vk = (v1, . . . , vd)
> := U>k uk. Then we can derive that

Euk

u>kR
2
kuk

u>kRkuk
1{Rkuk 6=0}

(i)
= Evk

∑rk
i=1 λ

2
i v

2
i∑rk

i=1 λiv
2
i

1{Λkvk 6=0}
(ii)

≥ Evk

∑rk
i=1 λiv

2
i∑rk

i=1 v
2
i

1{
∑rk
i=1 v

2
i 6=0}

=

rk∑
i=1

λiEvk

v2i∑rk
j=1 v

2
j

1{
∑rk
i=1 v

2
i 6=0}

(iii)
=

1

rk

rk∑
i=1

λi =
tr(Rk)

rk

(4)
=
τk
rk
, (49)

where (i) holds due to u>kR
i
kuk = v>k Λi

kvk,∀i ≥ 1 and Rkuk 6= 0 is equivalent to Λkvk 6= 0;
(ii) holds due to the Cauchy–Schwarz inequality

(∑rk
i=1 λ

2
i v

2
i

) (∑rk
i=1 v

2
i

)
≥
(∑rk

i=1 λiv
2
i

)2
with

∑rk
i=1 λiv

2
i = u>kRkuk > 0 since Rkuk 6= 0 and Rk � 0, and the fact that

Λkvk 6= 0⇔ ∃1 ≤ i ≤ rk, s.t., λivi 6= 0⇔ ∃1 ≤ i ≤ rk, s.t., vi 6= 0⇔
rk∑
j=1

v2j 6= 0;

(iii) uses the fact that vk is still spherically symmetric, thus also permutation invariant:

Evk

v21∑rk
j=1 v

2
j

1Vk = · · · = Evk

v2rk∑rk
j=1 v

2
j

1Vk =
1

rk

rk∑
i=1

Evk

v2i∑rk
j=1 v

2
j

1Vk

=
1

rk
Evk

rk∑
i=1

v2i∑rk
j=1 v

2
j

1Vk =
1

rk
Evk1Vk

(iv)
=

1

rk
, with Vk := {vk :

rk∑
i=1

v2i 6= 0},

where (iv) holds because Vck (the complementary event of Vk) has zero Lebesgue measure.
Therefore, the random choice of uk leads to

Eukτk+1 = Eukτk+1

[
1{Rkuk 6=0} + 1{Rkuk=0}

] (v)
= Eukτk+11{Rkuk 6=0}

(15)
= τk − Euk

u>kR
2
kuk

u>kRkuk
1{Rkuk 6=0}

(49)
≤
(

1− 1

rk

)
τk, if Rk 6= 0,

where (v) uses the fact that Rkuk = 0 is equal to
∑rk

i=1 v
2
i = 0, i.e., the event Vck, which has

zero measure.
Furthermore, if u0, . . . ,uk−1 are linearly independent, then by 1) and 2), the dimension

of Ker(Ri), i ≤ k grows at least by one at every iteration, showing that Ker(Rk) ≥ k and
rk = rank(Rk) = d−Ker(Rk) ≤ d− k. Thus, we establish that

E[τk+1|Mk,Rk 6= 0] ≤
(

1− 1

d− k

)
E[τk|Mk,Rk 6= 0], (50)

whereMk = {u0, . . . ,uk−1 are linear independent}, k ≥ 1 andM0 is the full set. Besides,
we note that Rk = 0 gives Rk+1 = 0, then

E[τk+1|Mk,Rk = 0] = 0 =

(
1− 1

d− k

)
E[τk|Mk,Rk = 0]. (51)

Using the law of total expectation conditioning onMk
4, we obtain

E[τk+1|Mk]
(50)(51)
≤

(
1− 1

d− k

)
E[τk|Mk]. (52)

4. E[X|A,M] · P(A|M) + E[X|Ac,M] · P(Ac|M) = E[X|M].
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Noting that P(Mc
k) = P(∃0 ≤ t ≤ k− 1,ut ∈ Span{u0, . . . ,ut−1,ut+1, · · · ,uk−1}) = 0 since

the dimension of Span{u0, . . . ,ut−1,ut+1, · · · ,uk−1} is at most k − 1 < d, so by the law of
total expectation again5, we conclude

Eτk+1

(52)
≤
(

1− 1

d− k

)
Eτk,∀0 ≤ k < d. (53)

Consequently, we have for all 1 ≤ k ≤ d,

Eτk
(53)
≤ d− k

d− k + 1
· Eτk−1 ≤ · · · ≤

 k∏
j=1

d− j
d− j + 1

Eτ0 =

(
1− k

d

)
Eτ0.

That is, we obtain Eτd = 0, showing that τd = 0 a.s. and Gd−A = 0 a.s., since Gd−A � 0.
Furthermore, following Eq. (47), we obtain ∀k ≥ d,Gk = A a.s. Therefore, we derive that
∀k ≥ d, τk = 0 a.s. Then we conclude that Eτk ≤

(
1− k

d

)
+
Eτ0.

B.3 Proof of Theorem 14

Proof For the greedy method, at step k ≥ 0, since G−1k = L>k Lk, we obtain

max
ũ∈{e1,...,ed}

ũ>L−>k A−1L−1k ũ ≥
1

d
tr
(
L−>k A−1L−1k

)
=

1

d
tr
(
L−1k L

−>
k A−1

)
=

1

d
tr(GkA

−1).

(54)
Therefore, the greedy choice of uk = L>k ũk with ũk following Eq. (22) leads to

σk+1
(21)
= σk −

ũ>k L
−>
k A−1L−1k ũk

ũ>k ũk
+ 1

(22)(54)
≤ σk −

1

d
tr(GkA

−1) + 1

=

(
1− 1

d

)
σk ≤ · · · ≤

(
1− 1

d

)k+1

σ0,∀k ≥ 0.

For the random method, we have that Eũ
ũũ>

ũ>ũ
= 1

dId. Hence, we obtain

Eũ
ũ>L−>k A−1L−1k ũ

ũ>ũ
= tr

[
L−>k A−1L−1k · Eũ

ũũ>

ũ>ũ

]
=

1

d
tr(L−>k A−1L−1k )=

1

d
tr(GkA

−1),

(55)
Therefore, the random choice of uk = L>k ũk leads to

Eukσk+1
(21)
= σk − Eũk

ũ>k L
−>
k A−1L−1k ũk

ũ>k ũk
+ 1

(55)
= σk −

1

d
tr(GkA

−1) + 1 =

(
1− 1

d

)
σk,

Now taking expectation for all {uk}, we get

Eσk+1 =

(
1− 1

d

)
Eσk = · · · =

(
1− 1

d

)k+1

Eσ0, ∀k ≥ 0.

5. E[X|M] · P(M) + E[X|Mc] · P(Mc) = EX.
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Appendix C. Missing Proofs of Quadratic Objective

C.1 Proofs of Theorem 8 and Theorem 17

Proof From Lemma 5, we have ∀k ≥ 0,Gk � A. Now for all k ≥ 0, we denote ηk :=∥∥A−1/2GkA
−1/2∥∥, then ηk ≥ 1 and Gk � ηkA. Hence,

ηk − 1 =
∥∥∥A−1/2(Gk −A)A−1/2

∥∥∥ ≤ tr
(
A−1/2 (Gk −A)A−1/2

) (1)
= σk (56)

(14)
≤ tr (Gk −A)

µ

(2)
=
τk
µ
. (57)

By Lemma 7, we know that for all k ≥ 0, λk+1 ≤ (ηk − 1)λk, then we can take ρk = ηk − 1.

1. For Broyden method, using Theorem 6, we get

Eρk = E(ηk − 1)
(56)
≤ Eσk

(13)
≤
(

1− 1

dκ

)k
Eσ0,∀k ≥ 0.

2. For SR1 method, using Theorem 13, we obtain

Eρk = E(ηk − 1)
(57)
≤ Eτk

µ

(19)
≤
(

1− k

d

)
+

Eτ0
µ
, ∀k ≥ 0.

3. For BFGS method, using Theorem 14, we get

Eρk = E(ηk − 1)
(56)
≤ Eσk

(24)
≤
(

1− 1

d

)k
Eσ0,∀k ≥ 0.

C.2 Proof of Corollary 9

Proof From Theorems 6 and 8, we can apply Lemma 26 with Xk = σk or ρk, ∀k ≥ 0 and
a = Eσ0, t = dκ, i.e., with probability at least 1− δ/2, we get

σk ≤
2d2κ2Eσ0

δ

(
1− 1

dκ + 1

)k
,∀k ≥ 0, (58)

and with probability at least 1− δ/2, we have

ρk ≤
2d2κ2Eσ0

δ

(
1− 1

dκ + 1

)k
,∀k ≥ 0. (59)

Noting that λk+1 ≤ ρkλk by definition, we furtehr obtain with probability at least 1− δ/2,

λk+1 ≤
2d2κ2Eσ0

δ

(
1− 1

dκ + 1

)k
λk,∀k ≥ 0, (60)
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because the latter event (as a set) in Eq. (60) is contained in the former in Eq. (59).
Using the fact that for any sequences {ξk} and {ak} of nonnegative random variables

and nonnegative reals, respectively, it holds that

P

(
ξk+1 ≤

(
k∏
i=0

ai

)
ξ0, ∀k ≥ 0

)
≥ P (ξk+1 ≤ akξk,∀k ≥ 0) , (61)

because the latter event (as a set) is contained in the former. Thus we can telescope from
k − 1 to 0 in Eq. (60) for all k ≥ 1. Then we get with probability at least 1− δ/2,

λk
(60)(61)
≤

(
2d2κ2Eσ0

δ

)k (
1− 1

dκ + 1

)k(k−1)/2
λ0,∀k ≥ 1, (62)

and the above inequality trivially holds for k = 0.
Finally, applying the union bound again makes both Eqs. (58) and (62) hold with proba-

bility at least 1− δ.

Appendix D. Missing Proofs of General Objective

D.1 Proofs of Lemma 10 and Lemma 18

Since the proofs of Lemma 10 and Lemma 18 have many overlapping parts, we recombine
them into a lemma below.

Lemma 27 (Restating) Suppose in Algorithm 3 or Algorithm 7, a random initialization
G0 always satisfies ∇2f(x0) � G0 � η∇2f(x0) for some η ≥ 1, and the (random) initial
point x0 is sufficiently close to the solution:

Mλ0 ≤
ln 2

4η(2cd+ 1)
. (63)

Then for all k ≥ 0, we have ∇2f(xk) � Gk � (1 + δk)∇2f(xk), where δk is a certain random
variable such that

Eδk ≤ 2cdη

(
1− 1

t

)k
, (64)

and λk+1 ≤ ρkλk, where ρk is a certain random variable such that

Eρk ≤ 2cdη

(
1− 1

t

)k
. (65)

Here, the choices of δk, t, c are inherited from Lemma 25.

Proof The derivation is the same as Theorem 4.9 in the work of Rodomanov and Nesterov
(2021b) by using Lemma 25. In order to providing better paper readability, we also show the
detail below.
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In view of Theorem 23, because the initial condition ln 2
4η(2cd+1) ≤

ln 3
2

4η , we get ∇2f(xk) �
Gk, ∀k ≥ 0, and also

M
k∑
i=0

λi
(36)
≤ Mλ0

k∑
i=0

(
1− 1

2η

)i
≤ 2ηMλ0

(63)
≤ ln 2

2(2cd+ 1)
. (66)

Moreover, we need to underline that Eq. (66) holds with no expectation, which is crucial in
the following derivation. Next, let us show that ∀k ≥ 0,

Eθk ≤ 2cdη

(
1− 1

t

)k
, where θk := δk + 2cdMλk. (67)

Indeed, because ∇2f(x0) � G0 � η∇2f(x0), we have

Eσ0
(4)
= Etr

(
∇2f(x0)

−1G0

)
− d ≤ d (η − 1) ,

and

E
dκτ0

tr[∇2f(x0)]

(4)
= dκ · Etr[G0 −∇2f(x0)]

tr[∇2f(x0)]
≤ κd(η − 1).

Hence, following the choice of δ0 from Lemma 25, we derive that

Eθ0 = Eδ0 + 2cdMλ0
(63)
≤ cd (η − 1) +

2cd

2cd+ 1
· ln 2

4η
< cd (η − 1) + 1 ≤ cdη. (68)

Therefore, for k = 0, Eq. (67) is satisfied.
Now we consider the index k + 1 ≥ 1. Because Eq. (66) shows that Mλk ≤ 2, we can

employ Lemma 22, which leads to

rk := ‖xk+1 − xk‖xk
(32)
≤ λk. (69)

Then by Lemma 25, we have

∀k ≥ 0,∇2f(xk) � Gk � (1 + δk)∇2f(xk) (70)

with

Eukδk+1

(43)
≤
(

1− 1

t

)
(1 +Mrk)

2 (δk + 2cdMrk)
(69)
≤
(

1− 1

t

)
e2Mλkθk. (71)

Moreover, using Lemma 22 again, we obtain

λk+1

(32)(70)
≤

(
1 +

Mλk
2

)
δk + Mλk

2

1 + δk
λk ≤

(
1 +

Mλk
2

)
θkλk ≤ e2Mλkθkλk. (72)

Note that 1
2 ≤ 1− 1

t because t ≥ d ≥ 2. Combining Eqs. (71) and (72), we obtain

Eukθk+1 ≤
(

1− 1

t

)
e2Mλkθk + 2cdMe2Mλkθkλk

≤
[(

1− 1

t

)
+

(
1− 1

t

)
4cdMλk

]
e2Mλkθk =

(
1− 1

t

)
(1 + 4cdMλk) e

2Mλkθk

≤
(

1− 1

t

)
e2(2cd+1)Mλkθk

(36)
≤
(

1− 1

t

)
e
2(2cd+1)Mλ0

(
1− 1

2η

)k
θk.
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Therefore, by taking expectation for all randomness, we obtain

Eθk+1 ≤
(

1− 1

t

)
e
2(2cd+1)Mλ0

(
1− 1

2η

)k
Eθk ≤ · · ·

(∗)
≤
(

1− 1

t

)k+1

e
2(2cd+1)Mλ0

∑k
i=0

(
1− 1

2η

)i
Eθ0

≤
(

1− 1

t

)k+1

e4η(2cd+1)Mλ0Eθ0
(66)(68)
≤ 2cdη

(
1− 1

t

)k+1

. (73)

Thus, Eq. (67) is proved for the index k + 1. Therefore, Eq. (67) holds for all k ≥ 0.
Now we prove the bound of δk and ρk based on Eq. (67). Since λk ≥ 0, we have

Eδk ≤ Eδk + 2cdMλk
(67)
= Eθk

(67)
≤ 2cdη

(
1− 1

t

)k
, ∀k ≥ 0.

Finally, we adopt ρk = e2Mλkθk based on Eq. (72) for all k ≥ 0. Then we get

Eρk = Ee2Mλkθk ≤ Ee2(2cd+1)Mλkθk
(36)
≤ e

2(2cd+1)Mλ0
(
1− 1

2η

)k
Eθk

(73)
≤

(
1− 1

t

)k
e
2(2cd+1)Mλ0

∑k
i=0

(
1− 1

2η

)i
θ0

(66)(68)
≤ 2cdη

(
1− 1

t

)k
,

where we use the inequality (∗) in Eq. (73) with subscript k − 1. Thus, Eqs. (64) and (65)
are proved.

D.2 Proofs of Theorem 11 and Theorem 19

Proof The results of greedy methods directly follow Lemma 18, and the proof of randomized
methods is the same as the proof of Corollary 9 by applying Lemma 26 with Xk = δk or
ρk,∀k ≥ 0, so we omit it.

D.3 Proofs of Corollary 12 and Corollary 20

Since the proofs of Corollary 12 and Corollary 20 also have many overlapping parts, we also
recombine them into a corollary below.

Corollary 28 (Restating) Suppose in Algorithm 3 or Algorithm 7, G0 = LId and x0

satisfies Mλ0 ≤ (ln 3
2)/(4κ). Then we could obtain for randomized methods, with probability

at least 1− δ over the random directions {uk},

λk0+k ≤
(

1− 1

t+ 1

)k(k−1)/2
·
(

1

2

)k
·
(

1− 1

2κ

)k0
· λ0, ∀k ≥ 0,

where k0 = O ((t+ κ) ln(cdκt/δ)), and for greedy methods,

λk0+k ≤
(

1− 1

t

)k(k−1)/2
·
(

1

2

)k
·
(

1− 1

2κ

)k0
· λ0, for all k ≥ 0,

where k0 = O ((t+ κ) ln(cdκ)). Here, the choices of t, c are inherited from Lemma 25.
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Proof We note that G0 = LId gives ∇2f(x0) � G0 � κ∇2f(x0). Since the initial point

x0 is sufficiently close to the solution: Mλ0 ≤
ln 3

2
4κ , Theorem 23 holds for η = κ.

Denote by k1 ≥ 0 the number of the first iteration, for which(
1− 1

2κ

)k1
≤ 2

3
· 1

2cd+ 1
.

Clearly, k1 ≤ 2κ ln(3cd+ 2) + 1. Then from Theorem 23, we obtain

∇2f(xk1) � Gk1 �
3κ
2
∇2f(xk1) and Mλk1

(36)
≤ M

(
1− 1

2κ

)k1
λ0 ≤

ln 2

6κ (2cd+ 1)
,

which satisfies the initial condition in Lemma 27 with η = 3
2κ. That is, k1 is the number

of iterations for entering the region of superlinear convergence. Hence, from the (random)
initialization Gk1 and xk1 , by Lemma 27, we have ∀k ≥ k1, λk+1 ≤ ρkλk with

Eρk ≤ 3cdκ
(

1− 1

t

)k−k1
.

For randomized method, applying Lemma 26 with Xk = ρk,∀k ≥ 0 and a = 3cdκ, we can
obtain with probability at least 1− δ,

ρk ≤
3cdκt2

δ

(
1− 1

t+ 1

)k−k1
, ∀k ≥ k1,

which leads to with probability at least 1− δ,

λk+1 ≤ ρkλk ≤
3cdκt2

δ

(
1− 1

t+ 1

)k−k1
λk, ∀k ≥ k1. (74)

Denote by k2 ≥ 0 the number of the first iteration, for which

3cdκt2

δ

(
1− 1

t+ 1

)k2
≤ 1

2
.

Clearly, k2 ≤ (t+1) ln(6cdκt2/δ)+1, which is the number of iterations to make the superlinear
rate ‘valid’. Applying Eq. (74) only to all k ≥ k1 + k2 (which includes the event in Eq. (74)),
we still get with probability at least 1− δ,

λk1+k2+k+1 ≤
3cdκt2

δ

(
1− 1

t+1

)k2+k
λk1+k2+k ≤

(
1

2

)
·
(

1− 1

t+1

)k
λk1+k2+k,∀k ≥ 0.

Therefore, by the fact of Eq. (61), we also have with probability at least 1− δ,

λk1+k2+k ≤
(

1− 1

t+ 1

)k(k−1)/2(1

2

)k
λk1+k2 ,∀k ≥ 0. (75)

Moreover, using Theorem 23 again, we have the deterministic result that

λk1+k2
(36)
≤
(

1− 1

2κ

)k1+k2
λ0. (76)
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Noting that the event of Eq. (75) is contained in the following event based on Eq. (76), we
finally obtain with probability at least 1− δ,

λk0+k ≤
(

1− 1

t+ 1

)k(k−1)/2
·
(

1

2

)k
·
(

1− 1

2κ

)k0
λ0,∀k ≥ 0,

where k0 = k1 + k2 ≤ 2κ ln(3cd+ 2) + (t+ 1) ln(6cdκt2/δ) + 2 = O ((t+ κ) ln(cdκt/δ)).
Similarly, we can get the results for greedy methods with k2 ≤ t ln(6cdκ) + 1, leading to

k0 = k1 + k2 ≤ 2κ ln(3cd+ 2) + t ln(6cdκ) + 2 = O ((t+ κ) ln(cdκ)).

Particularly, following the choices of t, c in Lemma 25, for the random Broyden method
in Algorithm 3, one has t = dκ, c = 1, which leads to k0 = O (dκ ln(dκ/δ)); for the
greedy/random BFGS method in Algorithm 7, one has t = d, c = 1, which leads to
k0 = O ((d+ κ) ln(dκ)) and O ((d+ κ) ln(dκ/δ)); for the greedy/random SR1 method
in Algorithm 7, one has t = d, c = κ, which leads to k0 = O ((d+ κ) ln(dκ)) and
O ((d+ κ) ln(dκ/δ)).

Appendix E. Proof of Proposition 16

Proof Denote Hk := G−1k , ∀k ≥ 0. From the inverse update rule in Eq. (27), we obtain

Hk+1 = Q>kHkQk = (LkQk)
> (LkQk) , Qk := Id −

Auku
>
k

u>kAuk
+

Gkuku
>
k√

u>kAuk · u>kGkuk

.

Indeed, we have

Q>kHkQk −
(
Id −

uku
>
kA

u>kAuk

)
Hk

(
Id −

Auku
>
k

u>kAuk

)
= 2

(
Id −

uku
>
kA

u>kAuk

)
·

HkGkuku
>
k√

u>kAuk · u>kGkuk

+
uku

>
kGkHkGkuku

>
k

u>kAuk · u>kGkuk

= 2

(
Id −

uku
>
kA

u>kAuk

)
uk ·

u>k√
u>kAuk · u>kGkuk

+
uku

>
k

u>kAuk
=

uku
>
k

u>kAuk
,

which is identical to Eq. (27).
Next, note that Hk � 0. Thus the square matrix Lk is also nonsingular, leading to

LkGkL
>
k = LkL

−1
k L

−>
k L>k = Id. Hence, from uk = L>k ũk, we getLkGkuk = LkGkL

>
k ũk =

ũk, and u>kGkuk = ũ>k LkGkL
>
k ũk = ‖ũk‖2. Therefore, by the expression of vk in Proposi-

tion 16, we obtain

Lk+1 = LkQk = Lk −
LkAuk

u>kAuk
· u>k +

LkGkuku
>
k√

u>kAuk · u>kGkuk

= Lk −LkAuk ·
u>k

u>kAuk
+

ũk
‖ũk‖

·
√
u>kAuk ·

u>k
u>kAuk

= Lk −
(LkAuk − vk)u>k

u>kAuk
.
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