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Abstract

The neighborhood selection method directly explores the conditional dependence structure
and has been widely used to construct undirected graphical models. However, except for
some special cases with discrete data, there is little research on nonparametric methods for
neighborhood selection with mixed data. This paper develops a fully nonparametric neigh-
borhood selection method under a consolidated smoothing spline ANOVA (SS ANOVA)
decomposition framework. The proposed model is flexible and contains many existing mod-
els as special cases. The proposed method provides a unified framework for mixed data
without any restrictions on the type of each random variable. We detect edges by apply-
ing an L1 regularization to interactions in the SS ANOVA decomposition. We propose an
iterative procedure to compute the estimates and establish the convergence rates for con-
ditional density and interactions. Simulations indicate that the proposed methods perform
well under Gaussian and non-Gaussian settings. We illustrate the proposed methods using
two real data examples.

Keywords: conditional density estimation, mixed data, regularization, reproducing ker-
nel Hilbert space, smoothing spline ANOVA

1. Introduction

Discovering conditional independence among random variables is an essential task in statis-
tics. Undirected probabilistic graphical models play a pivotal role in characterizing condi-
tional independence. They have been utilized in a wide range of scientific and engineering
domains, including statistical physics, computer vision, machine learning, and computa-
tional biology (Koller and Friedman, 2009). A graphical model is constructed based on an
undirected graph G = (V,E) with node set V = {1, · · · , p} representing p random vari-
ables X1, · · · , Xp and edge set E ⊆ V × V describing the conditional dependence among
X1, · · · , Xp. Let X = (X1, · · · , Xp) and X\{i1,··· ,ik} be the sub-vector of X without el-
ements in {i1, · · · , ik}. Then, {i, j} /∈ E corresponds to the conditional independence
between Xi and Xj given other variables in X, denoted as Xi ⊥ Xj |X\{i,j}.

As joint density ultimately determines the conditional relationship, methods for edge de-
tection based on estimating joint density have been proposed (Yuan and Lin, 2007; Banerjee
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et al., 2008; Friedman et al., 2008; Hsieh et al., 2014; Liu et al., 2009). Under the Gaussian
assumption of X ∼ N (0,Σ), the task of edge detection reduces to the estimation of the
precision matrix Σ−1. Yuan and Lin (2007), Banerjee et al. (2008), and Friedman et al.
(2008) proposed regularization methods that minimize the log-likelihood with an L1 penalty
on the entries of Σ−1. Hsieh et al. (2014) proposed a fast second-order algorithm for solving
the L1-regularized Gaussian MLE. Liu et al. (2009) extended the L1-regularized Gaussian
MLE approach to the setting where there exist monotone transformations f1, · · · , fp such
that (f1(X1), · · · , fp(Xp)) ∼ N (0,Σ). These parametric and semi-parametric methods may
be too restrictive for some applications and cannot handle mixed data since they rely on
the Gaussian assumption.

Let f(x) be the joint density function of X, and consider the transformation f(x) =
eη(x)/

∫
eη(x)dx, where η(x) is the logistic transformation of f . The SS ANOVA decompo-

sition represents η(x) as a summation of a constant, main effects, and interactions:

η(x1, · · · , xp) = c+

p∑
j=1

ηj(xj) +
∑

1≤j<k≤p
ηjk(xj , xk) + · · ·+ η1···p(x1, · · · , xp). (1)

The conditional independence Xj ⊥ Xk|X\{j,k} is equivalent to the summation of all in-
teractions involving xj and xk equal to zero (Gu, 2013). Consequently, identifying edges is
equivalent to identifying nonzero interactions. Jeon and Lin (2006) developed a penalized
M-estimation method for edge detection based on the SS ANOVA decomposition (1). Our
experience indicates that this joint density estimation approach is only computationally
feasible with a small p due to large memory requirements.

The neighborhood selection approach explores structures in conditional densities and
is usually more computationally efficient. By the conditional independence properties of
undirected graphical models, for any node α ∈ V , Xα only depends on other variables in
its neighborhood set nbG(α), where nbG(α) = {k ∈ V |{α, k} ∈ E}. Consequently, the
conditional independence structure of graph G can be constructed by estimating all of its
neighborhoods nbG(α) for α = 1, · · · , p. Neighborhood selection aims to identify a minimal
set of variables nbG(α) that Xα depends on for each node α ∈ V .

Many neighborhood selection methods have been developed for learning sparse graphical
models (Hastie et al., 2015; Drton and Maathuis, 2017). Flexible models were proposed
for discrete data (Höfling and Tibshirani, 2009; Ravikumar et al., 2010). Methods for
continuous data usually model the conditional mean (Meinshausen and Bühlmann, 2006;
Voorman et al., 2014) or conditional quantiles (Ali et al., 2016). For example, Meinshausen
and Bühlmann (2006) and Peng et al. (2009) considered a linear model for the conditional
mean with L1 penalties on coefficients and partial correlations, respectively. Voorman
et al. (2014) considered an additive model for the conditional mean. The conditional mean
approach does not assume a specific distribution for the regression error and therefore
appears to be distribution-free. However, if the conditional relationships are linear, the joint
distribution must be multivariate Gaussian under mild assumptions (Voorman et al., 2014).
In other words, the restriction of Gaussianity has not been removed as it appears. For mixed
continuous and discrete variables, Lee and Hastie (2015) considered a pairwise model that
generalizes Gaussian graphical and discrete models. Chen et al. (2015) proposed a flexible
pairwise graphical model where each node’s conditional distribution is in the exponential
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family. Gu and Ma (2011) developed a functional ANOVA method for estimating the
conditional density of cross-classified responses and identifying conditional independence
structure through Kullback-Leibler projection.

Modeling mixed data is challenging since it is difficult to specify a joint density. Ex-
isting neighborhood selection methods are restrictive since they model specific mixed data
or assume specific conditional distributions. In this paper, we propose a new fully non-
parametric neighborhood selection method. We construct an SS ANOVA model for each
conditional density and select neighborhood via L1 regularization. The new contributions
of our neighborhood selection method consist of four parts. First, we directly target the
neighborhood definition based on conditional density without assuming any specific family
of distributions. The whole conditional density provides the most comprehensive summary
of the relationship which might be missed by specific characteristics such as conditional
mean and quantiles. Second, we allow the range of each random variable to be an arbitrary
set and use the tensor product of reproducing kernel Hilbert spaces (RKHS) to construct a
model space for each conditional density. Therefore, the proposed method provides a uni-
fied framework for mixed data types without any restrictions on the type of each random
variable. The proposed model is more general and flexible than existing models. Third, we
use the SS ANOVA structure to facilitate the selection of neighborhoods. Specifically, we
estimate the conditional density for each node based on SS ANOVA decomposition with an
L1 penalty involving interaction components. This approach for neighborhood selection has
not been studied before. Last but not least, the new neighborhood selection method based
on conditional density is more computationally efficient than those based on joint density
and is parallelizable.

The rest of the paper is organized as follows. Section 2 introduces the new neighborhood
selection method. Section 3 presents the computational method and the implementation of
the proposed algorithm. Section 4 derives the convergence rate of the conditional density
estimate and its components in the SS ANOVA decomposition. Section 5 conducts simula-
tions to compare edge detection performance with existing methods under both Gaussian
and non-Gaussian settings. Section 6 illustrates the proposed methods using two real data
sets. Section 7 provides some discussion. The Appendix contains proofs and auxiliary
material.

2. Neighborhood Selection Through Conditional Density Estimation with
L1 Penalty

In this section, we first introduce some notation and the SS ANOVA decomposition. Then,
we present our nonparametric method for edge detection.

2.1 Notation and SS ANOVA Decomposition

Consider p random variables X1, · · · , Xp with ranges denoted as X1, · · · ,Xp. Each range
Xα is an arbitrary set for generality. It may be a continuous interval, a discrete set, or a
circle. It could even be a subset in Euclidean space or a sphere. That is, each Xα could be
a multivariate random variable. Denote X = (X1, · · · , Xp) as the p-dimensional random
vector with range X = X1 × · · · × Xp and x = (x1, · · · , xp) as a realization of the random
vector. For a fixed α ∈ V = {1, · · · , p}, denote X\{α} = (X1, · · · , Xα−1, Xα+1, · · · , Xp)
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and x\{α} = (x1, · · · , xα−1, xα+1, · · · , xp) as the vectors of X and x with the αth element
being removed. Our goal is to select the neighborhood nbG(α) through the estimation of
the conditional density f(xα|x\{α}).

DenoteXi = (Xi,1, · · · , Xi,p) and xi = (xi,1, · · · , xi,p) for i = 1, · · · , n as n i.i.d. random
vectors and their realizations. Let xi,\{α} = (xi,1, · · · , xi,α−1, xi,α+1, · · · , xi,p). Denote xαi =
(xi,1, · · · , xi,α−1, xα, xi,α+1, · · · , xi,p) as the p-dimensional vector with xα varies in Xα and
all other variables fixed at their ith realizations. For simplicity, the dependence of xαi on
xα is not expressed explicitly.

Let H(j) be an RKHS on Xj and H(j) = {1(j)} ⊕ H(j), where {1(j)} is the space of the
constant functions on Xj and H(j) is the orthogonal complement of {1(j)}. One may con-
struct a flexible and interpretable model for a p-dimensional function through the following

SS ANOVA decomposition of the tensor product space
p⊗
j=1
H(j) on X (Wang, 2011; Gu,

2013):

p⊗
j=1

H(j) =

p⊗
j=1

{
{1(j)} ⊕H(j)

}

= {1} ⊕


p⊕
j=1

H(j)

⊕
 ⊕

1≤j<k≤p
[H(j) ⊗H(k)]

⊕ · · · ⊕ {H(1) ⊗ · · · ⊗ H(p)

}
.

(2)

The decomposition in equation (1) corresponds to the SS ANOVA decomposition to the
logistic transformation of the joint density function.

2.2 SS ANOVA Model for Conditional Density

For the conditional density of Xα, we consider the logistic density transformation

f(xα|x\{α}) =
eη(x)∫

Xα e
η(x)dxα

(3)

to enforce the conditions of f > 0 and
∫
f = 1. The function η is the logistic transformation

of f . An SS ANOVA model for η in (3) may contain any subset of components in the SS
ANOVA decomposition (2). For simplicity, we assume that η ∈Mα where

Mα = {1} ⊕


p⊕
j=1

H(j)

⊕
⊕
k 6=α

[H(α) ⊗H(k)]

 (4)

is a subspace with main effects and two-way interactions only. A function η ∈ Mα can be
decomposed as follows:

η(x) = ς +

p∑
j=1

ηj(xj) +
∑
k 6=α

ηαk(xα, xk), (5)
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where each functional component in (5) belongs to the corresponding subspace in (4). We
note that the proposed method can be easily extended to include higher-order interactions.
Remark 1 The SS ANOVA model (1) for the joint density with main effects and two-way
interaction only is a pairwise graphical model, which is commonly assumed in the existing
literature.
Remark 2 We consider both the log-likelihood and pseudo log-likelihood approaches for
estimating the conditional density (Gu, 2013). We present the pseudo likelihood approach
in the main text since it is computationally more efficient. The log-likelihood approach is
presented in Appendix A. For the pseudo log-likelihood approach, model spaceMα includes
constant functions. The model space for the log-likelihood approach eliminates the constant
functions for identifiability.
Remark 3 To compare the estimation between the joint and neighborhood approaches
under pairwise graphical models, we consider the SS ANOVA decomposition (1) with main
effects and two-way interaction only for the joint density and the SS ANOVA decomposition
(5) for the conditional density. The joint density approach needs to estimate all main effects
and two-way interactions simultaneously with a total number of components proportional
to p2. Our experience indicates that this joint approach is computationally infeasible even
with moderately large p due to memory constraints. On the other hand, the neighborhood
approach needs to estimate pmain effects and p−1 two-way interactions for each node, which
significantly reduces the computational cost and memory requirement and is parallelizable.
Remark 4 Model (5) contains many parametric models as special cases. Specifically, the
Gaussian graphical model is a special case with Xj = R, ηj(xj) = βjxj − x2

j/2 for j = α
and 0 otherwise, and ηαk(xα, xk) = βαkxαxk for some constants βj and βαk. The Ising
model for binary data is a special case with Xj = {0, 1}, ηj(xj) = xj for j = α and 0
otherwise, and ηαk(xα, xk) = βαkxαxk. The Poisson graphical model for discrete data is a
special case with Xj = {0, 1, 2, · · · }, ηj(xj) = xj − log(xj !) for j = α and 0 otherwise, and
ηαk(xα, xk) = βαkxαxk. The exponential family model proposed by Suggala et al. (2017),

logf(xα|x\{α}) ∝

βαBα(xα) +
∑

{α,k}∈E

βαkBα(xα)Bk(xk) + Cα(xα)

 , (6)

is also a special case with ηj(xj) = βjBj(xj) + Cj(xj) for j = α and 0 otherwise, and
ηαk(xα, xk) = βαkBα(xα)Bk(xk). Note that many existing exponential family models in-
cluding (6) assume a multiplicative interaction while model (5) does not assume any specific
interaction. Therefore, the proposed model is more general.

2.3 Penalized Pseudo Log-likelihood Estimation

For each node α ∈ V , we assume that η(x) ∈ Mα where Mα is given in (4) and η is
decomposed as in (5). We further decompose H(j) as H(j) = H0

(j) ⊕ H
1
(j) where H0

(j) is a
finite dimensional space containing functions that are not subject to penalty. We estimate
η in (5) by minimizing the following penalized pseudo log-likelihood in Mα:

lα +
λ1

2

p∑
j=1

θ−1
j ||Pjηj ||

2 + τ1

∑
k 6=α

wαk||ηαk||, (7)
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where lα = n−1
∑n

i=1

{
e−η(xi) +

∫
Xα η(xαi )ρ(xαi )dxα

}
is the pseudo log-likelihood, ρ(·) is a

known density of Xα conditional on X\{α} = xi,\{α}, Pj is the projection operator onto
H1

(j), λ1, τ1, and θj ’s are tuning parameters, 0 ≤ wαk < ∞ are pre-specified weights, and

|| · || is an induced norm inMα. The pseudo log-likelihood lα measures the goodness-of-fit.
The second element in (7) is the roughness L2 penalty on main effects. The third element
in (7) is the L1 penalty for selecting the neighborhood nbG(α). We allow different weights
in the L1 penalty for flexibility.
Remark 5 The idea of pseudo log-likelihood was first developed in Jeon and Lin (2006) for
joint density estimation. Gu (2013) extended this approach to conditional density estima-
tion. We present the pseudo log-likelihood estimation in the main text since this approach is
computationally more efficient. The log-likelihood approach to conditional density estima-
tion needs to calculate the integral

∫
Xα e

η(xαi )dxα repeatedly, which can be computationally
intensive. With a proper choice of ρ, the pseudo log-likelihood approach needs to calculate
an integral only once.
Remark 6 The proposed method replaces the L2 penalty on interactions in Gu (2013) with
the L1 penalty for neighborhood selection and differs from that in Jeon and Lin (2006) in
two aspects. First, Jeon and Lin (2006)’s approach is a global method that estimates the
joint density; thus is computationally intensive and can only handle small dimensions p.
Second, Jeon and Lin (2006) posed the L1 penalty to both main effects and interactions.
Consequently, their method selects both nodes and edges. In practice, the nodes are usually
given, and the goal is to detect edges. Therefore, we consider the smoothness promoting
L2 penalty to main effects and the sparsity promoting L1 penalty to interactions.

Let

G =


p⊕
j=1

H(j)

⊕
⊕
k 6=α

[H(α) ⊗H(k)]

 . (8)

We can rewrite η(x) = ς + g(x) where g(x) =
p∑
j=1

ηj(xj) +
∑
k 6=α

ηαk(xα, xk) ∈ G. We first

estimate ς with fixed g and then estimate g using the profiled pseudo log-likelihood. The
results are summarized in the following proposition.

Proposition 1 With fixed g, the minimizer of ς in (7) is ς̂ = log{n−1
∑n

i=1 e
−g(xi)} and

the penalized pseudo log-likelihood (7) reduces to the following penalized profiled pseudo
log-likelihood

l(ς̂(g), g) +
λ1

2

p∑
j=1

θ−1
j ||Pjηj ||

2 + τ1

∑
k 6=α

wαk||ηαk||, (9)

where l(ς̂(g), g) = log{n−1
n∑
i=1

e−g(xi)} + n−1
n∑
i=1

∫
Xα g(xαi )ρ(xαi )dxα is the profiled pseudo

log-likelihood.

The proof can be found in Appendix C. Instead of minimizing (9) that involves L1

penalties on functions, as in Lin and Zhang (2006), we will solve an equivalent but more
convenient minimization problem that involves L1 penalties on the smoothing parameters.
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Proposition 2 Minimizing

l(ς̂(g), g) +
λ1

2

( p∑
j=1

θ−1
j ||Pjηj ||

2 +
∑
k 6=α

wαkθ
−1
αk ||ηαk||

2
)

+ λ2

∑
k 6=α

wαkθαk, (10)

subject to θαk ≥ 0 for k = 1, · · · , p and k 6= α is equivalent to minimizing (9).

The proof of equivalence can be found in Appendix C. Proposition 2 transforms the selection
of nonzero functions ηαk in (9) into a selection of nonzero parameters θαk. The minimization
problem (10) consists of L2 penalties on functions and L1 penalties on parameters and
existing methods can be modified to solve each part. Computational details for solving (10)
are presented in Section 3.

Since the pseudo log-likelihood is used for estimation, we need to compute the conditional
density estimate using the following proportion.

Proposition 3 The resulting estimate of the conditional density is f̂(xα|x\{α}) ∝ eĝ(x)ρ(x)
where ĝ is the minimizer of (10).

The proof of Proposition 3 is given in Appendix C. Notice that the minimization problem
(10) involves p − 1 two-way interaction terms. Solving (10) for all α = 1, · · · , p leads to
two estimates for each two-way interaction, denoted as η̂αk and η̂kα for α, k = 1, · · · , p and
α 6= k. There are two commonly used rules to combine the results: AND-rule ({α, k} ∈ E
iff η̂αk 6= 0 and η̂kα 6= 0) or OR-rule ({α, k} ∈ E iff η̂αk 6= 0 or η̂kα 6= 0) (Hastie et al., 2015).
As discussed in Section 4.2 in Chen et al. (2015), when the αth and kth nodes are of the
same type (same marginal distribution) or are both non-Gaussian, there is no clear reason
to prefer one edge estimate over the other. We adopt the AND-rule in all simulations and
real data examples.

3. Algorithm

In this section, we propose a computational algorithm that solves (10) iteratively. Denote
θ1 = (θ1, · · · , θp)T , θ2 = (θα1, · · · , θα(α−1), θα(α+1), · · · , θαp)T , and w = (wα1, · · · , wα(α−1),

wα(α+1), · · · , wαp)T . Let H(j) = H0
(j)⊕H

1
(j) where H0

(j) is a finite-dimensional space contain-
ing functions that are not subject to L2 penalty. Denote φj1, · · · , φjmj as basis functions
of H0

(j), and R1
j , Rj , and Rαk as reproducing kernels of H1

(j), H(j), and H(αk), respectively.
We collect all basis functions φjk for j = 1, · · · , p and k = 1, · · · ,mj and denote them as
φ = (φ1, · · · , φm)T , a vector of functions of x with dimension m =

∑p
j=1mj .

Since in general the minimization problem (10) does not have a solution in a finite-
dimensional space, as in Gu (2013), we approximate the solution by a subset of representers.
Specifically, let {x̃u = (x̃u,1, · · · , x̃u,p), u = 1, · · · , q} be a subset of all observations {xi, i =
1, · · · , n}. Let ξ1ju(xj) = R1

j (x̃u,j , xj) and ξαku(xα, xk) = Rαk((x̃u,α, x̃u,k), (xα, xk)) for u =

1, · · · , q, k = 1, · · · , p, and k 6= α. Let ξθ1,u(x) =
p∑
j=1

θjξ1ju(xj), ξθ1(x) = (ξθ1,1, · · · , ξθ1,q)T ,

ξθ2,u(x) =
p∑

k=1,k 6=α
w−1
αk θαkξαku(xα, xk), ξθ2(x) = (ξθ2,1, · · · , ξθ2,q)T , and ξ(x) = ξθ1(x) +
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ξθ2(x). The approximate solution can be represented as a linear combination of basis
functions and representers:

ĝ(x) =
m∑
v=1

dvφv(x) +

q∑
u=1

cu


p∑
j=1

θjξ1ju(xj) +

p∑
k=1,k 6=α

w−1
αk θα,kξαku(xα, xk)


= φT (x)d+ ξT (x)c, (11)

where c = (c1, · · · , cq)T and d = (d1, · · · , dm)T are coefficients. Let Q =
p∑
j=1

θjQj +

p∑
k=1,k 6=α

w−1
αk θαkQαk, where Qj =

{
R1
j (x̃u,j , x̃v,j)

}q
u,v=1

are kernel matrices for the main

effects and Qαk =
{
Rαk((x̃u,α, x̃u,k), (x̃v,α, x̃v,k))

}q
u,v=1

are kernel matrices for the two-way

interactions. We can rewrite (10) in a vector form:

A(c,d,θ2) = log

{
1

n

n∑
i=1

e−φ
T

i d−ξ
T

i c

}
+ bTφd+ bTξc+

λ1

2
cTQc+ λ2w

Tθ2, (12)

where φi = φ(xi), ξi = ξ(xi), bφ = n−1
n∑
i=1

∫
Xα φ(xαi )ρ(xαi )dxα, and

bξ = n−1
n∑
i=1

∫
Xα ξ(xαi )ρ(xαi )dxα. We solve (12) by updating c, d, and θ2 between two steps

discussed in the following two subsections.

3.1 Newton-Raphson Procedure

We fix θ2 and update c and d at this step. Dropping the last term which is independent of
c and d, (12) reduces to

A1(c,d) = log

{
1

n

n∑
i=1

e−φ
T

i d−ξ
T

i c

}
+ bTφd+ bTξc+

λ1

2
cTQc. (13)

Note that (13) has the same form as (10.31) in Gu (2013). Therefore, we can solve (13)
using the Newton-Raphson procedure with λ1 and θ1 selected by the approximate cross-
validation (ACV) method (Gu, 2013). We note that θ2 are fixed at this step. Therefore,
the existing function in the gss R package cannot be used directly. More implementation
details can be found in Appendix B.1.

3.2 Quadratic Programming

We fix c, d, λ1 and θ1 and update θ2 at this step. We rewrite ĝ in (11) as

ĝ(x) =

m∑
v=1

dvφv(x) +

p∑
j=1

θj

q∑
u=1

cuξ1ju(xj) +

p∑
k=1,k 6=α

θαkw
−1
αk

q∑
u=1

cuξαku(xα, xk)

= φT (x)d+ψT1 (x)θ1 +ψT2 (x)θ2. (14)

8



Nonparametric neighborhood selection in graphical models

Let Q(2) =
p∑

k=1,k 6=α
w−1
αk θαkQαk. Plugging ĝ(xi) and keeping terms involving θ2 only, (12)

reduces to

log

{
1

n

n∑
i=1

e−φ
T

i d−ψ
T

1iθ1−ψ
T

2iθ2

}
+ bTψ2

θ2 +
λ1

2
cTQ(2)c+ λ2w

Tθ2 (15)

subject to θ2 ≥ 0, whereψ1i = ψ1(xi), ψ2i = ψ2(xi), and bψ2
= 1

n

n∑
i=1

∫
Xα ψ2(xαi )ρ(xαi )dxα.

Furthermore, the constraint minimization problem (15) is equivalent to

A2(θ2) = log

{
1

n

n∑
i=1

e−φ
T

i d−ψ
T

1iθ1−ψ
T

2iθ2

}
+ bTψ2

θ2 +
λ1

2
cTQ(2)c (16)

subject to θ2 ≥ 0 and wTθ2 ≤ M for some constant M , where M controls the sparsity in
θ2. We note that A2(θ2) is a convex function of θ2 (see Appendix C for a brief proof). We
solve (16) iteratively using quadratic programming. We apply K-fold cross-validation or
BIC method to select M . Implementation details can be found in Appendix B.2.

3.3 Algorithm

We summarize the whole algorithm as follows. A parameter with superscript (t) denotes
its value at the tth iteration.

Algorithm 1

Input: Data frame X containing n observations with p dimensions.
Output: Estimated c, d, θ2, and the neighborhood set nbG(α).

1: Initialization θ
(1)
2 = θ2,0, θ

(0)
2 = 0, and t = 1.

2: while ||θ(t)
2 − θ

(t−1)
2 ||2/(||θ(t−1)

2 ||2 + 10−6) ≥ ε or t = 1 do:

3: Fix θ
(t)
2 ,

c(t),d(t) ← argmin
c,d

A1(c, d)

with tuning parameters λ
(t)
1 and θ

(t)
1 selected by the ACV method.

4: Fix d(t), c(t), λ
(t)
1 , and θ

(t)
1 ,

θ
(t+1)
2 ← argmin

θ2

A2(θ2),

subject to θ2 ≥ 0 and wTθ2 ≤ M (t) where the tuning parameter M (t) is selected by
K-fold cross-validation or BIC method.

5: t← t+ 1
6: end while

More implementation details can be found in Appendix B, including the initialization
of θ2, the convergence criterion, and the selection of M .

9
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4. Theoretical Analysis

In this section, we study the theoretical properties of the proposed method. Following simi-
lar steps and under the same regularity conditions as Gu (2013), we derive the convergence
rate for the conditional density estimate ĝ subject to both L1 and L2 penalties. In addition,
we derive the convergence rate for interactions in the SS ANOVA decomposition, which is
new and important for edge detection.

Let f0(xα|x\{α}) = eg0(x)ρ(x) be the true conditional density to be estimated. Let

g = g(1) + g(2) where g(1) =
p∑
j=1

ηj and g(2) =
∑
k 6=α

ηαk are main effects and interactions

respectively. Denote ĝ as the minimizer of (9). Define

V ∗(h1, h2) =

∫
X\{α}

f\{α}(x\{α})

∫
Xα
h1(x)h2(x)ρ(x)dxαdx\{α},

J1(h1, h2) =

p∑
j=1

θ−1
j

∫
Xj

(Pjh1)(Pjh2)dxj ,

J2(h1, h2) =
∑
k 6=α

wαk(

∫
Xα

∫
Xk
|h1,αkh2,αk|dxαdxk)1/2,

J∗2 (h1, h2) =
∑
k 6=α

θ−1
αk

∫
Xα

∫
Xk
h1,αkh2,αkdxαdxk,

for any functions h1, h2 ∈ G, where f\{α}(x\{α}) is the density of X\{α} on X\{α} =

X1 × · · · × Xα−1 × Xα+1 × · · · × Xp. Furthermore, we define V ∗(g) = V ∗(g, g), V1(g(1)) =

V ∗(g(1)), V2(g(2)) = [V ∗(g(2))]1/2, J1(g(1)) = J1(g(1), g(1)) =
p∑
j=1

θ−1
j ||Pjηj ||2, J2(g(2)) =

J2(g(2), g(2)) =
∑
k 6=α

wαk||ηαk||, and J∗2 (g(2)) = J∗2 (g(2), g(2)) =
∑
k 6=α

θ−1
αk ||ηαk||

2.

Without loss of generality, we assume wαk = 1 in the proof, simulations, and real data
examples. We note that V ∗, J1, and J∗2 are quadratic functionals. In the proof of Corollary
1 in Appendix C, it is shown that V ∗(g), J1(g(1)), and J∗2 (g(2)) are equivalent to ||g||22,
p∑
j=1
||Pjηj ||22, and

p∑
k 6=α
||ηαk||22, respectively, where || · ||2 is the L2 norm. It is also shown

that V2(g(2)) and J2(g(2)) are equivalent to the square root of V ∗(g(2)) and J∗2 (g(2)). Let
V (g) = V1(g(1))+V2(g(2)), J = J1+J2, and J∗(g) = J1(g)+J∗2 (g). To derive the convergence
rate, we need the following conditions.

Condition 1 V ∗ is completely continuous with respect to J∗.

From Theorem 3.1 of Weinberger (1974), there exist eigenvalues γv of J∗ with respect to
V ∗ and the associated eigenfunctions ζv such that V ∗(ζv, ζu) = δv,u and J∗(ζv, ζu) = γvδv,u,
where 0 ≤ γv ↑ ∞ and δv,u is the Kronecker delta. Functions satisfying J∗(g) < ∞ can be
expressed as a Fourier series expansion g =

∑
v
avζv, where av = V ∗(g, ζv) are the Fourier

coefficients.

10
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Condition 2 For v sufficiently large and some ϕ > 0, the eigenvalues γv of J∗ with respect
to V ∗ satisfy γv > ϕvr where r > 1.

Consider the quadratic functional

1

n

n∑
i=1

−e−g0(Xi)g(Xi) +
1

n

n∑
i=1

∫
Xα
g(xαi )ρ(xαi )dxα +

1

2
V ∗(g − g0) +

λ1

2
J∗(g), (17)

and denote the minimizer of (17) as g̃. Plugging the Fourier series expansions g =
∑
v
avζv

and g0 =
∑
v
av,0ζv into (17), g̃ has Fourier coefficients ãv = (κv + av,0)/(1 + λ1γv), where

κv = n−1
n∑
i=1
{e−g0(Xi)ζv(Xi)−

∫
Xα ζv(x)ρ(x)dxα}. It is not difficult to verify that E(κv) = 0

and E(κ2
v) ≤ n−1

∫
X\{α}

f\{α}(x\{α})
∫
Xα ζ

2
v (x)e−g0(x)ρ(x)dxαdx\{α}.

Condition 3 For some c1 <∞, e−g0 < c1.

Under Condition 3, noting that V ∗(ζv) =
∫
X\{α}

f\{α}(x\{α})
∫
Xα ζ

2
v (x)ρ(x)dxαdx\{α} =

1 by the definition of V ∗ and ζv, we have E(κ2
v) ≤ n−1c1.

Condition 4 For g in a convex set B0 around g0 containing ĝ and g̃, c2 < eg0−g < c3 holds
uniformly for some 0 < c2 < c3 <∞.

Condition 5 For any u, v = 1, 2, · · · ,
∫
X\{α}

f\{α}(x\{α})
∫
Xα ζ

2
vζ

2
ue
−g0ρ(x)dxαdx\{α} < c4

for some c4 <∞.

Conditions 1-5 are common assumptions for convergence rate analysis of the SS ANOVA
estimates, which were also made in Gu (2013). Condition 2 states that the growth rate of
the eigenvalues γv is at vr, which controls how fast λ1 approaches zero. Many commonly
used smoothing spline models, including tensor products of cubic splines, thin-plate splines,
and spherical splines, satisfy Conditions 1 and 2. See Chapter 9 in Gu (2013) for examples.
Condition 4 bounds eg0−g at g in a convex set B0 around g0. Condition 5 requires a bounded
fourth moment of ζv.

We consider metrics V ∗ + λ1J
∗ and V + λ1J . Let Y > 0, we denote X = Op(Y ) if

P (|X| > CY ) → 0 for some constant C < ∞, and denote X = op(Y ) if P (|X| > εY ) → 0
for ∀ε > 0.

Theorem 1 Assume
∑
v
γlva

2
v,0 < ∞ for some l ∈ [1, 2]. Under Conditions 1-5, for some

r > 1, as λ1 → 0 and nλ
2/r
1 →∞,

(V ∗ + λ1J
∗)(ĝ − g0) = Op(n

−1λ
−1/r
1 + λl1).

Theorem 2 Under the conditions in Theorem 1,

(V + λ1J)(ĝ − g0) = Op(n
−1/2λ

−1/2r
1 + λ

l/2
1 ).

11
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Corollary 1 Assume conditions in Theorem 2 hold, 0 < c5 < ρ(x) < c6 and 0 < c7 <
f\{α}(x\{α}) < c8 for some positive constants c5, c6, c7, and c8, we have

||η̂αk − η0αk||2 = Op(n
−1/2λ

−1/2r
1 + λ

l/2
1 ), k 6= α, k = 1, · · · , p,

where η0αk are two-way interactions in the true function g0.

We note that V + λ1J and V ∗ + λ1J
∗ are associated with the L2 norm and its square,

respectively. Consequently, the convergence rate in Theorem 2 is the square root of the rate
in Theorem 1. Corollary 1 holds because V2 and J2 associated with two-way interactions
are equivalent to the L2 norm. Consequently, two-way interactions under the L2 norm have
the same convergence rate as that in Theorem 2. We only show the convergence rate for
interactions in Corollary 1 since we are mainly interested in edge selection. Proofs of all
theoretical results are in Appendix C.

5. Simulation Results

We conduct simulations to evaluate the performance of the proposed method and compare it
with some existing methods. We consider four scenarios: multivariate Gaussian, multivari-
ate skewed Gaussian, a directed acyclic graph, and a Gaussian-Bernoulli mixed graphical
model.

In implementing the proposed method, we estimate the conditional density for each
continuous variable on the data range and transform the data into [0, 1]. We construct
an SS ANOVA model using the tensor product of cubic spline models. Specifically, let
H(j) = W 2

2 [0, 1] where

W 2
2 [0, 1] =

{
f : f, f ′ are absolutely continuous,

∫ 1

0
(f ′′)2dx <∞

}
(18)

is the Sobolev space for cubic spline models. EachH(j) can be decomposed asH(j) = {1(j)}⊕
H(j) and H(j) = H0

(j) ⊕ H
1
(j), where H0

(j) and H1
(j) are RKHS’s with reproducing kernels

R0
j (x, z) = k1(x)k1(z) and R1

j (x, z) = k2(x)k2(z)− k4(|x− z|) respectively, k1(x) = x− 0.5,

k2(x) = 1
2(k2

1(x) − 1
12), and k4(x) = 1

24(k4
1(x) − k21(x)

2 + 7
240). SS ANOVA decomposition

of
p⊗
j=1
H(j) can then be constructed based on these decompositions. More details can be

found in Wang (2011). In all simulations and real data applications, when using the pseudo
log-likelihood method, we set

ρ(xα,x\{α}) =
φ((xα − µ(x\{α}))/σ)

Φ((1− µ(x\{α}))/σ)− Φ((−µ(x\{α}))/σ)
, (19)

where φ(·) and Φ(·) are the standard normal density and cumulative distribution functions,
and µ(·) and σ are estimated by fitting a nonparametric regression model in model space (4)
with covariates x\{α}. More estimation details can be found in Chapter 3 of Gu (2013). We
select the tuning parameter M using the 5-fold cross-validation method in all simulations.

For the first three scenarios where all variables are continuous, we compare the pro-
posed method with four existing parametric and semiparametric methods: space (Sparse

12
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PArtial Correlation Estimation) (Peng et al., 2009), QUIC (QUadratic Inverse Covariance
estimation) (Hsieh et al., 2011), nonparanormal (NPN) (Liu et al., 2009), and SpaCE JAM
(Voorman et al., 2014). Due to memory constraints, we will not compare the proposed
method with the nonparametric joint density estimation method in Gu et al. (2013).

The space method assumes that E(X) = 0 and Cov(X) = Σ. Denote the precision
matrix Ω = Σ−1 = (σij)p×p and ρij = −σij/

√
σiiσjj as the partial correlation between Xi

and Xj . Denote x(i) = (x1,i, · · · , xn,i)T as the vector of n observations on the ith variable,
i = 1, · · · , p. Peng et al. (2009) solved the following regularization problem for edge selection

1

2

( p∑
i=1

wi||x(i) −
∑
j 6=i

ρij
√
σjj

σii
x(j)||2

)
+ λ

∑
1≤i<j≤p

|ρij |, (20)

where wi’s are non-negative weights. We implement the space method using the R package
space with weights wi = 1 and tuning parameter λ selected by the 5-fold cross-validation
method (Lafit et al., 2019).

The QUIC method assumes that X is multivariate Gaussian and learns the precision
matrix Ω by solving the following penalized negative log-likelihood

−log det(Ω) + tr(SΩ) + λ||Ω||1, (21)

where || · ||1 is the L1 penalty, S is the sample covariance matrix, and λ is the tuning
parameter. We implement the QUIC method using the R package QUIC and select λ using
the BIC method.

The NPN method assumes that there exists some monotone functions f1, · · · , fp such
that f(X) ∼ N (µ,Σ) where f(X) = (f1(X1), · · · , fp(Xp))

T . The NPN is a semiparametric
model since it consists of parameters µ and Σ and nonparametric transformations f ’s.
The graphical lasso is applied to the transformed data to estimate the undirected graph.
Estimation details were given in Liu et al. (2009). We use the R package huge to implement
the NPN method with the tuning parameter selected by an extended BIC score (Foygel and
Drton, 2010).

The SpaCE JAM method models the conditional mean using additive models:
E(Xj |X\{j}) =

∑
k 6=j

fjk(Xk) where fjk(·) belongs to a functional space F (Voorman et al.,

2014). The functions fjk are estimated as the minimizers of the following least squares with
a group lasso type penalty:

argminfjk∈F

 1

2n

p∑
j=1

||x(j) −
∑
k 6=j

sjk||22 + λ
∑
k>j

(
||sjk||22 + ||skj ||22

)1/2 , (22)

where sjk = (fjk(x1,k), · · · , fjk(xn,k))T and skj = (fkj(x1,j), · · · , fkj(xn,j))T . We imple-
ment the SpaCE JAM method using the R package spacejam (Voorman et al., 2014) with
cubic basis functions for non-linear conditional relationships among variables. The tuning
parameter λ is selected by the BIC method.

The last scenario comes from Chen et al. (2015), where half of the variables are Gaussian
and half are Bernoulli. Chen et al. (2015) assumed a parametric mixed graphical model

13



Dong and Wang

where each node’s conditional distribution is in the exponential family. Specifically, they
considered conditional densities of the form

f(xα|x\{α}) = exp

hα(xα,βα) +
∑
k 6=α

γαkxαxk −Dα($α(x\{α},Γα,βα))

 , (23)

where hα is a known function of xα with parameters βα and $α is a known function
of x\{α} with parameters Γα = (γα1, · · · , γα(α−1), γα(α+1), · · · , γαp)T and βα. Chen et al.
(2015) selected the neighborhood set by maximizing the following penalized log-likelihoods
for each node:

arg min
Γα,βα

− lα(Γα,βα;X) + λ||Γα||1, (24)

where lα is the log-likelihood function. We refer to the method in Chen et al. (2015) as
the CEF (Conditional Exponential Family) method. We implement the CEF method using
author’s R codes deposited at https://github.com/ChenShizhe/MixedGraphicalModels.
We select the tuning parameter λ using the BIC method.

We note that space and CEF are neighborhood selection methods while QUIC, NPN,
and SpaCE JAM are global methods. To evaluate the performance of edge detection, we
compute three criteria: specificity (SPE), sensitivity (SEN), and F1 scores, which are defined
as follows:

SPE =
TN

TN + FP
, SEN =

TP

TP + FN
, F1 =

2TP

2TP + FN + FP
,

where TP, TN, FP, and FN are the numbers of true positives, true negatives, false positives
and false negatives.

We set dimension p = 20 and consider two sample sizes n = 150 and n = 300. All
simulations are repeated for 100 times.

5.1 Multivariate Gaussian

In this section, we generate data from Gaussian distributions with different precision ma-
trices. We first use huge.generator function to randomly generate a p× p sparse precision
matrix Ω, where the probability poff of the off-diagonal elements being nonzero is equal to
0.2 or 0.4. Then, we generate n i.i.d. samples X1, · · · ,Xn from N (0,Ω−1). We apply the
proposed method and compare its performance with the space, QUIC, NPN, and SpaCE
JAM methods.

Table 1 presents averages and standard deviations of the sensitivity, specificity, and F1

score. In general, the performances of all methods are better for the larger sample size.
In most settings, all methods perform better when the precision matrix is sparser (i.e.
poff = 0.2). Different methods have different trade-offs between sensitivity and specificity.
Overall, the NPN method has inferior performance compared to other methods, which is
expected since the true distribution is Gaussian. In general, the SpaCE JAM performs
better than QUIC in specificity and F1 score. This result agrees with the observations of
Voorman et al. (2014) that SpaCE JAM tends to outperform the NPN and graphical lasso
methods. The space method has a similar performance as the SpaCE JAM. Unexpectedly,
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even in this Gaussian case, the proposed method has larger sensitivities and F1 scores
and reasonable specificities compared to other methods. Therefore, the proposed method
is efficient in edge detection and performs better with a more balanced trade-off between
specificity and sensitivity even under this multivariate Gaussian scenario.

Proposed Method space QUIC NPN SpaCE JAM

SPE SEN F1 SPE SEN F1 SPE SEN F1 SPE SEN F1 SPE SEN F1

poff = 0.2

n=150 0.912 0.968 0.834 0.986 0.654 0.762 0.768 0.964 0.666 0.820 0.751 0.521 0.939 0.798 0.776

(0.028) (0.037) (0.050) (0.011) (0.096) (0.075) (0.036) (0.034) (0.042) (0.108) (0.402) (0.281) (0.035) (0.147) (0.068)

n=300 0.929 0.998 0.870 0.989 0.869 0.907 0.813 0.982 0.712 0.762 0.995 0.668 0.945 0.954 0.875

(0.026) (0.008) (0.046) (0.01) (0.059) (0.04) (0.032) (0.025) (0.04) (0.042) (0.016) (0.042) (0.022) (0.041) (0.037)

poff = 0.4

n=150 0.866 0.815 0.807 0.969 0.461 0.599 0.668 0.797 0.691 0.793 0.617 0.474 0.945 0.508 0.608

(0.040) (0.066) (0.046) (0.013) (0.062) (0.058) (0.047) (0.058) (0.030) (0.142) (0.411) (0.312) (0.025) (0.135) (0.126)

n=300 0.883 0.968 0.903 0.961 0.564 0.681 0.689 0.827 0.717 0.673 0.951 0.706 0.905 0.704 0.727

(0.042) (0.027) (0.028) (0.015) (0.058) (0.049) (0.043) (0.046) (0.026) (0.039) (0.036) (0.021) (0.031) (0.128) (0.076)

Table 1: Averages and standard deviations (in parentheses) of specificity (SPE), sensitivity (SEN),
and F1 score for the multivariate Gaussian scenario.

5.2 Multivariate Skewed Gaussian

In this section, we consider the scenario when X follows a multivariate skewed Gaussian
distribution with density function (Azzalini and Valle, 1996)

f(x) = 2φp(x;µ,Σ)Φ(aTx), (25)

where φp(x;µ,Σ) is the p-dimensional normal density with mean µ and covariance matrix Σ,
Φ(·) is the cumulative distribution function of the standard Gaussian distribution, and a is
a p-dimensional vector that controls the skewness of the multivariate Gaussian distribution.
When a = 0, the distribution reduces to the multivariate Gaussian distribution. We set
a = a1 and consider two choices of a: a = 1 and a = 4, where 1 is a p-dimensional vector
of all ones. We let µ = 0.51 and randomly generate Σ−1 as a p × p matrix, where the
probability of the off-diagonal elements being nonzero equals 0.4. True edges correspond to
nonzero off-diagonal elements of the precision matrix Σ−1.

Table 2 presents averages and standard deviations of sensitivity, specificity, and F1

score. All methods have better performances under the larger sample size. Again, different
methods have different trade-offs between sensitivity and specificity. The space, NPN, and
SpaCE JAM methods have small sensitivities and F1 scores when n = 150. As expected,
the proposed method has the best overall performance with significantly larger sensitivity
and F1 score and reasonable specificity.
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Proposed Method space QUIC NPN SpaCE JAM

SPE SEN F1 SPE SEN F1 SPE SEN F1 SPE SEN F1 SPE SEN F1

a = 1

n=150 0.892 0.854 0.847 0.957 0.302 0.440 0.688 0.798 0.704 0.873 0.332 0.286 0.926 0.378 0.486

(0.039) (0.058) (0.044) (0.023) (0.053) (0.060) (0.041) (0.055) (0.027) (0.160) (0.412) (0.352) (0.039) (0.160) (0.164)

n=300 0.927 0.976 0.937 0.949 0.470 0.608 0.718 0.827 0.737 0.668 0.932 0.769 0.845 0.728 0.739

(0.034) (0.022) (0.025) (0.027) (0.061) (0.061) (0.045) (0.047) (0.027) (0.049) (0.047) (0.024) (0.088) (0.133) (0.069)

a = 4

n=150 0.898 0.860 0.854 0.958 0.299 0.438 0.692 0.800 0.707 0.861 0.357 0.306 0.929 0.384 0.493

(0.034) (0.056) (0.040) (0.023) (0.054) (0.063) (0.040) (0.055) (0.027) (0.164) (0.415) (0.355) (0.037) (0.161) (0.166)

n=300 0.917 0.979 0.931 0.950 0.473 0.610 0.772 0.828 0.739 0.673 0.934 0.773 0.834 0.748 0.745

(0.034) (0.019) (0.026) (0.026) (0.060) (0.059) (0.041) (0.047) (0.027) (0.049) (0.045) (0.023) (0.103) (0.140) (0.067)

Table 2: Averages and standard deviations (in parentheses) of specificity (SPE), sensitivity (SEN),
and F1 score for the multivariate skewed Gaussian scenario.

5.3 Directed Acyclic Graph

It is generally difficult to construct a flexible multivariate nonparametric distribution, as
discussed in Section 2 in Voorman et al. (2014). To overcome this problem, we use the same
approach in Voorman et al. (2014) to generate a graphical model using a directed acyclic
graph (DAG) and conditional distributions. We use the rdag function in the spacejam

package to create a DAG of X and denote ED as the directed edge set. The conditional
relationships among variables can be created via E(Xj |X\{j}) =

∑
k 6=j

fjk(Xk). The distri-

bution of X is usually not a well-known multivariate distribution except for the particular
case when all fjks are linear for multivariate Gaussian distribution.

We decompose XT = (Y T ,ZT ) where Y and Z are random vectors of dimensions 5
and 15 respectively. We first generate a DAG with p = 20 nodes and m edges selected at
random from all possible p(p− 1)/2 possible edges. We consider two choices of m: m = 20
and m = 40. Given a DAG, we generate data as follows:

Zj |{Zk, Ys : {k, j}, {s, j} ∈ ED} =
∑

{k,j}∈ED

f
(1)
jk (Zk) +

∑
{s,j}∈ED

f
(1)
js (Ys) + εj

Yj |{Yk : {k, j} ∈ ED} =
∑

{k,j}∈ED

f
(2)
jk (Yk) + εj ,

where εj ’s are i.i.d. random noises from the standard normal distribution, f
(1)
jk (t) = b

(1)
jk,1t

with b
(1)
jk,1 generated from the standard Gaussian distribution, and f

(2)
jk (t) = b

(2)
jk,1t+b

(2)
jk,2t

2 +

b
(2)
jk,3t

3 with b
(2)
jk,1, b

(2)
jk,2 and b

(2)
jk,3 independently generated from the Gaussian distributions

with mean zero and variances 1, 0.3, and 0.1, respectively.
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Simulation results are shown in Table 3. The performances of all methods are better
when the sample size is larger. Different methods have different trade-offs between sen-
sitivity and specificity. Since data are generated according to a model assumed by the
SpaCE JAM method, as expected, the SpaCE JAM method performs better in F1 score
than the space, QUIC, and NPN methods. Remarkably, in all cases, the proposed method
has larger F1 scores than all methods, including the SpaCE JAM. It is interesting to note
that the denser graph (i.e. m = 40) reduces the sensitivity of the proposed method and the
specificity of the SpaCE JAM method.

Proposed Method space QUIC NPN SpaCE JAM

SPE SEN F1 SPE SEN F1 SPE SEN F1 SPE SEN F1 SPE SEN F1

m = 20

n = 150 0.970 0.835 0.840 0.997 0.588 0.730 0.808 0.838 0.588 0.83 0.791 0.588 0.963 0.697 0.736

(0.020) (0.074) (0.066) (0.004) (0.084) (0.068) (0.034) (0.079) (0.050) (0.066) (0.125) (0.054) (0.019) (0.079) (0.062)

n = 300 0.984 0.917 0.915 0.998 0.631 0.767 0.859 0.854 0.660 0.818 0.894 0.629 0.979 0.716 0.786

(0.013) (0.064) (0.050) (0.003) (0.075) (0.058) (0.035) (0.079) (0.055) (0.041) (0.082) (0.052) (0.057) (0.089) (0.072)

m = 40

n = 150 0.970 0.598 0.725 0.984 0.359 0.517 0.705 0.671 0.627 0.671 0.708 0.634 0.690 0.710 0.643

(0.020) (0.064) (0.05) (0.012) (0.039) (0.041) (0.039) (0.053) (0.031) (0.042) (0.060) (0.031) (0.111) (0.112) (0.044)

n = 300 0.985 0.685 0.800 0.982 0.430 0.587 0.740 0.673 0.645 0.707 0.724 0.662 0.654 0.814 0.692

(0.014) (0.067) (0.049) (0.013) (0.054) (0.050) (0.046) (0.049) (0.036) (0.045) (0.048) (0.038) (0.07) (0.051) (0.031)

Table 3: Averages and standard deviations (in parentheses) of specificity (SPE), sensitivity (SEN),
and F1 score for the directed acyclic graph scenario.

5.4 Gaussian-Bernoulli Mixed Graphical Model

In this section, we consider a mixed graphical model used in Section 6.1 of Chen et al.
(2015). The graph used to generate the data is shown in Figure 1 of Chen et al. (2015).
Specifically, there are m Gaussian nodes labeled as 1, · · · ,m and m Bernoulli nodes labeled
as m + 1, · · · , 2m. For j = 1, · · · ,m, the jth and (j + m)th node are connected to its
adjacent nodes of the same type, and the jth node and the (j + m)th node are connected
to each other. Consider the following model

f(x) ∝ exp


p∑
j=1

hj(xj) +
1

2

p∑
k=1

∑
j 6=k

γjkxjxk

 , (26)

where hj is the node potential and γjk are edge potentials. The edge potentials γjk and γkj
are generated as

γjk = γkj = yjkrjk, P (yjk = 1) = P (yjk = −1) = 0.5, rjk ∼ Unif(0.3, 0.6),
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and γjk = γkj = 0 if (j, k) /∈ E. Gibbs sampling is employed to sample data from (26).
In this simulation scenario, we compare the proposed method with the CEF method only
since it performed better than other existing methods for mixed data (Chen et al., 2015).

Proposed Method CEF

SPE SEN F1 SPE SEN F1

n = 150 0.897 0.752 0.656 0.947 0.450 0.509

(0.021) (0.053) (0.044) (0.020) (0.015) (0.035)

n = 300 0.900 0.804 0.675 0.934 0.467 0.504

(0.022) (0.042) (0.039) (0.021) (0.017) (0.032)

Table 4: Averages and standard deviations (in parentheses) of specificity (SPE), sensitivity (SEN),
and F1 score for the Gaussian-Bernoulli mixed graphical model.

Table 4 shows that the proposed and the CEF methods have different trade-offs between
sensitivity and specificity. The proposed method has better sensitivity, while the CEF
method has better specificity. The proposed method has slightly better F1 scores.

6. Applications

We illustrate our neighborhood selection method using two real datasets. Section 6.1 applies
our method to Arabidopsis Thaliana gene expression data and compares the estimated graph
with those from space, QUIC, NPN, and SpaCE JAM. In addition, we present a diagnostic
procedure for some existing methods. Section 6.2 illustrates our method using a dataset
with mixed data types.

6.1 Isoprenoid Gene Network in Arabidopsis Thaliana

In this section, we consider the gene expression data for Arabidopsis thaliana, an impor-
tant plant species in molecular biology and genetics studies. There are n = 118 observa-
tions of Affymetrix GeneChip microarrays in the dataset, where a subset of p = 39 genes
from the isoprenoid pathway is selected for analysis. The dataset was introduced in Wille
et al. (2004) and was downloaded at https://www.ncbi.nlm.nih.gov/pmc/articles/

PMC545783/. Lafferty et al. (2012) analyzed this dataset using the nonparanormal method.

All observations are preprocessed by log-transformation and standardization as in Laf-
ferty et al. (2012). Using the proposed method, we build a graph for all 39 gene expression
levels and compare its structure with those from space, QUIC, NPN, and SpaCE JAM.
Wille et al. (2004) stated that the Gaussian graphical model selection with the BIC choice
of the tuning parameter usually detects too many edges for biologically-relevant analysis.
Therefore, we limit the number of edges in the graph by controlling the regularization pa-
rameters as in Lafferty et al. (2012). Specifically, we tune M such that the number of edges
|E| = 52. Similarly, by tuning the regularization parameters in space, QUIC, NPN, and
SpaCE JAM, we select the graphs with the same number of edges |E| = 52.
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Figure 1: The estimated graph with 52 edges from the proposed (top left), the space (top middle),
the QUIC (top right), the NPN (bottom left), and the SpaCE JAM (bottom right) methods.

Figure 1 presents graphs with |E| = 52 for all methods. These five graphs have some
common edges, for example, edges 1-27, 1-33, 2-28, 2-30, 2-34, 2-35, 3-32, 3-33, 3-39,
5-37, 10-26, 10-33, 10-39, 11-36, 12-29, 12-30, 12-34, 12-35, 22-39, 23-33, 25-37,
28-34, 34-35, and 37-38. There are also some interesting differences. For instance, only
our proposed method detects edge 16-21. We now describe a general diagnostic procedure
that explains why other methods miss this edge.

We first extend the squared error projection in Gu (2013) for diagnostics on any sub-
spaces of Mα. Let

Ṽ (ĝ − g) =

∫
X\{α}

f\{α}(x\{α})

∫
Xα

{
(ĝ − g)(x)−

∫
Xα

(ĝ − g)(x)ρ(x)
}2
ρ(x)dxαdx\{α}

(27)

where ĝ ∈ Mα 	 {1}. We remove the constant functions from the model space since they
are not relevant to the diagnostics on interactions. Ṽ (ĝ − g) can be treated as a proxy of
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the symmetrized Kullback-Leibler distance (Gu, 2013). For any decompositionMα	{1} =

M0
α ⊕M1

α, the squared error projection of ĝ in M0
α is defined as g̃ = arg min

g∈M0
α

{
Ṽ (ĝ − g)

}
.

It can be shown that Ṽ (ĝ − gu) = Ṽ (ĝ − g̃) + Ṽ (g̃ − gu) when gu = −log ρ(x) ∈ M0
α. The

ratio Ṽ (ĝ − g̃)/Ṽ (ĝ − gu) represents the contribution of functions in subspace M1
α which

can be dropped when the ratio is small (Gu et al., 2013).

Now we apply the diagnostic procedure to explain why our proposed method detects edge

16-21, which is missed by other methods. Note that the interaction space H(αk) = H(0)
(αk)⊕

H(1)
(αk)⊕H

(2)
(αk)⊕H

(3)
(αk) where H(0)

(αk) = H0
(α)⊗H

0
(k), H

(1)
(αk) = H0

(α)⊗H
1
(k), H

(2)
(αk) = H1

(α)⊗H
0
(k),

and H(3)
(αk) = H1

(α) ⊗ H
1
(k) correspond to linear-linear, linear-smooth, smooth-linear, and

smooth-smooth interactions (Wang, 2011). The QUIC and space are special cases with

ηαk ∈ H
(0)
(αk), and the SpaCE JAM is a special cases with ηαk ∈ H

(0)
(αk) ⊕H

(1)
(αk). Therefore,

for diagnostics of QUIC and SpaCE JAM methods, we consider the contribution of M1
α =

Mα	{1}	H(0)
(αk) and the contribution ofM1

α =Mα	{1}	H(0)
(αk)	H

(1)
(αk), respectively. For

edge 16-21, we have Ṽ (ĝ−g̃)/Ṽ (ĝ−gu) = 0.352 for QUIC and Ṽ (ĝ−g̃)/Ṽ (ĝ−gu) = 0.340 for
SpaCE JAM, respective. These non-ignorable contributions suggest that the assumptions
of the QUIC and SpaCE JAM methods are likely violated.

6.2 Conditional Dependence Among Demographic, Clinical, Laboratory and
Treatment Variables of Hemodialysis Patients

In this section, we illustrate the application of the proposed methods to mixed binary and
continuous variables using a data set collected from hemodialysis patients. The data include
patients who received dialysis treatments during 2010-2014 and stayed at Fresenius Medical
Care - North America throughout their treatments. To reduce heterogeneity, we include
n = 2932 non-diabetic and non-Hispanic patients who used arteriovenous fistula for dialysis
access and survived longer than two years. We use the averages of measurements in the
second year of dialysis for analysis. We consider the following 23 variables: demographic
variables including race (white and non-white) and gender (male and female); clinical
variables including height (cm), weight (kg), sbp (systolic blood pressure, mmHg), dbp
(diastolic blood pressure, mmHg), and temp (temperature, Celsius); laboratory variables
including albumin (g/dL), ferritin (ng/mL), hgb (hemoglobin, g/dL), lymphocytes (%),
neutrophils (%), nlr (neutrophils to lymphocytes ratio, unitless), sna (serum sodium
concentration, mEq/L), wbc (white blood cell, 1000/mc); and treatment variables including
qb (blood flow, mL/min), qd (dialysis flow, mL/min), saline (mL), olc (on-line clear-
ance, unitless), idwg (interdialytic weight gain, kg), ufv (ultrafiltration volume, L), ufr
(ultrafiltration rate, mL/hr/kg), and epodose (erythropoietin dose, unit).

We have 2 binary variables, race and male, and 21 continuous variables. We apply the
logistic regression approach described in the Supplement to estimate the conditional density
of each binary variable and the pseudo log-likelihood to estimate the conditional density
of each continuous variable. We apply the BIC method to select the tuning parameter M .
The left panel in Figure 2 shows the estimated graph which contains some of the expected
dependencies between variables such as gender and height, weight and height, and sbp

and dbp. The link between ufv and idwg is also well-known (Uduagbamen et al., 2021).
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Many other edges corroborate with existing literature. For example, anemia is a common
complication of dialysis patients, and its management is a major challenge. A central aim of
anemia management is to maintain patients’ hemoglobin levels consistently within a target
range. Erythropoietin has been used to raise hemoglobin levels, which is revealed by the
edge between epodose and hgb. Serum albumin has been found to be strongly associated
with erythropoietin sensitivity (Agarwal et al., 2008), which is corroborated by the edge
between epodose and albumin. It has been found that black patients receive greater doses
of erythropoietin than white patients (Lacson et al., 2008), which is corroborated by the
edge between epodose and race. The estimated graph from our proposed method in Figure
2 (left panel) provides a holistic view of complex relationships between the demographic,
clinical, laboratory, and treatment variables and helps build new theories to be tested in
future studies. For comparison, we apply the CEF method to fit the Gaussian-Bernoulli
model (26) with the BIC choice of the tuning parameter to this data and show the resulting
graph on the right panel in Figure 2. The CEF method leads to a very dense graph.
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Figure 2: The estimated graph for dialysis data from the proposed (left) and the CEF (right)
methods.

7. Conclusion

This paper develops a fully nonparametric method for neighborhood selection in pairwise
graphical models. Since the range of each random variable is an arbitrary set, the proposed
method provides a unified framework for mixed data types. The proposed SS ANOVA
models are more general than existing parametric and semiparametric models. We de-
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velop penalized log-likelihood and pseudo log-likelihood methods with an L1 penalty to
select edges. As illustrated in Section 6.1, in addition to providing more flexible alter-
natives, the proposed method also serves as a new diagnostic tool for existing graphical
models. We establish convergence rates of the conditional density function estimate and
interaction components in the SS ANOVA decomposition. Simulation results show that
the proposed method is efficient in edge detection and performs well under Gaussian and
non-Gaussian situations. Applications to real data indicate that the proposed method could
detect edges that may provide new perspectives for researchers. We note that as a nonpara-
metric method, even though it is parallelizable, the proposed method takes much longer
CPU time than parametric and semiparametric methods compared in this paper.

We note that the proposed methods can be easily extended to select variables in non-
parametric conditional density estimation, which has not been studied to the best of our
knowledge. The proposed method can also be extended to incorporate prior knowledge of
the conditional density of a node using a model-based penalty or a semiparametric model
(Shi et al., 2019; Yu et al., 2020). For example, it may be known that the conditional density
of Xα is close to but not necessarily a Gaussian distribution. We may consider a quintic
thin-plate spline space for H(α) with a tensor sum decomposition H(α) = H0

(α)⊕H
1
(α), where

H0
(α) = {1(α), x(α), x

2
(α)} corresponds to the space for logistic density of a Gaussian distribu-

tion. The edge selection consistency and the control of false positives also warrant further
investigation.
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Appendix A. Penalized Log-likelihood Estimation

We describe the general penalized log-likelihood approach in Section A.1 and how it is
applied for binary variables in Section A.2.

A.1 Log-likelihood Approach for Conditional Density Estimation

In this section, we describe the log-likelihood approach for estimating conditional density
with L1 penalty. For identifiability, the constant and main effects of x\{α} are removed
from the model space. Specifically, the model space for η in (3) is assumed to be

M∗α =
{
H(α)

}
⊕

⊕
k 6=α

[H(α) ⊗H(k)]

 . (28)

A function η ∈M∗α can be decomposed as follows:

η(x) = ηj(xα) +
∑
k 6=α

ηαk(xα, xk), (29)

where each component in (29) belongs to the corresponding subspace in (28). We further
decompose H(α) as H(α) = H0

(α) ⊕H
1
(α) where H0

(α) is a finite-dimensional space containing
functions that are not subject to the L2 penalty. We estimate η by minimizing the following
penalized log-likelihood in M∗α:

l∗α +
λ1

2

(
θ−1
α ||Pαηα||2 +

∑
k 6=α

wαkθ
−1
αk ||ηαk||

2
)

+ λ2

∑
k 6=α

wαkθαk, (30)

where l∗α = −n−1
n∑
i=1

{
η(xi)− log

∫
Xα e

η(xα,xi,\{α})dxα

}
, and Pα is the projection operator

onto H1
(α). Let θ2 = (θα1, · · · , θα(α−1), θα(α+1), · · · , θαp)T , φα = (φα1, · · · , φαmα)T be a

vector of basis functions of H0
(α), ξu(x) = θαξ1αu(xα) +

p∑
k=1,k 6=α

w−1
αk θα,kξαku(xα, xk) for

u = 1, · · · , q, and ξ(x) = (ξ1(x), · · · , ξq(x))T .
Similar to (11), the approximate solution can be represented as

η̂(x) =

mα∑
v=1

dvφαv(x) +

q∑
u=1

cu

θαξ1αu(xα) +

p∑
k=1,k 6=α

w−1
αk θα,kξαku(xα, xk)


= φTα(x)d+ ξT (x)c, (31)

where c = (c1, · · · , cq)T and d = (d1, · · · , dmα)T . Plugging η̂(xi) in (31) into (30), we need
to compute c, d, and θ2 as the minimizers of

− 1

n

n∑
i=1

(φTα,id+ξTi c)+
1

n

n∑
i=1

log

∫
Xα
eφ

T

α (xα,xi,\{α})d+ξT (xα,xi,\{α})cdxα+
λ1

2
cTQc+λ2w

Tθ2

(32)
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subject to θ2 ≥ 0. Similar to the Algorithm in Section 3, we can update c, d, and θ2

sequentially. The estimate of θ2 provides the selection results. We skip the details here
because the derivation is similar to Section 3. The algorithm can be similarly implemented
as described in Appendix B. With minor changes in Conditions 1-5 and the definition of V ,
following similar steps in Appendix C, it can be shown that Theorem 1, Theorem 2, and
Corollary 1 hold for the log-likelihood approach with the same convergence rates.

A.2 Logistic Regression for Binary Variables

In this section, we consider the penalized log-likelihood approach for the special case when
xα is a binary variable taking values 0 or 1. Consider the logit function

ν(x) = log{f(1|x\{α})/f(0|x\{α})}
= η(1,x\{α})− η(0,x\{α})

= ηα(1)− ηα(0) +
∑
j 6=α
{ηαj(1, xj)− ηαj(0, xj)}

= 2ηα(1) + 2
∑
j 6=α

ηαj(1, xj)

, ς† +
∑
j 6=α

η†j(xj)

where the third equation comes from the SS ANOVA model (29), and fourth equation is
the consequence of the side conditions: ηα(1) + ηα(0) = 0 and ηαj(1, xj) + ηαj(0, xj) = 0 for
j 6= α. Therefore, ηαj(xα, xj) = 0 (i.e. there is no edge between xα and xj) is equivalent

to η†j(xj) = 0. Consequently, we can consider a logistic regression model with the following
model space for the function ν,

M†α = {1} ⊕

⊕
j 6=α
H†(j)

 , (33)

where η†j ∈ H
†
(j).

We write the conditional density f(xα|x\{α}) = exp{xαν(x) − log(1 + eν(x))}. Then,
the penalized log-likelihood function

− 1

n

n∑
i=1

{
xα,iν(xi)− log(1 + eν(xi))

}
+
λ1

2

∑
j 6=α
||η†j ||. (34)

Similar to Zhang et al. (2011), instead of (34), we will minimize the following equivalent
but more convenient form

− 1

n

n∑
i=1

{
xα,iν(xi)− log(1 + eν(xi))

}
+
λ1

2

∑
j 6=α

θ−1
j ||η

†
j ||

2 + λ2

∑
j 6=α

θj . (35)

We approximate the solution as described in Section 3. Denote the approximate solution

as ν̂(x) = d +
q∑

u=1
cu

{∑
j 6=α

θjξju(xj)

}
= d + ξT (x)c, where d ∈ R, ξju(xj) = Rj(x̃u,j , xj),
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and ξ(x) = (ξ1(x), · · · , ξq(x))T . Then, (35) reduces to

− 1

n

n∑
i=1

{
xα,i(d+ ξTi c)− log(1 + ed+ξTi c)

}
+
λ1

2
cTQc+ λ21

Tθ, (36)

subject to θ ≥ 0, where ξi = ξ(xi), Q =
{ ∑
j 6=α

θjRj(x̃u,j , x̃v,j)
}q
u,v=1

are defined similarly

as in Section 3, 1 is a p− 1 vector with all 1’s, and θ = (θ1, · · · , θα−1, θα+1, · · · , θp)T .

We need to compute c, d, and θ as minimizers of (36). Again, as the Algorithm in
Section 3, we estimate c, d, and θ alternatively. With fixed θ, dropping the last term which
is independent of c and d, (36) has the same form as (5.1) in Gu (2013). Therefore, we
update c and d using the Newton-Raphson procedure with λ1 selected by the generalized
approximate cross-validation (GACV) method (Gu, 2013).

With fixed c and d, we rewrite ν̂(x) = d+ψT (x)θ, where ψT (x) = (ψ†1, · · · , ψ
†
α−1,

ψ†α+1, · · · , ψ
†
p) and ψ†j =

q∑
u=1

cuξju(xj). Plugging ν̂(xi) into (35) and keeping terms involving

θ only, we have

− 1

n

n∑
i=1

{
xα,iψ

T
i θ − log(1 + ed+ψT

i θ)

}
+
λ1

2
cTQc+ λ21

Tθ, (37)

where ψi = ψ(xi). Furthermore, minimizing (37) is equivalent to minimizing

A(θ) = − 1

n

n∑
i=1

{
xα,iψ

T
i θ − log(1 + ed+ψT

i θ)

}
+
λ1

2
cTQc, (38)

subject to θ ≥ 0 and 1Tθ ≤ M for some constant M . It is easy to see that the Hessian
matrix of A(θ) is semi-definite, and consequently, A(θ) is a convex function of θ. We
solve (38) iteratively using quadratic programming. Denote the current estimate of θ as θ̂,
ν̂(x) = d+ψT (x)θ̂, and ν̂i = ν̂(xi) = d+ψTi θ̂. We update θ by minimizing the following
second-order Taylor approximation of A(θ) (some constants independent of θ have been
removed):

1

2
θTHA(θ̃)θ + θT

{
GA(θ̃)−HA(θ̃)θ̃

}
(39)

subject to θ ≥ 0 and 1Tθ ≤ M for some constant M , where GA(θ̃) = −n−1
n∑
i=1
{xα,iψi −

ψie
ν̂i/(1 + eν̂i)}+ λ1q/2 is the gradient, HA(θ̃) = 1

n

n∑
i=1
ψiψ

T
i e

ν̂i/(1 + eν̂i)2 is the Hessian,

q = (cTQ1c, · · · , cTQα−1c, · · · , cTQα+1c, · · · cTQpc)T , and Qj =
{
Rj(x̃u,j , x̃v,j)

}q
u,v=1

for

j = 1, · · · , p and j 6= α. We select the tuning parameter M by the K-fold cross-validation
or the BIC method. We skip the implementation detail for the above algorithm since it is
similar to that for the pseudo log-likelihood approach described in the next section.

25



Dong and Wang

Appendix B. Algorithm Implementation

In this section, we provide details about the implementation of the proposed algorithm
using existing R packages. Specifically, we implement the Newton-Raphson procedure in
the algorithm using a modification of the sscden1 function in the gss package (Gu et al.,
2014) and quadratic programming using the R function solve.QP in the quadprog package
(Turlach and Weingessel, 2007).

B.1 Implementation of the Newton-Raphson Method

Given the current value of θ2, we update c and d by minimizing (13) using the Newton-
Raphson method. We implement by modifying the function sscden1 in the gss package
since (13) has the same form as (10.31) in Gu (2013) with different penalties and certain
smoothing parameters being fixed. By definition, H(αk) = H(α) ⊗H(k) = (H0

(α) ⊕H
1
(α)) ⊗

(H0
(k) ⊕H

1
(k)) = (H0

(α) ⊗H
0
(k)) ⊕ (H0

(α) ⊗H
1
(k)) ⊕ (H1

(α) ⊗H
0
(k)) ⊕ (H1

(α) ⊗H
1
(k)) = H(0)

(αk) ⊕

H(1)
(αk)⊕H

(2)
(αk)⊕H

(3)
(αk) where H(0)

(αk) = H0
(α)⊗H

0
(k), H

(1)
(αk) = H0

(α)⊗H
1
(k), H

(2)
(αk) = H1

(α)⊗H
0
(k),

and H(3)
(αk) = H1

(α) ⊗ H
1
(k). For density estimation, the penalized log-likelihood method in

Gu (2013) does not penalize functions in the parametric component space H0
(αk) and has

different smoothing parameters for components in the nonparametric component spaces

H(1)
(αk), H

(2)
(αk), and H(3)

(αk). Our goal is edge detection by detecting nonzero interactions.
Therefore, we penalize the combined interaction ηαk ∈ H(αk) as a whole with a smoothing
parameter θαk for k = 1, · · · , p and k 6= α. The interaction ηαk collects parametric and

nonparametric interaction components in H(0)
(αk), H

(1)
(αk), H

(2)
(αk), and H(3)

(αk). Note that θ2 =

(θα1, · · · , θα(α−1), θα(α+1), · · · , θαp)T is fixed at this step. We modified the function sscden1

to solve (13) with smoothing parameters λ1 and θ1 estimated by the approximated cross-
validation method.

B.2 Implementation of Quadratic Programming

Denote the current estimate of θ2 as θ̃2 and g̃(x) = φT (x)d+ψT1 (x)θ1 +ψT2 (x)θ̃2. Define

µg̃(h) =
n∑
i=1

e−g̃(xi)h(xi)/
n∑
i=1

e−g̃(xi), Vg̃(h1, h2) = µg̃(h1h2)−µg̃(h1)µg̃(h2) for any functions

h, h1, and h2. We update θ2 by minimizing the following second-order Taylor approximation
of A2(θ2) with some constants independent of θ2 have been removed:

1

2
θT2 HA(θ̃2)θ2 + θT2

{
GA(θ̃2)−HA(θ̃2)θ̃2

}
(40)

subject to θ2 ≥ 0 and wTθ2 ≤M for some constant M , where GA(θ̃2) = −µg̃(ψ2) + bψ2
+

λ1q2/2 is the gradient, HA(θ̃2) = Vg̃(ψ2,ψ
T
2 ) is the Hessian, q2 = (w−1

α1 c
TQα1c, · · · ,

w−1
α(α−1)c

TQα(α−1)c, w
−1
α(α+1)c

TQα(α+1)c, · · · , w−1
αp c

TQαpc)
T , and Qαk ={

Rαk((x̃u,α, x̃u,k), (x̃v,α, x̃v,k))
}q
u,v=1

for k = 1, · · · , p and k 6= α.

We use the R function solve.QP to solve (40). We estimate the tuning parameter M by
minimizing a K-fold cross-validation or BIC score defined as follows. Let I1, · · · , IK be K
randomly partitioned subsamples of the original data, nj = |Ij |, and n(−j) = n−nj . Denote
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g
(−j)
M as the estimate without observations in the subset Ij which minimizes the following

function with respect to θ2:

log

 1

n(−j)

∑
i/∈Ij

e−g(x
α
i )

+
1

n(−j)

∑
i/∈Ij

∫
Xα
g(xαi )ρ(xαi )dxα + λ1

∑
k 6=α

wαkθ
−1
αk ||ηαk||

2 (41)

subject to θαk ≥ 0 for k 6= α and wTθ2 ≤M . The K-fold cross-validation estimate of M is
the minimizer of the following score:

CV(M) = log

 1

n

K∑
j=1

∑
i∈Ij

e−g
(−j)
M (xαi )

+
1

n

K∑
j=1

∑
i∈Ij

∫
Xα
g

(−j)
M (xαi )ρ(xαi )dxα. (42)

The BIC estimate of M is the minimizer of the following score:

BIC(M) = log

{
1

n

n∑
i=1

e−gM (xαi )

}
+

1

n

n∑
i=1

∫
Xα
gM (xαi )ρ(xαi )dxα + log(nkn), (43)

where gM expresses the dependence of the estimate on M explicitly, and kn is the number
of nonzero elements in the estimate of θ2. We applied the K-fold cross-validation method
in all simulations with K = 5. We applied the BIC method in real data examples to get
sparser graphs.

B.3 Initial Values and Convergence Criterion

To get a good initial value θ2,0, we first estimate the conditional density f(xα|x\{α}) with

τ1
∑
k 6=α

wαk||ηαk|| in (7) being replaced by (λ1/2)
∑
k 6=α

θ−1
αk ||ηαk||

2. We modified the sscden

function in the gss package to estimate the conditional density and denote the estimate
of ηαk as η̌αk. Since θαk = 0 in θ2 iff ηαk = 0, the magnitude of η̌αk provides one way to
initialize θαk. Specifically, we set θ0

αk = {
∑n

i=1 η̌
2
αk(xi)}1/2.

The convergence criterion in the algorithm is ||θ2 − θ̃2||2/(||θ̃2||2 + 10−6) ≤ ε or the
number of zeros in θ2 stops increasing for fixed number of steps, where θ2 and θ̃2 are the
updated and previous estimates, respectively, ||·||2 is the Euclidean norm, and ε a threshold.
We set ε = 0.001 in simulation and real data examples.

Appendix C. Proofs

Proof of Proposition 1: We show the equivalence between minimization problems (7)
and (9). First,

min
η∈Mα

{
1

n

n∑
i=1

{
e−η(xi) +

∫
Xα
η(xαi )ρ(xαi )dxα

}
+
λ1

2

p∑
j=1

θ−1
j ||Pjηj ||

2 + τ1

∑
k 6=α

wαk||ηαk||

}

= min
g∈G,ς∈R

{
1

n

n∑
i=1

{
e−g(xi)−ς +

∫
Xα

(g(xαi ) + ς)ρ(xαi )dxα

}
+
λ1

2

p∑
j=1

θ−1
j ||Pjηj ||

2

+ τ1

∑
k 6=α

wαk||ηαk||

}
. (44)
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Setting the derivative of (44) with respect to ς to zero, we get eς = n−1
n∑
i=1

e−g(xi). Plugging

it back to (44), we have the following profiled penalized pseudo log-likelihood

min
g∈G

{
1 +

1

n

n∑
i=1

∫
Xα
g(xαi )ρ(xαi )dxα + log

{ 1

n

n∑
i=1

e−g(xi)
}

+
λ1

2

p∑
j=1

θ−1
j ||Pjηj ||

2

+τ1

∑
k 6=α

wαk||ηαk||

}
.

�
Proof of Proposition 2: Set λ2 = τ2

1 /2λ1. Denote the functional in (9) as B1(g) and the
functional in (10) as B2(θ2, g). For any θαk ≥ 0 and g ∈ G, we have λ1θ

−1
αk ||ηαk||

2/2+λ2θαk ≥√
2λ

1/2
1 λ

1/2
2 ||ηαk|| = τ1||ηαk||, and the equality holds if and only if θαk = λ

1/2
1 λ

−1/2
2 ||ηαk||/

√
2.

Therefore, B2(θ2, g) ≥ B1(g) for any θαk ≥ 0 and g ∈ G, and the equality holds if and only

if θαk = λ
1/2
1 λ

−1/2
2 ||ηαk||/

√
2 for α 6= k. The equivalence between (9) and (10) follows. �

Proof of Proposition 3: The population version of the pseudo log-likelihood lα =

n−1
∑n

i=1

{
e−η(xi) +

∫
Xα η(xαi )ρ(xαi )dxα

}
in (7) is

l(η) = E[e−η(x)] +

∫
X\{α}

f\{α}(x\{α})

∫
Xα
η(x)ρ(x)dx

=

∫
X\{α}

f\{α}(x\{α})

∫
Xα
e−η(x)f(xα|x\{α})dx+

∫
X\{α}

f\{α}(x\{α})

∫
Xα
η(x)ρ(x)dx,

(45)

where f\{α}(x\{α}) is the density of X\{α} on X\{α} = X1 × · · · × Xα−1 ×Xα+1 × · · · × Xp.
The first and second-order Fréchet derivatives of l(η) are

Dl(η)h1 =−
∫
X\{α}

f\{α}(x\{α})

∫
Xα
e−η(x)h1(x)f(xα|x\{α})dx

+

∫
X\{α}

f\{α}(x\{α})

∫
Xα
h1(x)ρ(x)dx

D2l(f)h1h2 =

∫
X\{α}

f\{α}(x\{α})

∫
Xα
e−η(x)h1(x)h2(x)f(xα|x\{α})dx,

where D denotes Fréchet derivative operator.
We set Dl(η)h1 =

∫
X\{α}

f\{α}(x\{α})
∫
Xα h1(x)[ρ(x)− e−η(x)f(xα|x\{α})]dx = 0 for all

h1 ∈ Mα. Then, we have ρ(x)− e−η(x)f(xα|x\{α}) = 0, which implies that f(xα|x\{α}) =

eη(x)ρ(x). In addition, D2l(η)hh =
∫
X\{α}

f\{α}(x\{α})
∫
Xα e

−η(x)h2(x)f(xα|x\{α})dx > 0

for any nonzero h ∈ Mα, and consequently, l is strictly convex. Therefore, if η̂ is the
solution to (7), the estimate of the conditional density equals eη̂(x)ρ(x).

We note that η̂ = ς̂ + ĝ where η̂ is the solution to (7), ς̂ is given in Proposition 1, and
ĝ is the solution to (10). Since ς̂ is a constant independent of xα, then the estimate of the
conditional density f̂(xα|x\{α}) is proportional to eĝ(x)ρ(x). �
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Proof of Convexity of A2(θ2): We show that the Hessian matrix HA(θ2) of A2(θ2) is
positive semi-definite. For any vector ν 6= 0, let si = e−g(xi) and ti = νTψ2(xi), we have

νTHA(θ2)ν =

(
n∑
i=1

sit
2
i

)(
n∑
i=1

si

)
−
(

n∑
i=1

tisi

)2

(
n∑
i=1

si

)2 ≥ 0, (46)

by the Cauchy-Schwartz inequality. �
In the remainder of the Appendix, we first introduce three lemmas and then provide

proofs of Theorem 1, Theorem 2, and Corollary 1.

Lemma 1 Assume J∗(g0) <∞. Under Conditions 1−3, as λ1 → 0 and n→∞,

(V ∗ + λ1J
∗)(g̃ − g0) = Op(n

−1λ
−1/r
1 + λ1).

Proof: By the Fourier series expansions of g̃ and g0, we have

V ∗(g̃ − g0) =
∑
v

(ãv − av,0)2 =
∑
v

κ2
v − 2κvλ1γvav,0 + λ2

1γ
2
va

2
v,0

(1 + λ1γv)2
,

λ1J
∗(g̃ − g0) =

∑
v

λ1γv(ãv − av,0)2 =
∑
v

λ1γv
κ2
v − 2κvλ1γvav,0 + λ2

1γ
2
va

2
v,0

(1 + λ1γv)2
.

Since E(κv) = 0 and E(κ2
v) ≤ c1/n, we have

E[V ∗(g̃ − g0)] ≤ c1

n

∑
v

1

(1 + λ1γv)2
+ λ1

∑
v

λ1γv
(1 + λ1γv)2

γva
2
v,0,

E[λ1J
∗(g̃ − g0)] ≤ c1

n

∑
v

λ1γv
(1 + λ1γv)2

+ λ1

∑
v

(λ1γv)
2

(1 + λ1γv)2
γva

2
v,0. (47)

Following similar arguments in the proof of Lemma 9.1 in Gu (2013), we have∑
v

λ1γv
(1 + λ1γv)2

= O(λ
−1/r
1 ),

∑
v

1

(1 + λ1γv)2
= O(λ

−1/r
1 ),

∑
v

1

1 + λ1γv
= O(λ

−1/r
1 ).

The lemma follows from (47) and the fact that
∑

v γva
2
v,0 = J∗(g0) <∞. �

As in Gu (2013), when g0 is “supersmooth” in the sense that
∑

v γ
l
va

2
v,0 < ∞ for some

1 < l ≤ 2, which is assumed in Theorem 1, the rates can be improved to O(n−1λ
−1/r
1 +λl1).

Now we want to bound the approximation error ĝ − g̃. Define

Ah1,h2(τ) =
1

n

n∑
i=1

e−(h1+τh2)(Xi) +
1

n

n∑
i=1

∫
Xα

(h1 + τh2)ρ(xαi )dxα +
λ1

2
J∗(h1 + τh2)

+ λ2

∑
k 6=α

θαk,

Bh1,h2(τ) =
1

n

n∑
i=1

−e−g0(Xi)(h1 + τh2)(Xi) +
1

n

n∑
i=1

∫
Xα

(h1 + τh2)ρ(xαi )dxα

+
1

2
V ∗(h1 + τh2 − g0) +

λ1

2
J∗(h1 + τh2).
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Taking derivatives of Ah1,h2 and Bh1,h2 with respect to τ and evaluating them at τ = 0, we
obtain

Ȧh1,h2(0) = − 1

n

n∑
i=1

e−h1(Xi)h2(Xi) +
1

n

n∑
i=1

∫
Xα
h2ρ(xαi )dxα + λ1J

∗(h1, h2), (48)

Ḃh1,h2(0) = − 1

n

n∑
i=1

e−g0(Xi)h2(Xi) +
1

n

n∑
i=1

∫
Xα
h2ρ(xαi )dxα + V ∗(h1 − g0, h2) + λ1J

∗(h1, h2).

(49)

Setting h1 = ĝ and h2 = ĝ − g̃ in (48), we have

− 1

n

n∑
i=1

e−ĝ(Xi)(ĝ − g̃)(Xi) +
1

n

n∑
i=1

∫
Xα

(ĝ − g̃)ρ(xαi )dxα + λ1J
∗(ĝ, ĝ − g̃) = 0. (50)

Setting h1 = g̃ and h2 = ĝ − g̃ in (49), we have

− 1

n

n∑
i=1

e−g0(Xi)(ĝ − g̃)(Xi) +
1

n

n∑
i=1

∫
Xα

(ĝ − g̃)ρ(xαi )dxα + V ∗(g̃ − g0, ĝ − g̃)

+ λ1J
∗(g̃, ĝ − g̃) = 0. (51)

Subtracting (51) from (50), we obtain

λ1J
∗(ĝ − g̃)− 1

n

n∑
i=1

{
e−ĝ(Xi) − e−g̃(Xi)

}
(ĝ − g̃)(Xi)

=
1

n

n∑
i=1

{
e−g̃(Xi) − e−g0(Xi)

}
(ĝ − g̃)(Xi) + V ∗(ĝ − g̃, g̃ − g0). (52)

Applying the mean value theorem, we have e−ĝ(Xi) − e−g̃(Xi) = −e−(g̃+τi(ĝ−g̃))(Xi)(ĝ −
g̃)(Xi) where τi ∈ [0, 1]. Since ĝ and g̃ belong to B0 which is a convex set around g0,

under Condition 4, there exists a b
(i)
0 ∈ (c2, c3) such that −e−(g̃+τi(ĝ−g̃))(Xi)(ĝ − g̃)(Xi) =

−b(i)0 e−g0(Xi)(ĝ − g̃)(Xi). Then

− 1

n

n∑
i=1

{
e−ĝ(Xi) − e−g̃(Xi)

}
(ĝ − g̃)(Xi) =

1

n

n∑
i=1

b
(i)
0 e−g0(Xi)(ĝ − g̃)2(Xi)

≥c2

n

n∑
i=1

e−g0(Xi)(ĝ − g̃)2(Xi). (53)

By the same argument, there exists a c
(i)
0 ∈ (c2, c3) such that

1

n

n∑
i=1

{
e−g̃(Xi) − e−g0(Xi)

}
(ĝ − g̃)(Xi) = − 1

n

n∑
i=1

c
(i)
0 e−g0(Xi)(ĝ − g̃)(Xi)(g̃ − g0)(Xi).

(54)
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Lemma 2 Under Conditions 1, 2, and 5, suppose h1 and h2 are functions satisfying

J∗(h1) <∞ and J∗(h2) <∞, as λ1 → 0 and nλ
2/r
1 →∞, one has

∣∣∣ 1
n

n∑
i=1

e−g0(Xi)h1(Xi)h2(Xi)− V ∗(h1, h2)
∣∣∣ = op

(
{(V ∗ + λ1J

∗)(h1)(V ∗ + λ1J
∗)(h2)}1/2

)
.

(55)

Proof: Since J∗(h1) < ∞ and J∗(h2) < ∞, then h1 and h2 can be expressed as Fourier
series h1 =

∑
v h1,vζv and h2 =

∑
v h2,vζv. Let

Ui = ζv(Xi)ζu(Xi)e
−g0(Xi) −

∫
X\{α}

f\{α}(x\{α})

∫
Xα
ζv(x)ζu(x)ρ(x)dxαdx\{α}.

Note that Ui are i.i.d. random variables with E(Ui) = 0. Then under Condition 5, we have

E

(
1

n

n∑
i=1

Ui

)2

=
1

n
Var

(
ζv(X1)ζu(X1)e−g0(X1)

)
<
c4

n
.

Furthermore,

∣∣∣ 1
n

n∑
i=1

e−g0(Xi)h1(Xi)h2(Xi)− V ∗(h1, h2)
∣∣∣

=
∣∣∣∑

v

∑
u

h1,vh2,u
1

n

n∑
i=1

Ui

∣∣∣
≤

∑
v

∑
u

1

1 + λ1γv

1

1 + λ1γu

(
1

n

n∑
i=1

Ui

)2


1/2{∑
v

∑
u

(1 + λ1γv)(1 + λ1γu)h2
1,vh

2
2,u

}1/2

=Op(n
−1/2λ

−1/r
1 ){(V ∗ + λ1J

∗)(h1)(V ∗ + λ1J
∗)(h2)}1/2

=op

(
{(V ∗ + λ1J

∗)(h1)(V ∗ + λ1J
∗)(h2)}1/2

)
,

where the second equality holds because of the fact
∑
v

1
1+λ1γv

= O(λ
−1/r
1 ) and the strong

law of large numbers. �

Lemma 3 Under Conditions 1, 2, and 5, as λ1 → 0 and nλ
2/r
1 →∞, then

∣∣∣ 1
n

n∑
i=1

e−g0(Xi)h1(Xi)h2(Xi)−
1

n

n∑
i=1

c
(i)
0 e−g0(Xi)h1(Xi)h2(Xi)

∣∣∣
≤ 2c0{(V ∗ + λ1J

∗)(h1)(V ∗ + λ1J
∗)(h2)}1/2 (56)

holds with probability 1, where c0 = max{|c2 − 1|, |c3 − 1|}.
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Proof: Note that

E|e−g0(Xi)h1(Xi)h2(Xi)|

=

∫
X\{α}

f\{α}(x\{α})

∫
Xα
|h1(x)h2(x)|ρ(x)dxαdx\{α}

≤
{(∫

X\{α}
f\{α}(x\{α})

∫
Xα
h2

1(x)ρ(x)dxαdx\{α}
)( ∫

X\{α}
f\{α}(x\{α})

∫
Xα
h2

2(x)ρ(x)dxαdx\{α}
)}1/2

={V ∗(h1)V ∗(h2)}1/2

≤{(V ∗ + λ1J
∗)(h1)(V ∗ + λ1J

∗)(h2)}1/2,

where the first inequality follows the Cauchy-Schwartz inequality. Then, we have

∣∣∣ 1
n

n∑
i=1

e−g0(Xi)h1(Xi)h2(Xi)−
1

n

n∑
i=1

c
(i)
0 e−g0(Xi)h1(Xi)h2(Xi)

∣∣∣
=
∣∣∣ 1
n

n∑
i=1

(1− c(i)
0 )e−g0(Xi)h1(Xi)h2(Xi)

∣∣∣
≤ 1

n

n∑
i=1

|(1− c(i)
0 )||e−g0(Xi)h1(Xi)h2(Xi)|

≤c0
1

n

n∑
i=1

|e−g0(Xi)h1(Xi)h2(Xi)|

≤2c0{(V ∗ + λ1J
∗)(h1)(V ∗ + λ1J

∗)(h2)}1/2,

where the last inequality holds due to the strong law of large numbers. �

Proof of Theorem 1: Note that E{e−g0(Xi)(ĝ − g̃)2(Xi)} =
∫
X\{α}

f\{α}(x\{α})
∫
Xα(ĝ −

g̃)2(x)ρ(x)dxαdx\{α} = V ∗(ĝ − g̃). Substituting (53) into the left-hand side of (52), we
have

λ1J
∗(ĝ − g̃)− 1

n

n∑
i=1

{
e−ĝ(Xi) − e−g̃(Xi)

}
(ĝ − g̃)(Xi)

≥c2

n

n∑
i=1

e−g0(Xi)(ĝ − g̃)2(Xi) + λ1J
∗(ĝ − g̃)

≥c2

2
V ∗(ĝ − g̃) + λ1J

∗(ĝ − g̃), (57)
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where the last equality holds due to the strong law of large numbers. Substituting (55) and
(56) into the right-hand side of (52) and letting h1 = ĝ − g̃, h2 = g̃ − g0, we have

∣∣∣ 1
n

n∑
i=1

{
e−g̃(Xi) − e−g0(Xi)

}
(ĝ − g̃)(Xi) + V ∗(ĝ − g̃, g̃ − g0)

∣∣∣
≤
∣∣∣V ∗(ĝ − g̃, g̃ − g0)− 1

n

n∑
i=1

e−g0(Xi)(ĝ − g̃)(Xi)(g̃ − g0)(Xi)
∣∣∣

+
∣∣∣ 1
n

n∑
i=1

e−g0(Xi)(ĝ − g̃)(Xi)(g̃ − g0)(Xi)−
1

n

n∑
i=1

c
(i)
0 e−g0(Xi)(ĝ − g̃)(Xi)(g̃ − g0)(Xi)

∣∣∣
≤(op(1) + 2c0){(V ∗ + λ1J

∗)(ĝ − g̃)(V ∗ + λ1J
∗)(g̃ − g0)}1/2, (58)

where the first inequality follows (54) and the second inequality follows Lemma 2 and 3.
Combining (52), (57), and (58), we obtain

(
c2

2
V ∗ + λ1J

∗)(ĝ − g̃) ≤ (op(1) + 2c0){(V ∗ + λ1J
∗)(ĝ − g̃)(V ∗ + λ1J

∗)(g̃ − g0)}1/2. (59)

Combining (59) with Lemma 1, as λ1 → 0 and nλ
2/r
1 →∞, we have (V ∗ + λ1J

∗)(ĝ − g̃) =

Op(n
−1λ

−1/r
1 + λl1) and Theorem 1 holds. �

Proof of Theorem 2: We know

∑
k 6=α
||ηαk(xα, xk)||2 ≤

∑
k 6=α
||ηαk(xj , xk)||


2

≤ (p− 1)
∑
k 6=α
||ηαk(xα, xk)||2. (60)

Therefore, there exists some constant C ∈ [1,
√
p− 1] such that C {

∑
k 6=α
||ηαk(xα, xk)||2}1/2 =∑

k 6=α
||ηαk(xα, xk)||. Since

∑
k 6=α

θαk is bounded by M , we can scale λ1 and λ2 such that

θαk ≤ 1. Since J∗2 (g) =
∑
k 6=α

θ−1
αk ||ηαk(xα, xk)||

2 = cT (
∑
k 6=α

θαkQαk)c,
∑
k 6=α
||ηαk(xα, xk)||2 =

cT (
∑
k 6=α

θ2
αkQαk)c, we have J2

2 (g) = C2
∑
k 6=α
||ηαk(xα, xk)||2 ≤ C2J∗2 (g) and consequently J2 ≤

C(J∗)1/2. Furthermore, since V 2
2 (g(2)) =

∫
X\{α}

f\{α}(x\{α})
∫
Xα

{
g(2)(x)

}2
ρ(x)dxαdx\{α} =

V ∗(g(2)), we have V2(g(2)) = [V ∗(g(2))]1/2. Therefore,

(V2 + λ1J2)(g(2)) = ((V ∗)1/2 + C
√
λ1(λ1J

∗)1/2)(g(2)) ≤ (1 + C2λ1)1/2(V ∗ + λ1J
∗)1/2(g(2))

by the Cauchy-Schwarz inequality. Finally,

(V + λ1J)(ĝ − g0) = (V1 + λ1J1)(ĝ(1) − g(1)
0 ) + (V2 + λ1J2)(ĝ(2) − g(2)

0 )

≤ (V ∗ + λ1J
∗)(ĝ(1) − g(1)

0 ) + (1 + C2λ1)1/2(V ∗ + λ1J
∗)1/2(ĝ(2) − g(2)

0 )

= Op(n
−1λ

−1/r
1 + λl1) +O(n−1/2λ

−1/2r
1 + λ

l/2
1 )

= Op(n
−1/2λ

−1/2r
1 + λ

l/2
1 ). (61)
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�
Proof of Corollary 1: By the definition of V (·), V (ĝ − g0) = V1(ĝ(1) − g(1)

0 ) + V2(ĝ(2) −
g

(2)
0 ) = V ∗(ĝ(1) − g(1)

0 ) + [V ∗(ĝ(2) − g(2)
0 )]1/2. Following (61),

[V ∗(ĝ(2) − g(2)
0 )]1/2 = Op(n

−1/2λ
−1/2r
1 + λ

l/2
1 ).

Following Lin et al. (2000), under the condition 0 < c5 < ρ(x) < c6 and 0 < c7 <
f\{α}(x\{α}) < c8 for some positive constants c5, c6, c7, and c8, [V ∗(g)]1/2 is equivalent to the

L2 norm. Specifically, V ∗(g) ∼ ||g||22 =
p∑
j=1
||ηj ||22+

∑
k 6=α
||ηαk(xα, xk)||22, V ∗(g(1)) ∼

p∑
j=1
||ηj ||22,

and V ∗(g(2)) ∼
∑
k 6=α
||ηαk(xα, xk)||22, where ∼ means equivalence. By definition, V (g(2)) =

[V ∗(g(2))]1/2 ∼ (
∑
k 6=α
||ηαk(xα, xk)||22)1/2. Consequently, two-way interactions under L2 norm

have the same convergence rate as [V ∗(g(2))]1/2,

||η̂αk − η0αk||2 = Op(n
−1/2λ

−1/2r
1 + λ

l/2
1 ), k 6= α, k = 1, · · · , p.

�
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