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Abstract

The validity of instrumental variables to estimate causal effects is typically justified
narratively and often remains controversial. Critical assumptions are difficult to evalu-
ate since they involve unobserved variables. Building on Janzing and Schölkopf’s (2018)
method to quantify a degree of confounding in multivariate linear models, we develop a test
that evaluates instrument validity without relying on Balke and Pearl’s (1997) inequality
constraints. Instead, our approach is based on the Principle of Independent Mechanisms,
which states that causal models have a modular structure. Monte Carlo studies show a
high accuracy of the procedure. We apply our method to two empirical studies: first, we
can corroborate the narrative justification given by Card (1995) for the validity of college
proximity as an instrument for educational attainment in his work on the financial returns
to education. Second, we cannot reject the validity of past savings rates as an instrument
for economic development to estimate its causal effect on democracy (Acemoglu et al.,
2008).

Keywords: instrumental variables, Principle of Independent Mechanisms, causality, un-
observed confounding, causal inference from observational data

1. Introduction

Scientific analysis often seeks to provide estimates for the causal effects of variables under
study. Concerns about unobserved confounding, which can invalidate such estimates, are
widespread in non-experimental studies in many disciplines such as economics and epidemi-
ology. To estimate a causal effect in spite of unobserved confounding, a common solution
is to resort to instrumental variable (IV) techniques.

A typical IV setting is depicted in Figure 1: A treatment variable T has a causal effect
τ on an outcome Y . In addition, there is an unobserved confounder U , which influences
both T and Y . A naive estimate of τ based on statistical correlation between observed T
and Y would contain a mixture of the true causal effect and the confounding effect. An
instrumental variable, or simply instrument, Z can help to disentangle the causal and con-
founded parts if it satisfies critical IV assumptions: 1) The instrument must be statistically
related to the treatment variable T (relevance). 2) The relation of the instrument to the
outcome Y must not be confounded, that is, there must not be an unobserved variable that
influences both Z and Y (exchangeability assumption). 3) The instrument must not be a
direct cause of the effect Y , rather it must have a causal effect on Y only indirectly via the
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Figure 1: Graphical representation of an illustrative Instrumental Variable model. Dark
nodes represent observed variables, light nodes represent unobserved variables. Left panel:
T represents the treatment variable of interest, which has a causal effect (τ) on Y . An
instrumental variable (Z) can help to identify τ in spite of unobserved confounders (U)
if it does not have a direct causal effect on Y (exclusion restriction) and is not related
to unobserved confounder U (exchangeability assumption). The red arrow from Z to Y
indicates how the exclusion restriction can be violated by Z’s direct effect on Y . The double-
edged arrow between U and Z indicates how the exchangeability assumption can be violated
when there is an unobserved confounder influencing both Z and Y . Right panel: If either
of the two arrows is present, the instrument is not valid and using it to instrument T with
Z yields a instrumented treatment variable (TIV) whose relation to Y is confounded. To
emphasize that the unobserved variable in the right panel potentially confounds TIV and Y
(and not T and Y ) we denote it with Ũ (and not U).

treatment T (exclusion restriction). An IV that fulfills these assumptions is called “valid”.
See Section 3.1 for more details.

A valid IV can be used to extract experimental (or exogeneous) variation in T that is
unrelated to the confounder U . In other words, it can be used to construct an instrumented
treatment variable TIV that is unconfounded with Y . It is then possible to use TIV to
get a consistent estimate of the sought causal effect τ .1 However, it is difficult to know
whether the IV assumptions are satisfied. In particular, the validity of exclusion restriction
and exchangeability assumption are difficult to evaluate because they involve unobserved
variables. The right panel of Figure 1 illustrates what the problem of IV validity boils
down to: does instrumenting the treatment variable lead to an instrumented treatment
variable that is unconfounded? The method proposed here is able to test whether TIV is
confounded with Y or not. Since TIV is unconfounded if the instrument is valid, the method
can indirectly evaluate critical IV assumptions.

In practice, scientists need to rely on narrative and often controversial justifications of
those critical validity assumptions. Therefore, it is important to develop and make accessible
statistical tests that can falsify IV validity. Consider an example from economics. Acemoglu
et al. (2008) ask whether economic development causes democratic development—a relation
that is likely confounded by a plethora of variables such as the level of general education.
They estimate a causal effect of {economic development} on the degree of {democratic

1. In settings where the instrument and treatment are binary, the true causal effect cannot be point-
identified but can be bounded (Labrecque and Swanson, 2018).
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Figure 2: Illustration of the proposed test for instrument validity. Panel A: Instrumental
variable model with additional covariates X. The instrumented treatment variable TIV is
confounded (bTIV 6= 0) if the instrument is invalid, cf. Figure 1. The degree of confounding of
the IV model is denoted κi. Panel B: The instrumented treatment is replaced by a synthetic
variable Ts that is unconfounded by construction (bTIV = 0). The degree of confounding of
this counterfactual model is denoted κs. The relative size of κi and κs, two quantities that
can be estimated from observed data, is informative about instrument validity. This result
holds in spite of Ts not having a causal effect on Y . See detailed discussion in Section 3.

development} by using {past saving rates} as an instrument for {economic development}.
The exclusion restriction demands that {past saving rates} do not have a direct effect on
{democratic development}. In defense of that instrument, they argue that “it seems plausi-
ble to expect that changes in the savings rate over periods of five to ten years should have no
direct effect on the culture of democracy” (p. 822, italics added). This example illustrates
how the justification of critical assumptions in IV studies is typically not substantiated by
sound statistical tests2 and, thus, underscores the need to develop such tests.

To develop such a test for IV validity, we build on a method to estimate a degree
of confounding in multivariate linear models proposed by Janzing and Schölkopf (2018a)
(which is denoted as JS throughout). Their method rests on the Principle of Independent
Mechanisms—succinctly, a model that represents causal relations has a modular structure.
JS propose a way to estimate a degree of confounding, κ ∈ [0, 1], for a linear model where
one outcome variable, Y , is correlated with a high-dimensional set of potential causes, X.
κ measures the extent to which the observed correlation between high-dimensional X and
Y is due to genuine causation, κ = 0 (no confounding, all observed statistical relation is
due to causation), or due to a confounder, κ = 1 (full confounding, all observed statistical
relation is due to confounding).

Since κ measures the extent to which the whole set of high-dimensional X is confounded
and instrument validity is about a single potentially confounded variable, the off-the-shelf
version of JS is not applicable to evaluate instrument validity. We solve that problem by

2. Acemoglu et al. (2008) augment their plausability argument by controlling for a number of additional
covariates and checking whether the coefficient of interest changes. Yet, this is shown to be an uninforma-
tive procedure in observational studies (Oster, 2019). Further, the authors employ an overidentification
test, which assumes validity of at least one instrument.
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providing a way to estimate a counterfactual degree of confounding κs that would be ob-
tained if the instrument were valid. It relies on generating a variable that is unconfounded
by construction and yet “similar” to the possibly confounded instrumented treatment vari-
able. The counterfactual degree of confounding κs can be compared to the actual κi that is
obtained from the IV model under consideration. We show that the difference between κs
and κi is informative about instrument validity. This result allows for testing IV validity.
See Figure 2 for an illustration. Unlike other tests (described in Section 2), the proposed
test benefits from the presence of high-dimensional control covariates.

Section 2 provides an overview of related research. In Section 3, the core of this paper,
we discuss how to estimate the counterfactual degree of confounding and how to use it to
test IV validity. While we take JS as given in the contruction of our test, Section 4 provides
a more detailed discussion of the Principle of Independent Mechanisms, introduces the JS
method and conveys graphical intuition for its functioning. Section 5 provides Monte Carlo
simulation studies, which show high accuracy of the methodology. Section 6 contains two
empirical applications. First, we apply the proposed method to a study by Card (1995), who
proposes to use {college proximity} of a family’s residence as an instrument for {educational
attainment} to estimate {financial returns to education}. Though Card himself casts doubt
on the validity of {college proximity} as an instrument, he argues that the instrument is
likely valid in specific subsamples of the data. The proposed methodology corroborates
Card’s narrative justification of the validity of the instrument in specific subsamples. Sec-
ond, we cannot reject the validity of {past saving rates} as an instrument for {economic
development} in a study on the causes of {democratic development} by Acemoglu et al.
(2008).

2. Previous Research

The Sargan (1958)-Hansen (1982) J -test for overidentifying restrictions arguably spawned
the substantial literature on specification testing in instrumental variable (IV) models. The
J -test can be used to test instrument validity when there are more instruments than possibly
confounded treatment variables. Failure of rejecting the null hypothesis of the J -test is
evidence that all proposed instruments are valid. Rejecting the null provides evidence that
at least one of the proposed instruments is invalid. However, the test cannot determine
which of the proposed instruments is invalid and, therefore, is not useful to choose a subset
of valid instruments.

A more recent strand of the literature proposes nonparametric tests for unconfounded-
ness of explanatory variables, e.g. an instrumented treatment variable. In broad terms,
what unites many of these papers is their reliance on testing whether the moment condi-
tions implied by the instrumental variable model are fulfilled. By analyzing higher-order
moments, these models can resort to overidentifying restrictions even when there is only one
instrument per confounded variable. For example, Blundell and Horowitz (2007) propose a
test for unconfoundedness in nonparametric regression analysis that does not rely on non-
parametric IV estimation (which often suffers from slow convergence that, in turn, results
in low power of such tests). Two related papers that both study nonparametric IV models
are Breunig (2015) and Gagliardini and Scaillet (2017). The former uses series estimators
to propose a test for instrument validity and the latter employ a Tikhonov-regularized es-
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timator of the functional parameter to minimize the distance criterion corresponding to
the moment conditions. Breunig (2018) extends these results to nonparametric quantile
regression with nonseparable errors.

Although diverse methods to test IV validity in overidentified IV models are proposed,
those for just-identified models prove more elusive. However, the causal structure in IV
models with binary instrument and binary treatment (“binary IV models”) implies testable
constraints on the outcome distribution of four groups of individuals defined by two observed
quantities (treatment status and instrument assignment). Those are described by Balke and
Pearl (1997). Specifically, if the outcome distributions of individuals with Zi = 1, Ti = 0
and Zi = 0, Ti = 0, or those of individuals with Zi = 1, Ti = 1 and Zi = 0, Ti = 1 intersect,
instrument validity is violated. These testable constraints are first leveraged by Kitagawa
(2015), who proposes to test instrument validity by checking whether the aforementioned
distributions intersect. Huber and Mellace (2015) provide a closely related extension to
Kitagawa (2015): they propose a test that relies on mean potential outcomes rather than
their distributions. Mourifié and Wan (2017) build on Kitagawa (2015) by representing his
test in terms of conditional moment inequalities.

Kitagawa’s work and the mentioned extensions are applicable in binary IV models since
that is the context in which Balke and Pearl’s testable constraints arise. This paper provides
a test to detect invalid instruments that does not use Balke and Pearl’s testable implications.
Instead, it takes another angle at the problem of evaluating IV validity: it relies on the idea
that invariance structures in observed data justify statements about the underlying causal
structure of the system under study. This idea is formalized from an information-theoretic
perspective as the Principle of Independent Mechanisms (PIM) (Janzing et al., 2012; Peters
et al., 2017, and is discussed further in Section 4). Since it does not rely on Balke and
Pearl’s testable constraints, the method proposed here is not restricted to binary IV models.
Unlike Kitagawa (2015) whose test is applicable in nonparametric models, we are restricted
to linear models in this paper. This is because we use an interpretation of PIM for linear
models. Note that Balke and Pearl (1997) prove that their testable implications are sharp
in the sense that there is no additional restriction on the data distribution that could
be used to test IV validity. It is shown by Heckman and Vytlacil (2005) that additional
distributional restrictions result from the constant treatment effects model that we are
considering. Therefore, our restriction is not sharp. The focus of this paper is to show that
a restriction resulting from a formalization of the Principle of Independent Mechanisms,
which is a type of restriction that has so far not been applied, enables testing IV validity.

In sum, the main contribution of this paper is to develop a novel testing approach for
instrument validity that relies neither on moment restrictions nor on Balke and Pearl’s
testable implications. Our approach is based, intuitively, on the Principle of Independent
Mechanisms and, technically, on the decomposition of the spectral measure of the covariates’
covariance matrix induced by the (possibly biased) corresponding parameter vector. By
assuming PIM, our approach makes a structural assumption that has hitherto not been
used to evaluate instrument validity (and that is not necessary to estimate the sought causal
effect). Using PIM in this context only becomes possible through its recent formalization
due to Janzing and Schölkopf (2018a). The present work adds to the growing literature
using PIM as a powerful concept to guide causal identification (see e.g. Peters et al., 2016;
Besserve et al., 2018a,b; Gresele et al., 2021).
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Figure 3: Graphical representation of the IV model under study. The difference between
the IV model under study and the illustrative IV model depicted in Figure 1 is the presence
of additional control variables X.

3. Test for Instrument Validity

In this section, we formally define the model under consideration, discuss assumptions for
instrument validity and describe the test procedure to evaluate instrument validity. We take
the method to estimate a degree of confounding in multivariate linear models proposed by
Janzing and Schölkopf (2018a) (JS) as given and mention details only insofar as they are
relevant for developing the test. Since it is an integral part of the test proposed here, we
describe JS informally in Section 4 and formally in Appendix H.

3.1 Assumptions for instrument validity

Figure 3 shows a graphical representation of the conditional instrumental variable model
under consideration. The difference between this model and the illustrative IV model in
Figure 1 (discussed in the Section 1) is the presence of additional control variables X, which
have causal effects on the treatment variable T and the outcome Y . Before introducing the
parametric version of this model in the next subsection, we discuss the assumptions that an
instrument Z has to fulfill to enable the consistent estimation of τ in spite of unobserved
U (see Labrecque and Swanson, 2018; Didelez et al., 2010).

Assumption 1. relevance assumption

Z 6⊥⊥ T (1)

The relevance assumption states that the instrument must be statistically related to the
treatment variable T . This assumption can easily be tested by, e.g., checking whether a
regression of T on Z produces a coefficient estimate that is significantly different from zero.
Since it is easy to test, this assumption will be taken for granted in the following.

Assumption 2. exchangeability assumption

Z ⊥⊥ U and Z ⊥⊥ Y |T,U. (2)

Assumption 2 implies an absence of an unobserved confounder between Z and U as well
as between Z and Y . Note that the bi-directed dashed red arrow between Z and Y , which
would violate Z ⊥⊥ Y |T,U , is not depicted in Figure 3.
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Assumption 3. exclusion restriction

Z ⊥⊥ Y |do(T = t),X. (3)

The do(V = v) operator denotes an intervention on variable V that sets it to v and
deletes all incoming edges to V (Pearl, 2009). The exclusion restriction implies the absence
of a direct causal effect of Z on Y .

With these assumptions we can provide a definition of IV validity:

Definition 1. A variable Z is called a valid instrumental variable if and only if it fulfills
Assumptions 1 to 3.

Figure 3 illustrates violations of these crucial IV assumptions with the dashed red arrows.
A bi-directed edge denotes an unobserved confounder between the respective nodes. A
directed edge represents a direct causal relation.

3.2 Parametric latent IV model

We consider the following structural linear IV model with a constant treatment effect τ and
an additively separable error term.

Y = Xβ + τT + βuU + εY and (4)

T = Xγ + γzZ + γuU + εT (5)

where X represents a set of d covariates, T is a treatment variable, and Z is a binary
instrument. Y is the outcome variable of interest. U is an unobserved confounder. β and
γ are d-dimensional vectors of coefficients. βu, γz, and γu are scalar coefficients. τ is
the scalar causal effect of interest: the Average Treatment Effect (ATE). εY and εT are
structural error terms, which are independent of each other. We refer to the assumed
model structure in eqs. (4) and (5) as the Maintained Assumption. Unlike the model
studied by Angrist et al. (1996), this model does not allow for heterogeneous treatment
effects. We assume a constant treatment effect, see discussion in Section 3.7.

3.3 Reduced form model and test idea

A common estimator for the causal effect of interest in IV models is the two-stage least
squares estimator (2SLS), as discussed by e.g. Wooldridge (2002). Its implementation
comprises two steps. First, the treatment variable is regressed on the instrument and
additional control variables. This regression is used to calculate predictions for T , which we
denote with TIV. Second, the outcome variable Y is regressed on TIV from the first stage
and the additional control variables, that is Y is regressed on {X, TIV}. The coefficient of
TIV is a consistent estimate of the causal effect τ if the instrument is valid. To develop
the test, we reformulate the model in eqs. (4)-(5) to its reduced form after the first stage
is implemented. After replacing the observed treatment variable with its instrumented
version, the confounding variable we are concerned with is no longer U (which confounds
{X, T} and Y ) but a different one, namely that variable which confounds {X, TIV} and Y ,
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which we call Ũ . To parameterize the degree of condounding of each control variable and
TIV, we express them as a sum of their unconfounded versions and the scalar confounder Ũ :

Y = {X, TIV}a + cŨ + ε and (6)

{X, TIV} = E + Ũ
(
b bTIV

)
(7)

where {X, TIV} denotes a matrix of d control variables X and the instrumented treatment

variable TIV. a =

(
β
τ

)
where β is the d-dimensional parameter vector associated with

covariates X and τ is the true causal effect of interest. Ũ is an unobserved confounder, which
influences Y when c 6= 0 and {X, TIV} when

(
b bTIV

)
6= 0. The hypothetical unconfounded

versions of X and TIV are represented by E = {X∗, T ∗IV}. Confounding is introduced by
adding Ũ

(
b bTIV

)
. Thus, each element of the vector

(
b bTIV

)
=
(
b1 . . . bd bTIV

)
parameterizes confounding of the corresponding dimension of {X, TIV}, e.g. X1 = E1 +Ũb1.

If Z is a valid IV (it can be used to estimate τ consistently), then the TIV resulting from
2SLS must be unconfounded. Specifically, the element bTIV that parameterizes the con-
founding of the instrumented treatment variable TIV will be zero (cf. TIV = T ∗IV + ŨbTIV) if
the instrument is valid. To foreshadow, the proposed procedure enables evaluating whether
bTIV = 0. Since any violation of Assumption 2 or Assumption 3 leads to a confounded TIV

(that is, bTIV 6= 0), the test is not capable of disambiguating which of the two assumptions
invalidates the instrument even though it is capable of detecting both violations.

So, how to evaluate whether bTIV = 0? First, we need to take a step a step back to
understand the definition of the level of confounding that JS show how to estimate, which
is defined as3

κ : =
‖â− a‖2

‖a‖2 + ‖â− a‖2
(8)

=

∥∥∥∥cΣ−1
XTIV

(
b
bTIV

)∥∥∥∥2

∥∥∥∥(βτ
)∥∥∥∥2

+

∥∥∥∥cΣ−1
XTIV

(
b
bTIV

)∥∥∥∥2 ∈ [0, 1] (9)

where â = Σ−1
XTIV

ΣXTIVY denotes the parameter vector after projecting with least-squares
in the population, that is, ΣXTIV is the covariance matrix of {X, TIV} and Σ{XTIV}Y is the

covariance vector of {X, TIV} with Y . cΣ−1
XTIV

(
b
bTIV

)
= â − a, which is the deviation of

the parameter vector â from the structural parameter a. To get an intuitive understanding
what κ measures, consider the approximation ‖â‖2 ≈ ‖â− a‖2 + ‖a‖2 +. It holds when
â− a is orthogonal to a, which is approximately true as the dimensionality of these vectors
goes to infinity (see Janzing and Schölkopf, 2018a, see also eq. (73) in Appendix H). Using
this approximation, one can see that

κ ≈ ‖â− a‖2

‖â‖2
. (10)

3. Throughout, ‖a‖ denotes the L2 norm of the d-dimensional vector a.
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Therefore, κ approximately equals the deviation of â from a relative to â, in terms of the
respective squared lengths of these vectors. Since the degree of confounding is defined in
terms of squared lengths of vectors, it is impossible to trace confounding back to single
elements of these vectors in the original JS method.

The aggregate nature of κ is an important limitation given that confounding of a single
covariate is what is informative about instrument validity. Recall that κ lies between 0

and 1. Confounding is introduced by vector bIV =

(
b
bTIV

)
and scalar c. The degree of

confounding is zero (κ = 0) when bIVc = 0 and it is positive (κ > 0) when bIVc 6= 0.
Thus, the estimable κ sheds light on the product of two unobserved quantities bIV and
c. This underlines that observing κ > 0 is not informative about which dimension of the
covariates {X, TIV} is confounded. In other words, κi := κ({X, TIV}, Y ) gives an overall
degree of confounding of the model where Y is regressed on {X, TIV}, without specifying
which specific dimensions are confounded. To deduce whether the instrumental variable
Z is valid, however, it is essential to know whether a specific covariate, namely TIV, is
confounded or not, that is whether bTIV = 0 or not. However, a single κ estimate is not
informative about bTIV .

To address this problem, we propose a way to estimate confounding of a single variable
that builds on JS. We do this by estimating a counterfactual degree of confounding, κs,
that would be obtained if that single covariate TIV were unconfounded. This is achieved
by generating a synthetic treatment variable Ts that is unconfounded by construction.
Replacing TIV with Ts, results in the synthetic reduced form model:

Y = {X, Ts}
(
β
τs

)
+ cŨ + ε and (11)

{X, Ts} = E + Ũ
(
b bTs

)
. (12)

Note that the element corresponding to Ts in the vector that multiplies the confounder
is equal to zero because Ts is unconfounded by construction: bTs = 0. Also, since the
synthetic Ts does not have a causal effect on Y , τs = 0.

In sum, we replace TIV by the synthetic (and unconfounded) Ts to estimate κs :=
κ({X, Ts}, Y ) (the degree of confounding that would be obtained with a valid IV). Then,
we compare this counterfactual κs to the actual degree of confounding κi. We can show
that their relative size is informative about instrument validity. In the following Section,
we discuss the details of this idea and its implementation.

3.4 Detailed test procedure

The test procedure is succinctly described in Algorithm 1. In the following main text we
provide a description that focuses on the intuition. We denote the degree of confounding as
measured by the method laid out in Janzing and Schölkopf (2018a) (JS) in a multivariate
linear model with X as independent variables and Y as dependent variable with κ({X};Y ).

Under the Maintained Assumption, which is the model structure assumed in eqs. (4)-(5),
we want to test the hypothesis

H0 : Z is a valid instrument (13)
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against the alternative
H1 : Z is not a valid instrument. (14)

To indirectly test IV validity by analyzing the extent to which the instrumented treat-
ment variable (TIV) is confounded (invalid IV) or unconfounded (valid IV), we adapt the
method to estimate a model-wide degree of confounding due to JS.

The degree of confounding of the model that contains the instrumented treatment vari-
able TIV (that is, the degree of confounding of the model depicted in Panel A of Figure 2)
is denoted

κi := κ({X, TIV};Y ). (15)

It is not possible to evaluate the validity of the instrument Z on the basis of κi alone since it
is an overall degree of confounding of the whole model. Even a positive κi could be consistent
with a valid instrument if the confounding is due to Ũ ’s influence on X only (but not TIV).
In other words, there is no natural level which κi should be compared to. Replacing TIV

by a synthetic treatment variable Ts that is similar to TIV though unconfounded solves this
problem (cf. Panels A and B in Figure 2).

Specifically, we propose to generate a synthetic treatment variable Ts that has the same
covariance structure to X as does TIV, i.e. Ts satisfies

Cov(Xi, Ts) = Cov(Xi, TIV) ∀i ∈ {1, . . . , d}.

See Algorithm 2 for the construction of Ts; we provide a detailed explanation of each step of
that algorithm in Appendix B. On a high level, the idea is to generate a random variable W ,
regress out the variation in W that can be explained by X, and then add parts of X back
into W in a specific way that ensures that the resulting variable has the desired covariance
structure w.r.t. X. Then, we replace TIV with that synthetic variable Ts and measure the
degree of confounding in the resulting model:

κs := κ({X, Ts};Y ). (16)

Ts is a synthetically generated variable that does not have a causal effect on Y and is,
conditionally on X, unconfounded while having the same covariance structure with X as
TIV. Thus, in terms of the definition of κ, cf. eq. (8), Ts is like TIV except that it is not
confounded (and that it has a causal effect of zero, a subtlety to which we return below).
Intuitively, κs measures the counterfactual overall degree of confounding of the model that
would be obtained if the instrument were valid and TIV unconfounded (i.e. bTIV = 0). κs
is the sought benchmark to which the actual degree of confounding κi can be compared to
evaluate instrument validity.4

More formally, the following relation between the difference δ := κi−κs and instrument
validity can be proven:

Theorem 1. If the instrumental variable is valid, δ is not positive:

IV valid⇒ δ := κi − κs ≤ 0. (17)

4. The knockoff procedure by Candes et al. (2018) bears some similarity to Algorithm 2 as both are designed
to generate variables that resemble their empirical counterpart in some form. We discuss how the two
approaches relate and show that the proposed method is robust to using the knockoff variable procedure
to generate Ts in Appendix K.
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By contrapositive, this result implies the following corollary: If δ > 0, the instrumental
variable is invalid. The proof of these statements is found in Appendix A. Thus, the differ-
ence between the actual degree of confounding and the counterfactual degree of confounding,
δ = κi − κs, is informative about instrument validity: δ > 0 implies instrument invalidity.
Intuitively, if the instrument is invalid, instrumenting leads to a degree of confounding that
is larger than the counterfactual degree of confounding. Loosely, δ can be interpreted as
a “residual degree of confounding” of the instrumented model that is left after subtracting
the confounding due to control covariates.

The corollary justifies evaluating the validity of Z on the basis of δ. If δ > 0, we can
deduce that the IV is invalid. The statement in Theorem 1 is a necessary but not sufficient
condition for IV validity. We can only reject validity but can never reject invalidity. In
other words, the instrument might still be invalid, even if δ ≤ 0.

It does not seem possible to provide a necessary and sufficient condition here. The
reason for that lies in the way the synthetic variable Ts is constructed. Ts is unconfounded
by construction (bTs = 0) and not causally related to Y (the true causal effect of Ts is equal
to zero: τs = 0). Precisely, κs measures the degree of confounding that would be obtained if
the instrument were valid and τ = 0. This drives a wedge between κi and κs even when the
instrument is valid, cf. eq. (30). However, this does not affect the validity of Theorem 1,
and therefore does not invalidate the test proposed here. If one could generate a synthetic
variable with the same covariance structure as TIV not only to X but also to Y , which
would result in a estimated coefficient on that synthetic variable equal to the coefficient of
TIV, the wedge would close, the inequality in (29) would become an equality, and one could
show that δ = 0 if and only if the IV is valid. However, such a synthetic variable would be
correlated with the unobserved confounder conditionally on X via its relation with Y , and
thus would not induce a counterfactual degree of confounding suitable to compare κi with.

Since we do not observe the population quantities κs and κi, we rely on their estimates,
denoted κ̂s and κ̂i respectively, to implement the test. We use the code provided by JS to
estimate the κs. Similarly, to construct Ts we use sample covariances.

A formal derivation of the sampling error that underlie estimates of κ is not yet devel-
oped. To nevertheless incorporate uncertainty about κ̂s and κ̂i, we calculate B estimates for
κs and κi based on B bootstrap samples (lines 3 to 9 in Algorithm 1). For each bootstrap
sample b ∈ {1, . . . , B} we calculate

δ̂b = κ̂i − κ̂s (18)

and the share of samples with δb ≤ 0,

∆B =
1

B

B∑
b=1

1(δ̂b ≤ 0). (19)

The resulting ∆B can be interpreted as a pseudo-p-value for H0. If the estimated actual
degree of confounding (κ̂i) is larger than the estimated counterfactual degree of confounding
(κ̂s) and ∆B small, we have evidence for the IV being invalid, i.e. for rejecting H0.
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3.5 Behavior of pseudo-p-value and size of test

We call ∆B a pseudo-p-value and not a p-value because it does not have a uniform dis-
tribution under H0. However, we argue that it has a sub-uniform distribution under H0.
Consider the expression for δ under H0 in eq. (30) in Appendix A. It implies that δ =

κi − κs ≈
∥∥∥∥(βτs

)∥∥∥∥2

−
∥∥∥∥(βτ

)∥∥∥∥2

≤ 0. As d → ∞, the inequality becomes binding as the

(infinitely many) β components of each vector outweigh the τs and τ (scalar) elements
respectively. This implies δ = κi − κs = 0 as d → ∞ (under valid H0). Within each boot-
strap sample (see lines 3-9 of Algorithm 1), whether δb > 0 or δb < 0 is subject to chance.
Therefore5, the pseudo-p-value, which is the share of δ ≤ 0 across B bootstrap draws, will
converge to 0.5 as d → ∞. Thus, though the distribution of the pseudo-p-value ∆B does
not follow a uniform distribution, the cumulative distribution function F of ∆B has the
following property: F (∆B ≤ t) ≤ t. Namely, it is sub-uniform. This implies that the false
positive rate of the test lies below the nominal size of the test.

With finite d, nonzero causal effect (τ 6= 0) and under H0, δ is smaller than 0 since τs = 0
by construction. In other words, δ is strictly negative under H0 when τ 6= 0. Therefore,
∆B tends to be larger than 0.5. As a consequence, the empirical distribution of ∆B has a
left skew. Figure 6 shows histograms of the pseudo-p-value for simulated data with valid
instruments, which underscore this theoretical point. Although we cannot guarantee that
the test has asymptotically exact size under H0, the behavior of the pseudo-p-values implies
that the size of the test lies below its nominal size α. In other words, we can guarantee size
control. The lack of an exact size guarantee would be problematic if it came at the cost
of low power. While the AUC curves in Figure 7 do not directly show the test’s power (as
they show sensitivity-specificity trade-offs), their high levels (above 0.8 as the endogeneity
of the instrument increases) indicate that the procedure does not suffer from low power.

It is worthwhile stressing that size control, not exact size guarantee, is typically achieved
in the nonparametric testing literature (see e.g. Breunig and Chen, 2020; Fang and Seo, 2021;
Li et al., 2022). While the proposed test assumes rotation-invariant priors for the model
parameters and is therefore not non-parametric, this observation stresses that size control
is more important than an exact size guarantee.

3.6 Inherited assumptions from Janzing and Schölkopf (2018a)

The method proposed by JS relies on a high-dimensional set of covariates to estimate a
degree of confounding. Since this method is a central part of the proposed test, we inherit
that reliance on high-dimensional set of X. In other words, we require a sufficiently large
set of control variables in addition to the treatment variable T for the test to work. In
practice, this reliance on additional control variables X is not limiting as it is unlikely not
to have additional control variables. Moreover, both the empirical applications as well as
the Monte Carlo study show that already around five covariates work well in practice.

In addition, JS make idealized assumptions about the generating process of the linear
model they study to show how to estimate a degree of confounding. More specifically, they
require the structural parameters to be rotation-invariant. We describe this assumption in

5. Technically, this argument relies on B → ∞, which we disregard here.
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Data: sample of the outcome variable, control covariates, treatment indicator, and
instrumental variable D = {Yi,Xi, Ti, Zi}ni=1

Input: data D, threshold value α, number of bootstraps B
Output: pseudo-p-value and rejection decision ψ(α) for the hypothesis

H0 : Z is a valid instrument
1 Normalize data such that all variables have equal means and equal variance, e.g. a

mean of zero and a variance of one.
2 Implement two-stage least squares IV approach: regress T on {X, Z}, compute the

fitted values and call them TIV

3 for b = 1 to B do
4 Draw a bootstrap sample Db of size n with replacement
5 Estimate κi := κ({X, TIV};Y ) based on Db following JS, call estimate κ̂i (See

Appendix H for a description how to estimate κ.)
6 Generate synthetic variable Ts based on Db by following Algorithm 2
7 Estimate κs := κ({X, Ts};Y ) based on Db following JS, call estimate κ̂s

8 Calculate δ̂b = κ̂i − κ̂s
9 end

10 Calculate the pseudo-p-value

∆B =
1

B

B∑
b=1

1(δ̂b ≤ 0)

11 Decide whether to reject H0: ψ(α) = 1(∆B ≤ α)

Algorithm 1: Test for instrument validity

detail in Appendix H, see in particular Assumption 5. While that assumption of rotation-
invariant structural parameters is required for the theoretical derivation of the method to
estimate κ, JS write that “[t]here is some hope that empirical data show similar concen-
tration of measure phenomena although our model assumptions are probably significantly
violated” (p. 24). In our Monte Carlo studies (see Section 5) we generate data that does not
have rotation-invariant priors and, yet, the proposed method performs well. In addition, it
is unlikely that the data used in the empirical applications in Section 6 is generated from
a process with rotation-invariant priors. Yet, the proposed method performs well. This
substantiates the claim made by JS. Note that for the derivation of Theorem 1, rotation-
invariant priors need not be assumed.

3.7 Discussion of constant treatment effects assumption

Much of the recent literature on inference in IV models and testing IV assumptions relies
on heterogeneous treatment effects models, where the parameter of interest is the Local
Average Treatment Effect (LATE, i.e. the treatment effect for a subpopulation called the
‘compliers’, i.e. those members of the population whose treatment status depends on the
value of the instrument, see the seminal paper by Imbens and Angrist, 1994). Unlike this
strand of the literature, we focus on a linear model with additively separable error term
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Data: n× d matrix of covariates X with full column rank,
n× 1 vector of instrumented treatment TIV

Output: a random variable Ts with Cov(Xi, Ts) = Cov(Xi, TIV) ∀i ∈ {1, . . . , d}
1 Define the vector ρ :=

(
Cov(X1, TIV) . . . Cov(Xd, TIV)

)>
2 Draw n samples of a standard Gaussian N (0, 1), and collect those samples in a

n× 1 vector W .
3 Regress W on X and compute residuals: η := W −X(X>X)−1X>W

4 Compute the singular value decomposition of X: X = U S V> where the diagonal

elements {σj}dj=1 of S are the singular values of X, U contains the left-singular
vectors, V contains the right-singular vectors

5 Compute Xdual := (n− 1)×U× diag(1/σj)×V>

6 Compute s :=
√

1−ρ>×Cov(Xdual)×ρ
Cov(η)

7 Compute Ts := Xdual × ρ+ s× η
Algorithm 2: Generate synthetic Ts

and a constant treatment effect τ in this paper. The main reason for that is the following.
Since the proposed test relies on the method to estimate a degree of confounding in linear
models with additively separable error term developed in JS, we are restricted to work in
the same model class. Extending JS to nonlinear models, is an interesting avenue for future
research. Such an extension could make the idea of constructing a counterfactual degree of
confounding under instrument validity amenable to heterogeneous treatment effects models
in the future.

Although it is common to use heterogeneous treatment effects models to estimate LATE,
the focus on LATE as the estimand of interest is controversial. For example, Deaton (2010)
argues that “we are unlikely to learn anything about the processes at work” (p. 490) if we
are unwilling to make structural assumptions, such as the ones in eqs. (4)-(5), that allow
us to estimate structural parameters, i.e. average treatment effects (ATE). Deaton urges
researchers to focus on describing mechanisms (what he calls ‘processes’) as those are more
useful to decision-makers than LATE. This is consistent with the use of the Principle of
Independent Mechanisms to test the validity of IV assumptions.

In the linear, constant treatment effects model, Heckman and Vytlacil (2005) show that
additional testable implications arise. Specifically, they show how to exploit distributional
information that goes beyond the second-order moments to test IV validity. One contri-
bution of the present article is that we can provide a test for IV validity without relying
on such higher-order moments, but rather by exploiting implications of the Principle of
Independent Mechanisms. As such, our approach shows that other sources of information
can be used to assess IV validity. We want to stress, however, that our testable implication
is not sharp in the sense of Balke and Pearl (1997).

3.8 Generalization to models with high-dimensional confounders

Though the model in eqs. (4)-(5) has a one-dimensional confounder U , our testing frame-
work can easily be extended to models with higher-dimensional confounders. Specifically,
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Janzing and Schölkopf (2018b) (JSb) show how to estimate a degree of confounding κ in
models with high-dimensional confounders. Though the methodological approach between
these two papers (JS and JSb) differs, the definition of the degree of confounding κ that
both approaches estimate is exactly the same.

Our test procedure carries over seamlessly to cases with high-dimensional confounders
because we can swap the method to estimate κ in lines 5 and 7 of Algorithm 1 from JS (one-
dimensional confounder) to JSb (high-dimensional confounder). We provide a summary of
the main arguments of JSb in Appendix I and reproduce all simulations results as well as
empirical applications using the method laid out in JSb in Appendix J. These results are
similar to those discussed in the main text.6

4. The Principle of Independent Mechanisms and Generic Orientation

This section describes and illustrates the idea of the method to estimate a degree of con-
founding in multivariate linear models proposed by Janzing and Schölkopf (2018a). The
main arguments of JS are reproduced formally in Appendix H. In particular, Assumption 5
about rotation-invariant structural parameters is specified formally.

The Principle of Independent Mechanisms (PIM) underlies many contributions to causal
inference from the machine learning community (for an overview see Schölkopf et al., 2021).
It also serves as the basis for the test proposed in this paper. The notion goes back to
pioneering econometricians Haavelmo and Frisch, who identified the search for and analy-
sis of independent mechanisms as the ultimate goal of econometrics (though using slightly
different terminology, calling them “autonomous”, see Frisch et al., 1938). Despite con-
sidering it an important guiding principle, they did not employ the notion of independent
mechanisms as an empirical identification technique as such. In fact, Frisch and Haavelmo
argued that the independent nature of mechanisms cannot be identified from observational
data but must be motivated by (economic) theory (or controlled experiments). Some ad-
vances towards its use as an identification tool for studies based on observational data have
been achieved. The proposal by Janzing and Schölkopf (2018a) to estimate the degree of
confounding in multivariate linear models, which is motivated by the notion of independent
mechanisms, is an example of this progress.

To illustrate the idea, consider a set of random variables {V1, . . . , Vn} whose causal rela-
tions can be represented in a directed acyclic graph (DAG) and an accompanying structural
equation model (Pearl, 2009). The joint probability distribution that is consistent with the

6. A tangential comment is in order here. As described in Appendices H and I, Janzing and Schölkopf
provide two entirely independent ways of estimating the degree of confounding κ for multivariate linear
models with one-dimensional and high-dimensional confounders, respectively. Each approach makes
idealized (and very different) modeling assumptions. Still, both approaches lead to very similar results
when used in the present setting of evaluating instrument validity. This is remarkable and testifies to the
ingenuity of Janzing and Schölkopf’s work. It also lends credibility to the testing framework proposed
here; specifically, the idealized modeling assumptions in JS and JSb are not what is driving the results
presented in this paper (keep in mind also that the simulation setting we use already departs from the
idealized assumptions in both JS and JSb).
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causal structure given in the DAG can be factorized as

P (V1, . . . , Vn) =

n∏
j=1

P (Vj |Pa(Vj)) (20)

where Pa(Vj), the parents of Vj , denotes the set of random variables that directly cause Vj .
Naturally, there are many other types of factorizations of the joint distribution:

P (V1, . . . , Vn) =
n∏
j=1

P (Vj |Vj+1, . . . , Vn). (21)

However, only the factorization in eq. (20) is a description of the data generating process
implicit in the DAG, which represents the causal generating mechanisms of the data: first
“nature” generates data for the parental nodes, these feed into the descendant nodes (“chil-
dren”), etc. The conditionals in eq. (20) represent causal mechanisms that translate causes
(or parents, Pa(Vj)) into their effects (“children”, Vj). Causes that do not have parents in
the model under investigation appear as marginal distributions in this formulation. Using
algorithmic information theory, Janzing and Schölkopf (2010) and Lemeire and Janzing
(2013) show that the conditionals on the right-hand-side are algorithmically independent
of each other if the DAG represents the causal structure. Intuitively, changing one mecha-
nism, e.g. by intervening to set the corresponding child variable to a specific value, does not
change any other mechanism. In this sense each of the mechanisms operates independently
of the others. Since the formal deduction of the mechanism’s algorithmic independence
relies on the theoretical notion of Kolmogorov complexity, which cannot be estimated, it
is not obvious how to conceive of the independence of mechanisms in practice. Thus, the
algorithmic independence of mechanisms amounts less to a precise recipe for uncovering
autonomous relations in observational data than to a rigorous guiding principle to design
algorithms that do.

To make the notion of ‘independent mechanisms’ practically relevant, what precisely is
meant by ‘independence’ must be defined in a way that allows data-driven quantification.
Janzing and Schölkopf (2018a) propose such a feasible interpretation of the Principle of
Independent Mechanisms. Moreover, they show a way to measure the degree of violation
of PIM in observational data. This degree of violation is a measure of confounding in
multivariate linear models. We spend the rest of this section illustrating their notion of
independence and how they can infer a measure of confounding. This is not an exhaus-
tive discussion. The technical details are provided in Appendix H, which reproduces the
arguments in JS.

To illustrate the proposal by Janzing and Schölkopf (2018a), consider two versions of a
simple multivariate linear model Y = Xβ + ε. First, in the unconfounded model, ε ⊥⊥ X.
The multidimensional X is causing Y and the least-squares estimate of β is unbiased.
Second, in the confounded model, ε 6⊥⊥ X. The multidimensional X is still causing Y but
now due to the dependence of ε with X, the least-squares estimate of β is biased. How to
infer from observational data whether the least-squares estimate of β is biased?

To see how Janzing and Schölkopf (2018a) answer that question, note first that the
true β is the crucial parameter representing the ‘mechanism’ that translates the causes X
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Figure 4: Illustration of genericity of causal parameter vectors. This figure shows density
plots of the angles between the least-squares parameter vector of both confounded and uncon-
founded models with each of the d eigenvectors of the covariance matrix of the covariates. In
the unconfounded model, the least-squares parameter vector should lie in generic orientation
with respect to (the eigenspace spanned by the) eigenvectors of the covariance matrix of the
covariates. Genericity of two vectors can be understood as their dot product being zero. As
expected, therefore, the distribution of angles in the unconfounded case clusters around 90
degrees. Crucially, in the confounded case, the distribution of angles is considerably wider.
A trace of confounding is thus reflected in the less generic angles of the confounded param-
eter vector with respect to the eigenvectors; their distribution is characterized by a more
frequent divergence from the generic angle of 90 degrees. This illustrates the type of con-
founding signal that JS leverage in their methodology. The figure shows angle distributions
for 100 simulation runs with d = 100, and n = 50000, the respective means are depicted
with black lines, solid for the confounded and dashed for the unconfounded case. Details on
the simulation setting is found in Appendix G.

into effect Y . The causes, in turn, are represented by the covariance matrix of the right-
hand-side variables ΣXX. What the PIM implies on an intuitive level is that the mechanism
translating causes into effect, represented by the true parameter vector, and the input to the
mechanism or causes, represented by ΣXX, should be ‘independent’. JS make the concept
of ‘independence’ estimable by arguing that, if PIM is fulfilled, the true parameter vector
should lie in generic orientation with respect to the eigenspace spanned by the eigenvectors
of the covariates’ covariance matrix, ΣXX. In technical terms, such genericity is defined
by the equivalence of two spectral measures: the spectral measure of ΣXX induced by the
true parameter vector (which results from weighting the eigenvalues of ΣXX by that true
parameter vector) should be equal to the (unweighted) tracial spectral measure of ΣXX.

We now provide a graphical illustration of the traces that a violation of PIM leaves
in purely observational data. We simulate data from a confounded and an unconfounded
model, then estimate the parameter vector by least-squares in both cases (see Appendix G
for details on the simulation). In the unconfounded case, the estimated parameter vector
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represents genuine causes and is not biased due to unobserved confounding. Following JS,
that true parameter vector should lie in generic orientation with respect to the eigenvectors
of the covariance matrix. Two vectors lie in generic orientation with respect to each other
if their dot product is zero (or the angle they span is ninety degrees). At first glance
orthogonality seems like a specific, not generic, relation between any two vectors. However,
it is important to note that such genericity is a high-dimensional phenomenon: the angle
between two randomly drawn vectors approaches ninety degrees as the their dimensionality
increases (see e.g. Gorban and Tyukin, 2018). This is also why the asymptotic results in JS
rely on the dimensionality of the covariate space going to infinity. Intuitively, two generic
vectors do not share any information since they are pointing in two orthogonal directions.

Therefore, we compute the angle between the estimated parameter vector and each of
the eigenvectors of the covariance matrix of the covariates for both the confounded and
unconfounded setting and plot their distribution.7 For both settings, we simulate data
for d = 100 dimensions and n = 50, 000 observations resulting in 100 calculated inner
products. Then, we plot the resulting distribution of angles between d eigenvectors and
the least-squares estimate β̂. Figure 4 plots these distributions for 100 draws of the data.
Crucially, one can see that the distribution of angles is more widespread for the confounded
setting. Consequently, in the presence of confounding the estimated parameter vector lies
in a less generic direction with respect to the eigenvectors of the covariance matrix. This
deviation from genericity is what Janzing and Schölkopf (2018a) exploit to measure the
degree of confounding.

5. Monte Carlo Simulation

To see how the proposed instrument validity test performs, we run Monte Carlo studies.
In the main body of the paper, we present the simulation to study violations of the ex-
clusion restriction. The simulation to study violations of the exchangeability assumption
are relegated to the Appendix F since the results and conclusions are similar. We are
distinguishing between two simulation settings (violations of exclusion restriction and ex-
changeability assumption) to show that the proposed test can detect violations of either
assumption, although it is not able to distinguish which assumption is violated. Note that
we are simulating data for a setting with a binary treatment variable to ensure better com-
parability to Kitagawa (2015), although the theoretical development of the test requires a
continuous treatment variable.

Data that simulates a violation of the exclusion restriction is generated according to
Algorithm 3. Simulations are implemented for each combination of the following parameters:
number of observations: n ∈ {100, 500, 1000}, number of covariates: d ∈ {5, 10}, degree of
violation of the exclusion restriction: ω1 ∈ {0, 0.1, 0.2, 0.4, 0.5}, degree of the relevance of
the instrument: ω2 ∈ {0.3, 0.6}. Moreover, the following parameters are fixed: number of
bootstrap samples B = 100, number of Monte Carlo draws M = 200.

7. For the purpose of illustration, we depart slightly from JS here. We compute the genericity of the
estimated parameter vector for every eigenvector in isolation. However, JS postulate a generic orientation
with respect to the eigenspace spanned by the collection of eigenvectors. In other words, they jointly
consider the whole set of eigenvector-eigenvalue pairs. Technically, they consider the distribution of
eigenvalues weighted by the estimated parameter vector. See Appendix H.
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Figure 5: Simulation results: pseudo-p-values, δB, and empirical rejection rate as a func-
tion of ω1. This figure shows averages over all M Monte Carlo draws of the p-value, δB, and
the empirical rejection probability (based on the p-value with threshold parameter α = 0.05)
as a function of the degree of violation of the exclusion restriction (ω1), by number of covari-
ates d and number of observations n. ω2 = 0.3. δB rises sharply with ω1, the pseudo-p-value
decreases as ω1 increases. Consequently, the empirical rejection probabilities increase as ω1

increases indicating that, if the degree of condounding is sufficiently high, the test rejects
the null of instrument validity in all Monte Carlo draws.

The following key statistics are reported: the pseudo-p-value, the average difference
between κi and κs over all boostrap draws, δB = 1

B

∑B
b=1(δ̂b), as well as the empirical

rejection rate for a threshold value of α = 0.05, i.e. we reject when ∆B < α.

Figure 5 shows the evolution of the average over 200 Monte Carlo runs of pseudo-p-
value and δB as a function of the degree of violation of the exclusion restriction (ω1). Both
measures are increasing with ω1, which shows that they are sensitive to the confoundedness
of TIV. The empirical rejection rate based on the pseudo-p-value with α = 0.05 increases as
a function of ω1. The null hypothesis of instrument validity is rejected increasingly often
as ω1 is rising. Generally, both a larger d and a larger n improve the performance of the
test; however, given d, increasing n improves performance by more than increasing d given
n. Considering that the asymptotic results in JS require n and d → ∞, we show Monte
Carlo results for very small d. Still, the test works well.

Figure 6 shows empirical pseudo-p-value distributions under H0 for various combinations
of n and d. As a benchmark, the horizontal line shows how the histograms would look like
if the pseudo-p-value ∆B had a uniform distribution. The theoretical claims about the
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Figure 6: Simulation results: distribution of pseudo-p-value under H0. This Figure shows
histograms of pseudo-p-values under H0 : instrument validity, i.e. when ω1 = 0 for com-
binations of number of observations and number of covariates. ω2 = 0.3. The source of
confounding is a violation of the exclusion restriction. The horizontal bar indicates the
corresponding histogram for a uniform distribution. Though the pseudo-p-values are not
uniformly distributed, they follow a sub-uniform distribution, which implies that the false
positive rate lies below the nominal size of the test.

distribution of ∆B under H0 from Section 3.4 are substantiated empirically here: while ∆B

does not have a uniform distribution, it has a sub-uniform distribution. This implies that
the empirical size of the test lies below the nominal size α.

To evaluate the trade-off between making type I and type II errors we calculate the area
under the ROC curve (AUC) and plot it as a function of ω1 in Figure 7. A type I error is
committed when the test rejects the validity of the instrument (H0) although, in fact, the
instrument is valid. The AUC levels are increasing rapidly as ω1 increases and reach values
above 0.9 when d and n are large. It is noteworthy that the AUC levels tend to be larger for
a lower value of the degree of relevance of Z (ω2). As ω2 increases Z contains less and less
variation in addition to that in T that can be leveraged in the IV implementation or in the
validity test. In the extreme, Z and T collapse to one variable and the instrumented T does
not contain any different information than T . In other words, the instrument cannot extract
the experimental variation of T when ω2 is too large. Nevertheless, even for large ω2, the
proposed test performs well with AUC levels ranging from 0.6 (low degree of endogeneity
of instrument) to 0.9 (high degree of endogeneity).

We compare the performance of our instrument validity test to the one proposed by
Kitagawa (2015). Note that these two tests rely on two entirely different approaches: the
former on the genericity of estimated parameter vectors with respect to the covariance
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Figure 7: Simulation results: AUC curves. This Figure shows the area under the ROC
curve (AUC) as a function of the degree of violation of the exclusion restriction (ω1), for
various combinations of number of covariates, d, and number of observations, n, by instru-
ment relevance degree (ω2, horizontal). The underlying test statistic is the pseudo-p-value.
The test achieves AUC levels above 0.9 for large ω1, n, and d. A increase in ω2 implies
an increase in the correlation between Z and T . As this correlation becomes larger there
is fewer variation in Z to extract experimental variation from T , resulting in decreased
performance of the algorithm .

matrix of independent variables, the latter on checking whether distributions of Y for four
subgroups identified by the interaction of two binary variables, T and Z, intersect.

Figure 8 shows comparisons of AUC levels for the test proposed in this paper and the one
proposed by Kitagawa (2015). The AUC levels for our approach generally lie above those
corresponding to Kitagawa’s approach. In the linear model studied here, our approach
outperforms Kitagawa’s especially for low levels of ω1. However, Kitagawa’s approach
is also applicable in nonparametric models and heterogeneous treatment effects models,
where our approach does not apply. Moreover, our approach relies on additional structural
assumptions, in the form of the Principle of Independent Mechanisms, which Kitagawa
does not need (see Section 3.6). On the other hand, our approach is not restricted to binary
treatment and binary instrument IV models. Note that the constant treatment effects model
that we analyze in this paper is a special case of the model studied by Kitagawa.

An important limitation of the algorithm proposed by JS is that the estimated κ is,
in theory, not robust to rescaling of the data as this introduces a dependence between the
covariance matrix of the covariates and the parameter vector. For instance, consider income
as measured in thousands of USD. Its rescaling by logarithms changes both the covariance
structure of independent variables and the parameter vector. The authors acknowledge this,
yet claim and show in simulations that the estimated κ is robust to rescaling of the data
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Figure 8: Simulation results: Comparison to Kitagawa. This Figure shows the Area Under
the ROC curve (AUC) for the test proposed by Kitagawa (2015) and ours for combinations
of number of observations and number of covariates as a function of the degree of violation
of the exclusion restriction (ω1). ω2 = 0.3. Note that Kitagawa’s test is applicable more
widely in non-parametric models and not only in the linear setting studied here.

in practice.8 The proposed test relies on a comparison of two κs, which is useful beyond
the fact that such a comparison allows focusing on the bias of one covariate: Both κs are
influenced by transformations in the same way, which one can therefore expect to leave the
sign of their differences, i.e. δ, unaffected. In Appendix D we document the robustness of the
proposed algorithm to typical data transformations: the observed AUC levels are insensitive
to the implemented transformations of the data and the pseudo-p-values of the validity test
on untransformed and transformed data show a correlation coefficient around 0.9.

In Simulation Regime 2 we analyze whether the algorithm can also detect an invalid
instrument when its invalidity stems from the violation of the exchangeability assumption.

8. An interesting insight in this context is due to Holmes and Caiola (2018). A given regression techniques
should fulfill certain properties to be useful. Two such properties are scale invariance (it should not
matter whether data is measured in centimeters or inches) and rotational invariance (it should not
matter ‘from which angle you are looking at the data’). As an example, ordinary least-squares is scale-
invariant but not rotationally invariant; Principal Component Analysis is rotationally invariant but not
scale-invariant. Holmes and Caiola derive the incompatibility of these two criteria. For this reason,
it might not seem surprising that the JS methodology, which relies on some limited type of rotational
invariance, is not scale-invariant. Note that JS assume rotational invariance of the prior on the structural
parameter vectors; they do not assume rotational invariance of the model itself.
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The results are presented in Figures 12 and 13 in Appendix F. The performance of the test is
similar. We provide additional simulation results for the case when JSb is used to estimate
κi and κs in Appendix J. The results are robust to this choice of estimation method.

Input: number of observations n, number of covariates d, variance of the
structural errors σ2;
two parameters specifying relation between instrument, treatment and
unobserved confounder: ω1: degree of violation of exclusion restriction, ω2:
the relevance of the instrument Z

Output: a simulated data set of n observations of outcome variable, covariates,
treatment variable, instrument D = {Y,X, T, Z}ni=1

1 Generation of structural errors: εY and εT , are drawn from(
εY
εT

)
∼ N

((
0
0

)
,

(
σ2
Y 0.5

0.5 1

))
(22)

2 Generation of instrument Z: Let Z ∼ Bernoulli(0.5).
3 Generation of covariates X: Draw d eigenvalues from a uniform distribution

λi ∼ U(0.5, 1.5) which populate the diagonal of a d× d matrix Λ. Then draw a
random orthonormal matrix O of dimension (d), set Σ = OΛO> and draw Xtemp

from a multivariate normal distribution Xtemp ∼ N (0,Σ).
4 Draw a random (d)-dimensional vector from a normal distribution:

βc,temp ∼ N (0, 1) and, to keep the variance of Y comparable for various d,
normalize βc = βc,temp/ ‖βc,temp‖ . With these ingredients set

X = Xtemp + εY β
>
c . (23)

5 Generation of treatment T : To induce dependence of the treatment on the set
of covariates, first draw the d-dimensional vector βT,temp populated with draws
from a N (0, 1), βT,temp ∼ N (0, 1) and set βT =

(
βT,temp

)
/
∥∥(βT,temp)∥∥ to keep the

relative influence of X on T comparable for various d.

6 Generate T , as T = 1
(
Xβ>T + ω2Z + εT > T ′

)
where T ′ is the mean of Xβ>T + εT

and 1 is the indicator function.
7 Generation of the outcome variable Y : First generate a random d-dimensional

vector βtemp ∼ N (0, 1). To keep the variance of Y comparable for various d, set
β =

(
βtemp

)
/
∥∥(βtemp

)∥∥. The true causal effect of the treatment variable is set to
τ = 1. Finally, generate outcome Y as

Y = Xβ> + ω1Z + τT + εY . (24)

Normalization of data To keep the binary nature of T , we normalize the data
to have equal variance and equal mean as T (as opposed to normalizing all
variables to have zero mean and variance equal to one).

Algorithm 3: Simulation of Violation of Exclusion Restriction

23



P.F. Burauel

U

e.g. general work ethic

T

educational
attainment

Y

job
earnings

Z

proximity
to college

U

e.g. educational level

T

economic
development

Y

democratic
development

Z

past savings
rates

A B

Figure 9: Two examples of IV models Panel A: Estimating the causal effect of educational
attainment on job earnings (Card, 1995). Panel B: Estimating the causal effect of economic
development on democratic development (Acemoglu et al., 2008).

6. Two empirical applications

We apply the proposed method to two empirical IV studies, see Figure 9. First we use
data from Card (1995) to test the validity of {proximity to college} as an instrument for
{educational attainment} in an effort to estimate the causal effect on {earnings}, see Sec-
tion 6.1. Second, we apply the test to evaluate the validity of {past saving rates} as an
instrument for {economic development} in a study by Acemoglu et al. (2008) that attempts
to understand its causal effect on {democratic development}, see Section 6.2. In both
applications, we discuss how PIM can be interpreted in the context at hand.

We provide results for both applications also when JSb is used to estimate κi and κs in
Appendix J.

6.1 Empirical application to Card (1995)

Estimating financial returns to education is a long-standing problem in labor economics.
A specific question is what causal effect does spending an additional year at college have
on subsequent job earnings. The relation between educational attainment and subsequent
job earnings is marred by many unobserved confounding variables such as general ability
or parental socio-economic status. Since experimentally controlling levels of education to
estimate the causal effect of education is not feasible, economists have used instrumental
variable designs to estimate the causal effect of education on earnings. For example, Card
(1995) proposes the proximity of a family’s residence to a four-year college as an instrument
of the children’s educational attainment to estimate financial returns to education. Panel A
in Figure 9 depicts the returns to education study.

Card himself casts doubt on the validity of college proximity as an instrument as there
might be factors such as family preferences or local labor market conditions that are related
to both the proximity to a college and the outcome variable: families might move closer
to colleges because they expect higher earnings for their offspring in vibrant labor markets
found in proximity to colleges, which would constitute a violation of the exclusion restriction.
Card uses a sample of roughly 3,500 individuals from the National Longitudinal Surveys of
Youth (NLSY, Cooksey, 2018), which collects longitudinal data on a cohort of baby boomers
on cognitive and socio-emotional development as well as socio-economic status, educational
attainment and subsequent job earnings. Card argues that while the proposed instrument
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is not valid in the whole sample, it is likely valid after controlling for a set of socio-economic
variables {S} := {ethnicity dummy, father’s educational level, living in South dummy for
1966 and 1976, urban residence dummy for 1966 and 1976}. We binarize the treatment
indicator to equal 1 if years of education is greater than 16 years, i.e. the treatment can be
considered as getting a college degree.

Succinctly, though {college proximity} is not a valid instrument unconditionally, it is
a valid instrument conditionally on {S}. This is Card’s claim that we will corroborate by
using the test for instrument validity proposed in this paper. We run our test three times:
first, we include the full set of 29 covariates which include, beyond {S}, diverse information
on estimated IQ levels, the Knowledge of the World score, availability of a library card in
the household head’s childhood home, marital status, labor market experience, etc. Call
this set of additional covariates {R}. Second, we include only variables {S}. In these first
two cases, we expect the test not to reject instrument validity since we are controlling for
those variables {S} that render the instrument valid according to Card. Third, we include
only variables {R} and exclude variables {S}. In the third run, if Card’s argument holds,
one would expect the test to reject the null hypothesis of instrument validity since the
crucial set of covariates {S} is omitted. Table 1 reports the pseudo-p-value for each of
the three sets of covariates. The results show that, indeed, the test does not reject the
null of instrument validity if set {S} is controlled for. On the contrary, once {S} is left
out of the set of covariates, the test rejects instrument validity. This corroborates Card’s
argument. Furthermore, these results show that the proposed test is able to detect validity
of the instrument solely based on the spectra of the covariates induced by the estimated
parameter vectors. In Appendix C, we report results of the proposed test for settings where
all possible subsets of {S} are included as covariates.

This discussion of Card’s argument illustrates how conditioning on a (possibly large)
set of covariates is often necessary to render an instrument valid. The test proposed in this
paper can naturally evaluate conditional instrument validity. Accounting for additional
variables simply amounts to including more covariates in the IV regression in Step 2 of
Algorithm 1.

6.2 Empirical application to Acemoglu et al. (2008)

A positive correlation between measures of democracy and per capita income is an empirical
regularity (Acemoglu et al., 2008). Many OECD countries that score high on democracy
measures also have high per capita income levels. Vice versa, many non-democracies, e.g.
in Subsaharan Africa and Southeast Asia, have relatively low levels of per capita income.
Though this empirical pattern is often explained by hypothesizing that higher income causes
political institutions to become more democratic (see e.g. Huntington, 1991), it is difficult
to assess the credibility of such claims. Third factors might cause a country to embark on
a democratic development path as well as increase its per capita income whithout a direct
causal effect between the two. To complicate matters, the presumed causal relation might
go into the other direction, i.e. democratic institutions might cause higher future growth
(see e.g. Acemoglu et al., 2019). It is not our ambition to solve this question here; rather,
we want provide an additional application of our method to real-world data.
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test results for different sets of covariates

{R,S} {S} {R}

pseudo-p-value 0.18 0.29 0.00
no. of covariates 29 6 23

no. of observations 3612 3612 3612

Table 1: Results of empirical application to Card (1995). This Table shows results of
the empirical application, based on the data used by Card (1995). {S} denotes the set
of covariates implicitly defining the subgroups in which the instrument is valid according
to Card. {R} contains all remaining covariates (for details see main text). Consistent
with Card’s argument, the null hypothesis of instrument validity cannot be rejected when
all covariates are included; see column {R,S}. Similarly, when only the six covariates {S}
are included the instrument validity can also not be rejected; see column {S}. Dropping all
variables {S} and keeping only those in {R}, the test rejects instrument validity.

Acemoglu et al. (2008) investigate the causal relationship between the level of economic
development and democracy by using {past savings rates} as an instrumental variable for
{economic development} (in a simple capital accumulation growth model, higher savings
rates cause more economic growth, see e.g. Mankiw et al., 1992). As acknowledged by the
authors, the validity of the instrument is debatable as, e.g., saving rates might be correlated
with anticipated regime changes. Nevertheless, the authors claim that it seems “plausible”
(p. 822) that saving rates do not have a direct effect on the culture of democracy.

We use the data provided by Acemoglu et al. (2008) to evaluate the validity of {past
savings rates} as an instrument. The data comprises information about the per capita
Gross Domestic Product (the cause variable), Freedom House democracy index (the effect
variable), aggregate saving rate (the proposed instrument), a number of additional control
variables (level of education, population size, median population age, labor share, country
and year dummies) for 85 countries. We cannot reject the validity of {past savings rates}
as an instrument for {economic development} since the p-value for the hypothesis H0 :
IV is valid is 0.520. See Table 4 in Appendix J. Thus, we can substantiate the narrative
justification for the instrument given by Acemoglu et al. (2008).

6.3 Interpretation of PIM in the preceding case studies

Throughout, we have stressed that PIM is the crucial underlying idea of the proposed
IV validity test. Therefore, it is instructive to discuss what PIM amounts to in the two
preceding empirical applications.

First, how can PIM be interpreted in the returns to education study (Section 6.1)?
Spelling it out, PIM states that the mechanism that translates general work ethic or parental
socio-economic background (and other variables that are captured by U) into educational
attainment is independent of the mechanism that translates educational attainment into job
earnings. Consider a scenario where a hypothetical policymaker were to make college admis-
sions entirely independent of students’ parental socio-economic status, i.e. the mechanism
translating U into X would change. If this intervention in a specific societal mechanism were
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to alter the causal effect of educational attainment on job earnings (e.g. because it changed
how much employers value analytical thinking skills acquired in college), PIM would be
violated. However, this seems unlikely at least in the short run and, therefore, assuming
the independence of the described mechanisms seems reasonable in the case at hand.

Second, how can PIM be interpreted in the study on democratic development (Sec-
tion 6.2)? PIM, here, is the assumed independence of the following two mechanisms: first,
there is the mechanism that translates the level of educational attainment (and other con-
founding factors captured by U) into economic development as measured by GDP growth.
One can think of a higher educational level in an economy causing more economic develop-
ment because it opens up possibilities in high-growth technology sectors. Second, there is
the mechanism that translates economic development into democratic development. What is
the nature of this latter mechanism? Oversimplifying, over the course of economic develop-
ment many institutions, e.g. a better organization of the middle class through unionization,
evolve that cause democratic development (Lipset, 1959).9 Consider a hypothetical social
engineer that would alter the direct causal effect of educational level in an economy on
economic output by, e.g., instituting broadly accessible labor markets. PIM amounts to
assuming that such a change would not alter the mechanistic relation between economic
development and democratization. Assessing whether those two mechanisms can indeed be
thought of as independent would require a more extensive discussion about what kind of
processes are at play that translate educational level into economic growth and economic
growth into democratic development, respectively. This is beyond the scope of this paper.

7. Conclusion

Since the justification of IV assumptions is in practice seldom statistically-grounded and
often relies on controversial context-specific arguments, it is pertinent to provide methods
to evaluate IV validity empirically. The proposed method leverages statistical traces of con-
founding in observed data, which can be measured with the method laid out in Janzing and
Schölkopf (2018a), to test whether a potential instrument is valid. It provides a novel way
to test IV validity, which unlike previous work does not rely on the testable implications
derived by Balke and Pearl (1997) nor on higher-order moment conditions. Thus, it con-
stitutes a novel approach to evaluating IV validity and adds to the literature that employs
the Principle of Independent Mechanisms to address practical causal inference problems.

Using the method by Janzing and Schölkopf (2018a), a degree of confounding is es-
timated for the model where the treatment variable of interest is instrumented with the
possibly invalid instrument. The estimate of the degree of confounding thus obtained is
model-wide and not informative of confounding of a single covariate, i.e. the instrumented
treatment variable in this case. The first main contribution of this paper is to show how
to construct a synthetic, unconfounded variable to estimate a counterfactual degree of con-
founding that would be obtained if the instrument were valid. The second main contribution
of this paper is to show that comparing the counterfactual degree of confounding to the
observed degree of confounding is informative about instrument validity.

9. Within the context of this paper, we cannot do justice to the large body of academic work on the theory
of modernization that deals with the relation between democratic political structures and economic
development. Instead, we merely cite the seminal argument, which has spawned much of that literature.
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Monte Carlo studies show that the proposed method has high accuracy. Its AUC levels
reach from around 0.7 when the number of observations, covariates, and degree of violation
of crucial IV assumptions is low to levels close to 1 when the number of observations, covari-
ates and degree of violation of validity assumptions increases. Despite different theoretical
approaches, we compare the performance of our test to the one proposed by Kitagawa
(2015). Our test performs favorably in the linear setting studied here (note though that
Kitagawa’s approach is also applicable in nonparametric models). We document the fea-
sibility of the proposed test in two empirical applications. First, we show that the test
can corroborate an argument for the validity of college proximity as an instrument for ed-
ucational attainment due to Card (1995). Second, the validity of past saving rates as an
instrument for economic development cannot be rejected (Acemoglu et al., 2008). Moreover,
we show the robustness of the procedure to two different ways of estimating the degree of
confounding and two different ways of creating the synthetic variable.
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Appendix A. Proof: Relation between (κi − κs) and IV validity

First, we repeat the definition of a valid IV.

Definition 1. A variable Z is called a valid instrumental variable if and only if it fulfills
Assumptions 1-3.

For convenience, we reproduce the reduced form model that forms the starting point for
the test in Section 3:

Y = {X, TIV}
(
β
τ

)
+ cŨ + ε (25)

{X, TIV} = E + Ũ
(
b bTIV

)
. (26)

Each element of the vector
(
b bTIV

)
=
(
b1 . . . bd bTIV

)
parameterizes the confound-

ing of the corresponding dimension of {X, TIV}, e.g. X1 = E1 + Ũb1. If Z is a valid IV, the
instrumented treatment variable TIV is unconfounded, and bTIV = 0.

For convenience, we reproduce the definition of κi and κs here and introduce some
placeholders.

κs =

c̄s︷ ︸︸ ︷∥∥∥∥csΣ−1
XTs

(
b
bTs

)∥∥∥∥2

∥∥∥∥(βτs
)∥∥∥∥2

︸ ︷︷ ︸
ās

+

∥∥∥∥csΣ−1
XTs

(
b
bTs

)∥∥∥∥2 (27)

κi =

c̄τ︷ ︸︸ ︷∥∥∥∥cΣ−1
XTIV

(
b
bTIV

)∥∥∥∥2

∥∥∥∥(βτ
)∥∥∥∥2

︸ ︷︷ ︸
āτ

+

∥∥∥∥cΣ−1
XTIV

(
b
bTIV

)∥∥∥∥2 (28)

Note that τs = bTs = 0 since we draw Ts independently of Y . By virtue of how Ts is
generated, ΣXTs = ΣXTIV . Under instrument validity, replacing TIV with Ts the relation
between Y and Ũ does not change and, therefore, cs = c.

For convenience, we reproduce the Theorem 1 here before proving it.

Theorem 1. If the instrumental variable is valid, δ is not positive:

IV valid⇒ δ := κi − κs ≤ 0. (29)
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Proof If the instrumental variable is valid, bTIV = 0. Then,

κi − κs =

∥∥∥∥cΣ−1
XTIV

(
b
bTIV

)∥∥∥∥2

∥∥∥∥(βτ
)∥∥∥∥2

+

∥∥∥∥cΣ−1
XTIV

(
b
bTIV

)∥∥∥∥2 −

∥∥∥∥csΣ−1
XTs

(
b
bTs

)∥∥∥∥2

∥∥∥∥(βτs
)∥∥∥∥2

+

∥∥∥∥csΣ−1
XTs

(
b
bTs

)∥∥∥∥2

=
c̄∥∥∥∥(βτ
)∥∥∥∥2

+ c̄

− c̄∥∥∥∥(βτs
)∥∥∥∥2

+ c̄

≤ 0

(30)

where c̄ =

∥∥∥∥cΣ−1
XTIV

(
b
bTIV

)∥∥∥∥2

=

∥∥∥∥csΣ−1
XTs

(
b
bTs

)∥∥∥∥2

because ΣXTIV = ΣXTs and bTIV = bTs .

In other words, neither c̄τ nor c̄s contain τ or τs, which are the only quantities that differ
between κs and κi if the IV is valid. The last inequality is due to the fact that τs = 0 by
construction. Therefore, it follows

IV valid⇒ δ ≤ 0.

By contrapositive, this result implies that if δ > 0, the instrumental variable is invalid.
Thus, the proposed test evaluates the null hypothesis H0 : IV valid.

Appendix B. Detailed explanation of Algorithm 2

Since the creation of the synthetic treatment variable in Algorithm 2 is an important part
of the proposed instrument validity test, we provide a detailed explanation of each step
of the algorithm here (the numbering in what follows corresponds to the line numbers in
Algorithm 2).10 For convenience, we iterate that we want to generate a synthetic variable
Ts such that

Cov(Xi, Ts) = Cov(Xi, TIV) ∀i ∈ {1, . . . , d}. (31)

1. The elements of the vector ρ contain the covariance that we want the resulting syn-
thetic variable Ts to have with the respective dimension of the observed data X. So,
ρi = Cov(Xi, TIV).

2. In this step, we generate a random vector W unrelated to X, U and Y (and therefore
surely unconfounded) from which we will regress out all variation it has with X by
chance (Step 3) to then add parts of X in a specific way that ensures we construct a
random variable with the desired covariance structure.

3. We take out all variation in W that can be explained by X by regressing W on X and
computing the resulting residuals: η. The vector η is orthogonal to all columns of X
by the mechanics of OLS.

10. Algorithm 2 builds on an idea by CrossValidated user whuber, see https://tinyurl.com/syntheticT.

30

https://tinyurl.com/syntheticT


Evaluating Instrument Validity using the Principle of Independent Mechanisms

We construct Ts as a linear combination of η and X,

Ts = sη +
d∑
i=1

αiXi, (32)

where αi are scalar weights. We want to find αi such that (31) holds, i.e.,

Cov (Xi, Ts) = Cov

(
Xi, sη +

d∑
i=1

αiXi

)
(33)

= Cov (Xi, sη) + Cov

(
Xi,

d∑
i=1

αiXi

)
(34)

= Cov

(
Xi,

d∑
i=1

αiXi

)
= ρi (35)

It turns out that rewriting the linear combination in terms of the dual of X, Xdual, i.e.,

d∑
i=1

αiXi =

d∑
j=1

γjXdual,j (36)

is more convenient due to the following relation:

Cov

Xi,
d∑
j=1

γjXdual,j

 =
d∑
j=1

γj Cov (Xi, Xdual,j) = γi (37)

which holds because Cov (Xi, Xdual,j) = 1 for i = j and Cov (Xi, Xdual,j) = 0 for i 6= j.
In words, the covariance of the linear combination in terms of the dual of X (right-hand

side of eq. (36)) and Xi is equal to the respective weight of Xdual,i in that linear combination.
This is convenient because it allows us to construct Ts from the linear combination of the
dual versions of Xi weighted by the target covariance ρi, respectively.

4. Compute the Singular Value Decomposition, which serves as input for the following
step.

5. Using the results from the Singular Value Decomposition, compute Xdual as described
in Step 5 of the algorithm.

6. We want to ensure that Var(Ts) = 1. We can do that by choosing s in eq. (32)
appropriately. To solve for s, first observe that

1 = Var(Ts) (38)

= Var(sη +

d∑
j=1

γjXdual,j) (39)

= s2Var(η) + Var(Xdualρ) (40)

= s2Var(η) + ρ>Cov(Xdual)ρ. (41)
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This implies that

s =

(
1− ρ>Cov(Xdual)ρ

Var(η)

)1/2

. (42)

7. Having established that we can use ρi as weights in the construction of Ts as a linear
combination if we use the dual of X, we can write

Ts = Xdual × ρ+ s× η (43)

Note that we not require Ts to follow a conditionally Gaussian model. All subsequent
steps in Algorithm 1 merely require the covariance structure of Ts to fulfill eq. (31), regard-
less of the distribution of Ts.

Appendix C. Further results on the empirical application

The results in Section 6 suggest a question about what happens when different subsets
of {S} are included as covariates. Therefore, we run the proposed test for all subsets of
covariates {S}. For rows showing a pseudo-p-value > 0.05, the average number of covariates
from {S} that is included is 3.6. For rows showing a pseudo-p-value ≤ 0.05, the average
number of covariates from {S} that is included is 1.9. The number of variables included
from {S} correlates positively with the pseudo-p-value, which is consistent with the main
message of Section 6, namely that the inclusion of {S} renders the instrument valid. The
pseudo-p-value reported in the first column of Table 1 appears in the row in which all
covariates from {S} are included. This row is not associated with the largest pseudo-p-
value. However, given the empirical distribution of the pseudo-p-value under H0 discussed
in Section 5, this is not to be expected.

Appendix D. Robustness to rescaling

As mentioned, a drawback of the JS methodology to estimate a degree of confounding
is that it is theoretically not robust to transformations of the data as this introduces a
dependence of the parameter vector and the covariance matrix of the covariates. However,
the proposed method relies on a comparison of two κs. Since both would be affected by
transformations in the same way, their difference (which the test relies on) is not affected
by transformations. To corroborate this argument, we apply typical data transformation to
the data generated in the Monte Carlo study (Regime 1: violation of exclusion restriction)
and compare pseudo-p-values for both transformed and untransformed data.

Logarithmic transformations are frequently used in many domains, e.g. in economics
where income levels are usually rescaled with logarithms. To avoid infinitely large values
after transforming the simulated data, we need to add an additional step to the data gen-
erating process in Algorithm 3, which ensures that all values lie above 1. In particular, we
transform X, as defined in (47), by

X := X−min(min(X), 0) + 1(min(X) < 0) (44)

and we replace Y as defined in eq. (48) by

Y := Y −min(min(Y ), 0) + 1(min(Y ) < 0) (45)
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0.288 0 0 0 1 1 1 3 0.122 0 1 1 1 0 0 3

0.258 0 1 1 1 1 1 5 0.122 1 0 1 0 1 1 4

0.254 0 1 0 1 1 1 4 0.096 1 0 1 1 0 1 4

0.250 0 0 1 1 1 1 4 0.094 1 0 1 1 0 0 3

0.246 1 0 0 1 1 1 4 0.090 1 1 1 1 0 1 5

0.244 0 0 1 1 1 0 3 0.088 1 1 1 1 0 0 4

0.242 0 1 1 1 1 0 4 0.084 1 0 0 1 1 0 3

0.222 0 0 1 0 1 0 2 0.080 0 0 0 1 1 0 2

0.212 1 1 0 1 1 1 5 0.076 0 1 0 1 1 0 3

0.212 1 0 1 1 1 1 5 0.058 1 0 0 0 1 0 2

0.204 0 0 1 0 1 1 3 0.058 1 1 0 1 1 0 4

0.184 0 1 1 0 1 0 3 0.042 0 0 0 0 1 0 1

0.180 0 1 0 1 0 1 3 0.040 0 1 0 1 0 0 2

0.180 1 1 1 1 1 1 6 0.040 0 1 0 0 1 0 2

0.176 0 1 1 0 1 1 4 0.040 1 1 0 0 1 0 3

0.174 0 0 1 1 0 1 3 0.034 0 0 0 1 0 0 1

0.172 0 0 0 0 1 1 2 0.024 1 1 0 1 0 0 3

0.170 0 1 0 0 1 1 3 0.022 1 0 0 1 0 0 2

0.170 1 1 1 1 1 0 5 0.006 1 0 0 0 0 1 2

0.160 0 0 0 1 0 1 2 0.004 0 0 1 0 0 1 2

0.156 0 1 1 1 0 1 4 0.002 0 1 0 0 0 0 1

0.150 1 0 1 1 1 0 4 0.002 0 0 1 0 0 0 1

0.148 1 1 1 0 1 0 4 0.002 0 1 1 0 0 0 2

0.148 1 1 0 1 0 1 4 0.000 1 0 0 0 0 0 1

0.148 1 1 0 0 1 1 4 0.000 0 0 0 0 0 1 1

0.144 1 0 1 0 1 0 3 0.000 1 1 0 0 0 0 2

0.140 0 0 1 1 0 0 2 0.000 1 0 1 0 0 0 2

0.140 1 0 0 1 0 1 3 0.000 0 1 0 0 0 1 2

0.130 1 1 1 0 1 1 5 0.000 1 1 1 0 0 0 3

0.128 1 0 0 0 1 1 3 0.000 1 1 0 0 0 1 3

Table 2: Each row of this Table shows the pseudo-p-value for the proposed test when the
subset of {S} indicated in the respective columns is included as covariates (a ‘1’ denotes
inclusion). {R} is included for all rows. Column ‘no. of covariates’ shows how many
covariates from {S} are included. The results are ordered by pseudo-p-value in descending
order. Note that the bottom three rows of the Table are omitted to save space.
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where 1 is the indicator function. These transformation ensure that all values lie above
1 and logarithmic transformations do not lead to infinitely large values.

We then implement the following three data transformations:

1. X1 := log(X1), and X2 := X2
2

2. Y := log(Y ), X1 := log(X1), and X2 := X2
2

3. Y := log(Y ), X1 := log(X1), and X2 := log(X2)

For the original data and for each of the three transformations, we implement the algo-
rithm described in the main text and compare the pseudo-p-values that result. In Figure 10,
we show scatter plots of pseudo-p-values for each data transformation against those of the
original data. For each data transformation, the pseudo-p-values correlate strongly with
those from the original data.
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Figure 10: Scatter plot of pseudo-p-values. This Figure shows scatter plots of pseudo-
p-values estimated based on transformed data against pseudo-p-values estimated based on
the original data. Each panel corresponds to one transformation of the data. The p-values
remain largely invariant with each scatter plot displaying a correlation of about 0.9. This
is evidence for the robustness of the proposed test for instrument validity with respect to
rescaling of the data. n = 1000, d = 20, ω1 = 0.3, ω2 = 0.3, V ar(εY ) = V ar(εT ) = 1.

Appendix E. Further results for Simulation Regime 1

In this section we provide further simulation results for Simulation Regime 1 (Violation of
the exclusion restriction) to show robustness of the results for different variances of the error
distributions, σ2

Y ∈ {0.5, 1, 1.5}. Figure 11 is similar to Figure 5 in the main text but shows
how the results change for various levels of σ2

Y . The performance of the test deteriorates
slightly when the variance increases.
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Figure 11: Simulation results: pseudo-p-values, δB, and empirical rejection rate as a
function of ω1 for various levels of σ2

Y (denoted ‘variance’ in the legend). This Figure
shows averages over all M Monte Carlo draws of the p-value, δB, and the empirical rejection
probability (based on the p-value with threshold parameter α = 0.05) as a function of the
degree of violation of the exclusion restriction (ω1), by number of covariates d and number
of observations n. ω2 = 0.3. The results described in the main text deteriorate only slightly
when σ2

Y increases.

Appendix F. Simulation Regime 2: Violation of Exchangeability
Assumption

For the simulations to test whether the algorithm can detect confounding of the instrument
stemming from a violation of the exchangeability assumption, we generate data according
to Algorithm 4. Figures 12 and 13 show results for the simulations for the violation of the
exchangeability assumption. The test performs well also for this violation of IV validity.
Note that the degree of endogeneity of the instrument is not directly comparable to Simu-
lation Regime 1 since ω1 enters the simulation inside an indicator function for Simulation
Regime 2.
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Figure 12: Simulation results: pseudo-p-values, δB, and empirical rejection rate as a
function of ω1. This Figure shows the pseudo-p-value, δB, and the empirical rejection
probability (based on the pseudo-p-value with threshold parameter α = 0.05) as a function
of violation of the exchangeability assumption, by number of covariates, (d), and number
of observations (n). δB rises with the degree of confounding, as does the pseudo-p-value.
Consequently, the empirical rejection probabilities go down to zero indicating that, if the
degree of condounding is sufficiently high, the test does not reject the null of endogeneity.
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Input: number of observations n, number of covariates d, variance of the
structural errors σ2; two parameters specifying relation between
instrument, treatment and unobserved confounder: ω1: endogeneity of Z,
ω2: the relevance of the instrument Z

Output: a simulated data set of n observations of outcome variable, covariates,
treatment variable, instrument D = {Y,X, T, Z}ni=1

1 Generation of structural errors: εY and εT , are drawn from(
εY
εT

)
∼ N

((
0
0

)
,

(
σ2
Y 0.5

0.5 1

))
(46)

2 Generation of instrument Z: Let εZ ∼ N (0, 1) and Z = 1(εZ + ω1εY > 0)
where 1 is the indicator function.

3 Generation of covariates X: Draw d eigenvalues from a uniform distribution
λi ∼ U(0.5, 1.5) which populate the diagonal of a (d)× (d) matrix Λ. Then draw a
random orthonormal matrix O of dimension (d), set Σ = OΛO> and draw Xtemp

from a multivariate normal distribution Xtemp ∼ N (0,Σ).
4 Draw a random (d)-dimensional vector from a normal distribution:

βc,temp ∼ N (0, 1) and, to keep the variance of Y comparable for various d,
normalize βc = βc,temp/ ‖βc,temp‖ . With these ingredients set

X = Xtemp + εY β
>
c . (47)

5 Generation of treatment T : To induce dependence of the treatment on the set
of covariates, first draw the d-dimensional vector βT,temp populated with draws
from a N (0, 1), βT,temp ∼ N (0, 1) and set βT =

(
βT,temp

)
/
∥∥(βT,temp)∥∥ to keep the

relative influence of X on T comparable for various d.

6 Generate T , as T = 1
(
Xβ>T + ω2Z + εT > T ′

)
where T ′ is the mean of Xβ>T + εT

and 1 is the indicator function.
7 Generation of the outcome variable Y : First generate a random d-dimensional

vector βtemp ∼ N (0, 1). To keep the variance of Y comparable for various d, set
β =

(
βtemp

)
/
∥∥(βtemp

)∥∥. The true causal effect of the treatment variable is set to
τ = 1. Finally, generate outcome Y as

Y = Xβ> + τT + εY . (48)

Normalization of data To keep the binary nature of T , we normalize the data
to have equal variance and equal mean as T (as opposed to normalizing all
variables to have zero mean and variance equal to one).

Algorithm 4: Simulation of Violation of Exchangeability Assumption
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Figure 13: AUC curves for violations of the exchangeability assumption. This figure
shows the area under the ROC curve (AUC) as a function of the degree of violation of
the exchangeability assumption, for various combinations of number of covariates, d, and
number of observations, n. Underlying test statistic is the pseudo-p-value. The test achieves
high AUC levels of close to the perfect score of 1 for large n and d.

Appendix G. Simulation for the illustration of PIM

The illustration in Figure 4 is based on the following simulation.
First, construct a covariance matrix Σ as follows. Draw d+ 1 eigenvalues

λ ∼ U(0.5, 1.5)

which populate the diagonal of a matrix V . Then we draw a random orthogonal matrix L
and set Σ = V LV >. We multiply each element in the last row and last column of Σ by 5
to induce more unexplained variation in Y . For the unconfounded case, we replace the last
row and last column of Σ with zeroes but leave the (d+ 1, d+ 1) entry untouched:

confounded: Sc = Σd+1×d+1

unconfounded: Su =

(
Σ(1:d)×(1:d) 0

0 σd+1×d+1

)
(49)

We simulate data by drawing the structural error term εY and X from a jointly normal
distribution (

X
εY

)
∼ N (0, Si) (50)

where i ∈ {c, u}.
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Next, draw the d-dimensional true parameter vector

β ∼ N (0, diag(1))

and divide each element of β by d0.5 (to keep the variance of Y comparable for different d).

Finally, set

Y = Xβ + εY . (51)

We estimate β̂ by OLS.

Appendix H. Janzing and Schölkopf (2018a) in a nutshell

Janzing and Schölkopf (2018a) propose a method to estimate the degree to which an ob-
served statistical relationship between a multidimensional set of covariates, X, and an out-
come variable Y is due to the causal influence of X on Y or due to an unobserved confounder
influencing both X and Y . This section does not contain new results.

Section 4 contains an illustration why the orientation of a parameter vector with respect
to the eigenspaces of the corresponding ΣXX contains a confounding signal. JS propose a
method to measure deviations from the generic orientation to estimate the degree of con-
founding in multivariate linear models. Technically, generic orientation is instantiated as the
equivalence of two spectral measures of ΣXX: first, the unweighted spectral measure (called
tracial spectral measure and denoted µTrΣXX

), and second, the spectral measure weighted
by a vector such as a parameter vector β (called vector-induced spectral measure denoted
µΣXX,β)11:

generic orientation of β with respect to ΣXX ⇔ µTrΣXX
' µΣXX,β. (52)

Ideally, one would check whether the spectral measure induced by the estimated param-
eter vector is equivalent to that induced by the true parameter vector. However, the latter
is not estimable from observed data. Nevertheless, the equivalence of the tracial spectral
measure and that induced by the true parameter vector makes it possible to compare the
spectral measure induced by the estimated, and possibly biased, vector to the estimable
tracial spectral measure to infer a degree of confounding.

The crucial result in JS is that the computable spectral measure induced by the esti-
mated (and possibly biased) parameter vector, µΣXX,β̂

, can be decomposed into one part
that is due to confounding and a second part that represents genuine causation. More
specifically, µΣXX,β̂

can be decomposed into the spectral measure induced by the true pa-
rameter vector and that induced by the bias of the estimated parameter vector from the
true parameter vector. The relative sizes of these two components define the degree of
confounding κ:

µΣXX,β̂
' (1− κ) µΣXX,β + κ µΣXX,(β̂−β). (53)

11. We use ' in this and the following expressions in this subsection to indicate that the following statements
are not precise in the sense that we do not explicitly state the types of and rates of convergence as well
as conditions for convergence. See the following subsections in this Appendix H for details.

39



P.F. Burauel

κ ranges from 0 (no confounding) to 1 (observed statistical relation is fully due to
confounding). Without confounding,

µΣXX,β̂
' µΣXX,β ' µ

Tr
ΣXX

, (54)

i.e. β̂ is generically oriented.
Still, µΣXX,β and µΣXX,(β̂−β) cannot be determined since they involve the unknown

true β. However, the estimable µΣXX,β̂
can be parameterized by a two-parametric family

of probability measures. The algorithm proposed by JS finds those two parameter values
that minimize the distance between the two-parametric estimate and the observed spectral
measure induced by the estimated (and possibly) biased parameter vector. One of the
parameters is κ.

The next subsection contains the formal steps needed to achieve this result.

H.1 The set-up

Consider the following linear structural equation model:

X = bU + E (55)

Y = X>a + cU> + ε (56)

where Y is the n× 1 outcome vector, a is the d× 1 causal parameter vector of interest. X
is a d× n matrix of covariates. The confounder U is a 1× n vector. b is a d× 1 parameter
vector. E is a d × n matrix of zero-mean errors drawn independently from u. ε is a n × 1
vector of errors. c is a scalar. Without loss of generality, u is assumed to have unit variance.

After projecting with least-squares in the population, the parameter vector is given by

â := Σ−1
XXΣXY , (57)

where Σ denotes covariance matrices. Generally, we are interested in the structural param-
eter vector a which represents genuine causal influence. To illustrate, the relation between
a and â consider

ΣXY = Cov(X, Y ) = Cov(bU + E,X>a + cU> + ε)

= (ΣEE + bb>)a + cb

ΣXX = Cov(X,X) = Cov(bU + E,bU + E)

= ΣEE + bb>,

and therefore
â = a + (ΣEE + bb>)−1cb = a + cΣ−1

XXb. (58)

H.2 Genericity assumptions

The idea underlying this method is the Independence between Cause and Mechanism (ICM)
postulate (Peters et al., 2017), which states that the causal mechanism, represented by the
conditional distribution of effect, Y , given cause, X, f(Y |X), is independent of the marginal
distribution of the cause, f(X).
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To understand what the ICM amounts to in the case at hand, note that the crucial
determinant for f(X) is ΣXX, likewise the crucial determinant for f(Y |X) is a. Therefore,
Janzing and Schölkopf (2018a) postulate that a lies in ‘generic orientation’ relative to ΣXX.
For instance, since a is chosen independently of X, and, thus, also the covariance matrix
ΣXX, a is not likely to be aligned with its first principal component.12 We next discuss
what the concept of ‘generic orientation’ amounts to.

In order to make the notion of ‘generic orientation’ precise, some definitions and results
are needed. First of all, assuming that all eigenvalues of a matrix are different from each
other (i.e. the matrix is non-degenerate), each such symmetric d× d matrix A has a unique
decomposition

A =

d∑
j=1

λjφjφ
>
j (59)

where λj denotes the eigenvalues and φj the corresponding normalized eigenvectors.

The renormalized trace is defined to be

τ(A) :=
1

d
tr(A) (60)

(note that the τ in this notation is unrelated to the treatment effect that it denotes in the
main body of the paper).

Definition 2 (tracial spectral measure). Let A be a real symmetric matrix with non-
degenerate spectrum. The tracial spectral measure of A is defined as the uniform distribution
over its eigenvalues λ1, . . . , λd:

µTr
A :=

1

d

d∑
j=1

δλj (61)

where δλj denotes the point measure on λj.

The tracial measure is a property of a matrix. The vector-induced spectral measure
complements the tracial measure by accounting for its relation to an arbitrary d-dimensional
vector.

Definition 3 (vector-induced spectral measure). Given a symmetric d × d matrix A with
associated eigenvalues λj and corresponding eigenvectors φj, the spectral measure induced
by an arbitrary vector v ∈ Rd is given by

µA,v =

d∑
j=1

(
v>φj

)2
δλj (62)

where δλj denotes the point measure on λj.

Intuitively, µA,v describes the squared length of components of a vector projected onto
the eigenspace of ΣXX. Note that the vector-induced spectral measure of a matrix can

12. To be precise, for the structural model in eqs. (55)-(55), the argument involves a generic orientation of
a and the eigenspaces of ΣXX.
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be represented by two vectors: one which represents the support of the spectral measure,
i.e. a list of the eigenvalues in decreasing magnitude and a second composed of weights
corresponding to the eigenvalues. For tracial spectral measures the weight vector is w =
(1/d, . . . , 1/d) representing the uniform weight of the eigenvalues.

The following result for the relation between tracial and vector-induced spectral measure
can be shown.

Lemma 4. For a sequence of positive semi-definite d×d matrices (Ad)d∈N with finite norm
whose spectral measure converges weakly to some probability measure µ∞, i.e.

µTr
A → µ∞,

and a sequence of d-dimensional vectors (vd)d∈N drawn randomly from a sphere of radius r,

µAd,vd → r2µ∞. (63)

To formally justify the proposed method to estimate a degree of confounding, JS consider
a sequence of generating models for an increasing dimensionality d whose properties are
summarized in the following Assumption.

Assumption 5 (Rotation-invariant priors). The structural parameters of the structural
model in eqs. (55) and (56) are generated as follows:

1. The covariance matrix of E is a uniformly bounded sequence of positive semi-definite
d × d-matrices, (Σd

EE)d∈N, such that their tracial measure converges weakly to some
probability measure µ∞, which describes the asymptotic distribution of eigenvalues.

2. The vector (ad)d∈N ∈ Rd is drawn uniformly at random from a sphere with a fixed
radius ra.

3. The vector (bd)d ∈ N ∈ Rd is drawn independently from a and uniformly at random
from a sphere with a fixed radius rb. The scalar c is fixed for all d.

Then Σd
XX = Σd

EE+bdb
T
d and âd = ad+c

(
Σd
XX

)−1
bd, for which the following Theorem

is proven

Theorem 6 (Asymptotic spectral measures). Given the rotation-invariant priors in As-
sumption 5, it holds that

µΣdXX,ad
→ r2

aµ
∞ (weakly in probability)

(64)

µΣdEE,bd
→ r2

bµ
∞ (weakly in probability)

(65)

µ
ΣdXX,ad+c(ΣdXX)

−1
bd
−
(
µΣdXX,ad

+ µ
ΣdXX,

(
(ΣdXX)

−1
bd

))→ 0 (weakly in probability) (66)

.
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Given these definitions of spectral and vector-induced spectral measures, Lemma 4,
Assumption 5, and Theorem 6, the precise meaning of ‘generic orientation’ is formalized in
the following postulate.

Postulate 7 (Generic orientation of vectors). Given the structural model in eqs. (55)-(56)
and a large d, we define ‘generic orientation’ as:

1. Vector a has generic orientation relative to ΣXX in the sense that

µΣXX,a ≈ µ
Tr
ΣXX
||a||2 (67)

2. Vector b has generic orientation relative to ΣEE in the sense that

µΣEE,b ≈ µ
Tr
ΣEE
||b||2. (68)

3. Vector a is generic relative to b and ΣEE in the sense that

µΣXX,a+cΣ−1
XXb ≈ µΣXX,a + µΣXX,cΣ

−1
XXb. (69)

The ≈-sign is used here because Theorem 6 shows that the vector-induced spectral
measures only converge weakly in probability. This postulate is justified by Theorem 6, i.e.
the asymptotic behavior of vector-induced spectral measures.

Intuitively, (67) states that ‘decomposing a into eigenvectors of ΣXX yields weights that
are close to being uniformly spread over the spectrum.’ Equation (68) captures a similar
statement for b and ΣEE: the weights of b are uniformly distributed across the spectrum
of ΣEE.

Eq. (69) contains a crucial ingredient for the ability to detect confounding: the â-
induced spectral measure (left-hand-side of (69), recall â = a+cΣ−1

XXb) can be decomposed
into one part due to the causal vector a (first summand) and a second part due to the
confounding (second summand).

H.3 Quantifying confounding

Two indicators for confounding strength are proposed: i) a correlative, and ii) a structural
indicator.

Definition 8 (correlative strength of confounding). The correlative strength of confounding
gives the degree to which the confounder U contributes to the covariance between X and Y .

γ :=
‖ΣXU‖2

‖ΣXY ‖2 + ‖ΣXU‖2
(70)

The following indicator for confounding strength, which measures the deviation of the
estimable â from the genuine causal parameter a, is proposed

Definition 9 (structural strength of confounding).

κ :=

∥∥cΣ−1
XXb

∥∥2

‖a‖2 +
∥∥cΣ−1

XXb
∥∥2 , (71)

κ ∈ [0, 1]. (72)
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Note that from (69) and a normalizing condition

µA,v(R) = ‖v‖2

(eq. (10) in (Janzing and Schölkopf, 2018a)), one knows ‖â‖2 ≈ ‖a‖2 +
∥∥cΣ−1

XXb
∥∥2

. There-
fore, one can rewrite κ as

κ ≈
∥∥cΣ−1

XXb
∥∥2

‖â‖2
=
‖â− a‖2

‖â‖2
. (73)

In words, κ is the share of the influence of U on X of the overall strength of the association
between Y and X. Another interpretation: κ is the deviation of â from a relative to the
sum of squared length of â.

Note that the contribution of u to the covariance between X and Y is determined by
the product cb. As a consequence, rescaling c by some factor and b by its inverse leaves
γ unaffected. Similarly, (a more sophisticated) rescaling of c and b leaves κ unaffected.
The regimes with (i) large c and small b and with (ii) small c and large b can be thought
of as two extremes on a continuum where knowing the value of U (i) hardly reduces the
uncertainty about X or (ii) significantly reduces the uncertainty about X. To capture these
different regimes, JS propose an additional parameter that measures the explanatory power
of U for X,

η := tr(ΣXX − tr(ΣXX|u)) = tr(ΣXX)− tr(ΣEE) = ‖b‖2 . (74)

H.4 Estimating confounding

The vector-induced spectral measure of ΣXX with respect to â can be approximated by
a normalized two parametric probability measure, νκ,η, which decomposes into a causal
part and a confounding part. The relative share of causal and confounding parts in that
decomposition is given by κ. The algorithm proceeds by finding the normalized measure
closest to (computable) µΣXX,â. The parameter constellation that minimizes the distance
tells us the relative confounding strength.

How do JS do that? They show that µΣXX,â asymptotically depends on four parameters
(two of which, ΣXX and â, can be estimated). Based on this insight, they formalize a
two-parametric family of probability measures νκ,η such that it converges to µΣXX,â up to
a normalizing factor with high probability as the dimensionality of X increases:

1

‖â‖2
µΣXX,â − νκ,η → 0 (weakly in probability) (75)

where

νκ,η := (1− κ) νcausal + κ νconfounded
η . (76)

We inspect each part in turn.

1. νcausal is the hypothetical spectral measure that would be obtained in the absence of
confounding. Following (67), it is defined as

νcausal := µTr
ΣXX

(77)
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since, in the absence of confounding, the spectral measure induced by a should be
equivalent to the tracial spectral measure of ΣXX (up to a normalizing factor). The
rotation-invariant prior on a is needed to justify this approximation. Point 1 in
Postulate 1 is the formal argument. It relies on Lemma 4, which explicitly calls for a
rotation-invariant prior.

2. To define the corresponding confounding part, JS propose an approximation to the
spectral measure of ΣXX induced by the vector Σ−1

XXb. Recall that b has generic
orientation relative to ΣEE, see eq. (68). However, both b as well as ΣEE are unknown.
These two unknowns correspond to two steps that are important for constructing this
approximation.

(a) The eigen decomposition of ΣEE reads QMEQ
−1 where ME := diag(λE1 , . . . , λ

E
d )

with λE1 > · · · > λEd eigenvalues of ΣEE. Although b is unknown, one does know
that it is generic relative to ΣEE. Therefore, we can replace b with a vector that
is ‘particularly generic’, namely g := (1, . . . , 1)>/

√
d, which satisfies

µME ,g = µTr
ME

.

Therefore, one can approximate the spectral measure of ΣXX induced by the
vector Σ−1

XXb by spectral measure of ME + ηgg> induced by (ME + ηgg>)
√
ηg.

This construction is still not feasible as ME , which contains the eigenvalues of
ΣEE, is unobserved.

(b) JS resort to a result stating that spectral measures are close in high dimensions:

µTr
ΣXX

≈ µTr
ΣEE

,

see their Lemma 4. Therefore, one can approximate ME with

MX = diag(λX1 , . . . , λ
X
d )

and λX1 > · · · > λXd eigenvalues of ΣXX.

Putting these two steps together, JS define a rank-one perturbation of MX as

T := MX + ηgg>,

compute the spectral measure of T induced by vector T−1g, and define

νconfounded
η :=

1

‖T−1g‖2
µT,T−1g. (78)

H.5 Algorithmic implementation

The algorithmic implementation proposed in JS (and used in Algorithm 1) is as follows.
First, compute the observed vector-induced spectral measure µΣ̂XX,â

where â is the least-
squares parameter vector resulting from a regression of Y on X. Compute empirical coun-
terparts of νcausal in eq. (77) and νconfounded

η in eq. (78). Those empirical counterparts can
then be used to compute eq. (76) for specific choices of κ and η, call the resulting quantity
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ν̂κ,η. The algorithm finds κ and η that minimize the distance between the observed vector-
induced spectral measure and ν̂κ,η. Since µΣ̂XX,â

and ν̂κ,η have the same support (namely,

the eigenvalues of Σ̂XX), minimizing the distance between the respective weight vectors is
sufficient. Call w the weight vector of µΣ̂XX,â

and w′ the weight vector of ν̂κ,η.

JS propose computing the distance D(w,w′) by first smoothing w and w′ using a Gaus-
sian kernel and then taking the `1 norm of the resulting distance matrix,

D(w,w′) :=
∥∥K(w − w′)

∥∥
1
, (79)

with

K(λi, λj) := exp
(
− (λi − λj)2

2σ2

)
where σ = 0.2.

Finally, using the Limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm, as
implemented in the general purpose optimization R package optim, they search for κ and η
that minimize D(w,w′). See also the description of the algorithm on page 12 of JS.

Appendix I. Janzing and Schölkopf (2018b) in a nutshell

The model analyzed in Janzing and Schölkopf (2018a) (see previous Appendix H) has a
one-dimensional confounder. In a follow-up paper, Janzing and Schölkopf (2018b) show
how to estimate a degree of confounding in models with a high-dimensional confounder.
This Appendix reproduces the arguments in that paper and does not contain new results.

I.1 The set-up

The multi-dimensional confounder Z consists of l ≥ d independent sources each having unit
variance and zero mean. It influences d-dimensional covariates X and one-dimensional Y
as follows:

X = MZ (80)

Y = X>a + c>U (81)

where M is a d× l-dimensional mixing matrix, a ∈ Rd, c ∈ Rl, a contains the causal effect
of X on Y .

This model induces the following covariance matrices

ΣXX = MM> (82)

ΣXY = MM>a +Mc (83)

and the parameter vector after projecting with least-squares in the population â is given
by

â = Σ−1
XXΣXY = a +M−T c (84)

where M−T is the transpose of the pseudoinverse of M .
The degree of confounding is defined (excactly as in Janzing and Schölkopf, 2018a) as
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Definition 10 (structural strength of confounding).

κ :=
‖â− a‖2

‖a‖2 + ‖â− a‖2
∈ [0, 1]. (85)

The critical assumptions are the a and c are drawn from a rotation-invariant prior
distribution (i.e. a distribution that is invariant with respect to orthogonal transformations).
The following theoretical derivations rely on a and c drawn from a Gaussian distribution:

ai ∼ N (0, σ2
a), (86)

ci ∼ N (0, σ2
c ). (87)

A key insight in JSb is that κ can then be approximated as a function of (estimable)
ΣXX and θ, the fraction of σ2

a and σ2
c :

θ :=
σ2
c

σ2
a

. (88)

Specifically, using some concentration of measure results for large d (details below), κ
can be approximated as

κ ≈
1
dtr(Σ−1

XX)σ2
c

1
dtr(Σ−1

XX)σ2
c + σ2

a

=
1
dtr(Σ−1

XX)θ
1
dtr(Σ−1

XX)θ + 1
(89)

Thus, JSb show how to infer θ, which can then be plugged in eq. (89) to calculate κ.

I.2 Estimating θ

Given the model described in the previous sub-section, the distribution of â depends on
unobserved M and l. The goal here is to construct a generating model for â that only
depends on observable quantities ΣXX and d while generating the same distribution as that
of â. It is shown in Theorem 1 in JSb that generating b ∈ Rd by drawing each component
from a standard Gaussian distribution and setting

β̂gen :=
√
σ2
aI + σ2

cΣ
−1
XXb (90)

generates vectors with the same distribution as â in the generating process of the previous
subsection, i.e. vectors defined in eq. (84).

The generating model induces a distribution for â
‖â‖ , which is the Haar measure on the

orthogonal group (i.e. the uniform distribution on the unit sphere Sd−1), under the map

b 7→

√
I + θΣ−1

XXb∥∥∥∥√I + θΣ−1
XXb

∥∥∥∥ . (91)

JSb show that the log probability density of the normalized parameter vectors,

v :=
â

‖â‖
(92)
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is a function of θ and has the following form:

log pθ(v) =
1

2

[
log det(I + θΣ−1

XX)− d log
〈
v, (I + θΣ−1

XX)−1v
〉]

(93)

If one had access to many samples from â, one could use them to maximize their log
likelihood using (93), and thereby infer θ (which could then be used to calculate κ using
eq. (89)). Usually, one does not have access to many samples from â. Remarkably, the
authors proceed to show that having a large d is sufficient to estimate θ (and, therefore, κ
via eq. (89)). Intuitively, drawing one high-dimensional vector â is equivalent to drawing d
components of that vector independently with respect to an appropriate basis.

Appendix J. Results when using Janzing and Schölkopf (2018b) to
estimate κ
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Figure 14: Simulation results: pseudo-p-values, δB, and empirical rejection rate as a
function of ω1. Same figure as Figure 5, expect that JSb is used to estimate κ.
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Figure 15: Simulation results: pseudo-p-values, δB, and empirical rejection rate as a
function of ω1. Same figure as Figure 12, expect that JSb is used to estimate κ.
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test results for different sets of covariates

{R,S} {S} {R}

p-value (JS) 0.18 0.29 0
p-value (JSb) 0.19 0.32 0

no. of covariates 29 6 23
no. of observations 3612 3612 3612

Table 3: This Table shows results of the empirical application, based on Card (1995) for
both methods to calculate κ. S denotes the set of covariates implicitly defining the subgroups
in which the instrument is valid according to Card. R contains all remaining covariates (for
details see main text). Consistent with Card’s argument, the null hypothesis of instrument
validity cannot be rejected when all covariates are included; see column {R,S}. Similarly,
when only the six covariates S are included the instrument validity can also not be rejected;
see column {S}. Dropping all variables S and keeping only those in R, the test rejects
instrument validity.

test results for different methods to estimate κ

JS JSb

p-value 0.52 0.58
no. of covariates 7 7

no. of observations 245 245

Table 4: This Table shows results of the empirical application based on Acemoglu (2008).
The null hypothesis of instrument validity cannot be rejected regardless of which method to
estimate κ (JS or JSb) is used.

Appendix K. Relation to knockoff procedure by Candes et al. (2018)

The knockoff procedure by Candes et al. (2018) is a method to do variable selection in
high-dimensional settings while controlling the false discovery rate.13 The central idea is
to construct so-called “knockoff” variables X̃ based on the original variables X that are,
conditional on those original variables, unrelated to the target variable Y ,

X̃ ⊥⊥ Y |X. (94)

The authors show that using variable selection methods (such as ridge regression) on a
model that contains both X̃i and Xi as explanatory variables, picks only those features Xi

that are indeed related to Y while controlling a specified false discovery rate.
Both the knockoff procedure as well as Algorithm 2 are designed to construct variables

(the knockoff and synthetic treatment variable, respectively) that resemble their original
counterparts in specific ways. However, there is a slight difference between what the syn-
thetic treatment variable and what the knockoff variables are supposed to fulfill. To illus-

13. We appreciate an anonymous reviewer’s encouragement to compare our method with the work by Candes
et al. (2018).
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test results for different sets of covariates

{R,S} {S} {R}

p-value 0.25 0.294 0.002
no. of covariates 29 6 23

no. of observations 3612 3612 3612

Table 5: Results of the empirical application to Card (1995), equivalent of Table 1 but with
the knockoff procedure used to generate the synthetic treatment variable Ts. S denotes the
set of covariates implicitly defining the subgroups in which the instrument is valid according
to Card. R contains all remaining covariates (for details see main text). Consistent with
Card’s argument, dropping all variables S and keeping only those in R, the test rejects
instrument validity. Using the knockoff procedure instead of Algorithm 2 hardly affects
results.

trate that main difference, consider the relation of the constructed variable (X̃i and Ts,
respectively) with the output variable Y . In the knockoff procedure, the constructed vari-
ables are independent of Y conditional on the original variables, see expression (94). This is
not what we want to achieve with the construction of the synthetic variable in Algorithm 2:
To make the argument that bTs = 0 (where bTs is the coefficient of Ts in a regression of Y
on {X, Ts}, see Appendix A), we want Ts ⊥⊥ Y |X, unconditionally on TIV. Put differently,
using the knockoff procedure constrains Ts to fulfill Ts ⊥⊥ Y |TIV, which is not what we want.

The relation of the knockoff procedure to our approach of creating a synthetic variable is
subtle and intriguing. Therefore, we describe how our results change if we use the knockoff
procedure to create the synthetic treatment variable Ts instead of Algorithm 2. Note that a
knockoff variable X̃i and its original counterpartXi fulfill Cov(X̃i, Xj) = Cov(Xi, Xj)∀j 6= i,
which is exactly the covariance structure that we want the synthetic treatment variable Ts
and its original counterpart TIV to fulfill, namely Cov(Ts, Xj) = Cov(TIV, Xj) where Xj are
the remaining control covariates.

We reproduce the main simulation results in Table 5 and the results of both empirical
applications when replacing line 6 of Algorithm 1 with the “fixed-X”, equicorrelated knockoff
construction to generate a knockoff version of TIV (for details on the knockoff construction,
please see Candes et al., 2018). Table 5 and Figure 16 show that the results discussed in
the main text hardly change when using the knockoff procedure instead of Algorithm 2 to
generate Ts.

Regarding the empirical application to Acemoglu et al. (2008), also when using the
knockoff procedure to generate Ts, we cannot reject the null hypothesis of instrument validity
with a p-value of 0.55.
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Figure 16: Simulation results: pseudo-p-values, δB, and empirical rejection rate as a
function of ω1. Same figure as Figure 5, expect that knockoff procedure instead of Algorithm
2 is used to generate Ts.
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