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Abstract

In this paper, we develop an online change-point detection procedure in the covariance
structure of high-dimensional data. A new stopping rule is proposed to terminate the
process as early as possible when a change in covariance structure occurs. The stopping
rule allows spatial and temporal dependence and can be applied to non-Gaussian data.
An explicit expression for the average run length is derived, so that the level of threshold
in the stopping rule can be easily obtained with no need to run time-consuming Monte
Carlo simulations. We also establish an upper bound for the expected detection delay, the
expression of which demonstrates the impact of data dependence and magnitude of change
in the covariance structure. Simulation studies are provided to confirm accuracy of the
theoretical results. The practical usefulness of the proposed procedure is illustrated by
detecting the change of brain’s covariance network in a resting-state fMRI data set. The
implementation of the methodology is provided in the R package OnlineCOV.

Keywords: change-point detection, high-dimensional data, spatial and temporal depen-
dence

1. Introduction

Online change-point detection or sequential change-point detection originally arises from
the problem of quality control. The product quality is monitored based on the observations
continually arriving during an industrial process and a stopping rule is chosen to terminate
and reset the process as early as possible when an anomaly or a change occurs. There are
two errors to be controlled by a stopping rule. One is false alarm, which is the time when
the stopping rule terminates a monitored process without undergoing any change. Another
is a detection delay which is the number of additional observations the stopping rule collects
in order to detect a change point. The goal is to construct a stopping rule which can make
the expected detection delay as small as possible, subject to the constraint that the average
run length to false alarm is controlled at a pre-specified level. In modern applications, there
has been a resurgence of interest in detecting abrupt change from streaming data with a
large number of measurements. Examples include real-time monitoring for sensor networks
and threat detection from surveillance videos. More can be found in studying dynamic
connectivity of resting state functional magnetic resonance imaging, and in detecting threat
of fake news from the group of fake accounts in social networks (Bara et al., 2015).
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Extensive research has been done for online change-point detection of univariate data;
see, for example, Page (1954), Shiryayev (1963), Lorden (1971), Wald (1973), Siegmund
(1985) and Siegmund and Venkatraman (1995). The proposed stopping rules are based on
the CUSUM test or the quasi-Bayesian test which assume the distributions of data before
and after the change point to be known, or its variants proposed to relax the restrictive
assumption of known distributions. There also exist many developments in online change-
point detection of multivariate data. For example, Tartakovsky and Veeravalli (2008) pro-
pose the stopping rule for the common change point detection from all dimensions based
on the assumption that the distributions of data before and after the change point are
known. By relaxing the common change to the change of only subset of data, Xie and Sieg-
mund (2013) study the stopping rule for the multivariate normally distributed data with
the identity covariance matrix.

In this paper, we consider online change-point detection in the covariance structure of
high-dimensional data. More precisely, letting {X1, X2, · · · } be a sequence of continually
arriving p-dimensional random vectors, each of which has its own covariance matrix Σi, we
consider the hypotheses

H0 : Σ1 = Σ2 = · · · against

H1 : Σ1 = · · · = Στ 6= Στ+1 = · · · , (1)

where τ is an unknown change point. The motivation behind the considered problem stems
from the applications of detecting covariance network changes, such as dynamic changes
in brain’s functional connectivity, where the network can be quantified by the covariance
or precision (inverse covariance) matrix (Varoquaux et al., 2010). Despite the practical
usefulness of the considered problem, the aforementioned methods cannot be applied to
the hypotheses (1), either because they work specifically for change-point detection in the
mean or because they require fixed dimensionality. There are some recent developments
for change-point detection in the high-dimensional covariance structure (Aue et al., 2009).
Nevertheless, they cannot be directly applied to the online change-point detection problem
(1), because those methods are designed for the offline change-point detection problem,
where the entire data need to be collected before any statistical analysis is carried out.

Our contribution in this paper is to propose a new stopping rule for the above high-
dimensional online change-point detection problem. We study the asymptotic behavior of
the stopping time of the stopping rule under both null and alternative hypotheses. More
specifically, we derive an explicit expression for the average run length of the stopping
time under the null hypothesis, so that the level of threshold in the stopping rule can
be easily obtained with no need to run time-consuming Monte Carlo simulations. Under
the alternative hypothesis, we establish an upper bound for the expected detection delay,
which demonstrates the impact of data dependence and magnitude of change in the co-
variance structure. The proposed stopping rule has some advantages. First, unlike vast
majority of online change-point detection procedures such as Avanesov and Buzun (2018)
and Avanesov (2019) that assume temporal independence, it allows temporal dependence
among different high-dimensional measurements at different time points. More precisely,
we incorporate spatial and temporal dependence through a nonparametric factor model in
Section 2.1 that does not assume Gaussian distribution. Our method is essentially non-
parametric and thus different from the sequential detection procedures in Lai (1995), where
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dependence is incorporated by replacing parametric probability densities with conditional
densities in likelihood ratios. There also exist some offline change-point detection methods
that allow both spatial and temporal dependence; see, for example, Aue et al. (2009) and
Jirak (2015). One option is to implement these offline methods every time when a new
observation arrives. But this will raise challenge to control the false alarm especially when
there is a highly correlated multiple testing procedure. Second, we estimate the temporal
dependence consistently through a data-driven procedure, and establish the distribution of
the stopping time with the correctly specified dependence. Consequently, the average run
length of the proposed stopping rule can be well controlled even in the presence of temporal
dependence. Third, the stopping rule is implementable when the dimension p diverges and
thus suitable for monitoring modern networks whose size varies enormously from thousands
to millions. Finally, we identify the key factors and establish their impact on the expected
detection delay through an explicitly derived upper bound. In particular, we reveal that the
expected detection delay based on the L2-norm statistic increases as the strength of tempo-
ral dependence increases, but decreases as the magnitude of change ||Στ+1 −Στ ||F /||Στ ||F
increases. Here || · ||F represents the matrix Frobenius norm. The implementation of the
proposed stopping rule is provided in the R package OnlineCOV (Li and Li, 2020).

It is worth mentioning that Avanesov and Buzun (2018) and Avanesov (2019) also con-
sider online change-point detection in the precision matrix and in the covariance matrix,
respectively. There are some differences between the approaches in Avanesov and Buzun
(2018) and Avanesov (2019) and the current approach. The first difference is that the
approaches in Avanesov and Buzun (2018) and Avanesov (2019) are multiple testing proce-
dures with critical values to control the probability to raise false alarms. The critical values
are chosen by a bootstrap calibration scheme. The current approach is based on a proposed
stopping rule, which terminates or continues a monitored process through the comparison
of a proposed test statistic with a threshold. The threshold controls the average run length
to false alarm, and can be obtained by solving a equation involving an explicit expression
of the average run length as a function of the threshold. Another difference is that the test
statistics in Avanesov and Buzun (2018) and Avanesov (2019) employ the matrix sup-norm
and the test statistic in current work considers the Frobenius norm. Since the sup-norm is
the largest element of a matrix in absolute value, the approaches in Avanesov and Buzun
(2018) and Avanesov (2019) would be advantageous if changes of the precision matrix or
the covariance matrix happen in a sparse number of elements. On the other hand, since the
Frobenius norm sums the squared elements of a matrix, our proposed stopping rule would
be advantageous if changes of the covariance matrix happen in a large number of elements.

The rest of the paper is organized as follows. Section 2 introduces the proposed stopping
rule. Section 3 presents its asymptotic properties. Simulation studies and real data analysis
are given in Sections 4 and 5, respectively. We conclude the paper with some discussions in
Section 6. All the proofs are delegated to the Appendix.

2. Methodology

In Sections 2.1-2.2, we first discuss a model (2), conditions (C1)-(C2) and a test statistic
(3) based on offline data, in the sense that a sequence of p-dimensional random vectors
{Xi, 1 ≤ i ≤ n} have been already observed. In Section 2.3, we extend them to online
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framework, where observations are continually arriving and a stopping rule is proposed to
determine whether a process needs to be terminated.

2.1 Modeling Spatial and Temporal Dependence

Since our main focus is change point detection of covariance structure, we assume E(Xi) = µ
to facilitate our analysis. We model the sequence by

Xi = µ+ ΓiZ for i = 1, · · · , n, (2)

where Γi is a p × m matrix with m ≥ n · p, and Z = (z1, · · · , zm)T such that {zi}mi=1

are mutually independent and satisfy E(zi) = 0, var(zi) = 1 and E(z4i ) = 3 + β for some
constant β.

Admittedly, Bai and Saranadasa (1996), Chen and Qin (2010) and Li and Chen (2012)
employ a similar factor model for the one-sample or two-sample offline hypothesis testing
problems, where the observations {Xi, 1 ≤ i ≤ n} are assumed to be independent. Our
model (2) is more general as it can incorporate both spatial and temporal dependence
of the sequence {Xi, 1 ≤ i ≤ n}. To appreciate this, we let X = (XT

1 , · · · , XT
n )T and

Γ = (ΓT1 , · · · ,ΓTn )T . From (2), the covariance matrix of X is ΓΓT , in which each p × p
block diagonal sub-matrix ΓiΓ

T
i ≡ Σi represents the spatial dependence of each Xi and

each p×p block off-diagonal sub-matrix ΓiΓ
T
j ≡ C(j− i) describes the spatial and temporal

dependence between Xi and Xj at i 6= j. Here we require m ≥ n× p to ensure the positive
definiteness of ΓΓT .

Based on (2), we accommodate the spatial and temporal dependence by the following
two conditions.

(C1). The sequence is M -dependent, such that for some integer M ≥ 0, C(j − i) 6= 0 if
and only if |j− i| ≤M . Moreover, under H0 of (1), C(j− i) = C(h) for all i and j satisfying
j − i = h with h ∈ {0,±1, · · · ,±M}.

Under the null hypothesis, we assume that the sequence is M -dependent, and the spatial
and temporal dependence is stationary. Under the alternative hypothesis, the covariance
structure changes and consequently, the stationarity of the spatial and temporal dependence
cannot hold. We thus only assume the M -dependence. We introduce the M -dependence
to relax the commonly assumed temporal independence in the literature. The assumption
enables us to establish the asymptotic normality of the proposed test statistic given by (3)
in Section 2.2 through the martingale central limit theorem. Moreover, the M -dependence
combined with the stationarity in the spatial and temporal dependence, yields that the stop-
ping time of the proposed stopping rule given by (7) in Section 2.3 converges to the Gumbel
limiting distribution of a stationary Gaussian process under the null hypothesis. Under
the alternative hypothesis, we apply the generalized Wald’s lemma under M -dependence in
Janson (1983) to study the expected detection delay. Despite technical challenges, it might
be useful to consider dependence beyond the M -dependence. Similar to Li et al. (2019),
an option is to require that the spatial and temporal dependence is weak and dominated
by the dependence within M , when the timespan exceeds a critical value M . Another
option is to apply the idea in Aue et al. (2009) to introduce a sequence of M -dependent
random vectors {XM

i ,M ≥ 1} to approximate Xi so that
∑

M≥1 |Xi −XM
i |4 < ∞, where
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|X|4 = {E(X)4}1/4 for a random vector X. We leave for future research the validation of
theoretical results, in particular Wald’s lemma under such circumstances.

(C2). For any h1, h2, h3, h4 ∈ {0,±1, · · · ,±M}, as p→∞,

tr{C(h1)C(h2)C(h3)C(h4)} = o

[
tr{C(h′1)C(h′2)}tr{C(h′3)C(h′4)}

]
,

where {h′1, h′2, h′3, h′4} is a permutation of {h1, h2, h3, h4}.

Without temporal dependence, (C2) becomes tr{C4(0)} = o[tr2{C2(0)}]. It holds if all
the eigenvalues of C(0) are bounded, but may not hold under strong dependence such as
the compound symmetry structure which means that all the variances are equal and all
the covariances are equal. If the temporal dependence is present (h 6= 0), (C2) takes into
account both spatial and temporal dependence. It can be shown that (C2) holds if the
requirement of bounded eigenvalues is extended to the np× np covariance matrix of entire
sequence X = (XT

1 , X
T
2 , · · · , XT

n )T . The condition cannot hold if the spatial and temporal
dependence is too strong so that the covariance matrix of X has unbounded eigenvalues.
The advantage of (C2) is that it does not impose any decay structures on C(h) as long
as the trace condition is satisfied. Moreover, it allows the dimension p to diverge without
imposing its growth rate.

2.2 Test Statistic

Given the sequence of p-dimensional random vectors {Xi, 1 ≤ i ≤ n}, we need a test
statistic, the expectation of which can measure the heterogeneity of covariance structure
from the collected observations. Assuming for the moment that µ = 0 in (2), we propose
the following L2-norm U-statistic

Ĵn,M ≡
1

n2

n∑
i,j=1

WM (i, j)(XT
i Xj)

2, (3)

where the weight function WM (i, j) ≡
∑n−M−2

t=M+2 At,M (i, j)I(|i− j| ≥M + 1) and

At,M (i, j) =
n− t−M
t−M − 1

I(i ≤ t)I(j ≤ t) +
t−M

n− t−M − 1
I(t+ 1 ≤ i)I(t+ 1 ≤ j)

− (t−M)(n− t−M)

t(n− t)− 1
2M(M + 1)

{I(i ≤ t)I(t+ 1 ≤ j) + I(t+ 1 ≤ i)I(j ≤ t)}.

If µ 6= 0, a centralized version of (3) is

Ĵ ∗n,M =
1

n2

n∑
i,j=1

WM (i, j){(Xi − µ̂)T (Xj − µ̂)}2, (4)

where µ̂ is a consistent estimator of µ. As introduced in Section 2.3, the proposed stopping
rule needs a training sample and µ̂ thus can be chosen as the sample mean of the training
sample. While U-statistics have been widely implemented for hypothesis testing and offline
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change-point detection problems (Hoeffding, 1948; Chen and Qin, 2010; Li and Chen, 2012;
Matteson and James, 2014), the extension to high-dimensional online change-point detection
problem has not been explored yet.

Remark 1 We first assume a known M to present the main results of the proposed methods.
We then provide a data-driven procedure for estimating M and establish the theoretical
results based on the estimated M in Section 3.4.

Remark 2 Using the expression of At,M (i, j), we write (3) into Ĵn,M = n−2
∑n−M−2

t=M+2 (t −
M)(n− t−M)Ĵn,M,t, where

Ĵn,M,t =
t∑

i,j=1

I(|i− j| ≥M + 1)(XT
i Xj)

2

(t−M)(t−M − 1)
+

n∑
i,j=t+1

I(|i− j| ≥M + 1)(XT
i Xj)

2

(n− t−M)(n− t−M − 1)

− 2

t∑
i=1

n∑
j=t+1

I(|i− j| ≥M + 1)(XT
i Xj)

2

t(n− t)− 1
2M(M + 1)

.

The test statistic is constructed in several steps. At each t from {M+2, · · · , n−M−2}, we
partition the entire sequence {Xi, 1 ≤ i ≤ n} into {Xi, 1 ≤ i ≤ t} and {Xi, t+ 1 ≤ i ≤ n}.
Since E{(XT

i Xj)
2I(|i − j| ≥ M + 1)} = tr(ΣiΣj), the three terms in Ĵn,M,t estimate the

trace of covariance structure from the segments {1 ≤ i, j ≤ t} and {t + 1 ≤ i, j ≤ n} and
{1 ≤ i ≤ t, t + 1 ≤ j ≤ n}, respectively. The normalization factors (t −M)(t −M − 1),
(n− t−M)(n− t−M − 1) and t(n− t)− 1/2M(M + 1) count the number of indices i and
j within each segment, the distance of which is no less than M + 1. Each normalization
factor can be obtained by subtracting the diagonal and 2M off-diagonal elements from each
of three blocks {1 ≤ i, j ≤ t} and {t + 1 ≤ i, j ≤ n} and {1 ≤ i ≤ t, t + 1 ≤ j ≤ n}
of the n × n matrix. For example, the factor (t − M)(t − M − 1) equals t2 elements
from the block {1 ≤ i, j ≤ t} minus t + 2{(t − 1) + · · · + (t − M)} elements from the
diagonal and 2M off-diagonals. If t is chosen to be the change point τ , we can show
that E(Ĵn,M,τ ) = tr(Σ2

τ ) + tr(Σ2
τ+1) − 2tr(ΣτΣτ+1) = tr{(Στ − Στ+1)

2}. However the

change point is unknown in practice. We therefore accumulate Ĵn,M,t from t = M + 2

to n − M − 2 to obtain the test statistic Ĵn,M , where each Ĵn,M,t is multiplied by an

additional weight factor (t −M)(n − t −M) so that E(Ĵn,M ) is dominated by the term

(τ −M)(n− τ −M)E(Ĵn,M,τ ) = (τ −M)(n− τ −M)tr{(Στ − Στ+1)
2} (Li et al., 2019).

The statistic Ĵn,M,t can be related to the traditional cumulative sum (CUSUM) statistic
subject to some bias correction terms. To appreciate this, we consider a special case of
M = 0 and obtain

Ĵn,M,t =
n2

t2(n− t)2
tr

{
(
t∑
i=1

XiX
T
i −

t

n

n∑
i=1

XiX
T
i )(

t∑
j=1

XiX
T
i −

t

n

n∑
j=1

XiX
T
i )

}

+
1

t2(t− 1)

t∑
i,j=1

(XT
i Xj)

2 +
1

(n− t)2(n− t− 1)

n∑
i,j=t+1

(XT
i Xj)

2

− 1

t(t− 1)

t∑
i=1

(XT
i Xi)

2 − 1

(n− t)(n− t− 1)

n∑
i=t+1

(XT
i Xi)

2,
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where the first term on the right hand side contains the CUSUM statistic
∑t

i=1XiX
T
i −

t/n
∑n

i=1XiX
T
i , and other terms are bias corrections. Especially when t is the change point

τ , including the bias corrections leads to E(Ĵn,M,t) = tr{(Στ − Στ+1)
2}.

Since the main task is to detect change in the covariance structure, we assume without
further notice that µ = 0 in (2), and focus on Ĵn,M to facilitate theoretical investigation.

All the established results can be readily extended to Ĵ ∗n,M with µ 6= 0.

Proposition 1 Assume (2) and (C1). Under the null hypothesis,

E(Ĵn,M ) = 0.

Under the alternative hypothesis,

µĴn,M ≡ E(Ĵn,M ) =
1

n2

n∑
i,j=1

WM (i, j)tr(ΣiΣj).

Since the expectation of Ĵn,M under the alternative hypothesis differs from its expec-
tation under the null hypothesis, it can be used to test heterogeneity of the covariance
structure after we standardize it. This requires us to further derive the variance of the test
statistic.

Proposition 2 Under (2) and (C1)–(C2), as p→∞, the variance of Ĵn,M is

σ2Ĵn,M
=

4

n4

n∑
i,j=1

n∑
k,l=1

WM (i, j)WM (k, l)tr2{C(i− k)C(l − j)}{1 + o(1)}.

Under the null hypothesis, (C1) assumes that the spatial and temporal dependence is
stationary. The leading order variance can be simplified as

σ2Ĵn,M ,0
=

4

n4

n∑
i,j=1

∑
h1,h2

WM (i, j)WM (i− h1, j + h2)tr
2{C(h1)C(h2)}, (5)

where h1, h2 ∈ {0,±1, · · · ,±M}.

2.3 Stopping Rule

We now move to the online framework. We intend to propose a stopping rule based on Ĵn,M
(3) for the hypotheses (1). However, there are two issues we need to address when using
Ĵn,M . The first issue is nuisance parameters. There are two nuisance parameters related

to Ĵn,M : the M for temporal dependence and the standard deviation of Ĵn,M under the
null hypothesis. While M is zero under temporal independence and σĴn,M ,0 in (5) becomes

2p/n2{
∑

i,jW
2
M (i, j)}1/2 without temporal dependence and with the identity covariance

matrix Σ, they are unknown in the presence of spatial and temporal dependence. Similar to
Pollak and Siegmund (1991), we consider a training sample of size n0 to provide estimation
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of both nuisance parameters. Estimating M based on the training sample is covered in
Section 3.4. To estimate the standard deviation of Ĵn,M under the null hypothesis, we need
to estimate tr{C(h1)C(h2)} because it is the only unknown in (5). Based on a training
sample, we estimate it by

̂tr{C(h1)C(h2)} =
1

n∗

∗∑
s,t

XT
t+h2XsX

T
s+h1Xt, (6)

where
∑∗ represents the sum of indices that are at least M apart in the training sample, and

n∗ be the corresponding number of indices. The consistency of the estimator is established
in Theorem 3 of Section 3.3.

The second issue related to Ĵn,M is the computational complexity. From (3), Ĵn,M
involves the weight function WM (i, j) which sums t from M+2 to n−M−2. As mentioned
in Remark 2, at each t, the test statistic needs to compare the two covariance structures
estimated separately from the two segments {Xi, 1 ≤ i ≤ t} and {Xi, t+ 1 ≤ i ≤ n}. When
n is large, it can be time consuming to compute Ĵn,M . To reduce the computational time,
we consider a modified statistic

Ĵn,M,H =
1

H2

n∑
i,j=n−H+1

WM (i, j)(XT
i Xj)

2,

which, compared with the original Ĵn,M , is only based on the past H observations from the
current time n and thus can be computationally more efficient. It is quite common to use a
moving window H for the online change point detection; see, for example, Lai (1995) and
Cao et al. (2019). More can be seen in Avanesov and Buzun (2018) and Avanesov (2019),
where multiple window sizes are employed to attain a trade-off between the power of the
change-point test and accuracy of the change-point estimation. While the motivation is to
reduce the computational complexity, the impact of imposing H on the proposed method
needs to be carefully addressed. We display its effect on our stopping rule explicitly through
asymptotic results in Section 3 and simulation studies in Section 4. Some other guidelines
in selecting the window size can be seen in Lai (1995).

We are now ready to propose the stopping rule

TH(a,M) = inf

{
n− n0 :

∣∣∣∣∣ Ĵn,M,H

σ̂n0,M,H

∣∣∣∣∣ > a, n > n0

}
, (7)

where n0 is the size of a training sample, and σ̂2n0,M,H is the estimator of the variance of

Ĵn,M,H under the null hypothesis. Using (6), we obtain

σ̂2n0,M,H =
4

H4

H∑
i,j=1

∑
h1,h2

WM (i, j)WM (i− h1, j + h2) ̂tr2{C(h1)C(h2)}. (8)

The proposed stopping rule terminates the detection procedure in a minimal number of
new observations after the training sample n0, when the absolute value of the standardized
test statistic is above the threshold a. For online change point detection, a should be
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chosen to balance the tradeoff between false alarms and detection delay. If a is too small,
the stopping rule may detect a change quickly but unavoidably generate a lot of false alarms
if there is no change. On the other hand, if a is too large, the desire to avoid false alarms
will lead to a significant delay between the change point and the termination time. A
conventional method for choosing a is that the average run length can be controlled at any
pre-specified value. In next section, we establish an explicit relationship between a and the
average run length in Theorem 1, which allows us to quickly determine a with no need to
run time-consuming Monte Carlo simulations. The proposed stopping rule also depends on
the temporal dependence M , which is unknown in practice. In Section 3.4, we provide an
algorithm to consistently estimate M . Our investigation shows that the stopping rule based
on the estimated M performs as well as that based on the true M .

3. Asymptotic Results

In this section we examine the asymptotic performance of the proposed stopping rule
TH(a,M) for large p and a.

3.1 Average Run Length

Let E∞ and P∞ denote the expectation and probability, respectively, under the null hy-
pothesis. Let

g(t/H, a) = 2 log(t/H) + 1/2 log log(t/H) + log(4/
√
π)− a

√
2 log(t/H).

The average run length is defined to be the expected value of the stopping time under the
null hypothesis. The following theorem establishes the average run length or E∞{TH(a,M)}
for the proposed stopping rule (7).

Theorem 1 Assume (2) and (C1)–(C2). As n0 → ∞, p → ∞, and both H and a → ∞
satisfying H = o{exp(a2/2)},

E∞{TH(a,M)} =

(
H +

∫ ∞
H

exp

[
−2exp

{
g(t/H, a)

}]
dt

)
{1 + o(1)}.

As shown in the proof of Theorem 1, the average run length is readily obtained by estab-
lishing the cumulative distribution function of TH(a,M) as a→∞. Since the randomness
of TH(a,M) is determined by Ĵn,M,H/σ̂n0,M,H , the cumulative distribution of the former
can be derived by establishing the asymptotic distribution of the latter when p and H →∞.
Here the condition H = o{exp(a2/2)} specifies the growth rate of H with respect to a. It
is imposed to ensure that the probability the procedure stops within the window H goes to
zero exponentially fast.

Theorem 1 states that the average run length depends on the threshold a and the window
size H. In particular, it increases as a increases. This can also be seen from the proposed
stopping rule (7), where raising a makes the standardized test statistic less likely to go
beyond the a when there is no change point. The practical usefulness of Theorem 1 is that
with any pre-specified average run length and H, we can quickly determine the value of a
by solving the nonlinear equation using a software such as the uniroot function in R rather
than running time-consuming Monte Carlo simulations.
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3.2 Expected Detection Delay

When there is a change point τ , the proposed stopping rule is conventionally examined by
the expected detection delay, Eτ{TH(a,M) − (τ − n0)|TH(a,M) > τ − n0} with τ ≥ n0.
In the literature, it is customary to consider the expected detection delay for the so-called
immediate change point; see, for example, Siegmund and Venkatraman (1995) and Xie and
Siegmund (2013). In terms of our setup, it refers to the change that occurs immediately after
the training sample n0 and the corresponding expected detection delay is E0{TH(a,M)}.
The main reason to consider the expected detection delay of the immediate change point
is that for many stopping rules, the supremum of all the expected detection delays attains
at the immediate change point. It is therefore important to see if such property attains is
still held by our proposed stopping rule. We establish the following theorem which confirms
this conclusion. More importantly, the theorem provides an upper bound for the expected
detection delays.

Theorem 2 Consider τ ≥ n0 and assume the same conditions in Theorem 1,

sup
n0≤τ<∞

Eτ{TH(a,M)− (τ − n0)|TH(a,M) > τ − n0} = E0{TH(a,M)}, and

E0{TH(a,M)} ≤ (M + 2) +
( a ·H · σH,M,0

logH · ||Στ+1 − Στ ||2F
+
M(M + 1)||Στ ||F
||Στ+1 − Στ ||F

)1/2
{1 + o(1)},

where σH,M,0 is obtained by replacing n with H in (5), and || · ||F represents the matrix
Frobenius Norm.

Theorem 2 demonstrates the impact of some key factors on the expected detection delay.
First, a larger M could lead to a greater expected detection delay, showing the adverse effect
of the dependence on change-point detection. Second, the impact of the threshold a on the
expected detection delay essentially depends on the choice of the average run length, because
a is obtained by solving the equation in Theorem 1 in which the window size H and the
average run length are pre-specified by the user. Generally speaking, a larger user-chosen
average run length leads to a higher value of a and thus a greater expected detection delay.
Finally, by applying the result σH,M,0 = O(||Στ ||2F ) from the proof of Theorem 1, the impact
of σH,M,0 ||Στ+1 − Στ ||−2F can be demonstrated to be

σH,M,0

||Στ+1 − Στ ||2F
= O

(
||Στ ||2F

||Στ+1 − Στ ||2F

)
.

The result shows that the expected detection delay can be significantly reduced by increasing
the ratio of the change in covariance structure to the original covariance.

Remark 3 It requires a minimum change in the covariance structure, for the proposed
stopping rule to detect the change point. To understand this, we consider the configuration
with the immediate change after the training sample. As the window continuously moves to
the right, the number of observations with Στ decreases but the number of observations with
Στ+1 increases. If the detection procedure has not yet stopped when the last observation
with Στ begins to leave the window, it probably won’t be able to stop because the process
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ends up with all the H observations having the same Στ+1. Theorem 2 actually provides a
minimum change the proposed stopping rule requires. By noticing that the right hand side
of the inequality in Theorem 2 must be no more than H, the change of covariance structure

||Στ+1 − Στ ||F ≥
M(M + 1)||Στ ||F
2(H −M − 2)2

+

√
M2(M + 1)2||Στ ||2F

4(H −M − 2)4
+

a ·H · σH,M,0

(H −M − 2)2 logH
,

where the quantity on the right hand side is therefore the minimum change in the covariance
structure the proposed stopping rule is able to detect. To provide an insight of the result,
we consider Στ = Ip where p = 1000, Στ+1 = (ρ|i−j|) where 0 < ρ < 1 and M = 0. Further,
we choose H = 100 and obtain a = 3.58 by solving the equation in Theorem 1 so that the
the average run length is controlled around 5000. We can obtain the minimum ρ for the
stopping rule to detect the change is 0.065.

Remark 4 In sequential change-point analysis, an optimal procedure detects the change
as soon as possible while maintaining the false alarm at a pre-specified level. There are
Bayesian and minimax formulations for investigating the optimality of a detection pro-
cedure. Under the two formulations, the optimality of CUSUM and Shiryayev-Roberts
procedures has been well studied in univariate and multivariate settings (Shiryayev, 1961,
1963; Lorden, 1971; Pollak, 1985; Moustakides, 1986; Tartakovsky and Veeravalli, 2008; Pol-
lak and Tartakovsky, 2009; Polunchenko and Tartakovsky, 2010). For the high-dimensional
online change-point detection problem (1), we employ a formulation proposed by Pollak
(1985) which is asymptotically equivalent to the minimax formulation proposed by Lorden
(1971). More specifically, an optimal detection procedure T should minimize the supremum
average detection delay

sup
n0≤τ<∞

Eτ{T − (τ − n0)|T > τ − n0},

subject to the constraint that the average run length E∞(T ) ≥ γ where γ is a pre-specified
lower bound. Similar to univariate and multivariate settings, a lower bound of the above
supremum average detection delay is needed in order to study the optimality of detection
procedures. Note that an upper bound of the proposed stopping rule (7) has been specified
in Theorem 2. Its performance in detecting covariance changes can therefore be evaluated by
comparing the upper bound with the lower bound. Especially, if the upper bound matches
the lower bound, the proposed detection procedure would be optimal. However, to the best
of our knowledge, such a lower bound has not been established in literature. Nevertheless,
there exists a closely related work in Chan (2017) where the author studies a slightly different
problem of detecting multivariate normal mean shifts, and shows that the lower bound of the
supremum average detection delay varies with the sparsity of data streams undergoing mean
shifts as the data dimensionality diverges to infinity. By analogy with Chan (2017), when
Στ+1 differs from Στ in a large number of components, the lower bound of the supremum
average detection delay would be trivially given by 1 and the proposed stopping rule may
reach the lower bound as it accumulates all the differences through ||Στ+1 − Στ ||F . On
the other hand, when Στ+1 differs from Στ only in a sparse number of components, the
proposed stopping rule cannot be optimal because the components without the change do
not contribute to ||Στ+1−Στ ||F but to ||Στ ||F which leads to a large ||Στ ||F /||Στ+1−Στ ||F
and thus a long detection delay.
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3.3 Training Sample

A training sample primarily provides estimation of unknown nuisance parameters for the
proposed stopping rule. Because of its importance, it is worth discussing the availability
of the training sample in practice. In many biological studies, prior regulatory networks or
pathway information for different biological processes are available through massive data
sets (Li and Li, 2008). Such data sets can be used as a training sample if the contained
prior knowledge or information matches the initial covariance structure of the considered
online detection process. Under other circumstances, a training sample can be historical
observations from previous experimental runs subject to similar experimental conditions,
after their stationarity of the covariance structure has been confirmed. Suppose {Xi, 1 ≤ i ≤
n0} are such historical observations. To check their stationarity in the covariance structure,
it is equivalent to considering the hypotheses

H∗0 : Σ1 = · · · = Σn0 , against

H∗1 : Σ1 = · · · = Στ1 6= Στ1+1 = · · · = Στq 6= Στq+1 = · · · = Σn0 , (9)

where 1 ≤ τ1 < · · · < τq < n0 are unknown change points. To test the null hypothesis,
we consider the test statistic Ĵn0,M which is obtained by replacing n with n0 in (3). The

rationale of using Ĵn0,M is that its expectation can distinguish the alternative from the null

hypothesis. The following theorem establishes the asymptotic normality of Ĵn0,M .

Theorem 3 Assume (2) and (C1)–(C2). As n0 → ∞, (Ĵn0,M − µĴn0,M )/σĴn0,M
converges

in distribution to the standard normal N(0, 1), where µĴn0,M
and σĴn0,M

are given by

Propositions 1 and 2, respectively, with n replaced by n0. In particular, under H∗0 of (9),
Ĵn0,M/σ̂Ĵn0,M ,0

converges in distribution to the standard normal N(0, 1), where σ̂Ĵn0,M ,0
is

defined in (8) with H replaced by n0.

From Theorem 3, we reject H∗0 of (9) with a significance level α if Ĵn0,M/σ̂Ĵn0,M ,0
> zα,

where zα is the upper α-quantile of the standard normal. Otherwise, we fail to reject H∗0
and hereby obtain a training sample for the proposed stopping rule.

Asymptotic results in Theorem 3 and in Theorem 4 of Section 3.4 require a diverging
training sample size n0 to provide consistent estimation for tr{C(h1)C(h2)} in (5) and M
in the stopping rule (7). In practice, one can consider a relatively large n0 for satisfactory
performance of the proposed stopping rule. For example, we choose n0 = 200 in the
simulation studies of Section 4.

3.4 Stopping Rule with Estimated M

The unknown M in the stopping rule (7) can be estimated through the training sample
X1, · · · , Xn0 . From (C1), we know that cov(Xi, Xj) = C(i − j) is zero if and only if
|i − j| > M , or equivalently, tr{C(h)CT (h)} is zero if and only if |h| > M . We thus
estimate M through the following steps.

• Using (6), we compute ̂tr{C(h)CT (h)}/ ̂tr{C(0)C(0)} with h starting from 0.
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• We terminate the process when the first non-negative integer h∗ satisfies

̂tr{C(h∗)CT (h∗)}
̂tr{C(0)C(0)}

≤ ε,

where ε is a small constant and can be chosen to be 0.05 in practice.

• We then estimate M by M̂ = h∗ − 1.

Let TH(a, M̂) be the stopping rule obtained by replacing M with M̂ in (7). The following
theorem shows that TH(a, M̂) performs asymptotically as well as TH(a,M) under both null
and alternative hypotheses.

Theorem 4 Assume the same conditions in Theorems 1 and 2. As the training sample size
n0 →∞,

E∞{TH(a, M̂)} − E∞{TH(a,M)} → 0, E0{TH(a, M̂)} − E0{TH(a,M)} → 0.

4. Simulation Studies

In this section we present simulation results to examine the empirical performance of the
proposed stopping rule.

4.1 Accuracy of the Theoretical Average Run Length

We first evaluate the performance of the stopping rule under the null hypothesis. The
random vectors Xi for i = 1, 2, · · · are generated from

Xi =

M∑
l=0

Γl εi−l, (10)

where the p × p matrix Γl = {0.6|i−j|(M − l + 1)−1} for i, j = 1, · · · , p, and l = 0, · · · ,M .
Each εi is a p-variate random vector with mean 0 and identity covariance Ip, and all εis
are mutually independent. If M = 0, all Xis are mutually independent from (10) and each

individual Xi has the covariance matrix Γ0Γ
T
0 . If M 6= 0, cov(Xi, Xj) =

∑M−(i−j)
l=0 Γi−j+lΓ

T
l

for i − j = 0, · · · ,M . Here we consider the normally distributed εi. Non-Gaussian εi can
be also considered and the obtained results are similar to those of Gaussian εi. We choose
the dimension p = 200, 400 and 1000, the size of historical data n0 = 200, the window size
H = 100 and 150, and dependence M = 0, 1, 2, respectively.

To examine the accuracy of the theoretical average run length, we first specify its value
and obtain the corresponding a by solving the equation in Theorem 1. Based on the a,
we obtain the Monte Carlo average run length by taking the average of the stopping times
from 1000 simulations. Table 1 compares the theoretical average run lengths with the
corresponding Monte Carlo average run lengths under different combinations of H, p and
M . All the Monte Carlo average run lengths are reasonably close to the theoretical average
run lengths, subject to some random variations from simulations under different M and p.
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H = 100

Theoretical p = 200 p = 400 p = 1000

(a, ARL) M = 0 1 2 M = 0 1 2 M = 0 1 2

(3.04, 1002) 1178 1151 1194 1245 1284 1317 1302 1295 1335
(3.42, 3008) 3067 3148 2986 3690 3614 3529 3850 3954 3617
(3.58, 5038) 5118 4527 4253 5799 5923 5212 6570 6102 5878

H = 150

p = 200 p = 400 p = 1000

M = 0 1 2 M = 0 1 2 M = 0 1 2

(2.88, 1005) 1044 1127 1149 1069 1173 1308 1145 1198 1270
(3.29, 3033) 3240 3156 3202 3505 3795 3628 3652 3759 3931
(3.46, 5118) 5120 5097 5280 6083 5820 6156 6162 6586 6794

Table 1: The comparison between theoretical average run lengths and Monte Carlo average
run lengths based on 1000 simulations. For each average run length and window
size H, the threshold a is obtained by solving the equation in Theorem 1.

4.2 Accuracy of the Upper Bound for Expected Detection Delay

We next evaluate the performance of the stopping rule under the alternative hypothesis. In
particular, we examine the accuracy of the upper bound for the expected detection delay in
Theorem 2. In the simulation studies, we consider an immediate change, namely the change
occurring immediately after the historical data of size n0 = 200. Before the change point τ ,
the observations Xi for i = 1, · · · , 200 are generated from (10) where Γl = I(M − l + 1)−1

with I being the identity matrix. After the change, Γl = Q(M − l+ 1)−1 in (10) where the
p× p matrix Q is modeled by one of the following patterns.

(a). Q satisfies QQT = Σ, where Σij = ρ|i−j| for 1 ≤ i, j ≤ p.

(b). Each row of Q has only three non-zero elements that are randomly chosen from
{1, · · · , p} with magnitude ρ multiplied by a random sign.

(c). Q satisfies QQT = Σ, where Σii = 1 for i = 1, · · · , p, and Σij = ρ for i 6= j.

Models (a)–(c) specify the bandable, sparse and strong covariance matrices, respectively.
We choose ρ = 0.6, 0.7, 0.8 to obtain different magnitudes in the covariance change, and
choose the dimension p = 1000, the window size H = 100 and 150, and dependence M =
0, 1, 2, respectively. Moreover, the threshold a = 3.58 when H = 100 and a = 3.46 when
H = 150 so that the theoretical average run length is controlled around 5000. Table 2
compares the theoretical bound for the expected detection delay in Theorem 2 with the
corresponding Monte Carlo expected detection delay based on 1000 simulations. As we can
see, each Monte Carlo expected detection delay is no more than its theoretical upper bound.
Furthermore, both Monte Carlo expected detection delays and theoretical bounds decrease
as ρ increases with the same M and H, but increase as M increases with the same ρ and
H. The simulation results are consistent with the theoretical findings in Theorem 2.
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ρ = 0.6 0.7 0.8
M = 0 1 2 M = 0 1 2 M = 0 1 2

Model (a)

H = 100 Monte Carlo 16.18 20.14 24.04 11.31 14.34 16.98 8.11 10.31 12.44
Theoretical 20.59 23.63 25.99 16.23 18.79 20.83 12.46 14.61 16.38

H = 150 Monte Carlo 17.49 21.62 25.45 12.34 15.38 18.56 8.90 11.32 13.37
Theoretical 24.36 28.10 31.04 19.11 22.21 24.70 14.59 17.13 19.22

Model (b)

H = 100 Monte Carlo 4.36 5.84 7.16 3.58 4.71 5.87 3.10 4.13 5.06
Theoretical 7.42 9.09 10.58 6.07 7.40 8.76 5.11 6.42 7.60

H = 150 Monte Carlo 4.79 6.38 7.68 3.85 5.13 6.58 3.27 4.50 5.32
Theoretical 8.53 10.38 11.92 6.80 8.45 9.88 5.74 7.19 8.45

Model (c)

H = 100 Monte Carlo 2.84 3.90 4.94 2.68 3.68 4.78 2.63 3.69 4.72
Theoretical 3.04 4.15 6.23 2.89 3.99 5.05 2.78 3.87 4.92

H = 150 Monte Carlo 2.96 3.94 5.09 2.89 3.93 4.91 2.72 3.76 4.84
Theoretical 3.25 4.40 5.51 3.07 4.20 5.30 2.94 4.05 5.13

Table 2: The comparison between theoretical upper bounds for expected detection delays
and Monte Carlo expected detection delays based on 1000 simulations with the
average run length controlled around 5000.

4.3 Accuracy of the Data-Driven Procedure for M

We also examine the data-driven procedure proposed in Section 3.4 for estimating M . For
each simulation, a training sample of 200 observations is generated from (10) with p = 1000,
where the 1000 × 1000 matrix Γl = {0.6|i−j|(M − l + 1)−1} for i, j = 1, · · · , 1000, and

l = 0, · · · ,M . We terminate the estimating procedure when ̂tr{C(h)CT (h)}/ ̂tr{C(0)C(0)}
is less than or equal to a small constant ε = 0.02. From (10), ̂tr{C(h)CT (h)} estimates

tr{C(h)CT (h)} =
∑M−h

l,q=0 tr(ΓTq+hΓl+hΓTl Γq) and ̂tr{C(0)C(0)} estimates tr{C(0)C(0)} =∑M
l,q=0 tr(ΓTq ΓlΓ

T
l Γq). Figure 1 illustrates the histograms of selected M based on 100 sim-

ulations when the actual M = 0, 1, 2 and 3. The proposed data-driven procedure demon-
strates its satisfactory performance for estimating the M , while the probability of identi-
fying the correct M becomes smaller as M gets greater. This is because tr{C(0)C(0)} =∑M

l,q=0 tr(ΓTq ΓlΓ
T
l Γq) can be much greater than tr{C(M)CT (M)} = tr(ΓTMΓMΓTl Γq) when

M is larger. For example, if M = 3, tr{C(M)CT (M)}/tr{C(0)C(0)} ≈ 1/16, which is
slightly greater than ε = 0.02. As a result, the data-driven procedure in Section 3.4 could
end up with h∗ = M or estimates M by h∗ − 1 = 2. As demonstrated in the last panel of
Figure 1, 70 out of 100 simulations correctly identify M = 3, but 23 out of 100 simulations
identity 2.
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Histogram of selected M when M=0
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Histogram of selected M when M=2
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Histogram of selected M when M=3
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Figure 1: Histograms of selected M by the proposed data-driven procedure when the actual
M = 0, 1, 2 and 3. The results are based on 100 simulations.

4.4 Comparison with Other Methods

In the last part of simulation studies, we compare our proposed online change-point detec-
tion method with the one in Avanesov (2019). Note that Avanesov (2019) assumes tempo-
ral independence of data. We consider the following simulation setup similar to Avanesov
(2019). Without any change point, there are 520 vectors which are independently gener-
ated from the multivariate normal N(0, Ip). With a change point, there are 400 vectors
before the change point which are independently generated from the multivariate normal
N(0, Ip). There are 120 vectors after the change point which are independently generated
from N(0,Σ), where Σ is the inverse of the tridiagonal matrix with diagonal elements equal
to 1 and off-diagonal elements equal to 0.4. The dimensionality of data is p = 50.

To detect the change point, our method uses an additional historical data of size n0 = 200
and a fixed window size H = 100. The method in Avanesov (2019) uses multiple window
sizes (15, 30, 60). Another difference is that the method in Avanesov (2019) controls the
probability α = 0.05 to raise a false alarm among the simulated 520 observations, but our
method controls the average run length. To compare the two methods based on the same
criterion, we obtain the threshold a = 3.95 in the stopping rule (7) through 1000 Monte
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Carlo simulations, such that the probability of the false alarm is α = 0.05 when there is
no change point in the covariance structure among the 520 observations. The threshold in
Avanesov (2019) for α = 0.05 is obtained through a bootstrap calibration scheme. Based on
the 1000 simulations, the power of our method is 1 and the Monte Carlo expected detection
delay is 12.4. The power is greater than Avanesov (2019) which is 0.82 and the Monte Carlo
expected detection delay is smaller than Avanesov (2019) which is 41.1.

5. Case Study

Resting-state fMRI is a method to explore brain’s internal dynamic networks. We ap-
ply the proposed method to a resting-state fMRI data set obtained from the 2017 Human
Connectome Project (HCP) data release. The data consist of 300 independent component
analysis (ICA) component nodes (p = 300) repeatedly observed over 1200 time points,
collected for each of 1003 subjects. The publicly accessible data set together with de-
tails about data acquisition and preprocessing procedures can be found in HCP website
(http://www.humanconnectome.org).

We detect the change in a real-time manner, in the sense that we pretend the observa-
tions in the data set continually arrive in time. At each time, we determine whether the
process should be terminated through the proposed stopping rule. Note that the proposed
stopping is designed only for detecting the covariance change. When a detection process
involves a change in the mean, it cannot be detected by the proposed stopping rule. Despite
such a limitation, we still apply the stopping rule to the data set for the covariance change
as the main interest of using the resting-state fMRI is to study the dynamic nature of brain
connectivity (Cribben et al., 2013; Jeong et al., 2016).

While there are 1003 subjects in the data set, we randomly choose two subjects 103010
and 130417 to demonstrate the practical usefulness of the proposed method. The proposed
stopping rule needs a training sample. We pretend that the first 200 observations of each
time series are historical, and further justify their stationarity in the covariance structure
through the testing procedure in Section 3.3. Here we use relatively large training sample
size 200 to attain precise estimation of nuisance parameters. Based on the training sample,
we estimate M by 5 for the subject 103010 and 6 for the subject 130417 using the method
in Section 3.4 and obtain the sample mean µ̂ and the sample standard deviation of the test
statistic using (8) in Section 2.3. Choosing the threshold a = 3.58 so that the average run
length is controlled around 5000, we apply the proposed stopping rule with the window size
H = 100 and terminate the process at the time 287 for the subject 103010 and the time
245 for the subject 130417.

With each of the stopping times 287 and 245, we pull out the observations from time
1 to the stopping time and conduct some post analyses. The first analysis is change-point
estimation. Similar to Bai (2010), the change point is estimated by

τ̂ = arg max
1<t<TH(a,M̂)

Ĵt,M̂,H ,

where Ĵt,M̂,H is obtained by replacing WM (i, j) in Ĵn,M,H with At,M̂ (i, j) defined in (3).

The rationale of using the above estimator is that the expectation of Ĵt,M̂,H always attains
its maximum at the true change point, as mentioned in Remark 2 of Section 2.2. The
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Figure 2: Online change-point detection in the covariance structure of subject 103010 (up-
per panel) and subject 130417 (lower panel). Each panel illustrates the estimated
correlation matrices before and after the estimated change point.

estimated change points are 264 for the subject 103010 and 228 for the subject 130417.
With the two stopping times 287 and 245, the corresponding detection delays are 23 for the
subject 103010 and 17 for the subject 130417, showing that the proposed stopping rule can
quickly terminate the process when the brain’s network change occurs.

The second analysis is illustrating the actual change in the brain’s network. For each
subject, we estimate the correlation matrices before and after the estimated change point
using the glasso. The obtained results for the two subjects are summarized in Figure 2,
which clearly illustrates the brain’s internal networks become stronger after the estimated
change points. The results are consistent with recent studies that during the resting state,
brain’s networks activate when a subject focuses on internal tasks, and exhibit dynamic
changes within time scales of seconds to minutes (Allen et al., 2014; Calhoun et al., 2014;
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Chang and Glover, 2010; Cribben et al., 2012; Handwerker et al., 2012; Hutchison et al.,
2013; Jeong et al., 2016; Monti et al., 2014).

6. Discussion

We propose a new procedure to detect the anomaly in the covariance structure of high-
dimensional online data. The procedure is implementable when data are non-Gaussian,
and involve both spatial and temporal dependence. We investigate its theoretical properties
by deriving an explicit expression for the average run length and an upper bound for the
expected detection delay. The established average run length can be employed to obtain
the level of the threshold in the stopping rule without running time-consuming Monte Carlo
simulations. The derived upper bound demonstrates the impact of data dependence and
magnitude of change in the covariance structure on the expected detection delay. The
theoretical properties are examined and justified by the empirical studies through both
simulation and a real application.

The proposed test statistic (3) takes the Frobenius norm to measure the magnitude of
change in the covariance matrix. Since the Frobenius norm sums the squared elements of
a matrix, the proposed stopping rule would be advantageous for detecting a change point
if changes of the covariance matrix happen in a large number of elements. On the other
hand, choosing the Frobenius norm would not be ideal if changes of the covariance matrix
happen in a sparse number of elements. This can be seen from Theorem 2 demonstrating
that the elements without undergoing changes do not contribute to ||Στ+1 − Στ ||F but to
||Στ ||F which leads to a large ||Στ ||F /||Στ+1 − Στ ||F and thus a long detection delay. One
way to reduce the detection delay is to replace the test statistic by

Ĵn,M,H =
2

H2

∑
1≤k≤l≤p

n∑
i,j=n−H+1

WM (i, j)Yi,klYj,kl,

where Yi,kl = Xi,kXi,l and Xi,k is the kth component of the p-dimensional random vector
Xi, and remove the elements Yi,klYj,kl with no change. Another way is to choose different
matrix norms. For instance, the statistics in Avanesov and Buzun (2018) and Avanesov
(2019) estimate the precision matrix and covariance matrix before and after a time point
and then take the sup-norm to measure the difference between the two matrices. Based on
a similar idea, one can choose the operator norm and define a statistic

Ln,H(t) = ||Σ̂l
n,H(t)− Σ̂r

n,H(t)||2

where || · ||2 is the matrix operator norm, and Σ̂l
n,H(t) and Σ̂r

n,H(t) are estimated covariance
matrices before and after a chosen time t from the observations {Xi, n −H + 1 ≤ i ≤ n}
within a window of size H. Since the sup-norm is the largest element of a matrix in absolute
value and the operator norm is the largest eigenvalue in absolute value when a matrix is
symmetric, stopping rules based on the sup-norm or operator norm would be advantageous
if changes of the covariance matrix happen in a sparse number of elements.

In univariate settings, the two classical methods for sequential change-point detection
are the CUSUM (Page, 1954; Lorden, 1971) and Shiryayev-Roberts procedures (Shiryayev,
1963; Roberts, 1966), where the former is based on the max-type likelihood ratio statistic
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and the latter is based on the sum-type likelihood ratio statistic. There is a preference
for the Shiryayev-Roberts procedure when the change in magnitude is weak and the change
occurs at large values, and conversely the CUSUM procedure when the change in magnitude
is strong and the change occurs immediately after the training sample. In high-dimensional
settings, in addition to the stopping rule (7) based on the sum-type U-statistic (3), we may
also consider a stopping rule based on a max-type U-statistic

T ∗H(b,M) = inf

{
n− n0 : max

n−M−H−2≤t≤n−M−2

∣∣∣∣∣ Ĵt,M,H

σ̂Ĵt,M,H ,0

∣∣∣∣∣ > b, n > n0

}
, (11)

where the statistic Ĵt,M,H can be obtained by replacing WM (i, j) in Ĵn,M,H with At,M (i, j)
defined in (3). Since the two stopping rules (7) and (11) are analogous to the Shiryayev-
Roberts and CUSUM procedures respectively, our future research is to extend the superior
and inferior aspects of the sum-type and max-type stopping rules from univariate settings
to high-dimensional settings.

Except for covariance change, high-dimensional online data may also encounter mean
change. Another interesting problem is to consider the hypotheses

H0 : µ1 = µ2 = · · · and Σ1 = Σ2 = · · · against

H1 : µ1 = · · · = µτ1 6= µτ1+1 = · · · or Σ1 = · · · = Στ2 6= µτ2+1 = · · · ,

where τ1 and τ2 are unknown change points for the mean and covariance, respectively. To
test the above hypotheses, we may consider a test statistic

Ĵn,M,H

σ̂J ,n0,M,H
+
L̂n,M,H

σ̂L,n0,M,H
,

where the first term is the proposed test statistic in (7) for the covariance change. The
second term is proposed for the mean change with

L̂n,M,H =
1

H

n∑
i,j=n−H+1

WM (i, j)XT
i Xj ,

where the weight function WM (i, j) is defined in (3). Similar to Proposition 1, we can show
that for a given n and H, E(L̂n,M,H) = H−1

∑n
i,j=n−H+1WM (i, j)µTi µj which is zero when

there is no change for the mean but positive otherwise. Moreover, by analogy with (8), the
estimated variance of L̂n,M,H is

σ̂2L,n0,M,H =
2

H2

H∑
i,j=1

∑
h1,h2

WM (i, j)WM (i− h1, j + h2) ̂tr{C(h1)C(h2)}.

The rational of considering the sum of Ĵn,M,H/σ̂J ,n0,M,H and L̂n,M,H/σ̂L,n0,M,H is to detect
the change of mean and covariance matrix simultaneously. The corresponding stopping rule
analogous to (7) can be proposed as

T ∗H(a,M) = inf

{
n− n0 :

∣∣∣∣∣ Ĵn,M,H

σ̂J ,n0,M,H
+
L̂n,M,H

σ̂L,n0,M,H

∣∣∣∣∣ > a∗, n > n0

}
,
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where the value of threshold a∗ can be determined by establishing its explicit relationship
with the average run length. Due to a similar structure of T ∗H(a,M) to (7), we expect that
its average run length and detection delay would be similar to the results in Theorems 1
and 2.
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Appendix A. Proofs

In this appendix we prove the propositions and theorems of the paper.

A. 1. Proof of Proposition 1

From (3), Xi and Xj in Ĵn,M are M apart because of the indicator function in WM (i, j).

From (C1), Xi and Xj are independent. Using the model (2), we obtain E(Ĵn,M ) =
n−2

∑
i,jWM (i, j)tr(ΣiΣj), which is the expectation under the alternative hypothesis. Un-

der the null hypothesis, E(Ĵn,M ) = tr(Σ2)n−2
∑

i,jWM (i, j) = 0 because
∑

i,jWM (i, j) = 0.

A. 2. Proof of Proposition 2

Note that var(Ĵn,M ) = E(Ĵ 2
n,M )−E2(Ĵn,M ), where E2(Ĵn,M ) can be obtained from Propo-

sition 1. We thus only need to derive E(Ĵ 2
n,M ), which, from (2), is

E(Ĵ 2
n,M ) =

1

n4

∑
i,j

∑
k,l

WM (i, j)WM (k, l)tr(ΣiΣj)tr(ΣkΣl) +
4

n4

∑
i,j

∑
k,l

WM (i, j)WM (k, l)

× tr2{C(i− k)C(l − j)}+
1

n4

∑
i,j

∑
k,l

WM (i, j)WM (k, l)

×
[
16tr{ΣlC(i− k)ΣjC(k − i)}+ 4tr{C(k − i)C(j − l)C(k − i)C(j − l)}

+ 8βtr(ΓTi ΓjΓ
T
j Γi ◦ ΓTk ΓlΓ

T
l Γk) + 8βtr(ΓTi ΓjΓ

T
k Γl ◦ ΓTi ΓjΓ

T
k Γl)

+
∑
m

2β2tr(ΓTj Γieme
T
mΓTk Γl ◦ ΓTj Γieme

T
mΓTk Γl)

]
,

where for any square matrices A and B, the symbol A ◦ B = (aijbij), and em is the
unit vector with the only non-zero element at the mth component. Applying (C2) and
subtracting E2(Ĵn,M ) in Proposition 1, we have

E(Ĵ 2
n,M ) =

4

n4

∑
i,j

∑
k,l

WM (i, j)WM (k, l)tr2{C(i− k)C(l − j)}{1 + o(1)}.

A. 3. Proof of Theorem 1

We need to derive the cumulative distribution function of TH(a,M). From (7),

P∞{TH(a,M) ≤ t} = P∞

(
max
0≤i≤t

∣∣∣∣∣ Ĵn0+i,M,H

σ̂n0,M,H

∣∣∣∣∣ > a

)
.

The cumulative distribution function of TH(a,M) thus depends on that of Ĵn0+i,M,H/σ̂n0,M,H ,
which will be shown to converge to a stationary Gaussian process.
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To simplify notation, let Ĵn0+i,M,H ≡ Ĵi,M , and σ̂n0,M,H ≡ σ̂0. The Gaussian process

is established by showing (i) the joint asymptotic normality of (σ̂−10 Ĵi1,M , . . . , σ̂
−1
0 Ĵid,M )′

for any i1 < i2 < · · · < id. (ii) the tightness of σ̂−10 Ĵi,M . To prove (i), we apply the

Cramér-Wold device to show that for any non-zero a1, · · · , ad,
∑d

l=1 σ̂
−1
0 alĴil,M is asymp-

totic normal. Since the proof is similar to that of Theorem 3, we omit it. We thus only
need to prove (ii).

Toward this end, we first obtain the leading order of var(Ĵi,M ). The following lemma is
proved in Section A. 4.

Lemma 1 As H →∞,

var(Ĵi,M ) =
4

H4

H∑
i,j=1

∑
h1,h2

WM (i, j)WM (i− h1, j + h2)tr
2{C(h1)C(h2)}

=
4

H4

∑
h1,h2

tr2{C(h1)C(h2)}
(

6π2 − 51

18
H4

)
{1 + o(1)}.

Let i1, i2 ∈ {1, . . . , t} and id ≡ i2 − i1. We next consider cov(Ĵi1,M , Ĵi2,M ), which

equals E(Ĵi1,M Ĵi2,M ) when there is no any change point. For id ∈ {1, . . . ,H − 1} and

H − id = O(H), the leading order of cov(Ĵi1,M , Ĵi2,M ) depends on id. Following similar

derivations of var(Ĵi,M ), we can obtain that under Under (C1) and as H →∞,

cov(Ĵi1,M , Ĵi2,M ) =
4

H4

∑
h1,h2

tr2{C(h1)C(h2)}
{

6π2 − 51

18
(H − id)4

}
{1 + o(1)}.

For id ∈ {1, . . . ,H − 1} and H − id = o(H), or for id ≥ H, cov(Ĵi1,M , Ĵi2,M ) can be

shown is the smaller order of var(Ĵi,M ), i.e.

cov(Ĵi1,M , Ĵi2,M ) = o

[
4

H4

∑
h1,h2

tr2{C(h1)C(h2)}
(

6π2 − 51

18
H4

)]
.

We need to show the tightness of σ−10 Ĵi,M . Then the tightness of σ̂−10 Ĵi,M can be
established by the Slutsky theorem because σ̂0 is ratio-consistent to σ0 according to Theorem
3. Consider i = q∗ · t, for q∗ = i/t ∈ (0, 1), with i = 1, . . . , t. It is equivalent to show the
tightness of G(i/t), where G(i/t) = G(q∗) = σ−10 Ĵi,M . For 0 < q∗ < r∗ < 1,

E|G(r∗)−G(q∗)|2 = σ−10 E|Ĵi1,M − Ĵi1,M |2

= σ−10 {E(Ĵ 2
i1,M ) + E(Ĵ 2

i2,M )− 2E(Ĵi1,M Ĵi2,M )}.

When there is no any change point,

E(Ĵ 2
i1,M ) = E(Ĵ 2

i2,M ) = var(Ĵi,M )

=
4

H4

∑
h1,h2

tr2{C(h1)C(h2)}
(

6π2 − 51

18
H4

)
{1 + o(1)}.
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For any i1, i2 ∈ {1, . . . , t}, and i2 − i1 = id ∈ {1, . . . ,H − 1}, as H →∞,

E|G(r∗)−G(q∗)|2 ≤ C
(4/H4)

∑
h1,h2

tr2{C(h1)C(h2)}2{H4 − (H − id)4}
(4/H4)

∑
h1,h2

tr2{C(h1)C(h2)}H4

≤ C

(
id
H

)
.

For id ≥ H,

E|G(r∗)−G(q∗)|2 ≤
C(4/H4)

∑
h1,h2

tr2{C(h1)C(h2)}2{H4 + o(H4)}
(4/H4)

∑
h1,h2

tr2{C(h1)C(h2)}H4
≤ C.

Therefore, by Chebyshev’s inequality, if 1 ≤ id ≤ H − 1,

P(|G(r∗)−G(q∗)| ≥ λ) ≤ E|G(r∗)−G(q∗)|2

λ2
≤ (C/λ2)(id/H).

Let H/t = d, then

id/H = (i2 − i1)/H = (r∗ − q∗)t/H = (r∗ − q∗)/d,

and {(r∗ − q∗)/d} ∈ (0, 1). If id ≥ H, or equivalently {(r∗ − q∗)/d} ≥ 1,

P(|G(r∗)−G(q∗)| ≥ λ) ≤ E|G(r∗)−G(q∗)|2

λ2
≤ C/λ2.

Let

fd{(q∗, r∗]} =

{
(r∗ − q∗)/d, if r∗ − q∗ < d

1, if r∗ − q∗ ≥ d,

then
P(|G(r∗)−G(q∗)| ≥ λ) ≤ (C/λ2)fd{(q∗, r∗]}.

Let ξi = G(i/t) − G{(i − 1)/m}, for i = 1, . . . , t. Then Si = ξ1 + · · · + ξi = G(i/t) with
S0 = 0. Therefore,

P(|Si2 − Si1 | ≥ λ) ≤ (C/λ2)fd{(q∗, r∗]}.

For any 0 < p∗ < q∗ < r∗ < 1, G(p∗) = Si0 , G(q∗) = Si1 and G(r∗) = Si2 , respectively. Let
m∗ = |G(q∗)−G(p∗)| ∧ |G(r∗)−G(q∗)|. Then

P(m∗ ≥ λ) = P
[
{|G(q∗)−G(p∗)| ≥ λ} ∩ {|G(r∗)−G(q∗)| ≥ λ}

]
≤ P1/2(|Si1 − Si0 | ≥ λ) · P1/2(|Si2 − Si1 | ≥ λ)

≤ (C/λ)f
1/2
d {(p

∗, q∗]}(C/λ)f
1/2
d {(q

∗, r∗]}
≤ (C/λ2)[fd{(p∗, q∗]}+ fd{(q∗, r∗]}].

If q∗ − p∗ < d and r∗ − q∗ < d, or equivalently r∗ − p∗ < 2d,

P(m∗ ≥ λ) ≤ (C/λ2)

{
q∗ − p∗

d
+
r∗ − q∗

d

}
≤ (C/λ2)

(
r∗ − p∗

d

)
.

24



Online Change-Point Detection in High-Dimensional Covariance Structure

If q∗ − p∗ < d and r∗ − q∗ ≥ d, or q∗ − p∗ ≥ d and r∗ − q∗ < d, but r∗ − p∗ < 2d,

P(m∗ ≥ λ) ≤ (C/λ2)

{
q∗ − p∗

d
+ 1

}
≤ (C/λ2)

(
q∗ − p∗

d
+
r∗ − q∗

d

)
≤ (C/λ2)

(
r∗ − p∗

d

)
.

If q∗ − p∗ < d and r∗ − q∗ ≥ d, or q∗ − p∗ ≥ d and r∗ − q∗ < d, but r∗ − p∗ ≥ 2d,

P(m∗ ≥ λ) ≤ (C/λ2)

{
q∗ − p∗

d
+ 1

}
≤ 2C/λ2.

If q∗ − p∗ ≥ d and r∗ − q∗ ≥ d, and r∗ − p∗ ≥ 2d,

P(m∗ ≥ λ) ≤ 2C/λ2.

Let

µα,d{(p∗, r∗]} =

{
( r

∗−p∗
d )

1
2α , if r∗ − p∗ < 2d

2
1
2α , if r∗ − p∗ ≥ 2d,

where α > 1
2 . Then µα,d{(p∗, r∗]} is a finite measure on T = (0, 1]. For any ε > 0 and

p∗, q∗, r∗ ∈ T = (0, 1],

P(m∗ ≥ λ) ≤ (C/λ2)µ2αα,d{(p∗, r∗]}.

Let

L(G) = sup
p∗≤q∗≤r∗

m∗ = max
i0≤i1≤i2

|Si1 − Si0 | ∧ |Si2 − Si1 |.

Using Theorem 10.3 in Bilingsley (1999), we conclude

P{L(G) ≥ λ} ≤ KC

λ2
µ2αα,d{(0, 1]},

where K is a constant. As t � H, d = H/t is close to zero, and 2d < (1 − 0). Hence,
µ2αα,d{(0, 1]} = 2, and

P{L(G) ≥ λ} ≤ 2KC

λ2
.

From (10.4) in Bilingsley (1999), we obtain

max
1≤i≤t

|Si| ≤ L(G) + |St|.

Since E|St|2 = σ−20 E(Ĵ 2
t,M ) = 1, we have

P( max
1≤i≤t

|Si| ≥ λ) ≤ P

{
L(G) ≥ 1

2
λ

}
+ P

(
|St| ≥

1

2
λ

)
≤ 2KC

(12λ)2
+

E|St|2

(12λ)2
≤ KC

λ2
.
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If λ goes to infinity, the above probability converges to zero. Therefore, Si is tight or
equivalently Ĵi,M/σ0 is tight.

Let q = i/H and let Y (q) = Y (i/H) ≡ Ĵi,M/σ0. For 0 ≤ p ≤ q, consider |p − q| → 0,
then we have, as H →∞,

|p− q| → 0⇒ |i1 − i2|/H → 0⇒ id/H → 0⇒ id = o(H).

If id = o(H),

cov{Y (p), Y (q)} = σ−20 E(Ĵi1,M Ĵi2,M )

=
(4/H4)

∑
h1,h2

tr2{C(h1)C(h2)}{(H − id)4}
(4/H4)

∑
h1,h2

tr2{C(h1)C(h2)}H4
{1 + o(1)}

= {(H − id)4/H4}{1 + o(1)} = 1− 4(id/H) + o{(id/H)}
= 1− 4|p− q|+ o{|p− q|}.

On the other hand, if |p− q| → ∞ or id/H →∞, cov{Y (p), Y (q)} = 0.

As a result, {Y (q), q ≥ 0} converges to {Z(q), q ≥ 0}, which is a stationary Gaussian
process with zero mean, unit variance and covariance function of the form

r(|p− q|) = cov{Z(p), Z(q)} = 1− 4|p− q|+ o(|p− q|),

as |p− q| → 0. On the other hand, as |p− q| → ∞, r(|p− q|) log(|p− q|)→ 0.

Let Q = t/H. From Finch (2003), as Q → ∞, max0≤q≤Q |Z(q)| has the Gumbel
distribution so that

P∞

{
max
0≤q≤Q

|Z(q)| ≤ a
}

= exp

[
−2exp

{
g(t/H, a)

}]
,

where

g(t/H, a) = 2 log(t/H) + 1/2 log log(t/H) + log(4/
√
π)− a

√
2 log(t/H).

As a result, when t > H,

P∞{TH(a,M) ≤ t} = 1− exp

[
−2exp

{
g(t/H, a)

}]
.

When t = H and as H →∞,

P∞

{
max
0≤q≤1

|Z(q)| ≤ a
}

= exp

{
−(2
√
π)−1Hexp(−a2/2)

}
,

which has the order of 1− 1/(2
√
π)Hexp(−a2/2) because H = o{exp(a2/2)}. As a result,

P∞{TH(a,M) ≤ H} = 1/(2
√
π)Hexp(−a2/2),

which decays to zero as H = o{exp(a2/2)}.
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We next derive the expectation of TH(a,M). Since the support of TH(a,M) is non-
negative, we have

E∞{TH(a,M)} =

∫ ∞
0
{1− FTH(a,M)(t)}dt,

where FTH(a,M)(t) is the cumulative distribution function of TH(a,M) evaluated at t. From
the above results, we have

E∞{TH(a,M)} =

∫ H

0
{1− FTH(a,M)(t)}dt+

∫ ∞
H
{1− FTH(a,M)(t)}dt

=

(
H +

∫ ∞
H

exp

[
−2exp

{
g(t/H, a)

}]
dt

)
{1 + o(1)}.

A. 4. Proof of Lemma 1

From the expression of WM (i, j), we write

WM (i, j) =

H−M−2∑
t=M+2

H − t−M
t−M − 1

I(i ≤ t)I(j ≤ t)I(|i− j| ≥M + 1)

+
t−M

H − t−M − 1
I(i ≥ t+ 1)I(j ≥ t+ 1)I(|i− j| ≥M + 1)

− 2
(t−M)(H − t−M)

t(H − t)− 1
2M(M + 1)

I(i ≤ t)I(j ≥ t+ 1)I(|i− j| ≥M + 1)

= WM,1(i, j) +WM,2(i, j) +WM,3(i, j)

Using (5), we obtain

var(Ĵi,M ) =
4

H4

∑
h1,h2

tr2{C(h1)C(h2)}
H∑

i,j=1

{WM,1(i, j)WM,1(i− h1, j + h2)

+ WM,2(i, j)WM,2(i− h1, j + h2) +WM,3(i, j)WM,3(i− h1, j + h2)

+ RW,1(i, j) +RW,2(i, j)}, (12)

where

RW,1(i, j) = {WM,1(i, j)WM,2(i− h1, j + h2) +WM,2(i, j)WM,1(i− h1, j + h2)},

and

RW,2(i, j) = {WM,1(i, j)WM,3(i− h1, j + h2) +WM,3(i, j)WM,1(i− h1, j + h2)}
+ WM,2(i, j)WM,3(i− h1, j + h2) +WM,3(i, j)WM,2(i− h1, j + h2)}.
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Since h1, h2 ∈ {0,±1, . . . ,±M}, they are finite constant. As H →∞, we obtain the leading
order of the first term on the right hand side of (12) as

4

H4

∑
h1,h2

tr2{C(h1)C(h2)}
H∑

i,j=1

{WM,1(i, j)WM,1(i− h1, j + h2)}

=
4

H4

∑
h1,h2

tr2{C(h1)C(h2)}
H∑

i,j=1

{WM,1(i, j)WM,1(i, j)}

=
4

H4

∑
h1,h2

tr2{C(h1)C(h2)}
H−M−2∑
t=M+2

(H − t−M)2

+
8

H4

∑
h1,h2

tr2{C(h1)C(h2)}
H−M−3∑
t1=M+2

(H − t1 −M)(t1 −M)

H−M−2∑
t2=t1+1

H − t2 −M
t2 −M − 1

= I(1) + I(2),

where

I(1) =
4

H4

∑
h1,h2

tr2{C(h1)C(h2)}
{H−2M−3∑

t=1

t2 − 2(H − 2M − 1)
H−2M−3∑

t=1

t

+ (H − 2M − 3)(H − 2M − 1)2
}

=
4

H4

∑
h1,h2

tr2{C(h1)C(h2)}
(

1

3
H3

)
{1 + o(1)},

and by Euler-Mascheroni constant,

I(2) =
8

H4

∑
h1,h2

tr2{C(h1)C(h2)}
H−M−3∑
t1=M+2

(H − t1 −M)(t1 −M)

{
− (H − t1 −M − 2)

+ (H − 2M − 1)
H−M−2∑
t2=t1+1

1

t2 −M − 1

}

= − 8

H4

∑
h1,h2

tr2{C(h1)C(h2)}
H−M−3∑
t1=M+2

(H − t1 −M)(H − t1 −M − 2)(t1 −M)

+
8

H4

∑
h1,h2

tr2{C(h1)C(h2)}
H−M−3∑
t1=M+2

(H − 2M − 1)(H − t1 −M)(t1 −M)

× log

(
H − 2M − 3

t1 −M − 1

)
= I(21) + I(22).
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We see that,

I(21) = − 8

H4

∑
h1,h2

tr2{C(h1)C(h2)}
H−2M−4∑
t1=1

(H − t1 − 2M − 3)(H − t1 − 2M − 1)(t1 + 1)

= − 8

H4

∑
h1,h2

tr2{C(h1)C(h2)}
[H−2M−4∑

t1=1

t31 − (2H − 4M − 5)

H−2M−4∑
t1=1

t21

+ {(H − 2M − 2)(H − 2M − 3)− (H − 2M − 1)}
H−2M−4∑
t1=1

t1

+ (H − 2M − 1)(H − 2M − 3)(H − 2M − 4)

]
= − 4

H4

∑
h1,h2

tr2{C(h1)C(h2)}
(

1

6
H4

)
{1 + o(1)},

and

I(22) =
8

H4

∑
h1,h2

tr2{C(h1)C(h2)}
{

(H − 2M − 1)

∫ H−2M−4

1
t2 log

(
t

H − 2M − 3

)
dt

− (H − 2M − 1)(H − 2M − 2)

∫ H−2M−4

1
t log

(
t

H − 2M − 3

)
dt

− (H − 2M − 1)2
∫ H−2M−4

1
log

(
t

H − 2M − 3

)
dt

}
{1 + o(1)}

=
8

H4

∑
h1,h2

tr2{C(h1)C(h2)}
{
− 1

9
(H − 2M − 1)(H − 2M − 4)3

+
1

4
(H − 2M − 1)(H − 2M − 2)(H − 2M − 4)2

}
{1 + o(1)}

=
4

H4

∑
h1,h2

tr2{C(h1)C(h2)}
(

5

18
H4

)
{1 + o(1)}.

By combining all the above results, the first term on the right hand side of (12) is

4

H4

∑
h1,h2

tr2{C(h1)C(h2)}
H∑

i,j=1

{WM,1(i, j)WM,1(i− h1, j + h2)}

=
4

H4

∑
h1,h2

tr2{C(h1)C(h2)}
(

1

9
H4

)
{1 + o(1)}.

By the same idea, the second term on the right hand side of (12) is

4

H4

∑
h1,h2

tr2{C(h1)C(h2)}
H∑

i,j=1

WM,2(i, j)WM,2(i− h1, j + h2)}

=
4

H4

∑
h1,h2

tr2{C(h1)C(h2)}
(

1

9
H4

)
{1 + o(1)}.
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For the third term on the right hand side of (12), we have

4

H4

∑
h1,h2

tr2{C(h1)C(h2)}
H∑

i,j=1

WM,3(i, j)WM,3(i− h1, j + h2)}

=
4

H4

∑
h1,h2

tr2{C(h1)C(h2)}
H∑

i,j=1

WM,3(i, j)WM,3(i, j)}{1 + o(1)}

=
16

H4

∑
h1,h2

tr2{C(h1)C(h2)}
H−M−2∑
t=M+2

t(H − t){1 + o(1)}

+
32

H4

∑
h1,h2

tr2{C(h1)C(h2)}
H−M−3∑
t1=M+2

H−M−2∑
t2=t1+1

t1(H − t2){1 + o(1)} = II(1) + II(2),

where

II(1) =
16

H4

∑
h1,h2

tr2{C(h1)C(h2)}{−
H−2M−3∑

t=1

t2 + (H − 2M − 2)
H−2M−3∑

t=1

t

+ (H − 2M − 3)(M + 1)(H −M − 1)}

=
4

H4

∑
h1,h2

tr2{C(h1)C(h2)}
(

2

3
H3

)
{1 + o(1)},

and

II(2) =
32

H4

∑
h1,h2

tr2{C(h1)C(h2)}H
H−2M−4∑

t=1

(H − t− 2M − 3)(t+M + 1)

− 16

H4

∑
h1,h2

tr2{C(h1)C(h2)}
H−2M−4∑

t=1

(H + t)(H − t− 2M − 3)(t+M + 1)

= II(21) + II(22).

We see that

II(21) =
32

H4

∑
h1,h2

tr2{C(h1)C(h2)}H
{
−
H−2M−4∑

t=1

t2 + (H − 3M − 4)

H−2M−4∑
t=1

t

+ (H − 2M − 4)(M + 1)(H − 2M − 3)

}
=

4

H4

∑
h1,h2

tr2{C(h1)C(h2)}
(

4

3
H4

)
{1 + o(1)},
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and

II(22) =
16

H4

∑
h1,h2

tr2{C(h1)C(h2)}
[H−2M−4∑

t=1

t3 + (3M + 4)
H−2M−4∑

t=1

t2

− {H(H − 2M − 3)−H(M + 1) + (M + 1)(H − 2M − 3)}
H−2M−4∑

t=1

t

− H(H − 2M − 3)(M + 1)

]
= − 4

H4

∑
h1,h2

tr2{C(h1)C(h2)}H4{1 + o(1)}.

By combining the above results, the third term on the right hand side of (12) is

4

H4

∑
h1,h2

tr2{C(h1)C(h2)}
H∑

i,j=1

WM,3(i, j)WM,3(i− h1, j + h2)}

=
4

H4

∑
h1,h2

tr2{C(h1)C(h2)

(
1

3
H4

)
{1 + o(1)}.

We now evaluate the terms involving RW,1(i, j) and RW,2(i, j) in (12), where

H∑
i,j=1

RW,1(i, j)

= 2
H∑

i,j=1

WM,1(i, j)WM,2(i, j){1 + o(1)}

= 2

H∑
i,j=1

H−M−2∑
t1>t2=M+2

(H − t1 −M)(t2 −M)

(t1 −M − 1)(H − t2 −M − 1)

× I(t2 + 1 ≤ i ≤ t1)I(t2 + 1 ≤ j ≤ t1)I(|i− j| ≥M + 1){1 + o(1)}

=

∫ H−M−2

2M+4

∫ t1−M−2

M+2

2(H − t1 −M)(t2 −M)(t1 − t2 −M)(t1 − t2 −M − 1)

(t1 −M − 1)(H − t2 −M − 1)
dt2dt1

=
(π2

3
− 59

18

)
H4{1 + o(1)}.

Next, we consider RW,2(i, j). Note that

RW,2(i, j) = 2WM,1(i, j)WM,3(i, j){1 + o(1)}+ 2WM,2(i, j)WM,3(i, j){1 + o(1)},
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where

H∑
i,j

WM,1(i, j)WM,3(i, j)

= −2

H∑
i,j

H−M−2∑
t1>t2=M+2

H − t1 −M
t1 −M − 1

(t2 −M)(H − t2 −M)

t2(H − t2)− 1
2M(M + 1)

× I(i ≤ t2)I(t2 + 1 ≤ j ≤ t1)I(|i− j| ≥M + 1)

= −2
H−M−3∑
t2=M+2

H−M−2∑
t1=t2+1

H − t1 −M
t1 −M − 1

· (t2 −M)(H − t2 −M)

t2(H − t2)− 1
2M(M + 1)

{
t2(t1 − t2)−

1

2
M(M + 1)

}

= −2

∫ H−2M−3

M+2

∫ H−M−2

t2+M+1

H − t1 −M
t1 −M − 1

{
t2(t1 − t2)−

1

2
M(M + 1)

}
dt1dt2{1 + o(1)}

= − 1

36
H4{1 + o(1)}.

By the same idea, we have
∑H

i,jWM,2(i, j)WM,3(i, j) = −1/36H4{1 + o(1)}. Therefore,∑H
i,j RW,2(i, j) = −1/9H4{1 + o(1)}.
As a result, the leading order of the variance in Lemma 1 is

var(Ĵi,M ) =
4

H4

∑
h1,h2

tr2{C(h1)C(h2)}
(

2

9
H4 +

1

3
H4 +

6π2 − 59

18
H4 − 1

9
H4

)
{1 + o(1)}

=
4

H4

∑
h1,h2

tr2{C(h1)C(h2)}
(

6π2 − 51

18
H4

)
{1 + o(1)}.

A. 5. Proof of Theorem 2

We first prove that the supremum of the expected detection delays attains at the immediate
change point τ = n0. Equivalently, we need to show that for any τ > n0,

Eτ{TH(a,M)− (τ − n0)|TH(a,M) > τ − n0} ≤ E0{TH(a,M)}.

To simplify notation, we let τ∗ = τ − n0 and T ∗ = TH(a,M) − τ∗. Then to show the
above inequality, we only need to show that

Eτ{T ∗|T ∗ > 0} ≤ E0{T ∗}.

Since

Eτ{T ∗|T ∗ > 0} =

∫ ∞
0
{1− Pτ (T ∗ < t|T ∗ > 0)}dt, and

E0{T ∗} =

∫ ∞
0
{1− P0(T

∗ < t)}dt,

we only need to show that

Pτ (T ∗ < t|T ∗ > 0) ≥ P0(T
∗ < t), (13)
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First, the probability on the left hand side of (13) is

Pτ (T ∗ < t|T ∗ > 0) =
Pτ (T ∗ < t)− Pτ (T ∗ < 0)

1− Pτ (T ∗ < 0)
, (14)

where

Pτ{T ∗ < t} = Pτ

(
max

0≤i≤t+τ∗

∣∣∣∣∣ Ĵn0+i,M,H

σ̂n0,M,H

∣∣∣∣∣ > a

)
, and

Pτ{T ∗ < 0} = Pτ

(
max

0≤i≤τ∗

∣∣∣∣∣ Ĵn0+i,M,H

σ̂n0,M,H

∣∣∣∣∣ > a

)
.

From the above two probabilities, we can define two events

A = { max
0≤i≤t+τ∗

∣∣∣∣∣ Ĵn0+i,M,H

σ̂n0,M,H

∣∣∣∣∣ > a}, and B = { max
0≤i≤τ∗

∣∣∣∣∣ Ĵn0+i,M,H

σ̂n0,M,H

∣∣∣∣∣ > a}.

Second, the probability on the right hand side of (13) is

P0{T ∗ < t} = P0

(
max
0≤i≤t

∣∣∣∣∣ Ĵn0+i,M,H

σ̂n0,M,H

∣∣∣∣∣ > a

)

= Pτ

(
max

τ∗≤i≤t+τ∗

∣∣∣∣∣ Ĵn0+i,M,H

σ̂n0,M,H

∣∣∣∣∣ > a

)
. (15)

The last equation holds because both probabilities are based on the observations after the
change points 0 and τ − n0, respectively, and the observations have the same distribution.
From (15), we define the event

C = { max
τ∗≤i≤t+τ∗

∣∣∣∣∣ Ĵn0+i,M,H

σ̂n0,M,H

∣∣∣∣∣ > a}.

From the above defined events A,B and C, we see that A = B ∪C. Therefore, P(A) =
P(B) + P(C) − P(B ∩ C). From the definition of the events B and C, we see that if B
occurs, then T ∗ < 0 or the stopping time TH(a,M) < τ∗. Then C cannot occur. Therefore
P(A) = P(B) + P(C). Moreover, from the definitions of A,B,C, (14) becomes

Pτ (T ∗ < t|T ∗ > 0) =
Pτ (A)− Pτ (B)

1− Pτ (B)
=

Pτ (C)

1− Pτ (B)
=

P0{T ∗ < t}
1− Pτ (B)

,

where the last equation holds by using (15). Then (13) can be proved accordingly. This
completes the proof that the supremum of the expected detection delays attains at the
immediate change point τ = n0.

We next establish the upper bound for the expected detection delays. To simplify
notation, we let ĴT ≡ Ĵn,M,H , which is the test statistic evaluated at the stopping time
TH(a,M). Using (3), we see that

E(ĴT ) = E

{
1

H2

H∑
i,j=1

WM (i, j)(XT
n0−H+TH+iXn0−H+TH+j)

2

}
.

The following lemma is proved in Section A. 6.
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Lemma 2 Under the same conditions in Theorem 2,

E(ĴT ) =
logH

H

[
E
{

(TH −M)(TH −M − 1)
}

tr{(Στ+1 − Στ )2}

+ M(M + 1)tr{Στ (Στ+1 − Στ )}
]
{1 + o(1)}.

From Lemma 2, we obtain

logH

H
E
{

(TH −M)(TH −M − 1)
}

tr{(Στ+1 − Στ )2}{1 + o(1)} − (|E(ĴT )| − a · σH,M,0)

≤ a · σH,M,0 +
logH

H
M(M + 1)|tr{Στ (Στ+1 − Στ )}|{1 + o(1)}. (16)

Let ĴT−1 denote the test statistic evaluated at TH − 1. From the stopping rule (7), we
have

E|ĴT−1| ≤ a · σH,M,0.

By Jensen’s inequality and triangle inequality, we also have

E|ĴT−1| ≥ |E(ĴT )| − |E(ĴT − ĴT−1)|.

Combining the above two inequality, we obtain

|E(ĴT )| − a · σH,M,0 ≤ |E(ĴT − ĴT−1)|. (17)

Based on similar derivations,

|E(ĴT − ĴT−1)| =
2 logH

H
E(TH −M − 1)tr{(Στ+1 − Στ )2}{1 + o(1)}. (18)

Combining (16), (17) and (18), we obtain

logH

H
E{(TH −M − 2)2}tr{(Στ+1 − Στ )2}{1 + o(1)}

≤ a · σH,M,0 +
logH

H
M(M + 1)|tr{Στ (Στ+1 − Στ )}|{1 + o(1)}.

Using the Jensen’s inequality and Cauchy-Schwarz inequality, we have

E(TH −M − 2) ≤
√

E{(TH −M − 2)2}

≤
[

a · σH,M,0 ·H
logH · tr{(Στ+1 − Στ )2}

+
M(M + 1)

√
tr(Σ2

τ )√
tr{(Στ+1 − Στ )2}

] 1
2

{1 + o(1)}.

This completes the proof of Theorem 2.
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A. 6. Proof of Lemma 2

To simplify notation, we let Yi = Xn0−H+TH+iX
T
n0−H+TH+i. Since E(Yi) = Στ if n0 −H +

TH + i ≤ n0 and E(Yi) = Στ+1 if n0 −H + TH + i > n0, we write ĴT as

ĴT =
1

H2

H−TH∑
i,j=1

WM (i, j)tr(YiYj) +
1

H2

H∑
i,j=H−TH+1

WM (i, j)tr(YiYj)

+
2

H2

H−TH∑
i=1

H∑
j=H−TH+1

WM (i, j)tr(YiYj)

= ĴT,1 + ĴT,2 + ĴT,3, (19)

where

WM (i, j) =
H−M−2∑
t=M+2

{
H − t−M
t−M − 1

I(i ≤ t)I(j ≤ t)I(|i− j| ≥M + 1)

+
t−M

H − t−M − 1
I(i ≥ t+ 1)I(j ≥ t+ 1)I(|i− j| ≥M + 1)

− 2(t−M)(H − t−M)

t(H − t)− 1
2M(M + 1)

I(i ≤ t)I(j ≥ t+ 1)I(|i− j| ≥M + 1)

}
.

Since |i−j| ≥M+1, it requires TH ≥M+2 so that
∑H

i,j=H−TH+1WM (i, j)tr(YiYj) 6= 0.

We first evaluate E(ĴT,1) in (19), where tr(YiYj) is only based on the training sample
{Xi, 1 ≤ i ≤ n0}. Since the stopping time TH is relative to Fi = σ{Xn0+1, . . . , Xn0+i} and
the training sample {Xi, 1 ≤ i ≤ n0} is independent of {Xn0+1, · · · }, we obtain

E(ĴT,1) =
1

H2
E
{H−TH∑

i,j=1

WM (i, j)
}

E{tr(YiYj)} =
1

H2
E
{H−TH∑

i,j=1

WM (i, j)tr(Σ2
τ )
}
.

There are three summations in E(ĴT,1): one with respect to t within WM (i, j), and the
other two with respect to the indices i and j. We first evaluate the summations with respect
to i and j and then the summation with respect to the index t. To do so, we let C1 and C2

be some constants satisfying C1 ≤ t ≤ C2 and apply the following results:

C2∑
i,j=C1

I(i ≤ t)I(j ≤ t)I(|i− j| ≥M + 1) = (t− C1 −M + 1)(t− C1 −M),

C2∑
i,j=C1

I(i ≥ t+ 1)I(j ≥ t+ 1)I(|i− j| ≥M + 1) = (C2 − t−M)(C2 − t−M − 1),

C2∑
i,j=C1

I(i ≤ t)I(j ≥ t+ 1)I(|i− j| ≥M + 1) = (t− C1 + 1)(C2 − t)−M(M + 1)/2.

Note that the diagonal elements and the elements from the first to the Mth off-diagonal
of an H ×H matrix represent the elements with |i − j| ≤ M . The three equations can be
established by subtracting those elements from each block matrix.
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We are ready to evaluate E(ĴT,1). Note that TH ≥ M + 2. We apply the above three
equations to obtain

1

H2

H−TH∑
i,j=1

Wt(i, j) =
1

H2

H−TH∑
t=M+2

[
H − t−M
t−M − 1

(t−M)(t−M − 1)

+
t−M

H − t−M − 1
(H − TH − t−M)(H − TH − t−M − 1)

+ 2
{
− 1 +

M(H − 3
2M −

1
2)

t(H − t)− 1
2M(M + 1)

}{
t(H − TH − t)−

1

2
M(M + 1)

}]

+
1

H2

H−M−2∑
t=H−TH+1

H − t−M
t−M − 1

(H − TH −M)(H − TH −M − 1),

where, as H →∞, we approximate the sum by integral to obtain

1

H2

H−TH∑
t=M+2

[
(H − t−M)(t−M) +

(t−M)(H − TH − t−M)(H − TH − t−M − 1)

H − t−M − 1

+ 2
{
− 1 +

M(H − 3
2M −

1
2)

t(H − t)− 1
2M(M + 1)

}{
t(H − TH − t)−

1

2
M(M + 1)

}]
= TH(TH − 2M − 1)

logH

H
{1 + o(1)}.

And

1

H2

H−M−2∑
t=H−TH+1

(H − t−M)(H − TH −M)(H − TH −M − 1)

t−M − 1

=
(−2M − 1)(TH −M − 2)

H
{1 + o(1)}.

As a result, we obtain H−2
∑H−TH

i,j=1 Wt(i, j) = TH(TH − 2M − 1)H−1logH{1 + o(1)}.
This shows that as H →∞,

E(ĴT,1) =
logH

H
E
{
TH(TH − 2M − 1)

}
tr(Σ2

τ ){1 + o(1)}. (20)

We next consider ĴT,2 in (19). To this end, we first write

ĴT,2 =
2

H2

H∑
i<j=H−TH+1

I(j − i ≥M + 1)
{H−M−2∑

t=j

H − t−M
t−M − 1

+

i−1∑
t=M+2

t−M
H − t−M − 1

−
j−1∑
t=i

(t−M)(H − t−M)

t(H − t)− 1
2M(M + 1)

}
tr(YiYj).
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As H →∞, the leading order can be derived to be

E(ĴT,2) =
2

H2
E
[ H∑
i<j=H−TH+1

I(j − i ≥M + 1)
{

(3 + 2M −H) + (H − 2M − 1)

×
H−M−2∑
t=j

1

t−M − 1
+ (H − 2M − 1)

i−1∑
t=M+2

1

H − t−M − 1

}
tr(YiYj)

]
{1 + o(1)}

=
2

H2
E
[ H∑
i<j=H−TH+1

I(j − i ≥M + 1)
{

(3 + 2M −H)

+ (H − 2M − 1)
H−2M−3∑
t=j−M−1

1

t
+ (H − 2M − 1)

H−2M−3∑
t=H−M−i

1

t

}
tr(YiYj)

]
{1 + o(1)}

=
2

H2
E
{( H∑

i<j=H−TH+1

I(j − i ≥M + 1)H

H−2M−3∑
t=H−M−i

1

t

)
tr(YiYj)

}
{1 + o(1)}.

Note that 1 ≤ H−M− i ≤ T −M . As H →∞, we approximate
∑H−2M−3

t=H−M−i 1/t by integral
and obtain the leading order

E(ĴT,2) =
2 logH

H
E
{ H∑
i<j=H−TH+1

I(j − i ≥M + 1)tr(YiYj)
}
{1 + o(1)}

=
2 logH

H
E
{ TH∑
i<j=1

I(j − i ≥M + 1)tr(Yn0+iYn0+j)
}
{1 + o(1)}

=
2 logH

H
E
{ TH∑
i<j=1

I(j − i ≥M + 1)tr(Σ2
τ+1)

}
{1 + o(1)}

+
2 logH

H
E
[ TH∑
i<j=1

I(j − i ≥M + 1)tr{(Yn0+i − Στ+1)(Yn0+j − Στ+1)}
]
{1 + o(1)}

+
2 logH

H
E
[ TH∑
i,j=1

I(|j − i| ≥M + 1)tr{(Στ+1)(Yn0+j − Στ+1)}
]
{1 + o(1)}, (21)

where from first line to second line, we have changed the index by letting i′ = i−H + TH
and j′ = j −H + TH . To simplify notation, we redefine i′ as i and j′ as j.

We next evaluate each of the three terms (the last three lines) in (21). For the first
term, the only random variable is TH . After summing over i and j, we obtain

2 logH

H
E
{ TH∑
i<j=1

I(j − i ≥M + 1)tr(Σ2
τ+1)

}
=

logH

H
E
{

(TH −M)(TH −M − 1)
}

tr(Σ2
τ+1).

(22)
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We write the second term in (21) as

2 logH

H
E
[ TH∑
i<j=1

I(j − i ≥M + 1)tr{(Yn0+i − Στ+1)(Yn0+j − Στ+1)}
]

=
logH

H

p∑
r1,r2=1

E
{

(

TH∑
i=1

Y ∗n0+i,r1r2)2
}
− logH

H

p∑
r1,r2=1

E
( TH∑
i=1

Y ∗2n0+i,r1r2

)

− 2 logH

H

p∑
r1,r2=1

E
{( TH−M∑

i=1

M∑
q=1

+

TH−1∑
i=TH−M+1

TH−i∑
q=1

)
Y ∗n0+i,r1r2Y

∗
n0+i+q,r1r2)

}
, (23)

where Y ∗n0+i
= Yn0+i −Στ+1 and Y ∗n0+i,r1r2

is the element on the r1th row and r2th column
of Y ∗n0+i

. The last term on the right hand side exists if M ≥ 1. Using (vii) of Corollary 1.1
in Janson (1983), we obtain

p∑
r1,r2=1

E
{

(

TH∑
i=1

Y ∗n0+i,r1r2)2
}

= E(TH)tr2(Στ+1) + 2E
( TH−M∑

i=1

M∑
q=1

+

TH−1∑
i=TH−M+1

TH−i∑
q=1

)
× [tr2{Cτ+1(q)}+ tr{Cτ+1(q)C

T
τ+1(q)}] + o{E(TH)tr(Σ2

τ+1)}.

Moreover, using (v) of Corollary 1.1 in Janson (1983), we obtain

p∑
r1,r2=1

E
( TH∑
i=1

Y ∗2n0+i,r1r2

)
= E(TH)tr2(Στ+1) + o{E(TH)tr(Σ2

τ+1)}.

To evaluate the last term on the right hand side of (23), we let Fi = σ{Xn0+1, . . . , Xn0+i}
if i ≥ 1 and Fi = {∅,Ω} if i = 0. Then {Fi}∞0 is an increasing sequence of σ-fields on a
probability space (Ω,F∞, P ), and {Xn0+i}∞i=1 is a stationary and M -dependent sequence
of random vectors adapted to {Fi}∞i=1, and {Xn0+i+j}∞j=M+1 is independent of {Fi} for
every i. Moreover, {Yn0+i,r1r2}∞i=1 is a sequence of stationary and M -dependent random
variables adapted to {Fi}∞i=1, and {Yn0+i+j,r1r2}∞j=M+1 is independent of {Fi} for every i.

As a result, {
∑M

q=1 Y
∗
n0+i,r1r2

Y ∗n0+i+q,r1r2
}∞i=1 is a sequence of stationary and 2M -dependent

random variables adapted to {Fi+M}∞i=1, and E{
∑M

q=1(Yn0+i,r1r2 −στ+1,r1r2)(Yn0+i+q,r1r2 −
στ+1,r1r2)} =

∑M
q=1 Cov(Yn0+i, Yn0+i+q). Again, using (v) of Corollary 1.1 in Janson (1983),

we obtain

p∑
r1,r2=1

E
{( TH−M∑

i=1

M∑
q=1

+

TH−1∑
i=TH−M+1

TH−i∑
q=1

)
Y ∗n0+i,r1r2Y

∗
n0+i+q,r1r2)

}

= E
( TH−M∑

i=1

M∑
q=1

+

TH−1∑
i=TH−M+1

TH−i∑
q=1

)
[tr2{Cτ+1(q)}+ tr{Cτ+1(q)C

T
τ+1(q)}]

+ o{E(TH)tr(Σ2
τ+1)}.
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Combining the above results for (23), we obtain

2 logH

H
E
[ TH∑
i<j=1

I(j − i ≥M + 1)tr{(Yn0+i − Στ+1)(Yn0+j − Στ+1)}
]

= o
{
H−1E(TH) log(H)tr(Σ2

τ+1)
}
. (24)

For the last term in (21), we apply (v) of Corollary 1.1 in Janson (1983) to obtain

2 logH

H
E
[ TH∑
i,j=1

I(|j − i| ≥M + 1)tr{(Στ+1)(Yn0+j − Στ+1)}
]

= o
{
H−1E(TH) log(H)tr(Σ2

τ+1)
}
. (25)

By combining (22), (24) and (25), E(ĴT,2) in (21) becomes

E(ĴT,2) =
logH

H
E
{

(TH −M)(TH −M − 1)
}

tr(Σ2
τ+1)

{
1 + o(1)

}
. (26)

At last, we consider E(ĴT,3) in (19), where Yi is the observation in the training sample
and Yj is observation after the training sample. Since the stopping time TH is relative to
Fi = σ{Xn0+1, . . . , Xn0+i} and Yi and Yj are independent, we obtain

E(ĴT,3) =
2

H2

H∑
j=H−TH+1

H−M−2∑
t=M+2

H−TH∑
i=1

WM (i, j)tr(ΣτYj).

Note that TH ≥M + 2. We write

2

H2

H∑
j=H−TH+1

H−M−2∑
t=M+2

H−TH∑
i=1

WM (i, j)tr(ΣτYj)

=
2

H2

H∑
j=H−TH+1

H−TH∑
t=M+2

{
(t−M)(H − TH − t)

H − t−M − 1
− t(t−M)(H − t−M)

t(H − t)− 1
2M(M + 1)

}
tr(ΣτYj)

+
2

H2

H∑
j=H−TH+1

H−M−2∑
t=H−TH+1

{(H − t−M)(H − TH)

t−M − 1
I(t ≥ j)

− (t−M)(H − t−M)(H − TH)

t(H − t)− 1
2M(M + 1)

I(t ≤ j − 1)
}

tr(ΣτYj).

The leading order of E(ĴT,3) is contributed by

2

H2
E
[ H∑
j=H−TH+1

H−TH∑
t=M+2

{
(t−M)(H − TH − t)

H − t−M − 1
− t(t−M)(H − t−M)

t(H − t)− 1
2M(M + 1)

}
tr(ΣτYj)

]
= −2 logH

H
E
{
TH(TH − 2M − 1) +

M(M + 1)

2

}
tr(ΣτΣτ+1){1 + o(1)},
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where to obtain the right hand side, we have approximated
∑H−TH

t=M+2 by the integral as
H →∞, and similar to (25), we have applied (v) of Corollary 1.1 in Janson (1983).

As a result,

E(ĴT,3) = −2 logH

H
E
{
TH(TH − 2M − 1) +

M(M + 1)

2

}
tr(ΣτΣτ+1){1 + o(1)}. (27)

From (19), E(ĴT ) can be derived by adding (20), (26) and (27) together. This completes
the proof of Lemma 2.

A. 7. Proof of Theorem 3

The asymptotic normality of Ĵn0,M can be established by the martingale central limit
theorem. Toward this end, we let F0 = {∅,Ω}, Fk = σ{X1, ..., Xk} with k = 1, 2, ..., n0,
and Ek(·) denote the conditional expectation given Fk. Define Dn0,k = (Ek − Ek−1)Ĵn0,M

and it is easy to see that Ĵn0,M − µĴn0,M =
∑n0

k=1Dn0,k.

We further define Sn0,m =
∑m

k=1Dn0,k = EmĴn0,M − µĴn0,M . We can show that for

q ≥ m, E(Sn0,q|Fm) = Sn0,m. To this end, we note that Sn0,q = EqĴn0,M − µĴn0,M
=

EmĴn0,M − µĴn0,M + EqĴn0,M − EmĴn0,M = Sn0,m + (EqĴn0,M − EmĴn0,M ). Then

E(Sn0,q|Fm) = Sn0,m + E{Eq(Ĵn0,M )|Fm} − E{Em(Ĵn0,M )|Fm}
= Sn0,m + E{Em(Ĵn0,M )} − E{Em(Ĵn0,M )}
= Sn0,m.

As a result, we see that {Sn0,k,Fk} is a martingale and accordingly, {Dn0,k, 1 ≤ k ≤ n0}
is a martingale difference sequence with respect to the σ-fields {Fk, 1 ≤ k ≤ n0}

Based on similar derivations for Lemmas 2 and 3 in Li and Chen (2012), we can show
that under (2.2) in the main paper and Conditions 1–2, as n0 →∞,∑n0

k=1 Ek−1(D
2
n0,k

)

σ2
Ĵn0,M

p−→ 1. And

∑n0
k=1 E(D4

n0,k
)

σ4
Ĵn0,M

→ 0.

The above two results are sufficient conditions for the martingale central limit theorem.
This thus completes the first part of Theorem 3.

To show the second part of Theorem 3, we only need to show the ratio consistency of
σ̂Ĵn0,M ,0

defined in (8) to σĴn0,M ,0
under the null hypothesis. From the expression (6), we

apply (2) such that under the null hypothesis,

E

(
1

n∗

∗∑
s,t

XT
t+h2XsX

T
s+h1Xt

)
=

1

n∗

∗∑
s,t

E(ZTΓTt+h2ΓsZZ
TΓTs+h1ΓtZ)

= tr{C(h1)C(h2)}.
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This shows that E[ ̂tr{C(h1)C(h2)}] = tr{C(h1)C(h2)}. Similarly, under (C1–C2), we have

var[ ̂tr{C(h1)C(h2)}] = o[tr2{C(h1)C(h2)}]. This implies that under the null hypothesis,

̂tr{C(h1)C(h2)}/tr{C(h1)C(h2)}
p−→ 1.

The second part of Theorem 3 is then proved by applying the continuous mapping theorem.

A. 8. Proof of Theorem 4

We first show that P(M̂ = M) → 1 as n0 → ∞. Note that the event that M̂ > M is
equivalent to the event that

̂tr{C(M + 1)C(−M − 1)}/ ̂tr{C(0)C(0)} > ε.

Therefore, P(M̂ > M) is equivalent to

P

[
̂tr{C(M + 1)C(−M − 1)}/ ̂tr{C(0)C(0)} > ε

]
.

It is also equivalent to P

[
̂tr{C(M + 1)C(−M − 1)}/tr{C(0)C(0)} > ε

]
as

̂tr{C(0)C(0)}/tr{C(0)C(0)} p−→ 1

from the proof of Theorem 3.

From (6), we can show that E[ ̂tr{C(M + 1)C(−M − 1)}] = 0 and

var

[
̂tr{C(M + 1)C(−M − 1)}/tr{C(0)C(0)}

]
= O(n−2).

Using Chebyshev’s inequality, we can show that as n0 →∞,

P

[
̂tr{C(M + 1)C(−M − 1)}/tr{C(0)C(0)} > ε

]
→ 0,

or equivalently, P(M̂ > M) → 0. Similarly, we can show that P(M̂ < M) → 0. We then
establish P(M̂ = M)→ 1 as n0 →∞.

To prove E∞{TH(a, M̂)} − E∞{TH(a,M)} → 0, we only need to show that for every t,
as n0 →∞,

P∞{TH(a, M̂) ≤ t} − P∞{TH(a,M) ≤ t} → 0.

Toward this end, we notice that

P∞{TH(a, M̂) ≤ t} = P∞{TH(a, M̂) ≤ t, M̂ = M}+ P∞{TH(a, M̂) ≤ t, M̂ 6= M},

where the second term converges to zero because P(M̂ = M)→ 1 as n0 →∞.

Similarly, we can show E0{TH(a, M̂)} − E0{TH(a,M)} → 0.
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