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Abstract

We study policy gradient (PG) for reinforcement learning in continuous time and space
under the regularized exploratory formulation developed by Wang et al. (2020). We rep-
resent the gradient of the value function with respect to a given parameterized stochastic
policy as the expected integration of an auxiliary running reward function that can be eval-
uated using samples and the current value function. This representation effectively turns
PG into a policy evaluation (PE) problem, enabling us to apply the martingale approach
recently developed by Jia and Zhou (2022a) for PE to solve our PG problem. Based on
this analysis, we propose two types of actor-critic algorithms for RL, where we learn and
update value functions and policies simultaneously and alternatingly. The first type is
based directly on the aforementioned representation, which involves future trajectories and
is offline. The second type, designed for online learning, employs the first-order condition of
the policy gradient and turns it into martingale orthogonality conditions. These conditions
are then incorporated using stochastic approximation when updating policies. Finally, we
demonstrate the algorithms by simulations in two concrete examples.

Keywords: reinforcement learning, continuous time and space, policy gradient, policy
evaluation, actor–critic algorithms, martingale

1. Introduction

The essence of reinforcement learning (RL) is “trial and error”: repeatedly trying a policy for
actions, receiving and evaluating reward signals, and improving the policy. This manifests
three key components of RL: 1) exploration with stochastic policies - to broaden search
space via randomization; 2) policy evaluation - to evaluate the value function of a current
policy; and 3) policy improvement - to improve the current policy. Numerous algorithms
have been proposed in the RL literature, generally categorized into three types: critic-only,
actor-only, and actor–critic. Here, an actor refers to a policy that governs the actions, and a
critic refers to the value function that evaluates the performance of a policy. The critic-only
approach learns a value function to compare the estimated outcomes of different actions
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and selects the best one following the current value function. The actor-only approach
acts directly without learning the expected outcomes of different policies. The actor–critic
approach uses an actor simultaneously to improve the policy for generating actions given
the current state of the environment and a critic to judge the selected policy and guide
improving the actor. See Sutton and Barto (2018) and the references therein for extensive
discussions on these methods.

All these algorithms and indeed the general RL study have been hitherto predominantly
limited to discrete-time Markov decision processes (MDPs). From a practical point of view,
however, the study on continuous-time RL with possibly continuous state and action spaces
is more important. The world is inherently continuous-time, and a discrete-time dynamic
is just an approximation of the reality by taking a sequence of snapshots of the world over
time. As a result, in real life, examples abound in which an agent can or actually needs to
interact with a random environment at an ultra-high frequency or outright continuously,
e.g., high-frequency stock trading, autonomous driving, and robot navigation. Solving these
problems in the discrete-time setting has a notorious drawback: the resulting algorithms
are highly sensitive to time discretization; see Tallec et al. (2019); Yildiz et al. (2021) and
the references therein.

Theoretically, it remains a largely uncharted territory to study RL in continuous time
and spaces. The few existing papers on RL in the continuous setting are mostly re-
stricted to deterministic systems; see, for example Baird (1993); Doya (2000); Munos (2006);
Vamvoudakis and Lewis (2010); Frémaux et al. (2013); Lee and Sutton (2021); Yildiz et al.
(2021); Kim et al. (2021) where there are no environmental noises. Munos and Bourgine
(1997) introduce RL for diffusion-based stochastic control problems without proposing a
data-driven solution. Model-based methods such as those in Basei et al. (2020); Szpruch
et al. (2021) aim to estimate model coefficients by assuming their known and simple func-
tional forms, which are still prone to model misspecification errors. The RL research for
continuous-time diffusion processes with data/sample-driven solutions started only recently.
Wang et al. (2020) propose an entropy-regularized stochastic relaxed control framework to
study RL in continuous time and space and derive Boltzmann distributions as the gener-
ally optimal stochastic policies for exploring the environment and generating actions. In
particular, when the problem is linear–quadratic (LQ), namely, when the dynamic is linear
and the reward is quadratic in state and action, the optimal policy specializes to Gaussian
distributions. Extensions and applications of this work include Wang and Zhou (2020); Dai
et al. (2020); Guo et al. (2022); Gao et al. (2022).

While Wang et al. (2020) address the first component of RL – exploration - for the
continuous setting, Jia and Zhou (2022a) investigate the second component, namely policy
evaluation (PE), aiming at establishing a theoretical foundation for PE in continuous time
and space. They show that PE is theoretically equivalent to maintaining the martingale
condition of a specifically defined stochastic process, based on which they propose several
online and offline PE algorithms. These algorithms have discrete-time counterparts, such
as gradient Monte Carlo, TD(λ), and GTD, that scatter around in the MDP RL literature.
Therefore, through the “martingale lens”, Jia and Zhou (2022a) not only devise new PE
algorithms for the continuous case but also interpret and unify many classical algorithms
initially designed for MDPs.
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The current paper is a continuation of Wang et al. (2020) and Jia and Zhou (2022a),
dealing with the third component of RL – policy improvement – in the continuous setting
under stochastic policies and, thereby, completing the whole procedure for typical RL tasks.
Note that Wang and Zhou (2020) put forth a policy improvement theorem for the special
case of a continuous-time mean–variance portfolio selection problem. Furthermore, they
show that defining a new policy by maximizing the Hamiltonian of the currently learned
value function is proved to achieve a better objective value than the current policy. How-
ever, this method, akin to Q-learning for MDPs, has a drawback in requiring the functional
form of the Hamiltonian, which in turn involves the knowledge of the environment.1 More-
over, even if the Hamiltonian is known, maximizing a potentially complex function in high
dimensions is computationally demanding or daunting.

In this paper, we take a different approach – that of policy gradient (PG) – which
optimizes the value function over a parameterized family of policies. This approach has at
least two advantages. First, selecting actions does not involve maximization, and actions
are sampled from a known parametric distribution. Second, approximating policies directly
facilitates more efficient learning if one has prior knowledge or intuition about the classes
of potentially optimal policies (e.g., Gaussian distributions), leading to fewer parameters of
the parametric family to be learned.

PG as a general sub-method of RL has a long history that can be traced back to Alek-
sandrov et al. (1968); Glynn (1990); Williams (1992); Barto et al. (1983); see also Bhatnagar
et al. (2009) for more literature review and references therein. PG theorems specifically for
MDPs are established in Sutton et al. (1999) and Marbach and Tsitsiklis (2001). Determin-
istic policy gradient algorithms for semi-MDPs (with discrete time and continuous action
space) are developed in Silver et al. (2014) and later extended to incorporate deep neural
networks in Lillicrap et al. (2015). Empirically, however, such algorithms tend to be un-
stable (Duan et al., 2016). Recent studies have focused on stochastic policies with possible
entropy regularizers, also known as the softmax method; see for example Mnih et al. (2016);
Schulman et al. (2017a,b); Haarnoja et al. (2018).

PG updates and improves policies along the gradient ascent direction, and is often
carried out simultaneously and alternatingly with PE. The resulting algorithms for RL,
therefore, are essentially actor–critic (AC) ones. Such methods have been successful in
many real-world applications, notably AlphaGo (Silver et al., 2017) and dexterous hand
manipulation (Haarnoja et al., 2018). But then, again, most PG and AC algorithms have
been developed for discrete-time MDPs, and many of them in heuristic and ad hoc man-
ners. Existing works on PG and AC in continuous time either focus on deterministic systems
(Frémaux et al., 2013; Kim et al., 2021) or study specific models such as linear–quadratic
ones (Wang et al., 2021). There are a few papers on applications of specifically designed
continuous-time PG- and/or AC-based algorithms. Toy examples include the cart-pole
swing-up problem in Doya (2000) and Half-Cheetah in Wawrzynski (2007), both involving
physical laws of motion. Real-world applications include portfolio selections (Wang and
Zhou, 2020), traffic control (Aragon-Gómez and Clempner, 2020), autonomous driving (Ki-
ran et al., 2021), and biological neural networks (Frémaux et al., 2013; Zambrano et al.,
2015).

1. In a more recent working paper Jia and Zhou (2022b), we develop a (little) q-learning theory to learn
essentially the Hamiltonian from samples only, including a general policy improvement theorem.

3



Jia and Zhou

In sum, it remains a significant open question to develop general continuous-time PG
and AC algorithms and, more importantly, to lay an overarching theoretical underpinning
for them. This paper aims to answer these questions by studying PG for a general problem
in continuous time and space. Based on this, we develop model-free, data-driven AC algo-
rithms for RL, covering both episodic and continuing, and both online and offline tasks. As
its predecessors Wang et al. (2020) and Jia and Zhou (2022a), we develop theory in contin-
uous time and discretize time only at the final algorithmic implementation stage, instead of
discretizing time upfront and applying the existing MDP results. Specifically, we conduct
our analysis in the stochastic relaxed control framework of Wang et al. (2020) involving
distribution-valued stochastic policies. As such, it is necessary to first extend the PE the-
ory of Jia and Zhou (2022a), including the martingale characterization and the resulting
methods of the martingale loss function and the martingale orthogonality conditions, from
deterministic policies to stochastic ones. This extension is technically non-trivial. Our main
contributions, however, are a thorough analysis of the PG and the resulting AC algorithms.
More precisely, we deduce the representation of the gradient of the current value function
with respect to a parameterized (stochastic) policy. This representation turns out to have
the same form as the value function in the PE step, effectively turning PG into an auxiliary
PE problem. However, a subtle difficulty is that the corresponding “auxiliary” reward de-
pends on the Hamiltonian and hence on the functional forms of the system dynamics. We
solve this difficulty by integration by parts and Itô’s formula, transforming the representa-
tion into the expected integration of functions that can be evaluated using samples along
with the current value function approximator.

The aforementioned representation is forward-looking. Namely, it is the conditional
expectation of a term involving future states. Hence it is suitable for offline learning only.
For online learning, we employ the first-order condition of the policy gradient and turn
it into martingale orthogonality conditions. These conditions are then incorporated using
stochastic approximation when updating policies. Finally, combining the newly developed
PG methods in this paper and the PE methods in Jia and Zhou (2022a), we propose several
AC algorithms for episodic and continuing/ergodic tasks.

Within the continuous-time stochastic relaxed control framework, there are several stud-
ies involving updating policies. For example, Wang and Zhou (2020) consider mean–variance
portfolio selection and update policies by maximizing the Hamiltonian. As mentioned ear-
lier, this requires knowledge about the market and hence the method is essentially model-
based. Dai et al. (2020) address the time-inconsistency issue and focus on learning equi-
librium policies. Guo et al. (2022) study multi-agent RL by solving an LQ mean-field
game. These two papers rely on differentiating with respect to the policy hence are both
model-based methods. In contrast, the present paper provides general model-free (up to
the underlying dynamics being diffusion processes) AC algorithms that can be applied in all
the above problems. In particular, we apply our algorithms to the mean–variance portfolio
selection problem in Wang and Zhou (2020) and show they outperform significantly.

The rest of the paper proceeds as follows. In Section 2, we review Wang et al. (2020)’s
entropy-regularized, exploratory formulation for RL in continuous time and space, and put
forth an equivalent formulation convenient for the subsequent analysis. In Section 3, we
develop a theory for PG, based on which we present general AC algorithms. Section 4 is
devoted to an extension to ergodic tasks. We demonstrate our algorithms by simulation
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with two concrete examples in Section 5. Finally, Section 6 concludes. In Appendix, we
discuss the connection of our results with their discrete-time counterparts, present some
theoretical results used in the simulation studies, and supply proofs of the results stated in
the main text.2

2. Problem Formulation and Preliminaries

Throughout this paper, by convention all vectors are column vectors unless otherwise speci-
fied, and Rk is the space of all k-dimensional vectors (hence k×1 matrices). Let A and B be
two matrices of the same size. We denote by A ◦B the inner product between A and B, by
|A| the Eculidean/Frobenius norm of A, and write A2 := AA>, where A> is A’s transpose.
For a positive semidefinite matrix A, we write

√
A = UD1/2V >, where A = UDV > is its

singular value decomposition with U, V two orthogonal matrices and D a diagonal matrix,
and D1/2 is the diagonal matrix whose entries are the square root of those of D. We use
f = f(·) to denote the function f , and f(x) to denote the function value of f at x. For any
stochastic process X = {Xs, s ≥ 0}, we denote by {FXs }s≥0 the natural filtration generated
by X. Finally, for any filtration G = {Gs}s≥0 and any semi-martingale Y = {Ys, s ≥ 0}, we
denote

L2
G([0, T ];Y ) =

{
κ = {κt, 0 ≤ t ≤ T} :

κ is Gt-progressively measurable and E
∫ T

0
|κt|2d〈Y 〉t <∞

}
,

which is a Hilbert space with the L2-norm ||κ||L2 =
(
E
∫ T

0 κ2
td〈Y 〉t

) 1
2
, where 〈·〉 is the

quadratic variation of a given process.
Let d, n be given positive integers, T > 0, and b : [0, T ]× Rd ×A 7→ Rd and σ : [0, T ]×

Rd×A 7→ Rd×n be given functions, whereA is the action set. The classical stochastic control
problem is to control the state (or feature) dynamics governed by a stochastic differential
equation (SDE), defined on a filtered probability space

(
Ω,F ,PW ; {FWs }s≥0

)
along with a

standard n-dimensional Brownian motion W = {Ws, s ≥ 0}:

dXa
s = b(s,Xa

s , as)ds+ σ(s,Xa
s , as)dWs, s ∈ [0, T ], (1)

where as stands for the agent’s action (control) at time s.
The goal of stochastic control is, for each initial time-state pair (t, x) of (1), to find the

optimal {FWs }s≥0-progressively measurable (continuous) sequence of actions a = {as, t ≤
s ≤ T} – also called the optimal strategy – that maximizes the expected total reward:

EPW
[∫ T

t
e−β(s−t)r(s,Xa

s , as)ds+ e−β(T−t)h(Xa
T )
∣∣∣Xa

t = x

]
, (2)

where r is the (expected) running reward function, h is the (expected) lump-sum reward
function applied at the end of the planning period T , and β ≥ 0 is a discount factor that

2. The codes to reproduce our simulation studies are publicly available at https://www.dropbox.com/sh/

ezbuntcfje3d7kg/AABW-ndK-4j9N8E3kVTDZLz6a?dl=0.
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measures the time-value of the payoff or the impatience level of the agent. Note in the above
the state process Xa = {Xa

s , t ≤ s ≤ T} also depends on (t, x). However, to ease notation,
here (and similarly in the sequel) we use Xa instead of Xt,x,a = {Xt,x,a

s , t ≤ s ≤ T} to
denote the solution to SDE (1) with initial condition Xa

t = x whenever no ambiguity may
arise.

Let La be the infinitesimal generator associated with the diffusion process governed by
(1):

Laϕ(t, x) :=
∂ϕ

∂t
(t, x) + b

(
t, x, a

)
◦ ∂ϕ
∂x

(t, x) +
1

2
σ2
(
t, x, a

)
◦ ∂

2ϕ

∂x2
(t, x), a ∈ A,

where ∂ϕ
∂x ∈ Rd is the gradient, and ∂2ϕ

∂x2 ∈ Rd×d is the Hessian. We make the following
assumption to ensure theoretically the well-posedness of the stochastic control problem
(1)–(2).

Assumption 1 The following conditions for the state dynamics and reward functions hold
true:

(i) b, σ, r, h are all continuous functions in their respective arguments;

(ii) b, σ are uniformly Lipschitz continuous in x, i.e., for ϕ ∈ {b, σ}, there exists a constant
C > 0 such that

|ϕ(t, x, a)− ϕ(t, x′, a)| ≤ C|x− x′|, ∀(t, a) ∈ [0, T ]×A, ∀x, x′ ∈ Rd;

(iii) b, σ have linear growth in x, i.e., for ϕ ∈ {b, σ}, there exists a constant C > 0 such
that

|ϕ(t, x, a)| ≤ C(1 + |x|), ∀(t, x, a) ∈ [0, T ]× Rd ×A;

(iv) r and h have polynomial growth in (x, a) and x respectively, i.e., there exists a constant
C > 0 and µ ≥ 1 such that

|r(t, x, a)| ≤ C(1 + |x|µ + |a|µ), |h(x)| ≤ C(1 + |x|µ), ∀(t, x, a) ∈ [0, T ]× Rd ×A.

Classical model-based stochastic control theory has been well developed (e.g., Fleming
and Soner, 2006 and Yong and Zhou, 1999) to solve the above problem, under the premise
that the functional forms of b, σ, r, h are all given and known. In the RL setting, however, the
agent does not have this knowledge of the environment. Instead, what she can do is “trial
and error” – to try a sequence of actions a = {as, t ≤ s ≤ T}, observe the corresponding
state process Xa = {Xa

s , t ≤ s ≤ T} and collect both a stream of discounted running
rewards {e−β(s−t)r(s,Xa

s , as), t ≤ s ≤ T} and a discounted, end-of-period lump-sum reward
e−β(T−t)h(Xa

T ) where β is a given, known discount factor. In the offline setting, the agent
can repeatedly try different sequences of actions over the same time period [0, T ] and record
the corresponding state processes and payoffs. In the online setting, the agent updates the
actions as she goes, based on all the up-to-date historical observations.

A critical question is how to generate these trial-and-error sequences of actions. The
idea is randomization, namely, the agent employs a stochastic policy, which is a probability
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distribution on the action space, to produce actions according to the current time–state
pair. It is important to note that this randomization itself is independent of the underlying
Brownian motion W , the random source of the original control problem that stands for
the environmental noise. Wang et al. (2020) formulate an RL problem in continuous time
and space, incorporating distribution-valued stochastic policies with an entropy regularizer
to account for the tradeoff between exploration and exploitation. Specifically, assume the
probability space is rich enough to support a random variable Z that is uniformly distributed
on [0, 1] and independent of W . We then expand the original filtered probability space to
(Ω,F ,P; {Fs}s≥0) where Fs = FWs ∨ σ(Z) and P is now the probability measure on FT .3

Let π : (t, x) ∈ [0, T ]× Rd 7→ π(·|t, x) ∈ P(A) be a given (feedback) policy, where P(A) is
a suitable collection of probability density functions (pdfs).4 At each time s, an action as
is generated or sampled from the distribution π(·|s,Xs).

Given a stochastic policy π, an initial time–state pair (t, x), and an {Fs}s≥0-progressively
measurable action process aπ = {aπs , t ≤ s ≤ T} generated from π, the corresponding state
process Xπ = {Xπ

s , t ≤ s ≤ T} follows

dXπ
s = b(s,Xπ

s , a
π
s )ds+ σ(s,Xπ

s , a
π
s )dWs, s ∈ [t, T ]; Xπ

t = x (3)

defined on (Ω,F ,P; {Fs}s≥0). Moreover, following Wang et al. (2020), we add a regularizer
to the reward function to encourage exploration (represented by the stochastic policy),
leading to

J(t, x;π) =EP
[ ∫ T

t
e−β(s−t) [r(s,Xπ

s , a
π
s ) + γp

(
s,Xπ

s , a
π
s ,π(·|s,Xπ

s )
)]

ds

+ e−β(T−t)h(Xπ
T )
∣∣∣Xπ

t = x

]
,

(4)

where EP is the expectation with respect to (w.r.t.) both the Brownian motion and the
action randomization. In the above, p : [0, T ] × Rd × A × P(A) 7→ R is the regularizer
and γ ≥ 0 a weighting parameter on exploration, also known as the temperature parameter.
Wang et al. (2020) take the differential entropy as the regularizer, which corresponds to

p
(
t, x, a, π(·)

)
= − log π(a).

Through a law of large number argument, Wang et al. (2020) show that {Xπ
s , t ≤ s ≤ T}

has the same distribution as the solution to the following SDE, denoted by {X̃π
s , t ≤ s ≤ T}:

dXs = b̃
(
s,Xs,π(·|s,Xs)

)
dt+ σ̃

(
s,Xs,π(·|s,Xs)

)
dWs, s ∈ [t, T ]; Xt = x, (5)

3. Note that a single uniform random variable Z can produce many independent random variables having
density functions. No dynamics are needed for these random variables and they are all independent of
each other and of the Brownian motion. The independence means it makes no difference if these variables
are given all at once at time 0 or are revealed as time evolves. We opt for the (mathematically speaking)
easier construction where these are all defined using one single uniform Z. Meanwhile, P is the product
extension from PW ; the two probability measures coincide when restricted to FWT .

4. Here we assume that the action space A is continuous and randomization is restricted to those distribu-
tions that have density functions. The analysis and results of this paper can be easily extended to the
cases of discrete action spaces and/or randomization with probability mass functions.
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where

b̃
(
s, x, π(·)

)
=

∫
A
b(s, x, a)π(a)da, σ̃

(
s, x, π(·)

)
=

√∫
A
σ2(s, x, a)π(a)da.

Moreover, the reward function (4) is identical to

J(t, x;π) =EPW
[ ∫ T

t
e−β(s−t)

∫
A

[r(s, X̃π
s , a) + γp

(
s, X̃π

s , a,π(·|s, X̃π
s )
)
]π(a|s, X̃π

s )dads

+ e−β(T−t)h(X̃π
T )
∣∣∣X̃π

t = x

]
.

(6)
Mathematically, (5) and (6) together form a so-called relaxed stochastic control problem

where the effect of individually sampled actions has been averaged out (over the random-
ization/exploration) and, hence, one can focus on how a policy π impacts the distribution
of the “averaged” state X̃; see Wang et al. (2020).

Here, J(t, x;π) is called the value function of the policy π, and the task of RL is to find

J∗(t, x) = max
π∈Π

J(t, x;π), (7)

where Π stands for the set of admissible policies. The following gives the precise definition
of admissible (feedback) policies.

Definition 1 A policy π = π(·|·, ·) is called admissible if

(i) π(·|t, x) ∈ P(A), and π(a|t, x) : (t, x, a) ∈ [0, T ]× Rd ×A 7→ R is measurable;

(ii) the SDE (5) admits a unique weak solution (in the sense of distribution) for any initial
(t, x) ∈ [0, T ]× Rd;

(iii)
∫
A |r(t, x, a) + γp

(
t, x, a,π(·|t, x)

)
|π(a|t, x)da ≤ C(1 + |x|µ), ∀(t, x) where C > 0 and

µ ≥ 1 are constants;

(iv) π(a|t, x) is continuous in (t, x) and uniformly Lipschitz continuous in x in the total
variation distance, i.e., for each fixed a,

∫
A |π(a|t, x)−π(a|t′, x′)|da→ 0 as (t′, x′)→

(t, x), and there is a constant C > 0 independent of (t, a) such that∫
A
|π(a|t, x)− π(a|t, x′)|da ≤ C|x− x′|, ∀x, x′ ∈ Rd.

The conditions required in the above definition, while not necessarily the weakest ones,
are to theoretically guarantee the well-posedness of the control problem (5)–(6). This is
implied by the following result.

Lemma 2 Let Assumptions 1 hold and π be a given admissible policy. Then the SDE (5)
admits a unique strong solution. Moreover, for any µ ≥ 2, the solution satisfies the growth

condition EPW
[

maxt≤s≤T |X̃π
s |µ
∣∣∣X̃π

t = x

]
≤ C(1 + |x|µ) for some constant C = C(µ).

Finally, the expected payoff (6) is finite.
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We stress that the solution to (5), {X̃π
s , t ≤ s ≤ T}, is the average of the sample

trajectories over infinitely many randomized actions and is in itself not a sample trajectory
nor observable. The stochastic relaxed control problem (5)– (6), introduced in Wang et al.
(2020), just provides a framework for theoretical analysis. In contrast, the solution to (3),
{Xπ

s , t ≤ s ≤ T}, is a sample trajectory under a realization of action sequence, {aπs , t ≤ s ≤
T}, generated from the policy π, and can indeed be observed. Meanwhile, the difference
between (3) and (1) is that actions in the former are randomized: aπ is also driven by the
randomization and hence is not FWt -adapted. By taking the expectation w.r.t. the action
randomization, the expectation in (4) reduces to the expectation in (6). In other words,
the problem (5)–(6) is mathematically equivalent to the problem (3)–(4); yet they serve
different purposes in our study: the former provides a framework for theoretical analysis of
the value function while the latter directly involves observable samples.

Unlike most RL problems that are formulated in an infinite planning horizon (known
as continuing tasks), the current paper mainly focuses on a finite horizon setting (known as
episodic tasks). Finite horizons reflect limited lifespans of real-life tasks, e.g., a trader sells
a financial contract with a maturity date, a robot finishes a task before a deadline, and a
game player strives to pass a checkpoint given a time limit. If we let T →∞, under suitable
regularity conditions (e.g., when β is large enough) our formulation covers the discounted
formulation of the continuing tasks. In addition, later we will consider an ergodic setting
as an alternative formulation for continuing tasks in Section 4.

3. Theoretical Foundation of Actor–Critic Algorithms

An actor-critic (AC) algorithm consists of two parts: to estimate the value function of a
given policy and to update (improve) the policy. In this section, we provide the theoretical
analysis to guide devising such an algorithm through policy evaluation (PE) and policy
gradient (PG).

3.1 Policy Evaluation

Jia and Zhou (2022a) take a martingale perspective to characterize PE as well as its link
to solving a linear partial differential equation (PDE) numerically. However, they consider
only deterministic policies (i.e. no randomization/exploration), without explicitly involving
actions sampled from a stochastic policy. The extension to the case of stochastic policies
is non-trivial and specific statements of the corresponding results are important for the
subsequent PG and AC algorithm design; so we present and prove them here.

For a given stochastic policy π, J(·, ·;π) can be characterized by a PDE based on the
celebrated Feynman–Kac formula (cf. Karatzas and Shreve, 2014), which also holds true
for the relaxed control setting.

Lemma 3 Assume there is a unique viscosity solution v ∈ C
(
[0, T ]× Rd

)
to the following

PDE:∫
A

[
Lav(t, x)+r

(
t, x, a

)
+γp

(
t, x, a,π(·|t, x)

)
−βv(t, x)

]
π(a|t, x)da = 0, (t, x) ∈ [0, T )×Rd,

(8)

9
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with the terminal condition v(T, x) = h(x), x ∈ Rd, which satisfies |v(t, x)| ≤ C(1 + |x|µ)
for a constant C > 0 and µ ≥ 1. Then v is the value function, that is, v(t, x) = J(t, x;π)
for all (t, x) ∈ [0, T )× Rd.

To avoid unduly technicalities, we assume throughout this paper that the value function
J ∈ C1,2

(
[0, T )×Rd

)
∩C

(
[0, T ]×Rd

)
. There is a rich literature on conditions ensuring the

unique existence and regularity of the viscosity solution to the type of equations like (8);
but see Tang et al. (2021) for some latest results.

The following is the main theoretical result underpinning PE, extended from the setting
of deterministic feedback policies in Jia and Zhou (2022a) to that of stochastic policies.

Theorem 4 A function J(·, ·;π) is the value function associated with the policy π if and
only if it satisfies terminal condition J(T, x;π) = h(x), and for any initial (t, x) ∈ [0, T )×
Rd:

e−βsJ(s, X̃π
s ;π) +

∫ s

t
e−βs

′
∫
A

[r(s′, X̃π
s′ , a) + γp

(
s′, X̃π

s′ , a,π(·|s′, X̃π
s′ )
)
]π(a|s′, X̃π

s′ )dads′

is an (F X̃π
,PW )-martingale on [t, T ]. Moreover, it is also equivalent to the martingale

orthogonality condition:

EP
∫ T

0
ξt

[
dJ(t,Xπ

t ;π)+r(t,Xπ
t , a

π
t )dt+γp

(
t,Xπ

t , a
π
t ,π(·|t,Xπ

t )
)
dt−βJ(t,Xπ

t ;π)dt

]
= 0,

(9)
for any ξ ∈ L2

FXπ

(
[0, T ]; J(·, Xπ

· ;π)
)
.

In the above theorem, ξ is called a test function by convention, although in general it is
actually a stochastic process.

In RL, one typically employs function approximation for learning functions of interest.
Specifically, for PE, one uses a family of parameterized functions Jθ ≡ Jθ(·, ·;π) on [0, T ]×
Rd to approximate J , where θ ∈ Θ ⊆ RLθ , and the problem is reduced to finding the “best”
(in some sense) θ. We make the following assumption on these function approximators to
be used. (Henceforth we may drop π from Jθ(·, ·;π) whenever no ambiguity arises.)

Assumption 2 For all θ ∈ Θ, Jθ ∈ C1,2
(
[0, T ) × Rd

)
∩ C

(
[0, T ] × Rd

)
and satisfies

the polynomial growth condition in x. Moreover, Jθ(t, x) is a smooth function in θ with
∂Jθ

∂θ ,
∂2Jθ

∂θ2 ∈ C1,2
(
[0, T )×Rd

)
∩C

(
[0, T ]×Rd

)
satisfying the polynomial growth condition in

x.

Thanks to the martingale characterization in Theorem 4, the PE algorithms developed
in Jia and Zhou (2022a) can be adapted to the current setting in a straightforward manner.
We now summarize them.

(i) Minimize the martingale loss function (offline):

min
θ∈Θ

EP
[ ∫ T

0

(
e−βTh(Xπ

T )− e−βtJθ(t,Xπ
t )

+

∫ T

t
e−βs[r(s,Xπ

s , a
π
s ) + γp

(
s,Xπ

s , a
π
s ,π(·|s,Xπ

s )
)
]ds

)2

dt

]
.

10
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This objective corresponds to the gradient Monte-Carlo algorithm for discrete MDPs
(Sutton and Barto, 2018).

(ii) Solve the martingale orthogonality condition (online/offline):

EP
{∫ T

0
ξt
[
dJθ(t,Xπ

t ) + r(t,Xπ
t , a

π
t )dt

+ γp
(
t,Xπ

t , a
π
t ,π(·|t,Xπ

t )
)
dt− βJθ(t,Xπ

t )dt
]}

= 0.

This objective corresponds to various (semi-gradient) TD algorithms and their variants
for MDPs (Sutton, 1988; Bradtke and Barto, 1996), depending on the choices of the
test function ξ.

(iii) Minimize a quadratic form of the martingale orthogonality condition (online/offline):

min
θ∈Θ

EP
{∫ T

0
ξt
[
dJθ(t,Xπ

t ) + r(t,Xπ
t , a

π
t )dt+ γp

(
t,Xπ

t , a
π
t ,π(·|t,Xπ

t )
)
dt

− βJθ(t,Xπ
t )dt

]}>
AEP

{∫ T

0
ξt
[
dJθ(t,Xπ

t ) + r(t,Xπ
t , a

π
t )dt

+ γp
(
t,Xπ

t , a
π
t ,π(·|t,Xπ

t )
)
dt− βJθ(t,Xπ

t )dt
]}
,

where A is a positive definite matrix of a suitable size. Typical choices are A = I
or A =

(
EP[
∫ T

0 ξtξ
>
t dt]

)−1
. This objective corresponds to the gradient TD algorithms

and their variants for MDPs (Sutton et al., 2008, 2009; Maei et al., 2009).

In the above, the choice of the parametric family Jθ may be guided by exploiting some
special structure of the underlying problem; see Wang and Zhou (2020) for an example.
More general choices include linear combinations of some basis functions or neural networks.
On the other hand, common choices of the test functions are ξt = ∂Jθ

∂θ (t,Xπ
t ) or ξt =∫ t

0 λ
s−t ∂Jθ

∂θ (s,Xπ
s )ds. Refer to the aforementioned references for details, and in particular

to Jia and Zhou (2022a) for the continuous setting. Finally, when implementing these
algorithms we need to discretize time, and the convergence when the mesh size goes to zero
is established in Jia and Zhou (2022a), which can be readily extended to the current setting.

3.2 Policy Gradient

Given an admissible policy, suppose we have carried out the PE step and obtained an
estimate of the corresponding value function. The next step is PG, namely, to estimate the
gradient of the (learned) value function w.r.t. the policy. Specifically, let πφ be a parametric
family of policies with the parameter φ ∈ Φ ⊂ RLφ . We aim to compute the policy gradient
g(t, x;φ) := ∂

∂φJ(t, x;πφ) ∈ RLφ at the current time–state pair (t, x). Here and throughout

we always assume πφ is an admissible policy.

Based on the PDE characterization (8) of the value function, we take the derivative in
φ on both sides of (8), with v(t, x) replaced by J(t, x;πφ), to get a new PDE satisfied by

11
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g(t, x;φ):

∫
A

{[
Lag(t, x;φ)− βg(t, x;φ) + γq(t, x, a, φ)

]
πφ(a|t, x)

+
[
LaJ(t, x;πφ) + r(t, x, a) + γp

(
t, x, a,πφ(·|t, x)

)
− βJ(t, x;πφ)

]∂πφ
∂φ

(a|t, x)

}
da = 0,

g(T, x;φ) = 0,
(10)

where q(t, x, a, φ) = ∂
∂φp
(
t, x, a,πφ(·|t, x)

)
that maps [0, T ] × Rd × A × Φ to RLφ . Note

that (10) is a system of Lφ equations, and Lag denotes applying the operator La to each
component of the RLφ-valued function g(·, ·;φ).

Define

ř(t, x, a;φ) =

[
LaJ(t, x;πφ) + r(t, x, a) + γp

(
t, x, a,πφ(·|t, x)

)
− βJ(t, x;πφ)

] ∂πφ
∂φ (a|t, x)

πφ(a|t, x)

+ γq(t, x, a, φ)

=

[
LaJ(t, x;πφ) + r(t, x, a) + γp

(
t, x, a,πφ(·|t, x)

)
− βJ(t, x;πφ)

]
∂

∂φ
logπφ(a|t, x)

+ γq(t, x, a, φ),

which is again a function that maps [0, T ]×Rd ×A×Φ to RLφ . Then (10) can be written
as ∫

A

[
Lag(t, x;φ)− βg(t, x;φ) + ř(t, x, a;φ)

]
πφ(a|t, x)da = 0, g(T, x;φ) = 0. (11)

Observe that (11) has the similar form to (8). Thus a Feynman–Kac formula (similar to
Lemma 3) represents g as

g(t, x;φ) =EP
[∫ T

t
e−β(s−t)ř(s,Xπφ

s , aπ
φ

s ;φ)ds
∣∣∣Xπφ

t = x

]
=EPW

[∫ T

t
e−β(s−t)

∫
A
ř(s, X̃πφ

s , a;φ)πφ(a|s, X̃πφ

s )dads
∣∣∣X̃πφ

t = x

]
.

(12)

Therefore, computing PG boils down mathematically to a PE problem with a different
reward function. Indeed, the task here is much easier because we only need to compute
the function value, g(t, x;φ), via (12) at some (t, x) along a sample trajectory, instead of
learning the entire function g(·, ·;φ) as in PE. However, unlike a normal PE problem, the
new reward function ř involves the operator La applied to J which can not be observed nor
computed without the knowledge of the environment.

The remedy to overcome this difficulty rests with Itô’s lemma and martingality. We now
provide an informal argument for explanation before presenting the formal result. Suppose
at time t, an action a is generated from πφ(·|t,Xt) and applied to the system within a small
time window [t, t+ ∆t]. Apply Itô’s lemma to obtain

J(t+ ∆t,Xa
t+∆t;π

φ)− J(t,Xt;π
φ) =

∫ t+∆t

t
LaJ(s,Xa

s ;πφ)ds+
∂J

∂x
(s,Xa

s ;πφ)>σsdWs.

12
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Therefore,

ř(s,Xa
s , a;φ)ds

≡
[
LaJ(s,Xa

s ;πφ) + r(s,Xa
s , a) + γp

(
s,Xa

s , a,π
φ(·|s,Xa

s )
)
− βJ(s,Xa

s ;πφ)
]

× ∂

∂φ
logπφ(a|s,Xa

s )ds+ γq(s,Xa
s , a, φ)ds

≈ ∂

∂φ
logπφ(a|s,Xa

s )

{
dJ(s,Xa

s ;πφ) +
[
r(s,Xa

s , a) + γp
(
s,Xa

s , a,π
φ(·|s,Xa

s )
)

− βJ(s,Xa
s ;πφ)

]
ds− ∂J

∂x
(s,Xa

s ;π)>σsdWs

}
+ γq(s,Xa

s , a, φ)ds.

(13)

Since the stochastic integral w.r.t. the dW term above is a martingale (under suitable
regularity conditions), such a term, even if unknown, does not contribute to the expectation
and thus can be ignored. As a result, ř can be incrementally estimated based on observations
of samples and the learned value function.

Before stating the main result of this paper, we impose the following technical conditions
on the policy approximators.

Assumption 3 πφ(a|t, x) is smooth in φ ∈ Φ for all (t, x, a). Moreover,∫
A
|ř(t, x, a;φ)|πφ(a|t, x)da ≤ C(1 + |x|µ)

for all (t, x, φ), where C > 0, µ ≥ 1 are constants. Furthermore,
∫
A |

∂
∂φ logπφ(a|t, x)|2πφ(a|t, x)da

is continuous in (t, x) for all φ ∈ Φ.

Theorem 5 Given an admissible parameterized policy πφ, its policy gradient g(t, x;φ) =
∂
∂φJ(t, x;πφ) admits the following representation:

g(t, x;φ) =EP

[∫ T

t
e−β(s−t)

{
∂

∂φ
logπφ(aπ

φ

s |s,Xπφ

s )

(
dJ(s,Xπφ

s ;πφ)

+ [r(s,Xπφ

s , aπ
φ

s ) + γp
(
s,Xπ

s , a
πφ

s ,πφ(·|s,Xπφ

s )
)
− βJ(s,Xπφ

s ;πφ)]ds

)
+ γq(s,Xπφ

s , aπ
φ

s , φ)ds

}∣∣∣Xπφ

t = x

]
, (t, x) ∈ [0, T ]× Rd.

(14)

Once again, all the terms inside the expectation above are all computable given samples
(including action trajectories and the corresponding state trajectories) on [t, T ], together
with an estimated value function J (obtained in the previous PE step). Note that the
expectation (14) gives the gradient of the value function w.r.t. any policy, which is not 0
in general.

Observing (14) more closely, we can write g(t, x;φ) = g1(t, x;φ) + g2(t, x;φ) where

g1(t, x;φ) = EP

[ ∫ T
t
e−β(s−t) ∂∂φ logπφ(aπ

φ

s |s,Xπφ

s )

(
dJ(s,Xπφ

s ;πφ)

+[r(s,Xπφ

s , aπ
φ

s ) + γp
(
s,Xπ

s , a
πφ

s ,πφ(·|s,Xπφ

s )
)
− βJ(s,Xπφ

s ;πφ)]ds

)∣∣∣Xπφ

t = x

]
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and

g2(t, x;φ) = EP
[ ∫ T

t
e−β(s−t)γq(s,Xπφ

s , aπ
φ

s , φ)ds
∣∣∣Xπφ

t = x

]
.

The integrand in the expression of g1 is the discounted derivative of the log-likelihood
(log-pdf) that determines the direction, multiplied by a scalar term. This scalar term is
actually the TD error in the continuous setting (Jia and Zhou, 2022a) that also appears
in the martingale orthogonality condition (9). Note that g1(t, x;φ) 6= 0 in general, because
∂
∂φ logπφ(aπ

φ

s |s,Xπφ
s ) depends on the realization of aπ

φ

s , and hence is not FXπφ

s -measurable
and does not qualify as a test function ξ in Theorem 4. On the other hand, g2 comes entirely
from the regularizer and vanishes should the latter be absent.

There are two equivalent forms of the representation (14), which can be used to add
more flexibility in designing PG algorithms and to optimize their performance. The first
one is to add a “baseline” action-independent function B(t, x) to the integrand in (14).

Precisely, it follows from aπ
φ

s ∼ πφ(·|s,Xπφ
s ) that

EP
[
∂

∂φ
logπφ(aπ

φ

s |s,Xπφ

s )B(s,Xπφ

s )
∣∣∣Xπφ

s

]
=B(s,Xπφ

s )

∫
A

[
∂

∂φ
logπφ(a|s,Xπφ

s )

]
πφ(a|s,Xπφ

s )da

=B(s,Xπφ

s )

∫
A

∂πφ(a|s,Xπφ
s )

∂φ
da = B(s,Xπφ

s )
∂

∂φ

∫
A
πφ(a|s,Xπφ

s )da = 0.

Hence, an alternative representation of (14) is

g(t, x;φ)

=EP

[∫ T

t
e−β(s−t)

{[ ∂
∂φ

logπφ(aπ
φ

s |s,Xπφ

s )
][

dJ(s,Xπφ

s ;πφ)

+ [r(s,Xπφ

s , aπ
φ

s ) + γp
(
s,Xπ

s , a
πφ

s ,πφ(·|s,Xπφ

s )
)
− βJ(s,Xπφ

s ;πφ)−B(s,Xπφ

s )]ds
]

+ γq(s,Xπφ

s , aπ
φ

s , φ)ds

}∣∣∣Xπφ

t = x

]
.

(15)
Including such a baseline function in the representation of PG goes back at least to Williams
(1992). Sutton et al. (2000) and Zhao et al. (2011) find that adding an appropriate baseline
function can reduce the variance of the learning process. In particular, a common choice
of baseline function, though not theoretically optimal, is the current value function, which
leads to the so-called advantage AC algorithms (Degris et al., 2012; Mnih et al., 2016).
Interestingly, without including any exogenous baseline function, the PG algorithms out of
(14) are exactly the continuous-time versions of the advantage AC algorithms. As such, we
do not add other baseline functions for designing our algorithms below. More connections to
the representation of policy gradient in discrete-time and detailed discussions of the baseline
function can be found in Appendix A.

The second alternative form of (14) is to add an admissible test function to the derivative

of the log-likelihood. Specifically, suppose ζ ∈ L2

FXπφ

(
[0, T ]; J(·, Xπφ

· ;πφ)
)

is an RLφ-valued

14
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process. Then based on Theorem 4, the policy gradient can also be represented by

g(t, x;φ) =EP

[∫ T

t
e−β(s−t)

{[ ∂
∂φ

logπφ(aπ
φ

s |s,Xπφ

s ) + ζs
](

dJ(s,Xπφ

s ;πφ)

+ [r(s,Xπφ

s , aπ
φ

s ) + γp
(
s,Xπ

s , a
πφ

s ,πφ(·|s,Xπφ

s )
)
− βJ(s,Xπφ

s ;πφ)]ds

)
+ γq(s,Xπφ

s , aπ
φ

s , φ)ds

}∣∣∣Xπφ

t = x

]
, (t, x) ∈ [0, T ]× Rd.

(16)

As discussed before, we do not use (14) to approximate the function g(·, ·;φ). Rather, at
any current time–state (t, x), (14) gives the gradient of J(t, x;φ) in φ so that we can update
φ in the most promising direction (based on the gradient ascent algorithm) to improve the
value of J . However, the right hand side of (14) involves only the future trajectories from
t; so Theorem 5 works only for the offline setting.

To treat the online case, assume that φ∗ is the optimal point of J(t, x;πφ) for any
(t, x) and that the first-order condition holds (e.g., when φ∗ is an interior point).5 Then
g(t, x;φ∗) = 0. It thus follows from (10) that

0 =

∫
A

{[
LaJ(t, x;πφ

∗
) + r(t, x, a) + γp

(
t, x, a,πφ

∗
(·|t, x)

)
− βJ(t, x;πφ

∗
)
]∂πφ∗
∂φ

(a|t, x)

+ γq(t, x, a, φ∗)πφ
∗
(a|t, x)

}
da

=

∫
A
ř(t, x, a;φ∗)πφ

∗
(a|t, x)da.

(17)
This is the same type of equation as (8) involved in the Feynman–Kac formula. In the same
way as (8) leading to Theorem 4, we can prove the following conclusion.

Theorem 6 If there exists an interior optimal point φ∗ that maximizes J(0, x;πφ) for any
x ∈ Rd, then

0 =EP

[∫ T

0
ηs

{[ ∂
∂φ

logπφ
∗
(aπ

φ∗

s |s,Xπφ
∗

s ) + ζs
][

dJ(s,Xπφ
∗

s ;πφ
∗
)

+ [r(s,Xπφ
∗

s , aπ
φ∗

s ) + γp
(
s,Xπφ

∗

s , aπ
φ∗

s ,πφ
∗
(·|s,Xπφ

∗

s )
)
− βJ(s,Xπφ

∗

s ;πφ
∗
)]ds

]
+ γq(s,Xπφ

∗

s , aπ
φ∗

s , φ∗)ds

}∣∣∣Xπφ
∗

0 = x

] (18)

for any η, ζ ∈ L2

FXπφ
∗
(
[0, T ]; J(·, Xπφ

∗

· ;πφ
∗
)
)
.

If we take ηs = e−βs, then the right hand side of (18) coincides with g(0, x, φ∗). However,
though only a necessary condition, (18) contains infinitely many equations with different

5. A theoretically optimal policy π∗ indeed maximizes J(t, x;π) for any (t, x), based on the verification
theorem; see Yong and Zhou (1999).
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test functions η. More importantly, besides the flexibility of choosing different sets of
test functions, (18) provides a way to derive a system of equations based on only past
observations and, hence, enables online learning. For example, by taking ηs = 0 on [t, T ],
(18) involves sample trajectories up to only the present time t. Thus, learning the optimal
policy either offline or online boils down to solving a system of equations (with suitably
chosen test functions) via stochastic approximation to find φ∗.

In sum, Theorems 5 and 6 foreshadow two different types of algorithms which we will
develop in the next subsection.

3.3 Actor–Critic Algorithms

We now design actor–critic (AC) algorithms by combining the PE and the PG steps. For the
former, Jia and Zhou (2022a) develop two methods, those of martingale loss function and
martingale orthogonality conditions, to devise several online/offline PE algorithms for the
continuous setting. As discussed in Subsection 3.1, one can adopt any of these algorithms
that is suitable for the given learning context and computational resource to estimate the
value function of any given policy. Here we focus on how to update the policy based on our
previous theoretical analysis on PG.

First, in the offline setting where full state trajectories under any given policy can be
repeatedly sampled and observed, the gradient of the value function w.r.t. the policy is
given by (14), which can be estimated using future samples from any current time–state
(t, x). That is, g(t, x;φ) is the gradient direction that would maximally improve the total
reward at (t, x).

For online learning, as explained earlier, (14) is no longer implementable. Instead of
computing gradients, we turn to (18) for directly solving the optimal policy. Specifically, at
any current time t, we choose ηs = 0 for s ∈ [t, T ] so that the integral in (18) only utilizes
past observations up to t, and hence is computable. Therefore, in the online setting one
applies stochastic approximation to solve the optimal condition (18) in order to search for
the optimal policy φ∗.

Recall that Jθ ≡ Jθ(·, ·), where Jθ(t, x) ∈ R, is a family of scalar functions on (t, x) ∈
[0, T ]×Rd parameterized by θ ∈ Θ ⊆ RLθ , and πφ ≡ πφ(·|·, ·), where πφ(·|t, x) ∈ P(A), is a
family of pdf-valued policy functions on (t, x) ∈ [0, T ]×Rd parameterized by φ ∈ Φ ⊆ RLφ .
The aim of an AC algorithm is to find the optimal (θ, φ) jointly, by updating the two
parameters alternatingly. Note that, although our problem is continuous in time, the final
algorithmic implementation requires discretizing time. For simplicity, we use equally spaced
mesh grid tk = k∆t, with k = 0, · · · ,K = b T∆tc.

We now present the following pseudo codes in Algorithms 1 and 2. Algorithm 1 is
for offline-episodic learning, where full trajectories are sampled and observed repeatedly
during different episodes and (θ, φ) are updated after one whole episode. Algorithm 2 is for
online incremental learning, where only the past sample trajectory is available and (θ, φ)
are updated in real-time incrementally.

Note that Algorithms 1 and 2 presented here are just for illustrative purpose; there is
ample flexibility to devise their variants depending on the specific problems concerned. In
particular, the choice of test functions dictates in which sense we approximate the value
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Algorithm 1 Offline–Episodic Actor–Critic Algorithm

Inputs: initial state x0, horizon T , time step ∆t, number of episodes N , number of mesh
grids K, initial learning rates αθ, αφ and a learning rate schedule function l(·) (a function
of the number of episodes), functional form of the value function Jθ(·, ·), functional form
of the policy πφ(·|·, ·), functional form of the regularizer p

(
t, x, a, π(·)

)
, functional forms of

the test functions ξ(t, x·∧t), ζ(t, x·∧t), and temperature parameter γ.
Required program: an environment simulator (x′, r) = Environment∆t(t, x, a) that takes
current time-state pair (t, x) and action a as inputs and generates state x′ at time t + ∆t
and the instantaneous reward r at time t.
Learning procedure:

Initialize θ, φ.
for episode j = 1 to N do

Initialize k = 0. Observe the initial state x0 and store xtk ← x0.
while k < K do

Compute and store the test function ξtk = ξ(tk, xt0 , · · · , xtk), ζtk =
ζ(tk, xt0 , · · · , xtk).
Generate action atk ∼ πφ(·|tk, xtk).
Apply atk to the environment simulator (x, r) = Environment∆t(tk, xtk , atk), and
observe the output new state x and reward r. Store xtk+1

← x and rtk ← r.
Update k ← k + 1.

end while
Compute

∆θ =
K−1∑
i=0

ξti
[
Jθ(ti+1, xti+1)− Jθ(ti, xti) + rti∆t

+ γp
(
ti, xti , ati ,π

φ(·|ti, xti)
)
∆t− βJθ(ti, xti)∆t

]
,

∆φ =

K−1∑
i=0

e−βti
{[ ∂
∂φ

logπφ(ati |ti, xti) + ζti
][
Jθ(ti+1, xti+1)− Jθ(ti, xti) + rti∆t

+ γp
(
ti, xti , ati ,π

φ(·|ti, xti)
)
∆t− βJθ(ti, xti)∆t

]
+ γ

∂p

∂φ

(
ti, xti , ati ,π

φ(·|ti, xti)
)
∆t

}
.

Update θ (policy evaluation) by

θ ← θ + l(j)αθ∆θ.

Update φ (policy gradient) by

φ← φ+ l(j)αφ∆φ.

end for
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Algorithm 2 Online-Incremental Actor–Critic Algorithm

Inputs: initial state x0, horizon T , time step ∆t, number of mesh grids K, initial learn-
ing rates αθ, αφ and learning rate schedule function l(·) (a function of the number of
episodes), functional form of the value function Jθ(·, ·), functional form of the policy
πφ(·|·, ·), functional form of the regularizer p

(
t, x, a, π(·)

)
, functional forms of the test func-

tions ξ(t, x·∧t),η(t, x·∧t), ζ(t, x·∧t), and temperature parameter γ.
Required program: an environment simulator (x′, r) = Environment∆t(t, x, a) that takes
current time-state pair (t, x) and action a as inputs and generates state x′ at time t + ∆t
and the instantaneous reward r at time t.
Learning procedure:

Initialize θ, φ.
for episode j = 1 to ∞ do

Initialize k = 0. Observe the initial state x0 and store xtk ← x0.
while k < K do

Compute test function ξtk = ξ(tk, xt0 , · · · , xtk), ηtk = η(tk, xt0 , · · · , xtk), and ζtk =
ζ(tk, xt0 , · · · , xtk).
Generate action atk ∼ πφ(·|tk, xtk).
Apply atk to the environment simulator (x, r) = Environment∆t(tk, xtk , atk), and
observe the output new state x and reward r. Store xtk+1

← x and rtk ← r.
Compute

δ = Jθ(tk+1, xtk+1
)− Jθ(tk, xtk) + rtk∆t

+ γp
(
tk, xtk , atk ,π

φ(·|tk, xtk)
)
∆t− βJθ(tk, xtk)∆t,

∆θ = ξtkδ,

∆φ = ηtk

{[ ∂
∂φ

logπφ(atk |tk, xtk) + ζtk
]
δ + γ

∂p

∂φ

(
tk, xtk , atk ,π

φ(·|tk, xtk)
)
∆t

}
.

Update θ (policy evaluation) by

θ ← θ + l(j)αθ∆θ.

Update φ (policy gradient) by

φ← φ+ l(j)αφ∆φ.

Update k ← k + 1
end while

end for
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function and policy.6 For example, if we take the test functions ξt = ∂Jθ

∂θ (t,Xt), and ηt =

e−βt, then we have essentially TD(0) AC algorithms. If we take ξt =
∫ t

0 λ
t−s ∂Jθ

∂θ (s,Xs)ds,

ζt =
∫ t−∆t

0 λt−s ∂∂φ logπφ(aπ
φ

s |s,Xs)ds, then we end up with TD(λ) algorithms (Sutton and
Barto, 2018). Moreover, in the PE part of the algorithms we can also use other methods
(online or offline) as summarized in Subsection 3.1.

Finally, we reiterate that the main purpose of this paper is to provide a theoretical foun-
dation to guide designing AC algorithms, instead of comparing which algorithm performs
better. As such, we only present the TD-type algorithms for illustration, acknowledging
that there are multiple ways to combine PE and the newly developed PG methods to design
new learning algorithms.

4. Extension to Ergodic Tasks

In this section we extend our results and algorithms to ergodic (long-term average) tasks,
which are also commonly studied in the RL literature. The ergodic objective is one possible
formulation of continuing tasks, in which a learning algorithm is based on only one single
trajectory.

Consider a regularized ergodic objective function

lim inf
T→∞

1

T
EPW

[ ∫ T

t

∫
A

[r(X̃π
s , a) + γp

(
X̃π
s , a,π(·|X̃π

s )
)
]π(a|X̃π

s )dads
∣∣∣X̃π

t = x

]
= lim inf

T→∞

1

T
EP
[ ∫ T

t
[r(Xπ

s , a
π
s ) + γp

(
Xπ
s , a

π
s ,π(·|Xπ

s )
)
]ds
∣∣∣Xπ

t = x

]
,

where p is the regularizer and γ ≥ 0 is the temperature parameter. Note that now the
running reward, the regularizer and the policy do not depended on time explicitly due to
the stationary nature of ergodic tasks.

One way to study an ergodic task is to connect it to a discounted, infinite horizon
problem:

EPW
[ ∫ ∞

t
e−β(s−t)

∫
A

[r(X̃π
s , a) + γp

(
X̃π
s , a,π(·|X̃π

s )
)
]π(a|X̃π

s )dads
∣∣∣X̃π

t = x

]
=EP

[ ∫ ∞
t

e−β(s−t)[r(Xπ
s , a

π
s ) + γp

(
Xπ
s , a

π
s ,π(·|Xa

s )
)
]ds
∣∣∣Xπ

t = x

]
.

It has been shown that, under suitable conditions, the optimal value function of the dis-
counted infinite horizon problem converges to the optimal ergodic reward as the discount
factor β → 0; see, e.g., Borkar and Ghosh (1988, 1990); Bensoussan and Frehse (1992).

Here, we opt for a direct treatment of ergodic problems. According to Sutton and
Barto (2018, page 249), ergodic tasks are actually better behaved than continuing tasks
with discounting. For a systematic account of classical ergodic control theory in continuous
time, see Arapostathis et al. (2012) and the references therein.

6. See Jia and Zhou (2022a) for detailed discussions on this point for the PE part. Also, to save computa-
tional and memory cost of algorithms, we usually choose test functions that can be computed incremen-

tally. For example, in a TD(λ) algorithm, ξtk =
∫ tk

0
λtk−s ∂J

θ

∂θ
(s,Xs)ds ≈ λ∆tξtk−1 + ∂Jθ

∂θ
(tk, Xtk )∆t,

and ζtk ≈ λ
∆tζtk−1 + ∂

∂φ
logπφ(aπ

φ

tk−1
|tk−1, Xtk−1)∆t, which can be calculated recursively.
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We first present the ergodic version of the Feynman–Kac formula.

Lemma 7 Let π = π(·|·) be a given (time-invariant) policy. Suppose there is a function
J(·;π) ∈ C2(Rd) and a scalar V (π) ∈ R satisfying∫

A

[
LaJ(x;π) + r(x, a) + γp

(
x, a,π(·|x)

)]
π(a|x)da− V (π) = 0, x ∈ Rd. (19)

Then for any t ≥ 0,

V (π) = lim infT→∞
1
T E

PW
[ ∫ T

t

∫
A[r(X̃π

s , a) + γp
(
X̃π
s , a,π(·|X̃π

s )
)
]π(a|X̃π

s )dads
∣∣∣X̃π

t = x

]
= lim infT→∞

1
T E

P
[ ∫ T

t [r(Xπ
s , a

π
s ) + γp

(
Xπ
s , a

π
s ,π(·|Xπ

s )
)
]ds
∣∣∣Xπ

t = x

]
.

(20)
Moreover, J(Xπ

t ;π) +
∫ t

0 [r(Xπ
s , a

π
s ) + γp

(
Xπ
s , a

π
s ,π(·|Xπ

s )
)
− V (π)]ds is an (FXπ

,P)-
martingale.

We emphasize that the solution to (19) is a pair of (J, V ), where J(·;π) is a function of
the state and V (π) ∈ R is a scalar. The long term average of the payoff does not depend
on the initial state x nor the initial time t due to the ergodicity, and hence remains a
constant as (20) implies. The function J , on the other hand, only represents the first-order
approximation of long-run average and is not unique. Indeed, for any constant c, (J + c, V )
is also a solution to (19). We refer to V as the “value”. Lastly, since the value does
not depend on the initial time, we will fix the latter as 0 in the following discussions and
applications of ergodic tasks.

For a given policy π, the PE problem is now to find a function J(·;π) and a value
V ∈ R, such that

J(Xπ
t ;π) +

∫ t

0
[r(Xπ

s , a
π
s ) + γp

(
Xπ
s , a

π
s ,π(·|Xπ

s )
)
− V (π)]ds

is a martingale. Following Jia and Zhou (2022a), we can then design online PE algorithms
based on the following martingale orthogonality conditions:

EP
∫ T

0
ξt

{
dJ(Xπ

t ;π) +
[
r(Xπ

t , a
π
t ) + γp

(
Xπ
t , a

π
t ,π(·|Xπ

t )
)
− V

]
dt
}

= 0, (21)

for any T > 0, any initial state x, and any test function ξ ∈ L2
FXπ

(
[0, T ]; J(Xπ

· ;π)
)
.

We now focus on PG. Suppose we parameterize the policy by πφ, we aim to estimate
∂V (πφ)
∂φ . Taking the derivative in φ in (19), we obtain

∂V (πφ)

∂φ
=

∫
A

[
LaJ(x;πφ) + r(x, a) + γp

(
x, a,πφ(·|x)

)]∂πφ(a|x)

∂φ
da

+

∫
A
La∂J(x;πφ)

∂φ
πφ(a|x)da+ γ

∫
A

∂p
(
x, a,πφ(·|x)

)
∂φ

πφ(a|x)da.
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Denote q(x, a, φ) := ∂
∂φp
(
x, a,πφ(·|x)

)
,

ř(x, a;φ) :=
[
LaJ(x;πφ) + r(x, a) + γp

(
x, a,π(·|x)

)] ∂πφ(a|x)
∂φ

πφ(a|x)
+ γq(x, a, φ),

and g(x;φ) := ∂
∂φJ(x;πφ). Then∫

A
[Lag(x;φ) + ř(x, a;φ)]πφ(a|x)da− ∂V (πφ)

∂φ
= 0.

Therefore, analogous to the case of episodic tasks, ∂V (πφ)
∂φ is the value corresponding to the

long-term average of a different running reward, according to the ergodic Feynman–Kac
formula (Lemma 7); that is

∂V (πφ)
∂φ = lim infT→∞

1
T E

P
[ ∫ T

0 ř(Xπφ
t , aπ

φ

t ;φ)dt
∣∣∣Xπφ

0 = x

]
= lim infT→∞

1
T E

PW
[ ∫ T

0

∫
A ř(X̃

πφ
t , a;φ)πφ(a|X̃πφ

t )dadt
∣∣∣X̃πφ

0 = x

]
= lim infT→∞

1
T E

PW
[ ∫ T

0

∫
A
{[
LaJ(X̃πφ

t ;πφ) + r(X̃πφ
t , a) + γp

(
X̃πφ
t , a,πφ(·|X̃πφ

t )
)]

× ∂
∂φ logπφ(a|X̃πφ

t ) + γq(X̃πφ
t , a, φ)

}
πφ(a|X̃πφ

t )dadt
∣∣∣X̃πφ

0 = x

]
= lim infT→∞

1
T E

P
[ ∫ T

0

{
∂
∂φ logπφ(aπ

φ

t |Xπφ
t )
[
dJ(Xπφ

t ;πφ) + r(Xπφ
t , aπ

φ

t )dt

+γp
(
Xπφ
t , aπ

φ

t ,πφ(·|Xπφ
t )
)
dt
]

+ γq(Xπφ
t , aπ

φ

t , φ)dt
}∣∣∣Xπφ

0 = x

]
= lim infT→∞

1
T E

P
[ ∫ T

0

{
∂
∂φ logπφ(aπ

φ

t |Xπφ
t )
[
dJ(Xπφ

t ;πφ) + r(Xπφ
t , aπ

φ

t )dt

+γp
(
Xπφ
t , aπ

φ

t ,πφ(·|Xπφ
t )
)
dt− V dt

]
+ γq(Xπφ

t , aπ
φ

t , φ)dt
}∣∣∣Xπφ

0 = x

]
,

(22)
where the last equality is due to

EP
[ ∫ T

0
V
∂

∂φ
logπφ(aπ

φ

t |Xπφ

t )dt
∣∣∣Xπφ

0 = x

]
=V EPW

[ ∫ T

0
dt

∫
A
πφ(a|X̃πφ

t )
∂

∂φ
logπφ(a|X̃πφ

t )da
∣∣∣X̃πφ

0 = x

]
=V EPW

[ ∫ T

0
dt

∂

∂φ

∫
A
πφ(a|X̃πφ

t )da
∣∣∣X̃πφ

0 = x

]
= 0.

An ergodic task is a continuing task so we are naturally interested in online algorithms
only. We can design two algorithms based on the analysis above. The first one follows
directly from the representation (22), in which the policy gradient is the expectation of a
long-run average and hence can be estimated online incrementally by

∂

∂φ
logπφ(aπ

φ

t |Xπφ

t )
[
dJ(Xπφ

t ;πφ) + [r(Xπφ

t , aπ
φ

t )

+ γp
(
Xπφ

t , aπ
φ

t ,πφ(·|Xπφ

t )
)
− V ]dt

]
+ γq(Xπφ

t , aπ
φ

t , φ)dt
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since it will converge to its stationary distribution as t→∞.7

Moreover, due to the martingale orthogonality condition (21), we can also add a test
function ζ as we did in (16). Consequently, the algorithm updates φ by gradient ascent:

φ← φ+ αφ

{[ ∂
∂φ

logπφ(aπ
φ

t |Xπφ

t ) + ζt
][

dJ(Xπφ

t ;πφ)

+ [r(Xπφ

t , aπ
φ

t ) + γp
(
Xπφ

t , aπ
φ

t ,πφ(·|Xa
t )
)
− V ]dt

]
+ γq(Xπφ

t , aπ
φ

t , φ)dt

}
.

The second algorithm applies a test function η and stochastic approximation to solve
the optimality condition as in Theorem 6, by updating

φ← φ+ αφηt

{[ ∂
∂φ

logπφ(aπ
φ

t |Xπφ

t ) + ζt
][

dJ(Xπφ

t ;πφ)

+ [r(Xπφ

t , aπ
φ

t ) + γp
(
Xπφ

t , aπ
φ

t ,πφ(·|Xπφ

t )
)
− V ]dt

]
+ γq(Xπφ

t , aπ
φ

t , φ)dt

}
.

Observe the two algorithms above differ by only the presence of the test function η. To
illustrate, we describe the second one in Algorithm 3.

5. Applications

In this section we report simulation experiments on our algorithms in two applications. The
first one is mean–variance portfolio selection in a finite time horizon with multiple episodes
of simulated stock price data. The second application is ergodic linear–quadratic control
with a single sample trajectory.

5.1 Mean–Variance Portfolio Selection

We first review the formulation of the exploratory mean–variance portfolio selection problem
proposed by Wang and Zhou (2020). The investment universe consists of one risky asset
(e.g. a stock index) and one risk-free asset (e.g. a saving account) whose risk-free interest
rate is r. The price of the risky asset is governed by a geometric Brownian motion with
mean µ and volatility σ > 0 on a filtered probability space (Ω,F ,PW ; {FWt }0≤t≤T ):

dSt
St

= µdt+ σdWt. (23)

Denote by ρ = µ−r
σ the Sharpe ratio of the risky asset.

An agent has a fixed investment horizon 0 < T <∞ and an initial endowment x0. A self-
financing portfolio is represented by the real-valued adapted process a = {at, 0 ≤ t ≤ T},

7. To be more specific, the reason why an infinitesimal increment of the (inner) integral can be used as an
estimate for the gradient is due to the ergodicity of the state process. The expression of the gradient
(22) is the long-time average of the integrand of the inner integral, which converges to its expectation
with respect to the stationary measure. On the other hand, the distribution of the integrand itself also
converges to its stationary measure. Therefore, the integrand itself becomes an asymptotically unbiased
estimate for the gradient as time tends to infinity. For a brief summary of the ergodicity properties, see
Sandrić (2017). More details can be found in Part III of Meyn and Tweedie (2012).

22



Policy Gradient and Actor–Critic Learning in CTRL

Algorithm 3 Actor–Critic Algorithm for Ergodic Tasks

Inputs: initial state x0, time step ∆t, initial learning rates αθ, αφ, αV and learning rate
schedule function l(·) (a function of time), functional form of the value function Jθ(·), func-
tional form of the policy πφ(·|·), functional form of the regularizer p

(
x, a, π(·)

)
, functional

forms of test functions ξ(x·∧t),η(x·∧t), ζ(x·∧t), and temperature parameter γ.
Required program: an environment simulator (x′, r) = Environment∆t(x, a) that takes
initial state x and action a as inputs and generates a new state x′ (at ∆t) and an instanta-
neous reward r.
Learning procedure:

Initialize θ, φ, V . Initialize k = 0. Observe the initial state x0 and store xtk ← x0.
loop

Compute test function ξtk = ξ(xt0 , · · · , xtk), ηtk = η(xt0 , · · · , xtk) and ζtk =
η(xt0 , · · · , xtk).
Generate action a ∼ πφ(·|x).
Apply a to the environment simulator (x′, r) = Environment∆t(x, a), and observe the
output new state x′ and reward r. Store xtk+1

← x′.
Compute

δ = Jθ(x′)− Jθ(x) + r∆t+ γp
(
x, a,πφ(·|x)

)
∆t− V∆t,

∆θ = ξtkδ,

∆V = δ,

∆φ = ηtk

{[ ∂
∂φ

logπφ(a|x) + ζtk
]
δ + γ

∂p

∂φ

(
x, a,πφ(·|x)

)
∆t

}
.

Update θ and V (policy evaluation) by

θ ← θ + l(k∆t)αθ∆θ,

V ← V + l(k∆t)αV ∆V.

Update φ (policy gradient) by

φ← φ+ l(k∆t)αφ∆φ.

Update x← x′ and k ← k + 1.
end loop
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where at is the discounted dollar value invested in the risky asset at time t. Then the
discounted value of this portfolio satisfies the wealth equation

dxat = at[(µ− r)dt+ σdWt] = at
d(e−rtSt)

e−rtSt
, xa0 = x0, (24)

where e−rtSt is the discounted stock price. We stress that the model on the stock price (23)
is mainly for theoretical analysis and for generating samples in our simulation; we do not
assume that the agent knows its parameters.

The agent has the mean–variance preference, namely, she aims to minimize the variance
of the discounted value of the portfolio at T while achieving a given level of expected return:

min
a

Var(xaT ), subject to E[xaT ] = z, (25)

where z is the target value, and the variance and expectation are w.r.t. the probability
measure PW .

This problem is not a standard stochastic control problem and cannot be solved directly
by the dynamic programming (DP) principle, or any DP-based reinforcement learning al-
gorithms such as Q-learning. This is because the variance term causes time-inconsistency
which violates the assumptions of DP. Strotz (1955) discusses three types of agents when
facing time-inconsistency. Here, we consider one of them – the so-called pre-committed agent
who solves the problem at time 0 and sticks to it afterwards.8 For this type of agent, to
overcome the difficulty of DP not being directly applicable, Zhou and Li (2000) extend the
embedding method, initially introduced by Li and Ng (2000) for the discrete-time mean–
variance problem, to transform (25) into an equivalent, unconstrained, and expectation-only
problem:

min
a

E[(xaT )2]− z2 − 2w(E[xaT ]− z) = min
a

E[(xaT − w)2]− (w − z)2,

where w is the Lagrange multiplier associated with the constraint E[xaT ] = z. This new
problem is time-consistent and therefore can be solved by DP. Once the optimal a∗ is
derived, w can be obtained by the equation E[xa

∗
T ] = z.

In a reinforcement learning framework, Wang and Zhou (2020) allow randomized actions
to incorporate exploration. A stochastic policy is denoted by π = π(·|t, x), namely, at any
current time–wealth pair (t, x), the total amount of discounted wealth invested in the stock
is a random draw from the distribution with the density function π(·|t, x). Under such a
policy, we denote by X̃π = {X̃π

s : t ≤ s ≤ T} the solution to the following SDE

dX̃π
s = (µ− r)

∫
R
aπ(a|s, X̃π

s )dads+ σ

√∫
R
a2π(a|s, X̃π

s )dadWs; X̃
π
t = x,

which is (5) specializing to the current case.

8. The other two types are the näıve one who re-optimizes at any given time and the sophisticated one
who seeks subgame perfect Nash equilibria among her-selves at different times. The latter has been well
studied in the continuous-time setting in recent years; see e.g. Ekeland and Lazrak (2006); Björk et al.
(2014); Basak and Chabakauri (2010); Dai et al. (2021). The RL counterpart is studied in Dai et al.
(2020).
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Moreover, an entropy regularizer is added to incentivize exploration. Mathematically,
the entropy-regularized mean–variance portfolio choice problem is to solve

V (t, x;w) = min
π

E
[
(X̃π

T − w)2 − γ
∫ T

t
H(πs)ds

∣∣∣X̃π
t = x

]
− (w − z)2, (26)

where z is the target expected terminal wealth, πs = π(·|s, X̃π
s ), t ≤ s ≤ T , H is the

differential entropy H(π) = −
∫
A π(a) log π(a)da, γ is the temperature parameter, and w is

the Lagrange multiplier similar to that introduced earlier.
We follow Wang and Zhou (2020) to parameterize the value function by

Jθ(t, x;w) = (x− w)2e−θ3(T−t) + θ2(t2 − T 2) + θ1(t− T )− (w − z)2,

and parameterize the policy by

πφ(·|t, x;w) = N (·| − φ1(x− w), eφ2+φ3(T−t)),

where N (·|α, δ2) is the pdf of the normal distribution with mean α and variance δ2. These
function approximators are derived in Wang and Zhou (2020) by exploiting the special
structure of the underlying problem; see also Appendix B1.

There is no running reward from the actions except the regularizer

H(πφ(·|t, x;w)) = −1

2
log(2πe)− 1

2
[φ2 + φ3(T − t)] =: p̂(t, φ).

Note that the regularizer turns out to be independent of the state x. Finally, the discount
factor is β = 0.

From this point on, we depart from Wang and Zhou (2020) and instead apply the
methods developed in this paper to solve the problem. We choose the test functions for PE
as the following gradients, in accordance with the most popular TD(0) algorithm:9

∂Jθ

∂θ1
(t, x;w) = t− T, ∂Jθ

∂θ2
(t, x;w) = t2 − T 2,

∂Jθ

∂θ3
(t, x;w) = (x− w)2e−θ3(T−t)(t− T ).

The PE updating rule is

θ ← θ + αθ

∫ T

0

∂Jθ

∂θ
(t,Xπφ

t ;w)
[
dJθ(t,Xπφ

t ;w) + γp̂(t, φ)dt
]
.

For the PG part, the gradients of log-likelihood are

∂ logπφ(a|t, x;w)

∂φ1
= −

(
a+ φ1(x− w)

)
(x− w)e−φ2−φ3(T−t),

∂ logπφ(a|t, x;w)

∂φ2
= −1

2
+

(
a+ φ1(x− w)

)2
2

e−φ2−φ3(T−t),

9. Wang and Zhou (2020) employ a mean–square TD error (MSTDE) algorithm to do PE and a policy
improvement theorem to update policies. However, it is shown in Jia and Zhou (2022a) that MSTDE
only minimizes the qudratic variation of the martingale, which may not lead to the true solution of PE.
As discussed earlier, other PE algorithms proposed in Jia and Zhou (2022a) can also be applied.
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∂ logπφ(a|t, x;w)

∂φ3
= −T − t

2
+

(
a+ φ1(x− w)

)2
2

e−φ2−φ3(T−t)(T − t),

and those of the regularizer are

∂p̂

∂φ1
(t, φ) = 0,

∂p̂

∂φ2
(t, φ) = −1

2
,

∂p̂

∂φ3
(t, φ) = −T − t

2
.

Accordingly, the offline PG updating rule is

φ← φ− αφ
∫ T

0

{
∂ logπφ

∂φ
(at|t,Xπφ

t ;w)
[
dJθ(t,Xπφ

t ;w) + γp̂(t,Xπφ

t , φ)dt
]

+ γ
∂p̂

∂φ
(t,Xπφ

t , φ)dt

}
.

The online counterpart of this updating rule is to remove the integral “
∫ T

0 ” in the above
and use only the resulting increment to update the policy at every time step.

In addition, there is the Lagrange multiplier w we need to learn: we update w based on
the same stochastic approximation scheme in Wang and Zhou (2020).

We present our offline and online algorithms as Algorithms 4 and 5 respectively. Then
we replicate the simulation study of Wang and Zhou (2020) with the same basic setting:
x0 = 1, z = 1.4, T = 1, ∆t = 1

252 . Choose temperature parameter γ = 0.1. The batch size
m = 10 for updating the Lagrange multiplier. The learning rate parameters in Wang and
Zhou (2020) are set to be αw = 0.05, and αθ = αφ = 0.0005 with decay rate l(j) = j−0.51. In
our experiment we adopt these learning rate values for the Wang and Zhou (2020) algorithm
unless the algorithm does not converge, in which case we tune the initial learning rates to
guarantee convergence. For our algorithm, we set αw = 0.05, and αθ = αφ = 0.1 with decay
rate l(j) = j−0.51 and tune the initial learning rate when necessary. The initialization of the
parameters θ and φ is set to be all 0 for both algorithms (the initialization is not discussed in
Wang and Zhou 2020). In particular, to mimic the real scenario, we choose a reasonable size
of the training sample, with length of 20 years. In each iteration, we randomly sample 128
1-year trajectories to update the rest parameters, and we train the model for N = 2× 104

iterations. We calculate the performance metrics – the mean, variance and Sharpe ratio of
the resulting terminal wealth – of the learned policies of both methods with the training
set generated from the same distribution.10 We then repeat the experiment for 100 times
and report the standard deviation of each metric.

Tables 1 and 2 present the test results of the algorithm in Wang and Zhou (2020)
and the offline Algorithm 4 in this paper respectively, when stock price is generated from
geometric Brownian motion under different specifications of the market parameters µ and
σ. Our algorithm achieves significantly higher out-of-sample average Sharpe ratios in most
scenarios. Underperformance of our strategy occurs mainly when the actual return of the
stock is low (µ = 0,±0.1). In those cases, our learned policy yields larger volatility and
less stable out-of-sample performance. However, although the average out-of-sample Sharpe
ratios of the learned policy are lower than those of Wang and Zhou (2020), the standard

10. Wang and Zhou (2020) report in-sample performance of the last 2000 iterations in the training set but
does not present out-of-sample test results.
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Algorithm 4 Offline–Episodic Actor–Critic Mean–Variance Algorithm

Inputs: initial state x0, horizon T , time step ∆t, number of episodes N , number of time
grids K, initial learning rates αθ, αφ, αw and learning rate schedule function l(·) (a function
of the number of episodes), and temperature parameter γ.
Required program: a market simulator x′ = Market∆t(t, x, a) that takes current time-
state pair (t, x) and action a as inputs and generates state x′ at time t+ ∆t.
Learning procedure:

Initialize θ, φ, w.
for episode j = 1 to N do

Initialize k = 0. Observe the initial state x and store xtk ← x.
while k < K do

Compute and store the test function ξtk = ∂Jθ

∂θ (tk, xtk ;w).
Generate action atk ∼ πφ(·|tk, xtk).
Apply atk to the market simulator x = Market∆t(tk, xtk , atk), and observe the output
new state x. Store xtk+1

← x.
Update k ← k + 1.

end while
Store the terminal wealth X

(j)
T ← xtK .

Compute

∆θ =
K−1∑
i=0

ξti
[
Jθ(ti+1, xti+1 ;w)− Jθ(ti, xti ;w) + γp̂(ti, xti , φ)∆t

]
,

∆φ =
K−1∑
i=0

∂

∂φ
logπφ(ati |ti, xti)

[
Jθ(ti+1, xti+1)− Jθ(ti, xti) + γp̂(t, xti , φ)∆t

]
+ γ

∂p̂

∂φ
(ti, xti , φ)∆t.

Update θ (policy evaluation) by

θ ← θ + l(j)αθ∆θ.

Update φ (policy gradient) by

φ← φ− l(j)αφ∆φ.

Update w (Lagrange multiplier) every m episodes:
if j ≡ 0 mod m then

w ← w − αw
1

m

j∑
i=j−m+1

X
(i)
T .

end if
end for
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Algorithm 5 Online–Episodic Actor–Critic Mean–Variance Algorithm

Inputs: initial state x0, horizon T , time step ∆t, number of episodes N , number of time
grids K, initial learning rates αθ, αφ, αw and learning rate schedule function l(·) (a function
of the number of episodes), and temperature parameter γ.
Required program: a market simulator x′ = Market∆t(t, x, a) that takes current time-
state pair (t, x) and action a as inputs and generates state x′ at time t+ ∆t.
Learning procedure:

Initialize θ, φ, w.
for episode j = 1 to N do

Initialize k = 0. Observe the initial state x and store xtk ← x.
while k < K do

Compute and store the test function ξtk = ∂Jθ

∂θ (tk, xtk ;w).
Generate action atk ∼ πφ(·|tk, xtk).
Apply atk to the market simulator x = Market∆t(tk, xtk , atk), and observe the output
new state x. Store xtk+1

← x.
Compute

∆θ = ξtk
[
Jθ(tk+1, xtk+1

;w)− Jθ(tk, xtk ;w) + γp̂(tk, xtk , φ)∆t
]
,

∆φ =
∂

∂φ
logπφ(atk |tk, xtk)

[
Jθ(tk+1, xtk+1

)− Jθ(tk, xtk) + γp̂(t, xtk , φ)∆t
]

+ γ
∂p̂

∂φ
(tk, xtk , φ)∆t.

Update θ (policy evaluation) by

θ ← θ + l(j)αθ∆θ.

Update φ (policy gradient) by

φ← φ− l(j)αφ∆φ.

Update k ← k + 1.
end while
Store the terminal wealth X

(j)
T ← xtK .

Update w (Lagrange multiplier) every m episodes:
if j ≡ 0 mod m then

w ← w − αw
1

m

j∑
i=j−m+1

X
(i)
T .

end if
end for
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deviations of ours are large. Hence, even in those few scenarios it is still statistically
inconclusive to determine which method is better.

We further carry out tests to compare Algorithm 4 with the online Algorithm 5. In
implementing Algorithm 5, we update parameters at each time step and conduct learning
for 20 years, with the same simulated stock prices as in offline learning. The batch size is set
to be m = 1 for updating the Lagrange multiplier. We also repeat the experiment for 100
times to calculate the standard deviation of each metric. The results are presented in Table
3. Compared with Table 2, offline learning outperforms online one in terms of Sharpe ratio
in most cases. Moreover, the former is always preferred when it comes to stably reaching
the target return (set to be 40% annually in the experiments).

With a given training data set, it is not surprising that offline learning is typically
preferred because it allows us to fully use the data set by bootstrapping multiple 1-year
episodes. By contrast, online learning pretends the data to come sequentially without
storing past data. For example, under our online setting, the 20-year training set only
contains 20 complete episodes sequentially to adjust the final terminal wealth level, unlike
in the offline setting where we bootstrap multiple 1-year episodes. Therefore, offline learning
uses data thoroughly and efficiently. However, other important considerations motivate or
even force us to use online learning. First and foremost, data distribution may not be
stationary, so offline learning may suffer from overfitting. Second, for large-scale problems,
online and incremental learning is more computationally efficient in reducing storage costs
and computational time. Finally, there are also computational techniques to store a certain
amount of past data to boost the efficiency of online learning, such as the experience replay
with off-policy learning (Zhang and Sutton, 2017; Fedus et al., 2020).

5.2 Ergodic Linear–Quadratic Control

Consider the ergodic linear–quadratic (LQ) control problem where state responds to actions
in a linear way

dXt = (AXt +Bat)dt+ (CXt +Dat)dWt, X0 = x0, (27)

and the goal is to maximize the long term average payoff

lim inf
T→∞

1

T
E
[∫ T

0
r(Xt, at)dt|X0 = x0

]
, (28)

with r(x, a) = −(M2 x
2 +Rxa+ N

2 a
2 + Px+Qa).

In the entropy-regularized RL formulation, the policy is denoted by π(·|x) and actions
are generated from this policy. The corresponding goal is to maximize

lim inf
T→∞

1

T
EPW

[ ∫ T

0

∫
R
r(X̃π

t , a)π(a|X̃π
t )dadt+ γH(π

(
· |X̃π

t )
)
dt
∣∣∣X̃π

0 = x0

]
, (29)

where H is the differential entropy as before. Moreover, X̃π satisfies

dX̃π
t =

∫
R

(AX̃π
t +Ba)π(a|X̃π

t )dadt+

√∫
R

(
CX̃π

t
2

+Da
)2
π(a|X̃π

t )dadWt. (30)
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Table 1: Out-of-sample performance of algorithm proposed in Wang and Zhou
(2020) for mean–variance problem when data are generated by geometric Brow-
nian motion. The columns “Mean” and “Variance” report the average mean and variance,
respectively, of terminal wealth over 100 independent experiments. The column “Sharpe
ratio” reports the corresponding average Sharpe ratio ( Mean−1√

Variance
). The numbers in the

brackets are the standard deviations.

µ σ Mean Variance Sharpe ratio

-0.5 0.1 1.4 ( 0.015 ) 0 ( 0.00033 ) 6.69 ( 0.096 )
-0.3 0.1 1.4 ( 0.027 ) 0.01 ( 0.002 ) 3.59 ( 0.064 )
-0.1 0.1 1.4 ( 0.11 ) 0.11 ( 0.059 ) 1.25 ( 0.02 )
0 0.1 1.04 ( 0.028 ) 0.06 ( 0.057 ) 0.2 ( 9.2e-05 )

0.1 0.1 1.45 ( 0.29 ) 0.43 ( 0.55 ) 0.81 ( 0.0057 )
0.3 0.1 1.41 ( 0.033 ) 0.02 ( 0.0032 ) 3.06 ( 0.046 )
0.5 0.1 1.4 ( 0.017 ) 0 ( 0.00044 ) 6 ( 0.087 )
-0.5 0.2 1.4 ( 0.03 ) 0.01 ( 0.0031 ) 3.38 ( 0.15 )
-0.3 0.2 1.41 ( 0.067 ) 0.05 ( 0.022 ) 1.81 ( 0.074 )
-0.1 0.2 1.44 ( 0.3 ) 0.74 ( 1.3 ) 0.61 ( 0.0041 )
0 0.2 1.04 ( 0.032 ) 0.27 ( 0.27 ) 0.1 ( 6.3e-05 )

0.1 0.2 1.25 ( 0.076 ) 0.43 ( 0.23 ) 0.4 ( 0.0014 )
0.3 0.2 1.42 ( 0.089 ) 0.08 ( 0.04 ) 1.54 ( 0.055 )
0.5 0.2 1.41 ( 0.034 ) 0.02 ( 0.004 ) 3.03 ( 0.13 )
-0.5 0.3 1.4 ( 0.057 ) 0.03 ( 0.016 ) 2.25 ( 0.16 )
-0.3 0.3 1.41 ( 0.14 ) 0.13 ( 0.12 ) 1.2 ( 0.057 )
-0.1 0.3 1.32 ( 0.12 ) 0.71 ( 0.43 ) 0.41 ( 0.0023 )
0 0.3 1.04 ( 0.031 ) 0.55 ( 0.58 ) 0.07 ( 3e-05 )

0.1 0.3 1.19 ( 0.11 ) 0.67 ( 0.49 ) 0.27 ( 0.0011 )
0.3 0.3 1.44 ( 0.14 ) 0.22 ( 0.21 ) 1 ( 0.018 )
0.5 0.3 1.41 ( 0.055 ) 0.04 ( 0.016 ) 2.01 ( 0.13 )
-0.5 0.4 1.41 ( 0.079 ) 0.07 ( 0.041 ) 1.67 ( 0.13 )
-0.3 0.4 1.43 ( 0.15 ) 0.28 ( 0.23 ) 0.86 ( 0.011 )
-0.1 0.4 1.28 ( 0.12 ) 1.04 ( 0.76 ) 0.3 ( 0.0016 )
0 0.4 1.04 ( 0.028 ) 0.85 ( 0.89 ) 0.05 ( 2.3e-05 )

0.1 0.4 1.17 ( 0.1 ) 0.93 ( 0.82 ) 0.2 ( 0.00069 )
0.3 0.4 1.46 ( 0.17 ) 0.44 ( 0.43 ) 0.74 ( 0.012 )
0.5 0.4 1.42 ( 0.082 ) 0.09 ( 0.046 ) 1.44 ( 0.058 )
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Table 2: Out-of-sample performance of offline learning (Algorithm 4) for mean–
variance problem when data are generated by geometric Brownian motion. The
columns “Mean” and “Variance” report the average mean and variance, respectively, of
terminal wealth over 100 independent experiments. The column “Sharpe ratio” reports
the corresponding average Sharpe ratio ( Mean−1√

Variance
). The numbers in the brackets are the

standard deviations.

µ σ Mean Variance Sharpe ratio

-0.5 0.1 1.4 ( 0.012 ) 0 ( 0.00011 ) 8.15 ( 0.06 )
-0.3 0.1 1.4 ( 0.023 ) 0.01 ( 0.00084 ) 4.37 ( 0.029 )
-0.1 0.1 1.41 ( 0.08 ) 0.09 ( 0.037 ) 1.37 ( 0.0073 )
0 0.1 1.13 ( 0.14 ) 0.91 ( 0.49 ) 0.12 ( 0.16 )

0.1 0.1 1.51 ( 0.27 ) 0.47 ( 0.72 ) 0.84 ( 0.0023 )
0.3 0.1 1.41 ( 0.028 ) 0.01 ( 0.0015 ) 3.71 ( 0.025 )
0.5 0.1 1.4 ( 0.014 ) 0 ( 0.00016 ) 7.35 ( 0.055 )
-0.5 0.2 1.4 ( 0.025 ) 0.01 ( 0.001 ) 3.98 ( 0.047 )
-0.3 0.2 1.4 ( 0.049 ) 0.04 ( 0.0088 ) 2.1 ( 0.017 )
-0.1 0.2 1.53 ( 0.27 ) 0.93 ( 1 ) 0.62 ( 0.0012 )
0 0.2 1.06 ( 0.15 ) 2.51 ( 1.6 ) 0.04 ( 0.094 )

0.1 0.2 1.44 ( 0.37 ) 2.02 ( 1.5 ) 0.35 ( 0.21 )
0.3 0.2 1.42 ( 0.065 ) 0.06 ( 0.018 ) 1.78 ( 0.012 )
0.5 0.2 1.41 ( 0.029 ) 0.01 ( 0.0015 ) 3.58 ( 0.041 )
-0.5 0.3 1.4 ( 0.04 ) 0.03 ( 0.0047 ) 2.54 ( 0.026 )
-0.3 0.3 1.41 ( 0.088 ) 0.1 ( 0.049 ) 1.32 ( 0.007 )
-0.1 0.3 1.43 ( 0.33 ) 1.79 ( 1.9 ) 0.37 ( 0.18 )
0 0.3 1.03 ( 0.12 ) 3.46 ( 2.3 ) 0.02 ( 0.064 )

0.1 0.3 1.26 ( 0.36 ) 2.78 ( 2.3 ) 0.18 ( 0.2 )
0.3 0.3 1.44 ( 0.13 ) 0.17 ( 0.14 ) 1.12 ( 0.012 )
0.5 0.3 1.41 ( 0.048 ) 0.03 ( 0.0076 ) 2.28 ( 0.02 )
-0.5 0.4 1.41 ( 0.061 ) 0.05 ( 0.017 ) 1.8 ( 0.01 )
-0.3 0.4 1.43 ( 0.15 ) 0.24 ( 0.23 ) 0.93 ( 0.014 )
-0.1 0.4 1.31 ( 0.44 ) 3.13 ( 4.8 ) 0.25 ( 0.17 )
0 0.4 1.02 ( 0.096 ) 3.77 ( 2.7 ) 0.01 ( 0.049 )

0.1 0.4 1.14 ( 0.36 ) 3.6 ( 2.8 ) 0.1 ( 0.18 )
0.3 0.4 1.53 ( 0.34 ) 0.74 ( 1.3 ) 0.73 ( 0.0024 )
0.5 0.4 1.42 ( 0.076 ) 0.07 ( 0.032 ) 1.6 ( 0.014 )
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Table 3: Out-of-sample performance of online learning (Algorithm 5) for mean–
variance problem when data are generated by geometric Brownian motion. The
columns “Mean” and “Variance” report the average mean and variance, respectively, of
terminal wealth over 100 independent experiments. The column “Sharpe ratio” reports
the corresponding average Sharpe ratio ( Mean−1√

Variance
). The numbers in the brackets are the

standard deviations.

µ σ Mean Variance Sharpe ratio

-0.5 0.1 1.78 ( 0.0082 ) 0.01 ( 3e-04 ) 7.43 ( 0.04 )
-0.3 0.1 1.55 ( 0.0077 ) 0.02 ( 0.00034 ) 3.84 ( 0.027 )
-0.1 0.1 1.14 ( 0.022 ) 0.01 ( 0.0039 ) 1.24 ( 0.0073 )

0 0.1 1.01 ( 0.0055 ) 0 ( 0.0016 ) 0.12 ( 0.16 )
0.1 0.1 1.26 ( 0.052 ) 0.09 ( 0.032 ) 0.85 ( 0.012 )
0.3 0.1 1.83 ( 0.021 ) 0.04 ( 0.0023 ) 4.31 ( 0.056 )
0.5 0.1 1.92 ( 0.017 ) 0.01 ( 0.00032 ) 10.82 ( 0.15 )
-0.5 0.2 1.77 ( 0.015 ) 0.04 ( 0.0023 ) 3.65 ( 0.038 )
-0.3 0.2 1.54 ( 0.018 ) 0.08 ( 0.0036 ) 1.89 ( 0.025 )
-0.1 0.2 1.14 ( 0.043 ) 0.05 ( 0.028 ) 0.62 ( 0.006 )

0 0.2 1.01 ( 0.01 ) 0.01 ( 0.015 ) 0.04 ( 0.091 )
0.1 0.2 1.12 ( 0.072 ) 0.12 ( 0.09 ) 0.36 ( 0.19 )
0.3 0.2 1.79 ( 0.048 ) 0.17 ( 0.019 ) 1.94 ( 0.052 )
0.5 0.2 1.92 ( 0.033 ) 0.04 ( 0.0032 ) 4.8 ( 0.11 )
-0.5 0.3 1.76 ( 0.02 ) 0.1 ( 0.0073 ) 2.36 ( 0.035 )
-0.3 0.3 1.52 ( 0.035 ) 0.18 ( 0.018 ) 1.23 ( 0.021 )
-0.1 0.3 1.12 ( 0.061 ) 0.11 ( 0.079 ) 0.39 ( 0.14 )

0 0.3 1.01 ( 0.013 ) 0.05 ( 0.051 ) 0.02 ( 0.063 )
0.1 0.3 1.1 ( 0.12 ) 2.27 ( 20 ) 0.17 ( 0.21 )
0.3 0.3 1.44 ( 0.049 ) 0.18 ( 0.032 ) 1.05 ( 0.018 )
0.5 0.3 1.73 ( 0.018 ) 0.12 ( 0.0072 ) 2.1 ( 0.033 )
-0.5 0.4 1.74 ( 0.028 ) 0.19 ( 0.016 ) 1.7 ( 0.033 )
-0.3 0.4 1.48 ( 0.062 ) 0.29 ( 0.057 ) 0.9 ( 0.017 )
-0.1 0.4 1.11 ( 0.075 ) 0.19 ( 0.15 ) 0.25 ( 0.17 )

0 0.4 1.01 ( 0.016 ) 0.11 ( 0.12 ) 0.01 ( 0.048 )
0.1 0.4 1.04 ( 0.06 ) 0.13 ( 0.13 ) 0.08 ( 0.18 )
0.3 0.4 1.4 ( 0.08 ) 0.28 ( 0.087 ) 0.77 ( 0.015 )
0.5 0.4 1.71 ( 0.027 ) 0.22 ( 0.015 ) 1.52 ( 0.03 )
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Following the same line of deductions as in Wang et al. (2020), we can show that
the optimal policy is a normal distribution whose mean is linear in the state and whose
variance is a constant. Therefore we parameterize the policy by πφ(·|x) = N (·|φ1x+φ2, e

φ3).
Moreover, the function J is parameterized as a quadratic function Jθ(x) = 1

2θ0x
2 + θ1x (we

ignore the constant term since J is unique up to a constant) and the optimal value V is an
extra parameter.

This problem falls into the formulation of an ergodic task; so we directly implement
Algorithm 3 in our simulation and then compare the learned parameters with the theo-
retically optimal ones. In addition, we compare the up-to-now average reward during the
online learning process to two theoretical benchmarks. The first one is the omniscient
optimal level, which is the maximum long term average reward that can be achieved by a
hypothetical agent who knows completely about the environment (i.e. the correct model and
model parameters) and acts optimally (the optimal policy is a deterministic one) without
needing to explore (and hence there is no entropy regularization). The second benchmark
is the omniscient optimal level less the exploration cost, which is the maximum long term
average reward that can be achieved by the aforementioned hypothetical agent who is how-
ever forced to explore under entropy regularization.11 Clearly, since exploration (rendering
a stochastic policy) is inherent in the RL setting, our algorithm can at most achieve the
second benchmark. In other words, after learning for a sufficiently long time, we can learn
the correct optimal policy but can only expect the up-to-now average reward to approach
the optimal level less the exploration cost.

To guarantee the stationarity of the controlled state process, we set A = −1, B = C = 0
and D = 1. Moreover, we set x0 = 0, M = N = Q = 2, R = P = 1, and γ = 0.1. Learning
rate is initialized as αθ = αφ = 0.001, and decays according to l(t) = 1

max{1,log t} . All the
parameters to be learned are initialized as 0 and time discretization is taken as ∆t = 0.01.
We repeat the experiment for 100 times.

We implement TD(0) for both the PE and the PG parts of the AC algorithm, referred
to as the Actor–Critic Policy Gradient algorithm in Figure 1. Namely, we choose test
functions ξt = ∂Jθ

∂θ (Xt), ηt = 1, ζt = 0 in Algorithm 3. Figure 1 shows the convergence of
the learned policy parameters along with that of the average reward along a single state
sample trajectory. Observe that the average reward first decreases at the beginning of
this particular trajectory. The reason may have been that during the initial iterations the
underlying state process has not yet converged to the stationary distribution and the initial
policies are still far away from the optimal one, and hence the average reward is dominated
by a few “wrong trials”. After a sufficient amount of time, however, both the policies and
the average reward start to converge to the theoretically optimal values. Between the two
it takes a much longer time for the average reward to approach the optimal level as we wait
for the contribution from the bad performance of the beginning period to diminish.

11. See Appendix B2 for precise definitions of these two benchmarks and detailed calculations of them.
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(a) The learned parameters in the policy
along one sample trajectory.

(b) The average reward along one sample tra-
jectory.

Figure 1: Convergence of the learned policy and the average reward under the
online learning algorithm. A single state trajectory is generated with length T = 106

under the online AC algorithm. The left panel illustrates the convergence of the policy
parameters, where the dashed horizontal lines indicate the values of the respective param-
eters of the theoretically optimal policy to the entropy-regularized exploratory stochastic
control problem. The right panel shows the convergence of the average reward, where the
two dashed horizontal lines are respectively the omniscient optimal average reward without
exploration when the model parameters are known, and the omniscient optimal average
reward less the exploration cost. We repeat the experiment for 100 times to calculate the
standard deviations of the predicted parameters, which are represented as the shaded areas.
The width of each shaded area is twice the corresponding standard deviation, which is very
small compared to the scale of the vertical axis.

6. Conclusion

This paper is the final installment of a “trilogy”, the first two being Wang et al. (2020)
and Jia and Zhou (2022a), that endeavors to develop a systematic and unified theoretical
foundation for RL in continuous time with continuous state space and possibly continuous
action space. The previous two papers address exploration and PE, respectively, and this
paper focuses on PG. A major finding of the current paper is that PG is intimately related
to PE, and thus the martingale characterization of PE established in Jia and Zhou (2022a)
can be applied to PG. Combining the theoretical results of the three papers, we propose
online and offline actor–critic algorithms for general model-free RL tasks, where we learn
value functions and stochastic policies simultaneously and alternatingly.

This series of papers are characterized by conducting all the theoretical analysis within
the continuous setting and discretizing time only when implementing the algorithms. The
advantages of this approach, versus discretizing time right at the start and then applying
existing MDP results, are articulated in Doya (2000). Moreover, more analytical tools are
at our disposal in the continuous setting, including calculus, stochastic calculus, stochastic
control, and differential equations. The discrete-time versions of the various algorithms
devised in the three papers are indeed well known in the discrete-time RL literature; hence
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their convergence is well established. On the other hand, Jia and Zhou (2022a) prove that
any convergent time-discretized PE algorithm also converges as the mesh size goes to zero.
Because PG algorithms developed in the current paper are essentially derived from the
martingality for PE, the same convergence also holds for them.

It is interesting to note that the derivation and representation of PG are not entirely
analogous to that of MDPs. For example, the latter involves a state–action function (Q-
function), whereas the former is essentially the expected integration of a term involving the
value function.

The study on continuous-time RL is still in its infancy, and open questions abound.
These include, to name but a few, regret bound of episodic RL problems in terms of the
number of episodes, interpretation of Q-function and Q-learning in the continuous setting,
and dependence of the performance of AC algorithms on the temperature parameter when
there is an exploration regularizer.
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Appendix A. Connections with Policy Gradient in Discrete Time

We review the classical policy gradient approach and results for discrete-time Markov de-
cision processes (MDPs) here and compare them with their continuous-time counterparts
developed in the main text.

For simplicity, we consider a time-homogeneous MDP X = {Xt, t = 0, 1, 2, · · · } with a
state space X , an action space A, and a transition matrix P(X1 = x′|X0 = x, a0 = a) =
p(x′|x, a). Both X and A are finite sets. The expected reward is r(x, a) with a discount
factor β ∈ (0, 1). The agent’s total expected reward is E

[∑∞
t=0 β

tr(Xt, at)
]
. A (stochastic)

policy is denoted by πφ(·|x) ∈ P(A), which is a probability density function on A, with a
suitable parameter vector φ ∈ RLφ .

Define the value function associated with a given policy πφ by

J(x;πφ) =E

[ ∞∑
t=0

βtr(Xπφ

t , aπ
φ

t )
∣∣∣Xπφ

0 = x

]

=E

[ ∞∑
t=0

βtE
at∼πφ(·|Xπφ

t )

[
r(Xπφ

t , at)
] ∣∣∣Xπφ

0 = x

]
.

(31)

We are interested in the gradient of the value function with respect to the policy pa-

rameter φ, that is, ∂J(x;πφ)
∂φ . The classical policy gradient theorem (e.g., Sutton et al. 1999,

Theorem 1) states that

∂J(x;πφ)

∂φ
=
∑
x′∈X

µπ
φ
(x′)

∑
a∈A

∂πφ

∂φ
(a|x′)Q(x′, a;πφ), (32)

where Q(x, a;πφ) = r(x, a) + E[
∑∞

t=1 β
tr(Xπφ

t , aπ
φ

t )
∣∣∣Xπφ

0 = x] is the Q-function, and

µπ
φ
(x′) =

∑∞
t=0 β

tP(Xπφ
t = x′|Xπφ

0 = x) is the (discounted) occupation time.

Define `(x′) =
∑

a∈A
∂πφ

∂φ (a|x′)Q(x′, a;πφ), which is a deterministic function of x′. Since∑
a∈A

∂πφ

∂φ (a|x′) = ∂
∂φ

∑
a∈A πφ(a|x′) = 0, `(x′) can be equivalently written as

`(x′) =
∑
a∈A

∂πφ

∂φ
(a|x′)

[
Q(x′, a;πφ)−B(x′)

]
=
∑
a∈A

∂ logπφ

∂φ
(a|x′)

[
Q(x′, a;πφ)−B(x′)

]
πφ(a|x′)

=Ea∼πφ(·|x′)

[
∂ logπφ

∂φ
(a|x′)

[
Q(x′, a;πφ)−B(x′)

]]
,

for any function B(·), sometimes known as a baseline (Williams, 1992).

On the other hand,

µπ
φ
(x′) =

∞∑
t=0

βtP(Xπφ

t = x′|Xπφ

0 = x) = E

[ ∞∑
t=0

βt1{Xπφ
t =x′}

∣∣∣Xπφ

0 = x

]
.
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Therefore, (32) is equivalent to

∂J(x;πφ)

∂φ
=
∑
x′∈X

E

[ ∞∑
t=0

βt1{Xπφ
t =x′}

∣∣∣Xπφ

0 = x

]
`(x′)

=

∞∑
t=0

βt
∑
x′∈X

E
[
1{Xπφ

t =x′}`(x
′)
∣∣∣Xπφ

0 = x
]

=
∞∑
t=0

βtE

[∑
x′∈X

1{Xπφ
t =x′}`(X

πφ

t )
∣∣∣Xπφ

0 = x

]

=E

[ ∞∑
t=0

βt`(Xπφ

t )
∣∣∣Xπφ

0 = x

]

=E

[ ∞∑
t=0

βtE
a∼πφ(·|Xπφ

t )

[
∂ logπφ

∂φ
(a|Xπφ

t )
[
Q(Xπφ

t , a;πφ)−B(Xπφ

t )
]] ∣∣∣Xπφ

0 = x

]

=E

[ ∞∑
t=0

βt
∂ logπφ

∂φ
(aπ

φ

t |Xπφ

t )
[
Q(Xπφ

t , aπ
φ

t ;πφ)−B(Xπφ

t )
] ∣∣∣Xπφ

0 = x

]

=E

[ ∞∑
t=0

βt
∂ logπφ

∂φ
(aπ

φ

t |Xπφ

t )
[
Q(Xπφ

t , aπ
φ

t ;πφ)− J(Xπφ

t ;πφ)
] ∣∣∣Xπφ

0 = x

]
.

(33)

If we choose the baseline to be the value function B(·) = J(·;πφ), then (33) gives the
representation of policy gradient in the advantage actor–critic approach (Mnih et al., 2016).

If we are to extend the above derivation to the continuous-time setting, then an essential
question is what the Q-function should be in continuous time. This question has been
extensively studied in a recent paper Jia and Zhou (2022b) from which we realize that
(using the notations in this paper with the discount factor e−βt)

Q(Xπφ

t , aπ
φ

t ;πφ)− J(Xπφ

t ;πφ)

≈Laπ
φ

t J(Xπφ

t ;πφ)∆t+ r(Xπφ

t , aπ
φ

t )∆t− βJ(Xπφ

t ;πφ)∆t

≈dJ(Xπφ

t ;πφ) + r(Xπφ

t , aπ
φ

t )dt− βJ(Xπφ

t ;πφ)dt+
∂J

∂x
(Xπφ

t ;πφ)>σ(Xπφ

t )dWt.

Therefore, (33) becomes

∂J(x;πφ)

∂φ
= E

[ ∫ ∞
0
e−βt

∂ logπφ

∂φ
(aπ

φ

t |Xπφ

t )
[
dJ(Xπφ

t ;πφ) + r(Xπφ

t , aπ
φ

t )dt

− βJ(Xπφ

t ;πφ)dt+
∂J

∂x
(Xπφ

t ;πφ)>σ(Xπφ

t )dWt

]∣∣∣Xπφ

0 = x

]
.

Note that there is no policy regularizer in the current discussion; so the above coincides
with the expression of the policy gradient (14) with γ = 0.
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Appendix B. Theoretical Results Employed in Simulation Experiments

For the reader’s convenience, we summarize the theoretical results employed in the two
simulation studies in Section 5. Their proofs are similar to those of the analogous results
in Wang and Zhou (2020) and Wang et al. (2020) respectively.

Appendix B1. Mean-Variance Portfolio Selection

Let the true model be given as (23) and one aims to solve (25). An omniscient agent’s opti-

mal policy is a deterministic one, given by a∗t = −µ−r
σ2 (xt−w∗), where w∗ =

z exp{ (µ−r)2

σ2 T}−x0

exp{ (µ−r)2
σ2 T}−1

.

Given this policy, the discounted wealth process (24) becomes

dx∗t = −(µ− r)2

σ2
(x∗t − w∗)dt−

µ− r
σ

(x∗t − w∗)dWt.

Hence x∗t − w is a geometric Brownian motion. We can compute E[x∗T ] = z, and

Var(x∗T ) = (x0 − w∗)2 exp{−2
(µ− r)2

σ2
T}
(

exp{(µ− r)2

σ2
T} − 1

)
=

(x0 − z)2(
exp{ (µ−r)2

σ2 T} − 1
)2 .

If the agent knows the true model but is forced to take a stochastic policy subject to
the entropy regularizer, then the optimal policy is

π∗(·|t, x) ∼ N
(
−µ− r

σ2
(x− w∗), γ

2σ2
exp{(µ− r)2

σ2
(T − t)}

)
.

Under this policy, the dynamics of X̃π∗
t is

dX̃π∗
t = −(µ− r)2

σ2
(X̃π∗

t − w∗)dt+

√
(µ− r)2

σ2
(X̃π∗

t − w∗)2 +
γ

2
exp{(µ− r)2

σ2
(T − t)}dWt.

With the same value of w∗, one can show that EPW [X̃π∗
T ] = z, and

VarP
W

(X̃π∗
T ) = exp{−(µ− r)2

σ2
T}(x0−w∗)1+

γ

2
T−(z−w∗)2 =

(x0 − z)2(
exp{ (µ−r)2

σ2 T} − 1
)2 +

γ

2
T.

Appendix B2. Ergodic Linear-Quadratic Control

Two benchmarks, “omniscient optimal level” and “omniscient optimal level less exploration
cost”, are used in Section 5.2 for comparison. We introduce their formal definitions here.

Definition 8 The omniscient optimal level is the maximum value of (28) subject to (27)
when all the model coefficients (A,B,C,D,M,R,N, P,Q) are known to the agent. The
omniscient optimal level less exploration cost is defined as

lim inf
T→∞

1

T
EPW

[ ∫ T

0

∫
R
r(X̃π∗

t , a)π(a|X̃π∗
t )dadt

∣∣∣X̃π∗
0 = x0

]
,

where π∗ is the optimal policy to (29) with the entropy regularizer and subject to (30) when
all the model coefficients are known to the agent.
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We compute these two values using the Hamilton-Jacobi-Bellman (HJB) equation ap-
proach.

Let the true model be given by (27) and one aims to maximize the long-term average
reward (28). Consider the associated HJB equation:

0 = sup
a

[Laϕ(x) + r(x, a)− V ]

= sup
a

[
(Ax+Ba)ϕ′(x) +

1

2
(Cx+Da)2ϕ′′(x)− (

M

2
x2 +Rxa+

N

2
a2 + Px+Qa)− V

]
.

Conjecturing ϕ(x) = 1
2k2x

2 + k1x and plugging it to the HJB equation, we get the first-

order condition a∗ = [k2(B+CD)−R]x+k1B−Q
N−k2D2 , assuming N − k2D

2 > 0. The HJB equation
now becomes

0 =
1

2
[k2(2A+ C2)−M ]x2 + (k1A− P )x− V +

1

2

{[k2(B + CD)−R]x+ k1B −Q}2

N − k2D2
.

This leads to three algebraic equations by matching the coefficients of x2, x and the constant
term: 

k2(2A+ C2)−M +
[k2(B + CD)−R]2

N − k2D2
= 0,

k1A− P +
[k2(B + CD)−R](k1B −Q)

N − k2D2
= 0,

V =
(k1B −Q)2

2(N − k2D2)
.

(34)

Note that (34) coincides with the system of equations in footnote 12 and Theorem 9 in
Wang et al. (2020) when the discount factor is 0.

Solving these algebraic equation gives the omniscient optimal reward and the corre-
sponding optimal policy a∗ = [k2(B+CD)−R]x+k1B−Q

N−k2D2 .
If the agent knows the true model but still adopts stochastic policies with a entropy

regularizer, then the optimal policy is given by

π∗(·|x) ∼ N
(

[k2(B + CD)−R]x+ k1B −Q
N − k2D2

,
γ

N − k2D2

)
,

where k2, k1 are determined by (34). This optimal solution is identical to that in Wang
et al. (2020, Theorem 4) when the discount factor is 0.

Under this stochastic policy, the state dynamics become

dX̃π∗
t =

(
AX̃π∗

t +B
[k2(B + CD)−R]X̃π∗

t + k1B −Q
N − k2D2

)
dt

+

(
C2X̃π∗2

t + CDX̃π∗
t

[k2(B + CD)−R]X̃π∗
t + k1B −Q

N − k2D2

+D2
[( [k2(B + CD)−R]X̃π∗

t + k1B −Q
N − k2D2

)2
+

γ

N − k2D2

])1/2

dWt.
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To calculate the long-term average value Ṽ = lim infT→∞
1
T E

PW
[ ∫ T

0

∫
R r(X̃

π∗
t , a)π∗(a|X̃π∗

t )dadt

]
,

consider the corresponding HJB equation∫
R

[(Ax+Ba)ϕ̃′(x)+
1

2
(Cx+Da)2ϕ̃′′(x)−(

M

2
x2+Rxa+

N

2
a2+Px+Qa)]π∗(a|x)da−Ṽ = 0.

Starting with an ansatz ϕ̃(x) = 1
2 k̃2x

2 + k̃1x and going through the same calculations as
above we obtain three equations

(A+B
k2(B + CD)−R

N − k2D2
)k̃2 +

1

2

(
C2 + 2CD

k2(B + CD)−R
N − k2D2

+D2 [k2(B + CD)−R]2

(N − k2D2)2

)
k̃2

− M

2
−Rk2(B + CD)−R

N − k2D2
− N

2

[k2(B + CD)−R]2

(N − k2D2)2
= 0,

(A+B
k2(B + CD)−R

N − k2D2
)k̃1 +B

k1B −Q
N − k2D2

k̃2

+
1

2

(
2CD

k1B −Q
N − k2D2

+ 2D2 [k2(B + CD)−R](k1B −Q)

(N − k2D2)2

)
k̃2

−R k1B −Q
N − k2D2

−N [k2(B + CD)−R](k1B −Q)

(N − k2D2)2
− P − Q[k2(B + CD)−R]

N − k2D2
= 0,

k̃1B
k1B −Q
N − k2D2

+
1

2

(
D2 (k1B −Q)2

(N − k2D2)2
+D2 γ

N − k2D2

)
k̃2

− N

2

(k1B −Q)2

(N − k2D2)2
− N

2

γ

N − k2D2
−Q k1B −Q

N − k2D2
= Ṽ .

The solutions to the above equations are k̃2 = k2, k̃1 = k1. Hence

Ṽ =k1B
k1B −Q
N − k2D2

+
k2D

2

2

(
(k1B −Q)2

(N − k2D2)2
+

γ

N − k2D2

)
− N

2

(
(k1B −Q)2

(N − k2D2)2
+

γ

N − k2D2

)

−Q k1B −Q
N − k2D2

=
(k1B −Q)2

2(N − k2D2)
− γ

2
= V − γ

2
.

By definition, Ṽ is also the omniscient optimal level less exploration cost. The difference, γ2 ,

between Ṽ and V is hence the exploration cost due to randomization. Note that a parallel
result when there is a discount factor is Theorem 10 in Wang et al. (2020).

Appendix C. Proofs of Statements

In all the proofs we use generic notations C1, C2, · · · to denote constants that are inde-
pendent of other variables involved such as t, x, a. A same such notation may show up in
different places but does not necessarily have the same value.
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Proof of Lemma 2

We start by examining b̃
(
t, x,π(·|t, x)

)
. Note that

b̃
(
t, x,π(·|t, x)

)
− b̃
(
t, x′,π(·|t, x′)

)
=

∫
A

[b(t, x, a)− b(t, 0, a)][π(a|t, x)− π(a|t, x′)]da+

∫
A
b(t, 0, a)[π(a|t, x)− π(a|t, x′)]da

+

∫
A

[b(t, x, a)− b(t, x′, a)]π(a|t, x′)da.

Hence∣∣∣b̃(t, x,π(·|t, x)
)
− b̃
(
t, x′,π(·|t, x′)

)∣∣∣
≤
∫
A
|b(t, x, a)− b(t, 0, a)||π(a|t, x)− π(a|t, x′)|da+

∫
A
|b(t, 0, a)||π(a|t, x)− π(a|t, x′)|da

+

∫
A
|b(t, x, a)− b(t, x′, a)|π(a|t, x′)da

≤(C1|x|+ C2)

∫
A
|π(a|t, x)− π(a|t, x′)|da+ C1|x− x′|

≤C1|x− x′|+ (C1|x|+ C2)C3|x− x′|.

Moreover, note that

|b̃
(
t, x,π(·|t, x)

)
| ≤

∫
A
|b(t, x, a)|π(a|t, x)da ≤

∫
A

(C1|x|+ C2)π(a|t, x)da = C1|x|+ C2.

Similarly, we can show that σ̃
(
t, x,π(·|t, x)

)
is locally Lipschitz continuous and has

linear growth in x. The unique existence of the strong solution to (5) then follows from the
standard SDE theory.

Next, the SDE (5) yields

X̃π
s = x+

∫ s

t
b̃
(
τ, X̃π

τ ,π(·|τ, X̃π
τ )
)
dτ +

∫ s

t
σ̃
(
τ, X̃π

τ ,π(·|τ, X̃π
τ )
)
dWτ .

Based on the proved growth condition on b̃, σ̃, Cauchy–Schwarz inequality, and Burkholder-
Davis-Gundy inequalities, we obtain

E
[

max
t≤s≤T ′

|X̃π
s |µ
∣∣∣X̃π

t = x

]
≤C1E

[
|x|µ + max

t≤s≤T ′

∣∣∣ ∫ s

t
b̃
(
τ, X̃π

τ ,π(·|τ, X̃π
τ )
)
dτ
∣∣∣µ

+ max
t≤s≤T ′

∣∣∣ ∫ s

t
σ̃
(
τ, X̃π

τ ,π(·|τ, X̃π
τ )
)
dWτ

∣∣∣µ∣∣∣X̃π
t = x

]
≤C1E

[
|x|µ + C2

∫ T ′

t
(1 + max

t≤s≤τ
|X̃π

s |)µdτ + C3

( ∫ T ′

t
(1 + max

t≤s≤τ
|X̃π

s |)2dτ
)µ/2∣∣∣X̃π

t = x

]
≤C4(1 + |x|µ) + C5

∫ T ′

t
E
[

max
t≤s≤τ

|X̃π
s |µ
∣∣∣X̃π

t = x

]
dτ.
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Applying Gronwall’s inequality to E
[

maxt≤s≤T ′ |X̃π
s |µ
∣∣∣X̃π

t = x

]
as a function of T ′, we

obtain the second desired result of the lemma. The final result is evident.

Proof of Lemma 3

Set ṽ(t, x) = e−βtv(t, x). Then ṽ(T, x) = e−βTh(x), and (8) implies∫
A

[
Laṽ(t, x) + e−βtr

(
t, x, a

)
+ γe−βtp

(
t, x, a,π(·|t, x)

)]
π(a|t, x)da = 0. (35)

Similarly, consider J̃(t, x;π) = e−βtJ(t, x;π). Then (6) yields

J̃(t, x;π) =EPW
[ ∫ T

t

∫
A

[e−βsr(s, X̃π
s , a) + γe−βsp

(
s, X̃π

s , a,π(·|s, X̃π
s )
)
]π(a|s, X̃π

s )dads

+ e−βTh(X̃π
T )
∣∣∣X̃π

t = x

]
.

So it suffices to prove the (viscosity) solution to (35), ṽ, coincides with J̃(·, ·;π). The
proof now follows from applying Beck et al. (2021, Corollary 3.3) to the SDE (5): under
Assumption 1 along with Definition 1, Lemma 2 verifies the sufficient conditions in Beck
et al. (2021).

Proof of Theorem 4

Using the same discounting transformation as in the proof of Lemma 3, the first statement
of Theorem 4 follows directly from Jia and Zhou (2022a, Proposition 1) along with the
Markov property of the solution to the SDE (5).

For the second statement, according to Jia and Zhou (2022a, Proposition 4), we have
the following martingale orthogonality condition for X̃π:

EPW
[ ∫ T

0
ξt
[
dJ(t, X̃π

t ;π)− βJ(t, X̃π
t ;π)dt

+

∫
A

[r(t, X̃π
t , a) + γp

(
t, X̃π

t , a,π(·|t, X̃π
t )
)
]π(a|t, X̃π

t )dadt
]∣∣∣X̃π

0 = x

]
= 0

for all ξ ∈ L2
FX̃π

(
[0, T ]; J(·, X̃π

· ;π)
)
. Now, any ξ ∈ L2

FX̃π

(
[0, T ]; J(·, X̃π

· ;π)
)

corresponds

to a measurable functional ξ : [0, T ]×C([0, T ];Rd) 7→ R such that ξt = ξ(t, X̃π
t∧·). However,

X̃π and Xπ have the same distribution and aπt ∼ π(·|t, X̃π
t ); hence

EPW
[ ∫ T

0
ξ(t, X̃π

t∧·)
[
dJ(t, X̃π

t ;π)− βJ(t, X̃π
t ;π)dt

]∣∣∣X̃π
0 = x

]
=EP

[ ∫ T

0
ξ(t,Xπ

t∧·)
[
dJ(t,Xπ

t ;π)− βJ(t,Xπ
t ;π)dt

]∣∣∣Xπ
0 = x

]
,

and

EPW
[ ∫ T

0
ξ(t, X̃π

t∧·)

∫
A

[r(t, X̃π
t , a) + γp

(
t, X̃π

t , a,π(·|t, X̃π
t )
)
]π(a|t, X̃π

t )dadt
∣∣∣X̃π

0 = x

]
=EP

[ ∫ T

0
ξ(t,Xπ

t∧·)[r(t,X
π
t , a

π
t ) + γp

(
t,Xπ

t , a
π
t ,π(·|t,Xπ

t )
)
]dt
∣∣∣Xπ

0 = x

]
.
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Combining the above two equations leads to (9).

Proof of Theorem 5

It suffices to prove (12) equals (14).

Fix t. Define a sequence of stopping times τn = inf{s ≥ t : |Xπφ
s | ≥ n}. Applying Itô’s

lemma to J(s,Xπφ
s ), we obtain:

∫ T∧τn

t
e−β(s−t)

{[ ∂
∂φ

logπφ(aπ
φ

s |s,Xπφ

s )
]
×
[
dJ(s,Xπφ

s ;πφ)

+ [r(s,Xπφ

s , aπ
φ

s ) + γp
(
s,Xπφ

s , aπ
φ

s ,πφ(·|s,Xπφ

s )
)
− βJ(s,Xπφ

s ;πφ)]ds
]

+ γq(s,Xπφ

s , aπ
φ

s , φ)ds

}
=

∫ T∧τn

t
e−β(s−t)

{[ ∂
∂φ

logπφ(aπ
φ

s |s,Xπφ

s )
]
×
{[
LasJ(s,Xπφ

s ;πφ) + r(s,Xπφ

s , aπ
φ

s )

+ γp
(
s,Xπφ

s , aπ
φ

s ,πφ(·|s,Xπφ

s )
)
− βJ(s,Xπφ

s ;πφ)
]
ds

+
∂J

∂x
(s,Xπφ

s ;πφ)>σ(s,Xπφ

s , aπ
φ

s )dWs

}
+ γq(s,Xπφ

s , aπ
φ

s , φ)ds

}
.

Taking expectation yields

EP
[ ∫ T∧τn

t
e−β(s−t)

{[ ∂
∂φ

logπφ(aπ
φ

s |s,Xπφ

s )
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The second term above vanishes because when t ≤ s ≤ T ∧ τn, it follows from Assumptions
1 that∣∣∣ ∫
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s )
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which is bounded by a function of n due to Assumption 3. Thus,
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Lastly, note
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.

By Assumption 3 and Lemma 2, we get
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Hence by the dominance convergence theorem, we conclude that as n→∞,
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This proves the desired result.

Proof of Theorem 6

The proof is similar to the proof of Theorem 4 and that in Jia and Zhou (2022a, Proposition
4) by noticing π∗ satisfies (17).
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First, it suffices to consider the case when ζ = 0 because of Theorem 4. For η ∈
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where the last equality follows from (17).

Proof of Lemma 7

Apply Itô’s lemma to J(X̃π
s ;π) on s ∈ [t, T ] to obtain

EPW
[
J(X̃π

T ;π)
∣∣∣X̃π

t = x

]
− J(x;π)

=EPW
[ ∫ T

t

∫
A
LaJ(X̃π

s ;π)π(a|X̃π
s )dads

∣∣∣X̃π
t = x

]
=EPW

[ ∫ T

t

∫
A
−r(X̃π

s , a)− γp
(
X̃π
s , a,π(·|X̃π

s )
)
π(a|X̃π

s )dads
∣∣∣X̃π

t = x

]
+ V (π)(T − t).

Therefore,

1

T
EP
[ ∫ T

t

[
r(Xπ

s , a
π
s ) + γp

(
Xπ
s , a

π
s ,π(·|Xπ

s )
)]

ds
∣∣∣Xπ

t = x

]
=

1

T
EPW

[ ∫ T

t

∫
A

[
r(X̃π

s , a) + γp
(
X̃π
s , a,π(·|X̃π

s )
)]
π(a|X̃π

s )dads
∣∣∣X̃π

t = x

]
=V (π)

T − t
T

+
1

T
J(x;π)− 1

T
EPW

[
J(X̃π

T ;π)
∣∣∣X̃π

t = x

]
.

45



Jia and Zhou

By a similar localization argument as in the proof of Theorem 5, we can show that

lim supT→∞ EPW
[
J(X̃π

T ;π)
∣∣∣X̃π

t = x

]
is finite and independent of x. Taking limit T → ∞

on both sides of the above yields (20).
The above analysis also implies

J(X̃π
t ;π) +

∫ t

0

∫
A

[r(X̃π
s , a) + γp

(
X̃π
s , a,π(·|X̃π

s )
)
− V (π)]π(a|X̃π

s )dads

is an (F X̃π
,PW )-martingale. For the same reason as in the proof of Theorem 4, we arrive

at the second desired conclusion of the lemma.
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