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Abstract

Consider a finite sample from an unknown distribution over a countable alphabet.
The occupancy probability (OP) refers to the total probability of symbols that appear
exactly k times in the sample. Estimating the OP is a basic problem in large alphabet
modeling, with a variety of applications in machine learning, statistics and information
theory. The Good-Turing (GT) framework is perhaps the most popular OP estimation
scheme. Classical results show that the GT estimator converges to the OP, for every k
independently. In this work we introduce new exact convergence guarantees for the GT
estimator, based on worst-case mean squared error analysis. Our scheme improves upon
currently known results. Further, we introduce a novel simultaneous convergence rate,
for any desired set of occupancy probabilities. This allows us to quantify the unified
performance of OP estimators, and introduce a novel estimation framework with favorable
convergence guarantees.

Keywords: Good-Turing Estimator, Occupancy Probability, Natural Language Model-
ing, Missing Mass

1. Introduction

Let p be a probability distribution over an alphabet X of size m. Let Xn be a sample of n
independent observations from p. Large alphabet modeling considers the setup where m is
comparable, or even larger, than n. In this regime, more symbols are likely to appear the
same number of times. The occupancy probability (OP) is defined as the total probability of
symbols that appear exactly k times in the sample. Estimating the OP from a given sample
is a fundamental problem in statistics, machine learning and related fields. It is mostly
relevant in the context of large alphabet modeling. For example, a reasonable estimator shall
assign the same probability to symbols that appear the same number of times. Therefore,
estimating the total mass of those symbols is of high interest in modeling p. OP estimation
is extensively studied in a variety of disciplines, including language modeling (Chen and
Goodman, 1999; Drukh and Mansour, 2005), authorship attribution (Efron and Thisted,
1976; Thisted and Efron, 1987; Zhang and Huang, 2007), ecology (Good and Toulmin, 1956;
Chao, 1981), genomics (Mao and Lindsay, 2002), information theory (Orlitsky et al., 2004c)
and computer science (Zhang, 2005).

A naive scheme for OP estimation is based on the maximum likelihood (ML) principle.
That is, the kth OP is assigned a probability proportional to number of symbols with
k appearances in the sample. While this approach works well for frequent symbols, it
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dramatically fails in the presence of rare symbols. For example, a ML estimator would assign
zero probability to symbols that do not appear in the samples. A variety of alternatives
methods have been suggested over the years. Perhaps the first major contribution is due
to Laplace, who addressed the problem by adding a single count to all the symbols in
the alphabet (including unobserved symbols). Then, the OP estimator is simply the ML
estimator of the modified sample. This scheme is known as the rule of succession. The work
of Laplace was studied and generalized by many researchers and practitioners (see Section 2
for a detailed discussion). Many years after Laplace, a significant milestone was established
in the work of Good and Turing (Good, 1953). The Good-Turing (GT) framework suggests
that the kth OP is assigned a probability proportional to the number of symbols with
k+ 1 appearance in the sample. This (somewhat unintuitive) approach introduced a major
improvement compared to known estimators at the time. Its favorable performance and
practical appeal have motivated a large body of research over the years, as discussed in
detail in Section 2. To this day, Good-Turing estimators are the most commonly used
methods in most practical setups (Orlitsky and Suresh, 2015).

In this work we study the convergence rate of the GT estimator to the occupancy proba-
bilities. We present a new perspective to the problem and introduce improved performance
guarantees. Our analysis focuses on the worst-case mean square error (MSE). Specifically,
we bound from above the MSE of the GT estimator for any possible probability distribu-
tion over X , and apply Markov’s inequality to obtain the desired convergence rate. We
show that with high probability, the GT estimator convergence to the kth OP in a rate of
O(1/

√
n), for a fixed k and unbounded m. Further, we study the case where m is bounded,

and introduce improved convergence guarantees for this setup. Next, we introduce conver-
gence guarantees for the case where k grows with n. Here, we show that the convergence
rate is O(

4√
k/
√
n). Our bounds improve upon currently known results. Importantly, we

also provide the exact convergence coefficients. Further, we study the convergence rate of
the ML estimator and compare it to GT for different k and n. Consequently, we derive a
hybrid estimator, based on GT (for small k’s) and ML (for large k’s). Our proposed hybrid

estimator attains a convergence rate of O(n−2/
√

5) for every k. This result again improves
upon currently known hybrid estimators. Finally, we utilize our MSE framework and intro-
duce a novel convergence rate for all k’s, simultaneously. This allows us to characterize the
performance of the studied estimators in modeling the complete (unknown) distribution.

This manuscript is an extended version of our preliminary work, presented in (Painsky,
2021). In (Painsky, 2021) we introduced initial results on the refined convergence rates
of the GT estimator, for some of the setups mentioned above. We also presented a basic
scheme for a simultaneous convergence rate. Here we significantly extend the scope. This
includes the following contributions:

• A detailed derivation of the GT convergence rate for fixed and large k.

• An analysis of the GT convergence rate for a bounded alphabet size m.

• A study of a hybrid estimator, and its favorable convergence guarantees.

• Improved simultaneous convergence rate of an OP estimator, based on GT and ML
estimators.
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• An extensive empirical study which demonstrates the performance of the proposed
estimator, compared to currently known schemes.

The rest of the manuscript is organized as follows. In Section 2 we review previous results
on OP estimation and the Good-Turing framework. In Section 3 we formally state our
problem. Throughout Section 4 we derive convergence rates for the GT estimator in three
different setups. First, we focus on the case where k is fixed and m is unbounded (Subsection
4.1). Then, we study the setup where m is bounded and k is still fixed (Subsection 4.2).
Next, we consider the case where k varies and grows with n (Subsection 4.3). In Section
5 we study the ML estimator, and compare it to GT in different setups. We introduce
our proposed hybrid estimator in Section 6. Next, we present simultaneous convergence
guarantees in Section 7. Finally, in Section 8 we compare our suggested framework with
currently known estimators in a series of synthetic and real-world experiments. We conclude
with a discussion in Section 9.

2. Previous Work

Let Xn , {X1, . . . , Xn} be n independent samples from an unknown distribution p over a
countable alphabet X of size m. We assume that the alphabet size is unknown and may
even be unbounded. Let Nx(Xn) be the number of appearances of the symbol x ∈ X in
Xn. Let

Φk(X
n) =

∑
u∈X

1(Nu(Xn) = k) (1)

be the number of symbols that appear k times in Xn, for 0 ≤ k ≤ n, where 1(·) is
the indicator function. For example, for X = {a, b, c, n} and Xn = {b, a, n, a, n, a}, we
have Φk = 1 for k = 0, , , , 3. We denote the collection {Φk(X

n)}nk=0 as the frequency of
frequencies (FoF’s). Given Xn, the occupancy probability (OP) is defined as the total
probability of symbols that appear k times in the sample,

Mk(X
n) ,

∑
u∈X

p(u)1(Nu(Xn) = k) (2)

for 0 ≤ k ≤ n. The OP is also referred to as urn scheme (Decrouez et al., 2018), k-hitting
mass (Drukh and Mansour, 2005) and k-th combined probability mass (Chandra et al.,
2019). It is important to emphasize that in most OP studies, the alphabet size is assumed
to be unknown, while in others it is considered known. We provide examples of two setups
later in this section.

OP estimation has been extensively studied over the years. The first contribution to
the problem is most likely due to Laplace (1825). In his work, Laplace suggested adding
a single count to every symbol in the alphabet. Then, the estimate of the OP’s is simply
the empirical distribution of the modified sample. The Laplace estimator was later gen-
eralized to a family of add-constant estimators. An add-c estimator assigns to a symbol
that appeared t times a probability proportional to t+ c, where c is a pre-defined constant.
Specifically, the add-c estimator is defined as

M̂AC
k (Xn) =

(k + c)Φk(X
n)

n+ cm
, (3)
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where c = 1 corresponds to the Laplace estimator. Add-constant estimators hold many
desirable properties, mostly in terms of their simplicity and interpretability (for example,
(Krichevsky and Trofimov, 1981)). Unfortunately, when the alphabet size m is large com-
pared to the sample size n, add-constant estimators perform quite poorly (Orlitsky et al.,
2003). Additional caveats of add-c estimators were discussed by Gale and Church (1994)

Many years after Laplace, I.J. Good and A.M. Turing achieved a significant milestone
in OP estimation while trying to break the Enigma Cipher during World War II (Orlitsky
et al., 2003). The idea behind their work is surprisingly simple. Instead of using Φk(X

n)
as a statistic for the kth OP, they suggest using Φk+1(Xn), the number of symbols with a
k + 1 appearances in the sample. Specifically, the Good-Turing estimator satisfies

M̂GT
k (Xn) =

(k + 1)Φk+1(Xn)

n
. (4)

It is important to emphasize that while add-constant estimators depend on the alphabet
size m, the Good-Turing estimator does not assume any knowledge of m, which makes it
more robust. Furthermore, although OP estimation is properly defined for both known or
unknown alphabet size, most methods focus on the latter.

One of the first analytical contributions to the GT framework is due to McAllester and
Schapire (2000), who studied the convergence properties of the GT estimator. In their work,
they showed that with high probability,

|M̂GT
k (Xn)−Mk(X

n)| = O

(
log n√
n

)
(5)

for small k, while for larger k,

|M̂GT
k (Xn)−Mk(X

n)| = O

(
k√
n

)
. (6)

This result demonstrated, perhaps for the first time, the reason GT performs so well in
OP estimation and large alphabet modeling. Notice that (5) and (6) may also be viewed
as confidence intervals for the OP’s. The work of McAllester and Schapire inspired many
studies of the GT framework and the properties of occupancy probabilities. One notable
example is due to Drukh and Mansour (2005), who improved (6), showing that with high
probability,

|M̂GT
k (Xn)−Mk(X

n)| = O

(
4√
k√
n

+
k

n

)
. (7)

In addition, Drukh and Mansour (2005) introduced a lower bound for OP estimation, show-
ing that any estimator based on an independent sample satisfies

|M̂k(X
n)−Mk(X

n)| = Ω

(
4√
k√
n

)
. (8)

The Good-Turing framework was later considered by Gale and Sampson (1995), who
introduced the popular smooth Good-Turing. This framework suggests a smoothing mech-
anism to the GT estimator such that
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M̂SGT
k (Xn) =

(k + 1)S (Φk+1(Xn))

n
. (9)

where S (Φk(X
n)) is a smoothed version of Φk(X

n). Specifically, smoothing is obtained by
applying simple linear regression between log Φk(X

n) and log k. Gale and Sampson (1995)
justified the proposed estimator by noticing the erratic behavior of Φk(X

n) as k increases.
Further, Gale and Sampson (1995) observed that Φk(X

n) is typically zero for many larger
values of k. Therefore, an additional modification is applied to overcome this caveat (Gale
and Sampson, 1995; Church and Gale, 1991). The smooth GT estimator is a widely used
scheme for OP and large alphabet estimation. Unfortunately, it is difficult to analyze and is
mostly explained by heuristic justifications and numerical experimentation (Nadas, 1991).

Additional properties of the occupancy probabilities and Good-Turing related estimators
were subject to numerous recent studies. We list the more relevant results for our work. In
an early work, Karlin (1967) studied the asymptotic behavior of the frequency of frequencies
(1), which he denoted as the occupancy counts. This work inspired the study of different
attributes of (1) and (2). Decrouez et al. (2018) studied the statistical properties of the OP’s,
focusing on the expected values of Φk(X

n) and Mk(X
n). Ben-Hamou et al. (2017) derived

Bernstein-type concentration inequalities for Φk(X
n) and used them to derive confidence

intervals for M0(Xn). Chandra et al. (2019) studied tail bounds and confidence intervals
for M0(Xn), and derived a convergence rate for the GT estimator under a Poisson sampling
regime (that is, where the number of samples n is drawn from a Poisson distribution).
Ohannessian and Dahleh (2012) studied the multiplicative consistency of the GT estimator,
MGT
k (Xn)/Mk(X

n). They showed that the GT estimator is not universally consistent
in this sense, but only enjoys consistency guarantees under regularly varying heavy tails
distributions. The bias of the GT estimator was also considered in several key contributions.
In an earlier work, Robbins (1955) proposed a variant of the GT estimator and studied its
mean and variance. Later, Juang and Lo (1994) showed that the bias of GT is of order of
1/n, and proposed an alternative estimator that reduces the bias to O(1/n2). More recently,
McAllester and Schapire (2000) showed that the bias of GT is in fact bounded from above
by (k + 1)/(n− k).

An important special case of OP estimation is the missing mass problem, which refers
to the case where k = 0. In words, the missing mass is the total probability of symbols that
do not appear in the sample. Here too, the Good-Turing estimator is perhaps the most
popular estimation scheme. A large body of work focuses on the Good-Turing framework in
the context of missing mass estimation. For example, Rajaraman et al. (2017) and Acharya
et al. (2018) studied the mean square error of the GT framework for the missing mass
problem. Alternatively, Mossel and Ohannessian (2019); Ohannessian and Dahleh (2012);
Grabchak and Zhang (2017); Battiston et al. (2020) focused on missing mass estimation
under a multiplicative loss. Gao et al. (2013) studied the missing mass asymptotic normality
and large deviations. Berend and Kontorovich (2013) studied the concentration of the
missing mass. Skorski (2021) derived an upper bound on the variance of the missing mass,
that holds for every sample and alphabet size. Budianu and Tong (2004) studied the large
deviation of the GT estimator, as they considered an estimate for the number of operating
sensors in a wireless sensor network. Cohen et al. (2022) studied the missing mass problem
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from Lehmann unbiasedness perspective, and derived a Cramér-Rao type lower bound for
the MSE of the missing mass. Lijoi et al. (2007), Favaro et al. (2012) and Favaro et al. (2016)
focused on the missing mass problem from a Baysian perspective. Recently, Painsky (2022)
introduced a novel missing mass estimation scheme which generalizes GT and considers
additional FoF’s (specifically, both Φ1(Xn) and Φ2(Xn)). The Generalized GT estimator
holds a closed form expression, and was shown to attain improved performance guarantees,
both in terms of MSE and convergence rates.

It is important to mention additional large alphabet modeling problems, which are
closely related to OP and missing mass estimation. Given a sample Xn, Fisher et al. (1943)
considered the problem of estimating Ub(X

n), the number of unseen symbols that would
be observed, if b additional samples were collected. It can be shown that this problem is
equivalent to missing mass estimation for b = 1, and alphabet size estimation for b → ∞.
(Orlitsky et al., 2016). Inspired by the Good-Turing framework, Good and Toulmin (1956)
introduced their approach to the problem, which utilizes a linear combination of the FoF’s
to estimate Ub(X

n). Their work was studied and generalized by others, including Efron and
Thisted (1976); Orlitsky et al. (2016).

Modeling and estimation of large alphabet problems is not limited to the Good-Turing
framework. In a recent line of work, Orlitsky et al. (2004b) introduced the concept of
profile maximum likelihood (PML). The profile of a sample Xn is simply the collection of
FoF’s, Φ(Xn) = Φ0(xn),Φ1(Xn), . . . ,Φn(Xn), and the PML framework seeks a probability
distribution p which maximizes the likelihood of the observed FoF’s. Specifically,

p̂pml = arg max
p

∑
yn:Φ(yn)=Φ(Xn)

p(yn). (10)

The profile maximum likelihood principle was extensively studied and showed to posses a
number of useful attributes, such as existence over finite discrete domains, majorization
by empirical distributions, consistency for distribution estimation under both sorted and
unsorted l1 distances, and competitiveness to other profile-based estimators (see Hao and
Orlitsky (2019) and references therein). It was further applied to a variety of large alphabet
estimation problems including OP estimation, probability estimation, alphabet size estima-
tion and others (Hao and Orlitsky, 2019). It is important to emphasize that PML is also
related to the Good-Turing estimator, as discussed in (Orlitsky et al., 2004c). Unfortunately,
the PML estimator is computationally challenging to derive and implement (Orlitsky et al.,
2004b,a). Several efficient approximations have been recently suggested (Pavlichin et al.,
2019; Anari et al., 2020), mostly focusing on reducing the exponential number of elements
considered in the summation above (10).

3. Problem Statement

Given a distribution p, the l22 risk of an OP estimator is defined as

Rn
(
M̂k, p

)
, EXn∼p

(
M̂k(X

n)−Mk(X
n)
)2
. (11)
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Throughout this work we refer to (11) as the risk or the MSE of the estimator M̂k(X
n),

interchangeably. Let P be a given set of distributions. Then, the worst-case risk over P is

Rn(M̂k,P) , sup
p∈P

Rn(M̂k, p). (12)

Let K be a collection of OP’s indices, K ⊆ {0, . . . , n}. Define the additive risk over K as

Rn
(
M̂k, p,K

)
,
∑
k∈K

Rn(M̂k, p), (13)

and the worst-case additive risk over P is defined as

Rn(M̂k,P,K) , sup
p∈P

Rn
(
M̂k, p,K

)
. (14)

In this work we focus on two sets of probability distributions P. Let ∆m be the set of all
distributions of an alphabet size m, while ∆ be the set of all distributions over any countable
alphabet X (that is, m → ∞). The worst-case framework seeks the most conservative
performance guarantees, as it controls the maximal risk in the set. This makes it a robust
approach that does not depend on additional modeling assumptions. For this reason, the
worst-case framework is a highly popular approach in large alphabet modeling (Krichevsky
and Trofimov, 1981; Orlitsky and Suresh, 2015; Rajaraman et al., 2017; Acharya et al.,
2018). The worst-case risk may also be used to derive a convergence rate for M̂k(X

n). For
example, by Markov inequality we have that for every p ∈ P,

P
(
|M̂k(X

n)−Mk(X
n)| ≥ a

)
≤
Rn
(
M̂k, p

)
a2

≤ Rn(M̂k,P)

a2
,

where the last inequality follows (12). Setting a confidence level of δ = Rn(M̂k,P)/a2, we
have that with probability of at least 1− δ,

|M̂k(X
n)−Mk(X

n)| ≤

√
Rn(M̂k,P)

δ
, (15)

for every p ∈ P. Plugging P = ∆m (alternatively, P = ∆), we obtain a convergence rate
that holds for every p ∈ ∆m (alternatively, p ∈ ∆). Notice that this is also the (marginal)
confidence interval for Mk(X

n), in a confidence level of δ over the sample Xn.
Next, consider a collection K = {k1, . . . , kκ} with a cardinality |K| = κ. Define

W (M̂) =
[
|M̂k1(Xn)−Mk1(Xn)|, .., |M̂kκ(Xn)−Mkκ(Xn)|

]T
.

Then, Markov inequality suggests

P
(
W (M̂)TW (M̂) ≥ a

)
≤ 1

a

∑
k∈K

Rn(M̂k, p) ≤
1

a
Rn(M̂k,P,K).

Setting δ = Rn(M̂k,P,K)/a we obtain an c-sphere confidence region of a radius

r =

√
Rn(M̂k,P,K)

δ
(16)
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for the collection K. As above, the obtained confidence region is also the simultaneous rate
of convergence of a set of estimators, {M̂k}k∈K to the corresponding collection of OP’s.
Alternatively, we may consider a more conservative approach,

P

(
∪k∈K

{
|M̂k(X

n)−Mk(X
n)| ≥ a

})
≤∑

k∈K
P
(
|M̂k(X

n)−Mk(X
n)| ≥ a

)
≤ 1

a2

∑
k∈K

Rn(M̂k, p) =
1

a2
Rn(M̂k,P,K),

where the first inequality is due to the union bound. As above, setting δ = Rn(M̂k,P,K)/a2

we obtain a confidence interval which controls the probability that all OP estimators are
simultaneously close to the desired (and unknown) OP’s.

In the following sections we study (11) - (14) in a variety of setups and introduce new
convergence guarantees for different estimators of the occupancy probabilities. We begin
with an analysis of the worst-case risk (12) for the GT estimator, M̂GT

k (Xn).

4. The MSE of the Good-Turing Estimator

The squared error of the GT estimator satisfies(
M̂GT
k (Xn)−Mk(X

n)

)2

=

(∑
u∈X

k + 1

n
1(Nu(Xn) = k + 1)− p(u)1(Nu(Xn) = k)

)
·(∑

v∈X

k + 1

n
1(Nv(X

n) = k + 1)− p(v)1(Nv(X
n) = k)

)
=

(
k + 1

n

)2 ∑
u,v∈X

1(Nu(Xn) = k + 1)1(Nv(X
n) = k + 1)−

2(k + 1)

n

∑
u,v∈X

p(u)1(Nu(Xn) = k)1(Nv(X
n) = k + 1)+

∑
u,v∈X

p(u)p(v)1(Nu(Xn) = k)1(Nv(X
n) = k).

Therefore, its risk is given by

Rn
(
M̂GT
k , p

)
=

1

n2

∑
u,v∈X

(k + 1)2Pn(k + 1, k + 1)+ (17)

2(k + 1)np(u)Pn(k, k + 1) + n2p(u)p(v)Pn(k, k).

where Pn(i, j) = EXn∼p (1(Nu(Xn) = i)1(Nv(X
n) = j)) and

Pn(i, j) =


(
n
i j

)
pi(u)pj(v)(1− p(u)− p(v))n−i−j u 6= v, i+ j ≤ n(

n
i

)
pi(u)(1− p(u))n−i u = v, i = j

0 o.w.
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Define P (u, v) = pk+1(u)pk+1(v)(1− p(u)− p(v))n−2k−2. Plugging the above to (17) yields

Rn
(
M̂GT
k , p

)
= (18)

1

n2

(
n

k k

)∑
u6=v

P (u, v)

(
2k(2k + 1)− n− 4nk(p(u) + p(v)) + n2(p(u) + p(v))2

)
+

(
n

k

)∑
u

pk+2(u)(1− p(u))n−k +

(
k + 1

n

)2( n

k + 1

)∑
u

pk+1(u)(1− p(u))n−k−1

for 2k < n. We discuss larger value of k later in Section 4.3. Let us now distinguish between
different cases. We begin with the fixed k and unbounded m setup.

4.1 Fixed k Analysis

Rajaraman et al. (2017) studied the MSE of the GT estimator for k = 0, under an un-
bounded alphabet size m. Here, we extend their derivation for any fixed k ≥ 0 and obtain
the following theorem.

Theorem 1 For a fixed k ≥ 0 and an unbounded alphabet size m, the MSE of the Good-
Turing estimator satisfies

Rn
(
M̂GT
k , p

)
=

−(k + 1)2

n(n− 2k)(n− 2k − 1)
E
(
Φ2
k+1(Xn)

)
+(

k + 1

n

)2

E (Φk+1(Xn)) +
(k + 1)(k + 2)

(n− k)(n− k − 1)
E (Φk+2(Xn)) + o

(
1

n

)
. (19)

The proof of Theorem 1 closely follows the analysis of Rajaraman et al. (2017), and is
provided in Appendix A. We would now like to bound (19) from above, for every possible
p ∈ ∆. For this purpose, we introduce the following propositions.

Proposition 2 Let p be a probability distribution over a countable alphabet X . Let ψ :
[0, 1]2 → R. Then, ∑

u,v∈X , u 6=v
p(u)p(v)ψ(p(u), p(v)) ≤ max

q1,q2∈∆2

ψ(q1, q2).

where ∆2 = {q1, q2 | 0 ≤ q1, q2 ≤ 1, q1 + q2 ≤ 1}.

Proposition 3 Let p be a probability distribution over a countable alphabet X . Let φ :
[0, 1]→ R. Then, ∑

u∈X
p(u)φ(p(u)) ≤ max

q∈[0,1]
φ(q).

The proofs of Propositions 2 and 3 are provided in Appendix B. Going back to (19), we
define

fn,k(p) , E (Φk(X
n)) =

(
n

k

)∑
u

pk(u)(1− p(u))n−k.

9
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Further, notice that

−EXn∼p
(
Φ2
k+1(Xn)

)
≤ −E2

Xn∼p (Φk+1(Xn)) .

Therefore,

Rn
(
M̂GT
k , p

)
≤ −(k + 1)2

n(n− 2k)(n− 2k − 1)
f2
n,k+1(p)+ (20)

(k + 1)2

n2
fn,k+1(p) +

(k + 1)(k + 2)

(n− k)(n− k − 1)
fn,k+2(p) + o

(
1

n

)
.

Applying Proposition 3 to fn,k+1(p), we obtain

fn,k+1(p) ≤
(

n

k + 1

)
max
q∈[0,1]

qk(1− q)n−k−1 =

(
n− 1

k

)
Bin

(
k + 1;n,

k

n− 1

)
, fmaxn,k+1 (21)

for k ≥ 1, where Bin(k;n, q) is a Binomial distribution with parameters n and q. Let
us now study (20). We notice that the first two terms are quadratic (and concave) in
fn,k+1(p). Therefore, their maximum is obtained either on the local optimum, f∗n,k+1 =
(n− 2k)(n− 2k − 1)/2n, or on the boundary of the set, fmaxn,k+1. Further, the third term in
(20) may also be bounded from above by (21). This leads to the following theorem.

Theorem 4 For a fixed k ≥ 1 and an unbounded alphabet size m, the MSE of Good-Turing
estimator satisfies the following:

• If f∗n,k+1 ≤ fmaxn,k+1 then,

Rn(M̂GT
k ,∆) ≤(n− 2k)(n− 2k − 1)(k + 1)2

4n3
+ (22)

(k + 2)(n− 1)

(n− k − 1)2
Bin

(
k + 2;n,

k + 1

n− 1

)
+ o

(
1

n

)
.

• otherwise,

Rn(M̂GT
k ,∆) ≤−(k + 1)2(n− 1)2

k2n(n− 2k)2
Bin2

(
k + 1;n,

k

n− 1

)
+ (23)(

k + 1

n

)2(n− 1

k

)
Bin

(
k + 1;n,

k

n− 1

)
+

(k + 2)(n− 1)

(n− k − 1)2
Bin

(
k + 2;n,

k + 1

n− 1

)
+ o

(
1

n

)
.

It is well-known that a Binomial distribution Bin(k;n, q) converges to a Poisson distribution
Pois(k;λ = nq) in cases where n grows and nq is fixed, or at least q tends to zero. Specifi-
cally, Prokhorov (1953) showed that |Bin(k;n, q)− Pois(k;nq)| ≤ cq for a fixed constant c.

10
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We apply Prokhorov result to Theorem 4 and replace the Binomial terms with a Poisson
distribution. Further we notice that as n grows, f∗n,k+1 > fmaxn,k+1. Therefore, in this setup

Rn(M̂GT
k ,∆) ≤−(k + 1)2(n− 1)2

k2n(n− 2k)2

(
kn
n−1

)2k+2
exp

(
−2kn
n−1

)
((k + 1)!)2 + (24)

(
k + 1

n

)2(n− 1

k

) ( kn
n−1

)k+1
exp

(
− kn
n−1

)
(k + 1)!

+

(k + 2)(n− 1)

(n− k − 1)2

(
(k+1)n
n−1

)k+2
exp

(
− (k+1)n

n−1

)
(k + 2)!

+ o

(
1

n

)
.

Finally, we apply Sterling bounds,
√

2πkk+1/2 exp (−k) ≤ k! ≤ kk+1/2 exp (−k + 1) and
conclude with Theorem 5.

Theorem 5 For a fixed k ≥ 1 and n >> k, the MSE of the Good-Turing estimator satisfies

Rn(M̂GT
k ,∆) ≤ g(k)

n
+ o

(
1

n

)
(25)

where

g(k) =− 1

k + 1

(
k

k + 1

)2k

+
e√
2π

(√
k + 1

(
k

k + 1

)k
+
√
k + 2

(
k + 1

k + 2

)k+2)
. (26)

For example, g(k) = 1.198, 1.455, 1.665, 1.849, 2.015, 2.169, 2.312 for k = 1, . . . , 7, respec-
tively. Applying (25) to (15), we obtain a convergence rate of order O (1/

√
n) for a fixed k,

which improves upon (5).

4.2 Bounded Alphabet Size Analysis

The analysis above focuses on the case where the alphabet size is unbounded. Let us
now study the bounded alphabet size regime. In (20) we introduce an upper bound for
Rn(M̂GT

k , p) which is polynomial in fn,k(p). Then, we bound fn,k(p) from above, for every
p ∈ ∆ (see (21)). Here, we assume that the alphabet size m is bounded and p ∈ ∆m. This
allows us to derive a tighter upper bound for fn,k(p).

We begin our analysis by noticing that (1 − t)n ≤ e−nt for every t ∈ R and n ∈ R+

(Mitrinovic and Vasic, 1970). Therefore,

fn,k(p) =

(
n

k

)∑
u

pk(u)(1− p(u))n−k ≤
(
n

k

)∑
u

pk(u) exp(−(n− k)p(u)).

Define

fmaxn,k,m = max
p∈∆m

(
n

k

)∑
u

pk(u) exp(−(n− k)p(u)).

In (Painsky, 2022), we study the properties of
∑

u p
r(u) exp(−np(u)) for a given alphabet

sizem. Specifically, Theorem 3 in (Painsky, 2022) shows that maxp∈∆m

∑
u p

r(u) exp(−np(u))

11
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depends on no more then four free parameters, for every n, r and m. This means we may
the evaluate fmaxn,k,m at a relatively low computational cost, even when the dimension of the
problem increases. Applying the above to (20) we bound the different terms, similarly to
Section 4.1. Specifically, the last term satisfies

(k + 1)(k + 2)

(n− k)(n− k − 1)
fn,k+2(p) ≤ (k + 2)(n− 1)

(n− k)(n− k − 1)
fmaxn,k+2,m, (27)

while the first two terms of are quadratic (and concave) in fn,k+1(p). Therefore, their
maximum is obtained either on the local optimum, f∗n,k+1 = (n − 2k)(n − 2k − 1)/2n, or
on the boundary of fn,k+1(p) (similarly to Section 4.1). Therefore, as in Theorem 4, we
conclude that

• If f∗n,k+1 ≤ fmaxn,k+1,m then,

R(M̂GT
k ,∆m) ≤(n− 2k)(n− 2k − 1)(k + 1)2

4n3
+

(k + 2)(k + 1)

(n− k)(n− k − 1)
fmaxn,k+2,m + o

(
1

n

)
• else

R(M̂GT
k ,∆m) ≤ −(k + 1)2

n(n− 2k)(n− 2k − 1)

(
fmaxn,k+1,m

)2
+(

k + 1

n

)2

fmaxn,k+1,m +
(k + 2)(k + 1)

(n− k)(n− k − 1)
fmaxn,k+2,m + o

(
1

n

)
.

Figure 1 illustrates the obtained bounds for different proportions of m/n. Specifically,
each curve refers to a different k value, where the lower curve is k = 1 and the upper
curve is k = 7. We normalize the bounds by n to emphasize the difference from the
unbounded alphabet size regime (see Theorem 5). First, we notice that for sufficiently
large m/n, the curves converge to g(k). However, for smaller values of m/n we observe
a significant improvement, compared to the unbounded m setup. This result is not quite
surprising. The unbounded alphabet setup is oblivious to the alphabet size, and holds for
every m (specifically, for every p ∈ ∆). Here, we assume that the alphabet size is restricted,
and apply this knowledge to narrow the class of distributions we control. Naturally, the
difference between the two schemes becomes more evident for smaller m.

A natural question that may follow considers the worst-case distribution, for which the
proposed bound is attained. That is, the probability distribution which attainsR(M̂GT

k ,∆m).
Unfortunately, our derivation considers both fmaxn,k+1,m and fmaxn,k+2,m, where each term is a
maximization objective, obtained for a different distribution. However, we do observe that
for larger alphabet sizes, both terms obtain their maxima with uniform distributions of dif-
ferent alphabet sizes (both smaller than m). This emphasizes the unique role of the uniform
distribution in OP estimation worst-case analysis, as demonstrated in (Rajaraman et al.,
2017; Acharya et al., 2018; Painsky, 2022) for the missing mass problem, k = 0.

4.3 Large k Analysis

We now focus on the most general setup, and study the case where m,n and k hold no
restrictions. Specifically, we assume that m is unbounded and k is not fixed, and may grow

12



Convergence Guarantees for the Good-Turing Estimator

Figure 1: MSE bounds for the GT estimators, for a bounded alphabet size m. The lower
curve is k = 1 while the upper curve corresponds to k = 7

with n. First, we consider the case where 2k < n. Here, the MSE of the GT estimator
satisfies (18). Define

ρ(q1, q2) = qk1q
k
2 (1− q1 − q2)n−2k−2

(
2k(2k + 1)− n− 4kn(q1 + q2) + n2(q1 + q2)2

)
(28)

η(q) = qk(1− q)n−k−1
(
(n− k)(k + 1) + n2q(1− q)

)
.

Applying Propositions 2 and 3 to (18), we obtain

Rn(M̂GT
k ,∆) ≤ 1

n2

(
n

k k

)
max

q1,q2∈∆2

ρ(q1, q2) +
1

n2

(
n

k

)
max
q∈[0,1]

η(q). (29)

Simple calculus (see Appendix C) shows that the first term in (29) depends on a single
variable. Namely, maxq1,q2∈∆2 ρ(q1, q2) = maxq1∈[0,1/2] ρ1(q1) where ρ1(q1) = ρ(q1, q1). Let
us characterize the maxima of ρ1(q1) and η(q). We begin with ρ1(q1).

ρ1(q1) = q2k
1 (1− 2q1)n−2k−2

(
(2nq1 − 2k)2 + 2k − n

)
≤ q2k

1 (1− 2q1)n−2k−2(2nq1 − 2k)2,

where the last inequality is due to 2k < n. Taking the derivative of this upper bound, we
obtain two candidates for a global maximum,

q∗1 =
k(n− 1)

n2
+

1

2n
±
√

(n− 2k)(n− 2k + 4kn)

2n2
. (30)

For the simplicity of notation, we refer to q∗1 as the single maximizer of ρ1(q1), provided that
q∗1 ∈ [0, 1/2]. In practice, we examine both candidates and choose the maximizer among
them. Further, we have

max
q∈[0,1]

η(q) ≤ max
t1∈[0,1]

η1(t1) + max
t2∈[0,1]

η2(t2) (31)

13
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where

η1(t1) = (n− k)(k + 1)tk1(1− t1)n−k−1 (32)

η2(t2) = n2tk+1
2 (1− t2)n−k.

It is immediate to see that for k > 0, we have t∗1 = k/(n− 1) and t∗2 = (k + 1)/(n+ 1). No-
tice that for sufficiently large n, the two maximizers are approximately equivalent. Putting
together the above, we obtain

Rn(M̂GT
k ,∆) ≤ 1

n2

(
n

k k

)
(q∗1)2k(1− 2q∗1)n−2k−2(2nq∗1 − 2k)2+ (33)

1

n2

(
n

k

)
(n− k)(k + 1)(t∗1)k(1− t∗1)n−k−1 +

(
n

k

)
(t∗2)k+1(1− t∗2)n−k =

1

n2

(
2k

k

)(
2nq∗1 − 2k

1− 2q∗1

)2(1

2

)2k

Bin(2k;n, 2q∗1)+

(n− k)(k + 1)

n2(1− t∗1)
Bin(k;n, t∗1) + t∗2Bin(k;n, t∗2).

We now bound from above the Binomial terms using Robbin’s version of Sterling’s bound
(Robbins, 1955). We show in Appendix D that

Bin(k;n, q) ≤ 1√
2πk(1− k/n)

exp (−nDKL (k/n||q)) (34)

where DKL is the Kullback-Leibler divergence. Further, by Sterling’s bound, we have that(
2k
k

)
≤ e√

2π
22k√
k

. Putting together the above, we conclude with the following:

Theorem 6 For 0 < 2k < n, the MSE of the Good-Turing Estimator satisfies

Rn(M̂GT
k ,∆) ≤(q∗1 − k/n)2/(q∗1 − 1/2)2√

8π3e−2k2(1− 2k/n)
exp (−nDKL(2k/n||2q∗1)) + (35)

(1− k/n)(k/n+ 1/n)

(1− t∗1)
√

2πk(1− k/n)
exp (−nDKL(k/n||t∗1)) +

t∗2√
2πk(1− k/n)

exp (−nDKL(k/n||t∗2)) .

Finally, for 2k > n, the first term in (18) equals zero, and the corresponding first term of
the MSE bound (35) eliminates. However, this is a less typical setup for the GT estimator
(as we later show). The analysis above introduces an upper bound for the MSE of the GT
estimator, for different k and n. Interestingly, the obtained bound (35) strongly depends on
the KL divergences between q∗1, t∗1, t∗2 and the proportion k/n. It is important to emphasize
that a similar derivation also holds for the fixed k regime, discussed in Section 4.1. However,
it results in a looser bound.

Let us further study (35). First, we have that exp (−nDKL(p||q)) ≤ exp
(
−n(p− q)2

)
,

following Painsky and Wornell (2018, 2019). This allows us to quantify the order of the
exponential terms and show that they are all O(1). Next, we apply q∗1,t∗1 and t∗2 to (35) and
obtain the following corollary.

14
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Corollary 7 For 0 < 2k < n, the MSE of the Good-Turing estimator satisfies

Rn(M̂GT
k ,∆) ≤

√
2

π

( √
k

n
√

1− k/n

)
+O

(
1√
kn

)
(36)

Importantly, we notice that this bound is O(
√
k/n), which implies a convergence rate of

O(
4√
k/
√
n) for the GT estimator. This result improves upon currently known convergence

guarantees (6), (7), and attains Drukh and Mansour (2005) lower bound (8).

5. The MSE of the ML Estimator

To further evaluate our proposed bounds, we study the convergence rate of the maximum
likelihood estimator, M̂ML

k = kΦk(X
n)/n. Here, we only focus on the case where m holds

no restrictions and k is relatively large, as discussed by Drukh and Mansour (2005) and
Orlitsky and Suresh (2015). First, for 2k ≤ n, we have

Rn
(
M̂ML
k , p

)
=

(
n

k k

)∑
u6=v

(
p(u)− k

n

)(
p(v)− k

n

)
pk(u)pk(v)(1− p(u)− p(v))n−2k+

(
n

k

)∑
u

(
p(u)− k

n

)2

pk(u)(1− p(u))n−k. (37)

Applying Propositions 2 and 3 to the above yields

R∗n(M̂ML
k ) ≤

(
n

k k

)
max

q1,q2∈∆2

ψ(q1, q2) +

(
n

k

)
max
q∈[0,1]

Φ(q)

where

ψ(q1, q2) =

(
q1 −

k

n

)(
q2 −

k

n

)
(q1q2)k−1(1− q1 − q2)n−2k

Φ(q) =

(
q − k

n

)2

qk−1(1− q)n−k.

As in Section 4.3, simple calculus shows that maxq1,q2∈∆2 ψ(q1, q2) = maxq2∈[0,1/2] ψ2(q2)
where ψ2(q2) = ψ(q2, q2) (Appendix E). In this case, for k > 1,

q∗2 =
k

n
− k

n2
±

√
k
(
1 + k

n2 − 2k
n

)
n

(38)

q∗ =
k

n

(
2n− 1

2n+ 2

)
+

1

2n+ 2
±

√(
1 + k

n

)2
+ 8k

(
1− k

n

)
2n+ 2

.

For the simplicity of notation, we refer to q∗2 and q∗ and as the maximizers of ψ2(q2) and
Φ(q), provided that q∗2 ∈ [0, 1/2] and q∗ ∈ [0, 1]. Putting together the above, we obtain

Rn(M̂ML
k ,∆) ≤

(
2k

k

)(
1− k/n

q∗2

)2(1

2

)2k

Bin(2k;n, 2q∗2) +

(
q∗ − k

n

)2( 1

q∗

)
Bin(k;n, q∗).

Finally, we bound from above the Binomial terms (similarly to (35)) and obtain the following
theorem.
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Theorem 8 For 1 < 2k ≤ n, the MSE of the ML estimator satisfies

Rn(M̂ML
k ,∆) ≤ (1− (k/n)/q∗2)2√

8π3e−2k2(1− 2k/n)
exp (−nDKL (2k/n||2q∗2)) + (39)

(q∗ − k/n)2 /q∗√
2πk(1− k/n)

exp (−nDKL (k/n||q∗)) .

Here again, for 2k > n, the first term in (37) equals zero, and the corresponding first term
of (39) eliminates. Similarly to the GT analysis (Corollary 7), it can be shown that the
exponential terms in (39) are O(1), the quadratic terms are O(k/n2) and q∗1, q

∗
2 are both

O(k/n). Then, the ML estimator satisfies

Rn(M̂ML
k ,∆) = O

(
1

k2
+

1

n
√
k

)
(40)

for 2k ≤ n and Rn(M̂ML
k ,∆) = O

(
1/n
√
k
)

for 2k > n.

Figure 2 compares the MSE bounds of the GT and ML estimators, for k = 0.005n
and an unbounded alphabet size m. As we can see, for smaller values of n (and k), the
GT estimator demonstrates lower worst-case MSE. However, as n grows, the ML estimator
outperforms GT. This behavior is not surprising; it is well-known that the GT estimator is
superior to the ML only is cases where the number of samples is relatively small. In fact,
most practical probability estimators are hybrid implementations of GT (for smaller k)
and ML (for larger k) (Drukh and Mansour, 2005; Orlitsky and Suresh, 2015). Finally, we
observe that as n increases, our proposed GT bound converges to zero (as shown in (36)).
This significantly improves upon currently known convergence guarantees in this setup (7).

Figure 2: MSE bounds for ML and GT estimators, for k = 0.005n

6. The Hybrid Estimator

In the previous sections we show that the GT estimator enjoys favorable performance guar-
antees for relatively small k. On the other hand, the ML estimator becomes a favorable
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choice as k increases. We now introduce a hybrid GT-ML estimator, which benefits from
both worlds. We focus on the general case where the alphabet size holds no restrictions.
We begin our analysis with the case where 2k < n. Let 0 < r ≤ 1. Define

M̂hyb
k (Xn) =

{
M̂GT
k (Xn) k ≤ nr

M̂ML
k (Xn) k > nr

(41)

We now seek the exact value of r which minimizes the worst-case MSE, for every k.
For k ≤ nr we have

Rn(M̂hyb
k ,∆) = Rn(M̂GT

k ,∆) = O

(√
k

n

)
= O

(
nr/2−1

)
(42)

where the second equality follows from Corollary 7.
For k > nr we have

Rn(M̂hyb
k ,∆) = Rn(M̂ML

k ,∆) = O

(
1

k2
+

1

n
√
k

)
= O

(
n−2r + n−r/2−1

)
(43)

where the second equality follows from (40). Let us first assume that 2r < r/2 + 1. Then,
the second term of the ML bound is dominated by the first term and

Rn(M̂hyb
k ,∆) =

{
O(nr/2−1) k ≤ nr

O(n−2r) k > nr
(44)

We seek a value of r which minimizes Rn(M̂hyb
k ,∆) for every k. Therefore, we require that

r/2 − 1 = −2r. This leads to r = 2/5 and Rn(M̂hyb
k ,∆) = O(n−4/5). Notice that the

obtained value of r also satisfies 2r < r/2 + 1, as desired.
Second, assume that 2r ≥ r/2 + 1, which means that the first term of the ML bound is

dominated by the second term. We have that

Rn(M̂hyb
k ,∆) =

{
O
(
nr/2−1

)
k ≤ nr

O
(
n−r/2−1

)
k > nr

(45)

Here, we cannot attain equality among the different cases of k. Therefore Rn(M̂hyb
k ,∆) =

O(nr/2−1) = O(n−2/3), for every k < n/2, where the second equality follows from 2r ≥
r/2 + 1. Putting together the above, we conclude that r = 2/5 obtains tighter performance

guarantees, leading to Rn(M̂hyb
k ,∆) = O(n−4/5), for every k < n/2.

Finally, we study the case where k ≥ n/2, for r = 2/5. First, we have thatRn(M̂hyb
k ,∆) =

Rn(M̂ML
k ,∆) for n/2 > n2/5 (or equivalently, n > 3). This leads to Rn(M̂hyb

k ,∆) =
O(n−r/2−1) = O(n−6/5) = O(n−4/5), which means that our results hold for every k. Theo-
rem 9 summarizes the convergence guarantees of our proposed hybrid estimator.

Theorem 9 For every k ≥ 0, the hybrid OP estimator (45), with r = 2/5, satisfies

Rn(M̂hyb
k ,∆) = O

(
n−4/5

)
. (46)

Applied to (15), we obtain a convergence rate of O(n−2/
√

5). In their work, Drukh and
Mansour (2005) introduced a similar hybrid estimator. They showed it attains a convergence
rate of O(n−2/5) for every k. Our proposed estimator improves upon this convergence rate.
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7. Simultaneous Convergence Rates

In the previous sections we derive confidence guarantees for MGT
k (Xn) and MML

k (Xn),
independently for every k. Let us now introduce a simultaneous framework, where we
study the convergence rate for multiple k’s concurrently.

Let K be a collection of OP’s indices, K ⊆ {0, . . . , n}, as defined in Section 3. As shown
in the previous sections, the GT estimator is a favorable choice for relatively small k, while
the ML estimator performs better for larger k. Therefore, we define KGT and KML, such
that KGT ∪ KML = K and KGT ∩ KML = ∅. In words, given a collection K we define a
subset of OP’s that are estimated by GT, and a subset of OP’s that are estimated by ML.
In (18) and (37) we derive the risks of the GT and ML estimators, respectively, for every
k < n/2. Therefore, the additive risk (13) is given by∑
k∈K

Rn(M̂k, p) =
∑

k∈KGT
Rn(M̂GT

k , p) +
∑

k∈KML
Rn(M̂ML

k , p) = (47)

∑
k∈KGT

1

n2

(
n

k k

)∑
u6=v

P (u, v)
(
2k(2k + 1)− n− 4k(p(u) + p(v)) + n2(p(u) + p(v))2

)
+

∑
k∈KML

(
n

k k

)∑
u6=v

(
p(u)− k

n

)(
p(v)− k

n

)
pk(u)pk(v)(1− p(u)− p(v))n−2k+

∑
k∈KGT

(
(k + 1)2

n2

(
n

k + 1

)∑
u

pk+1(u)(1− p(u))n−k−1 +

(
n

k

)∑
u

pk+2(u)(1− p(u))n−k

)
+

∑
k∈KML

(
n

k

)∑
u

(
p(u)− k

n

)2

pk(u)(1− p(u))n−k,

where every k ∈ K that is not greater than 2n. Let us study the expression above. We
begin with the first two summations in (47). In Appendix F we show that∑
k∈KGT

1

n2

(
n

k k

)∑
u6=v

P (u, v)
(
2k(2k + 1)− n− 4k(p(u) + p(v)) + n2(p(u) + p(v))2

)
+ (48)

∑
k∈KML

(
n

k k

)∑
u6=v

(
p(u)− k

n

)(
p(v)− k

n

)
pk(u)pk(v)(1− p(u)− p(v))n−2k ≤

max
q1,q2∈∆2

( ∑
k∈KGT

1

n2

(
n

k k

)
qk1q

k
2 (1− q1 − q2)n−2k−2(n(q1 + q2)− 2k)2+

∑
k∈KML

(
n

k k

)(
q1 −

k

n

)(
q2 −

k

n

)
qk−1

1 qk−1
2 (1− q1 − q2)n−2k

)
,

for every p ∈ ∆. Similarly to our analysis in the previous sections, Proposition 10, whose
proof is provided in Appendix G, shows that the maximization above can be solved over a
single parameter.

Proposition 10

max
q1,q2∈∆2

ω(q1, q2) = max
q∈[0,1/2]

ω1(q1) (49)
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where

ω(q1, q2) =
∑

k∈KGT

1

n2

(
n

k k

)
qk1q

k
2 (1− q1 − q2)n−2k−2(n(q1 + q2)− 2k)2+ (50)

∑
k∈KML

(
n

k k

)(
q1 −

k

n

)(
q2 −

k

n

)
qk−1

1 qk−1
2 (1− q1 − q2)n−2k

and ω1(q1) = ω(q1, q1).

Plugging Proposition 10 to (48), we show that the first two summations in (47) are bounded
from above by

max
q∈[0,1/2]

∑
k∈KGT

1

n2

(
n

k k

)
q2k(1− 2q)n−2k−2(2nq − 2k)2+ (51)

∑
k∈KML

(
n

k k

)(
q − k

n

)2

q2k−2(1− 2q)n−2k =

max
q∈[0,1/2]

∑
k∈KGT

(
2k

k

)(
1

2

)2k (q − k/n
q − 1/2

)2

Bin(2k;n, 2q)+

∑
k∈KML

(
2k

k

)(
1

2

)2k (
1− k/n

q

)2

Bin(2k;n, 2q) ≤

max
q∈[0,1/2]

∑
k∈KGT

(
q − k/n
q − 1/2

)2 1√
8π3e−2k2(1− 2k/n)

exp(−nDKL(2k/n||2q))+

∑
k∈KML

(
1− k/n

q

)2 1√
8π3e−2k2(1− 2k/n)

exp(−nDKL(2k/n||2q))

where the last inequality follows from (34) and
(

2k
k

)
≤ e√

2π
22k√
k

. We now proceed to the last

two summations in (47). Here, we have that

∑
k∈KGT

(
(k + 1)2

n2

(
n

k + 1

)∑
u

pk+1(u)(1− p(u))n−k−1 +

(
n

k

)∑
u

pk+2(u)(1− p(u))n−k

)
+

∑
k∈KML

(
n

k

)∑
u

(
p(u)− k

n

)2

pk(u)(1− p(u))n−k ≤

max
q∈[0,1]

∑
k∈KGT

(
(k + 1)2

n2

(
n− k
k + 1

)
1

1− q
+ q

)
1√

2πk(1− k/n)
exp(−nDKL(k/n||q))+

∑
k∈KML

(
q − k

n

)2

q−1 1√
2πk(1− k/n)

exp(−nDKL(k/n||q)),
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for every p ∈ ∆ , where the inequality follows from Proposition 2 and (34). The complete
details are provided in Appendix H. To conclude, for k < n/2 we have∑

k∈K
Rn(M̂k, p) ≤ (52)

max
q∈[0,1/2]

∑
k∈KGT

(
q − k/n
q − 1/2

)2 1√
8π3e−2k2(1− 2k/n)

exp(−nDKL(2k/n||2q))+

∑
k∈KML

(
1− k/n

q

)2 1√
8π3e−2k2(1− 2k/n)

exp(−nDKL(2k/n||2q))+

max
t∈[0,1]

∑
k∈KGT

(
(k + 1)2

n2

(
n− k
k + 1

)
1

1− t
+ t

)
1√

2πk(1− k/n)
exp(−nDKL(k/n||t))+

∑
k∈KML

(
t− k

n

)2

t−1 1√
2πk(1− k/n)

exp(−nDKL(k/n||t)),

for every p ∈ ∆. Let us now consider the case where K also consists of indices that are
greater than n/2. Define K = KGT ∪ KML

1 ∪ KML
2 , such that KGT is the collection of all

k ∈ K for which we apply the GT estimator, KML
1 is the collection of all k ∈ K and k ≤ n/2,

for which we apply the ML estimator, and KML
2 is the collection of k ∈ K and k > n/2, for

which we apply the ML estimator. As before, the three sets are mutually disjoint. Following
(37) for k > n/2, the ML satisfies

Rn(M̂k, p) =

(
n

k

)∑
u

(
p(u)− k

n

)2

pk(u)(1− p(u))n−k. (53)

Therefore, for every K ⊆ {0, . . . , n}, we have that∑
k∈K

Rn(M̂k, p) = (54)∑
k∈KGT

Rn(M̂GT
k , p) +

∑
k∈KML

1

Rn(M̂ML
k , p) +

∑
k∈KML

2

Rn(M̂ML
k , p) ≤

max
q∈[0,1/2]

∑
k∈KGT

(
q − k/n
q − 1/2

)2 1√
8π3e−2k2(1− 2k/n)

exp(−nDKL(2k/n||2q))+

∑
k∈KML

1

(
1− k/n

q

)2 1√
8π3e−2k2(1− 2k/n)

exp(−nDKL(2k/n||2q))+

max
t∈[0,1]

∑
k∈KGT

(
(k + 1)2

n2

(
n− k
k + 1

)
1

1− t
+ t

)
1√

2πk(1− k/n)
exp(−nDKL(k/n||t))+

∑
k∈KML

1 ∪KML
2

(
t− k

n

)2

t−1 1√
2πk(1− k/n)

exp(−nDKL(k/n||t)),

for every p ∈ ∆. Notice that (54) may be numerically evaluated quite efficiently, as it only
depends on two parameters, q and t.
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The obtained additive risk bound is defined for a given decomposition K = KGT ∪
KML

1 ∪KML
2 . We now seek the best decomposition, which minimizes (54). As demonstrated

in the previous sections, the GT estimator is a favorable choice for relatively small values of
k, while the ML estimator demonstrates improved performance guarantees as k increases.
Therefore, we propose a threshold k∗ < n/2, such that k ∈ KGT for all and k ≤ k∗. In
words, for a given collection of indices K, we set a threshold k∗ < n/2 and split K into three
disjoint sets, KGT for k ≤ k∗, KML

1 for k∗ < k ≤ n/2 and KML
2 for k > n/2. We seek the

optimal k∗ ∈ {0, . . . , n/2} that minimizes the MSE bound (54).

We now demonstrate our suggested bound, for K = {0, · · · , n}, as n increases. For every
value of n we apply our proposed algorithm and find the optimal k∗n. We compare our result
to a marginal bound, which seeks the maximal MSE for every k independently,

k∗n∑
k=0

Rn(M̂GT
k ,∆) +

n∑
k=k∗n

Rn(M̂ML
k ,∆). (55)

Figure 3 demonstrates the results we achieve. The right chart compares the MSE of the
simultaneous bound (54) with the marginal bound (55). As we can see, the proposed
simultaneous bound demonstrates a significant improvement. The left chart in Figure 3
illustrates k∗n as n grows. Here, we observe that the optimal threshold grows quite slowly
with n. Interestingly, for n = 20, 000 samples, the obtained threshold is only less than 20.

Figure 3: Simultaneous MSE bound. Right: MSE bound for the simultaneous and marginal
analysis. Left: the optimal threshold between GT and ML estimators in the
simultaneous scheme

8. Experiments

We now illustrate the performance of our proposed estimation schemes. First, we study three
example distributions, which are common benchmarks for probability estimation and related
problems (Orlitsky and Suresh, 2015). The Zipf’s law distribution is a typical benchmark
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in large alphabet probability estimation; it is a commonly used heavy-tailed distribution,
mostly for modeling natural (real-world) quantities in physical and social sciences, linguis-
tics, economics and others fields (Saichev et al., 2009). The Zipf’s law distribution follows
p(u; s,m) = u−s/

∑m
v=1 v

−s where m is the alphabet size and s is a skewness parameter.
Additional example distributions are the uniform, p(u) = 1/m, and the step distribution,
p(u) ∝ 1(u ≤ m/2) + 1/4 · 1(u > m/2). In each experiment we draw n samples, and com-
pare the occupancy probabilities Mk(X

n) with their corresponding estimators, for different
values of k. Figure 4 demonstrates the results we achieve. The upper row corresponds to
the Zipf’s Law distribution (with s = 1.01), the middle row is the uniform distribution and
the lower row is the step distribution. The alphabet size is set to m = 10, 000 in all the
setups. Each plot in figure 4 corresponds to a different k value, as we focus on the MSE. To
attain an averaged error, we repeat each experiment 1000 times, and average the squared
error. We study a collection of estimation schemes. Specifically, the GT estimator (4), the
ML, Laplace (3), the smooth GT estimator (9) and the PML estimator (10). Notice that
the PML estimator is implemented by an approximate scheme (Pavlichin et al., 2019), due
to the high complexity of the problem (see Section 2 for details). The schemes above are
compared to the proposed hybrid GT-ML, as introduced in Section 6. We observe that not
all estimators are competitive for every k and n. Hence, non-competitive estimators are
omitted from Figure 4 for brevity.

Figure 4: MSE of OP estimation in three synthetic experiments
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We begin with the Zipf’s Law distribution, as we examine K = 0. Here, the GT
estimator is a preferable choice, compared to alternative methods. Notice that for K = 0,
the hybrid estimator is equivalent to GT for every n (and henceforth not presented in the
plot). As we proceed to K = 1 (the middle plot of the upper row) we observe a similar
behavior, where now the ML estimator is omitted from the plot (noncompetitive). Finally,
we study a greater value of k = 10. Here, the PML and the ML estimators show improved
performance for every n. On the other hand, for k = 10 the hybrid estimator equals
to ML for n < 317, and to the GT estimator otherwise. Next, we examine the uniform
distribution for k = 0. Here, we observe that only the GT and the PML estimators are
competitive, where GT outperforms PML quite significantly. Notice that for a uniform
distribution, the missing mass, M0(Xn), is typically quite larger than in the heavy-tailed
Zipf’s Law distribution. Therefore, estimators which tend to underestimate M0(Xn) (that
is, ML, Laplace and even the smooth GT) under-perform. As we proceed to k = 1, we
observe a similar behavior where now the smooth GT and Laplace are more competitive,
but still outperformed by GT and the PML. Finally, we examine k = 4 (larger values of
k are very sparse in the uniform distribution setup). Here, the ML and the PML behave
quite similarly, and are outperformed by smooth GT, GT and Laplace. Notice that in this
setup the hybrid GT-ML estimator is equal to GT for every n ≥ 32. Last, we study the
step distribution. Here we observe a similar behavior to the uniform distribution, where GT
(and consequentially the GT-ML estimator) significantly outperform alternative methods.

Next, we turn to real-world experiments. Here, we follow Orlitsky et al. (2016) and study
three application domains. Notice that in these real-world settings, the true underlying
probability is unknown. Hence, the occupancy probabilities refer to the frequency of symbols
in the full data-set. We begin with a corpus linguistic experiment. The popular Broadway
play Hamilton consists of 20,520 words, of which m = 3,578 are distinct. We randomly
sample n words (with replacement), and estimate the Mk(X

n) from the sample. Once
again, we examine different k values for an increasing sample size n. The upper row of
Figure 5 demonstrates the results we achieve. First, we observe that for k = 0 and k = 1,
GT is the favorable choice, similarly to the synthetic experiments above. Then, for k = 8,
PML and ML introduce improved performance. Notice that in this case, the hybrid GT-
ML estimator equals to ML for n < 181 and to GT estimator otherwise. Next, we focus
on a biota analysis. Gao et al. (2007) considered the forearm skin biota of six subjects.
They identified a total of 1,221 clones consisting of 182 different species-level operational
taxonomic units (SLOTUs). As above, we sample n out of the m = 1,221 clones with
replacement, and estimate the occupancy probabilities. Notice that here, the alphabet size
m is relatively small, so we focus on n ≤ 100. The middle row in Figure 5 demonstrates
the results we achieve. For k = 0, the GT estimator outperforms alternative methods quite
significantly. However, for k = 1, the Laplace estimator is superior. Notice that the smooth
GT fails to estimate the occupancy probabilities for a small sample size. Finally, we study
k = 8. Here, the ML and the PML are the preferred schemes. However, notice that the
hybrid estimator equals to ML for every examined n, which makes it a preferable choice.
Finally, we study census data. The lower row of Figure 5 considers the 2000 United States
Census (Bureau, 2014), which lists the frequency of the top m = 1000 most common last
names in the United States. Here too, we sample n names and estimate Mk(X

n). Similarly
to the above, the GT estimator introduces favorable performance for k = 0 and k = 1, while
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ML and PML improve as k increases. On the other hand, the hybrid GT-ML equals GT
for every n in k = 0 and k = 1, and for n ≥ 182 in the k = 8 setup. This again, makes it a
preferable choice.

Figure 5: MSE of OP estimation in three real-world experiments

In addition to the MSE, we further examine the mean absolute error (MAE) of the
studied estimators. Notice that the MAE is bounded from above (in high probability) by
the convergence rates we introduce in the previous sections. The results we attain are
similar in spirit to the MSE, and are reported in Appendix I for brevity.

To conclude, we study a total of six distributions and compare the MSE and MAE for
different values of k and n. We observe that typically, the GT estimator is a preferable choice
for smaller k, while the ML estimator preforms better as k increases. The Laplace and the
smooth GT estimators perform quite well in some cases but are noncompetitive in others.
As we consider all setups together, the PML and the proposed hybrid GT-ML estimator
demonstrate favorable results. Comparing the two, the hybrid estimator outperforms PML
mostly for smaller values of k and n (where the errors are typically larger).

9. Discussion and Conclusions

In this work we study the convergence rate of the GT estimator in different setups of interest.
We first consider the case where k is fixed and the alphabet size m is either bounded or
unbounded. Then, we focus on the case where k is not fixed, and may grow with the
sample size n. Next, we study the convergence rate of the ML estimator, for cases where
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k is relatively large. We utilize the obtained results and derive a hybrid estimator with a
uniform convergence rate that holds for every k. We develop a simultaneous convergence
framework, which considers multiple k’s simultaneously. We apply our proposed framework
and introduce a novel estimator with favorable simultaneous convergence guarantees. The
performance of our suggested schemes is demonstrate in extensive numerical experiments.

Our analysis is based on the worst-case MSE. That is, given an OP estimator, we
bound from above its MSE over a collection of countable distributions and apply Markov’s
inequality to obtain the stated convergence rates. Our results provide exact confidence
intervals and improve upon currently known convergence guarantees. We further show that
the GT estimator asymptotically attains known estimation lower bounds. In addition, our
proposed method provides a simple framework to construct a simultaneous confidence region
for any desired set of occupancy probabilities. This allows us to quantify the performance
of OP estimators, for a collection of k values.

Our suggested framework also provides a simple tool for improving OP estimation ac-
curacy. For example, in Sections 6 and 7 we consider a collection of hybrid estimators, and
seek the one which attains the optimal performance guarantees. This methodology may be
extended to a broader collection of estimators. For example, we may consider generalized
GT estimators (that is, M̂k(X

n) = αkΦk(X
n)+βkΦk+1(Xn) , following (Painsky, 2022) and

seek the coefficients which minimize the convergence bound, marginally, or simultaneously
for a collection of k’s. This way, we introduce novel estimators that improve upon currently
known large alphabet frameworks. We consider this scheme for our future work.
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Appendix A - A Proof For Theorem 1

We first consider the case where 2k < n. In this case, the risk of the GT estimator satisfies
(18). We focus on the first summation,

1

n2

(
n

k k

)∑
u6=v

P (u, v)
(
2k(2k + 1)− n− 4nk(p(u) + p(v)) + n2(p(u) + p(v))2

)
. (56)

Let us study the different terms in (56). First,(
n

k k

)∑
u6=v

P (u, v)(p(u) + p(v))2 =

(
n

k k

)∑
u6=v

P (u, v)
(
p2(u) + 2p(v)p(v) + p2(v)

)
. (57)

Lemma 1 of (Rajaraman et al., 2017) states that

∑
u6=v

pi(u)pj(v)(1− p(u)− p(v))n ≤ (i− 1)!(j − 1)!n!

(n+ i+ j − 2)!
(58)
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Plugging (58) to (57) yields(
n

k k

)∑
u6=v

P (u, v)(p(u) + p(v))2 = o

(
1

n

)
. (59)

Similarly, we have

1

n2

(
n

k k

)∑
u6=v

P (u, v)
(
2k(2k + 1)− 4nk(p(u) + p(v))

)
= o

(
1

n

)
. (60)

Therefore, the first term in (18) equals

− 1

n

(
n

k k

)∑
u6=v

P (u, v) + o

(
1

n

)
(61)

and

Rn(M̂GT
k , p) =− 1

n

(
n

k k

)∑
u6=v

P (u, v) +

(
k + 1

n

)2( n

k + 1

)∑
u

pk+1(u)(1− p(u))n−k−1+

(
n

k

)∑
u

pk+2(u)(1− p(u))n−k + o

(
1

n

)
. (62)

We now rewrite (62) in a more compact manner. First, we have that

EXn∼p (Φk (Xn)) =EXn∼p

(∑
u

1(Nu(Xn) = k)

)
= (63)

EXn∼p

(∑
u=v

1(Nu(Xn) = k)1(Nv(X
n) = k)

)
=

∑
u=v

Pn(k, k) =

(
n

k

)∑
u

pk(u)(1− p(u))n−k.

We begin with the first term in (62),

1

n

(
n

k k

)∑
u6=v

P (u, v) =
1

n

((
n

k k

)/(
n

k + 1 k + 1

))∑
u6=v

Pn(k + 1, k + 1) = (64)

(k + 1)2

n(n− 2k)(n− 2k − 1)
EXn∼p

∑
u6=v

1(Nu(Xn) = k + 1)1(Nv(X
n) = k + 1) =

(k + 1)2

n(n− 2k)(n− 2k − 1)
EXn∼p

(∑
u

1(Nu(Xn) = k + 1)

)2

−
∑
u

1(Nu(Xn) = k + 1)

 =

(k + 1)2

n(n− 2k)(n− 2k − 1)
EXn∼p

(
Φ2
k+1(Xn)− Φk+1(Xn)

)
.
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Notice that

EXn∼p (Φk+1(Xn)) =

(
n

k + 1

)∑
u

pk+1(u)(1− p(u))n−k−1 ≤ (65)(
n

k + 1

)
k!(n− k − 1)!

(n− 1)!
=

n

k + 1

where the first equality is due to (63) and the inequality follows from Lemma 2 of (Rajara-
man et al., 2017),

∑
u∈X

pi(u)(1− p(u))n ≤ (i− 1)!n!

(n− 1 + i)!
. (66)

Plugging (65) to (64), we obtain

− 1

n

(
n

k k

)∑
u6=v

P (u, v) =
−(k + 1)2

n(n− 2k)(n− 2k − 1)
EXn∼p

(
Φ2
k+1(Xn)

)
+ o

(
1

n

)
. (67)

We now continue to the second term in (62). Here, we have that(
k + 1

n

)2( n

k + 1

)∑
u

pk+1(u)(1− p(u))n−k−1 =

(
k + 1

n

)2

EXn∼p (Φk+1(Xn)) (68)

where the equality follows from (63). Finally, the third term in (62) satisfies(
n

k

)∑
u

pk+2(u)(1− p(u))n−k =

(
n

k

)∑
u

pk+2(u)(1− p(u))n−k−2(1− p(u))2 = (69)(
n

k

)∑
u

pk+2(u)(1− p(u))n−k−2 − 2

(
n

k

)∑
u

pk+3(u)(1− p(u))n−k−2+(
n

k

)∑
u

pk+4(u)(1− p(u))n−k−2 =

(
n

k

)∑
u

pk+2(u)(1− p(u))n−k−2 + o

(
1

n

)
=

(k + 1)(k + 2)

(n− k)(n− k − 1)
EXn∼p (Φk+2(Xn)) + o

(
1

n

)
.

where the third equality follows from (66) and the final equality is due to (63). Putting
together (67), (68) and (69), we conclude that

EXn∼p

(
M̂GT
k −Mk

)2
=

−(k + 1)2

n(n− 2k)(n− 2k − 1)
EXn∼p

(
Φ2
k+1(Xn)

)
+ (70)(

k + 1

n

)2

EXn∼p (Φk+1(Xn)) +
(k + 1)(k + 2)

(n− k)(n− k − 1)
EXn∼p (Φk+2(Xn)) + o

(
1

n

)
,

as desired.
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Appendix B - Proofs for Propositions 2 and 3

A proof for Proposition 2

Let X ∼ p and Y ∼ p be two independent and identically distributed random variables. De-
fine a random variable T (X,Y ), such that T (u, v) = 0 for u = v, and T (u, v) = ψ(p(u), p(v))
for u 6= v. Then,

E(T (X,Y )) =
∑
u6=v

p(u)p(v)ψ(p(u), p(v)) ≤ max
q1,q2∈∆2

ψ(q1, q2)

where in the last inequality, the expectation of a random variable is bounded from above
by its maximal value.

A proof for Proposition 3

Following Proposition 2, let X ∼ p and define a random variable T (u), such that T (u) =
φ(p(u)). Then, E(T (X)) =

∑
u,∈X p(u)φ(p(u)) ≤ maxq∈[0,1] φ(q).

Appendix C

Proposition 11

max
q1,q2∈∆2

ρ(q1, q2) = max
q1∈[0,1/2]

ρ1(q1) (71)

where ρ1(q1) = ρ(q1, q1).

Proof We first notice that maxq1,q2∈∆2 ρ(q1, q2) ≥ 0 since ρ(0, 0) = 0. Next, we show that
for every pair q1, q2 ∈ ∆2 such that ρ(q1, q2) ≥ 0, we have ρ(q1, q2) ≤ ρ((q1 + q2)/2, (q1 +
q2)/2). Therefore, we would like to show that

qk1q
k
2 (1− q1 − q2)n−2k−2

(
2k(2k + 1)− n− 4kn(q1 + q2) + n2(q1 + q2)2

)
≤ (72)(

q1 + q2

2

)2k

(1− q1 − q2)n−2k−2
(
2k(2k + 1)− n− 4kn(q1 + q2) + n2(q1 + q2)2

)
for every q1, q2 such that 2k(2k + 1) − n − 4kn(q1 + q2) + n2(q1 + q2)2 is non-negative.

This inequality holds since qk1q
k
2 ≤

( q1+q2
2

)2k
, as later shown in the proof of Proposition 12

(Appendix E).

Appendix D

We bound from above the Binomial distribution, using Sterling bounds. We have

log Bin(k;n, q) = log

(
n

k

)
+ k log(q) + (n− k) log(1− q) = (73)

log

(
n

rn

)
+ n (r log(q) + (1− r) log(1− q)) ,
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where r = k/n. The binomial coefficient satisfies

log

(
n

rn

)
= log n!− log(rn)!− log(n− rn)! ≤ (74)

− log
√

2π +
1

12n
− 1

12rn+ 1
− 1

12(1− r)n+ 1
+(

n+
1

2

)
log(n)−

(
rn+

1

2

)
log(rn)−

(
n− rn+

1

2

)
log(n− rn) ≤

− 1

2
log (2πnr(1− r)) + nH(r)

where the first inequality follows from Robbin’s version of Sterling’s bound (Robbins, 1955),

√
2π nn+ 1

2 e−ne
1

12n+1 < n! <
√

2π nn+ 1
2 e−ne

1
12n ,

and the second inequality follows from

1

12n
− 1

12rn+ 1
− 1

12(1− r)n+ 1
≤ 1

12n
− 2

6n+ 1
< 0

for 0 ≤ r ≤ 1, where H(r) is the binary entropy of r, H(r) = −r log(r)− (1− r) log(1− r).
Therefore,

log Bin(rn;n, q) ≤− 1

2
log (2πnr(1− r)) + nH(r) + n (r log(q) + (1− r) log(1− q)) =

− 1

2
log (2πnr(1− r))− nDKL(r||q)

where DKL(r||q) is the Kullback-Leibler divergence,

DKL(r||q) = r log
r

q
+ (1− r) log

(1− r)
(1− q)

.

This means that

Bin(k;n, q) ≤ 1√
2πk(1− k/n)

exp

(
−nDKL

(
k

n

∣∣∣∣∣∣∣∣q)) , (75)

as desired.

Appendix E

Proposition 12

max
q1,q2∈∆2

ψ(q1, q2) = max
q1∈[0,1/2]

ψ2(q2) (76)

where ψ2(q2) = ψ(q2, q2)

Proof We study ψ(q1, q2) for different possible pairs of q1, q2 ∈ ∆2.
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• For q1 ≤ k
n and q2 ≥ k

n (and vice versa):
We have that ψ(q1, q2) < 0, while ψ( q1+q2

2 , q1+q2
2 ) ≥ 0. Therefore, ψ(q1, q2) ≤

ψ( q1+q2
2 , q1+q2

2 ).

• For q1, q2 ≥ k
n :

We would like to show that ψ(q1, q2) ≤ ψ( q1+q2
2 , q1+q2

2 ). Plugging (38), we require
that (

q1 −
k

n

)(
q2 −

k

n

)
qk−1

1 qk−1
2 ≤

(
q1 + q2

2
− k

n

)2(q1 + q2

2

)2k−2

Since both sides of the inequality are positive, this is equivalent to

log

(
q1 −

k

n

)
+ log

(
q2 −

k

n

)
+ (k − 1) (log(q1) + log(q2)) ≤ (77)

2 log

(
q1 + q2

2
− k

n

)
+ (2k − 2) log

(
q1 + q2

2

)
.

Due to the concavity of the log function, we have

1

2
log

(
q1 −

k

n

)
+

1

2
log

(
q2 −

k

n

)
≤ log

(
q1 + q2

2
− k

n

)
(78)

1

2
log(q1) +

1

2
log(q2) ≤ log

(
q1 + q2

2

)

which justifies (77).

• For q1, q2 ≤ k
n :

Again, we would like to show that ψ(q1, q2) ≤ ψ( q1+q2
2 , q1+q2

2 ). First, from the con-

cavity of the log function, qk−1
1 qk−1

2 ≤
( q1+q2

2

)2k−2
. Therefore, we still need to show

that
(
q1 − k

n

) (
q2 − k

n

)
≤
( q1+q2

2 − k
n

)2
. However, we have that

(
q1 + q2

2
− k

n

)2

−
(
q1 −

k

n

)(
q2 −

k

n

)
=

(
q1 − q2

2

)2

≥ 0 (79)

which concludes the proof.
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Appendix F

We have that∑
k∈KGT

1

n2

(
n

k k

)∑
u6=v

P (u, v)
(
2k(2k + 1)− n− 4k(p(u) + p(v)) + n2(p(u) + p(v))2

)
+ (80)

∑
k∈KML

(
n

k k

)∑
u6=v

(
p(u)− k

n

)(
p(v)− k

n

)
pk(u)pk(v)(1− p(u)− p(v))n−2k =

∑
u6=v

p(u)p(v)

( ∑
k∈KGT

1

n2

(
n

k k

)
pk(u)pk(v)(1− p(u)− p(v))n−2k−2·

(
2k(2k + 1)− n− 4k(p(u) + p(v)) + n2(p(u) + p(v))2

)
+∑

k∈KML

(
n

k k

)(
p(u)− k

n

)(
p(v)− k

n

)
pk−1(u)pk−1(v)(1− p(u)− p(v))n−2k

)
≤

∑
u6=v

p(u)p(v)

( ∑
k∈KGT

1

n2

(
n

k k

)
pk(u)pk(v)(1− p(u)− p(v))n−2k−2(n(p(u) + p(v))− 2k)2+

∑
k∈KML

(
n

k k

)(
p(u)− k

n

)(
p(v)− k

n

)
pk−1(u)pk−1(v)(1− p(u)− p(v))n−2k

)
≤

max
q1,q2∈∆2

( ∑
k∈KGT

1

n2

(
n

k k

)
qk1q

k
2 (1− q1 − q2)n−2k−2(n(q1 + q2)− 2k)2+

∑
k∈KML

(
n

k k

)(
q1 −

k

n

)(
q2 −

k

n

)
qk−1

1 qk−1
2 (1− q1 − q2)n−2k

)
,

where the first inequality follows from

2k(2k + 1)− n− 4k(p(u) + p(v)) + n2(p(u) + p(v))2 = (81)

(n(p(u) + p(v))− 2k)2 + 2k − n < (n(p(u) + p(v))− 2k)2

as 2k < n, and the last inequality follows from Proposition 2.

Appendix G - Proof of Proposition 10

We show the for every pair q1, q2 ∈ ∆2, we have ω(q1, q2) ≤ ω
( q1+q2

2 , q1+q2
2

)
. Specifically,

qk1q
k
2 (1− q1 − q2)n−2k−2(n(q1 + q2)− 2k)2 ≤ (82)(
q1 + q2

2

)2k

(1− q1 − q2)n−2k−2(n(q1 + q2)− 2k)2

and (
q1 −

k

n

)(
q2 −

k

n

)
qk−1

1 qk−1
2 (1− q1 − q2)n−2k ≤ (83)(

q1 + q2

2
− k

n

)2(q1 + q2

2

)2k−2

(1− q1 − q2)n−2k
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for every k and every q1, q2 ∈ ∆2. First, we notice that (82) holds since qk1q
k
2 ≤

( q1+q2
2

)2k
,

as shown in the proof of Proposition 12. Second, we observe that (83) holds, following
Proposition 12. Therefore, ω(q1, q2) ≤ ω

( q1+q2
2 , q1+q2

2

)
as desired.

Appendix H

we have that

∑
k∈KGT

(
(k + 1)2

n2

(
n

k + 1

)∑
u

pk+1(u)(1− p(u))n−k−1 +

(
n

k

)∑
u

pk+2(u)(1− p(u))n−k

)
+

∑
k∈KML

(
n

k

)∑
u

(
p(u)− k

n

)2

pk(u)(1− p(u))n−k =

∑
u

p(u)

( ∑
k∈KGT

(k + 1)2

n2

(
n

k + 1

)
pk(u)(1− p(u))n−k−1+

∑
k∈KGT

(
n

k

)
pk+1(u)(1− p(u))n−k+

∑
k∈KML

(
n

k

)(
p(u)− k

n

)2

pk−1(u)(1− p(u))n−k
)
≤

max
q∈[0,1]

∑
k∈KGT

(
(k + 1)2

n2

(
n

k + 1

)
qk(1− q)n−k−1 +

(
n

k

)
qk+1(1− q)n−k

)
+ (84)

∑
k∈KML

(
n

k

)(
q − k

n

)2

qk−1(1− q)n−k =

max
q∈[0,1]

∑
k∈KGT

(
(k + 1)2

n2

(
n− k
k + 1

)
1

1− q
+ q

)
Bin(k;n, q) +

∑
k∈KML

(
q − k

n

)2

q−1Bin(k;n, q) ≤

max
q∈[0,1]

∑
k∈KGT

(
(k + 1)2

n2

(
n− k
k + 1

)
1

1− q
+ q

)
1√

2πk(1− k/n)
exp(−nDKL(k/n||q))+

∑
k∈KML

(
q − k

n

)2

q−1 1√
2πk(1− k/n)

exp(−nDKL(k/n||q)),

where the first inequality follows from Proposition 3 and the last inequality from (34).
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Appendix I

Figure 6: MAE of OP estimation in three synthetic experiments

Figure 7: MAE of OP estimation in three real-world experiments
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