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Abstract

Tensors, which provide a powerful and flexible model for representing multi-attribute data
and multi-way interactions, play an indispensable role in modern data science across vari-
ous fields in science and engineering. A fundamental task is to faithfully recover the tensor
from highly incomplete measurements in a statistically and computationally efficient man-
ner. Harnessing the low-rank structure of tensors in the Tucker decomposition, this paper
develops a scaled gradient descent (ScaledGD) algorithm to directly recover the tensor fac-
tors with tailored spectral initializations, and shows that it provably converges at a linear
rate independent of the condition number of the ground truth tensor for two canonical prob-
lems — tensor completion and tensor regression — as soon as the sample size is above the
order of n3/2 ignoring other parameter dependencies, where n is the dimension of the tensor.
This leads to an extremely scalable approach to low-rank tensor estimation compared with
prior art, which suffers from at least one of the following drawbacks: extreme sensitivity
to ill-conditioning, high per-iteration costs in terms of memory and computation, or poor
sample complexity guarantees. To the best of our knowledge, ScaledGD is the first algo-
rithm that achieves near-optimal statistical and computational complexities simultaneously
for low-rank tensor completion with the Tucker decomposition. Our algorithm highlights
the power of appropriate preconditioning in accelerating nonconvex statistical estimation,
where the iteration-varying preconditioners promote desirable invariance properties of the
trajectory with respect to the underlying symmetry in low-rank tensor factorization.

©2022 Tian Tong, Cong Ma, Ashley Prater-Bennette, Erin Tripp, Yuejie Chi.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v23/21-1390.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v23/21-1390.html


Tong, Ma, Prater-Bennette, Tripp, Chi

Keywords: low-rank tensor completion, low-rank tensor regression, Tucker decomposition,
scaled gradient descent, ill-conditioning.

Keywords: low-rank tensor completion, low-rank tensor regression, Tucker decomposi-
tion, scaled gradient descent, ill-conditioning

1. Introduction

Tensors Kolda and Bader (2009); Sidiropoulos et al. (2017), which provide a powerful and
flexible model for representing multi-attribute data and multi-way interactions across various
fields, play an indispensable role in modern data science with ubiquitous applications in
image inpainting Liu et al. (2012), hyperspectral imaging Dian et al. (2017), collaborative
filtering Xiong et al. (2010), topic modeling Anandkumar et al. (2014), network analysis
Papalexakis et al. (2016), and many more.

1.1 Low-rank tensor estimation

In many problems across science and engineering, the central task can be regarded as tensor
estimation from highly incomplete measurements, where the goal is to estimate an order-3
tensor1 X ? ∈ Rn1×n2×n3 from its observations y ∈ Rm given by

y ≈ A(X ?).

Here, A : Rn1×n2×n3 7→ Rm represents a certain linear map modeling the data collection
process. Importantly, the number m of observations is often much smaller than the ambient
dimension n1n2n3 of the tensor due to resource or physical constraints, necessitating the
need of exploiting low-dimensional structures to allow for meaningful recovery.

One of the most widely adopted low-dimensional structures—which is the focus of this
paper—is the low-rank structure under the Tucker decomposition Tucker (1966). Specifi-
cally, we assume that the ground truth tensor X ? admits the following Tucker decomposi-
tion2

X ? = (U?,V?,W?) · S?,

where S? ∈ Rr1×r2×r3 is the core tensor, and U? ∈ Rn1×r1 , V? ∈ Rn2×r2 , W? ∈ Rn3×r3

are orthonormal matrices corresponding to the factors of each mode. The tensor X ? is said
to be low-multilinear-rank, or simply low-rank, when its multilinear rank r = (r1, r2, r3)
satisfies rk � nk, for all k = 1, 2, 3. Compared with other tensor decompositions such as the
CP decomposition Kolda and Bader (2009) and tensor-SVD Zhang et al. (2014), the Tucker
decomposition offers several advantages: it allows flexible modeling of low-rank tensor factors
with a small number of parameters, fully exploits the multi-dimensional algebraic structure
of a tensor, and admits efficient and stable computation without suffering from degeneracy
Paatero (2000).

1. For ease of presentation, we focus on 3-way tensors; our algorithm and theory can be generalized to
higher-order tensors in a straightforward manner.

2. Other popular notation for Tucker decomposition in the literature includes [[S?;U?,V?,W?]] and S? ×1

U?×2 V?×3 W?. In this work, we adopt the same notation (U?,V?,W?) · S? as in Xia and Yuan (2019)
for convenience of our theoretical developments.
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Motivating examples. We point out two representative settings of tensor recovery that
guide our work.

• Tensor completion. A widely encountered problem is tensor completion, where one aims
to predict the entries in a tensor from only a small subset of its revealed entries. A cele-
brated application is collaborative filtering, where one aims to predict the users’ evolving
preferences from partial observations of a tensor composed of ratings for any triplet of
user, item, time Karatzoglou et al. (2010). Mathematically, we are given entries

X ?(i1, i2, i3), (i1, i2, i3) ∈ Ω,

in some index set Ω, where (i1, i2, i3) ∈ Ω if and only if that entry is observed. The goal
is then to recover the low-rank tensor X ? from the observed entries in Ω.

• Tensor regression. In machine learning and signal processing, one is often concerned with
determining how the covariates relate to the response—a task known as regression. Due
to advances in data acquisition, there is no shortage of scenarios where the covariates
are available in the form of tensors, for example in medical imaging Zhou et al. (2013).
Mathematically, the i-th response or observation is given as

yi = 〈Ai,X ?〉 =
∑
i1,i2,i3

Ai(i1, i2, i3)X ?(i1, i2, i3), i = 1, 2, . . . ,m,

where Ai is the i-th covariate or measurement tensor. The goal is then to recover the
low-rank tensor X ? from the responses y = {yi}mi=1.

1.2 A gradient descent approach?

Recent years remarkable successes have emerged in developing a plethora of provably effi-
cient algorithms for low-rank matrix estimation (i.e. the special case of order-2 tensors) via
both convex and nonconvex optimization. However, unique challenges arise when dealing
with tensors, since they have more sophisticated algebraic structures Hackbusch (2012). For
instance, while nuclear norm minimization achieves near-optimal statistical guarantees for
low-rank matrix estimation Candès and Tao (2010) within a polynomial run time, com-
puting the nuclear norm of a tensor turns out to be NP-hard Friedland and Lim (2018).
Therefore, there have been a number of efforts to develop polynomial-time algorithms for
tensor recovery, including but not limited to the sum-of-squares hierarchy Barak and Moitra
(2016); Potechin and Steurer (2017), nuclear norm minimization with unfolding Gandy et al.
(2011); Mu et al. (2014), regularized gradient descent Han et al. (2020), to name a few; see
Section 1.4 for further discussions.

In view of the low-rank Tucker decomposition, a natural approach is to seek to recover
the factor quadruple F? := (U?,V?,W?,S?) directly by optimizing the unconstrained least-
squares loss function:

min
F

L(F ) :=
1

2
‖A ((U ,V ,W ) · S)− y‖22 , (1)

where F := (U ,V ,W ,S) consists of U ∈ Rn1×r1 , V ∈ Rn2×r2 , W ∈ Rn3×r3 , and S ∈
Rr1×r2×r3 . Since the factors have a much lower complexity than the tensor itself due to

3



Tong, Ma, Prater-Bennette, Tripp, Chi

the low-rank structure, it is expected that manipulating the factors results in more scalable
algorithms in terms of both computation and storage. This optimization problem is however,
highly nonconvex, since the factors are not uniquely determined.3 Nonetheless, one might
be tempted to solve the problem (1) via gradient descent (GD), which updates the factors
according to

Ft+1 = Ft − η∇L(Ft), t = 0, 1, . . . , (2)

where Ft is the estimate at the t-th iteration, η > 0 is the step size or learning rate, and
∇L(F ) is the gradient of L(F ) at F . Despite a flurry of activities for understanding factored
gradient descent in the matrix setting Chi et al. (2019), this line of algorithmic thinkings
has been severely under-explored for the tensor setting, especially when it comes to provable
guarantees for both sample and computational complexities.

The closest existing theory that one comes across is Han et al. (2020) for tensor regression,
which adds regularization terms to promote the orthogonality of the factors U ,V ,W :

Lreg(F ) := L(F ) +
α

4

(
‖U>U − βIr1‖2F + ‖V >V − βIr2‖2F + ‖W>W − βIr3‖2F

)
, (3)

and perform GD on the regularized loss. Here, α, β > 0 are two parameters to be speci-
fied. While encouraging, theoretical guarantees of this regularized GD algorithm Han et al.
(2020) still fall short of achieving computational efficiency. In truth, its convergence speed
is rather slow: it takes an order of κ2 log(1/ε) iterations to attain an ε-accurate estimate
of the ground truth tensor, where κ is a sort of condition number of X ? to be defined mo-
mentarily. Therefore, the computational efficacy of the regularized GD is severely hampered
even when X ? is moderately ill-conditioned, a situation frequently encountered in practice.
In addition, the regularization term introduces additional parameters that may be difficult
to tune optimally in practice.

Turning to tensor completion, the situation is even worse: to the best of our knowledge,
there is no provably linearly-convergent algorithm that accommodates low-rank tensor com-
pletion under the Tucker decomposition. The question is thus:

Can we develop a factored gradient-based algorithm that converges fast even for highly
ill-conditioned tensors with near-optimal sample complexities for tensor completion and
tensor regression?

In this paper, we provide an affirmative answer to the above question.

1.3 A new algorithm: scaled gradient descent

We propose a novel algorithm—dubbed scaled gradient descent (ScaledGD)—to solve the
tensor recovery problem. More specifically, at the core it performs the following iterative

3. For any invertible matrices Qk ∈ Rrk×rk , k = 1, 2, 3, one has (U ,V ,W ) · S =
(UQ1,V Q2,WQ3) ·((Q−1

1 ,Q−1
2 ,Q−1

3 ) · S).
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updates4 to minimize the loss function (1):

Ut+1 = Ut − η∇UL(Ft)
(
Ŭ>t Ŭt

)−1
,

Vt+1 = Vt − η∇V L(Ft)
(
V̆ >t V̆t

)−1
,

Wt+1 = Wt − η∇WL(Ft)
(
W̆>

t W̆t

)−1
,

St+1 = St − η
(

(U>t Ut)
−1, (V >t Vt)

−1, (W>
t Wt)

−1
)
·∇SL(Ft),

(4)

where ∇UL(F ), ∇V L(F ), ∇WL(F ), and ∇SL(F ) are the partial derivatives of L(F ) with
respect to the corresponding variables, and

Ŭt :=M1 ((Ir1 ,Vt,Wt) · St)> = (Wt ⊗ Vt)M1(St)>,
V̆t :=M2 ((Ut, Ir2 ,Wt) · St)> = (Wt ⊗Ut)M2(St)>,
W̆t :=M3 ((Ut,Vt, Ir3) · St)> = (Vt ⊗Ut)M3(St)>.

(5)

Here, Mk(S) is the matricization of the tensor S along the k-th mode (k = 1, 2, 3), and
⊗ denotes the Kronecker product. Inspired by its variant in the matrix setting Tong et al.
(2021a), the ScaledGD algorithm (4) exploits the structures of Tucker decomposition and
possesses many desirable properties:

• Low per-iteration cost: as a preconditioned GD or quasi-Newton algorithm, ScaledGD
updates the factors along the descent direction of a scaled gradient, where the precondi-
tioners can be viewed as the inverse of the diagonal blocks of the Hessian for the population
loss (i.e. tensor factorization). As the sizes of the preconditioners are proportional to the
multilinear rank, the matrix inverses are cheap to compute with a minimal overhead and
the overall per-iteration cost is still low and linear in the time it takes to read the input
data.

• Equivariance to parameterization: one crucial property of ScaledGD is that if we repa-
rameterize the factors by some invertible transforms (i.e. replacing (Ut,Vt,Wt,St) by

(UtQ1,VtQ2,WtQ3, (Q
−1
1 ,Q−1

2 ,Q−1
3 ) · St)

for some invertible matrices {Qk}3k=1), the entire trajectory will go through the same
reparameterization, leading to an invariant sequence of low-rank tensor updates X t =
(Ut,Vt,Wt) · St regardless of the parameterization being adopted.

• Implicit balancing: ScaledGD optimizes the natural loss function (1) in an unconstrained
manner without requiring additional regularizations or orthogonalizations used in prior
literature Han et al. (2020); Frandsen and Ge (2020); Kasai and Mishra (2016), and the
factors stay balanced in an automatic manner—a feature sometimes referred to as implicit
regularization Ma et al. (2021).

4. The matrix inverses in ScaledGD always exist under the assumptions of our theory.
5. (Luo and Zhang, 2021, Theorem 3) states the sample complexity n3/2√rκ2‖X ?‖2F/σ2

min(X ?), where
‖X ?‖2F/σ2

min(X ?) has an order of rκ2.
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Algorithms Sample complexity Iteration complexity Parameter space
Unfolding + nuclear norm min.

n2r log2 n polynomial tensorHuang et al. (2015)
Tensor nuclear norm min.

n3/2r1/2 log3/2 n NP-hard tensorYuan and Zhang (2016)
Grassmannian GD

n3/2r7/2κ4 log7/2 n N/A factorXia and Yuan (2019)
ScaledGD

n3/2r5/2κ3 log3 n log 1
ε factor(this paper)

Table 1: Comparisons of ScaledGD with existing algorithms for tensor completion when
the tensor is incoherent and low-rank under the Tucker decomposition. Here, we
say that the output X of an algorithm reaches ε-accuracy, if it satisfies ‖X −
X ?‖F ≤ εσmin(X ?). Here, κ and σmin(X ?) are the condition number and the
minimum singular value of X ? (defined in Section 2.1). For simplicity, we let
n = maxk=1,2,3 nk and r = maxk=1,2,3 rk, and assume r ∨ κ � nδ for some small
constant δ to keep only terms with dominating orders of n.

Algorithms Sample complexity Iteration complexity Parameter space
Unfolding + nuclear norm min.

n2r polynomial tensorMu et al. (2014)
Projected GD

n2r κ2 log 1
ε tensorChen et al. (2019a)

Regularized GD
n3/2rκ4 κ2 log 1

ε factorHan et al. (2020)
Riemannian Gauss-Newton

n3/2r3/2κ4 log log 1
ε tensorLuo and Zhang (2021) (concurrent)5

ScaledGD
n3/2r3/2κ2 log 1

ε factor(this paper)

Table 2: Comparisons of ScaledGD with existing algorithms for tensor regression when the
tensor is low-rank under the Tucker decomposition. Here, we say that the outputX
of an algorithm reaches ε-accuracy, if it satisfies ‖X −X ?‖F ≤ εσmin(X ?). Here, κ
and σmin(X ?) are the condition number and minimum singular value ofX ? (defined
in Section 2.1). For simplicity, we let n = maxk=1,2,3 nk, and r = maxk=1,2,3 rk, and
assume r ∨ κ� nδ for some small constant δ to keep only terms with dominating
orders of n.

Theoretical guarantees. We investigate the theoretical properties of ScaledGD for both
tensor completion and tensor regression, which are notably more challenging than the matrix
counterpart. It is demonstrated that ScaledGD—when initialized properly using appropri-
ate spectral methods —achieves linear convergence at a rate independent of the condition
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number of the ground truth tensor with near-optimal sample complexities. In other words,
ScaledGD needs no more than O(log(1/ε)) iterations to reach ε-accuracy; together with its
low computational and memory costs by operating in the factor space, this makes ScaledGD
a highly scalable method for a wide range of low-rank tensor estimation tasks. More specif-
ically, we have the following guarantees (assume n = maxk=1,2,3 nk and r = maxk=1,2,3 rk):

• Tensor completion. Under the Bernoulli sampling model, ScaledGD (with an additional
scaled projection step) succeeds with high probability as long as the sample complexity
is above the order of n3/2r5/2κ3 log3 n. Connected to some well-reckoned conjecture on
computational barriers, it is widely believed that no polynomial-time algorithm will be
successful if the sample complexity is less than the order of n3/2 for tensor completion
Barak and Moitra (2016), which suggests the near-optimality of the sample complexity
of ScaledGD. Compared with existing approaches (cf. Table 1), ScaledGD provides the
first computationally efficient algorithm with a near-linear run time at the near-optimal
sample complexity.

• Tensor regression. Under the Gaussian design, ScaledGD succeeds with high probability
as long as the sample complexity is above the order of n3/2r3/2κ2. Our analysis of local
convergence is more general, based on the tensor restricted isometry property (TRIP)
Rauhut et al. (2017), and is therefore applicable to various measurement ensembles that
satisfy TRIP. Compared with existing approaches (cf. Table 2), ScaledGD achieves com-
petitive performance guarantees in terms of sample and iteration complexities with a low
per-iteration cost in the factor space.

Figure 1 illustrates the number of iterations needed to achieve a relative error ‖X −
X ?‖F ≤ 10−3‖X ?‖F for ScaledGD and regularized GD Han et al. (2020) under different
condition numbers for tensor completion under the Bernoulli sampling model (see Section 4
for experimental settings). Clearly, the iteration complexity of GD deteriorates at a super
linear rate with respect to the condition number κ, while ScaledGD enjoys an iteration
complexity that is independent of κ as predicted by our theory. Indeed, with a seemingly
small modification, ScaledGD takes merely 17 iterations to achieve the desired accuracy over
the entire range of κ, while GD takes thousands of iterations even with a moderate condition
number!

1.4 Additional related works

Comparison with Tong et al. (2021a). While the proposed ScaledGD algorithm is
inspired by its matrix variant in Tong et al. (2021a) by utilizing the same principle of pre-
conditioning, the exact form of preconditioning for tensor factorization needs to be designed
carefully and is not trivially obtainable. There are many technical novelty in our analysis
compared to Tong et al. (2021a). In the matrix case, the low-rank matrix is factorized as
LR>, and only two factors are needed to be estimated. In contrast, in the tensor case, the
low-rank tensor is factorized as (U ,V ,W ) · S, and four factors are needed to be estimated,
leading to a much more complicated nonconvex landscape than the matrix case. In fact,
when specialized to matrix completion, our ScaledGD algorithm does not degenerate to the
same matrix variant in Tong et al. (2021a), due to overparamterization and estimating four
factors at once, but still maintains the near-optimal performance guarantees. In addition,
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Figure 1: The iteration complexities of ScaledGD (this paper) and regularized GD to achieve
‖X − X ?‖F ≤ 10−3‖X ?‖F with respect to different condition numbers for low-
rank tensor completion with n1 = n2 = n3 = 100, r1 = r2 = r3 = 5, and the
probability of observation p = 0.1.

the tensor algebra possesses unique algebraic properties that requires much more delicate
treatments in the analysis. For the local convergence, we establish new concentration prop-
erties regarding tensors, which are more challenging compared to the matrix counterparts;
for spectral initialization, we establish the effectiveness of a second-order spectral method
in the Tucker setting for the first time.

Low-rank tensor estimation with Tucker decomposition. Frandsen and Ge (2020)
analyzed the landscape of Tucker decomposition for tensor factorization, and showed benign
landscape properties with suitable regularizations. Gandy et al. (2011); Mu et al. (2014)
developed convex relaxation algorithms based on minimizing the nuclear norms of unfolded
tensors for tensor regression, and similar approaches were developed in Huang et al. (2015)
for robust tensor completion. However, unfolding-based approaches typically result in sub-
optimal sample complexities since they do not fully exploit the tensor structure. Yuan and
Zhang (2016) studied directly minimizing the nuclear norm of the tensor, which regrettably
is not computationally tractable. Xia and Yuan (2019) proposed a Grassmannian gradient
descent algorithm over the factors other than the core tensor for exact tensor completion,
whose iteration complexity is not characterized. The statistical rates of tensor comple-
tion, together with a spectral method, were investigated in Zhang and Xia (2018); Xia et al.
(2021), and uncertainty quantifications were recently dealt with in Xia et al. (2020). Besides
the entrywise i.i.d. observation models for tensor completion, Zhang (2019); Krishnamurthy
and Singh (2013) considered tailored or adaptive observation patterns to improve the sam-
ple complexity. In addition, for low-rank tensor regression, Raskutti et al. (2019) proposed
a general convex optimization approach based on decomposable regularizers, and Rauhut
et al. (2017) developed an iterative hard thresholding algorithm. Chen et al. (2019a) pro-
posed projected gradient descent algorithms with respect to the tensors, which have larger
computation and memory footprints than the factored gradient descent approaches taken in
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this paper. Ahmed et al. (2020) proposed a tensor regression model where the tensor is si-
multaneously low-rank and sparse in the Tucker decomposition. A concurrent work Luo and
Zhang (2021) proposed a Riemannian Gauss-Newton algorithm, and obtained an impressive
quadratic convergence rate for tensor regression (see Table 2). Compared with ScaledGD,
this algorithm runs in the tensor space, and the update rule is more sophisticated with higher
per-iteration cost by solving a least-squares problem and performing a truncated HOSVD
every iteration. Another recent work Cai et al. (2021b) studies the Riemannian gradient
descent algorithm which also achieves an iteration complexity free of condition number,
however, the initialization scheme was not studied therein. After the initial appearance of
the current paper, another work Wang et al. (2021) proposes an algorithm based again on
Riemmannian gradient descent for low-rank tensor completion with Tucker decomposition,
coming with an appealing entrywise convergence guarantee at a constant rate.

Last but not least, many scalable algorithms for low-rank tensor estimation have been
proposed in the literature of numerical optimization Xu and Yin (2013); Goldfarb and Qin
(2014), where preconditioning has long been recognized as a key idea to accelerate con-
vergence Kasai and Mishra (2016); Kressner et al. (2014). In particular, if we constrain
U ,V ,W to be orthonormal, i.e. on the Grassmanian manifold, the preconditioners used in
ScaledGD degenerate to the ones investigated in Kasai and Mishra (2016), which was a Rie-
mannian manifold gradient algorithm under a scaled metric. On the other hand, ScaledGD
does not assume orthonormality of the factors, therefore is conceptually simpler to under-
stand and avoids complicated manifold operations (e.g. geodesics, retraction). Furthermore,
none of the prior algorithmic developments Kasai and Mishra (2016); Kressner et al. (2014)
are endowed with the type of global performance guarantees with linear convergence rate as
developed herein.

Provable low-rank tensor estimation with other decompositions. Complementary
to ours, there have also been a growing number of algorithms proposed for estimating a low-
rank tensor adopting the CP decomposition. Examples include sum-of-squares hierarchy
Barak and Moitra (2016); Potechin and Steurer (2017), gradient descent Cai et al. (2019,
2020a); Hao et al. (2020), alternating minimization Jain and Oh (2014); Liu and Moitra
(2020), spectral methods Montanari and Sun (2018); Chen et al. (2021); Cai et al. (2021a),
atomic norm minimization Li et al. (2015); Ghadermarzy et al. (2019), to name a few. Ge
and Ma (2020) studied the optimization landscape of overcomplete CP tensor decomposition.
Beyond the CP decomposition, Zhang and Aeron (2016) developed exact tensor completion
algorithms under the so-called tensor-SVD Zhang et al. (2014), and Liu et al. (2019); Lu
et al. (2018) studied low-tubal-rank tensor recovery. We will not elaborate further since
these algorithms are not directly comparable to ours due to the difference in models.

Nonconvex optimization for statistical estimation. Our work contributes to the
recent strand of works that develop provable nonconvex methods for statistical estimation,
including but not limited to low-rank matrix estimation Sun and Luo (2016); Chen and
Wainwright (2015); Ma et al. (2019); Charisopoulos et al. (2021); Ma et al. (2021); Park
et al. (2017); Chen et al. (2020); Xia and Yuan (2021), phase retrieval Candès et al. (2015);
Wang et al. (2018); Chen and Candès (2017); Zhang et al. (2017, 2016); Chen et al. (2019b),
quadratic sampling Li et al. (2019b), dictionary learning Sun et al. (2017a,b); Bai et al.
(2018), neural network training Buchanan et al. (2020); Fu et al. (2020); Hand and Voroninski
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(2019), and blind deconvolution Li et al. (2019a); Ma et al. (2019); Shi and Chi (2021); the
readers are referred to the overviews Chi et al. (2019); Chen and Chi (2018); Zhang et al.
(2020b) for further references.

1.5 A primer on tensor algebra and notation

We end this section with a primer on some useful tensor algebra; for a more detailed ex-
position, see Kolda and Bader (2009); Sidiropoulos et al. (2017). Throughout this paper,
we use boldface calligraphic letters (e.g. X ) to denote tensors, and boldface capitalized
letters (e.g. X) to denote matrices. For any matrix M , we use σi(M) to denote its i-th
largest singular value, and σmax(M) (resp. σmin(M)) to denote its largest (resp. smallest)
nonzero singular value. ‖M‖, ‖M‖F, ‖M‖2,∞, and ‖M‖∞ stand for the spectral norm
(i.e. the largest singular value), the Frobenius norm, the `2,∞ norm (i.e. the largest `2 norm
of the rows), and the entrywise `∞ norm (the largest magnitude of all entries) of a matrix
M . Let Pdiag(M) denote the projection that keeps only the diagonal entries of M , and
Poff-diag(M) = M −Pdiag(M), for a square matrix M . Let M(i, :) and M(:, j) denote the
i-th row and j-th column of M , respectively. The r × r identity matrix is denoted by Ir.
The set of invertible matrices in Rr×r is denoted by GL(r).

We define the unfolding (i.e. flattening) operations of tensors and matrices as following.

• The mode-1 matricization M1(X ) ∈ Rn1×(n2n3) of a tensor X ∈ Rn1×n2×n3 is given by
[M1(X )]

(
i1, i2 + (i3 − 1)n2

)
= X (i1, i2, i3), for 1 ≤ ik ≤ nk, k = 1, 2, 3; M2(X ) and

M3(X ) can be defined in a similar manner.

• The vectorization vec(X ) ∈ Rn1n2n3 of a tensor X ∈ Rn1×n2×n3 is given by [vec(X )]
(
i1 +

(i2 − 1)n1 + (i3 − 1)n1n2

)
= X (i1, i2, i3) for 1 ≤ ik ≤ nk, k = 1, 2, 3.

• The vectorization vec(M) ∈ Rn1n2 of a matrix M ∈ Rn1×n2 is given by [vec(M)]
(
i1 +

(i2 − 1)n1

)
= M(i1, i2) for 1 ≤ ik ≤ nk, k = 1, 2.

The vectorization of a tensor is related to the Kronecker product as

vec((U ,V ,W ) · S) = vec
(
UM1(S)(W ⊗ V )>

)
= (W ⊗ V ⊗U) vec(S). (6a)

The inner product between two tensors is defined as

〈X 1,X 2〉 =
∑
i1,i2,i3

X 1(i1, i2, i3)X 2(i1, i2, i3).

A useful relation is that

〈X 1,X 2〉 = 〈Mk(X 1),Mk(X 2)〉, k = 1, 2, 3, (6b)

which allows one to move between the tensor representation and the unfolded matrix rep-
resentation. The Frobenius norm of a tensor is defined as ‖X‖F =

√
〈X ,X 〉. In addition,

the following basic relations, which follow straightforwardly from analogous matrix relations
after applying matricizations, will be proven useful:

(U ,V ,W ) ·
(
(Q1,Q2,Q3) · S

)
= (UQ1,V Q2,WQ3) · S, (6c)

10
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〈(U ,V ,W ) · S,X 〉 =
〈
S, (U>,V >,W>) ·X

〉
, (6d)

‖(Q1,Q2,Q3) · S‖F ≤ ‖Q1‖‖Q2‖‖Q3‖‖S‖F, (6e)

whereQk ∈ Rrk×rk , k = 1, 2, 3. Define the `∞ norm ofX as ‖X‖∞ = maxi1,i2,i3 |X (i1, i2, i3)|.
With slight abuse of terminology, denote

σmax(X ) = max
k=1,2,3

σmax(Mk(X )), and σmin(X ) = min
k=1,2,3

σmin(Mk(X ))

as the maximum and minimum nonzero singular values of X . In addition, define the spectral
norm of a tensor X as

‖X‖ = sup
uk∈Rnk : ‖uk‖2≤1

|〈X , (u1,u2,u3) · 1〉| .

Note that ‖X‖ 6= σmax(X ) in general. For a tensor X of multilinear rank at most r =
(r1, r2, r3), its spectral norm is related to the Frobenius norm as Jiang et al. (2017); Li et al.
(2018)

‖X‖F ≤
√
r1r2r3

r
‖X‖, where r = max

k=1,2,3
rk. (7)

Higher-order SVD. For a general tensor X , define Hr(X ) as the top-r higher-order
SVD (HOSVD) of X with r = (r1, r2, r3), given by

Hr(X ) = (U ,V ,W ) · S, (8a)

where U is the top-r1 left singular vectors ofM1(X ), V is the top-r2 left singular vectors
ofM2(X ), W is the top-r3 left singular vectors ofM3(X ), and S = (U>,V >,W>) ·X is
the core tensor. Equivalently, we denote

(U ,V ,W ,S) = HOSVDr(X ) (8b)

as the output to the HOSVD procedure described above with the multilinear rank r. In
contrast to the matrix case, HOSVD is not guaranteed to yield the optimal rank-r approx-
imation of X (which is NP-hard Hillar and Lim (2013) to find). Nevertheless, it yields a
quasi-optimal approximation Hackbusch (2012) in the sense that

‖X −Hr(X )‖F ≤
√

3 inf
X̃ : rank(Mk(X̃ ))≤rk

‖X − X̃‖F. (9)

There are many variants or alternatives of HOSVD in the literature, e.g. successive HOSVD,
alternating least squares (ALS), higher-order orthogonal iteration (HOOI) De Lathauwer
et al. (2000b,a), etc. These methods compute truncated singular value decompositions in
successive or alternating manners, to either reduce the computational costs or pursue a
better (but still quasi-optimal) approximation. We will not delve into the details of these
variants; interested readers can consult Hackbusch (2012).

11
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Additional notation. Let a ∨ b = max{a, b} and a ∧ b = min{a, b}. Throughout,
f(n) . g(n) or f(n) = O(g(n)) means |f(n)|/|g(n)| ≤ C for some constant C > 0,
f(n) & g(n) means |f(n)|/|g(n)| ≥ C for some constant C > 0, and f(n) � g(n) means
C1 ≤ |f(n)|/|g(n)| ≤ C2 for some constants C1, C2 > 0. Additionally, f(n) � g(n) indi-
cates |f(n)|/|g(n)| ≤ c for some sufficient small constant c > 0, and f(n) � g(n) indicates
|f(n)|/|g(n)| ≥ C for some sufficient large constant C > 0. We use C,C1, C2, c, c1, c2 . . . to
represent positive constants, whose values may differ from line to line. Last but not least,
we use the terminology “with overwhelming probability” to denote the event happens with
probability at least 1− c1n

−c2 .

2. Main Results

2.1 Models and assumptions

We assume the ground truth tensor X ? = [X ?(i1, i2, i3)] ∈ Rn1×n2×n3 admits the following
Tucker decomposition

X ?(i1, i2, i3) =

r1∑
j1=1

r2∑
j2=1

r3∑
j3=1

U?(i1, j1)V?(i2, j2)W?(i3, j3)S?(j1, j2, j3), 1 ≤ ik ≤ nk,

(10)

or more compactly,

X ? = (U?,V?,W?) · S?, (11)

where S? = [S?(j1, j2, j3)] ∈ Rr1×r2×r3 is the core tensor of multilinear rank r = (r1, r2, r3),
and U? = [U?(i1, j1)] ∈ Rn1×r1 , V? = [V?(i2, j2)] ∈ Rn2×r2 , W? = [W?(i3, j3)] ∈ Rn3×r3 are
the factor matrices of each mode. LetMk(X ?) be the mode-k matricization of X ?, we have

M1(X ?) = U?M1(S?)(W? ⊗ V?)
>, (12a)

M2(X ?) = V?M2(S?)(W? ⊗U?)
>, (12b)

M3(X ?) = W?M3(S?)(V? ⊗U?)
>. (12c)

It is straightforward to see that the Tucker decomposition is not uniquely specified: for any
invertible matrices Qk ∈ Rrk×rk , k = 1, 2, 3, one has

(U?,V?,W?) · S? = (U?Q1,V?Q2,W?Q3) ·((Q−1
1 ,Q−1

2 ,Q−1
3 ) · S?).

We shall fix the ground truth factors such that U?, V? and W? are orthonormal matrices
consisting of left singular vectors in each mode. Furthermore, the core tensor S? is related
to the singular values in each mode as

Mk(S?)Mk(S?)> = Σ2
?,k, k = 1, 2, 3, (13)

where Σ?,k := diag[σ1(Mk(X ?)), . . . , σrk(Mk(X ?))] is a diagonal matrix where the diagonal
elements are composed of the nonzero singular values ofMk(X ?) and rk = rank(Mk(X ?))
for k = 1, 2, 3.

12
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Key parameters. Of particular interest is a sort of condition number of X ?, which plays
an important role in governing the computational efficiency of first-order algorithms.

Definition 1 (Condition number) The condition number of X ? is defined as

κ :=
σmax(X ?)

σmin(X ?)
=

maxk=1,2,3 σ1(Mk(X ?))

mink=1,2,3 σrk(Mk(X ?))
. (14)

Another parameter is the incoherence parameter, which plays an important role in gov-
erning the well-posedness of low-rank tensor completion.

Definition 2 (Incoherence) The incoherence parameter of X ? is defined as

µ := max

{
n1

r1
‖U?‖22,∞,

n2

r2
‖V?‖22,∞,

n3

r3
‖W?‖22,∞

}
. (15)

Roughly speaking, a small incoherence parameter ensures that the energy of the tensor is
evenly distributed across its entries, so that a small random subset of its elements still reveals
substantial information about the latent structure of the entire tensor.

2.2 ScaledGD for tensor completion

Assume that we have observed a subset of entries in X ?, given as Y = PΩ(X ?), where
PΩ : Rn1×n2×n3 7→ Rn1×n2×n3 is a projection such that

[PΩ(X ?)](i1, i2, i3) =

{
X ?(i1, i2, i3), if (i1, i2, i3) ∈ Ω,

0, otherwise.
(16)

Here, Ω is generated according to the Bernoulli observation model in the sense that

(i1, i2, i3) ∈ Ω independently with probability p ∈ (0, 1]. (17)

The goal of tensor completion is to recover the tensor X ? from its partial observation
PΩ(X ?), which can be achieved by minimizing the loss function

min
F=(U ,V ,W ,S)

L(F ) :=
1

2p

∥∥PΩ

(
(U ,V ,W ) · S

)
−Y

∥∥2

F
. (18)

Preparation: a scaled projection operator. To guarantee faithful recovery from par-
tial observations, the underlying low-rank tensor X ? needs to be incoherent (cf. Definition 2)
to avoid ill-posedness. One typical strategy, frequently employed in the matrix setting, to
ensure the incoherence condition is to trim the rows of the factors Chen and Wainwright
(2015) after the gradient update. For ScaledGD, this needs to be done in a careful manner
to preserve the equivariance with respect to invertible transforms. Motivated by Tong et al.
(2021a), we introduce the scaled projection as follows,

(U ,V ,W ,S) = PB(U+,V+,W+,S+), (19)
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where B > 0 is the projection radius, and

U(i1, :) =

(
1 ∧ B
√
n1‖U+(i1, :)Ŭ>+ ‖2

)
U+(i1, :), 1 ≤ i1 ≤ n1;

V (i2, :) =

(
1 ∧ B
√
n2‖V+(i2, :)V̆ >+ ‖2

)
V+(i2, :), 1 ≤ i2 ≤ n2;

W (i3, :) =

(
1 ∧ B
√
n3‖W+(i3, :)W̆>

+ ‖2

)
W+(i3, :), 1 ≤ i3 ≤ n3;

S = S+.

Here, we recall Ŭ+, V̆+, W̆+ are analogously defined in (5) using (U+,V+,W+,S+). As
can be seen, each row of U+ (resp. V+ and W+) is scaled by a scalar based on the row
`2 norms of U+Ŭ

>
+ (resp. V+V̆

>
+ and W+W̆

>
+ ), which is the mode-1 (resp. mode-2 and

mode-3) matricization of the tensor (U+,V+,W+) · S+. It is a straightforward observation
that the projection can be computed efficiently.

Algorithm description. With the scaled projection PB(·) defined in hand, we are in a
position to describe the details of the proposed ScaledGD algorithm, summarized in Algo-
rithm 1. It consists of two stages: spectral initialization followed by iterative refinements
using the scaled projected gradient updates in (20). It is worth emphasizing that all the
factors are updated simultaneously, which can be achieved in a parallel manner to accelerate
computation run time.

For the spectral initialization, we take advantage of the subspace estimators proposed
in Cai et al. (2021a); Xia et al. (2021) for highly unbalanced matrices. Specifically, we
estimate the subspace spanned by U? by that spanned by top-r1 eigenvectors U+ of the
diagonally-deleted Gram matrix of p−1M1(Y), denoted as

Poff-diag(p−2M1(Y)M1(Y)>),

and the other two factors V+ and W+ are estimated similarly. The core tensor is then
estimated as

S+ = p−1(U>+ ,V
>

+ ,W>
+ ) · Y ,

which is consistent with its estimation in the HOSVD procedure. To ensure the initialization
is incoherent, we pass it through the scaled projection operator to obtain the final initial
estimate:

(U0,V0,W0,S0) = PB
(
U+,V+,W+,S+

)
.

Theoretical guarantees. The following theorem establishes the performance guarantee
of ScaledGD for tensor completion, as soon as the sample size is sufficiently large.

Theorem 3 (ScaledGD for tensor completion) Let n = maxk=1,2,3 nk and r = maxk=1,2,3 rk.
Suppose that X ? is µ-incoherent, nk & ε−1

0 µr
3/2
k κ2 for k = 1, 2, 3, and that p satisfies

pn1n2n3 & ε−1
0

√
n1n2n3µ

3/2r5/2κ3 log3 n+ ε−2
0 nµ3r4κ6 log5 n

14
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Algorithm 1 ScaledGD for low-rank tensor completion
Input parameters: step size η, multilinear rank r = (r1, r2, r3), probability of observa-
tion p, projection radius B.
Spectral initialization: Let U+ be the top-r1 eigenvectors of
Poff-diag(p−2M1(Y)M1(Y)>), and similarly for V+,W+, and S+ =
p−1(U>+ ,V

>
+ ,W>

+ ) · Y . Set (U0,V0,W0,S0) = PB
(
U+,V+,W+,S+

)
.

Scaled projected gradient updates: for t = 0, 1, 2, . . . , T − 1 do

Ut+ = Ut −
η

p
M1

(
PΩ

(
(Ut,Vt,Wt) · St

)
−Y

)
Ŭt

(
Ŭ>t Ŭt

)−1
,

Vt+ = Vt −
η

p
M2

(
PΩ

(
(Ut,Vt,Wt) · St

)
−Y

)
V̆t
(
V̆ >t V̆t

)−1
,

Wt+ = Wt −
η

p
M3

(
PΩ

(
(Ut,Vt,Wt) · St

)
−Y

)
W̆t

(
W̆>

t W̆t

)−1
,

St+ = St −
η

p

(
(U>t Ut)

−1U>t , (V
>
t Vt)

−1V >t , (W
>
t Wt)

−1W>
t

)
·
(
PΩ

(
(Ut,Vt,Wt) · St

)
−Y

)
,

(20)

where Ŭt, V̆t, and W̆t are defined in (5). Set (Ut+1,Vt+1,Wt+1,St+1) =
PB(Ut+,Vt+,Wt+,St+).

for some small constant ε0 > 0. Set the projection radius as B = CB
√
µrσmax(X ?) for some

constant CB ≥ (1 + ε0)3. If the step size obeys 0 < η ≤ 2/5, then with probability at least
1− c1n

−c2 for universal constants c1, c2 > 0, for all t ≥ 0, the iterates of Algorithm 1 satisfy

‖(Ut,Vt,Wt) · St −X ?‖F ≤ 3ε0(1− 0.6η)tσmin(X ?).

Theorem 3 ensures that ScaledGD finds an ε-accurate estimate, i.e. ‖(Ut,Vt,Wt) · St −X ?‖F ≤
εσmin(X ?), in at most O(log(1/ε)) iterations, which is independent of the condition number
of X ?, as long as the sample complexity is large enough. Assuming that µ = O(1) and
r ∨ κ � nδ for some small constant δ to keep only terms with dominating orders of n, the
sample complexity simplifies to

pn1n2n3 & n3/2r5/2κ3 log3 n,

which is near-optimal in view of the conjecture that no polynomial-time algorithm will be
successful if the sample complexity is less than the order of n3/2 for tensor completion Barak
and Moitra (2016). Compared with existing algorithms collected in Table 1, ScaledGD is
the first algorithm that simultaneously achieves a near-optimal sample complexity and a
near-linear run time complexity in a provable manner. In particular, while Yuan and Zhang
(2016); Xia and Yuan (2019) achieve a sample complexity comparable to ours, the tensor
nuclear norm minimization algorithm in Yuan and Zhang (2016) is NP-hard to compute, and
the Grassmannian GD in Xia and Yuan (2019) does not offer an explicit iteration complexity,
except that each iteration can be computed in a polynomial time.
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Algorithm 2 ScaledGD for low-rank tensor regression
Input parameters: step size η, multilinear rank r = (r1, r2, r3).
Spectral initialization: Let (U0,V0,W0,S0) = HOSVDr(A∗(y)) defined in (8b).
Scaled gradient updates: for t = 0, 1, 2, . . . , T − 1

Ut+1 = Ut − ηM1 (A∗(A((Ut,Vt,Wt) · St)− y)) Ŭ>t
(
Ŭ>t Ŭt

)−1
,

Vt+1 = Vt − ηM2 (A∗(A((Ut,Vt,Wt) · St)− y)) V̆ >t
(
V̆ >t V̆t

)−1
,

Wt+1 = Wt − ηM3 (A∗(A((Ut,Vt,Wt) · St)− y)) W̆>
t

(
W̆>

t W̆t

)−1
,

St+1 = St − η
(

(U>t Ut)
−1U>t , (V

>
t Vt)

−1V >t , (W
>
t Wt)

−1W>
t

)
·A∗(A((Ut,Vt,Wt) · St)− y),

(23)

where Ŭt, V̆t, and W̆t are defined in (5).

2.3 ScaledGD for tensor regression

Now we move on to another tensor recovery problem—tensor regression with Gaussian de-
sign. Assume that we have access to a set of observations given as

yi = 〈Ai,X ?〉, i = 1, . . . ,m, or concisely, y = A(X ?), (21)

where Ai ∈ Rn1×n2×n3 is the i-th measurement tensor composed of i.i.d. Gaussian entries
drawn from N (0, 1/m), and A(X ) = {〈Ai,X 〉}mi=1 is a linear map from Rn1×n2×n3 to Rm,
whose adjoint operator is given by A∗(y) =

∑m
i=1 yiAi. The goal of tensor regression is to

recover X ? from y, by leveraging the low-rank structure of X ?. This can be achieved by
minimizing the following loss function

min
F=(U ,V ,W ,S)

L(F ) :=
1

2
‖A((U ,V ,W ) · S)− y‖22 . (22)

The proposed ScaledGD algorithm to minimize (22) is described in Algorithm 2, where
the algorithm is initialized by applying HOSVD to A∗(y), followed by scaled gradient up-
dates given in (23).

Theoretical guarantees. Encouragingly, we can guarantee that ScaledGD provably re-
covers the ground truth tensor as long as the sample size is sufficiently large, which is given
in the following theorem.

Theorem 4 (ScaledGD for tensor regression) Let n = maxk=1,2,3 nk and r = maxk=1,2,3 rk.
For tensor regression with Gaussian design, suppose that m satisfies

m & ε−1
0

√
n1n2n3r

3/2κ2 + ε−2
0 (nr2κ4 log n+ r4κ2)

for some small constant ε0 > 0. If the step size obeys 0 < η ≤ 2/5, then with probability at
least 1− c1n

−c2 for universal constants c1, c2 > 0, for all t ≥ 0, the iterates of Algorithm 2
satisfy

‖(Ut,Vt,Wt) · St −X ?‖F ≤ 3ε0(1− 0.6η)tσmin(X ?).
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Theorem 4 ensures that ScaledGD finds an ε-accurate estimate, i.e. ‖(Ut,Vt,Wt) · St −X ?‖F ≤
εσmin(X ?), in at most O(log(1/ε)) iterations, which is independent of the condition number
of X ?, as long as the sample complexity satisfies

m & n3/2r3/2κ2,

where again we keep only terms with dominating orders of n. Compared with the regularized
GD Han et al. (2020), ScaledGD achieves a low computation complexity with robustness to
ill-conditioning, improving its iteration complexity by a factor of κ2, and does not require
any explicit regularization.

3. Analysis

In this section, we provide some intuitions and sketch the proof of our main theorems. Before
continuing, we highlight an important property of ScaledGD: if starting from an equivalent
estimate

Ũt = UtQ1, Ṽt = VtQ2, W̃t = WtQ3, S̃t = (Q−1
1 ,Q−1

2 ,Q−1
3 ) · St

for some invertible matricesQk ∈ GL(rk) (i.e. replacing Ut by UtQ1, and so on), by plugging
the above estimate in (4) it is easy to check that the next iterate of ScaledGD is covariant
with respect to invertible transforms, meaning

Ũt+1 = Ut+1Q1, Ṽt+1 = Vt+1Q2, W̃t+1 = Wt+1Q3, S̃t+1 = (Q−1
1 ,Q−1

2 ,Q−1
3 ) · St+1.

In other words, ScaledGD produces an invariant sequence of low-rank tensor estimates

X t = (Ut,Vt,Wt) · St = (Ũt, Ṽt, W̃t) · S̃t

regardless of the representation of the tensor factors with respect to the underlying symmetry
group. This is one of the key reasons behind the insensitivity of ScaledGD to ill-conditioning
and factor imbalance.

A key scaled distance metric. To track the progress of ScaledGD throughout the entire
trajectory, one needs a distance metric that properly takes account of the factor ambiguity
due to invertible transforms, as well as the effect of scaling. To that end, we define the
scaled distance between factor quadruples F = (U ,V ,W ,S) and F? = (U?,V?,W?,S?) as

dist2(F ,F?) := inf
Qk∈GL(rk)

‖(UQ1 −U?)Σ?,1‖2F + ‖(V Q2 − V?)Σ?,2‖2F + ‖(WQ3 −W?)Σ?,3‖2F

+
∥∥(Q−1

1 ,Q−1
2 ,Q−1

3 ) · S − S?
∥∥2

F
. (24)

The distance is closely related to the `2 distances between the corresponding tensors. In
fact, it can be shown that as long as F and F? are not too far apart, i.e. dist(F ,F?) ≤
0.2σmin(X ?), it holds that dist(F ,F?) � ‖(U ,V ,W ) · S − X ?‖F in the sense that (see
Appendix A.1 for proofs):

1
3 ‖(U ,V ,W ) · S −X ?‖F ≤ dist(F ,F?) ≤ (

√
2 + 1)3/2 ‖(U ,V ,W ) · S −X ?‖F .
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3.1 A warm-up case: ScaledGD for tensor factorization

To shed light on the design insights as well as the proof techniques, we now introduce
the ScaledGD algorithm for the tensor factorization problem, which aims to minimize the
following loss function:

L(F ) :=
1

2
‖(U ,V ,W ) · S −X ?‖2F =

1

2
‖Mk ((U ,V ,W ) · S −X ?) ‖2F, k = 1, 2, 3, (25)

where the last equality follows from (6b). Recalling the update rule (4), ScaledGD proceeds
as

Ut+1 = Ut − ηM1 (X t −X ?) Ŭ
>
t

(
Ŭ>t Ŭt

)−1
,

Vt+1 = Vt − ηM2 (X t −X ?) V̆
>
t

(
V̆ >t V̆t

)−1
,

Wt+1 = Wt − ηM3 (X t −X ?) W̆
>
t

(
W̆>

t W̆t

)−1
,

St+1 = St − η
(

(U>t Ut)
−1U>t , (V

>
t Vt)

−1V >t , (W
>
t Wt)

−1W>
t

)
· (X t −X ?) ,

(26)

where X t = (Ut,Vt,Wt) · St, with Ŭt, V̆t, and W̆t defined in (5).

ScaledGD as a quasi-Newton algorithm. One way to think of ScaledGD is through
the lens of quasi-Newton methods, by equivalently rewriting the ScaledGD update (26) as

vec(Ft+1) = vec(Ft)− ηH−1
t ∇vec(F )L(Ft), (27)

whereHt := diag
[
∇2

vec(U),vec(U)L(Ft), ∇2
vec(V ),vec(V )L(Ft), ∇2

vec(W ),vec(W )L(Ft), ∇2
vec(S),vec(S)L(Ft)

]
.

To see this, it is straightforward to check that the diagonal blocks of the Hessian of the loss
function (25) are given precisely as

∇2
vec(U),vec(U)L(Ft) = (Ŭ>t Ŭt)⊗ In1 ,

∇2
vec(V ),vec(V )L(Ft) = (V̆ >t V̆t)⊗ In2 ,

∇2
vec(W ),vec(W )L(Ft) = (W̆>

t W̆t)⊗ In3 ,

∇2
vec(S),vec(S)L(Ft) = (W>

t Wt)⊗ (V >t Vt)⊗ (U>t Ut).

(28)

Therefore, by vectorization of (26), ScaledGD can be regarded as a quasi-Newton method
where the preconditioner is designed as the inverse of the diagonal approximation of the
Hessian.

Guarantees for tensor factorization. Fortunately, ScaledGD admits a κ-independent
convergence rate for tensor factorization, as long as the initialization is not too far from the
ground truth. This is summarized in Theorem 5, whose proof can be found in Appendix B.

Theorem 5 For tensor factorization (25), suppose that the initialization satisfies dist(F0,F?) ≤
ε0σmin(X ?) for some small constant ε0 > 0, then for all t ≥ 0, the iterates of ScaledGD in
(26) satisfy

dist(Ft,F?) ≤ (1− 0.7η)tε0σmin(X ?), and ‖(Ut,Vt,Wt) · St −X ?‖F ≤ 3ε0(1− 0.7η)tσmin(X ?),

as long as the step size satisfies 0 < η ≤ 2/5.
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Intuition of the proof. Let us provide some intuitions to facilitate understanding by
examining a toy case, where all factors become scalars, and the loss function with respect
to the factor f = [u, v, w, s]> becomes

L(f) =
1

2
(uvws− u?v?w?s?)2 =

1

2
(uvws− s?)2,

where u? = v? = w? = 1, and the ground truth is f? = [1, 1, 1, s?]
>. The gradient and the

diagonal entries of the Hessian are given respectively as

∇L(f) = (uvws− s?)[vws, uws, uvs, uvw]>,

Pdiag(∇2L(f)) = diag[(vws)2, (uws)2, (uvs)2, (uvw)2].

Moreover, the Hessian matrix at the ground truth is given by

∇2L(f?) = [s?, s?, s?, 1]>[s?, s?, s?, 1].

With these in mind, the ScaledGD update rule in (26) and the scaled distance in (24) reduce
respectively to

ft+1 = ft − ηPdiag
−1(∇2L(ft))∇L(ft),

dist(f ,f?) = inf
Q=diag[q1,q2,q3,(q1q2q3)−1]

∥∥∥Pdiag
1/2(∇2L(f?))(Qf − f?)

∥∥∥
2
.

Consequently, we can bound the distance between ft+1 and f? as

dist(ft+1,f?)
(i)

≤
∥∥∥Pdiag

1/2(∇2L(f?))
(
Qt

(
ft − ηPdiag

−1(∇2L(ft))∇L(ft)
)
− f?

)∥∥∥
2

(ii)
=
∥∥∥Pdiag

1/2(∇2L(f?))
(
Qtft − ηPdiag

−1(∇2L(Qtft))∇L(Qtft)− f?
)∥∥∥

2

(iii)
≈
∥∥∥(I − ηPdiag

−1/2(∇2L(f?))∇2L(f?)Pdiag
−1/2(∇2L(f?))

)
Pdiag

1/2(∇2L(f?))(Qtft − f?)
∥∥∥

2

(iv)
=
∥∥∥(I − η11>)Pdiag

1/2(∇2L(f?))(Qtft − f?)
∥∥∥

2

where (i) follows from replacing Q by the optimal alignment matrix Qt between ft and f?,
(ii) follows from the scaling invariance of the iterates, and (iii) holds approximately as long
as Qtft is sufficiently close to f?, which is made precise in the formal proof. The last line
(iv) follows from that the scaled Hessian matrix obeys

Pdiag
−1/2(∇2L(f?))∇2L(f?)Pdiag

−1/2(∇2L(f?)) = 11>.

By the optimality condition for Qt (see Lemma 13), it follows that Pdiag
1/2(∇2L(f?))(Qtft−

f?) is approximately parallel to 1. Thus, dist(ft+1,f?) contracts at a constant rate as long
as the step size η is set as a small constant obeying 0 < η ≤ 2/5.
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3.2 Proof outline for tensor completion (Theorem 3)

Armed with the insights from the tensor factorization case, we now provide a proof outline
of our main theorems on tensor completion and tensor regression, both of which can be
viewed as perturbations of tensor factorization with incomplete measurements, combined
with properly designed initialization schemes. We start with the guarantee for the spectral
initialization for tensor completion.

Lemma 6 (Initialization for tensor completion) Suppose that X ? is µ-incoherent, nk &
ε−1
0 µr

3/2
k κ2 for k = 1, 2, 3, and that p satisfies

pn1n2n3 & ε−1
0

√
n1n2n3µ

3/2r5/2κ2 log3 n+ ε−2
0 nµ2r4κ4 log5 n

for some small constant ε0 > 0. Then with overwhelming probability (i.e. at least 1 −
c1n
−c2), the spectral initialization before projection F+ = (U+,V+,W+,S+) for low-rank

tensor completion in Algorithm 1 satisfies

dist(F+,F?) ≤ ε0σmin(X ?).

Under a suitable sample size condition, Lemma 6 guarantees that dist(F+,F?) ≤ ε0σmin(X ?)
for some small constant ε0. To proceed, we need to know what would happen for the spec-
tral estimate F0 = PB

(
F+

)
after projection. In fact, the scaled projection is non-expansive

w.r.t. the scaled distance. More importantly, the output is guaranteed to be incoherent.
Both properties are stated in the following lemma.

Lemma 7 (Properties of scaled projection) Suppose that X ? is µ-incoherent, and dist(F+,F?) ≤
εσmin(X ?) for some ε < 1. Set B = CB

√
µrσmax(X ?) for some constant CB ≥ (1 + ε)3,

then F = (U ,V ,W ,S) := PB(F+) satisfies the non-expansiveness property

dist(F ,F?) ≤ dist(F+,F?),

and the incoherence condition
√
n1‖UŬ>‖2,∞ ∨

√
n2‖V V̆ >‖2,∞ ∨

√
n3‖WW̆>‖2,∞ ≤ B. (29)

Now we are ready to state the following lemma that ensures the linear contraction of the
iterative refinements given by the ScaledGD updates.

Lemma 8 (Local refinements for tensor completion) Suppose that X ? is µ-incoherent,
and that p satisfies

pn1n2n3 &
√
n1n2n3µ

3/2r2κ3 log3 n+ nµ3r4κ6 log5 n.

Under an event E which happens with overwhelming probability, for all t ≥ 0, if the t-th
iterate satisfies dist(Ft,F?) ≤ εσmin(X ?) for some small constant ε, then ‖(Ut,Vt,Wt) · St−
X ?‖F ≤ 3 dist(Ft,F?). In addition, if the t-th iterate satisfies the incoherence condition

√
n1‖UtŬ

>
t ‖2,∞ ∨

√
n2‖VtV̆ >t ‖2,∞ ∨

√
n3‖WtW̆

>
t ‖2,∞ ≤ B,
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with B = CB
√
µrσmax(X ?) for some constant CB ≥ (1 + ε)3, then the (t + 1)-th iterate of

Algorithm 1 satisfies

dist(Ft+1,F?) ≤ (1− 0.6η) dist(Ft,F?),

and the incoherence condition

√
n1‖Ut+1Ŭ

>
t+1‖2,∞ ∨

√
n2‖Vt+1V̆

>
t+1‖2,∞ ∨

√
n3‖Wt+1W̆

>
t+1‖2,∞ ≤ B.

By combining Lemma 6 and Lemma 7, we can ensure that the spectral initialization
F0 = PB(F+) satisfies the conditions required in Lemma 8, which further enables us to
repetitively apply Lemma 8 to finish the proof of Theorem 3. The proofs of the above three
lemmas are provided in Appendix C.

3.3 Proof outline for tensor regression (Theorem 4)

Now we turn to the proof outline for tensor regression (cf. Theorem 4). To begin with,
we show that the local linear convergence of ScaledGD can be guaranteed more generally,
as long as the measurement operator A(·) satisfies the so-called tensor restricted isometry
property (TRIP), which is formally defined as follows.

Definition 9 (TRIP Rauhut et al. (2017)) The linear map A : Rn1×n2×n3 7→ Rm is
said to obey the rank-r TRIP with δr ∈ (0, 1), if for all tensor X ∈ Rn1×n2×n3 of multilinear
rank at most r = (r1, r2, r3), one has

(1− δr)‖X‖2F ≤ ‖A(X )‖2F ≤ (1 + δr)‖X‖2F.

IfA(·) satisfies rank-2r TRIP with δ2r ∈ (0, 1), then for any two tensorsX 1,X 2 ∈ Rn1×n2×n3

of multilinear rank at most r = (r1, r2, r3), we have

(1− δ2r)‖X 1 −X 2‖2F ≤ ‖A(X 1 −X 2)‖2F ≤ (1 + δ2r)‖X 1 −X 2‖2F.

In other words, the distance between any pair of rank-r tensors X 1 and X 2 is approximately
preserved after the linear map A(·). The TRIP has been investigated extensively, where
(Rauhut et al., 2017, Theorem 2) stated that if Ai’s are composed of i.i.d. sub-Gaussian
entries, TRIP holds with high probability provided that m & δ−2

r (nr+ r3). TRIP also holds
for more structured measurement ensembles such as the random Fourier mapping Rauhut
et al. (2017). With the TRIP of A(·) in hand, we have the following theorem regarding the
local linear convergence of ScaledGD as long as the iterates are close to the ground truth.

Lemma 10 (Local refinements for tensor regression) Suppose that A(·) obeys the 2r-
TRIP with a small constant δ2r . 1. If the t-th iterate satisfies dist(Ft,F?) ≤ εσmin(X ?)
for some small constant ε, then ‖(Ut,Vt,Wt) · St − X ?‖F ≤ 3 dist(Ft,F?). In addition, if
the step size obeys 0 < η < 2/5, then the (t+ 1)-th iterate of Algorithm 2 satisfies

dist(Ft+1,F?) ≤ (1− 0.6η) dist(Ft,F?).
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Therefore, ScaledGD converges linearly as long as the sample size m & nr+r3 under the
Gaussian design, when initialized properly. Unfortunately, obtaining a desired initialization
turns out to be a major roadblock and requires a substantially higher sample size, which
has been studied extensively for tensor regression Luo and Zhang (2021); Han et al. (2020);
Zhang et al. (2020a). Under the Gaussian design, we have the following guarantee for the
spectral initialization scheme that invokes HOSVD in Algorithm 2.

Lemma 11 (Initialization for tensor regression) Suppose that {Ai}mi=1 are composed
of i.i.d. N (0, 1/m) entries, and that m satisfies

m & ε−1
0

√
n1n2n3r

3/2κ2 + ε−2
0 (nr2κ4 log n+ r4κ2)

for some small constant ε0 > 0. Then with overwhelming probability, the spectral initializa-
tion for low-rank tensor regression in Algorithm 2 satisfies

dist(F0,F?) ≤ ε0σmin(X ?).

Combining Lemma 10 and Lemma 11 finishes the proof of Theorem 4. Their proofs can
be found in Appendix D.

4. Numerical Experiments

In this section, we provide numerical experiments to corroborate our theoretical findings,
with the codes available at

https://github.com/Titan-Tong/ScaledGD.

The simulations are performed in Matlab with a 3.6 GHz Intel Xeon Gold 6244 CPU.
We illustrate the numerical performance of ScaledGD for tensor completion to corrobo-

rate our findings, especially its computational advantage over the regularized GD algorithm
Han et al. (2020) that is closest to our design. Their algorithm was originally proposed for
tensor regression, nevertheless, it naturally applies to tensor completion and exhibits similar
results. Since the scaled projection does not visibly impact the performance, we implement
ScaledGD without performing the projection. Also, we empirically find that the regulariza-
tion used in Han et al. (2020) has no visible benefits, hence we implement GD without the
regularization. For simplicity, we set n1 = n2 = n3 = n, and r1 = r2 = r3 = r. Each entry
of the tensor is observed i.i.d. with probability p ∈ (0, 1].

Phase transition of ScaledGD. We construct the ground truth tensorX ? = (U?,V?,W?) · S?
by generating U?, V? and W? as random orthonormal matrices, and the core tensor S?
composed of i.i.d. standard Gaussian entries, i.e. S?(j1, j2, j3) ∼ N (0, 1) for 1 ≤ jk ≤ r,
k = 1, 2, 3. For each set of parameters, we run 100 random tests and count the success
rate, where the recovery is regarded as successful if the recovered tensor has a relative er-
ror ‖X T − X ?‖F/‖X ?‖F ≤ 10−3. Figure 2 illustrates the success rate with respect to the
(scaled) sample size for different tensor sizes n, which implies that the recovery is successful
when the sample size is moderately large.
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Figure 2: The success rate of ScaledGD with respect to the scaled sample size for tensor
completion with r = 5, when the core tensor is composed of i.i.d. standard Gaus-
sian entries, for various tensor size n.

Comparison with GD. We next compare the performance of ScaledGD with GD. For a
fair comparison, both ScaledGD and GD start from the same spectral initialization, and we
use the following update rule of GD as

Ut+1 = Ut − ησ−2
max(X ?)∇UL(Ft),

Vt+1 = Vt − ησ−2
max(X ?)∇V L(Ft),

Wt+1 = Wt − ησ−2
max(X ?)∇WL(Ft),

St+1 = St − η∇SL(Ft).

(30)

Throughout the experiments, we used the ground truth value σmax(X ?) in running (30),
while in practice, this parameter needs to estimated; to put it differently, the step size of
GD is not scale-invariant, whereas the step size of ScaledGD is.

To ensure the ground truth tensor X ? = (U?,V?,W?) · S? has a prescribed condition
number κ, we generate the core tensor S? ∈ Rr×r×r according to S?(j1, j2, j3) = σj1/

√
r if

j1 +j2 +j3 ≡ 0 (mod r) and 0 otherwise, where {σj1}1≤j1≤r take values spaced equally from
1 to 1/κ. It then follows that σmax(X ?) = 1, σmin(X ?) = 1/κ, and the condition number of
X ? is exactly κ.

Figure 3 illustrates the convergence speed of ScaledGD and GD under different step
sizes, where we plot the relative error after at most 80 iterations (the algorithm is termi-
nated if the relative error exceeds 102 following an excessive step size). It can be seen that
ScaledGD outperforms GD quite significantly even when the step size of GD is optimized
for its performance. Hence, we will fix η = 0.3 for the rest of the comparisons for both
ScaledGD and GD without hurting the conclusions.

Figure 4 compares the relative errors of ScaledGD and GD for tensor completion with
respect to the iteration count and run time (in seconds) under different condition numbers
κ = 1, 2, 5, 10. This experiment verifies that ScaledGD converges rapidly at a rate indepen-
dent of the condition number, and matches the fastest rate of GD with perfect conditioning
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Figure 3: The relative errors of ScaledGD and GD after 80 iterations with respect to different
step sizes η from 0.1 to 0.9 for tensor completion with n = 100, r = 5, p = 0.1.
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Figure 4: The relative errors of ScaledGD and GD with respect to (a) the iteration count
and (b) run time (in seconds) under different condition numbers κ = 1, 2, 5, 10 for
tensor completion with n = 100, r = 5, and p = 0.1.

κ = 1. In contrast, the convergence rate of GD deteriorates quickly with the increase of κ
even at a moderate level. The advantage of ScaledGD carries over to the run time as well,
since the scaled gradient only adds a negligible overhead to the gradient computation.

We next examine the performance of ScaledGD and GD when randomly initialized.
Here, we initialize U0,V0,W0 composed of i.i.d. entries sampled from N (0, 1/n), and S0

composed of i.i.d. entries sampled from N (0, ‖Y‖2F/(pr3)). Figure 5 plots the relative er-
rors of ScaledGD and GD under different condition numbers κ = 1, 2, 5, 10, using the same
random initialization. Surprisingly, while GD gets stuck in a flat region before entering the
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Figure 5: The relative errors of random-initialized ScaledGD and GD with respect to the
iteration count under different condition numbers κ = 1, 2, 5, 10 for tensor com-
pletion with n = 100, r = 5, p = 0.1.

phase of linear convergence, ScaledGD seems to be quite insensitive to the choice of initial-
ization, and converges almost in the same fashion as the case with spectral initialization.
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Figure 6: The relative errors of ScaledGD and GD with respect to the iteration count under
signal-to-noise ratios SNR = 40, 60, 80dB for tensor completion with n = 100,
r = 5, and p = 0.1.

Finally, we examine the performance of ScaledGD when the observations are corrupted
by additive noise, where we assume the noisy observations are given by Y = PΩ(X ? +W),
withW(i1, i2, i3) ∼ N (0, σ2

w) composed of i.i.d. Gaussian entries. Denote the signal-to-noise
ratio as SNR := 10 log10

‖X ?‖2F
n3σ2

w
in dB. Figure 6 demonstrates the robustness of ScaledGD,

by plotting the relative errors with respect to the iteration count under SNR = 40, 60, 80dB.
Here, the ground truth tensor X ? is constructed in the same manner as Figure 2, where its
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condition number is approximately κ ≈ 2.6. It can been seen that ScaledGD reaches the
same statistical error as GD, but at a much faster rate. In addition, the convergence speeds
are not impacted by the noise levels.

5. Discussions

This paper develops a scaled gradient descent algorithm over the factor space for low-rank
tensor estimation (i.e. completion and regression) with provable sample and computational
guarantees, leading to a highly scalable approach especially when the ground truth tensor
is ill-conditioned and high-dimensional. There are several future directions that are worth
exploring, which we briefly discuss below.

• Preconditioning for other tensor decompositions. The use of preconditioning will likely
also accelerate vanilla gradient descent for low-rank tensor estimation using other decom-
position models, such as CP decomposition Cai et al. (2019), which is worth investigating.

• Entrywise error control for tensor completion. In this paper, we focused on controlling
the `2 error of the reconstructed tensor in tensor completion, whereas another strong form
of statistical guarantees deals with the `∞ error, as done in Ma et al. (2019) for matrix
completion and in Cai et al. (2019) for tensor completion with CP decomposition. It is
hence of interest to develop similar strong entrywise error guarantees of ScaledGD for
tensor completion with Tucker decomposition.

• Stable and robust low-rank tensor estimation. In practice, the observations are corrupted
by noise and even outliers Li et al. (2020), therefore, it is necessary to examine the stability
and robustness of ScaledGD in more depths; see some initial efforts in Tong et al. (2022) on
extending the scaled subgradient algorithm Tong et al. (2021b) for robust low-rank tensor
regression, and in Dong et al. (2022) on tensor robust principal component analysis.

• Random initialization? As evident from the numerical experiment in Figure 5, ScaledGD
works remarkably well even from a random initialization, which requires us to go beyond
the local geometry and pursue a further understanding of the global landscape of the
optimization geometry.
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Appendix A. Preliminaries

This section gathers several technical lemmas that will be used later in the proof. More
specifically, Section A.1 is devoted to understanding the scaled distance defined in the equa-
tion (24), and in Section A.2, we derive several useful perturbation bounds related to the
tensor factors and the tensor itself. All the proofs are collected in the end of each subsection.

A.1 Understanding the scaled distance

To begin, recall the scaled distance between F = (U ,V ,W ,S) and F? = (U?,V?,W?,S?):

dist2(F ,F?) := inf
Qk∈GL(rk)

‖(UQ1 −U?)Σ?,1‖2F + ‖(V Q2 − V?)Σ?,2‖2F + ‖(WQ3 −W?)Σ?,3‖2F

+
∥∥(Q−1

1 ,Q−1
2 ,Q−1

3 ) · S − S?
∥∥2

F
, (31)

where we call the matrices {Qk}k=1,2,3 (if exist) that attain the infimum the optimal align-
ment matrices between F and F?; in particular, F and F? are said to be aligned if the
optimal alignment matrices are identity matrices.

In what follows, we provide several useful lemmas whose proof can be found at the end
of this subsection. We start with a lemma that ensures the attainability of the infimum in
the definition (31) as long as dist(F ,F?) is sufficiently small.

Lemma 12 Fix any factor quadruple F = (U ,V ,W ,S). Suppose that dist(F ,F?) <
σmin(X ?), then the infimum of (31) is attained at some Qk ∈ GL(rk), i.e. the alignment
matrices between F and F? exist.

With the existence of the optimal alignment matrices in place, the following lemma
delineates the optimality conditions they need to satisfy.

Lemma 13 The optimal alignment matrices {Qk}k=1,2,3 between F and F?, if exist, must
satisfy

(UQ1)>(UQ1 −U?)Σ
2
?,1 =M1

(
(Q−1

1 ,Q−1
2 ,Q−1

3 ) · S − S?
)
M1

(
(Q−1

1 ,Q−1
2 ,Q−1

3 ) · S
)>
,

(V Q2)>(V Q2 − V?)Σ
2
?,2 =M2

(
(Q−1

1 ,Q−1
2 ,Q−1

3 ) · S − S?
)
M2

(
(Q−1

1 ,Q−1
2 ,Q−1

3 ) · S
)>
,

(WQ3)>(WQ3 −W?)Σ
2
?,3 =M3

(
(Q−1

1 ,Q−1
2 ,Q−1

3 ) · S − S?
)
M3

(
(Q−1

1 ,Q−1
2 ,Q−1

3 ) · S
)>
.

The next lemma relates the scaled distance between the factors to the Euclidean distance
between the tensors.

Lemma 14 For any factor quadruple F = (U ,V ,W ,S), the scaled distance (31) satisfies

dist(F ,F?) ≤ (
√

2 + 1)3/2 ‖(U ,V ,W ) · S −X ?‖F .
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A.1.1 Proof of Lemma 12

This proof mimics that of (Tong et al., 2021a, Lemma 9). The high level idea is to translate
the optimization problem (31) into an equivalent continuous optimization problem over a
compact set. Then an application of the Weierstrass extreme value theorem ensures the
existence of the minimizer.

Under the condition dist(F ,F?) < σmin(X ?), one knows that there exist matrices Q̄k ∈
GL(rk) such that(∥∥(UQ̄1 −U?)Σ?,1

∥∥2

F
+
∥∥(V Q̄2 − V?)Σ?,2

∥∥2

F
+
∥∥(WQ̄3 −W?)Σ?,3

∥∥2

F

+
∥∥(Q̄−1

1 , Q̄−1
2 , Q̄−1

3 ) · S − S?
∥∥2

F

)1/2
≤ εσmin(X ?),

for some ε obeying 0 < ε < 1. The above relation further implies that∥∥UQ̄1 −U?

∥∥ ∨ ∥∥V Q̄2 − V?
∥∥ ∨ ∥∥WQ̄3 −W?

∥∥ ∨ ∥∥∥(Q̄−1
3 ⊗ Q̄−1

2 )M1(S)>Q̄−>1 Σ−1
?,1 −M1(S?)>Σ−1

?,1

∥∥∥ ≤ ε.
Invoke Weyl’s inequality, and use the fact that U?,V?,W?,M1(S?)>Σ−1

?,1 have orthonormal
columns to obtain

σmin(UQ̄1) ∧ σmin(V Q̄2) ∧ σmin(WQ̄3) ∧ σmin

(
(Q̄−1

3 ⊗ Q̄−1
2 )M1(S)>Q̄−>1 Σ−1

?,1

)
≥ 1− ε.

(32)

In addition, it is straightforward to see that the minimization problem on the right hand
side of (31) is equivalent to

inf
Hk∈GL(rk)

∥∥(UQ̄1H1 −U?)Σ?,1

∥∥2

F
+
∥∥(V Q̄2H2 − V?)Σ?,2

∥∥2

F
+
∥∥(WQ̄3H3 −W?)Σ?,3

∥∥2

F

+
∥∥(H−1

1 Q̄−1
1 ,H−1

2 Q̄−1
2 ,H−1

3 Q̄−1
3

)
· S − S?

∥∥2

F
. (33)

Therefore, it suffices to establish the infimum is attainable for the above problem instead.
By the optimality of Q̄kHk over Q̄k, to yield a smaller distance than Q̄k, Hk must obey(∥∥(UQ̄1H1 −U?)Σ?,1

∥∥2

F
+
∥∥(V Q̄2H2 − V?)Σ?,2

∥∥2

F
+
∥∥(WQ̄3H3 −W?)Σ?,3

∥∥2

F

+
∥∥(H−1

1 Q̄−1
1 ,H−1

2 Q̄−1
2 ,H−1

3 Q̄−1
3

)
· S − S?

∥∥2

F

)1/2
≤ εσmin(X ?).

Follow similar reasoning and invoke Weyl’s inequality again to obtain

σmax(UQ̄1H1) ∨ σmax(V Q̄2H2) ∨ σmax(WQ̄3H3)

∨ σmax

(
(H−1

3 ⊗H−1
2 )(Q̄−1

3 ⊗ Q̄−1
2 )M1(S)>Q̄−>1 H−>1 Σ−1

?,1

)
≤ 1 + ε.

Use the relation σmin(A)σmax(B) ≤ σmax(AB), combined with (32), to further obtain

σmax(Hk) ≤
1 + ε

1− ε
, k = 1, 2, 3,
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σmax

(
Σ?,1H

−>
1 Σ−1

?,1

)
σmax(H−1

2 )σmax(H−1
3 ) ≤ 1 + ε

1− ε
=⇒ σmin

(
Σ?,1H1Σ

−1
?,1

)
σmin(H2)σmin(H3) ≥ 1− ε

1 + ε
.

As a result, the minimization problem (33) is equivalent to the constrained problem:

min
Hk∈GL(rk)

∥∥(UQ̄1H1 −U?)Σ?,1

∥∥2

F
+
∥∥(V Q̄2H2 − V?)Σ?,2

∥∥2

F
+
∥∥(WQ̄3H3 −W?)Σ?,3

∥∥2

F

+
∥∥(H−1

1 Q̄−1
1 ,H−1

2 Q̄−1
2 ,H−1

3 Q̄−1
3

)
· S − S?

∥∥2

F

s.t. σmax(Hk) ≤
1 + ε

1− ε
, σmin

(
Σ?,1H1Σ

−1
?,1

)
σmin(H2)σmin(H3) ≥ 1− ε

1 + ε
, k = 1, 2, 3.

Since this is a continuous optimization problem over a compact set, applying the Weierstrass
extreme value theorem finishes the proof.

A.1.2 Proof of Lemma 13

Set the gradient of the expression on the right hand side of (31) with respect to Q1 as zero
to see

U>(UQ1 −U?)Σ
2
?,1 −Q−>1 M1

(
(Q−1

1 ,Q−1
2 ,Q−1

3 ) · S − S?
)
M1

(
(Q−1

1 ,Q−1
2 ,Q−1

3 ) · S
)>

= 0.

We conclude the proof by similarly setting the gradient with respect to Q2 or Q3 to zero.

A.1.3 Proof of Lemma 14

We first state a lemma from (Tong et al., 2021a, Lemma 11), which will be used repeatedly
for matricization over different modes.

Lemma 15 (Tong et al. (2021a)) Suppose that X? ∈ Rn1×n2 has the compact rank-r
SVD X? = U?Σ?V

>
? . For any L ∈ Rn1×r and R ∈ Rn2×r, one has

inf
Q∈GL(r)

∥∥∥LQΣ
1/2
? −U?Σ?

∥∥∥2

F
+
∥∥∥RQ−>Σ

1/2
? − V?Σ?

∥∥∥2

F
≤ (
√

2 + 1)‖LR> −X?‖2F.

We begin by applying the mode-1 matricization (see (12)), and invoking Lemma 15 with
L := U , R := (W ⊗ V )M1(S)>, X? := U?M1(S?)(W? ⊗ V?)

> to arrive at

‖(U ,V ,W ) · S −X ?‖2F =
∥∥∥UM1(S)(W ⊗ V )> −U?M1(S?)(W? ⊗ V?)

>
∥∥∥2

F

≥ (
√

2− 1) inf
Q∈GL(r1)

∥∥∥UQΣ
1/2
?,1 −U?Σ?,1

∥∥∥2

F
+
∥∥∥(W ⊗ V )M1(S)>Q−>Σ

1/2
?,1 − (W? ⊗ V?)M1(S?)>

∥∥∥2

F

= (
√

2− 1) inf
Q1∈GL(r1)

‖(UQ1 −U?)Σ?,1‖2F +
∥∥∥(W ⊗ V )M1(S)>Q−>1 − (W? ⊗ V?)M1(S?)>

∥∥∥2

F

= (
√

2− 1) inf
Q1∈GL(r1)

‖(UQ1 −U?)Σ?,1‖2F +
∥∥(Q−1

1 ,V ,W ) · S − (Ir1 ,V?,W?) · S?
∥∥2

F
,

where we have applied a change-of-variable as Q1 = QΣ
−1/2
?,1 in the third line, and converted

back to the tensor space in the last line. Continue in a similar manner, by applying the
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mode-2 matricization to the second term (see (12)), and invoke Lemma 15 with L := V ,
R := (W ⊗Q−1

1 )M2(S)>, X? := V?M2(S?)(W? ⊗ Ir1)> to arrive at∥∥(Q−1
1 ,V ,W ) · S − (Ir1 ,V?,W?) · S?

∥∥2

F
=
∥∥∥VM2(S)(W ⊗Q−1

1 )> − V?M2(S?)(W? ⊗ Ir1)>
∥∥∥2

F

≥ (
√

2− 1) inf
Q∈GL(r2)

∥∥∥V QΣ
1/2
?,2 − V?Σ?,2

∥∥∥2

F
+
∥∥∥(W ⊗Q−1

1 )M2(S)>Q−>Σ
1/2
?,2 − (W? ⊗ Ir1)M2(S?)>

∥∥∥2

F

= (
√

2− 1) inf
Q2∈GL(r2)

‖(V Q2 − V?)Σ?,2‖2F +
∥∥(Q−1

1 ,Q−1
2 ,W ) · S − (Ir1 , Ir2 ,W?) · S?

∥∥2

F
.

where we have applied a change-of-variable as Q2 = QΣ
−1/2
?,2 as well as tensorization in the

last line. Repeating the same argument by applying the mode-3 matricization to the second
term, we obtain∥∥(Q−1

1 ,Q−1
2 ,W ) · S − (Ir1 , Ir2 ,W?) · S?

∥∥2

F
=
∥∥∥WM3(S)(Q−1

2 ⊗Q−1
1 )> −W?M3(S?)

∥∥∥2

F

≥ (
√

2− 1) inf
Q3∈GL(r3)

‖(WQ3 −W?)Σ?,3‖2F +
∥∥(Q−1

1 ,Q−1
2 ,Q−1

3 ) · S − S?
∥∥2

F
.

Finally, combine these results to conclude

‖(U ,V ,W ) · S −X ?‖2F ≥ inf
Qk∈GL(rk)

(
√

2− 1) ‖(UQ1 −U?)Σ?,1‖2F + (
√

2− 1)2 ‖(V Q2 − V?)Σ?,2‖2F

+ (
√

2− 1)3 ‖(WQ3 −W?)Σ?,3‖2F + (
√

2− 1)3
∥∥(Q−1

1 ,Q−1
2 ,Q−1

3 ) · S − S?
∥∥2

F

≥ (
√

2− 1)3 dist2(F ,F?),

where the last relation uses the definition of dist2(F ,F?).

A.2 Several perturbation bounds

We now collect several perturbation bounds that will be used repeatedly in the proof. With-
out loss of generality, assume that F = (U ,V ,W ,S) and F? = (U?,V?,W?,S?) are aligned,
and introduce the following notation that will be used repeatedly:

∆U := U −U?, ∆V := V − V?, ∆W := W −W?, ∆S := S − S?,
Ŭ := (W ⊗ V )M1(S)>, V̆ := (W ⊗U)M2(S)>, W̆ := (V ⊗U)M3(S)>,

Ŭ? := (W? ⊗ V?)M1(S?)>, V̆? := (W? ⊗U?)M2(S?)>, W̆? := (V? ⊗U?)M3(S?)>,
(34)

T U := (U>? ∆U , Ir2 , Ir3) · S?, T V := (Ir1 ,V
>
? ∆V , Ir3) · S?, T W := (Ir1 , Ir2 ,W

>
? ∆W ) · S?,

DU := (U>U)−1/2U>∆UΣ?,1, DV := (V >V )−1/2V >∆V Σ?,2, DW := (W>W )−1/2W>∆WΣ?,3.

Now we are ready to state the lemma on perturbation bounds.

Lemma 16 Suppose F = (U ,V ,W ,S) and F? = (U?,V?,W?,S?) are aligned and satisfy
dist(F ,F?) ≤ εσmin(X ?) for some ε < 1. Then the following bounds hold regarding the
spectral norm:

‖∆U‖ ∨ ‖∆V ‖ ∨ ‖∆W ‖ ∨ ‖Mk(∆S)>Σ−1
?,k‖ ≤ ε, k = 1, 2, 3; (35a)
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‖U(U>U)−1‖ ≤ (1− ε)−1; (35b)∥∥∥U(U>U)−1 −U?

∥∥∥ ≤ √2ε

1− ε
; (35c)∥∥∥(U>U)−1

∥∥∥ ≤ (1− ε)−2; (35d)∥∥∥(Ŭ − Ŭ?)Σ
−1
?,1

∥∥∥ ≤ 3ε+ 3ε2 + ε3; (35e)∥∥∥Ŭ(Ŭ>Ŭ)−1Σ?,1

∥∥∥ ≤ (1− ε)−3; (35f)∥∥∥Ŭ(Ŭ>Ŭ)−1Σ?,1 − Ŭ?Σ
−1
?,1

∥∥∥ ≤ √2(3ε+ 3ε2 + ε3)

(1− ε)3
; (35g)∥∥∥Σ?,1(Ŭ>Ŭ)−1Σ?,1

∥∥∥ ≤ (1− ε)−6; (35h)∥∥∥Σ?,1(Ŭ>Ŭ)−1M1(S)
∥∥∥ ≤ (1− ε)−5. (35i)

By symmetry, a corresponding set of bounds holds for V , V̆ and W , W̆ .
In addition, the following bounds hold regarding the Frobenius norm:

‖(U ,V ,W ) · S −X ?‖F ≤ (1 +
3

2
ε+ ε2 +

ε3

4
) (‖∆UΣ?,1‖F + ‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F + ‖∆S‖F) ;

(36a)

‖(U ,V ,W ) · S? −X ?‖F ≤ (1 + ε+
ε2

3
) (‖∆UΣ?,1‖F + ‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F) ; (36b)∥∥∥Ŭ − Ŭ?

∥∥∥
F
≤ (1 + ε+

ε2

3
) (‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F + ‖∆S‖F) . (36c)

As a straightforward consequence of (36a), the following important relation holds when ε ≤
0.2:

‖(U ,V ,W ) · S −X ?‖F ≤ 2(1 +
3

2
ε+ ε2 +

ε3

4
) dist(F ,F?) ≤ 3 dist(F ,F?). (37)

Hence, the scaled distance serves as a metric to gauge the quality of the tensor recovery.

A.2.1 Proof of Lemma 16

Proof of spectral norm perturbation bounds. To begin, recalling the notation in
(34), (35a) follows directly from the definition

dist(Ft,F?) =
√
‖∆UΣ?,1‖2F + ‖∆V Σ?,2‖2F + ‖∆WΣ?,3‖2F + ‖∆S‖2F ≤ εσmin(X ?)

together with the relation ‖AB‖F ≥ ‖A‖Fσmin(B).
For (35b), Weyl’s inequality tells σmin(U) ≥ σmin(U?)− ‖∆U‖ ≥ 1− ε, and use that∥∥∥U(U>U)−1

∥∥∥ =
1

σmin(U)
≤ 1

1− ε
.
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For (35c), decompose

U(U>U)−1 −U? = −U(U>U)−1∆>UU? +
(
In1 −U(U>U)−1U>

)
∆U ,

and use that the two terms are orthogonal to obtain∥∥∥U(U>U)−1 −U?

∥∥∥2
≤
∥∥∥U(U>U)−1∆>UU?

∥∥∥2
+
∥∥∥(In1 −U(U>U)−1U>

)
∆U

∥∥∥2

≤ ‖U(U>U)−1‖2‖∆U‖2 + ‖∆U‖2

≤
(
(1− ε)−2 + 1

)
ε2.

It follows from ε < 1 that ∥∥∥U(U>U)−1 −U?

∥∥∥ ≤ √2ε

1− ε
.

For (35d), recognizing that

(U>U)−1 = (U(U>U)−1)>U(U>U)−1 =⇒ ‖(U>U)−1‖ = ‖U(U>U)−1‖2 ≤ 1

(1− ε)2
,

where the last inequality follows from (35b).
For (35e), we first expand the expression as

Ŭ − Ŭ? = (W ⊗ V )M1(S)> − (W? ⊗ V?)M1(S?)>

= (W ⊗ V −W? ⊗ V?)M1(S?)> + (W ⊗ V )M1(S)> − (W ⊗ V )M1(S?)>

= (W ⊗∆V + ∆W ⊗ V?)M1(S?)> + (W ⊗ V )M1(∆S)>. (38)

Apply the triangle inequality to obtain

‖(Ŭ − Ŭ?)Σ
−1
?,1‖ ≤

∥∥∥(W ⊗∆V + ∆W ⊗ V?)M1(S?)>Σ−1
?,1

∥∥∥ +
∥∥∥(W ⊗ V )M1(∆S)>Σ−1

?,1

∥∥∥
≤ (‖W ‖‖∆V ‖ + ‖∆W ‖‖V?‖) ‖M1(S?)>Σ−1

?,1‖ + ‖W ‖‖V ‖‖M1(∆S)>Σ−1
?,1‖

≤ (1 + ε)ε+ ε+ (1 + ε)2ε = 3ε+ 3ε2 + ε3,

where we have used (35a) and the fact ‖M1(S?)>Σ−1
?,1‖ = 1 (see (13)) in the last line.

(35f) follows from combining

σmin

(
ŬΣ−1

?,1

)
≥ σmin(V )σmin(W )σmin

(
M1(S)Σ−1

?,1

)
≥ (1− ε)3,

and
∥∥∥Ŭ(Ŭ>Ŭ)−1Σ?,1

∥∥∥ =
1

σmin

(
ŬΣ−1

?,1

) ≤ 1

(1− ε)3
.

With regard to (35g), repeat the same proof as (35c), decompose

Ŭ(Ŭ>Ŭ)−1Σ?,1 − Ŭ?Σ
−1
?,1

= −Ŭ(Ŭ>Ŭ)−1(Ŭ − Ŭ?)
>Ŭ?Σ

−1
?,1 +

(
In2n3 − Ŭ(Ŭ>Ŭ)−1Ŭ>

)
(Ŭ − Ŭ?)Σ

−1
?,1,
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and use that the two terms are orthogonal to obtain∥∥∥Ŭ(Ŭ>Ŭ)−1Σ?,1 − Ŭ?Σ
−1
?,1

∥∥∥2

≤
∥∥∥Ŭ(Ŭ>Ŭ)−1(Ŭ − Ŭ?)

>Ŭ?Σ
−1
?,1

∥∥∥2
+
∥∥∥(In2n3 − Ŭ(Ŭ>Ŭ)−1Ŭ>

)
(Ŭ − Ŭ?)Σ

−1
?,1

∥∥∥2

≤ ‖Ŭ(Ŭ>Ŭ)−1Σ?,1‖2‖(Ŭ − Ŭ?)Σ
−1
?,1‖

2 + ‖(Ŭ − Ŭ?)Σ
−1
?,1‖

2

≤
(
(1− ε)−6 + 1

)
(3ε+ 3ε2 + ε3)2.

It follows from ε < 1 that∥∥∥Ŭ(Ŭ>Ŭ)−1Σ?,1 − Ŭ?Σ
−1
?,1

∥∥∥ ≤ √2(3ε+ 3ε2 + ε3)

(1− ε)3
.

The relation (35h) follows from (35f) and the relation:∥∥∥Σ?,1(Ŭ>Ŭ)−1Σ?,1

∥∥∥ =
∥∥∥Σ?,1(Ŭ>Ŭ)−1Ŭ>Ŭ(Ŭ>Ŭ)−1Σ?,1

∥∥∥ =
∥∥∥Ŭ(Ŭ>Ŭ)−1Σ?,1

∥∥∥2
.

With regard to (35i), we have∥∥∥Σ?,1(Ŭ>Ŭ)−1M1(S)
∥∥∥ =

∥∥∥Σ?,1(Ŭ>Ŭ)−1Ŭ>
(
W (W>W )−1 ⊗ V (V >V )−1

)∥∥∥
≤
∥∥∥Ŭ(Ŭ>Ŭ)−1Σ?,1

∥∥∥ ∥∥∥W (W>W )−1
∥∥∥ ∥∥∥V (V >V )−1

∥∥∥
≤ (1− ε)−5,

where the first line follows from

Ŭ> =M1(S)(W ⊗ V )> =⇒ M1(S) = Ŭ>
(
W (W>W )−1 ⊗ V (V >V )−1

)
,

(39)

and the last inequality uses (35c) and (35f).

Proof of Frobenius norm perturbation bounds. We proceed to prove the perturba-
tion bounds regarding the Frobenius norm. For (36a), we begin with the following decom-
position

(U ,V ,W ) · S −X ? = (U ,V ,W ) · S − (U?,V?,W?) · S?
= (U ,V ,W ) ·∆S + (∆U ,V ,W ) · S? + (U?,∆V ,W ) · S? + (U?,V?,∆W ) · S?.

(40)

Apply the triangle inequality, together with the invariance of the Frobenius norm to matri-
cization, to obtain

‖(U ,V ,W ) · S −X ?‖F ≤ ‖(U ,V ,W ) ·∆S‖F +
∥∥∥∆UM1(S?)(W ⊗ V )>

∥∥∥
F

+
∥∥∥∆VM2(S?)(W ⊗U?)

>
∥∥∥

F
+
∥∥∥∆WM3(S?)(V? ⊗U?)

>
∥∥∥

F

≤ ‖U‖‖V ‖‖W ‖‖∆S‖F + ‖∆UM1(S?)‖F‖W ‖‖V ‖

33



Tong, Ma, Prater-Bennette, Tripp, Chi

+ ‖∆VM2(S?)‖F‖W ‖‖U?‖ + ‖∆WM3(S?)‖F‖V?‖‖U?‖
≤ (1 + ε)3‖∆S‖F + (1 + ε)2‖∆UΣ?,1‖F + (1 + ε)‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F,

where the second inequality follows from (6e), and the last inequality follows from (13)
and (35a). By symmetry, one can permute the occurrence of ∆U ,∆V ,∆W ,∆S in the
decomposition (40). For example, invoking another viable decomposition of (U ,V ,W ) · S−
X ? as

(U ,V ,W ) · S −X ? = (U ,∆V ,W ) · S + (U ,V?,∆W ) · S + (U ,V?,W?) ·∆S + (∆U ,V?,W?) · S?

leads to the perturbation bound

‖(U ,V ,W ) · S −X ?‖F ≤ (1 + ε)3‖∆V Σ?,2‖F + (1 + ε)2‖∆WΣ?,3‖F + (1 + ε)‖∆S‖F + ‖∆UΣ?,1‖F.

To complete the proof of (36a), we take an average of all viable bounds from 4! = 24
permutations to balance their coefficients as

1

4

(
(1 + ε)3 + (1 + ε)2 + (1 + ε) + 1

)
= 1 +

3

2
ε+ ε2 +

1

4
ε3,

thus we obtain

‖(U ,V ,W ) · S −X ?‖F ≤ (1 +
3

2
ε+ ε2 +

1

4
ε3)
(
‖∆UΣ?,1‖F + ‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F + ‖∆S‖F

)
.

The relation (36b) can be proved in a similar fashion; for the sake of brevity, we omit its
proof.

Turning to (36c), apply the triangle inequality to (38) to obtain

‖Ŭ − Ŭ?‖F ≤
∥∥∥(W ⊗∆V )M1(S?)>

∥∥∥
F

+
∥∥∥(∆W ⊗ V?)M1(S?)>

∥∥∥
F

+ ‖(W ⊗ V )M1(∆S)‖F .

(41)

To bound the first term, change the mode of matricization (see (12)) to arrive at∥∥∥(W ⊗∆V )M1(S?)>
∥∥∥

F
= ‖(Ir1 ,∆V ,W ) · S?‖F =

∥∥∥∆VM2(S?)(W ⊗ Ir1)>
∥∥∥

F

≤ ‖∆VM2(S?)‖F‖W ‖ ≤ (1 + ε)‖∆VM2(S?)‖F,

where the last inequality uses (35a). Similarly, the last two terms in (41) can be bounded
as∥∥∥(∆W ⊗ V?)M1(S?)>

∥∥∥
F
≤ ‖∆WM3(S?)‖F, and ‖(W ⊗ V )M1(∆S)‖F ≤ (1 + ε)2‖∆S‖F.

Plugging the above bounds back to (41), we have

‖Ŭ − Ŭ?‖F ≤ (1 + ε)‖∆VM2(S?)‖F + ‖∆WM3(S?)‖F + (1 + ε)2‖∆S‖F.

Using a similar symmetrization trick as earlier, by permuting the occurrences of ∆V ,∆W ,∆S
in the decomposition (38), we arrive at the final advertised bound (36c).
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Appendix B. Proof for Tensor Factorization (Theorem 5)

We prove Theorem 5 via induction. Suppose that for some t ≥ 0, one has dist(Ft,F?) ≤
εσmin(X ?) for some sufficiently small ε whose size will be specified later in the proof. Our goal
is to bound the scaled distance from the ground truth to the next iterate, i.e. dist(Ft+1,F?).

Since dist(Ft,F?) ≤ εσmin(X ?), Lemma 12 ensures that the optimal alignment matrices
{Qt,k}k=1,2,3 between Ft and F? exist. Therefore, in view of the definition of dist(Ft+1,F?),
one has

dist2(Ft+1,F?) ≤ ‖(Ut+1Qt,1 −U?)Σ?,1‖2F + ‖(Vt+1Qt,2 − V?)Σ?,2‖2F + ‖(Wt+1Qt,3 −W?)Σ?,3‖2F

+
∥∥∥(Q−1

t,1 ,Q
−1
t,2 ,Q

−1
t,3 ) · St+1 − S?

∥∥∥2

F
. (42)

To avoid notational clutter, we denote F := (U ,V ,W ,S) with

U := UtQt,1, V := VtQt,2, W := WtQt,3, S := (Q−1
t,1 ,Q

−1
t,2 ,Q

−1
t,3 ) · St, (43)

and adopt the set of notation defined in (34) for the rest of the proof. Clearly, F is aligned
with F?. With these notation, we can rephrase the consequences of Lemma 13 as:

U>∆UΣ2
?,1 =M1(∆S)M1(S)>,

V >∆V Σ2
?,2 =M2(∆S)M2(S)>,

W>∆WΣ2
?,3 =M3(∆S)M3(S)>.

(44)

We aim to establish the following bounds for the four terms in (42) as long as η < 1:

‖(Ut+1Qt,1 −U?)Σ?,1‖2F ≤ (1− η)2‖∆UΣ?,1‖2F
− 2η(1− η) 〈T U ,T U + T V + T W 〉+ η2 ‖T U + T V + T W ‖2F
+ 2η(1− η)C1εdist2(Ft,F?) + η2C2εdist2(Ft,F?);

(45a)

‖(Vt+1Qt,2 − V?)Σ?,2‖2F ≤ (1− η)2‖∆V Σ?,2‖2F
− 2η(1− η) 〈T V ,T U + T V + T W 〉+ η2 ‖T U + T V + T W ‖2F
+ 2η(1− η)C1εdist2(Ft,F?) + η2C2εdist2(Ft,F?);

(45b)

‖(Wt+1Qt,3 −W?)Σ?,3‖2F ≤ (1− η)2‖∆WΣ?,3‖2F
− 2η(1− η) 〈T W ,T U + T V + T W 〉+ η2 ‖T U + T V + T W ‖2F
+ 2η(1− η)C1εdist2(Ft,F?) + η2C2εdist2(Ft,F?);

(45c)∥∥∥(Q−1
t,1 ,Q

−1
t,2 ,Q

−1
t,3 ) · St+1 − S?

∥∥∥2

F
≤ (1− η)2‖∆S‖2F − η(2− 5η)

(
‖DU‖2F + ‖DV ‖2F + ‖DW ‖2F

)
+ 2η(1− η)C1εdist2(Ft,F?) + η2C2εdist2(Ft,F?),

(45d)

where C1, C2 > 1 are two universal constants. Suppose for the moment that the four
bounds (45) hold. We can then combine them all to deduce

dist2(Ft+1,F?) ≤ (1− η)2
(
‖∆UΣ?,1‖2F + ‖∆V Σ?,2‖2F + ‖∆WΣ?,3‖2F + ‖∆S‖2F

)
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− η(2− 5η) ‖T U + T V + T W ‖2F − η(2− 5η)
(
‖DU‖2F + ‖DV ‖2F + ‖DW ‖2F

)
+ 2η(1− η)Cεdist2(Ft,F?) + η2Cεdist2(Ft,F?). (46)

Here C := 4(C1 ∨ C2). As long as η ≤ 2/5 and ε ≤ 0.2/C, one has

dist2(Ft+1,F?) ≤
(
(1− η)2 + 2η(1− η)Cε+ η2Cε

)
dist2(Ft,F?) ≤ (1− 0.7η)2 dist2(Ft,F?),

and therefore we arrive at the conclusion that dist(Ft+1,F?) ≤ (1 − 0.7η) dist(Ft,F?).
In addition, the relation (37) in Lemma 16 guarantees that ‖(Ut,Vt,Wt) · St − X ?‖F ≤
3 dist(Ft,F?).

It then boils down to demonstrating the four bounds (45). Due to the symmetry among
U ,V and W , we will focus on proving the bounds (45a) and (45d), omitting the proofs for
the other two.

Proof of (45a). Utilize the ScaledGD update rule (26) to write

(Ut+1Qt,1 −U?)Σ?,1 =
(
U − ηM1 ((U ,V ,W ) · S −X ?) Ŭ(Ŭ>Ŭ)−1 −U?

)
Σ?,1

= (1− η)∆UΣ?,1 − ηU?(Ŭ − Ŭ?)
>Ŭ(Ŭ>Ŭ)−1Σ?,1, (47)

where we use the decomposition of the mode-1 matricization

M1 ((U ,V ,W ) · S −X ?) = UM1(S)(W ⊗ V )> −U?M1(S?)(W? ⊗ V?)
>

= ∆UM1(S)(W ⊗ V )> + U?

(
M1(S)(W ⊗ V )> −M1(S?)(W? ⊗ V?)

>
)

= ∆U Ŭ
> + U?(Ŭ − Ŭ?)

>.

Take the squared norm of both sides of the identity (47) to obtain

‖(Ut+1Qt,1 −U?)Σ?,1‖2F = (1− η)2‖∆UΣ?,1‖2F − 2η(1− η)
〈
∆UΣ?,1,U?(Ŭ − Ŭ?)

>Ŭ(Ŭ>Ŭ)−1Σ?,1

〉︸ ︷︷ ︸
=:U1

+ η2
∥∥U?(Ŭ − Ŭ?)

>Ŭ(Ŭ>Ŭ)−1Σ?,1

∥∥2

F︸ ︷︷ ︸
=:U2

.

The following two claims bound the two terms U1 and U2, whose proofs can be found in
Appendix B.1 and Appendix B.2, respectively.

Claim 1 U1 ≥ 〈T U ,T U + T V + T W 〉 − C1εdist2(Ft,F?).

Claim 2 U2 ≤ ‖T U + T V + T W ‖2F + C2εdist2(Ft,F?).

We can combine the above two claims to obtain that

‖(Ut+1Qt,1 −U?)Σ?,1‖2F ≤ (1− η)2‖∆UΣ?,1‖2F − 2η(1− η) 〈T U ,T U + T V + T W 〉
+ η2 ‖T U + T V + T W ‖2F + 2η(1− η)C1εdist2(Ft,F?) + η2C2εdist2(Ft,F?),

as long as η < 1. This proves the bound (45a).
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Proof of (45d). Again, we use the ScaledGD update rule (26) and the decomposition
S = ∆S + S? to obtain

(Q−1
t,1 ,Q

−1
t,2 ,Q

−1
t,3 ) · St+1 − S?

= S − η
(

(U>U)−1U>, (V >V )−1V >, (W>W )−1W>
)
·
(
(U ,V ,W ) · S −X ?

)
− S?

= (1− η)∆S − η
(

(U>U)−1U>, (V >V )−1V >, (W>W )−1W>
)
·
(
(U ,V ,W ) · S? −X ?

)
,

(48)

where we used (6c) in the last line. Expand the squared norm of both sides to reach∥∥∥(Q−1
t,1 ,Q

−1
t,2 ,Q

−1
t,3 ) · St+1 − S?

∥∥∥2

F
= (1− η)2‖∆S‖2F

− 2η(1− η)
〈
∆S ,

(
(U>U)−1U>, (V >V )−1V >, (W>W )−1W>

)
· ((U ,V ,W ) · S? −X ?)

〉
︸ ︷︷ ︸

=:S1

+ η2
∥∥∥((U>U)−1U>, (V >V )−1V >, (W>W )−1W>

)
· ((U ,V ,W ) · S? −X ?)

∥∥∥2

F︸ ︷︷ ︸
=:S2

.

We collect the bounds of the two relevant terms S1 and S2 in the following two claims,
whose proofs can be found in Appendix B.3 and Appendix B.4, respectively.

Claim 3 S1 ≥ ‖DU‖2F + ‖DV ‖2F + ‖DW ‖2F − C1εdist2(Ft,F?).

Claim 4 S2 ≤ 3
(
‖DU‖2F + ‖DV ‖2F + ‖DW ‖2F

)
+ C2εdist2(Ft,F?).

Take the bounds on S1 and S2 collectively to reach∥∥∥(Q−1
t,1 ,Q

−1
t,2 ,Q

−1
t,3 ) · St+1 − S?

∥∥∥2

F
≤ (1− η)2‖∆S‖2F − η(2− 5η)

(
‖DU‖2F + ‖DV ‖2F + ‖DW ‖2F

)
+ 2η(1− η)C1ε dist2(Ft,F?) + η2C2εdist2(Ft,F?)

as long as η < 1. This recovers the bound (45d).

B.1 Proof of Claim 1

Use the relation (38) to decompose U1 as

U1 =
〈
U>? ∆UΣ?,1, (Ŭ − Ŭ?)

>Ŭ(Ŭ>Ŭ)−1Σ?,1

〉
=
〈
U>? ∆UΣ?,1,M1(S?)(W ⊗∆V + ∆W ⊗ V?)

>Ŭ(Ŭ>Ŭ)−1Σ?,1

〉︸ ︷︷ ︸
=:U1,1

+
〈
U>? ∆UΣ?,1,M1(∆S)(W ⊗ V )>Ŭ(Ŭ>Ŭ)−1Σ?,1

〉︸ ︷︷ ︸
=:U1,2

.

In what follows, we bound U1,1 and U1,2 separately.
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Step 1: tackling U1,1. We can further decompose U1,1 into the following four terms

U1,1 =
〈
U>? ∆UΣ?,1,M1(S?)(W? ⊗∆V + ∆W ⊗ V?)

>Ŭ?Σ
−1
?,1

〉
︸ ︷︷ ︸

=:Um
1,1

+
〈
U>? ∆UΣ?,1,M1(S?)(W? ⊗∆V )>

(
Ŭ(Ŭ>Ŭ)−1Σ?,1 − Ŭ?Σ

−1
?,1

)〉
︸ ︷︷ ︸

=:Up,1
1,1

+
〈
U>? ∆UΣ?,1,M1(S?)(∆W ⊗ V?)

>
(
Ŭ(Ŭ>Ŭ)−1Σ?,1 − Ŭ?Σ

−1
?,1

)〉
︸ ︷︷ ︸

=:Up,2
1,1

+
〈
U>? ∆UΣ?,1,M1(S?)(∆W ⊗∆V )>Ŭ(Ŭ>Ŭ)−1Σ?,1

〉
︸ ︷︷ ︸

=:Up,3
1,1

,

where Um
1,1 denotes the main term and the remaining ones are perturbation terms.

Utilizing the definition of Ŭ? in (34) and the relation (12), the main term Um
1,1 can be

rewritten as an inner product in the tensor space:

Um
1,1 =

〈
U>? ∆UM1(S?),M1(S?)(Ir3 ⊗∆>V V? + ∆>WW? ⊗ Ir2)

〉
= 〈T U ,T V + T W 〉 .

To control the other three perturbation terms, Lemma 16 turns out to be extremely useful.
For instance, the perturbation term Up,1

1,1 is bounded by

|Up,1
1,1 | ≤

∥∥∥U>? ∆UΣ?,1

∥∥∥
F

∥∥∥M1(S?)(W? ⊗∆V )>
∥∥∥

F

∥∥∥Ŭ(Ŭ>Ŭ)−1Σ?,1 − Ŭ?Σ
−1
?,1

∥∥∥
≤
√

2(3ε+ 3ε2 + ε3)

(1− ε)3
‖∆UΣ?,1‖F‖∆V Σ?,2‖F.

Here in the last inequality, we used the upper bound (35g) and changed the matricization
mode to obtain∥∥∥M1(S?)(W? ⊗∆V )>

∥∥∥
F

= ‖(Ir1 ,∆V ,W?) · S?‖F =
∥∥∥∆VM2(S?)(W? ⊗ Ir1)>

∥∥∥
F
≤ ‖∆V Σ?,2‖F.

Similarly, the remaining two perturbation terms Up,2
1,1 and Up,3

1,1 obey

|Up,2
1,1 | ≤

√
2(3ε+ 3ε2 + ε3)

(1− ε)3
‖∆UΣ?,1‖F‖∆WΣ?,3‖F,

|Up,3
1,1 | ≤

ε

(1− ε)3
‖∆UΣ?,1‖F‖∆V Σ?,2‖F.

Step 2: tackling U1,2. Now we move on to U1,2, which can be decomposed as

U1,2 =
〈
U>? ∆UΣ?,1,M1(∆S)M1(S?)>Σ−1

?,1

〉
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+
〈
U>? ∆UΣ?,1,M1(∆S)(W? ⊗ V?)

>
(
Ŭ(Ŭ>Ŭ)−1Σ?,1 − Ŭ?Σ

−1
?,1

)〉
︸ ︷︷ ︸

=:Up,1
1,2

+
〈
U>? ∆UΣ?,1,M1(∆S)(W ⊗ V −W? ⊗ V?)

>Ŭ(Ŭ>Ŭ)−1Σ?,1

〉
︸ ︷︷ ︸

=:Up,2
1,2

=
〈
U>? ∆UΣ?,1,M1(∆S)M1(S)>Σ−1

?,1

〉
−
〈
U>? ∆UΣ?,1,M1(∆S)M1(∆S)>Σ−1

?,1

〉
︸ ︷︷ ︸

=:Up,3
1,2

+Up,1
1,2 + Up,2

1,2

=
〈
U>? ∆UΣ?,1,U

>∆UΣ?,1

〉
+ Up,1

1,2 + Up,2
1,2 + Up,3

1,2

= ‖T U‖2F + Up,1
1,2 + Up,2

1,2 + Up,3
1,2 +

〈
U>? ∆UΣ?,1,∆

>
U∆UΣ?,1

〉
︸ ︷︷ ︸

=:Up,4
1,2

,

where in the penultimate identity we have applied the identity (44) to replaceM1(∆S)M1(S)>.
Again, by Lemma 16, the perturbation term Up,1

1,2 is bounded by

|Up,1
1,2 | ≤

∥∥∥U>? ∆UΣ?,1

∥∥∥
F

∥∥∥M1(∆S)(W? ⊗ V?)
>
∥∥∥

F

∥∥Ŭ(Ŭ>Ŭ)−1Σ?,1 − Ŭ?Σ
−1
?,1

∥∥
≤
√

2(3ε+ 3ε2 + ε3)

(1− ε)3
‖∆UΣ?,1‖F‖∆S‖F.

In addition, Up,2
1,2 is bounded by

|Up,2
1,2 | ≤

∥∥∥U>? ∆UΣ?,1

∥∥∥
F
‖M1(∆S)‖F ‖W ⊗ V −W? ⊗ V?‖

∥∥Ŭ(Ŭ>Ŭ)−1Σ?,1

∥∥
≤ 2ε+ ε2

(1− ε)3
‖∆UΣ?,1‖F‖∆S‖F,

where we have used

‖W ⊗ V −W? ⊗ V?‖ ≤ ‖∆W ⊗ V?‖ + ‖W? ⊗∆V ‖ + ‖∆W ⊗∆V ‖
≤ ‖∆W ‖ + ‖∆V ‖ + ‖∆V ‖‖∆W ‖ ≤ 2ε+ ε2.

Following similar arguments (i.e. repeatedly using Lemma 16), we can bound Up,3
1,2 and Up,4

1,2

as

|Up,3
1,2 | ≤

∥∥∥U>? ∆UΣ?,1

∥∥∥
F
‖M1(∆S)‖F

∥∥∥M1(∆S)>Σ−1
?,1

∥∥∥ ≤ ε‖∆UΣ?,1‖F‖∆S‖F;

|Up,4
1,2 | ≤

∥∥∥U>? ∆UΣ?,1

∥∥∥
F
‖∆U‖‖∆UΣ?,1‖F ≤ ε‖∆UΣ?,1‖2F.

Step 3: putting the bound together. Combine these results on U1,1 and U1,2 to see

U1 = 〈T U ,T U + T V + T W 〉+ Up
1 ,
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where the perturbation term Up
1 :=

∑3
i=1 U

p,i
1,1 +

∑4
i=1 U

p,i
1,2 obeys

|Up
1 | ≤ ε‖∆UΣ?,1‖F

(
‖∆UΣ?,1‖F +

1 +
√

2(3 + 3ε+ ε2)

(1− ε)3
‖∆V Σ?,2‖F +

√
2(3 + 3ε+ ε2)

(1− ε)3
‖∆WΣ?,3‖F

+ (1 +
2 + ε+

√
2(3 + 3ε+ ε2)

(1− ε)3
)‖∆S‖F

)
.

Using the Cauchy–Schwarz inequality, we can further simplify it as |Up1| ≤ C1εdist2(Ft,F?)
for some universal constant C1 > 1.

B.2 Proof of Claim 2

Note that

U2 =
∥∥(Ŭ − Ŭ?)

>Ŭ(Ŭ>Ŭ)−1Σ?,1

∥∥2

F

≤
∥∥(Ŭ − Ŭ?)

>ŬΣ−1
?,1

∥∥2

F

∥∥Σ?,1(Ŭ>Ŭ)−1Σ?,1

∥∥2

≤
∥∥(Ŭ − Ŭ?)

>ŬΣ−1
?,1

∥∥2

F
(1− ε)−12, (49)

where the last relation arises from the bound (35h) in Lemma 16. We can then use the
decomposition (38) to obtain∥∥(Ŭ − Ŭ?)

>ŬΣ−1
?,1

∥∥
F

=
∥∥∥(M1(S?)(W ⊗∆V + ∆W ⊗ V?)

> +M1(∆S)(W ⊗ V )>
)

(W ⊗ V )M1(S)>Σ−1
?,1

∥∥∥
F

≤
∥∥∥M1(S?)

(
Ir3 ⊗∆>V V? + ∆>WW? ⊗ Ir2

)
M1(S?)>Σ−1

?,1 +M1(∆S)M1(S)>Σ−1
?,1

∥∥∥
F︸ ︷︷ ︸

=:Um
2

+
∥∥∥M1(S?)

(
W>W ⊗∆>V V − Ir3 ⊗∆>V V?

)
M1(S?)>Σ−1

?,1

∥∥∥
F︸ ︷︷ ︸

=:Up,1
2

+
∥∥∥M1(S?)

(
∆>WW ⊗ V >? V −∆>WW? ⊗ Ir2

)
M1(S?)>Σ−1

?,1

∥∥∥
F︸ ︷︷ ︸

=:Up,2
2

+
∥∥∥M1(S?)

(
W>W ⊗∆>V V + ∆>WW ⊗ V >? V

)
M1(∆S)>Σ−1

?,1

∥∥∥
F︸ ︷︷ ︸

=:Up,3
2

+
∥∥∥M1(∆S)

(
W>W ⊗ V >V − Ir3 ⊗ Ir2

)
M1(S)>Σ−1

?,1

∥∥∥
F︸ ︷︷ ︸

=:Up,4
2

.

Here, Um
2 is the main term while the remaining four are perturbation terms. Use the rela-

tion (44) again to replaceM1(∆S)M1(S)> in the main term Um
2 and see

Um
2 =

∥∥∥(M1(S?)(Ir3 ⊗∆>V V? + ∆>WW? ⊗ Ir2) + U>? ∆UM1(S?)
)
M1(S?)>Σ−1

?,1

∥∥∥
F
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≤
∥∥∥M1(S?)(Ir3 ⊗∆>V V? + ∆>WW? ⊗ Ir2) + U>? ∆UM1(S?)

∥∥∥
F
‖M1(S?)>Σ−1

?,1‖

= ‖T U + T V + T W ‖F ,

where the last equality uses ‖M1(S?)>Σ−1
?,1‖ = 1. The perturbation terms are bounded by

Up,1
2 ≤ ((1 + ε)3 − 1)‖∆V Σ?,2‖F;

Up,2
2 ≤ ((1 + ε)2 − 1)‖∆WΣ?,3‖F;

Up,3
2 ≤ ε(1 + ε)3‖∆V Σ?,2‖F + ε(1 + ε)2‖∆WΣ?,3‖F;

Up,4
2 ≤ ((1 + ε)4 − 1)(1 + ε)‖∆S‖F.

They follow from similar calculations as those in bounding U1 with the aid of Lemma 16;
hence we omit the details for brevity. Combine these results to see∥∥(Ŭ − Ŭ?)

>ŬΣ−1
?,1

∥∥
F
≤ ‖T U + T V + T W ‖F + Up

2 ,

with Up
2 :=

∑4
i=1 U

p,i
2 obeying

Up
2 ≤ ((1 + ε)4 − 1)‖∆V Σ?,2‖F + ((1 + ε)3 − 1)‖∆WΣ?,3‖F + ((1 + ε)4 − 1)(1 + ε)‖∆S‖F

. ε
(
‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F + ‖∆S‖F

)
. ε dist(Ft,F?).

Next take the square to obtain∥∥(Ŭ − Ŭ?)
>ŬΣ−1

?,1

∥∥2

F
≤ ‖T U + T V + T W ‖2F + 2Up

2 ‖T U + T V + T W ‖F + (Up
2)2.

Finally plug this back into (49) to conclude

U2 ≤ (1− ε)−12 ‖T U + T V + T W ‖2F + 2(1− ε)−12Up
2 ‖T U + T V + T W ‖F + (1− ε)−12(Up

2)2

≤ ‖T U + T V + T W ‖2F +
(
(1− ε)−12 − 1

)
(‖∆UΣ?,1‖F + ‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F)2

+ 2(1− ε)−12Up
2 (‖∆UΣ?,1‖F + ‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F) + (1− ε)−12(Up

2)2

≤ ‖T U + T V + T W ‖2F + C2εdist2(Ft,F?),

for some universal constant C2 > 1. Here in the second inequality, we use the fact that
‖T U‖F ≤ ‖∆UΣ?,1‖F, ‖T V ‖F ≤ ‖∆V Σ?,2‖F, and ‖T W ‖F ≤ ‖∆WΣ?,3‖F. This finishes the
proof of the claim.

B.3 Proof of Claim 3

Use the decomposition

(U ,V ,W ) · S? −X ? = (∆U ,V ,W ) · S? + (U?,∆V ,W ) · S? + (U?,V?,∆W ) · S? (50)

to rewrite S1 as

S1 =
〈
∆S , ((U

>U)−1U>∆U , Ir2 , Ir3) · S?
〉

︸ ︷︷ ︸
=:S1,1

+
〈
∆S , ((U

>U)−1U>U?, (V
>V )−1V >∆V , Ir3) · S?

〉
︸ ︷︷ ︸

=:S1,2

+
〈
∆S , ((U

>U)−1U>U?, (V
>V )−1V >V?, (W

>W )−1W>∆W ) · S?
〉

︸ ︷︷ ︸
=:S1,3

.
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Step 1: tackling S1,1. Translating the inner product from the tensor space to the matrix
space via the mode-1 matricization yields

S1,1 =
〈
M1(∆S), (U>U)−1U>∆UM1(S?)

〉
=
〈
M1(∆S), (U>U)−1U>∆UM1(S)

〉
︸ ︷︷ ︸

=:Sm
1,1

−
〈
M1(∆S), (U>U)−1U>∆UM1(∆S)

〉
︸ ︷︷ ︸

=:Sp
1,1

.

Again, the identity (44) is helpful in characterizing the main term Sm
1,1:

Sm
1,1 =

〈
U>∆UΣ2

?,1, (U
>U)−1U>∆U

〉
=
∥∥(U>U)−1/2U>∆UΣ?,1

∥∥2

F
.

The perturbation term Sp
1,1 is bounded by

|Sp
1,1| ≤ ‖M1(∆S)‖F

∥∥∥U(U>U)−1
∥∥∥ ‖∆U‖‖M1(∆S)‖F ≤ ε(1− ε)−1‖∆S‖2F,

which follows directly from Lemma 16.

Step 2: tackling S1,2. Following the same recipe as above, we can apply the mode-2
matricization to S1,2 to see

S1,2 =
〈
M2(∆S), (V >V )−1V >∆VM2(S?)

(
Ir3 ⊗U>? U(U>U)−1

)〉
=
〈
M2(∆S), (V >V )−1V >∆VM2(S)

〉
︸ ︷︷ ︸

=:Sm
1,2

−
〈
M2(∆S), (V >V )−1V >∆VM2(∆S)

〉
︸ ︷︷ ︸

=:Sp,1
1,2

+
〈
M2(∆S), (V >V )−1V >∆VM2(S?)

(
Ir3 ⊗ (U>? U(U>U)−1 − Ir1)

)〉
︸ ︷︷ ︸

=:Sp,2
1,2

.

In view of the relation (44), we can rewrite the main term Sm
1,2 as

Sm
1,2 =

∥∥∥(V >V )−1/2V >∆V Σ?,2

∥∥∥2

F
.

In addition, for the perturbation terms, Lemma 16 allows us to obtain

|Sp,1
1,2 | ≤ ‖M2(∆S)‖F

∥∥∥V (V >V )−1
∥∥∥ ‖∆V ‖‖M2(∆S)‖F ≤ ε(1− ε)−1‖∆S‖2F.

Moreover, we can write U>? U(U>U)−1 − Ir1 = −∆>UU(U>U)−1, and bound Sp,2
1,2 as

|Sp,2
1,2 | ≤ ‖M2(∆S)‖F‖V (V >V )−1‖‖∆VM2(S?)‖F‖∆U‖‖U(U>U)−1‖
≤ ε(1− ε)−2‖∆S‖F‖∆V Σ?,2‖F.
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Step 3: tackling S1,3. Similar to before, we rewrite S1,3 by applying the mode-3 matri-
cization as

S1,3 =
〈
M3(∆S), (W>W )−1W>∆WM3(S?)

(
V >? V (V >V )−1 ⊗U>? U(U>U)−1

)〉
=
〈
M3(∆S), (W>W )−1W>∆WM3(S)

〉
︸ ︷︷ ︸

=:Sm
1,3

−
〈
M3(∆S), (W>W )−1W>∆WM3(∆S)

〉
︸ ︷︷ ︸

=:Sp,1
1,3

+
〈
M3(∆S), (W>W )−1W>∆WM3(S?)

(
V >? V (V >V )−1 ⊗U>? U(U>U)−1 − Ir2 ⊗ Ir1

)〉
︸ ︷︷ ︸

=:Sp,2
1,3

.

The main term obeys (thanks again to the identity (44))

Sm
1,3 =

∥∥(W>W )−1/2W>∆WΣ?,3

∥∥2

F
.

As the same time, the perturbation term Sp,1
1,3 can be bounded by

|Sp,1
1,3 | ≤ ‖M3(∆S)‖F

∥∥∥W (W>W )−1
∥∥∥ ‖∆W ‖‖M3(∆S)‖F ≤ ε(1− ε)−1‖∆S‖2F.

Similarly, we have

|Sp,2
1,3 | ≤ ‖M3(∆S)‖F‖W (W>W )−1‖‖∆WM3(S?)‖F

∥∥∥V >? V (V >V )−1 ⊗U>? U(U>U)−1 − Ir2 ⊗ Ir1

∥∥∥
≤ 2ε+ ε2

(1− ε)3
‖∆S‖F‖∆WΣ?,3‖F,

where we use the decomposition

V >? V (V >V )−1 ⊗U>? U(U>U)−1 − Ir2 ⊗ Ir1 = (V? ⊗U? − V ⊗U)>
(
V (V >V )−1 ⊗U(U>U)−1

)
and its immediate consequence∥∥∥V >? V (V >V )−1 ⊗U>? U(U>U)−1 − Ir2 ⊗ Ir1

∥∥∥ ≤ ‖V? ⊗U? − V ⊗U‖
∥∥∥V (V >V )−1

∥∥∥ ∥∥∥U(U>U)−1
∥∥∥

≤ 2ε+ ε2

(1− ε)2
.

Step 4: putting all pieces together. Combine results of S1,1,S1,2,S1,3 to see

S1 =
∥∥(U>U)−1/2U>∆UΣ?,1

∥∥2

F
+
∥∥(V >V )−1/2V >∆V Σ?,2

∥∥2

F
+
∥∥(W>W )−1/2W>∆WΣ?,3

∥∥2

F
+ S1,p,

where the aggregated perturbation term Sp
1 obeys

|Sp
1 | ≤ ε‖∆S‖F

(
(1− ε)−2‖∆V Σ?,2‖F + (2 + ε)(1− ε)−3‖∆WΣ?,3‖F + 3(1− ε)−1‖∆S‖F

)
.

It is straightforward to check that |Sp
1 | ≤ C1εdist2(Ft,F?) for some absolute constant

C1 > 1.
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B.4 Proof of Claim 4

Reuse the decomposition (50) and the elementary inequality (a+ b+ c)2 ≤ 3(a2 + b2 + c2)
to obtain

S2 ≤ 3
∥∥∥((U>U)−1U>∆U , Ir2 , Ir3) · S?

∥∥∥2

F︸ ︷︷ ︸
=:S2,1

+3
∥∥∥((U>U)−1U>U?, (V

>V )−1V >∆V , Ir3) · S?
∥∥∥2

F︸ ︷︷ ︸
=:S2,2

+ 3
∥∥∥((U>U)−1U>U?, (V

>V )−1V >V?, (W
>W )−1W>∆W ) · S?

∥∥∥2

F︸ ︷︷ ︸
=:S2,3

.

Apply the mode-1 matricization and Lemma 16 to S2,1 to see

S2,1 =
∥∥∥(U>U)−1U>∆UM1(S?)

∥∥∥2

F

≤ ‖(U>U)−1‖
∥∥(U>U)−1/2U>∆UM1(S?)

∥∥2

F

≤ (1− ε)−2
∥∥(U>U)−1/2U>∆UΣ?,1

∥∥2

F
.

Similarly, apply the mode-2 (resp. mode-3) matricization to S2,2 (resp. S2,3) to see

S2,2 =
∥∥∥(V >V )−1V >∆VM2(S?)

(
Ir3 ⊗U>? U(U>U)−1

)∥∥∥2

F

≤ ‖(V >V )−1‖
∥∥(V >V )−1/2V >∆VM2(S?)

∥∥2

F
‖U(U>U)−1‖2

≤ (1− ε)−4
∥∥(V >V )−1/2V >∆V Σ?,2

∥∥2

F
,

and

S2,3 =
∥∥∥(W>W )−1W>∆WM3(S?)

(
V >? V (V >V )−1 ⊗U>? U(U>U)−1

)∥∥∥2

F

≤ ‖(W>W )−1‖
∥∥(W>W )−1/2W>∆WM3(S?)

∥∥2

F
‖U(U>U)−1‖2‖V (V >V )−1‖2

≤ (1− ε)−6
∥∥(W>W )−1/2W>∆WΣ?,3

∥∥2

F
.

Combine the bounds on S2,1,S2,2,S2,3 to write S2 as

S2 ≤ 3(1− ε)−2
∥∥(U>U)−1/2U>∆UΣ?,1

∥∥2

F
+ 3(1− ε)−4

∥∥(V >V )−1/2V >∆V Σ?,2

∥∥2

F

+ 3(1− ε)−6
∥∥(W>W )−1/2W>∆WΣ?,3

∥∥2

F
.

By symmetry, one can permute ∆U ,∆V ,∆W , and take the average to balance their coeffi-
cients and reach the conclusion that

S2 ≤ 3
(∥∥(U>U)−1/2U>∆UΣ?,1

∥∥2

F
+
∥∥(V >V )−1/2V >∆V Σ?,2

∥∥2

F
+
∥∥(W>W )−1/2W>∆WΣ?,3

∥∥2

F

)
+ Sp

2 ,

where the perturbation term Sp
2 obeys

Sp
2 ≤

(
(1− ε)−2 + (1− ε)−4 + (1− ε)−6 − 3

) (
‖∆UΣ?,1‖2F + ‖∆V Σ?,2‖2F + ‖∆WΣ?,3‖2F

)
.

A bit simplification yields Sp
2 ≤ C2εdist2(Ft,F?).

44



Scaling and Scalability: Provable Nonconvex Low-Rank Tensor Estimation

Appendix C. Proof for Tensor Completion

This section is devoted to the proofs of claims related to tensor completion. To begin with,
we state several bounds regarding the `2,∞ norm that will be repeatedly used throughout
this section.

Lemma 17 Suppose that X ? is µ-incoherent, and that F = (U ,V ,W ,S) satisfies dist(F ,F?) ≤
εσmin(X ?) for ε < 1 and the incoherence condition (29). Then one has the following bounds
regarding the `2,∞ norm:

√
n1‖UM1(S)‖2,∞ ≤ (1− ε)−2CB

√
µrσmax(X ?); (51a)

√
n1‖UM1(S?)‖2,∞ =

√
n1‖UΣ?,1‖2,∞ ≤ (1− ε)−3CB

√
µrσmax(X ?); (51b)

√
n1‖U‖2,∞ ≤ (1− ε)−3CBκ

√
µr. (51c)

By symmetry, a corresponding set of bounds hold for V , V̆ and W , W̆ .

Proof For (51a), we have

‖UM1(S)‖2,∞ =
∥∥UŬ>

(
W (W>W )−1 ⊗ V (V >V )−1

)∥∥
2,∞

≤ ‖UŬ>‖2,∞
∥∥∥W (W>W )−1

∥∥∥ ∥∥∥V (V >V )−1
∥∥∥

≤ ‖UŬ>‖2,∞(1− ε)−2,

where the first line uses (39), the second line follows from ‖AB‖2,∞ ≤ ‖A‖2,∞‖B‖, and the
last inequality uses (35c). This combined with condition (29) leads to the declared bound.

Similarly for (51b), we have

‖UΣ?,1‖2,∞ =
∥∥UŬ>Ŭ(Ŭ>Ŭ)−1Σ?,1

∥∥
2,∞

≤ ‖UŬ>‖2,∞
∥∥∥Ŭ(Ŭ>Ŭ)−1Σ?,1

∥∥∥
≤ ‖UŬ>‖2,∞(1− ε)−3,

where the last line follows from (35f).
Finally, observe that

‖UΣ?,1‖2,∞ ≥ ‖U‖2,∞σmin(Σ?,1) ≥ ‖U‖2,∞σmin(X ?).

Combining the above inequality with (51b), we reach the bound (51c).

C.1 Proof of Lemma 7

A crucial operation, which aims to preserve the desirable incoherence property with respect
to the scaled distance, is the scaled projection F = PB(F+) defined in (19). For the purpose
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of understanding, it is instructive to view F as the solution to the following optimization
problems:

U = argmin
U

∥∥(U −U+)Ŭ>+
∥∥2

F
s.t.

√
n1‖UŬ>+ ‖2,∞ ≤ B,

V = argmin
V

∥∥(V − V+)V̆ >+
∥∥2

F
s.t.

√
n2‖V V̆ >+ ‖2,∞ ≤ B,

W = argmin
W

∥∥(W −W+)W̆>
+

∥∥2

F
s.t.

√
n3‖WW̆>

+ ‖2,∞ ≤ B.

(52)

The remaining proof follows similar arguments as ?. To begin, we collect a useful claim
as follows.

Claim 5 ((?, Claim 5)) For vectors u,u? ∈ Rn and λ ≥ ‖u?‖2/‖u‖2, it holds that

‖(1 ∧ λ)u− u?‖2 ≤ ‖u− u?‖2.

Proof of the non-expansive property. We begin with proving the non-expansive prop-
erty. Denote the optimal alignment matrices between F+ and F? as {Q+,k}k=1,2,3, whose
existence is guaranteed by Lemma 12. Assume for now (which shall be established at the
end of the proof) that for any 1 ≤ i1 ≤ n1, we have

B
√
n1

∥∥U+(i1, :)Ŭ>+
∥∥

2

≥
∥∥U?(i1, :)Σ?,1

∥∥
2∥∥U+(i1, :)Q+,1Σ?,1

∥∥
2

. (53)

This taken together with Claim 5 immediately implies∥∥U(i1, :)Q+,1Σ?,1 −U?(i1, :)Σ?,1

∥∥
2
≤
∥∥U+(i1, :)Q+,1Σ?,1 −U?(i1, :)Σ?,1

∥∥
2
, 1 ≤ i1 ≤ n1,

=⇒
∥∥(UQ+,1 −U?)Σ?,1

∥∥
F
≤
∥∥(U+Q+,1 −U?)Σ?,1

∥∥
F
.

Repeating similar arguments for the other two factors, we obtain∥∥(V Q+,2 − V?)Σ?,2

∥∥
F
≤
∥∥(V+Q+,2 − V?)Σ?,2

∥∥
F
,
∥∥(WQ+,3 −W?)Σ?,3

∥∥
F
≤
∥∥(W+Q+,3 −W?)Σ?,3

∥∥
F
.

Combining the above bounds, we have

dist2(F ,F?) ≤ ‖(UQ+,1 −U?)Σ?,1‖2F + ‖(V Q+,2 − V?)Σ?,2‖2F

+ ‖(WQ+,3 −W?)Σ?,3‖2F +
∥∥∥(Q−1

+,1,Q
−1
+,2,Q

−1
+,3) · S − S?

∥∥∥2

F
= dist2(F+,F?).

Proof of the incoherence condition. Turning to the incoherence condition, it follows
that for any 1 ≤ i1 ≤ n1,

∥∥U(i1, :)Ŭ
>∥∥2

2
=

n2∑
i2=1

n3∑
i3=1

〈
U(i1, :)M1(S),W (i3, :)⊗ V (i2, :)

〉2

(i)
=

n2∑
i2=1

n3∑
i3=1

〈
U(i1, :)M1(S),W+(i3, :)⊗ V+(i2, :)

〉2

(
1 ∧ B
√
n3‖W+(i3, :)W̆>

+ ‖2

)2(
1 ∧ B
√
n2‖V+(i2, :)V̆ >+ ‖2

)2
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(ii)
≤

n2∑
i2=1

n3∑
i3=1

〈
U(i1, :)M1(S),W+(i3, :)⊗ V+(i2, :)

〉2

(iii)
=

n2∑
i2=1

n3∑
i3=1

(
1 ∧ B
√
n1‖U+(i1, :)Ŭ>+ ‖2

)2 〈
U+(i1, :)M1(S+),W+(i3, :)⊗ V+(i2, :)

〉2

=

(
1 ∧ B
√
n1‖U+(i1, :)Ŭ>+ ‖2

)2 ∥∥U+(i1, :)Ŭ
>
+

∥∥2

2

(iv)
≤ B2

n1
.

Here, (i) and (iii) follow from the definition of the scaled projection (19), (ii) and (iv) follow
from the basic relations a ∧ b ≤ a and a ∧ b ≤ b. By symmetry, one has

√
n1‖UŬ>‖2,∞ ∨

√
n2‖V V̆ >‖2,∞ ∨

√
n3‖WW̆>‖2,∞ ≤ B.

The proof is then finished once we prove inequality (53).

Proof of (53). Under the condition dist(F+,F?) ≤ εσmin(X ?), invoke (35a) in Lemma 16
on the factor quadruple

(
U+Q+,1,V+Q+,2,W+Q+,3, (Q

−1
+,1,Q

−1
+,2,Q

−1
+,3) · S+

)
to see

‖V+Q+,2‖ ∨ ‖W+Q+,3‖ ∨
∥∥∥∥M1

(
(Q−1

+,1,Q
−1
+,2,Q

−1
+,3) · S+

)>
Σ−1
?,1

∥∥∥∥ ≤ 1 + ε,

which further implies that

∥∥Ŭ+Q
−>
+,1Σ

−1
?,1

∥∥ ≤ ‖V+Q+,2‖‖W+Q+,3‖
∥∥∥∥M1

(
(Q−1

+,1,Q
−1
+,2,Q

−1
+,3) · S+

)>
Σ−1
?,1

∥∥∥∥ ≤ (1 + ε)3.

(54)

For any 1 ≤ i1 ≤ n1, one has∥∥U+(i1, :)Ŭ
>
+

∥∥
2
≤ ‖U+(i1, :)Q+,1Σ?,1‖2

∥∥Ŭ+Q
−>
+,1Σ

−1
?,1

∥∥
≤ ‖U+(i1, :)Q+,1Σ?,1‖2 (1 + ε)3,

where the second line follows from the bound (54). In addition, the incoherence assumption
of X ? (15) implies that

√
n1

∥∥U?(i1, :)Σ?,1

∥∥
2
≤
√
n1

∥∥U?(i1, :)
∥∥

2

∥∥Σ?,1

∥∥ ≤ √µrσmax(X ?) ≤ B(1 + ε)−3,

where the last inequality follows from the choice of B. Take the above two relations collec-
tively to reach the advertised bound (53).

C.2 Concentration inequalities

We gather several useful concentration inequalities regarding the partial observation operator
PΩ(·) for the Bernoulli observation model (17).
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Lemma 18 Suppose that X ? is µ-incoherent, and that pn1n2n3 & nµ2r2 log n. With over-
whelming probability, one has

∣∣〈(p−1PΩ − I)(XA),XB

〉∣∣ ≤ CT
√
nµ2r2 log n

pn1n2n3
‖XA‖F‖XB‖F

simultaneously for all tensors XA,XB ∈ Rn1×n2×n3 in the form of

XA = (UA,V?,W?) · SA,1 + (U?,VA,W?) · SA,2 + (U?,V?,WA) · SA,3,
XB = (UB,V?,W?) · SB,1 + (U?,VB,W?) · SB,2 + (U?,V?,WB) · SB,3,

where UA,UB ∈ Rn1×r1, VA,VB ∈ Rn2×r2, WA,WB ∈ Rn3×r3, and SA,k,SB,k ∈ Rr1×r2×r3
are arbitrary factors, and CT > 0 is some universal constant.

Lemma 19 ((Cai et al., 2019, Lemma D.2)) For any fixed X ∈ Rn1×n2×n3, with over-
whelming probability, one has

∥∥(p−1PΩ − I)(X )
∥∥ ≤ CY (p−1 log3 n‖X‖∞ +

√
p−1 log5 n max

k=1,2,3
‖Mk(X )>‖2,∞

)
,

where CY > 0 is some universal constant.

Lemma 20 With overwhelming probability, one has

∣∣〈(p−1PΩ − I)((UA,VA,WA) · SA), (UB,VB,WB) · SB
〉∣∣ ≤ CY (p−1 log3 n+

√
p−1n log5 n

)
N,

simultaneously for all tensors (UA,VA,WA) · SA and (UB,VB,WB) · SB, where the quantity
N obeys

N ≤
(
‖UAM1(SA)‖2,∞‖UBM1(SB)‖F ∧ ‖UAM1(SA)‖F‖UBM1(SB)‖2,∞

)(
‖VA‖2,∞‖VB‖F ∧ ‖VA‖F‖VB‖2,∞

)(
‖WA‖2,∞‖WB‖F ∧ ‖WA‖F‖WB‖2,∞

)
.

By symmetry, the above bound continues to hold if permuting the occurrences of U , V , and
W .

Lemma 21 ((?, Lemma 3.24),(Cai et al., 2021a, Lemma 1)) For any fixed X ∈ Rn1×n2×n3,
k = 1, 2, 3, with overwhelming probability, one has∥∥∥Poff-diag

(
p−2Mk(PΩ(X ))Mk(PΩ(X ))>

)
−Mk(X )Mk(X )>

∥∥∥
≤ CM

(
p−1
√

log n‖Mk(X )‖2,∞‖Mk(X )>‖2,∞ +
√
p−1 log n σmax(Mk(X ))‖Mk(X )>‖2,∞

)
+ CM

(
p−1 log n‖X‖∞ +

√
p−1 log n‖Mk(X )>‖2,∞

)2
log n+ ‖Mk(X )‖22,∞,

where CM > 0 is some universal constant.
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C.2.1 Proof of Lemma 18

This lemma is essentially (Yuan and Zhang, 2016, Lemma 5) under the Bernoulli observation
model. Here, we provide a simpler proof based on the matrix Bernstein inequality. Let
E i1,i2,i3 be the tensor with only the (i1, i2, i3)-th entry as 1 and all the other entries as
0, and let δi1,i2,i3 ∼ Bernoulli(p) be an i.i.d. Bernoulli random variable for 1 ≤ ik ≤ nk,
k = 1, 2, 3. Define an operator PT : Rn1×n2×n3 7→ Rn1×n2×n3 as

PT (X ) = (In1 ,V?V
>
? ,W?W

>
? ) ·X + (U?U

>
? ,V?⊥V

>
?⊥,W?W

>
? ) ·X + (U?U

>
? ,V?V

>
? ,W?⊥W

>
?⊥) ·X ,

where V?⊥,W?⊥ denote the orthogonal complements of V?,W?. It is straightforward to
verify that PT (·) defines a projection, and that

XA = (UA,V?,W?) · SA,1 + (U?,VA,W?) · SA,2 + (U?,V?,WA) · SA,3
= PT ((UA,V?,W?) · SA,1) + PT ((U?,VA,W?) · SA,2) + PT ((U?,V?,WA) · SA,3)

= PT (XA) =
∑
i1,i2,i3

〈PT (XA),E i1,i2,i3〉E i1,i2,i3 =
∑
i1,i2,i3

〈XA,PT (E i1,i2,i3)〉E i1,i2,i3 .

A similar expression holds for XB. Hence, we have

∣∣〈(p−1PΩ − I)(XA),XB

〉∣∣ =

∣∣∣∣∣∣
∑
i1,i2,i3

(
p−1δi1,i2,i3 − 1

)
〈XA,PT (E i1,i2,i3)〉 〈XB,PT (E i1,i2,i3)〉

∣∣∣∣∣∣
=

∣∣∣∣∣∣
〈

vec(XA),
∑
i1,i2,i3

(p−1δi1,i2,i3 − 1) vec (PT (E i1,i2,i3)) vec (PT (E i1,i2,i3))> vec(XB)
〉∣∣∣∣∣∣

≤ ‖XA‖F‖XB‖F

∥∥∥∥∥∥
∑
i1,i2,i3

(p−1δi1,i2,i3 − 1) vec (PT (E i1,i2,i3)) vec (PT (E i1,i2,i3))>

∥∥∥∥∥∥ .
Therefore it suffices to bound the last term in the above inequality, which we resort to the
matrix Bernstein inequality: with overwhelming probability, one has∥∥∥∥∥∥
∑
i1,i2,i3

(p−1δi1,i2,i3 − 1) vec (PT (E i1,i2,i3)) vec (PT (E i1,i2,i3))>

∥∥∥∥∥∥ .

(
nµ2r2 log n

pn1n2n3
+

√
nµ2r2 log n

pn1n2n3

)
(55)

.

√
nµ2r2 log n

pn1n2n3
,

where the second line holds as long as pn1n2n3 & nµ2r2 log n. Plugging the above bound
(which will be proved at the end) in the previous one, we immediately arrive at the desired
result:

∣∣〈(p−1PΩ − I)(XA),XB

〉∣∣ .√nµ2r2 log n

pn1n2n3
‖XA‖F‖XB‖F.
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Proof of (55). By standard matrix Bernstein inequality, we have∥∥∥∥∥∥
∑
i1,i2,i3

(p−1δi1,i2,i3 − 1) vec (PT (E i1,i2,i3)) vec (PT (E i1,i2,i3))>

∥∥∥∥∥∥ . L log n+ σ
√

log n,

where

L = max
i1,i2,i3

∥∥∥(p−1δi1,i2,i3 − 1) vec (PT (E i1,i2,i3)) vec (PT (E i1,i2,i3))>
∥∥∥ ,

σ2 =

∥∥∥∥∥∥
∑
i1,i2,i3

E(p−1δi1,i2,i3 − 1)2 vec (PT (E i1,i2,i3)) vec (PT (E i1,i2,i3))> vec (PT (E i1,i2,i3)) vec (PT (E i1,i2,i3))>

∥∥∥∥∥∥ .
• Here, L obeys

L = max
i1,i2,i3

∥∥∥(p−1δi1,i2,i3 − 1) vec (PT (E i1,i2,i3)) vec (PT (E i1,i2,i3))>
∥∥∥ ≤ p−1 max

i1,i2,i3
‖PT (E i1,i2,i3)‖2F ,

where the last inequality uses |(p−1δi1,i2,i3 − 1)| ≤ p−1. To proceed, first notice that the
three terms in PT (E i1,i2,i3) are mutually orthogonal, which allows

‖PT (E i1,i2,i3)‖2F =
∥∥∥(In1 ,V?V

>
? ,W?W

>
? ) · E i1,i2,i3

∥∥∥2

F
+
∥∥∥(U?U

>
? ,V?⊥V

>
?⊥,W?W

>
? ) · E i1,i2,i3

∥∥∥2

F

+
∥∥∥(U?U

>
? ,V?V

>
? ,W?⊥W

>
?⊥) · E i1,i2,i3

∥∥∥2

F
.

Since U?,V?,W? have orthonormal columns, it is straightforward to see∥∥∥(In1 ,V?V
>
? ,W?W

>
? ) · E i1,i2,i3

∥∥∥2

F
= ‖In1(i1, :)‖22

∥∥∥V?(i2, :)V >? ∥∥∥2

2

∥∥∥W?(i3, :)W
>
?

∥∥∥2

2

≤ ‖V?‖22,∞‖W?‖22,∞;∥∥∥(U?U
>
? ,V?⊥V

>
?⊥,W?W

>
? ) · E i1,i2,i3

∥∥∥2

F
=
∥∥∥U?(i1, :)U

>
?

∥∥∥2

2

∥∥∥V?⊥(i2, :)V
>
?⊥

∥∥∥2

2

∥∥∥W?(i3, :)W
>
?

∥∥∥2

2

≤ ‖U?‖22,∞‖W?‖22,∞;∥∥∥(U?U
>
? ,V?V

>
? ,W?⊥W

>
?⊥) · E i1,i2,i3

∥∥∥2

F
=
∥∥∥U?(i1, :)U

>
?

∥∥∥2

2

∥∥∥V?(i2, :)V >? ∥∥∥2

2

∥∥∥W?⊥(i3, :)W
>
?⊥

∥∥∥2

2

≤ ‖U?‖22,∞‖V?‖22,∞.

Finally use the definition of incoherence (cf. Definition 2) to conclude

L ≤ p−1
(
‖V?‖22,∞‖W?‖22,∞ + ‖U?‖22,∞‖W?‖22,∞ + ‖U?‖22,∞‖V?‖22,∞

)
≤ 3nµ2r2

pn1n2n3
.

• In addition, σ2 obeys

σ2 ≤ p−1 max
i1,i2,i3

‖PT (E i1,i2,i3)‖2F

∥∥∥∥∥∥
∑
i1,i2,i3

vec (PT (E i1,i2,i3)) vec (PT (E i1,i2,i3))>

∥∥∥∥∥∥ ≤ 3nµ2r2

pn1n2n3
,
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where we have used the variational representation to conclude∥∥∥∥∥∥
∑
i1,i2,i3

vec (PT (E i1,i2,i3)) vec (PT (E i1,i2,i3))>

∥∥∥∥∥∥ = sup
X̃ :‖X̃‖F≤1

∑
i1,i2,i3

〈X̃ ,PT (E i1,i2,i3)〉2

= sup
X̃ :‖X̃‖F≤1

‖PT (X̃ )‖2F ≤ 1.

Plugging the expressions of L and σ leads to the advertised bound (55).

C.2.2 Proof of Lemma 20

This lemma generalizes (Chen and Li, 2019, Lemma 8) to the tensor setting, which is a
powerful tool in the analysis of matrix completion Chen et al. (2020); Tong et al. (2021a).
We begin by decomposing (UA,VA,WA) · SA into a sum of r2r3 rank-1 tensors:

(UA,VA,WA) · SA =

r2∑
a2=1

r3∑
a3=1

(ua2,a3 ,va2 ,wa3) · 1,

where we denote the column vectors ua2,a3 := [UAM1(SA)](:, (r3 − 1)a2 + a3), va2 :=
VA(:, a2), and wa3 := WA(:, a3) for notational convenience. Similarly, we can decompose
(UB,VB,WB) · SB as

(UB,VB,WB) · SB =

r2∑
b2=1

r3∑
b3=1

(ub2,b3 ,vb2 ,wb3) · 1,

with ub2,b3 , vb2 and wb3 defined analogously. We further denote J ∈ Rn1×n2×n3 as the
tensor with all-one entries, i.e. J (i1, i2, i3) = 1 for all 1 ≤ ik ≤ nk, k = 1, 2, 3. With these
preparation in hand, by the triangle inequality we have∣∣〈(p−1PΩ − I)((UA,VA,WA) · SA), (UB,VB,WB) · SB

〉∣∣
≤

r2∑
a2,b2=1

r3∑
a3,b3=1

∣∣〈(p−1PΩ − I)((ua2,a3 ,va2 ,wa3) · 1), (ub2,b3 ,vb2 ,wb3) · 1
〉∣∣

=

r2∑
a2,b2=1

r3∑
a3,b3=1

∣∣〈(p−1PΩ − I)(J ), (ua2,a3 � ub2,b3 ,va2 � vb2 ,wa3 �wb3) · 1
〉∣∣

≤
r2∑

a2,b2=1

r3∑
a3,b3=1

‖(p−1PΩ − I)(J )‖‖ua2,a3 � ub2,b3‖2‖va2 � vb2‖2‖wa3 �wb3‖2

= ‖(p−1PΩ − I)(J )‖N,

where � denotes the Hadamard (entrywise) product, and

N :=

r2∑
a2,b2=1

r3∑
a3,b3=1

‖ua2,a3 � ub2,b3‖2‖va2 � vb2‖2‖wa3 �wb3‖2.

Therefore, it boils down to controlling ‖(p−1PΩ − I)(J )‖ and N.
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• Regarding ‖(p−1PΩ − I)(J )‖, Lemma 19 tells that, with overwhelming probability, it is
bounded by

‖(p−1PΩ − I)(J )‖ ≤ CY
(
p−1 log3 n+

√
p−1n log5 n

)
,

where we use the fact ‖J ‖∞ = 1 and maxk=1,2,3 ‖Mk(J )>‖2,∞ ≤
√
n.

• Turning to N, applying the Cauchy-Schwarz inequality we have

N ≤

√√√√ r2∑
a2,b2=1

r3∑
a3,b3=1

‖ua2,a3 � ub2,b3‖22

√√√√ r2∑
a2,b2=1

‖va2 � vb2‖22
r3∑

a3,b3=1

‖wa3 �wb3‖22

=

√√√√ n1∑
i1=1

‖UA(i1, :)M1(SA)‖22‖UB(i1, :)M1(SB)‖22√√√√ n2∑
i2=1

‖VA(i2, :)‖22‖VB(i2, :)‖22

√√√√ n3∑
i3=1

‖WA(i3, :)‖22‖WB(i3, :)‖22

≤
(
‖UAM1(SA)‖2,∞‖UBM1(SB)‖F ∧ ‖UAM1(SA)‖F‖UBM1(SB)‖2,∞

)(
‖VA‖2,∞‖VB‖F ∧ ‖VA‖F‖VB‖2,∞

)(
‖WA‖2,∞‖WB‖F ∧ ‖WA‖F‖WB‖2,∞

)
.

The proof is complete by combining the above two bounds.

C.3 Proof of spectral initialization (Lemma 6)

In view of Lemma 14, we start by relating dist(F+,F?) to ‖(U+,V+,W+) · S+ −X ?‖F as

dist(F+,F?) ≤ (
√

2 + 1)3/2 ‖(U+,V+,W+) · S+ −X ?‖F .

With this bound in mind, it suffices to control ‖(U+,V+,W+) · S+ −X ?‖F. To proceed,
define PU := U+U

>
+ as the projection matrix onto the column space of U+, PU⊥ := In1−PU

as its orthogonal complement, and define PV ,PV⊥ ,PW ,PW⊥ analogously. We have the
decomposition

X ? = (PU ,PV ,PW ) ·X ? + (PU⊥ ,PV ,PW ) ·X ? + (In1 ,PV⊥ ,PW ) ·X ? + (In1 , In2 ,PW⊥) ·X ?.

Expand the following squared norm and use that the four terms are mutually orthogonal to
see

‖(U+,V+,W+) · S+ −X ?‖2F =
∥∥(PU ,PV ,PW ) ·(p−1Y)−X ?

∥∥2

F

=
∥∥(PU ,PV ,PW ) ·(p−1Y −X ?)− (PU⊥ ,PV ,PW ) ·X ? − (In1 ,PV⊥ ,PW ) ·X ? − (In1 , In2 ,PW⊥) ·X ?

∥∥2

F

=
∥∥(PU ,PV ,PW ) ·(p−1Y −X ?)

∥∥2

F
+ ‖(PU⊥ ,PV ,PW ) ·X ?‖2F + ‖(In1 ,PV⊥ ,PW ) ·X ?‖2F

+ ‖(In1 , In2 ,PW⊥) ·X ?‖2F
≤
∥∥(PU ,PV ,PW ) ·(p−1Y −X ?)

∥∥2

F
+ ‖PU⊥M1(X ?)‖2F + ‖PV⊥M2(X ?)‖2F + ‖PW⊥M3(X ?)‖2F .

(56)

We next control the terms in (56) one by one.
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Bounding ‖(PU ,PV ,PW ) ·(Y −X ?)‖F. For the first term in (56), since (PU ,PV ,PW ) ·(p−1Y−
X ?) has a multilinear rank of at most r, applying the relation (7) leads to∥∥(PU ,PV ,PW ) ·(p−1Y −X ?)

∥∥
F
≤ r

∥∥(PU ,PV ,PW ) ·(p−1Y −X ?)
∥∥ ≤ r ∥∥(p−1PΩ − I)(X ?)

∥∥ .
Therefore, it comes down to control

∥∥(p−1PΩ − I)(X ?)
∥∥. Lemma 19 tells with overwhelming

probability that∥∥(p−1PΩ − I)(X ?)
∥∥ .

(
p−1 log3 n‖X ?‖∞ +

√
p−1 log5 n max

k=1,2,3
‖Mk(X ?)

>‖2,∞
)

.

µ3/2r3/2 log3 n

p
√
n1n2n3

+

√
nµ2r2 log5 n

pn1n2n3

σmax(X?),

where the second line follows from the following relations in view of the incoherence property
of X ? (cf. Definition 2):

‖X ?‖∞ ≤ σmax(X ?)‖U?‖2,∞‖V?‖2,∞‖W?‖2,∞ ≤ σmax(X ?)

√
µ3r3

n1n2n3
;

‖M1(X ?)
>‖2,∞ ≤ ‖U?M1(S?)‖‖W?‖2,∞‖V?‖2,∞ ≤ σmax(X ?)

√
µ2r2

n2n3
;

‖M2(X ?)
>‖2,∞ ≤ ‖V?M2(S?)‖‖W?‖2,∞‖U?‖2,∞ ≤ σmax(X ?)

√
µ2r2

n1n3
;

‖M3(X ?)
>‖2,∞ ≤ ‖W?M3(S?)‖‖V?‖2,∞‖U?‖2,∞ ≤ σmax(X ?)

√
µ2r2

n1n2
.

(57)

In total, the first term in (56) is bounded by

∥∥(PU ,PV ,PW ) ·(p−1Y −X ?)
∥∥

F
.

µ3/2r3/2 log3 n

p
√
n1n2n3

+

√
nµ2r2 log5 n

pn1n2n3

 rκσmin(X?).

Bounding ‖PU⊥M1(X ?)‖F. For the second term in (56), first bound it by

‖PU⊥M1(X ?)‖F ≤
√
r1

σmin(X ?)

∥∥∥PU⊥M1(X ?)M1(X ?)
>
∥∥∥ ,

where we use the facts that PU⊥M1(X ?) has rank at most r1 and ‖AB‖ ≥ ‖A‖σmin(B).
For notation simplicity, we abbreviate

G := Poff-diag(p−2M1(Y)M1(Y)>), and G? :=M1(X ?)M1(X ?)
>.

Invoke Lemma 21 together with incoherence conditions (57) as well as

‖M1(X ?)‖2,∞ ≤ ‖U?‖2,∞
∥∥∥M1(S?)(W? ⊗ V?)

>
∥∥∥ ≤ σmax(X ?)

√
µr1

n1
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to conclude with overwhelming probability that

‖G−G?‖ .

(
µ3/2r3/2

√
log n

p
√
n1n2n3

+

√
nµ2r2 log n

pn1n2n3
+
µ3r3 log3 n

p2n1n2n3
+
nµ2r2 log2 n

pn1n2n3
+
µr1

n1

)
σ2

max(X ?).

Under the conditions n1 & ε−1
0 µr

3/2
1 κ2 and

pn1n2n3 & ε−1
0

√
n1n2n3µ

3/2r5/2κ2 log3 n+ ε−2
0 nµ2r4κ4 log5 n

for some small constant ε0 > 0, we have ‖G−G?‖ ≤ ε0σ
2
min(X ?), which implies that G is

positive semi-definite, and therefore ‖PU⊥G‖ = σr1+1(G). By the triangle inequality, we
obtain

‖PU⊥G?‖ ≤ ‖PU⊥ (G−G?)‖ + ‖PU⊥G‖ ≤ ‖G−G?‖ + σr1+1 (G)

≤ ‖G−G?‖ + σr1+1 (G?) + ‖G−G?‖ = 2 ‖G−G?‖ ,

where the second line follows from Weyl’s inequality and that G? has rank r1. In total, the
second term of (56) is bounded by

‖PU⊥M1(X ?)‖F ≤
2
√
r1

σmin(X ?)
‖G−G?‖

.

(
µ3/2r2

√
log n

p
√
n1n2n3

+

√
nµ2r3 log n

pn1n2n3
+
µ3r7/2 log3 n

p2n1n2n3
+
nµ2r5/2 log2 n

pn1n2n3
+
µr

3/2
1

n1

)
κ2σmin(X ?).

Completing the proof. The third and fourth terms in (56) can be bounded similarly. In
all, we conclude that

dist(F+,F?) ≤ (
√

2 + 1)3/2 ‖(U+,V+,W+) · S+ −X ?‖F ≤ ε0σmin(X ?).

C.4 Proof of local convergence (Lemma 8)

Define the event E as the intersection of the events that Lemmas 18 and 20 hold, which
happens with overwhelming probability. The rest of the proof is then performed under the
event that E holds.

Given that dist(Ft,F?) ≤ εσmin(X ?), the conclusion ‖(Ut,Vt,Wt) · St−X ?‖F ≤ 3 dist(Ft,F?)
follows from the relation (37) in Lemma 16. As in the proof of Theorem 5, we reuse the
notations in (34) and (43). By the definition of dist(Ft+,F?), where Ft+ is the update before
projection, one has

dist2(Ft+,F?) ≤ ‖(Ut+Qt,1 −U?)Σ?,1‖2F + ‖(Vt+Qt,2 − V?)Σ?,2‖2F + ‖(Wt+Qt,3 −W?)Σ?,3‖2F

+
∥∥∥(Q−1

t,1 ,Q
−1
t,2 ,Q

−1
t,3 ) · St+ − S?

∥∥∥2

F
. (58)

In the sequel, we shall bound each square on the right hand side of equation (58) separately.
After a long journey of computation, the final result is

dist2(Ft+,F?) ≤ (1− η)2
(
‖∆UΣ?,1‖2F + ‖∆V Σ?,2‖2F + ‖∆WΣ?,3‖2F + ‖∆S‖2F

)
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− η(2− 5η) ‖T U + T V + T W ‖2F − η(2− 5η)
(
‖DU‖2F + ‖DV ‖2F + ‖DW ‖2F

)
+ 2η(1− η)C(ε+ δ + δ2) dist2(Ft,F?) + η2C(ε+ δ + δ2) dist2(Ft,F?),

(59)

where C > 1 is some universal constant, and δ is defined as

δ := CT

√
nµ2r2 log n

pn1n2n3
+ CY

(
p−1 log3 n+

√
p−1n log5 n

)√
µ3r4

n1n2n3
C3
Bκ

3. (60)

Under the condition

pn1n2n3 &
√
n1n2n3µ

3/2r2κ3 log3 n+ nµ3r4κ6 log5 n,

δ is a sufficiently small constant. As long as η ≤ 2/5 and ε is small, one has dist(Ft+,F?) ≤
(1 − 0.6η) dist(Ft,F?). Finally Lemma 7 implies dist(Ft+1,F?) ≤ dist(Ft+,F?) ≤ (1 −
0.6η) dist(Ft,F?) and the incoherence condition.

It then boils down to expanding and bounding the four terms in (58). As before, we
omit the control of the terms pertaining to V and W .

C.4.1 Bounding the term related to U

The first term in (58) is related to

(Ut+Qt,1 −U?)Σ?,1 =
(
U − ηM1

(
p−1PΩ((U ,V ,W ) · S −X ?)

)
Ŭ(Ŭ>Ŭ)−1 −U?

)
Σ?,1

= (1− η)∆UΣ?,1 − ηU?(Ŭ − Ŭ?)
>Ŭ(Ŭ>Ŭ)−1Σ?,1

− ηM1

(
(p−1PΩ − I)((U ,V ,W ) · S −X ?)

)
Ŭ(Ŭ>Ŭ)−1Σ?,1.

Take the squared norm of both sides to reach

‖(Ut+Qt,1 −U?)Σ?,1‖2F =
∥∥∥(1− η)∆UΣ?,1 − ηU?(Ŭ − Ŭ?)

>Ŭ(Ŭ>Ŭ)−1Σ?,1

∥∥∥2

F︸ ︷︷ ︸
=:Pm

U

− 2η(1− η)
〈
∆UΣ?,1,M1

(
(p−1PΩ − I)((U ,V ,W ) · S −X ?)

)
Ŭ(Ŭ>Ŭ)−1Σ?,1

〉
︸ ︷︷ ︸

=:Pp,1
U

+ 2η2
〈
U?(Ŭ − Ŭ?)

>Ŭ(Ŭ>Ŭ)−1Σ?,1,M1

(
(p−1PΩ − I)((U ,V ,W ) · S −X ?)

)
Ŭ(Ŭ>Ŭ)−1Σ?,1

〉
︸ ︷︷ ︸

=:Pp,2
U

+ η2
∥∥∥M1

(
(p−1PΩ − I)((U ,V ,W ) · S −X ?)

)
Ŭ(Ŭ>Ŭ)−1Σ?,1

∥∥∥2

F︸ ︷︷ ︸
=:Pp,3

U

.

As before, the main term Pm
U has been handled in the tensor factorization problem in

Section B; see (47) and the bound (45a). Hence we shall focus on the perturbation terms.
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Step 1: bounding Pp,1
U . First, rewrite Pp,1

U as the inner product in the tensor space:

Pp,1
U =

〈(
∆UΣ2

?,1(Ŭ>Ŭ)−1,V ,W
)
· S, (p−1PΩ − I)((U ,V ,W ) · S −X ?)

〉
.

Apply the decomposition

(U ,V ,W ) · S −X ? = (U ,∆V ,W ) · S + (U ,V?,∆W ) · S + (U ,V?,W?) · S − (U?,V?,W?) · S?
= (U ,∆V ,W ) · S + (U ,V?,∆W ) · S + (U ,V?,W?) ·∆S + (∆U ,V?,W?) · S?

(61)

to further expand Pp,1
U as

Pp,1
U =

〈(
∆UΣ2

?,1(Ŭ>Ŭ)−1,V?,W?

)
· S, (p−1PΩ − I) ((U ,V?,W?) ·∆S + (∆U ,V?,W?) · S?)

〉
︸ ︷︷ ︸

=:Pp,1,1
U

+

〈(
∆UΣ2

?,1(Ŭ>Ŭ)−1,∆V ,W
)
· S +

(
∆UΣ2

?,1(Ŭ>Ŭ)−1,V?,∆W

)
· S,

(p−1PΩ − I) ((U ,V?,W?) · S − (U?,V?,W?) · S?)
〉

︸ ︷︷ ︸
=:Pp,1,2

U

+
〈(

∆UΣ2
?,1(Ŭ>Ŭ)−1,V ,W

)
· S, (p−1PΩ − I) ((U ,∆V ,W ) · S + (U ,V?,∆W ) · S)

〉
︸ ︷︷ ︸

=:Pp,1,3
U

.

We shall bound each term in the sequel.

• For the first term Pp,1,1
U , we resort to Lemma 18, which leads to

|Pp,1,1
U | ≤ CT

√
nµ2r2 log n

pn1n2n3

∥∥∥(∆UΣ2
?,1(Ŭ>Ŭ)−1,V?,W?

)
· S
∥∥∥

F
‖(U ,V?,W?) ·∆S + (∆U ,V?,W?) · S?‖F .

Further use (35i) to bound that∥∥∥(∆UΣ2
?,1(Ŭ>Ŭ)−1,V?,W?

)
· S
∥∥∥

F
=
∥∥∥∆UΣ2

?,1(Ŭ>Ŭ)−1M1(S)(W? ⊗ V?)
>
∥∥∥

F

≤ ‖∆UΣ?,1‖F

∥∥∥Σ?,1(Ŭ>Ŭ)−1M1(S)
∥∥∥

≤ ‖∆UΣ?,1‖F(1− ε)−5,

and that

‖(U ,V?,W?) ·∆S‖F ≤ ‖UM1(∆S)‖F ≤ (1 + ε)‖∆S‖F;

‖(∆U ,V?,W?) · S?‖F ≤ ‖∆UΣ?,1‖F.

Combine the preceding bounds to see

|Pp,1,1
U | ≤ CT

√
nµ2r2 log n

pn1n2n3

‖∆UΣ?,1‖F

(1− ε)5
(‖∆UΣ?,1‖F + (1 + ε)‖∆S‖F) .
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• For the second term Pp,1,2
U , our main hammer is Lemma 20, which implies

|Pp,1,2
U | ≤ CY

(
p−1 log3 n+

√
p−1n log5 n

)∥∥∥∆UΣ2
?,1(Ŭ>Ŭ)−1M1(S)

∥∥∥
F(

‖UM1(S)‖2,∞ + ‖U?M1(S?)‖2,∞
)

(‖∆V ‖F‖W ‖F + ‖V?‖F‖∆W ‖F) ‖V?‖2,∞‖W?‖2,∞.

Use results in Lemma 17, together with the bounds

‖∆V ‖F ≤
‖∆V Σ?,2‖F

σmin(Σ?,2)
≤ ‖∆V Σ?,2‖F

σmin(X ?)
; ‖∆W ‖F ≤

‖∆WΣ?,3‖F

σmin(X ?)
;

‖W ‖F ≤
√
r3‖W ‖ ≤

√
r3(1 + ε); ‖V?‖F =

√
r2;

‖U?M1(S?)‖2,∞ ≤ ‖U?‖2,∞‖M1(S?)‖ ≤
√
µr

n1
σmax(X ?); ‖V?‖2,∞ ≤

√
µr

n2
; ‖W?‖2,∞ ≤

√
µr

n3
,

to arrive at the conclusion that

|Pp,1,2
U | ≤ CY

(
p−1 log3 n+

√
p−1n log5 n

)
‖∆UΣ?,1‖F

(1− ε)5

(
(1− ε)−2CB + 1

)√µr

n1
σmax(X ?)(

‖∆V Σ?,2‖F

σmin(X ?)

√
r(1 + ε) +

√
r
‖∆WΣ?,3‖F

σmin(X ?)

)√
µr

n2

√
µr

n3

= CY

(
p−1 log3 n+

√
p−1n log5 n

)√
µ3r4

n1n2n3

(1− ε)−2CB + 1

(1− ε)5
κ

‖∆UΣ?,1‖F ((1 + ε)‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F) .

• Repeat similar arguments, we can obtain the bound on Pp,1,3
U :

|Pp,1,3
U | ≤ CY

(
p−1 log3 n+

√
p−1n log5 n

)∥∥∥∆UΣ2
?,1(Ŭ>Ŭ)−1M1(S)

∥∥∥
F
‖UM1(S)‖2,∞

‖V ‖2,∞‖W ‖2,∞(‖∆V ‖F‖W ‖F + ‖V?‖F‖∆W ‖F)

≤ CY
(
p−1 log3 n+

√
p−1n log5 n

)
‖∆UΣ?,1‖F

(1− ε)5

CB
(1− ε)2

√
µr

n1
σmax(X ?)

CBκ

(1− ε)3

√
µr

n2

CBκ

(1− ε)3

√
µr

n3

(
‖∆V Σ?,2‖F

σmin(X ?)

√
r(1 + ε) +

√
r
‖∆WΣ?,3‖F

σmin(X ?)

)

≤ CY
(
p−1 log3 n+

√
p−1n log5 n

)√
µ3r4

n1n2n3

C3
Bκ

3

(1− ε)13

‖∆UΣ?,1‖F ((1 + ε)‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F) .

In total, we have

|Pp,1
U | ≤ |P

p,1,1
U |+ |Pp,1,2

U |+ |Pp,1,3
U | . δ dist2(Ft,F?),

where we recall the definition of δ in (60).
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Step 2: bounding Pp,2
U . We begin by rewriting Pp,2

U as

Pp,2
U =

〈(
U?(Ŭ − Ŭ?)

>Ŭ(Ŭ>Ŭ)−1Σ2
?,1(Ŭ>Ŭ)−1,V ,W

)
· S, (p−1PΩ − I)((U ,V ,W ) · S −X ?)

〉
.

Compared to Pp,1
U , the only difference is that the leading term ∆UΣ?,1 in the first argument

of the inner product is replaced by U?(Ŭ − Ŭ?)
>Ŭ(Ŭ>Ŭ)−1Σ?,1. Note that∥∥∥U?(Ŭ − Ŭ?)

>Ŭ(Ŭ>Ŭ)−1Σ?,1

∥∥∥
F
≤
∥∥∥Ŭ − Ŭ?

∥∥∥
F

∥∥∥Ŭ(Ŭ>Ŭ)−1Σ?,1

∥∥∥
F

≤
1 + ε+ 1

3ε
2

(1− ε)3
(‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F + ‖∆S‖F) .

Omitting the somewhat tedious details, we can go through the same argument as bounding
Pp,1
U and arrive at

|Pp,2
U | ≤ CT

√
nµ2r2 log n

pn1n2n3

1 + ε+ 1
3ε

2

(1− ε)8
(‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F + ‖∆S‖F) (‖∆UΣ?,1‖F + (1 + ε)‖∆S‖F)

+ CY

(
p−1 log3 n+

√
p−1n log5 n

)√
µ3r4

n1n2n3

(1 + ε+ 1
3ε

2)((1− ε)−2CB + 1)

(1− ε)8
κ

(‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F + ‖∆S‖F) ((1 + ε)‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F)

+ CY

(
p−1 log3 n+

√
p−1n log5 n

)√
µ3r4

n1n2n3

(1 + ε+ 1
3ε

2)C3
Bκ

3

(1− ε)16

(‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F + ‖∆S‖F) ((1 + ε)‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F)

. δ dist2(Ft,F?).

Step 3: bounding Pp,3
U . Use the variational representation of the Frobenius norm to

write √
Pp,3
U =

〈(
ŨΣ?,1(Ŭ>Ŭ)−1,V ,W

)
· S, (p−1PΩ − I)((U ,V ,W ) · S −X ?)

〉
for some Ũ ∈ Rn1×r1 obeying ‖Ũ‖F = 1. Repeat the same argument as bounding Pp,1

U with
proper modifications to yield√

Pp,3
U ≤ CT

√
nµ2r2 log n

pn1n2n3
(1− ε)−5 (‖∆UΣ?,1‖F + (1 + ε)‖∆S‖F)

+ CY

(
p−1 log3 n+

√
p−1n log5 n

)√
µ3r4

n1n2n3

(1− ε)−2CB + 1

(1− ε)5
κ ((1 + ε)‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F)

+ CY

(
p−1 log3 n+

√
p−1n log5 n

)√
µ3r4

n1n2n3

C3
Bκ

3

(1− ε)13
((1 + ε)‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F)

. δ dist(Ft,F?).

Then take the square of both sides to see

Pp,3
U . δ2 dist2(Ft,F?).
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C.4.2 Bounding the term related to S

The last term of (58) is related to

(Q−1
t,1 ,Q

−1
t,2 ,Q

−1
t,3 ) · St+ − S?

= S − η
(

(U>U)−1U>, (V >V )−1V >, (W>W )−1W>
)
· p−1PΩ ((U ,V ,W ) · S −X ?)− S?

= (1− η)∆S − η
(

(U>U)−1U>, (V >V )−1V >, (W>W )−1W>
)
· ((U ,V ,W ) · S? −X ?)

− η
(

(U>U)−1U>, (V >V )−1V >, (W>W )−1W>
)
·(p−1PΩ − I)((U ,V ,W ) · S −X ?).

Expand its squared norm to obtain∥∥∥(Q−1
t,1 ,Q

−1
t,2 ,Q

−1
t,3 ) · St+ − S?

∥∥∥2

F

=
∥∥∥(1− η)∆S − η

(
(U>U)−1U>, (V >V )−1V >, (W>W )−1W>

)
· ((U ,V ,W ) · S? −X ?)

∥∥∥2

F︸ ︷︷ ︸
=:Pm

S

− 2η(1− η)
〈
∆S ,

(
(U>U)−1U>, (V >V )−1V >, (W>W )−1W>

)
·(p−1PΩ − I)((U ,V ,W ) · S −X ?)

〉
︸ ︷︷ ︸

=:Pp,1
S

+ 2η2

〈(
(U>U)−1U>, (V >V )−1V >, (W>W )−1W>

)
· ((U ,V ,W ) · S? −X ?) ,(

(U>U)−1U>, (V >V )−1V >, (W>W )−1W>
)
·(p−1PΩ − I)((U ,V ,W ) · S −X ?

〉
︸ ︷︷ ︸

=:Pp,2
S

+ η2
∥∥∥((U>U)−1U>, (V >V )−1V >, (W>W )−1W>

)
·(p−1PΩ − I)((U ,V ,W ) · S −X ?)

∥∥∥2

F︸ ︷︷ ︸
=:Pp,3

S

.

Recall that the main termPm
S has been controlled in Section B; see (48) and the bound (45d).

We therefore concentrate on the remaining perturbation terms.

Step 1: bounding Pp,1
S . Write Pp,1

S as

Pp,1
S =

〈(
U(U>U)−1,V (V >V )−1,W (W>W )−1

)
·∆S , (p−1PΩ − I)((U ,V ,W ) · S −X ?)

〉
.

Use the decomposition (61) to further obtain

Pp,1
S

=
〈(

U(U>U)−1,V?(V
>V )−1,W?(W

>W )−1
)
·∆S , (p−1PΩ − I) ((U ,V?,W?) ·∆S + (∆U ,V?,W?) · S?)

〉
︸ ︷︷ ︸

=:Pp,1,1
S

+

〈(
U(U>U)−1,∆V (V >V )−1,W (W>W )−1

)
·∆S +

(
U(U>U)−1,V?(V

>V )−1,∆W (W>W )−1
)
·∆S ,

(p−1PΩ − I) ((U ,V?,W?) · S − (U?,V?,W?) · S?)
〉

︸ ︷︷ ︸
=:Pp,1,2

S

59



Tong, Ma, Prater-Bennette, Tripp, Chi

+
〈(

U(U>U)−1,V (V >V )−1,W (W>W )−1
)
·∆S , (p−1PΩ − I) ((U ,∆V ,W ) · S + (U ,V?,∆W ) · S)

〉
︸ ︷︷ ︸

=:Pp,1,3
S

.

We then bound each term in sequel.

• Regarding the first term Pp,1,1
S , we can apply Lemma 18 to see

|Pp,1,1
S | ≤ CT

√
nµ2r2 log n

pn1n2n3

∥∥∥(U(U>U)−1,V?(V
>V )−1,W?(W

>W )−1
)
·∆S

∥∥∥
F

‖(U ,V?,W?) ·∆S + (∆U ,V?,W?) · S?‖F .

In addition, notice that∥∥∥(U(U>U)−1,V?(V
>V )−1,W?(W

>W )−1
)
·∆S

∥∥∥
F

≤
∥∥∥U(U>U)−1

∥∥∥ ∥∥∥(V >V )−1
∥∥∥ ∥∥∥(W>W )−1

∥∥∥ ‖∆S‖F

≤ (1− ε)−5‖∆S‖F,

which further implies

|Pp,1,1
S | ≤ CT

√
nµ2r2 log n

pn1n2n3
(1− ε)−5‖∆S‖F (‖∆UΣ?,1‖F + (1 + ε)‖∆S‖F) .

• Now we turn to the second term Pp,1,2
S , for which Lemma 20 yields

|Pp,1,2
S | ≤ CY

(
p−1 log3 n+

√
p−1n log5 n

)∥∥∥U(U>U)−1M1(∆S)
∥∥∥

F

(
‖UM1(S)‖2,∞ + ‖U?M1(S?)‖2,∞

)
(∥∥∥∆V (V >V )−1

∥∥∥
F

∥∥∥W (W>W )−1
∥∥∥

F
+
∥∥∥V?(V >V )−1

∥∥∥
F

∥∥∥∆W (W>W )−1
∥∥∥

F

)
‖V?‖2,∞‖W?‖2,∞.

The results in Lemma 17 together with the bounds∥∥∥∆V (V >V )−1
∥∥∥

F
≤ ‖∆V ‖F

∥∥∥(V >V )−1
∥∥∥ ≤ (1− ε)−2‖∆V ‖F ≤

‖∆V Σ?,2‖F

(1− ε)2σmin(X ?)
;∥∥∥W (W>W )−1

∥∥∥
F
≤
√
r3

∥∥∥W (W>W )−1
∥∥∥ ≤ √r3(1− ε)−1;∥∥∥V?(V >V )−1

∥∥∥
F
≤ ‖V?‖F

∥∥∥(V >V )−1
∥∥∥ ≤ √r2(1− ε)−2;∥∥∥∆W (W>W )−1

∥∥∥
F
≤ ‖∆W ‖F

∥∥∥(W>W )−1
∥∥∥ ≤ ‖∆W ‖F(1− ε)−2 ≤ ‖∆WΣ?,3‖F

(1− ε)2σmin(X ?)
,

allow us to continue the bound

|Pp,1,2
S | ≤ CY

(
p−1 log3 n+

√
p−1n log5 n

)√
µ3r4

n1n2n3

(1− ε)−2CB + 1

(1− ε)5
κ‖∆S‖F

((1− ε)‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F) .
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• A similar strategy bounds Pp,1,3
S as

|Pp,1,3
S | ≤ CY

(
p−1 log3 n+

√
p−1n log5 n

)∥∥∥U(U>U)−1M1(∆S)
∥∥∥

F
‖UM1(S)‖2,∞∥∥∥V (V >V )−1

∥∥∥
2,∞

∥∥∥W (W>W )−1
∥∥∥

2,∞
(‖∆V ‖F‖W ‖F + ‖V?‖F‖∆W ‖F) .

Further combine (51c) and (35d) to see∥∥∥V (V >V )−1
∥∥∥

2,∞
≤ ‖V ‖2,∞

∥∥∥(V >V )−1
∥∥∥ ≤ (1− ε)−5CB

√
µr

n2
κ;∥∥∥W (W>W )−1

∥∥∥
2,∞
≤ ‖W ‖2,∞

∥∥∥(W>W )−1
∥∥∥ ≤ (1− ε)−5CB

√
µr

n3
κ.

These taken collectively with the results in Lemma 17 yield

|Pp,1,3
S | ≤ CY

(
p−1 log3 n+

√
p−1n log5 n

)√
µ3r4

n1n2n3

C3
Bκ

3

(1− ε)13
‖∆S‖F ((1 + ε)‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F) .

In the end, we conclude that

|Pp,1
S | ≤ |P

p,1,1
S |+ |Pp,1,2

S |+ |Pp,1,3
S | . δ dist2(Ft,F?),

where we recall the definition of δ in (60).

Step 2: bounding Pp,2
S . Write Pp,2

S as

Pp,2
S =

〈(
U(U>U)−2U>,V (V >V )−2V >,W (W>W )−2W>

)
· ((U ,V ,W ) · S? −X ?) ,

(p−1PΩ − I)((U ,V ,W ) · S −X ?)
〉
.

Compared to Pp,1
S , the only difference is that the quantity ∆S in the first argument of the

inner product is replaced by(
(U>U)−1U>, (V >V )−1V >, (W>W )−1W>

)
· ((U ,V ,W ) · S? −X ?) ,

whose Frobenius norm can be bounded by∥∥∥((U>U)−1U>, (V >V )−1V >, (W>W )−1W>
)
· ((U ,V ,W ) · S? −X ?)

∥∥∥
F

≤
∥∥∥U(U>U)−1

∥∥∥
F

∥∥∥V (V >V )−1
∥∥∥

F

∥∥∥W (W>W )−1
∥∥∥

F
‖(U ,V ,W ) · S? −X ?‖F

≤
1 + ε+ 1

3ε
2

(1− ε)3
(‖∆UΣ?,1‖F + ‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F) .

We can then repeat the same argument as bounding Pp,1
S to obtain

|Pp,2
S | . δ dist2(Ft,F?).

For the sake of space, we omit the details.
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Step 3: bounding Pp,3
S . Use the variational representation of the Frobenius norm to

write√
Pp,3
S =

〈(
U(U>U)−1,V (V >V )−1,W (W>W )−1

)
· S̃, (p−1PΩ − I)((U ,V ,W ) · S −X ?)

〉
for some S̃ ∈ Rn1×n2×n3 obeying ‖S̃‖F = 1. Repeating the same argument as bounding
Pp,1
S with proper modifications to yield the bound

Pp,3
S . δ2 dist2(Ft,F?)

then complete the proof.

Appendix D. Proof for Tensor Regression

Before embarking on the proof, we state a useful lemma regarding TRIP (cf. Definition 9).

Lemma 22 ((Han et al., 2020, Lemma E.7)) Suppose that A(·) obeys the 2r-TRIP with
a constant δ2r. Then for all X 1,X 2 ∈ Rn1×n2×n3 of multilinear rank at most r, one has∣∣〈A(X 1),A(X 2)〉 − 〈X 1,X 2〉

∣∣ ≤ δ2r‖X 1‖F‖X 2‖F,

or equivalently, ∣∣〈(A∗A− I)(X 1),X 2〉
∣∣ ≤ δ2r‖X 1‖F‖X 2‖F.

D.1 Proof of local convergence (Lemma 10)

Given that dist(Ft,F?) ≤ εσmin(X ?), the conclusion ‖(Ut,Vt,Wt) · St−X ?‖F ≤ 3 dist(Ft,F?)
directly follows from the relation (37) in Lemma 16. Hence we will focus on controlling
dist(Ft,F?).

As in the proof of Theorem 5, we reuse the notations in (34) and (43), and the definition
of dist(Ft+1,F?) to obtain

dist2(Ft+1,F?) ≤ ‖(Ut+1Qt,1 −U?)Σ?,1‖2F + ‖(Vt+1Qt,2 − V?)Σ?,2‖2F + ‖(Wt+1Qt,3 −W?)Σ?,3‖2F

+
∥∥∥(Q−1

t,1 ,Q
−1
t,2 ,Q

−1
t,3 ) · St+1 − S?

∥∥∥2

F
. (62)

We shall bound each square in the right hand side of the bound (62) separately. The final
result is

dist2(Ft+1,F?) ≤ (1− η)2
(
‖∆UΣ?,1‖2F + ‖∆V Σ?,2‖2F + ‖∆WΣ?,3‖2F + ‖∆S‖2F

)
− η(2− 5η) ‖T U + T V + T W ‖2F − η(2− 5η)

(
‖DU‖2F + ‖DV ‖2F + ‖DW ‖2F

)
+ 2η(1− η)C(ε+ δ2r + δ2

2r) dist2(Ft,F?) + η2C(ε+ δ2r + δ2
2r) dist2(Ft,F?),

(63)

where C > 1 is some universal constant. As long as η ≤ 2/5, and ε, δ2r are sufficiently small
constants, one reaches the desired conclusion dist(Ft+1,F?) ≤ (1− 0.6η) dist(Ft,F?).
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In the following subsections, we provide bounds on the four terms in the right hand side
of (62). In a nutshell, the bounds that are sought after are reminiscent of those established
in (45), with additional perturbation terms introduced due to incomplete measurements,
manifested via the TRIP parameter δ2r. Once established, the claimed bound (63) easily
follows. In light of the symmetry among U ,V , and W , we omit the control of the terms
pertaining to V and W .

D.1.1 Bounding the term pertaining to U

The first term in (62) is given by

(Ut+1Qt,1 −U?)Σ?,1 =
(
U − ηM1 (A∗A((U ,V ,W ) · S −X ?)) Ŭ(Ŭ>Ŭ)−1 −U?

)
Σ?,1

= (1− η)∆UΣ?,1 − ηU?(Ŭ − Ŭ?)
>Ŭ(Ŭ>Ŭ)−1Σ?,1

− ηM1 ((A∗A− I)((U ,V ,W ) · S −X ?)) Ŭ(Ŭ>Ŭ)−1Σ?,1,

where we separate the population term from the perturbation term. Take the squared norm
of both sides to see

‖(Ut+1Qt,1 −U?)Σ?,1‖2F =
∥∥∥(1− η)∆UΣ?,1 − ηU?(Ŭ − Ŭ?)

>Ŭ(Ŭ>Ŭ)−1Σ?,1

∥∥∥2

F︸ ︷︷ ︸
=:Rm

U

− 2η(1− η)
〈
∆UΣ?,1,M1 ((A∗A− I)((U ,V ,W ) · S −X ?)) Ŭ(Ŭ>Ŭ)−1Σ?,1

〉
︸ ︷︷ ︸

=:Rp,1
U

+ 2η2
〈
U?(Ŭ − Ŭ?)

>Ŭ(Ŭ>Ŭ)−1Σ?,1,M1 ((A∗A− I)((U ,V ,W ) · S −X ?)) Ŭ(Ŭ>Ŭ)−1Σ?,1

〉
︸ ︷︷ ︸

=:Rp,2
U

+ η2
∥∥∥M1 ((A∗A− I)((U ,V ,W ) · S −X ?)) Ŭ(Ŭ>Ŭ)−1Σ?,1

∥∥∥2

F︸ ︷︷ ︸
=:Rp,3

U

.

The main term Rm
U has been handled in Section B; see (47) and the bound (45a). In the

sequel, we shall bound the three perturbation terms.

Step 1: bounding Rp,1
U . Use the definition of Ŭ , we can translate the inner product in

the matrix space to that in the tensor space

Rp,1
U =

〈(
∆UΣ2

?,1(Ŭ>Ŭ)−1,V ,W
)
· S, (A∗A− I)((U ,V ,W ) · S −X ?)

〉
=
〈(

∆UΣ2
?,1(Ŭ>Ŭ)−1,V ,W

)
· S, (A∗A− I)((U ,V ,W ) ·∆S)

〉
+
〈(

∆UΣ2
?,1(Ŭ>Ŭ)−1,V ,W

)
· S, (A∗A− I)((∆U ,V ,W ) · S?)

〉
+
〈(

∆UΣ2
?,1(Ŭ>Ŭ)−1,V ,W

)
· S, (A∗A− I)((U?,∆V ,W ) · S?)

〉
+
〈(

∆UΣ2
?,1(Ŭ>Ŭ)−1,V ,W

)
· S, (A∗A− I)((U?,V?,∆W ) · S?)

〉
,
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where the second relation uses the decomposition (40). Apply Lemma 22 to each of the four
terms to obtain

|Rp,1
U | ≤ δ2r

∥∥∥(∆UΣ2
?,1(Ŭ>Ŭ)−1,V ,W

)
· S
∥∥∥

F

(‖(U ,V ,W ) ·∆S)‖F + ‖(∆U ,V ,W ) · S?)‖F + ‖(U?,∆V ,W ) · S?)‖F + ‖(U?,V?,∆W ) · S?)‖F) .

For the prefactor, we have∥∥∥(∆UΣ2
?,1(Ŭ>Ŭ)−1,V ,W

)
· S
∥∥∥

F
=
∥∥∥∆UΣ2

?,1(Ŭ>Ŭ)−1Ŭ>
∥∥∥

F

≤ ‖∆UΣ?,1‖F

∥∥∥Ŭ(Ŭ>Ŭ)−1Σ?,1

∥∥∥
≤ ‖∆UΣ?,1‖F(1− ε)−3,

where the last step arises from Lemma 16. In addition, the same argument as in (36a) yields

‖(U ,V ,W ) ·∆S)‖F + ‖(∆U ,V ,W ) · S?)‖F + ‖(U?,∆V ,W ) · S?)‖F + ‖(U?,V?,∆W ) · S?)‖F

≤ (1 +
3

2
ε+ ε2 +

1

4
ε3) (‖∆UΣ?,1‖F + ‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F + ‖∆S‖F) .

Take the previous two bounds collectively to arrive at

|RU,p1| ≤ δ2r
1 + 3

2ε+ ε2 + 1
4ε

3

(1− ε)3
‖∆UΣ?,1‖F (‖∆UΣ?,1‖F + ‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F + ‖∆S‖F)

. δ2r dist2(Ft,F?),

with the proviso that ε is small enough.

Step 2: bounding Rp,2
U . Rewrite the inner product in the tensor space to see

Rp,2
U =

〈(
U?(Ŭ − Ŭ?)

>Ŭ(Ŭ>Ŭ)−1Σ2
?,1(Ŭ>Ŭ)−1,V ,W

)
· S, (A∗A− I)((U ,V ,W ) · S −X ?)

〉
.

Similar to the control of Rp,1
U , we have

|Rp,2
U | ≤ δ2r

∥∥∥U?(Ŭ − Ŭ?)
>Ŭ(Ŭ>Ŭ)−1Σ2

?,1(Ŭ>Ŭ)−1Ŭ>
∥∥∥

F

(1 +
3

2
ε+ ε2 +

1

4
ε3) (‖∆UΣ?,1‖F + ‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F + ‖∆S‖F) .

For the prefactor, we can use (35f) and (36c) to obtain∥∥∥U?(Ŭ − Ŭ?)
>Ŭ(Ŭ>Ŭ)−1Σ2

?,1(Ŭ>Ŭ)−1Ŭ>
∥∥∥

F
≤ ‖Ŭ − Ŭ?‖F

∥∥∥Ŭ(Ŭ>Ŭ)−1Σ?,1

∥∥∥2

≤
1 + ε+ 1

3ε
2

(1− ε)6
(‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F + ‖∆S‖F) ,

which further implies

|Rp,2
U | ≤ δ2r

(1 + 3
2ε+ ε2 + 1

4ε
3)(1 + ε+ 1

3ε
2)

(1− ε)6
(‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F + ‖∆S‖F)

(‖∆UΣ?,1‖F + ‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F + ‖∆S‖F)

. δ2r dist2(Ft,F?),

as long as ε is sufficiently small.
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Step 3: bounding Rp,3
U . The last perturbation term needs special care. We first use the

variational representation of the Frobenius norm to write√
Rp,3
U =

〈(
ŨΣ?,1(Ŭ>Ŭ)−1,V ,W

)
· S, (A∗A− I)((U ,V ,W ) · S −X ?)

〉
for some Ũ ∈ Rn1×r1 obeying ‖Ũ‖F = 1. Repeat the same argument as used in controlling
Rp,1
U to see√
Rp,3
U ≤ δ2r

∥∥∥ŨΣ?,1(Ŭ>Ŭ)−1Ŭ>
∥∥∥

F
(1 +

3

2
ε+ ε2 +

1

4
ε3) (‖∆UΣ?,1‖F + ‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F + ‖∆S‖F)

≤ δ2r
1 + 3

2ε+ ε2 + 1
4ε

3

(1− ε)3
(‖∆UΣ?,1‖F + ‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F + ‖∆S‖F) ,

where the last line uses the bound (35f) in Lemma 16. Then take the square on both sides
to conclude

Rp,3
U ≤ δ

2
2r

(1 + 3
2ε+ ε2 + 1

4ε
3)2

(1− ε)6
(‖∆UΣ?,1‖F + ‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F + ‖∆S‖F)2

. δ2
2r dist2(Ft,F?)

as long as ε is sufficiently small.

D.1.2 Bounding the term pertaining to S

The last term of (62) can be rewritten as

(Q−1
t,1 ,Q

−1
t,2 ,Q

−1
t,3 ) · St+1 − S?

= S − η
(

(U>U)−1U>, (V >V )−1V >, (W>W )−1W>
)
·A∗A ((U ,V ,W ) · S −X ?)− S?

= (1− η)∆S − η
(

(U>U)−1U>, (V >V )−1V >, (W>W )−1W>
)
· ((U ,V ,W ) · S? −X ?)

− η
(

(U>U)−1U>, (V >V )−1V >, (W>W )−1W>
)
·(A∗A− I)((U ,V ,W ) · S −X ?),

which further gives∥∥∥(Q−1
t,1 ,Q

−1
t,2 ,Q

−1
t,3 ) · St+1 − S?

∥∥∥2

F

=
∥∥∥(1− η)∆S − η

(
(U>U)−1U>, (V >V )−1V >, (W>W )−1W>

)
· ((U ,V ,W ) · S? −X ?)

∥∥∥2

F︸ ︷︷ ︸
=:Rm

S

− 2η(1− η)
〈
∆S ,

(
(U>U)−1U>, (V >V )−1V >, (W>W )−1W>

)
·(A∗A− I)((U ,V ,W ) · S −X ?)

〉
︸ ︷︷ ︸

=:Rp,1
S

+ 2η2

〈(
(U>U)−1U>, (V >V )−1V >, (W>W )−1W>

)
· ((U ,V ,W ) · S? −X ?) ,(

(U>U)−1U>, (V >V )−1V >, (W>W )−1W>
)
·(A∗A− I)((U ,V ,W ) · S −X ?)

〉
︸ ︷︷ ︸

=:Rp,2
S
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+ η2
∥∥∥((U>U)−1U>, (V >V )−1V >, (W>W )−1W>

)
·(A∗A− I)((U ,V ,W ) · S −X ?)

∥∥∥2

F︸ ︷︷ ︸
=:Rp,3

S

.

Note that the main term Rm
S has already been characterized in Section B; see (48) and the

bound (45d). Therefore we concentrate on the remaining perturbation terms.

Step 1: bounding Rp,1
S . Use the property (6d) to write Rp,1

S as

Rp,1
S =

〈(
U(U>U)−1,V (V >V )−1,W (W>W )−1

)
·∆S , (A∗A− I)((U ,V ,W ) · S −X ?)

〉
.

We can use the decomposition (40) and Lemma 22 to derive

|Rp,1
S | ≤ δ2r

∥∥∥(U(U>U)−1,V (V >V )−1,W (W>W )−1
)
·∆S

∥∥∥
F

(1 +
3

2
ε+ ε2 +

1

4
ε3) (‖∆UΣ?,1‖F + ‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F + ‖∆S‖F) .

In addition, Lemma 16 tells us that∥∥∥(U(U>U)−1,V (V >V )−1,W (W>W )−1
)
·∆S

∥∥∥
F

≤
∥∥∥U(U>U)−1

∥∥∥ ∥∥∥V (V >V )−1
∥∥∥ ∥∥∥W (W>W )−1

∥∥∥ ‖∆S‖F ≤ (1− ε)−3‖∆S‖F.

Combine the above two bounds to reach

|Rp,1
S | ≤ δ2r

1 + 3
2ε+ ε2 + 1

4ε
3

(1− ε)3
‖∆S‖F (‖∆UΣ?,1‖F + ‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F + ‖∆S‖F)

. δ2r dist2(Ft,F?)

as long as ε is a sufficiently small constant.

Step 2: bounding Rp,2
S . Similarly, we can bound Rp,2

S by

|Rp,2
S | ≤ δ2r

∥∥∥(U(U>U)−2U>,V (V >V )−2V >,W (W>W )−2W>
)
· ((U ,V ,W ) · S? −X ?)

∥∥∥
F

(1 +
3

2
ε+ ε2 +

1

4
ε3) (‖∆UΣ?,1‖F + ‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F + ‖∆S‖F)

≤ δ2r
(1 + ε+ 1

3ε
2)(1 + 3

2ε+ ε2 + 1
4ε

3)

(1− ε)6
(‖∆UΣ?,1‖F + ‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F)

(‖∆UΣ?,1‖F + ‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F + ‖∆S‖F)

. δ2r dist2(Ft,F?).

Step 3: bounding Rp,3
S . Apply the variational representation of the Frobenius norm to

write√
Rp,3
S =

〈(
U(U>U)−1,V (V >V )−1,W (W>W )−1

)
· S̃, (A∗A− I)((U ,V ,W ) · S −X ?)

〉
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for some S̃ ∈ Rr1×r2×r3 obeying ‖S̃‖F = 1. Repeat the same argument as in bounding Rp,3
U

to see√
Rp,3
S ≤ δ2r

∥∥∥(U(U>U)−1,V (V >V )−1,W (W>W )−1
)
· S̃
∥∥∥

F

(1 +
3

2
ε+ ε2 +

1

4
ε3) (‖∆UΣ?,1‖F + ‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F + ‖∆S‖F)

≤ δ2r
1 + 3

2ε+ ε2 + 1
4ε

3

(1− ε)3
(‖∆UΣ?,1‖F + ‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F + ‖∆S‖F) .

Then take the square on both sides to conclude

Rp,3
S ≤ δ

2
2r

(1 + 3
2ε+ ε2 + 1

4ε
3)2

(1− ε)6
(‖∆UΣ?,1‖F + ‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F + ‖∆S‖F)2

. δ2
2r dist2(Ft,F?).

D.2 Proof of spectral initialization (Lemma 11)

In view of Lemma 14, we can relate dist(F0,F?) to ‖(U0,V0,W0) · S0 −X ?‖F as

dist(F0,F?) ≤ (
√

2 + 1)3/2 ‖(U0,V0,W0) · S0 −X ?‖F .

To proceed, we need to control ‖(U0,V0,W0) · S0 −X ?‖F, where (U0,V0,W0) · S0 is the
output of HOSVD. Similar results have been established in Luo and Zhang (2021); Han et al.
(2020); Zhang et al. (2020a), which involve sophisticated subspace perturbation bounds. For
conciseness and completeness, we provide an alternative proof directly tackling the distance.

Define PU := U0U
>
0 as the projection matrix onto the column space of U0, PU⊥ :=

In1 − PU as the projection onto its orthogonal complement, and define PV ,PV⊥ ,PW ,PW⊥
analogously. Similar to (56), we have the decomposition

‖(U0,V0,W0) · S0 −X ?‖2F
≤ ‖(PU ,PV ,PW ) ·(Y −X ?)‖2F + ‖PU⊥M1(X ?)‖2F + ‖PV⊥M2(X ?)‖2F + ‖PW⊥M3(X ?)‖2F .

(64)

Below we bound the terms on the right hand side of (64) in order.

Bounding ‖(PU ,PV ,PW ) ·(Y −X ?)‖F. For the first term in the upper bound (64), apply
the variational representation of the Frobenius norm to write

‖(PU ,PV ,PW ) ·(Y −X ?)‖F =
〈

(PU ,PV ,PW ) ·(Y −X ?), T̃
〉

=
〈

(A∗A− I)X ?, (PU ,PV ,PW ) · T̃
〉
,

for some T̃ ∈ Rn1×n3×n3 obeying
∥∥T̃ ∥∥

F
= 1, where the last equality follows from (6d).

Under the Gaussian design, we know from (Rauhut et al., 2017, Theorem 2) that A(·) obeys
2r-TRIP with a constant δ2r �

√
nr+r3

m . Therefore we can apply Lemma 22 to obtain

‖(PU ,PV ,PW ) ·(Y −X ?)‖F ≤ δ2r‖X ?‖F

∥∥(PU ,PV ,PW ) · T̃
∥∥

F
≤ δ2r‖X ?‖F

.

√
nr + r3

m
‖X ?‖F ≤

√
nr2 + r4

m
κσmin(X ?).
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Bounding ‖PU⊥M1(X ?)‖F. For the second term in (64), first bound it by

‖PU⊥M1(X ?)‖F ≤
√
r1

σmin(X ?)

∥∥∥PU⊥M1(X ?)M1(X ?)
>
∥∥∥ ,

where we use the facts that PU⊥M1(X ?) has rank at most r1 and ‖AB‖ ≥ ‖A‖σmin(B).
For notation simplicity, we abbreviate

G :=M1(A∗(y))M1(A∗(y))> − ‖y‖
2
2

m
(n2n3 − r1)In1 , and G? :=M1(X ?)M1(X ?)

>.

We claim for the moment that with overwhelming probability that

‖G−G?‖ .
√
n1n2n3 + n log n

m
‖X ?‖2F +

√
n log n

m
‖X ?‖Fσmax(X ?), (65)

whose proof is deferred to Appendix D.2.1. Under the sample size condition

m & ε−1
0

√
n1n2n3r

3/2κ2 + ε−2
0 (nr2κ4 log n+ r4κ2)

for some small constant ε0, we have ‖G − G?‖ ≤ ε0σ
2
min(X ?), which implies that G is

positive semi-definite. Therefore, the top-r1 eigenvectors of G coincide with U0, the top-r1

left singular vectors of M1(A∗(y)), which implies ‖PU⊥G‖ = σr1+1(G). By the triangle
inequality, we obtain

‖PU⊥G?‖ ≤ ‖PU⊥ (G−G?)‖ + ‖PU⊥G‖ ≤ ‖G−G?‖ + σr1+1(G)

≤ ‖G−G?‖ + σr1+1(G?) + ‖G−G?‖ = 2 ‖G−G?‖ ,

where the second line follows from Weyl’s inequality and that G? has rank r1. In total, the
second term of (64) is bounded by

‖PU⊥M1(X ?)‖F ≤
2
√
r1

σmin(X ?)
‖G−G?‖ .

(
(
√
n1n2n3 + n log n)r3/2

m
+

√
nr2 log n

m

)
κ2σmin(X ?).

Completing the proof. The third and fourth terms of (64) can be bounded similarly. In
all, we conclude that

dist(F0,F?) ≤ (
√

2 + 1)3/2 ‖(U0,V0,W0) · S0 −X ?‖F ≤ ε0σmin(X ?)

under the assumed sample size.

D.2.1 Proof of (65)

We start with stating a few useful concentration inequalities.

Lemma 23 Suppose that Ai ∈ Rn1×n2 has i.i.d. N (0, 1/m) entries, and yi = 〈Ai,X〉 for
a fixed X ∈ Rn1×n2, i = 1, . . . ,m. Further suppose that B ∈ Rn1×n2 has i.i.d. N (0, σ2)
entries. Then there exists a universal constant C > 0 such that for any t > 0, the following
concentration inequalities hold:
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1. Gaussian ensemble (Zhang et al., 2020a, Lemma 4):

P

(∥∥∥ m∑
i=1

yiAi −X
∥∥∥ ≥ C‖X‖F

√
n1 + n2

(√
log(n1 + n2) + t

m
+

log(n1 + n2) + t

m

))
≤ exp(−t).

(66)

2. Chi-square upper tail (Laurent and Massart, 2000, Lemma 1):

P
(
‖y‖22 ≥ ‖X‖2F

m+ 2
√
mt+ 2t

m

)
≤ exp(−t). (67)

3. Gaussian covariance (Cai et al., 2020b, Theorem 5):

P
(∥∥∥BB> − E[BB>]

∥∥∥ ≥ Cσ2
(

(
√
n1 +

√
n2 +

√
log(n1 ∧ n2) +

√
t)2 − n2

))
≤ exp(−t).

(68)

We now proceed to prove (65). In what follows, we take t � log n, and assume m & log n
to keep only the dominant terms when invoking the concentration inequalities in Lemma 23.

Let M1(X ?) = U?Σ?,1R
>
? be its rank-r1 SVD, with R? ∈ Rn2n3×r1 containing right

singular vectors. Denote R?⊥ as the orthogonal complement of R?. We have the following
decomposition

M1(A∗(y))M1(A∗(y))> =M1(A∗(y))R?R
>
?M1(A∗(y))> +M1(A∗(y))R?⊥R

>
?⊥M1(A∗(y))>.

By the triangle inequality, we bound

‖G−G?‖ ≤
∥∥∥M1(A∗(y))R?R

>
?M1(A∗(y))> −M1(X ?)M1(X ?)

>
∥∥∥

+

∥∥∥∥M1(A∗(y))R?⊥R
>
?⊥M1(A∗(y))> − ‖y‖

2
2

m
(n2n3 − r1)In1

∥∥∥∥︸ ︷︷ ︸
=:A2

≤ ‖M1(A∗(y))R? −U?Σ?,1‖2︸ ︷︷ ︸
=(A1)2

+2 ‖M1(A∗(y))R? −U?Σ?,1‖︸ ︷︷ ︸
=:A1

σmax(X ?) + A2.

(69)

Here, the second line follows by applying the triangle inequality to the relation

M1(A∗(y))R?R
>
?M1(A∗(y))> −M1(X ?)M1(X ?)

> =M1(A∗(y))R?R
>
?M1(A∗(y))> −U?Σ

2
?,1U

>
?

= (M1(A∗(y))R? −U?Σ?,1) (M1(A∗(y))R? −U?Σ?,1)> + U?Σ?,1 (M1(A∗(y))R? −U?Σ?,1)>

+ (M1(A∗(y))R? −U?Σ?,1) (U?Σ?,1)> .

We proceed to bound the terms in (69) separately.
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• For the first term A1, we can expand

M1(A∗(y))R? =
m∑
i=1

yiM1(Ai)R?,

whereM1(Ai)R? ∈ Rn1×r1 has i.i.d. N (0, 1/m) entries, and

yi = 〈M1(Ai)R?,U?Σ?,1〉 ∼ N (0, ‖X ?‖2F/m).

Apply inequality (66) in Lemma 23 to obtain with overwhelming probability that

A1 =

∥∥∥∥∥
m∑
i=1

yiM1(Ai)R? −U?Σ?,1

∥∥∥∥∥ .

√
n log n

m
‖X ?‖F. (70)

• Regarding the second term A2, one has

M1(A∗(y))R?⊥ =

m∑
i=1

yiM1(Ai)R?⊥.

By construction, yi is independent ofM1(Ai)R?⊥. Therefore, conditioned on y,M1(A∗(y))R?⊥ ∈
Rn1×(n2n3−r1) is a random matrix with i.i.d. N (0, ‖y‖22/m) entries. We can apply inequal-
ity (68) in Lemma 23 to obtain with overwhelming probability that

A2 .
‖y‖22
m

(
(
√
n1 +

√
n2n3 − r1 + c

√
log n)2 − (n2n3 − r1)

)
.
‖y‖22
m

(√
n1n2n3 + n

√
log n

)
.

Inequality (67) in Lemma 23 tells that ‖y‖22 . ‖X ?‖2F with overwhelming probability,
which implies

A2 .
√
n1n2n3 + n

√
log n

m
‖X ?‖2F. (71)

Finally, plug the bounds (70) and (71) into (69) to conclude

‖G−G?‖ .
√
n1n2n3 + n log n

m
‖X ?‖2F +

√
n log n

m
‖X ?‖Fσmax(X ?).
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