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Abstract

In network analysis, it is common to work with a collection of graphs that exhibit hetero-
geneity. For example, neuroimaging data from patient cohorts are increasingly available.
A critical analytical task is to identify communities, and graph Laplacian-based meth-
ods are routinely used. However, these methods are currently limited to a single network
and also do not provide measures of uncertainty on the community assignment. In this
work, we first propose a probabilistic network model called the “Spiked Laplacian Graph”
that considers an observed network as a transform of the Laplacian and degree matrices
of the network generating process, with the Laplacian eigenvalues modeled by a modified
spiked structure. This effectively reduces the number of parameters in the eigenvectors,
and their sign patterns allow efficient estimation of the underlying community structure.
Further, the posterior distribution of the eigenvectors provides uncertainty quantification
for the community estimates. Second, we introduce a Bayesian non-parametric approach
to address the issue of heterogeneity in a collection of graphs. Theoretical results are estab-
lished on the posterior consistency of the procedure and provide insights on the trade-off
between model resolution and accuracy. We illustrate the performance of the methodology
on synthetic data sets, as well as a neuroscience study related to brain activity in working
memory.

Keywords: Isoperimetric Constant, Mixed-Effect Eigendecomposition, Normalized Graph
Cut, Stiefel Manifold.

1. Introduction

In recent years, there has been a strong interest in modeling network data due to their
increased availability in social sciences (Aggarwal, 2011), biology (Minch et al., 2015) and
engineering (Zhang et al., 2008). A popular generative model, suitable for social network
analysis has been the stochastic block model (Nowicki and Snijders, 2001; Karrer and New-
man, 2011) and its variant, the mixed membership stochastic block model (Airoldi et al.,
2008). Their popularity stems from the fact that these models tend to produce networks
organized in communities; subsets of vertices connected with one another with particular
edge densities. For example, edge density may be higher within communities than be-
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tween communities. A key analytical task is that of community detection and a plethora
of algorithms have been proposed in the literature [Leighton and Rao (1999); Khandekar
et al. (2009); Arora et al. (2009); Mucha et al. (2010); Fortunato (2010); Papadopoulos
et al. (2012); for recent reviews, see Abbe (2017); Javed et al. (2018)]. Further, consistency
results when the number of vertices grows to infinity have also been provided for certain
community detection algorithms, with spectral clustering being the most prominent among
them (Rohe et al., 2011; Amini et al., 2013).

However, when the network is of small to moderate size, such consistency results are not
directly applicable, which motivated various Bayesian approaches. Many of them can be
viewed as variants of the latent space model (Hoff et al., 2002), wherein the key idea is to
assume a latent coordinate for each vertex, and the pairwise interaction of two coordinates
(e.g., inner product, distance) determines the probability of whether an edge should form.
Such an example is the Bayesian stochastic block model [see, e.g., McDaid et al. (2013);
van der Pas and van der Vaart (2018); Geng et al. (2019)] that characterizes the randomness
in the community labels. Some other approaches consider edge formation as the outcome
of a stochastic mechanism that can lead to a power-law degree distribution (Cai et al.,
2016), or to sparse networks (Caron and Fox, 2017) and can aid in link prediction tasks
(Williamson, 2016).

In many scientific areas, it is becoming common to have access to a collection of networks,
that usually exhibit a certain degree of heterogeneity. For example, neuroscientists collect
brain signals from EEG/MEG technologies for cohorts of patients that give rise to networks
capturing brain activity between regions of interest (ROIs) (Shen et al., 2013). The networks
in the collection share common features (e.g., community structure, since they are derived
from subjects either responding to the same stimulus in designed experimental studies or
having the same disease condition in observational studies), but also exhibit heterogeneity.
Analysis of such collections could proceed by applying current approaches to each network
and then devising methods for aggregating the results, which could prove challenging, since
the possible significant variation from one network to another renders pooling information
error-prone (e.g., by assuming a shared latent space). This issue was recognized by Durante
et al. (2017) that proposed to use multiple sets of coordinates, modeled by a non-parametric
mixture distribution. The latter approach fits better the underlying data, vis-a-vis a naive
averaging across multiple networks. Similarly, Mukherjee et al. (2017) proposed an ap-
proach to directly cluster the networks, which reduces the heterogeneity for downstream
analysis.

Another important factor to consider for multiple networks is the risk of model misspeci-
fication. Unfortunately, a fully Bayesian network model is sensitive to this issue, since it
needs to impose a parametric distribution on the edge generating mechanism, often using
a Bernoulli distribution. In contrast, in real world applications, the available network data
are in fact produced by various processing algorithms, such as thresholding the correlation
matrix from the multivariate time series (Sojoudi, 2016) (hence not Bernoulli). Although
one could trace back the data processing steps and develop a corresponding generative
model, often this is impractical due to the complexity and use of heuristics in those steps.
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Rather, it is more useful to consider a modeling approach, that is probabilistic, but based
on more relaxed assumptions.

The above two factors lead us to consider the graph Laplacian (Chung and Graham, 1997),
which lies at the heart of spectral clustering algorithms that use a set of eigenvectors cor-
responding to the smallest non-trivial eigenvalues. It is a simple transformation of the
adjacency matrix, and its smallest non-trivial eigenvalues provide information on the mini-
mum edge loss when partitioning the network into multiple communities. However, spectral
clustering-based approaches are primarily algorithmic in nature, involving a multi-stage
procedure starting by normalizing the graph Laplacian, followed by a singular value de-
composition and selection of the appropriate number of eigenvectors to use (based mostly
on empirical inspection) and then finally a post-processing of the eigenvectors through an
application of the K-means algorithm (Ng et al., 2002). Further, performance guarantees
for such approaches are asymptotic in nature and take the form of high probability error
bounds on the number of communities selected and the misclassification error rate (Hein
et al., 2007; Von Luxburg et al., 2008; Rohe et al., 2011). Since there is no likelihood func-
tion involved, measures of uncertainty for community assignments are difficult to obtain,
and further, it becomes challenging to accommodate heterogeneity across networks.

To overcome these challenges, we consider a probabilistic model for the graph Laplacian,
leveraging its spectral properties and subsequently introducing a non-parametric Bayes ap-
proach on a population of networks/graphs. The crux of the problem is how to parameterize
a valid Laplacian matrix by only focusing on a small set of eigenvectors (rank) that cap-
tures the underlying community structure. We leverage ideas from the spiked covariance
model (Donoho et al., 2018), and adding a new transformation that focuses on the smallest
eigenvalues (as opposed to the largest ones in covariance modeling). We then show that
the associated eigenvectors contain useful information for a hierarchical partitioning of the
graph, which leads to an almost instantaneous estimation of the underlying communities,
with no need for post-processing of the results from spectral clustering with iterative algo-
rithms such as K-means. Due to the Bayesian nature of the model, the estimated community
labels have a posterior distribution, which quantifies their uncertainty. To the best of our
knowledge, existing Bayesian models involving the graph Laplacian mostly use it as a tool
to construct a regularizing prior distribution for different types of problems, such as variable
selection in regression (Liu et al., 2014), function estimation on a graph (Kirichenko et al.,
2017) and covariance specification for Gaussian processes (Dunson et al.). In contrast, we
use the Laplacian as a transformation for network data and propose a new likelihood with
the goal of carrying out near-optimal community detection, hence our focus is different and
novel.

The remainder of this paper is organized as follows: Section 2 introduces the construction
of the spiked graph Laplacian, and the non-parametric Bayesian model that accommodates
heterogeneity in a collection of graphs; Section 3 introduces the estimation of the commu-
nities based on the posterior distribution; Section 4 establishes theoretical properties for
the proposed model. Section 5 evaluates the model performance based on synthetic data,
while Section 6 illustrates the modeling approach in a data application aiming to charac-
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terize the heterogeneity in brain scans in a human working memory study. The software
implementation can be found on https://github.com/leoduan/BayesSpikedLaplacian.

2. The Spiked Graph Laplacian Model

Suppose S graphs/networks are observed, each denoted by G(s) = {V (s), E(s)}, s = 1, . . . , S,

with corresponding vertex set V (s) = {1, . . . , n} and edge set E(s) = {e(s)
i,j }i,j . For ease of

presentation, we focus on undirected, weighted graphs, whose adjacency matrix is given by

A(s) = {A(s)
i,j }i,j with entries satisfying A

(s)
i,j ≥ 0, A

(s)
j,i = A

(s)
i,j and A

(s)
i,i = 0. Extension to a

binary A
(s)
i,j is discussed at the end of the paper.

For notational convenience, the graph index (s) is omitted in the sequel. The observed
normalized Laplacian is a transformation of the adjacency matrix given by

L = D−1/2(D −A)D−1/2, (1)

where D = diag{di}ni=1 is the observed degree matrix, with di =
∑n

i=1Ai,j .

Theorem 1 For any adjacency matrix A with di > 0 for i = 1, . . . , n, the normalized
Laplacian L = D−1/2(D − A)D−1/2 has all eigenvalues λk ∈ [0, 2] (Chung and Graham,
1997). The smallest eigenvalue λ1 = 0 (index 1 denotes the smallest one) and L~d1/2 = ~0.

The above theorem shows that D is dependent on L, therefore, to build a probabilistic
model on the adjacency matrix, we consider the following factorized model:

Π(A) = Π(L)Π(D | L).

where we use Π(·) to denote a density.

To fully characterize the level of dependency of D on L, we make the following observations.
(i) If the multiplicity of zero eigenvalue from L is one, then the corresponding unit-norm
eigenvector (subject to sign change) must be ~φ1 = (

√
di/z̃1)i=1...n, with z̃1 =

∑k
i=1 di.

This means that given L, all di’s are almost known except for a scalar z̃1. (ii) If the
multiplicity of zero eigenvalues of L is K > 1, then it means there are K disjoint component
subgraphs (Chung and Graham, 1997), we can see that the corresponding eigenvectors
are in the form of an n × K matrix [~φ1 . . . ~φK ]O, with O ∈ RK×K a rotation matrix,
~φk = [

√
di1(ci = k)/z̃k]i=1...n, z̃k =

√∑n
i=1 di1(ci = k) and 1(ci = k) the indicator function

representing if the ith vertex is in the kth component subgraph. Since any rotation will
not change the 2-norm of each row vector, it is not hard to see that the 2-norm of the
each row is still

√
di1(ci = k)/z̃k; hence all di’s are almost known except for (z̃1, . . . , z̃K).

Summarizing these two cases, we can see that Π(D | L) is a distribution that only describes
the total scale of degrees in each component.

Remark 2 Based on the above discussion, we can see that once L is known, Π(D | L)
contains very little additional information about the pairwise relationship in A. Therefore,
we choose to focus on Π(L) from now on — to be exact, if we have parameter β = (βD, βL)
that enters the likelihood as Π(L;βL)Π(D | L, βD), as our parameter of interest is βL, we
only need to handle Π(L;βL) in model specification and posterior inference.
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To specify Π(L;βL), we use the following signal-plus-noise matrix model:

L = µL + E , µL =

T∑
k=1

λk~qk~q
′
k +

n∑
l=T+1

θ~ql~q
′
l, (2)

where E is a symmetric matrix capturing random variation with E = {ei,j}i,j , ei,j ∼ N(0, σ2
e)

for i < j. The matrix µL is symmetric with eigenvalues λ1, λ2 . . . , λT , θ, . . . , θ︸ ︷︷ ︸
(n−T )

and corre-

sponding eigenvectors ~q1, . . . , ~qn. We further require q1(i) > 0 for all i. We do not impose
monotonicity constraint for those λk except having λ1 = 0; later, we may re-arrange them
in non-descending order and will index them by subscript .(k).

Collecting the eigenvectors and eigenvalues in matrices Q = (~q1, . . . , ~qT ) and
Λ = diag(λ1, . . . , λT ), and after re-arranging terms in (2) we obtain

µL =
T∑
k=1

(λk − θ)~qk~q′k +
n∑
l=1

θ~ql~q
′
l

= Q(Λ− IT θ)Q′ + Inθ,

(3)

where ~qT+1, . . . , ~qn are canceled due to orthonormality,
∑n

l=1 ~ql~q
′
l = In. Therefore, our

parameter of interest is βL = (Q,Λ, θ, σ2
e), which has O(nT ) many elements.

Remark 3 This model shares similarities with the spiked covariance model (Donoho et al.,
2018), except that the “spikes” λ2, . . . , λT are associated with the smallest eigenvalues, that
as shown later, drive the partitioning of the graph into communities. For this reason, we
coin the term “spiked graph Laplacian” for µL.

2.1 A Non-parametric Bayesian model for Heterogeneous Spiked Graph
Laplacians

A key benefit of the probabilistic model introduced for the spiked graph Laplacian is that
it enables us to naturally capture heterogeneity in a collection of graphs G(s), s = 1, · · · , S,

with associated Laplacians and their decompositions (µ
(s)
L , Q(s), θ(s),Λ(s)). Note that in (2),

each ~q
(s)
k forms a factor matrix ~q

(s)
k ~q

(s)′
k encoding the pairwise interactions of the vertices,

while each λ
(s)
k modulates the magnitude of the interactions.

Given such a heterogeneous collection of graphs/networks, in order to learn both the shared
community structure across them, and also capture their heterogeneity as reflected in their
edge density, we use a two-pronged approach: (i) a non-parametric Bayesian model is used
for estimating a common dictionary of factors, and (ii) a random-effects model controls the
number of spikes for each graph Laplacian L(s).
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The matrix of eigenvectors Q(s) is modeled based on a Dirichlet process mixture,

Q(s) ∼
∞∑
l=1

πlδU(l)(.), Π(U (l)) ∝ exp
{

tr
[
ΩM ′U (l)

]}
I[u

(l)
1 (i) > 0 for i = 1, . . . , n],

π1 = ν1, πl = νl
∏
l′<l

(1− νl′) for l > 1,

νl ∼ Beta(1, α0),

(4)

whose base measure is a constrained matrix Langevin distribution, on a Stiefel sub-manifold
with the elements in the first column being all positive, VT,n∗ = {Q ∈ Rn×T : Q′Q =
IT , q1(i) > 0, i = 1 . . . n}; Ω a diagonal T × T matrix; the concentration parameter α0 > 0;
δa(.) a point mass at a; I(E) takes the value 1 if E holds, and 0 otherwise.

An important property of the Dirichlet process mixture is that the posterior distribution
is discrete almost surely. Therefore, using this non-parametric prior distribution allows
us to obtain a discrete distribution for Q(s), where Q(1) . . . , Q(S) have only a few unique
values that are significantly less than S. That is, we learn a “dictionary” of the eigenma-
trices.

Remark 4 Since L(s) = µL(s)+E(s), the term E(s) gives a perturbation to the eigenvectors of
L(s), so that they become unique for each subject s = 1, . . . , S. Therefore, even though we use
a Dirichlet process prior that makes the distribution of Q(s) (eigenvectors of µL(s)) discrete
— that is, we allow the possibility of having Q(s) = Q(s′) for two subjects s and s′, the
corresponding observed Laplacian matrices L(s) and L(s′) do not have the same eigenvectors
(otherwise, the model would be too restrictive).

The eigenvalues λ
(s)
k and θ(s), s = 1, . . . , S are assumed independently and identically dis-

tributed according to the following prior distribution:

η
(s)
k ∼ Bernoulli(w),

λ
(s)
k | η

(s)
k = 1 ∼ N(0,2)(0, σ

2
λ,1), λ

(s)
k | η

(s)
k = 0 ∼ N(0,2)(µθ, σ

2
λ,0),

θ(s) ∼ N(0,2)(µθ, σ
2
θ),

(5)

for k = 2, . . . , T , withN(0,2) denoting a Gaussian distribution truncated to the (0, 2) interval.

Further, since λ
(s)
1 = 0, we assign η

(s)
1 = 1. When marginalizing over η

(s)
k , each λ

(s)
k follows

a two-component mixture, with the first component capturing small spikes, and the second
component capturing those large ones close to θ. This enables a constant dimension T for
all L(s), while retaining adaptiveness to have the effective number of small spikes:

κ(s) =
T∑
k=1

η
(s)
k , (6)

as shown later, equivalent to κ(s) communities.

Remark 5 An alternative parameterization would be using T (s) that varies directly with
each graph; however, this would lead to an inefficient discrete search when estimating the
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posterior distribution. In theory, one could also consider fixing T = n; nevertheless, when
setting T � n, we only need to estimate the first T eigenvectors [due to (3)], and the
algorithm is computationally more efficient than when T = n.

Our parameterization of the mixture prior in (5) is motivated by the observation that those
large eigenvalues of Laplacian have a concentration at a value away from 0 (see Figure 2).
Therefore, we make the second-component location µθ non-zero, along with a small scale
σ2
λ,0. Another possibility is the continuous spike-and-slab prior (George and McCulloch,

1993) with the second location µθ = 0, a large scale σ2
λ,0, and the truncated support on

(0, 2); nevertheless, under that prior, those small but not close-to-zero λ
(s)
k ’s will be more

likely to be assigned to the component with η
(s)
k = 0 (as in the “slab” group), which is not

ideal for our modeling purpose.
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4 sets of eigenvalues (Λ(s), θ(s)) sampled from (5) .

0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6

Adjacency matrices simulated using L = µL + E , A = D1/2(I − L)D1/2.

Figure 1: Simulated adjacency matrices illustrating how the non-parametric spiked Laplacian model cap-
tures graph heterogeneity: Graphs (b), (c), (d) use the same eigenmatrix Q(s) drawn from the Dirichlet
process, creating similar community structure; the independent eigenvalues Λ(s) lead to varying degree of
sparsity ((b) vs (c)) and also dictate whether a community can be further divided into two smaller com-
munities ((b) vs (d)). Graph a take a different value for Q(s); hence its community structure is completely
different from (b), (c), (d).

Next, we illustrate the high flexibility of the proposed modeling framework based on syn-
thetic data. We draw four eigenmatrices from (4) and four sets of eigenvalues from (5), and
obtain the adjacency matrix using (2) with σ2

e = 10−2. As shown in Figure 1: (i) Graphs
(b), (c), (d) have the same values in the eigenmatrix Q(s), therefore they share a similar
community structure and appeare quite different from graph (a); (ii) among those three,
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the independent eigenvalues Λ(s) create varying edge, thus leading to different strengths
in connectivity between graphs (b) and (c), and also dictate whether a community can be
further divided into two smaller communities [(b) vs (d)].

2.2 Specification of the Prior Distribution

For the variance parameters σ2
θ , σ

2
λ,0 and σ2

λ,1, we assign proper Inverse-Gamma(2, 0.1)
distributions with a weakly informative prior mean of 0.1. To choose the mean parameter
µθ of those larger eigenvalues, we consider the idealized case of having a graph G∗ consisting
of K disjoint complete subgraphs — the kth subgraph has nk > 1 vertices, among which
each pair of vertices are connected with an equal edge weight Ai,j = a > 0. Then for this
graph G∗, we have that the eigenvalues of its normalized Laplacian are given by:(

0, . . . , 0︸ ︷︷ ︸
K

,
n1

n1 − 1
, . . . ,

n1

n1 − 1︸ ︷︷ ︸
(n1−1)

, . . . ,
nK

nK − 1
, . . . ,

nK
nK − 1︸ ︷︷ ︸

(nK−1)

)
, (7)

which can be derived as a direct extension of (6) from Banerjee and Jost (2008). Therefore,
with most of nk/(nk − 1) ≈ 1 and viewing the observed graph as some deviation from G∗,
we set the prior mean µθ = 1 in this article. As a flexible alternative, one could further use
a hierarchical prior µθ ∼ N(1, σ2

µ1) , so that µθ can be adaptive to the data.

For w, we assign a non-informative prior Beta(1, 1) distribution. For the noise variance
σ2
e , we set a diffuse prior Inverse-Gamma(0.01, 0.01) distribution. For the base measure of

the Dirichlet process (4), we choose the non-informative Ω = diag(0, · · · , 0), making it a
uniform prior measure over VT,n∗ and eliminating the need to estimate M or any intractable
normalizing constant. We choose a small concentration α0 = 0.1 to induce sparsity in
the mixture weights, which lead to fewer unique values in Q(s), thus aiding interpretation
by having few communities. Note that one can always select a larger α0 value, if more
communities with finer-scale differences is desired.

In numerical experiments, this prior specification shows good empirical performance in
recovering the ground truth and is robust to a wide range of values of n, S and noise levels
without the need for tuning.

2.3 Estimation of the Posterior Distribution

We use Gibbs sampling to estimate the posterior distribution. Since an infinite mixture
distribution is involved, we use a latent assignment zs ∈ {1, 2, . . .} for each graph, such that
Q(s) = U (l) if zs = l. Then, the likelihood given {zs} becomes

S∏
s=1

Π(L(s); σ2
e ,Λ

(s), Q(s), θ(s), z(s))

∝ (σ2
e)
−Sn(n+1)

4 exp

(
−

S∑
s=1

1

4σ2
e

{
tr
[
(Λ(s) − θ(s)IT )2

]
+ ‖L− θ(s)In‖2F

}

+
∞∑
l=0

∑
s:zs=l

1

2σ2
e

tr
[
(θ(s)In − L(s))U (l)(θ(s)IT − Λ(s))U (l)′]).

(8)
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In the above, we replaced the fixed diagonal elements L
(s)
i,i = 1 with an augmented random

variant L
(s)
i,i = N(µL,i,i, 2σ

2
e), for easier matrix-based computation as in Hoff (2009).

A Gaussian Integral Trick for the Product-Matrix-Bingham Distribution: One immediate
challenge of sampling U (l) from (8) is the exponential-quadratic in the full conditional
distribution:

Π(U (l) | .) ∝ exp

{
1

2σ2
e

∑
s:zs=l

tr(FsU
(l)GsU

(l)′)

}
etr(ΩM ′U (l)), (9)

where Fs = θ(s)In−L(s) and Gs = θ(s)IT−Λ(s). This corresponds to the product of a matrix
Bingham-{Fs/(2σ2

e), Gs} distribution, for which a closed form is unavailable for sampling
purposes.

To address this problem, we propose a new data augmentation for the product-matrix-
Bingham distribution, which extends the Gaussian integral trick (Zhang et al., 2012) on
the Stiefel manifold. Consider an augmented random matrix Rs ∈ RT×n from the matrix
Gaussian Mat-No(GsU

′Fs, Gsσ
2
e , Fs):

Π(Rs | U (l), .) ∝ |Fs|−T/2|Gs|−n/2etr

{
− 1

2σ2
e

F−1
s (Rs −GsU (l)′Fs)

′G−1
s (Rs −GsU (l)′Fs)

}
,

(10)
The joint distribution becomes:

Π({Rs}s:zs=l, U (l) | .)

∝ exp

{
− 1

2σ2
e

∑
s:zs=l

[
tr(F−1

s R′sG
−1
s Rs)− 2tr(R′sU

(l)′)

]}
etr

[
ΩM ′U (l)

]
,

where all the quadratic terms in (9) are canceled, leading to full conditional

Π(U (l) | {Rs}s:zs=l, .) ∝ etr

(
1

σ2
e

∑
s:zs=l

RsU
(l) + ΩM ′U (l)

)
. (11)

Therefore, we can sample (10) and (11) alternatively in closed form; note that the latter is
a matrix Langevin distribution amenable to the sampling algorithm in Hoff (2009).

Sampling Algorithm: To simplify computations, we approximate the Dirichlet process mix-
ture model with a truncated version, setting the number of mixture components to g and
using Dir(α0/g, . . . , α0/g) (in this paper, we use g = 30). The detailed steps of the algorithm
are given in the Appendix.

3. Community Detection based on the Posterior Distribution

Next, we focus on the community assignment labels c
(s)
i ∈ N for each vertex i in graph

s, using the obtained posterior sample of Q(s) and Λ(s). Specifically, we obtain {c(s)
i }ni=1

via a fast and deterministic transformation of (Q(s),Λ(s)), in which the algorithm aims to
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optimize the partitioning of each graph. Note that this is a measurable transformation, we

quantify the uncertainty via the induced distribution of c
(s)
i . Since the discussion pertains

to each graph, we omit superscript (s) for ease of presentation.

Optimal Graph Cut

We first introduce the concept of “optimal graph cut”’. In the simplest possible case,
suppose we want to bi-partition (or, “cut”) a graph G = (V,E) into two sub-graphs G1 =(
V1, E(V1, V1)

)
and G2 =

(
V2, E(V2, V2)

)
, with V1 ∪ V2 = V and V1 ∩ V2 = ∅, and E(Vj , Vj)

the edges formed among the vertices within Vj . An intuitive cut criterion corresponds to
minimizing the loss of edge weights between two sub-graphs:

∑
i∈V1,j∈V2 Ai,j .

On the other hand, we want to prevent trivial cuts, where one of the partition vertex sets
Vj , j = 1, 2 comprises of few or even a single vertex. To that end, Shi and Malik (2000)
introduced the minimal normalized cut loss defined as

h2(G) = min
(V1,V2)

∑
i∈V1,j∈V2 Ai,j

minl=1,2
∑

i,j∈Vl Ai,j
,

where the denominator is the sum of the vertex degrees in one of two subgraphs. Initially,
h(G) was proposed for a binary adjacency matrix A, and is also known as the Cheeger
or isoperimetric constant (Mohar, 1989), representing the bottleneck of the flow across the
edges connecting the two partitioned vertex sets; later on, this loss was extended to weighted
graphs (Friedland and Nabben, 2002).

Louis et al. (2011) extends it to κ-partitioning of a weighted graph, with the corresponding
loss function known as the “sparsest κ-cut”:

hκ(G) = min
(V1,...,Vκ)

∑
m<l

∑
i∈Vm,j∈Vl Ai,j

minl=1,...,κ
∑

i,j∈V \Vl Ai,j
,

where (V1, . . . , Vκ) is a partitioning of V .

Interestingly, the optimal values of these losses are upper-bounded by the eigenvalues of the
graph Laplacian. Consider the graph associated with µL; we then have

h2(G) ≤
√

2λ(2), hκ(G) ≤ (8 log κ)
√
λ(κ) for κ ≥ 3, (12)

where the former is due to Friedland and Nabben (2002), and the latter due to Louis et al.
(2011), with λ(k) denoting the k-th smallest eigenvalue in {λ1, . . . λT }.

Recall that in the spiked graph Laplacian model, there are κ small spikes; see, (6). Hence,
since λ(1), . . . , λ(κ) ≈ 0, κ communities can be extracted with negligible graph-cut loss.

3.1 Sign-based Partitioning

Finding the best κ-partition is a challenging problem computationally, due to the com-
binatorial search required. However, there are numerous algorithms in the literature that
approximate the optimal cut. Examples include the spectral clustering (Ng et al., 2002) and
the random search algorithm (Louis et al., 2011). In particular, the latter one is shown to
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achieve a loss smaller than (8 log κ)
√
λ(κ) for any λ(κ), although the computations involved

can be intensive.

Algorithm 1 Sign-based κ-partitioning.

Initialize: V[1]1 = {1, . . . , n}, re-order {~qk}Tk=1 according to non-descending order of λk,

denoted by {~q(k)}Tk=1.
for k = 1 to (κ− 1) do

1. Compute the sign-based partitioning loss when dividing the [k]lth existing parti-
tion, for l = 1, . . . , k:

loss[k]l =
∑

i,j∈V[k]l

[
q(k)(i)q(k)(j)

]
1
[
q(k)(i)q(k)(j) < 0

]
.

2. Find l∗ = arg min
l∈{1...,k}

loss[k]l, add one partition by setting:

V[k+1]l∗ := {i ∈ V[k]l∗qk(i) ≥ 0},
V[k+1](k+1) := {i ∈ V[k]l∗ : qk(i) < 0},
V[k+1]l := V[k]l for l 6= l∗, l ≤ k.

end for
Use {V[κ]l}κl=1 as the κ-partition; record ci = l for i ∈ V[κ]l.

Inspired by the famous Fiedler vector (Fiedler, 1989), we propose a more efficient algorithm
using the signs of the eigenvectors (see Algorithm 1).

The justification for the key steps in the proposed algorithm is as follows. Examine the
off-diagonal elements of the smoothed adjacency matrix A∗ = D1/2(I − µL)D1/2

A∗,i,j = didj

T∑
k=1

(θ − λ(k))q(k)(i)q(k)(j), i 6= j, (13)

for di > 0, dj > 0 and (θ − λ(k)) > 0 for small λ(k). If qk(i) and qk(j) have the same sign,
they contribute positively to A∗,i,j . Therefore, to minimize the loss due to a graph cut, a
locally optimal cut is simply dividing the set into two subsets — the one with q(k) ≥ 0 and
the one with q(k) < 0. In the simplest case with κ = 2, this is exactly the Fiedler vector
partitioning (Fiedler, 1989). We do this recursively until obtaining κ subsets.

Due to the orthonormality of the eigenvectors, the following holds for k ≥ 2,

‖~q(k)‖ = 1,
n∑
i=1

q(1)(i)q(k)(i) = 0, q(1)(i) > 0.

To satisfy these constraints, each vector q(k) must contain both plus and minus signs; hence,
we can always use the sign-based partitioning. This algorithm can run very fast, since it
only takes one scan from 1 to κ.
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3.2 Obtaining Point Estimates from Posterior Samples

Based on the posterior samples, it is of interests to obtain point estimates for both inter-
pration and benchmarking purposes.

On estimating the effective number of patterns, as zs = l represents assigning L(s) to the
l-th group, for each posterior sample, we record the number of unique values in {zs}s=1,··· ,S ,
denoted by bz. Using the posterior samples, we obtain a discrete distribution for bz =
1, 2, · · · , and we take the one with the largest probability as a point estimate b̂z.

To estimate the number of communities for each subject, for each posterior sample of Λ(s),
we obtain a κ(s) from (6) as the number of communities. Similarly based on the posterior
samples, we obtain a discrete distribution for κ(s) = 1, 2, . . . and pick the one with the
largest probability as a point estimate for κ̂(s).

To obtain a point estimate of community assignments for the s-th subject, conditioned on
our point estimate on the number of communities, we take those samples Q(s) : κ(s) = κ̂(s),
and find one that has the largest posterior density, and run Algorithm 1 to obtain assignment

labels ĉ
(s)
i ’s to κ̂(s) communities.

4. Theoretical Results

Next, we establish several properties of the proposed methodology. We first show that
adapting κ(s) for the graph involves a trade-off between the number of eigenvectors to be
estimate and their estimation accuracy compared to the ground truth under noise pertur-
bations; hence, this is a trade-off between the number of communities κ(s) one attempts to

identify and the uncertainty/error on the estimated community membership c
(s)
i .

Assume L is a noisy version of a true L0 (not necessarily having a spiked structure), with
Q0 containing its eigenvectors. The spiked graph Laplacian model produces an estimated
L̂ = Q̂(λ− IT θ)Q̂′ + Inθ based on the posterior distribution. We can quantify the distance
between the sub-matrices of Q̂ and Q0.

Theorem 6 (Trade-off between resolution and estimating accuracy) For any given
posterior sample from the spiked graph Laplacian model, let the eigen-vectors/values in
the spiked graph Laplacian estimate be ordered such that λ(1) < λ(2) ≤ λ(3) . . . ≤ λ(T ) <

λ(T+1) = . . . = λ(n) = θ. Further, assume each element of (L̂−L0) is σe-sub-Gaussian, due

to both L0 and L̂ being normalized Laplacians and thus all their elements are in the [−1, 0]
interval. Denote the sub-matrices formed by the first k columns of the Q̂ and Q0 matrices
as Q̂1:k and Q0,1:k, respectively; then, for any k ∈ [2, T − 1], there exists an orthonormal
matrix O, for any t > 0:

Pr

(
‖Q̂1:kO −Q0,1:k‖F ≤

√
kn23/2σe

λ(k+1) − λ(k)
t

)
≥ 1− δt,

where δt = exp[−{t2/64− log(5
√

2)}n].
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Next, note that the likelihood function can be re-written as,

Π(L;σ2
e ,Λ, Q, θ) ∝ (σ2

e)
−n(n+1)/4 exp

(
− 1

4σ2
e

[
tr(ΛΛ)− 2tr(ΛQ′LQ)

])
exp

(
− 1

4σ2
e

[
θ2(n− T )− 2θtr{L(I −QQ′)}

])
exp

{
− 1

4σ2
e

tr(LL)
}
,

where Λ and θ are conditionally independent. Integrating out Λ and θ, we obtain the
marginal likelihood of Q:

Π(L;σ2
e , Q) ∝ exp

{
(
∑n

k=T+1 q
′
kLqk)

2

4σ2
e(n− T )

}
exp

{∑T
k=1(q′kLqk)

2

4σ2
e

}
ζ,

with Φ denoting the cumulative distribution function of the normal distribution and

ζ =(σ2
e)
−n(n+1)/4+(T+1)/2

T∏
k=2

{Φ(
2− q′kLqk√

2σ2
e

)− Φ(
−q′kLqk√

2σ2
e

)}

× [Φ{
2− (

∑n
k=T+1 q

′
kLqk)/(n− T )√

2σ2
e/(n− T )

} − Φ{
−(
∑n

k=T+1 q
′
kLqk)/(n− T )√

2σ2
e/(n− T )

}].

Remark 7 To see the intuition regarding the marginal likelihood, consider
− log Π(L;σ2

e , Q) as a loss function over Q, while ignoring the normalizing constant ζ,

−
T∑
k=1

(q′kLqk)
2 − 1

n− T
( n∑
k=T+1

q′kLqk
)2

= −
T∑
k=1

(q′kLqk)
2 − m

n− T

n∑
k=T+1

(
q′kLqk

)2
,

where m ∈ [1, 2] due to
∑
x2
k ≤ (

∑
xk)

2 ≤ 2
∑
x2
k, with xk = q′kLqk ≥ 0 with L being

positive semi-definite. Therefore, the first T factors (q′kLqk)
2 have a substantially higher

contribution compared to the remaining ones, which is consistent with our modeling focus
on the first T eigenvectors.

Lastly, we show that the proposed non-parametric model of the matrix containing the eigen-
vectors is posterior consistent. There has been theoretical work on community detection
and eigenvector estimation for single graphs, assuming that the number of vertices n goes to
infinity. A fundamental difference here is that we have fixed and bounded n in each graph,
but the number of graphs S grows. Hence, a new theoretical approach is required.

In order to avoid a potential discrepancy between the number of spikes in the true and
prescribed models, we use the full eigen-decomposition for the raw observed
L(s) = W (s)Ω(s)W (s)′, where W (s) is an orthonormal matrix and Ω(s) diagonal. Note that
W (s) belong to a a Stiefel sub-manifold V∗ ⊆ Vn,n, with the first column elements being all
positive. Similarly, for the spiked graph Laplacian we have µL = Q†Λ†Q†′, where Q† ∈ V∗
and the first T columns equal to parameter Q, Λ† = diag{λ1, . . . , λT , θ, . . . , θ}.

Using f to denote the likelihood, each observed L(s) = W (s)Ω(s)W (s)′ can be generated
from

f(W (s),Ω(s) | Q†,Λ†) ∝ etr
{ 1

2σ2
e

Q†Λ†Q†′W (s)Ω(s)W (s)′}︸ ︷︷ ︸
f(W (s)|Ω(s),Q†,Λ†)

etr
{
− 1

4σ2
e

[
Ω(s)Ω(s) + Λ†Λ†

]}
︸ ︷︷ ︸

f(Ω(s)|Λ†)

.
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The former corresponds to W (s) ∼ Matrix-Bingham
[
Ω(s), (2σ2

e)
−1Q†Λ†Q†′

]
, in which Q†

serves as the location parameter.

Therefore, based on a non-parametric mixture priordistribution forQ†, our task is equivalent
to showing the consistency of estimating Q† ∈ V∗ under the Matrix-Bingham likelihood.
Using the Q†-marginal density fQ†(W

(s)) =
∫ ∫

f(W (s),Ω(s) | Q†,Λ†)P (dΛ†, dΩ(s)), where
P (.) denotes the appropriate measure, consider a neighborhood of the true density fQ†,0 on
the manifold V∗ as

Bε(fQ†,0) =

{
fQ† :

∣∣∣∣ ∫ gfQ†µ(dW )− gfQ†,0µ(dW )

∣∣∣∣ ≤ ε, ∀g ∈ Cb(V∗)
}
,

with Cb denoting the class of continuous and bounded functions, and µ(.) the Haar measure
on V∗. Next, we establish that the probability for the posterior density falling into Bε(fQ†,0)
goes to 1 as S →∞.

Theorem 8 (Consistent density estimation for the eigenmatrix) Let W (1) . . .W (S)

be matrices of eigenvectors, whose elements are independently and identically distributed
from a distribution with density fQ†,0. Then, for all ε > 0, as S →∞,

Π
{
Bε(fQ†,0) |W (1), . . . ,W (S)

}
=

∫
Bε(fQ†,0)

∏S
s=1 fQ†(W

(s))Π(df)∫ ∏S
s=1 fQ†(W

(s))Π(df)
→ 1 a.s.Pf∞Q†,0,

with Pf∞
Q†,0

the true probability measure for (W (1),W (2), . . .).

Remark 9 Although the space of eigenmatrix is a compact domain, the primary challenge
is that there are more than one (up to infinite) different data-generating eigenmatrices,
due to the presence of heterogeneity. Therefore, this theorem shows that we can obtain
consistency in the sense of density estimation of the population of those eigenmatrices, as
opposed to having the posterior converge to any fixed eigenmatrix.

The consistency in density estimation shows that we can accurately estimate the true data
generating distribution for the population of networks.

On clustering the subjects, suppose we have K local maxima in the density f(W (s)) (W (s)

as all the n eigenvectors of L(s)), a consistently estimated density will ensure: (i) if an
observation L(s) has its W (s) sufficently close to the kth local maximum, then a classifier
that maximizes the density:

arg maxl=1...Kf(W (s) | Q† = U (l),Λ†,Ω(s))

will correctly assign subject s to the kth group (provided neither Λ† and Ω(s) is a zero-
valued matrix); (ii) on the other hand, if an observation L(s) has its W (s) almost equally
distant away from several local maxima, then we may not perfectly cluster subject s;
nevertheless, we can quantify the uncertainty via Pr(zs = k | .) = f(W (s) | Q† =
U (k),Λ†,Ω(s))/[

∑K
l=1 f(W (s) | Q† = U (l),Λ†,Ω(s))]. That is, we will have the mis-clustering

error converge asymptotically to the Bayes error rate (as an irreducible error).

Regarding the theoretical guarantees of finding communities for each subject, we want to
clarify that the obtained results are based on a fixed (and small) n (number of vertices)
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and growing S (number of subjects) setting. We purposely let the accuracy of community
detection vary from one subject to another — as one can imagine, due to the heterogeneity
of data, it is likely that two networks may share the same community-partition pattern (that
is, we may have zs = zs′), but network s may be “noisier” as having much more between-
community connections than network s′. Mathematically, this is reflected in the eigenvalues

with λ
(s)
k � 0, but λ

(s′)
k ≈ 0. As we consider {λ(s)

k }k=1...T to be random effects that vary
over s, we do not aim for obtaining a convergence result for any individual subject. Rather,
we aim for discovering a few shared community-partition patterns, each represented by U (l)

in Theorem 8. On the other hand, if one wants to obtain some asymptotic guarantee on
the community detection error rate for a specific subject, it is necessary to consider a very
different scenario with n → ∞, and impose some stronger assumption on the eigenvalues.
Subsequently, one can show that the first few eigenvectors will converge to the corresponding
population eigenfunction (Von Luxburg et al., 2008).

5. Performance Evaluation based on Synthetic Data

5.1 Impact of Different Noise Levels on a Single Graph

We first examine the effects of noise on estimating the communities in a single graph. We
generate a weighted graph comprising of 60 vertices and three communities of size 10, 20
and 30 vertices, respectively. To avoid directly using the proposed model to generate data,
we simulate each edge within the communities as a Bernoulli event with probability 0.5,
and then add Gaussian noise No(0, ξ2) to the adjacency matrix with varying ξ2.

As shown in Figure 2, the 3-community structure can be visualized by the spectral gap
between the third and fourth eigenvalues. As the noise increases, the gap diminishes,
making it more difficult to separate the communities.

Observed Spectral Gap (λ̂4 − λ̂3) 0.6 0.3 0.1 0.05 0.01

Spiked Laplacian (1± 0) (0.95± 0.05) (0.88± 0.09) (0.58± 0.20) (0.40± 0.14)
Observed Laplacian (1± 0) (0.91± 0.07) (0.78± 0.05) (0.42± 0.20) (0.36± 0.25)

Table 1: The spiked Laplacian model has higher accuracy in recovering community labels,
comparing to direct decomposition of the observed Laplacian. The results are calculated by
clustering the second and third eigenvectors into three groups (patterns), then comparing
with the ground truth labels to compute normalized mutual information (NMI). Mean ±
standard deviation is reported based on 50 times of experiments. The higher the NMI, the
higher the accuracy.
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Low-noise graph
(observed spectral gap 0.6)

Medium-noise graph
(observed spectral gap 0.3)

High-noise graph
(observed spectral gap 0.05)

Figure 2: Three simulated graphs with different degree of noise, corresponding to different
spectral gaps in the eigenvalues (for clarity, we show the first 35 eigenvalues out of 60).
Comparing the eigenvalues produced by the direct decomposition of the raw Laplacian
(cyan), and the ones by spiked Laplacian model (red), the latter has a clearly larger spectral
gap between the third and fourth, corresponding to better separation between signal and
noise.

The spiked Laplacian model has a “lifting effect” on the fourth eigenvalue (shown in red
in Figure 2). This is due to the flat structure imposed, effectively replacing the fourth
eigenvalue λ̂4 by θ ≈ (

∑60
k=4 λ̂k)/57 with λ̂k > λ̂4 for k > 4. Consequently, it leads to

an increase in the spectral gap, compared to a direct eigendecomposition of the graph
Laplacian (shown in cyan). Practically, this leads to improved accuracy in finding the
community labels, as shown in Table 1. This phenomenon can be viewed as a result of rank
regularization on the Laplacian matrix; Le et al. (2018) discussed similar effects under a
slightly different regularization in spectral clustering.

Further, we would like to discuss the effect of sparsity on the eigenvalues of L. On the
one hand, since L is the normalized Laplacian, it is scale-invariant in the magnitude of A;
hence the above result will remain the same, even if A is multiplied to a small positive
number. On the other hand, if the noise-free (unobserved) graph A∗ becomes sparser, but
the noise magnitude does not scale down with A∗, then it would impact the accuracy of
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signal recovery, with a similar effect as in Subfigure 3 of Figure 2 (high-noise graph) — this
is as expected since the signal-to-noise ratio decreases as the signal becomes sparse. To
provide some numerical illustration, we simulate additional graphs in the appendix, except
with the Bernoulli probability reduced from 0.5 to 0.3, 0.2 and 0.1, respectively.

5.2 Impact of Graph Size on Community Detection

n 100 300 500 1000

Spiked Laplacian Model (0.84± 0.15) (0.90± 0.04) (0.86± 0.04) (1± 0)
Stochastic Block Model (0.65± 0.23) (0.84± 0.09) (0.87± 0.04) (1± 0)
Bayesian SBM (0.70± 0.14) (0.83± 0.08) (0.88± 0.05) (1± 0)

Table 2: At small n, the spiked Laplacian model has higher accuracy in estimating the
community labels. Mean ± standard deviation is reported based on 50 times of experiments.
The higher the NMI, the higher the accuracy.

Next, we evaluate the effects of varying the number of vertices n on community detec-
tion. We adopt a similar 3-community setting as in the previous subsection, retaining the
community size ratio as 1:2:3, and increase the total number of vertices. We calculate
the normalized mutual information that compares the estimated community labels and the
ground truth (details provided in the Appendix), using estimates produced by the spiked
graph Laplacian model, the stochastic block model using the spectral clustering algorithm
(Ng et al., 2002) and the Bayesian stochastic block model using a Gibbs sampler based on
the model in van der Pas and van der Vaart (2018).

As shown in Table 2, for large n ≥ 500, there are almost no differences in terms of the
point estimate accuracy. However, at smaller vertex sizes n, the spiked graph Laplacian
model exhibits clearly superior performance. Figure 3 shows the posterior distribution on
the effective number of communities in one experiment at n = 100. It is evident in this
experiment, that the point estimate κ̂ matches the ground truth of 3 communities. We find
similar results for larger n’s as well. In 50 times of repeated experiments, κ̂ matches with
the ground truth for 98% of time.

0.0

0.1

0.2

0.3

0.4

1 2 3 4 5 6 7 8
kappa

pr
op

Figure 3: Posterior distribution of κ as the effective number of communities at n = 100.
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Next, we empirically show that the advantage for small n is attributable to more accu-
rate uncertainty quantification. For a more intuitive illustration of this issue, we generate
a 2-community graph using a latent position model — we first sample latent yi’s near
two manifolds [Figure 4, Panel (b)], then compute the pairwise similarity between latent
positions [Ai,j = exp(−10‖yi − yj‖2)], and use it as the edge weight. Clearly, most of
the uncertainty is located in the center of the adjacency matrix, where the manifolds get
close.

(a) Observed Laplacian L based
on the simulated graph.

(b) The latent positions yi used
to generate the graph, colored by
the true labels.

(c) q2(i) vs vertex index. Two
communities are classified by the
K-means (red) or sign-based al-
gorithm (blue).

(d) Spiked Laplacian model correctly estimated the
uncertainty pr(ci = 1), based on sign-partitioning
of each posterior sample q2.

(e) Applying Gaussian mixture model on only one
sample of q2(i) (as in the stochastic block model)
under-estimates the uncertainty pr(ci = 1).

Figure 4: Illustration of uncertainty quantification by the spiked graph Laplacian model.

Panel (c) plots one sample of ~q2. The sign-based partition used by the spiked graph Lapla-
cian model has a default decision boundary at the zero line (in blue). Applying this bi-
partitioning on each posterior sample of ~q2, it leads to an accurate uncertainty quantification
[Panel (d)]. Comparatively, in the estimation of stochastic block model, one applies K-means
or a Gaussian mixture model on one sample of ~q2 (based on the direct eigendecomposition
of L), which could result in a severe underestimation of the uncertainty, as shown in Panel
(e).

5.3 Accommodating Heterogeneity in a Collection of Graphs

In this experiment, we deal with multiple graphs comprising of 300 vertices each, whose
adjacency matrices exhibit heterogeneity. We first generate a set of five possible community-
partition patterns, each represented by a binary matrix (denoted by W (l)) of size 300×6 for
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l = 1, . . . , 5; each row has one 1 and five 0’s, encoding the ground truth of the community
labels in 1, · · · , 6. To generate a graph, we randomly draw one of five patterns as W̃ (s) and a
non-negative random vector Λ̃, producing its adjacency matrix by A(s) = W̃ (s)Λ̃W̃ (s)′+Ẽ(s),

with Ẽ(s) being a Gaussian noise matrix and ẽ
(s)
i,j = ẽ

(s)
j,i ∼ N(0, 1), for s = 1, . . . , 500.

We compare the performance of the proposed model against several popular alternatives:
(1) simple averaging of all graphs followed by the use of a stochastic block model, (2) co-
regularized stochastic block model/spectral clustering (Kumar et al., 2011), (3) clustering
the graphs into five groups (patterns), and applying the stochastic block model in each
group, (4) independent stochastic block model for each graph. The first two competitors
produce only one partitioning, while the latter two accommodate the heterogeneity.

We compute two benchmark scores: the normalized mutual information (NMI), reflecting
the similarity between the estimated community labels to the ground truth in each graph;
and the Root Mean Squared Error between the individual L(s) and the smoothed L̂(s), as
the goodness of fit criterion.

Benchmark Scores NMI (higher is better) RMSE (×10−3, lower is better)

Spiked Laplacian Graphs 0.85± 0.04 1.9± 0.2
Average+SBM 0.21± 0.15 9.2± 2.5
Co-regularized SBM 0.25± 0.11 10.2± 4.5
Clustering Graphs + SBMs 0.67± 0.24 5.5± 1.5
Individual SBMs 0.45± 0.13 1.2± 0.2

Table 3: Benchmark of the fitting models to a population of heterogeneous graphs. Mean
± standard deviation is reported based on 50 times of experiments. When computing the
RMSE, for the Spiked Laplacian Graphs, we obtain L̂(s) from the spiked representation
taking individual κ(s) as the truncated dimension, averaging over the posterior sample; for
the other four, we define L̂(s) as the truncated spectral representation Q̂Λ̂Q̂ with (Q̂, Λ̂)
corresponding to the top 6 dimensions (as the ground truth dimension for data generation).

As shown in Table 3, our proposed model has the highest accuracy in estimating the commu-
nity labels, followed by the two-stage estimator that clusters the graphs first and then parti-
tions the vertices via the stochastic block model. The performance of individual stochastic
block models is significantly inferior, likely due to the fact that they do not borrow in-
formation among graphs, and the number of vertices per graph is relatively small. For
the goodness-of-fit measure, the individual stochastic block models achieve the best score
due to their higher flexibility. The proposed model xhibits a slightly larger error, but is
significantly lower than the remaining competitors.

Figure 5 shows the posterior distributions on the effective numbers of communities (κ(s))
in one graph and the numbers of distinct patterns (bz) in one experiment. In this experi-
ment, both the point estimates κ̂ and b̂z match the ground truth. In 50 times of repeated
experiments, κ̂ matches the ground truth for 92% of time, b̂z for 72% of time.
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Despite the very good empirical results, we want to caution that one should be careful
on choosing those two dimensions, and we provide further guidance at the end of this
article.
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(a) Posterior distribution of κ(s) as the effec-
tive number of communities for one graph.

0.0

0.1

0.2

0.3

2 3 4 5 6 7 8
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pr
op

(b) Posterior distribution of bz as the effec-
tive number of unique values in zs (distinct
patterns).

Figure 5: Posterior distributions on the numbers of communities and distinct patterns in
one experiment.

5.4 Robustness to Over-specified T

Lastly, we examine if the proposed model can handle an over-specified T , when it is larger
than necessary. We focus on the following two issues: (i) whether the posterior sample of η
can successfully identify redundant λk’s; (ii) whether a misspecified T affects the estimation
of the first few eigenvalues.

(a) Eigenvalues estimated with T = 10. (b) Eigenvalues estimated with T = 30.

Figure 6: Simulation showing the first few small eigenvalues are almost unaffected by an
overly large T , and the variable ηk successfully identifies the redundant λk.

We use the same single graph setup to generate graphs with three communities, except
we now set T = 10 and T = 30. As shown in Figure 6, the posterior distribution of ηk
successfully finds all unnecessary λk’s, as indicated by ηk = 0. Further, there is almost
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no difference in the estimates of the first few eigenvalues λ1, λ2, λ3. On the other hand,
we should clarify that if the spectral gap is small, ηk will more likely be assigned to 0;
this is an expected behavior indicating there is a large loss if we still want to partition the
graph.

6. Data Application: Characterizing Heterogeneity in a Human Working
Memory Study

We employ the proposed spiked graph Laplacian model on data obtained from a neuroscience
study on working memory, focusing on human brain functional connectivity (Hu et al.,
2019). The study involved 1,329 brain scans, wherein each subject in the study was asked
to do the Sternberg verbal working memory task, which involved memorizing a list of six
numbers, followed by a memory retrieval task that requires the subject to answer if a number
was among the six shown earlier. Electroencephalogram (EEG) signals were obtained from
128 electrode channels placed over each subject’s head, and subsequently, a 128 × 128
connectivity network is estimated during the retrieval task period using absolute Pearson
correlation. Each network has weighted edges taking values in the [0, 1] interval.

Figure 7 depicts the adjacency matrices of three subjects for the memory retrieval task, and
the presence of heterogeneity is apparent. It can be seen that memory-related connectivity
can exhibit different levels of concentration in the front or back of the head [Panels (c) or
(d), with spatial coordinates, plotted in Figure 9 (a)], or, they are more localized in smaller
regions [Panel (e)].

We apply the spiked graph Laplacian model on this data set and the results obtained
are based on an MCMC run of 30, 000 steps, with the first 10, 000 used as the burn-in
period. The majority of the samples from the posterior distribution contain six distinct
U (l)’s in the clustered eigenmatrix values. Figure 8 depicts the three corresponding to the
raw A(s) shown in the previous Figure, obtained from the fitted Laplacian matrices. The
remaining three seem to correspond to smaller variations and are shown in the Appendix.
The proportions for these six patterns are 25.6%, 24.1%, 16.1%, 14.7%, 15.2% and 4.3%, as
estimated in the posterior mean of allocation zs.
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Figure 7: Brain functional connectivity adjacency matrices of three individuals undertaking the
memory retrieval task. A significant level of heterogeneity can be observed.

Figure 8: Fitted Laplacian shows the structure underneath each raw connectivity matrix.
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(a) Coordinates of the EEG sensors,
viewed from the top of the head.

(b) Histogram of the number of communities in all
subjects.

(c) The subject has two commu-
nities, with the larger one near
the back of the head.

(d) The subject has two commu-
nities, with the larger one near
the front of the head.

(e) The subject has four commu-
nities: outer-front, mid-front,
left-back, right-back.

Figure 9: Community structure for each brain scan from multiple subjects in the working
memory study.

We then evaluate the community structures in each network. As shown in Figure 9(a),
the model discovers 1 ∼ 6 communities from these graphs, as estimated by κ(s). To gain
insight into the scientific implications, we plot the community labels mapped to the spatial
coordinates. Panel (c) and (d) show that most of the networks contain only two distinct
communities, although the division can be quite different in the dominating area either in
the front or in the back of the head. Panel (e) shows a very distinct pattern with four
communities, partitioned as the outer-front, mid-front, left-back, right-back regions of the
head.

7. Discussion

In this paper, we propose a probabilistic graph model based on the Laplacian, allowing us
to exploit concepts and results rom spectral graph theory to conduct flexible community
detection in a population of heterogeneous graphs. Our model can be considered as a
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general method to introduce Bayesian tools into the spectral graph framework. There
are several extensions worth exploring in future work. First, if the goal is to generate a
new graph with binary Ai,j , such as in link prediction, then it could adopt a Bernoulli
distribution associated with a canonical link. Second, if those graphs have some known
covariance structure, such as is the case of repeated measurements or temporal effects, then
it could take an alternative distribution on the eigenmatrix or eigenvalues to incorporate
those structures. Third, for large graphs, it is of interest to consider θ not as a single
constant, but as a step function.

Lastly, a recent discovery is that the Dirichlet process mixture model, although it enjoys
posterior consistency in density estimation (Ghosal et al., 1999), can lead to inconsistent
estimates of the number of clusters (Miller and Harrison, 2013, 2014). Therefore, although
we did obtain interpretable results of finding 6 patterns and small numbers of communities
in our application, to be rigorous, we cautiously believe recovering a “ground-truth” number
of clusters/patterns is still a non-trivial task. As alternatives, one may replace the Dirichlet
process mixture prior with a mixture of finite mixtures prior distributions (Miller and
Harrison, 2018), or an infinite mixture of quasi-Bernoulli stick-breaking prior distributions
(Zeng et al., 2022), both of which have shown correct asymptotic behavior in simpler cases.
However, for the task of clustering eigenvectors, significant work is needed to verify if
consistency holds on the number of clusters, as it requires checking for a completely correct
model specification and identifiability of the parameters.
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Appendix:

Proof of Theorem 1

Proof The bounds on the eigenvalues of the Laplacian are given and discussed in Chung and Graham
(1997). For the first eigenvector we have

µL ~d
1/2
∗ = D−1/2

∗ (D∗ −A∗)D−1/2
∗ ~d1/2∗ = D−1/2

∗ (D∗ −A∗)~1 = ~0.

Proof of Theorem 6

Proof For simplicity, we omit .(s) in the proof and use σe for σe0. The proof consists of the following four
parts:

1. An application of the Davis-Kahan Theorem

Let E = L̃− L, using Theorem 2 in citepyu2014useful with r = 1 and s = k, we obtain

‖Q0 −QO‖F ≤
23/2 min(k1/2‖E‖op, ‖E‖F )

λk+1 − λk

≤ 23/2(k1/2‖E‖op)
λk+1 − λk

where ‖E‖op denotes the operator norm (‖E‖op = sup‖x‖=1 ‖Ex‖).

2. Discretizing Sn−1 = {x : ‖x‖ = 1} using a maximal ε-net:

Following Tao (2012), let Nε ⊂ Sn−1 be an ε-net with ε ∈ (0, 1), such that for any two x ∈ Nε, x′ ∈
Nε, ‖x − x′‖ ≥ ε. Maximizing over the number of included points in Sn−1, we obtain a maximal ε-net N0

ε .
Clearly, the balls with centers x ∈ N0

ε and radius ε/2 are disjoint, and all covered by a large ball centered
at the origin with radius 1 + ε/2, hence

|N 0
ε | ≤ (

ε/2 + 1

ε/2
)n = (

ε+ 2

ε
)n.
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On the other hand, for any y ∈ Sn, there is at least one x ∈ N 0
ε : ‖x− y‖ ≤ ε, otherwise y can be added to

the net, contradicting the maximal condition.

Choosing y ∈ Sn that attains ‖Ey‖ = ‖E‖op, and its associated x ∈ N 0
ε : ‖x− y‖ ≤ ε

‖E‖op − ‖Ex‖ = ‖Ey‖ − ‖Ex‖ ≤ ‖E(y − x)‖ ≤ ‖E‖opε,

by an application of the triangle inequality and f(x) = ‖Ex‖ is ‖E‖op-Lipschitz.

Therefore, ‖E‖op ≥ t implies at least one x ∈ N 0
ε : ‖Ex‖ ≥ (1− ε)t.

pr(‖E‖op ≥ t) ≤ pr

( ⋃
x∈N0

ε

‖Ex‖ ≥ (1− ε)t
)

≤ |N 0
ε |pr

(
‖Ex‖ ≥ (1− ε)t, where x ∈ Sn

)
where the last inequality follows from the union bound.

3. Concentration inequality for ‖Ex‖

Since E is symmetric, let E = EU +EL, with EU being the upper triangular portion including the diagonal
and EL the lower triangular portion. We first use B to represent either EU or EL. Let B be an n×n matrix
comprising of bi,j independent and σ2

e -sub-Gaussian elements. Then, for each element Bx

E exp{tB′jx} = E exp{t
n∑
k=1

xkbj,k}

=

n∏
k=1

E exp{txkbj,k}

≤
n∏
k=1

exp{t2σ2
ex

2
k/2}

= exp{t2σ2
e/2}

where the inequality is due to the sub-Gaussian assumption, and the last equality due to ‖x‖ = 1. Therefore,
each Zj = Bjx is sub-Gaussian as well. By a result in Wainwright (2019), this is equivalent to

E exp(
κZ2

j

2σ2
e

) ≤ (1− κ)−1/2 (14)

for all κ ∈ (0, 1).

We have
‖Ex‖2 = ‖EUx+ ELx‖2 ≤ (‖EUx‖+ ‖ELx‖)2 ≤ 2(‖EUx‖2 + ‖ELx‖2)

By the Cauchy–Schwarz inequality, we obtain

E exp(
κ‖Ex‖2

2σ2
e

) ≤ E exp(
2κ[‖EUx‖2 + ‖ELx‖2]

2σ2
e

)

≤

√
E exp(

4κ‖EUx‖2
2σ2

e

)E exp(
4κ‖ELx‖2

2σ2
e

)

Since EU and EL comprise of sub-Gaussian elements and zeros, they are also sub-Gaussian with σ2
e ; then,

multiplying (14) over j = 1, . . . , n for each matrix, we get

E exp(
κ‖Ex‖2

2σ2
e

) ≤
√

(1− 4κ)−n/2(1− 4κ)−n/2 = (1− 4κ)−n/2

where κ ∈ (0, 1/4). Using Markov’s inequality

pr(‖Ex‖ ≥ t) = pr

(
exp(

κ‖Ex‖2

2σ2
e

) ≥ exp(
κt2

2σ2
e

)

)
≤ (1− 4κ)−n/2 exp(− κt

2

2σ2
e

).
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4. Combining results to obtain a concentration inequality

Therefore,

pr(‖E‖op ≥ t) ≤ (
ε+ 2

ε
)n(1− 4κ)−n/2 exp(−κ(1− ε)2t2

2σ2
e

)

Letting t = c1
√
nσe, κ = 1/8 and ε = 1/2, we have

pr(‖E‖op ≥ c1
√
nσe) ≤ exp[−{c21/64− log(5

√
2)}n] ≡ δ

Therefore,

‖Q− Q̂Ô‖F ≤
23/2k1/2c1

√
nσe

λk+1 − λk
with probability greater than 1− δ.

Proof of Theorem 8

Proof

For simplicity, we omit .(s) for now and let D = Λ† and B = Ω. Without loss of generality, we assume
the diagonal of B are ordered 0 = b1 < b2 ≤ . . . ≤ bn; and we have fixed d1 = 0 and d2, . . . , dn > 0. The
parameter Q† follows a matrix Bingham distribution truncated to V∗

g̃(Q†;W,D,B, σ2
e)Π(dQ†) = Z−1(σ2

e , D,B)etr

{
1

2σ2
e

DQ†′WBW ′Q†
}

Π(dQ†)

where Z is a normalizing constant.

We utilize the result of Bhattacharya and Dunson (2010) to establish weak consistency of the posterior
density estimation. There are three sufficient conditions to check:

(1) The kernel g̃(.) is continuous in all of its arguments.

(2) The set {F0} × D0
ε intersects the parameter support of Q† and σ2

e , where D0
ε is the interior of Dε, a

compact neighborhood for σ2
e .

(3) For any continuous f , there is a Dε for σ2
e , such that

∆ = sup
W∈V∗,σ2

e∈Dε

∥∥∥∥f(W )−
∫
g̃(Q†;W,D,B, σ2

e)f(Q†)Π(dQ†)

∥∥∥∥ ≤ ε.
The first two conditions are straightforward to check (see Lin et al. (2017) for similar derivation). We will
focus on verifying (3). Note the Frobenius distance between two orthonormal matrices

dist(W,Q†)2 = 2n− 2tr(W ′Q†) = 2

n∑
j=1

(1− gj,j),

where gi,j is the element of G = W ′Q†, where |gj,j | ≤ 1 due to orthonormality of G. Let (1− gj,j) = sj,jσe,
with sj,j ∈ [0, 2/σe], then

∑n
j=1(1 − gj,j) =

∑n
j=1 sj,jσe. As σe → 0, dist(W,Q†) → 0 for any fixed

(s1,1, . . . , sn,n). By the continuity of f and compactness of Stiefel manifold, as σe → 0

sup
W∈V∗

∥∥∥∥f(W )− f(Q†)

∥∥∥∥→ 0. (15)
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Now

∆ ≤ Z−1(σ2
e , D,B)

∫
sup
W∈V∗

∥∥∥∥f(W )− f(Q†)

∥∥∥∥etr

{
1

2σ2
e

DQ∗′[WBW ′]Q†
}

Π(dQ†)

= Z−1(σ2
e , D,B)

∫
sup
W∈V∗

∥∥∥∥f(W )− f(WG)

∥∥∥∥etr

{
1

2σ2
e

DG′BG

}
Π(dG)

where the second line is due to the invariant volume of rotation via W . It can be verified that

tr(DG′BG) =

n∑
i=1

n∑
j=1

bidjg
2
i,j

=

n∑
j=1

bjdj −
n∑
j=1

bjdj(1− g2j,j) +

n∑
j=1

∑
i 6=j

bidjg
2
i,j

≤
n∑
j=1

bjdj −
n∑
j=1

bjdj(1− g2j,j) +

n∑
j=1

djbn
∑
i6=j

g2i,j

=

n∑
j=1

bjdj −
n∑
j=1

bjdj(1− g2j,j) +

n∑
j=1

djbn(1− g2j,j)

=

n∑
j=1

bjdj +

n∑
j=1

dj(bn − bj)(1− g2j,j)

=

n∑
j=1

bndj −
n∑
j=1

dj(bn − bj)g2j,j ,

where the first inequality is due to dj ≥ 0 and bn ≥ bi for all i; the fourth line is due to the 1 unit norm for
each column of G.

Applying one-to-one transformation T : V∗ → S, T (G) = {si,j = gi,j for i 6= j, sj,j = (1 − gj,j)/σe}i,j ,
denote the transformed G matrix by GS . We have

Π(dG) = φ∗(G)dg1,1 ∧ dg1,2 ∧ . . . ∧ dgn,n

=
φ∗(G)

φ̃∗(GS)
σne φ̃

∗(GS)ds1,1 ∧ ds1,2 ∧ . . . ∧ dsn,n

=
φ∗(G)

φ̃∗(GS)
σne Π(dGS),

where φ∗ and φ̃∗ are some functions of G and Gs, respectively.

Since sj,j ≤ 2/σe, we have −(1−sj,jσe)2 = −1+2sj,jσe−s2j,jσ2
e ≤ 3−s2j,jσ2

e . Continuing from above,

n∑
j=1

bndj −
n∑
j=1

dj(bn − bj)(1− sj,jσe)2

≤
n∑
j=1

bndj +

n∑
j=1

dj(bn − bj)(3− s2j,jσ2
e)

=

n∑
j=1

4bndj −
n∑
j=1

3djbj −
n∑
j=1

dj(bn − bj)s2j,jσ2
e

≤
n∑
j=1

4bndj −
n∑
j=1

dj(bn − bj)s2j,jσ2
e
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Combining the above,

∆ ≤ Z−1(σ2
e , D,B) exp

[
1

2σ2
e

(

n∑
j=1

4bndj −
n∑
j=1

3djbj)

]
σne

∫
S

sup
W∈V∗

∥∥∥∥f(W )− f(WGS)

∥∥∥∥
× exp

[
− 1

2

n∑
j=1

dj(bn − bj)s2j,j
]
φ∗(G)

φ̃∗(GS)
Π(dGS).

(16)

Note that supGS∈V∗ supW∈V∗

∥∥∥∥f(W ) − f(WGS)

∥∥∥∥ ≤ M due to the compactness of V∗ and continuity of f .

And clearly,

∫
S
M exp

[
− 1

2

n∑
j=1

dj(bn − bj)s2j,j
]
φ∗(G)

φ̃∗(GS)
Π(dGS) <∞.

Using dominated convergence theorem, when σe → 0, the integral in (16) goes to zero.

Our remaining task is to verify the constant before the integral is finite as σe → 0. Note the inverse of the
constant in (16)

σ−ne Z(σ2
e , D,B) exp

[
− 1

2σ2
e

n∑
j=1

4bndj

]

= σ−ne exp

[
− 1

2σ2
e

n∑
j=1

4bndj

] ∫
V∗

etr

{
1

2σ2
e

DU ′BU

}
Π(dU)

= σ−ne

∫
V∗

exp

{
1

2σ2
e

(

n∑
i=1

n∑
j=1

bidju
2
i,j −

n∑
j=1

4bndj

n∑
i=1

u2
i,j)

}
Π(dU)

= σ−ne

∫
V∗

exp

{
1

2σ2
e

n∑
i=1

n∑
j=1

(bi − 4bn)dju
2
i,j

}
Π(dU)

= σ−ne

∫
V∗

exp

{
1

2σ2
e

n∑
i=1

n∑
j=2

(bi − 4bn)dju
2
i,j

}
Π(dU)

≥ σ−ne
∫
V∗

exp

{
1

2σ2
e

n∑
i=1

n∑
j=2

(bi − 4bn)dnu
2
i,j

}
Π(dU)

= σ−ne

∫
V∗

exp

{
1

2σ2
e

n∑
i=1

(bi − 4bn)dn(1− u2
i,1)

}
Π(dU),

(17)

where we use d1 = 0, (bi − 4bn) ≤ 0 and dj ≤ dn in the inequality. Since the last line does not depend on
U2:n, we denote the null space of u1 by K(u1) = {U2:n ∈ Vn−1,n : u′ku1 = 0, k > 1}. It is not hard to see
that the volume K(u1) is a constant invariant to u1, we denote it by vol(K). The above is then,

σ−ne vol(K)

∫
S+

exp

{
− 1

2σ2
e

n∑
i=1

(4bn − bi)dn(1− u2
i,1)

}
Π(dU1)

≥ σ−ne vol(K)

∫
S+

exp

{
− 1

2σ2
e

n∑
i=1

(4bn − bi)dn(1 + ui,1)2
}

Π(dU1),

where S+ is the unit-norm space constrained to all elements positive; and the inequality due to −(1−u2) =
−(1− u)(1 + u) ≥ −(1 + u)2 for u ≥ 0.
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Let ti = (1 + ui,1)/σe. We have

Π(dU1) = ψ(U1)du1,1 ∧ du2,1 ∧ . . . ∧ dun,1

=
ψ(U1)

ψ̃(T )
σne ψ̃(T )dt1 ∧ dt2 ∧ . . . ∧ dtn

=
ψ(U1)

ψ̃(T )
σne Π(dT ),

where ψ and ψ̃ are some functions of U1 and T , respectively.

The above is then

vol(K)

∫
T

exp

{
− 1

2

n∑
i=1

(4bn − bi)dnt2i
}
ψ(U1)

ψ̃(T )
Π(dT ),

which is bounded away from 0. Therefore, the constant in (16) is finite as σ2
e → 0.

The limit result means that for any ε > 0, we have a neighborhood Dε = {σ2
e : 1/σ2

e > Nε}, so that
∆ < ε.

Details of the Gibbs Sampling Algorithm

The posterior sampling proceeds according to the following steps:

1. Sample Rs from (11) in the main article.

2. Sample U (l) from (12) in the main article.

3. Sample from the categorical distribution

zs ∼ Π(zs | .) ∝ πl1(zs = l) exp

{
1

2
(
n− T
2σ2

e

+
1

σ2
θ

)−1

[
1

2σ2
e

tr(
[
L(s)(In − U (l)U (l)T )

]
) +

µθ
σ2
θ

]2
+

1

2
(

1

σ2

λ,η
(s)
k

+
1

2σ2
e

)−1
T∑
k=1

[
u
(l)′
k L(s)u

(l)
k

2σ2
e

+
(1− η(s)k )µθ
σ2

λ,η
(s)
k

]2}
,

with 1(.) the indicator function, update Q(s) = U (zs).

4. Sample (π1, π2, . . . , πg) ∼ Dir(α0/g +
∑

1(zs = 1), α0/g +
∑

1(zs = 2), . . . , α0/g +
∑

1(zs = 1)).

5. Sample for k = 2, . . . , T

λ
(s)
k ∼ N(0,2)

{
(

1

σ2

λ,η
(s)
k

+
1

2σ2
e

)−1

[
q
(s)′
k L(s)q

(s)
k

2σ2
e

+
(1− η(s)k )µθ
σ2

λ,η
(s)
k

]
, (

1

σ2

λ,η
(s)
k

+
1

2σ2
e

)−1

}
.

6. Sample from the Bernoulli for k = 2, . . . , T ,

η
(s)
k ∼1(η

(s)
k = 1)wN(0,2)(λ

(s)
k ; 0, σ2

λ,1) + 1(η
(s)
k = 0)(1− w)N(0,2)(λ

(s)
k ;µθ, σ

2
λ,0),

where N(0,2)(x; a, b) denotes the density of the truncated normal.

7. Sample

θ(s) ∼ N(0,2)

{
(
n− T
2σ2

e

+
1

σ2
θ

)−1

[
1

2σ2
e

(
∑
i

L(s)(i, i)−
∑
k

q
(s)T
k L(s)q

(s)
k ) +

µθ
σ2
θ

]
,

(
n− T
2σ2

e

+
1

σ2
θ

)−1

}
.

8. Sample for i = 1, . . . , n

L
(s)
i,i ∼ N

{[
Q(s)(Λ(s) − θ(s)IT )Q(s)′]

(i,i)
+ θ(s), 2σ2

e

}
.
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9. Sample

σ2
e ∼ Inv-Gamma

{
n2S

2
,

1

4

S∑
s=1

‖L(s) − θIn −Q(l)
∗ (Λ(s) − θ(s)IT )Q(l)′

∗ ‖2F
}
.

The Laplacian Eigenvalues of Sparse Graphs under High Noise Level

To provide some numerical illustration, we simulated additional graphs as in Section 5.1,
except with the Bernoulli probability reduced to 0.3, 0.2 and 0.1, respectively.

Within-community Bernoulli
probability 0.3

Within-community Bernoulli
probability 0.2

Within-community Bernoulli
probability 0.1

Figure 10: When the graph sparsity increases, but the noise level remains relatively high,
it becomes more difficult to distinguish the first few eigenvalues of the Laplacian from the
remaining larger ones.

Additional Components in Working Memory Data Analysis

Figure 11: Fitted Laplacian shows the structure underneath the raw connectivity matrix.
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Additional Details on Normalized Mutual Information

On quantifying the accuracy of ĉ
(s)
i , we use the normalized mutual information, as a measure

of similarity that is invariant to label switching. To provide some more details, consider
discrete x and y as in two vectors of equal lengths, using P (·) to denote a proportion, we
have

I(x, y) =
∑
i,j

P (x = i, y = j) log

(
P (x = i, y = j)

P (x = i)P (y = j)

)
,

H(x) = −
∑
i

P (x = i) logP (x = i),

NMI(x, y) =
2I(x, y)

H(x) +H(y)
.
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