Journal of Machine Learning Research 23 (2022) 1-6 Submitted 2/22; Revised 8/22; Published 9/22

WarpDrive: Fast End-to-End Deep Multi-Agent
Reinforcement Learning on a GPU

Tian Lan* TIAN.LAN@QSALESFORCE.COM
Sunil Srinivasa* SSUNIL@QGMAIL.COM
Huan Wang HUAN.WANG@SALESFORCE.COM
Stephan Zheng STEPHAN.ZHENG@SALESFORCE.COM

Salesforce Research
Palo Alto, CA 94301, USA

Editor: Joaquin Vanschoren

Abstract

WarpDrive is a flexible, lightweight, and easy-to-use open-source framework for end-to-end
deep multi-agent reinforcement learning (MARL) on a Graphics Processing Unit (GPU),
available at https://github.com/salesforce/warp-drive. It addresses key system bot-
tlenecks when applying MARL to complex environments with high-dimensional state, ob-
servation, or action spaces. For example, WarpDrive eliminates data copying between the
CPU and GPU and runs thousands of simulations and agents in parallel. It also enables
distributed training on multiple GPUs and scales to millions of agents. In all, WarpDrive
enables orders-of-magnitude faster MARL compared to common CPU-GPU implementa-
tions. For example, WarpDrive yields 2.9 million environment steps/second with 2000
environments and 1000 agents (at least 100x faster than a CPU version) in a 2d-Tag sim-
ulation. It is user-friendly: e.g., it provides a lightweight, extendable Python interface and
flexible environment wrappers. It is also compatible with PyTorch. In all, WarpDrive offers
a platform to significantly accelerate reinforcement learning research and development.

Keywords: Deep Reinforcement Learning, Multi-Agent Systems, GPU acceleration.

Introduction. Deep reinforcement learning (RL) is a powerful framework to train Al
agents, e.g., in strategy games (OpenAl, 2018; Vinyals et al., 2019) and robotics (Gu et al.,
2017). In particular, multi-agent! systems, especially those with many agents, are a frontier
for RL research and applications; multi-agent RL (MARL) is relevant to economics (Zheng
et al., 2022; Trott et al., 2021), dialogue agents (Li et al., 2016), and many other fields.
However, there are still many engineering and scientific challenges to the use of (multi-
agent) RL. From an engineering perspective, RL implementations can be slow when sim-
ulations have many agents and high-dimensional state, observation, or action spaces, with
experiments taking days or even weeks. For context, common distributed RL systems of-
ten use a set of roll-out and trainer workers. The roll-out workers run the environment
to generate roll-outs, using the actions sampled from the policy models on the roll-out
workers (Pretorius et al., 2021; Hoffman et al., 2020; Espeholt et al., 2018) or trainer work-
ers (Espeholt et al., 2020). Roll-out workers typically use CPU machines, and sometimes,

*. Tian Lan and Sunil Srinivasa contributed equally.
1. An agent is an actor in an environment. An environment is an instance of a simulation and may include
many agents with complex interactions. An agent is neither an environment nor a policy model.

(©2022 Tian Lan, Sunil Srinivasa, Huan Wang and Stephan Zheng.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v23/22-0185.html.

https://github.com/salesforce/warp-drive
https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v23/22-0185.html

LAN, SRINIVASA, WANG AND ZHENG

7N
gz;}t (Rt Pytorch DataManager FunctionManager
.
GPU device
State, Actions, State, Actions, Neural .z
Memory S Next State, Reward Next State, Reward Net &7
Block Block Block
Next State
Thread{ State - INITEY “%>- - Probabilities - Sampler - Actions - Step - Thread Thread
Agenti Net N Reward
Thread: Agent j Thread Thread
Thread: Agent k Thread Thread

Figure 1: WarpDrive’s computational and data structures. Computations are or-
ganized into GPU blocks, with multiple threads in each block. Block(s) run an
environment; each thread runs an agent. Blocks can access the shared GPU
memory that stores roll-out data and (deep) policy models. A DataManager and
FunctionManager enable defining GPU-based MARL logic with Python APIs.

GPU machines for richer environments. Trainer workers repeatedly gather the roll-out data
(asynchronously) from the roll-out workers and optimize policies on CPU or GPU machines.
While such a distributed design is highly scalable, worker communication can be expensive
and individual machine utilization can be poor.

To improve performance, GPU and TPU-based RL frameworks exist (Tang et al., 2022;
Hessel et al., 2021), but have focused on single-agent and domain-specific environments,
e.g., for Atari (Dalton et al., 2020), or learning robotic control in 3-D rigid-body simulations
(Freeman et al., 2021; Makoviychuk et al., 2021; Austin et al., 2019). Also, when running
multi-agent simulations, generating roll-outs can become prohibitively slow when many
agents use the same compute thread (Weng et al., 2022; Hu et al., 2021; Zheng et al., 2017).
As such, it remains challenging to build efficient RL pipelines with simulations featuring
complex interactions between multiple agents.

An End-to-End Solution. WarpDrive? is a framework for fast end-to-end (multi-agent)
RL that addresses the aforementioned challenges and is available at https://github.com/
salesforce/warp-drive. It is domain agnostic: WarpDrive-compatible simulations have
been used in, e.g., economics (Trott et al., 2021) and climate modeling (Zhang et al., 2022).

WarpDrive runs the entire RL workflow end-to-end on a single GPU, using a single store
of data for simulation roll-outs, action inference, and training. This minimizes CPU-GPU
data communication and significantly reduces simulation and training time. Also, Warp-
Drive runs multiple multi-agent simulations in tandem, capitalizing on the parallelization
capabilities of GPUs. In particular, WarpDrive runs each agent (within each simulation)
on a unique GPU thread, with granular control over the agents’ interactions across threads.
It can manipulate the state updates and action sampling across agents in parallel. These

2. The name WarpDrive is inspired by the science fiction concept of a superluminal spacecraft propulsion
system. Moreover, a warp is a group of 32 threads that execute at the same time in (certain) GPUs.

https://github.com/salesforce/warp-drive
https://github.com/salesforce/warp-drive

WARPDRIVE: FAST END-TO-END DEEP MULTI-AGENT REINFORCEMENT LEARNING ON A GPU

P (5
E 9 [warp_drive.ProcessWrapper }:’T warp_drive.training.utils.perform_auto_vertical_scaling() }
a3 * "1
Ec !
g E [torch.distributed.DistributedDataParallel] '{ warp_drive.training.utils.perform_distributed_training() J
- (observations, actions, rewards)
c %’. v - : v
I -
£ " torch.Model warp_drive.training. Trainer warp_drive.Envirapper
= step(), reset()
Ao
Q. EY T Y x
< H . ! f
= i
[: . . =
= = ! [warp_drive.managers.CUDAEnvironmentReset } c g
i | ' =]
27 £58 env.ENV_NAME
58 ! 22
a = { warp_drive.managers. CUDASampler } ﬁ initial
@ data
A push
=3
% z [warp_drive.managers.function_manager J [warp,drive.managers.dala,manager}
-
[initial
data
push
H .
o a‘ ¥ [&] g
-
g 3 [warp_drive.cuda_mcludes.reset} Efvarp_drive.cuda_includes.randum} g ﬂ [env.CUDA_ENV_NAME_step]
== =22
3 =
o £ [&] i} '\
o “-... Users Provide

Figure 2: Code structure. All software layers and components are modular, generic, and
incrementally executable, so creating and extending fast MARL pipelines is easy.

design choices enable running thousands of concurrent simulations, or millions of agents in
parallel on a single GPU, and training on extremely large batches of experience. WarpDrive
can also train across multiple GPUs to linearly scale up the throughput further.

Figure 1 shows the structure of WarpDrive. The DataManager and FunctionManager are
two key Python classes (residing on the CPU) to facilitate all the CPU-GPU (also referred to
as host and device) communication and interactions that are relevant to RL. They connect
to the CUDA back-end and provide simple APIs to build high-level Python applications.
Figure 2 provides an overview of modules and their relationships in WarpDrive. For more
details on WarpDrive and its APIs, please see the documentation in Lan et al. (2021).

Tooling. WarpDrive builds on CUDA (Compute Unified Device Architecture), a platform
and programming model that allows users to run programs (called kernels) on (CUDA-
enabled) GPU hardware. Given any gym-style (Brockman et al., 2016) multi-agent envi-
ronment, the first version of WarpDrive provides utility functions to facilitate re-writing
the environment in CUDA C, in order to run the simulation on the GPU. WarpDrive also
comprises quality-of-life tools to run end-to-end MARL training using just a few lines of
code, and is compatible with PyTorch. As such, WarpDrive is flexible and accommodates
environments with flexible multi-agent interactions, models, and learning algorithms, and
allows creating and extending RL pipelines that maximize the utility of GPUs.

Benchmarks. We benchmark WarpDrive in three environments: discrete and continuous
versions of the game of Tag (similar to Predator-Prey (Lowe et al., 2017) and Pursuit (Zheng
et al., 2017)) and a more complex COVID-19 economic simulation (Trott et al., 2021). All

LAN, SRINIVASA, WANG AND ZHENG

Throughput Comparison
Roll-out Throughput Comparison (A100 vs. N1)
107 (Partial Observations, 1 Environment) 10° 30X

Roll-out
e Roll-out + Training 103
10°

102

Throughput using WarpDrive
(Roll-out and Training)
B N1 (16 CPUs)

N A100 GPU

24x

10°
10t

104
GPU (WarpDrive)

Environment Steps / Second
Environment Steps / Second
Environment Steps / Second

e« CPU
103 10-1 Env. Data Training Total
10° 10! 102 103 10° 10t 102 103 roll-out transfer*
Number of Parallel Environments Number of Agents Timing categories

Figure 3: WarpDrive Performance. Left: Roll-out and training throughput in discrete
Tag versus the number of parallel environments (log-log scale) with 5 agents: the
throughput scales (almost) linearly. Middle: Roll-out throughput in continuous
Tag versus the number of agents (log-log scale): the throughput (environment
steps per second) drops linearly on the CPU, but much slower on the GPU (with
WarpDrive). Right: In the COVID-19 economic simulation (Trott et al., 2021)
with 60 environments: WarpDrive achieves a 24x (total) throughput boost.

experiments were run on the Google Cloud Platform. We see that WarpDrive running on
a single GPU machine, a2-highgpu-1g (https://cloud.google.com/compute/docs/gpus#
a100-gpus) scales almost linearly to thousands of environments and agents, and yields or-
ders of magnitude faster MARL compared to a CPU implementation on the ni-standard-16
(https://cloud.google.com/compute/docs/general-purpose-machines#nl_machines).
Figure 3 (left) shows how WarpDrive’s performance scales in discrete Tag: it scales
linearly to over thousands of environments (with 5 agents) and yields almost perfect par-
allelism. For example, during a roll-out, WarpDrive runs at 4300 environment steps per
second with 1 environment and 8.3M environment steps per second with 2000 environments.
Figure 3 (middle) shows roll-out performance in continuous Tag. For a single environ-
ment, as we scale up from 5 agents to 820 agents, i.e., by a factor of 164, the roll-out
throughput drops by a factor of 7500 on a single CPU, but only a factor of 15 on the GPU
(with WarpDrive). CPUs are not as effective as GPUs at thread-level parallelism; in con-
trast, GPUs can run agents on separate threads and maintain high throughput: e.g., with
820 agents, the roll-out throughput on the GPU is 2000 times faster than on the CPU.
Such gains hold in more complex environments: Figure 3 (right) shows that in an
economic simulation of COVID-19, WarpDrive achieves 24x more steps per second with 60
environments, compared to a 16-CPU node. Importantly, because there are no repeated
CPU-GPU data transfers, both roll-out and training are an order of magnitude faster.

Future Directions. We hope WarpDrive encourages using and creating (tools for) GPU
simulations and hope to extend and integrate WarpDrive with other tools for quickly build-
ing simulations and machine learning workflows on GPUs and other accelerators. In all, we
hope that WarpDrive contributes to the democratization of high-performance RL systems
and advances in (multi-agent) machine learning and artificial intelligence.

https://cloud.google.com/compute/docs/gpus#a100-gpus
https://cloud.google.com/compute/docs/gpus#a100-gpus
https://cloud.google.com/compute/docs/general-purpose-machines#n1_machines

WARPDRIVE: FAST END-TO-END DEEP MULTI-AGENT REINFORCEMENT LEARNING ON A GPU

References

Jacob Austin, Rafael Corrales-Fatou, Sofia Wyetzner, and Hod Lipson. Titan: A parallel
asynchronous library for multi-agent and soft-body robotics using nvidia cuda, 2019. URL
https://github.com/jacobaustin123/Titan.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie
Tang, and Wojciech Zaremba. Openai gym, 2016. URL https://github.com/openai/

gym.

Steven Dalton, Turi Frosio, and Michael Garland. Accelerating reinforcement learning
through gpu atari emulation, 2020. URL https://github.com/NVliabs/cule.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Volodymir Mnih, Tom
Ward, Yotam Doron, Vlad Firoiu, Tim Harley, lain Dunning, Shane Legg, and Ko-
ray Kavukcuoglu. Impala: Scalable distributed deep-rl with importance weighted actor-
learner architectures, 2018.

Lasse Espeholt, Raphaél Marinier, Piotr Stanczyk, Ke Wang, and Marcin Michalski. Seed
rl: Scalable and efficient deep-rl with accelerated central inference, 2020. URL https:
//github.com/google-research/seed_rl.

C. Daniel Freeman, Erik Frey, Anton Raichuk, Sertan Girgin, Igor Mordatch, and Olivier
Bachem. Brax — a differentiable physics engine for large scale rigid body simulation, 2021.
URL https://github.com/google/brax.

Shixiang Gu, Ethan Holly, Timothy Lillicrap, and Sergey Levine. Deep reinforcement
learning for robotic manipulation with asynchronous off-policy updates. In 2017 IEEE
international conference on robotics and automation (ICRA), pages 3389-3396. IEEE,
2017.

Matteo Hessel, Manuel Kroiss, Aidan Clark, Iurii Kemaev, John Quan, Thomas Keck, Fabio
Viola, and Hado van Hasselt. Podracer architectures for scalable reinforcement learning,
2021.

Matt Hoffman, Bobak Shahriari, John Aslanides, Gabriel Barth-Maron, Feryal Behbahani,
Tamara Norman, Abbas Abdolmaleki, Albin Cassirer, Fan Yang, Kate Baumli, Sarah
Henderson, Alex Novikov, Sergio Gémez Colmenarejo, Serkan Cabi, Caglar Gulcehre,
Tom Le Paine, Andrew Cowie, Ziyu Wang, Bilal Piot, and Nando de Freitas. Acme: A
research framework for distributed reinforcement learning, 2020. URL https://github.
com/deepmind/acme.

Hengyuan Hu, Adam Lerer, Brandon Cui, David Wu, Luis Pineda, Noam Brown, and Jakob
Foerster. Off-belief learning, 2021. URL https://github.com/facebookresearch/
hanabi_SAD.

Tian Lan, Sunil Srinivasa, Huan Wang, and Stephan Zheng. Warpdrive: Extremely fast end-
to-end deep multi-agent reinforcement learning on a gpu, 2021. URL https://arxiv.
org/abs/2108.13976.

https://github.com/jacobaustin123/Titan
https://github.com/openai/gym
https://github.com/openai/gym
https://github.com/NVlabs/cule
https://github.com/google-research/seed_rl
https://github.com/google-research/seed_rl
https://github.com/google/brax
https://github.com/deepmind/acme
https://github.com/deepmind/acme
https://github.com/facebookresearch/hanabi_SAD
https://github.com/facebookresearch/hanabi_SAD
https://arxiv.org/abs/2108.13976
https://arxiv.org/abs/2108.13976

LAN, SRINIVASA, WANG AND ZHENG

Jiwei Li, Will Monroe, Alan Ritter, Michel Galley, Jianfeng Gao, and Dan Jurafsky. Deep
reinforcement learning for dialogue generation. arXiv preprint arXiv:1606.01541, 2016.

Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch. Multi-
agent actor-critic for mixed cooperative-competitive environments. Neural Information
Processing Systems (NIPS), 2017.

Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu, Kier Storey, Miles
Macklin, David Hoeller, Nikita Rudin, Arthur Allshire, Ankur Handa, and Gavriel State.
Isaac gym: High performance gpu-based physics simulation for robot learning, 2021. URL
https://github.com/NVIDIA-Omniverse/IsaacGymEnvs.

OpenAl. Openai five. https://blog.openai.com/openai-five/, 2018.

Arnu Pretorius, Kale-ab Tessera, Andries P. Smit, Claude Formanek, St John Grim-
bly, Kevin Eloff, Siphelele Danisa, Lawrence Francis, Jonathan Shock, Herman Kam-
per, Willie Brink, Herman Engelbrecht, Alexandre Laterre, and Karim Beguir. Mava:
a research framework for distributed multi-agent reinforcement learning, 2021. URL
https://github.com/instadeepai/Mava.

Yujin Tang, Yingtao Tian, and David Ha. Evojax: Hardware-accelerated neuroevolution,
2022. URL https://github.com/google/evojax.

Alexander Trott, Sunil Srinivasa, Douwe van der Wal, Sebastien Haneuse, and Stephan
Zheng. Building a foundation for data-driven, interpretable, and robust policy design
using the ai economist, 2021. URL https://github.com/salesforce/ai-economist.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaél Mathieu, Andrew Dudzik,
Junyoung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al.
Grandmaster level in starcraft ii using multi-agent reinforcement learning. Nature, 575
(7782):350-354, 2019.

Jiayi Weng, Min Lin, Shengyi Huang, Bo Liu, Denys Makoviichuk, Viktor Makoviychuk,
Zichen Liu, Yufan Song, Ting Luo, Yukun Jiang, Zhongwen Xu, and Shuicheng Yan.
Envpool: A highly parallel reinforcement learning environment execution engine, 2022.
URL https://github.com/sail-sg/envpool.

Tianyu Zhang, Andrew Williams, Soham Phade, Sunil Srinivasa, Yang Zhang, Prateek
Gupta, Yoshua Bengio, and Stephan Zheng. Ai for global climate cooperation: Modeling
global climate negotiations, agreements, and long-term cooperation in rice-n, 2022. URL
https://github.com/mila-iqia/climate-cooperation-competition.

Lianmin Zheng, Jiacheng Yang, Han Cai, Weinan Zhang, Jun Wang, and Yong Yu. Magent:
A many-agent reinforcement learning platform for artificial collective intelligence, 2017.
URL https://github.com/geek-ai/MAgent.

Stephan Zheng, Alexander Trott, Sunil Srinivasa, David C. Parkes, and Richard Socher.
The ai economist: Taxation policy design via two-level deep multiagent reinforcement
learning. Science Advances, 8(18):eabk2607, 2022. doi: 10.1126/sciadv.abk2607. URL
https://www.science.org/doi/abs/10.1126/sciadv.abk2607.

https://github.com/NVIDIA-Omniverse/IsaacGymEnvs
https://blog.openai.com/openai-five/
https://github.com/instadeepai/Mava
https://github.com/google/evojax
https://github.com/salesforce/ai-economist
https://github.com/sail-sg/envpool
https://github.com/mila-iqia/climate-cooperation-competition
https://github.com/geek-ai/MAgent
https://www.science.org/doi/abs/10.1126/sciadv.abk2607

