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Abstract
An increasing amount of the collected data are high-dimensional multi-way arrays (tensors), and
it is crucial for efficient learning algorithms to exploit this tensorial structure as much as possible.
The ever present curse of dimensionality for high dimensional data and the loss of structure when
vectorizing the data motivates the use of tailored low-rank tensor classification methods. In the
presence of small amounts of training data, kernel methods offer an attractive choice as they provide
the possibility for a nonlinear decision boundary. We develop the Tensor Train Multi-way Multi-level
Kernel (TT-MMK), which combines the simplicity of the Canonical Polyadic decomposition, the
classification power of the Dual Structure-preserving Support Vector Machine, and the reliability of
the Tensor Train (TT) approximation. We show by experiments that the TT-MMK method is usually
more reliable computationally, less sensitive to tuning parameters, and gives higher prediction
accuracy in the SVM classification when benchmarked against other state-of-the-art techniques.
Keywords: Tensor Decomposition, Support Vector Machine, Kernel Approximation, High-
dimensional Data, Classification

1. Introduction

In many real world applications, data often emerges in the form of high-dimensional tensors. It is
typically very expensive to generate or collect such data, and we assume that we might be given a
rather small amount of test and training data. Nevertheless, it remains crucial to be able to classify
tensorial data points. A prototypical example of this type is fMRI brain images (Glover, 2011), which
consist of three-dimensional tensors of voxels, and may also be equipped with an additional temporal
dimension, in contrast to traditional two-dimensional pixel images.
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One of the most popular methods for classifying data points are Support Vector Machines
(SVM) (Vapnik, 1995, 1998). These are based on margin maximization and the computation of the
corresponding weights via an optimization framework, typically the SMO algorithm (Platt, 1998).
These methods often show outstanding performance, but the standard SVM model (Cortes and
Vapnik, 1995) is designed for vector-valued rather than tensor-valued data. Although tensor objects
can be reshaped into vectors, much of the information inherent in the tensorial data is lost. For
example, in an fMRI image, the values of adjacent voxels are often close to each other (He et al.,
2014). As a result, it was proposed to replace the vector-valued SVM by a tensor-valued SVM. This
area was called Supervised Tensor Learning (STL) (Tao et al., 2007; Zhou et al., 2013; Guo et al.,
2012). In Wolf et al. (2007), the authors proposed to minimize the rank of the weight parameter
with the orthogonality constraints on the columns of the weight parameter instead of the classical
maximum-margin criterion, and Pirsiavash et al. (2009) relaxed the orthogonality constraints to
further improve the Wolf's method. Hao et al. (2013) consider anR-sum rank-one tensor factorization
of each input tensor, while Kotsia and Patras (2011) adopted the Tucker decomposition of the weight
parameter to retain more structural information. Zeng et al. (2017) extended this by using a Genetic
Algorithm (GA) prior to the Support Tucker Machine (STuM) for the contraction of the input feature
tensor. Along with these R-sum rank-one tensor and Tucker representations, recently the weight
tensor of STL has been approximated using the Tensor Train (TT) decomposition (Chen et al., 2018).
We point out that these methods are mainly focusing on a linear representation of the data. It is well
known that a linear decision boundary is often not suitable for the separation of complicated real
world data (Hastie et al., 2001).

Naturally, the goal is to design a nonlinear transformation of the data, and we refer to Signoretto
et al. (2011, 2012); Zhao et al. (2013), where kernel methods have been used for tensor data. All
these methods are based on the Multi-linear Singular Value Decomposition/Higher Order Singular
Value Decomposition, which rely on the flattening of the tensor data. Therefore, the resulting vector
and matrix dimensions are so high that the methods are prone to over-fitting. Moreover, the intrinsic
tensor structure is typically lost. Thus, other approaches are desired.

The approximation of tensors based on low-rank decompositions has received a lot of attention in
scientific computing over recent years (Cichocki et al., 2016; Kolda and Bader, 2009; Cichocki, 2013;
Liu et al., 2015). A Dual Structure-preserving Kernel (DuSK) for STL, which is particularly tailored
to SVM and tensor data, was introduced in (He et al., 2014). This kernel is defined on the Canonical
Polyadic (CP) tensor format, also known as Parallel Factor Analysis, or PARAFAC (Hitchcock, 1927,
1928). Once the CP format is available, DuSK delivers an accurate and efficient classification, but
the CP approximation of arbitrary data can be numerically unstable and difficult to compute (de Silva
and Lim, 2008). In general, any optimization method (Newton, Steepest Descent or Alternating
Least Squares) might return only a locally optimal solution, and it is difficult to assess whether this is
a local or global optimum. Later on, kernelized tensor factorizations, specifically a Kernelized-CP
(KCP) factorization, have been introduced in He et al. (2017a), and the entire technique has been
called the Multi-way Multi-level Kernel (MMK) method. Further elaboration and understanding of
the KCP approach (He et al., 2017b) is provided by a kernelized Tucker model, inspired by Signoretto
et al. (2013).

Recently, kernel approximations in the TT format have been introduced in Chen et al. (2022).
Initially, we had pursued a similar idea for fMRI data sets, but we observed that the nonlinear SVM
classification using directly the TT factors leads to poor accuracy, since different TT factors have
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different dimensions and scales, making the feature space more complicated. Hence, we have come
up with a better exploitation of the data structure, as we explain in this paper.

Tensor decompositions and kernel-based methods have become an indispensable tool in many
learning tasks. For example, Novikov et al. (2016) uses the TT decomposition for both the input
tensor and the corresponding weight parameter in generalized linear models in machine learning. A
Kernel Principal Component Analysis (KPCA), a kernel-based nonlinear feature extraction technique,
was proposed in Wu and Farquhar (2007). The authors of Lebedev et al. (2014) propose a way to
speed up Convolutional Neural Networks (CNN) by applying a low-rank CP decomposition on the
kernel projection tensor.

1.1 Main Novelty

In this paper, we develop an efficient structure-preserving nonlinear kernel function for SVM
classification of tensorial data, by computing a reliable CP approximation for DuSK. We start with
the TT approximation of the data points, which can be computed reliably by the TT-SVD algorithm.
Moreover, we enforce uniqueness of the SVD factors, such that “close” tensors yield “close” TT
factors. Second, we perform an exact expansion of the TT decomposition into the CP format. This
unifies the dimensions of the data used in classification. Finally, we redistribute the norms of the CP
factors to equilibrate the actual scales of the data elements. This yields a CP decomposition that is
free from scaling indeterminacy, while being a reliable approximation of the original data. We have
observed that using this decomposition in DuSK significantly increases the classification accuracy
and stability of the STL.

The paper is structured as follows. In Section 2, we set the stage introducing basic definitions
and important tools. An extension to the tensor format SVM is explained in Section 2.4, where we
also introduce the Kernelized Support Tensor Machine (KSTM) via the kernel trick (Section 2.3.1).
In Section 3 we explain the entire proposed algorithm step by step. In particular, we introduce the
uniqueness enforcing TT-SVD algorithm (Section 3.1), the TT-CP expansion (Section 3.2) and the
norm equilibration (Section 3.3). In Section 4 we benchmark the different steps of the proposed
algorithm and compare it to a variety of competing methods using two data sets each from two
different fields with a limited amount of training data, which are known to be challenging for
classification.

2. Preliminaries

This section introduces terminology and definitions used throughout the paper.

2.1 Tensor Algebra

A tensor is a multidimensional array (Kolda and Bader, 2009) which is a higher order generalization
of vectors and matrices. We denote an M th-order tensor (M ≥ 3) by a calligraphic letter X∈
RI1×I2×...×IM , its entries by xi1i2...iM , a matrix by a boldface upper case letter X∈ RI×J , and
a vector by a boldface lower case letter x ∈ RI . Matrix and vector elements are denoted by
xij = X(i, j) and xi = x(i), respectively. The order of a tensor is the number of its dimensions,
ways or modes. The size of a tensor stands for the maximum index value in each mode. For example,
X is of order M and the size in each mode is Im, where m ∈ 〈M〉 := {1, 2, . . . ,M}. For simplicity,
we assume that all tensors are real valued.
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Definition 1 An m-mode matricization X(m) ∈ RIm×I1...Im−1Im+1...IM for m ∈ 〈M〉 is the unfold-
ing (or flattening) of an M th-order tensor into a matrix in the appropriate order of elements, i.e. a
tensor element (i1, i2, . . . iM ) maps to an element (im, j) of a matrix as follows (Kolda and Bader,
2009):

j = 1 +
M∑

k=1,k 6=m
(ik − 1)Jk with Jk =

k−1∏
`=1,` 6=m

I`.

Definition 2 Anm-mode product X×mA ∈ RI1×...×Im−1×J×Im+1,×...×IM , given X∈RI1×I2×...×IM
and A ∈ RJ×Im , is defined as a tensor-matrix product in mth way:

Y(m) = (X×m A)(m) = AX(m).

Definition 3 A mode-(M ,1) contracted product Z = X×1
M Y = X×1Y ∈RI1×...×IM−1×J2×...×JM ,

for given tensors X ∈ RI1×I2×...×IM and Y ∈ RJ1×J2×...×JM , with IM = J1, yields a tensor Z with
entries

zi1,...,iM−1,j2,...,jM =

IM∑
iM=1

xi1,...,iM yiM ,j2,...,jM .

Definition 4 The inner product of given tensors X, Y ∈ RI1×I2×...×IM is defined as

〈X,Y〉 =

I1∑
i1

I2∑
i2

. . .

IM∑
im

xi1i2...imyi1i2...im .

Definition 5 The outer product of given tensors X ∈ RI1×I2×...×IM and Y ∈ RJ1×J2×...×JN gener-
ates an (M +N)th− order tensor Z = X ◦ Y with entries

zi1,...,iM ,j1,...,jN = xi1,...,iM yj1,...,jN .

Definition 6 The Kronecker Product of matrices A ∈ RI×J ,B ∈ RK×L is defined as usual by

A⊗B =


a1,1B · · · a1,JB

...
. . .

...
aI,1B · · · aI,JB

 ∈ RIK×JL.

Similarly, the Kronecker product of two tensors X ∈ RI1×I2×...×IM ,Y ∈ RJ1×J2×...×JM returns a
tensor Z = X⊗ Y ∈ RI1J1×I2J2×...×IMJM .

Moreover, the Khatri-Rao product is a column-wise Kronecker product,

A�B = [a1 ⊗ b1,a2 ⊗ b2, · · · ,aR ⊗ bR] ∈ RIK×R.

These notations are summarized in Table 1.
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Table 1: Tensor Notations.

Symbol Description

x Lower case letter for scalar value
x Lower case bold letter for vector
X Upper case bold letter for matrix
X Calligraphic bold letter for tensor
X(m) Calligraphic bold letter with subscript m

for m-mode matricization
◦ Outer product
⊗ Kronecker product
� Khatri-Rao product
×1
M Mode-(M, 1) contracted product
〈M〉 Integer values from 1 to M
〈X,Y〉 Inner product for tensors X and Y

2.2 Tensor Decompositions

Tensor decomposition methods have been significantly enhanced during the last two decades, and
applied to solve problems of varying computational complexity. The main goal is the linear (or at
most polynomial) scaling of the computational complexity in the dimension (order) of a tensor. The
key ingredient is the separation of variables via approximate low-rank factorizations. In this paper
we consider two of these decompositions.

2.2.1 CANONICAL POLYADIC DECOMPOSITION

The Canonical Polyadic (CP) decomposition of an M th−order tensor X ∈ RI1×I2×...×IM is a
factorization into a sum of rank-one components (Hitchcock, 1927), which is given element-wise as

xi1i2...iM
∼=

R∑
r=1

a
(1)
i1,r

a
(2)
i2,r
· · ·a(M)

iM ,r,

or shortly, X ∼= JA(1),A(2), · · · ,A(M)K, (1)

where A(m) =
[
a
(m)
im,r

]
∈ RIm×R, m = 1, . . . ,M , are called factor matrices of the CP decom-

position, see Figure 1, and R is called the CP-rank. The notation JA(1),A(2), · · · ,A(M)K is also
called the Kruskal representation of the CP factorization. Despite the simplicity of the CP format,
the problem of the best CP approximation is often ill-posed (de Silva and Lim, 2008). A practical
CP approximation can be computed via the Alternating Least Squares (ALS) method (Nion and
Lathauwer, 2008), but the convergence may be slow. It may also be difficult to choose the rank R.

2.2.2 TENSOR TRAIN DECOMPOSITION

To alleviate the difficulties of the CP decomposition mentioned above, we build our proposed
algorithm on the Tensor Train (TT) (Oseledets, 2011) decomposition. The TT approximation of an
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I2

︸ ︷︷ ︸I1
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I3︸ ︷︷ ︸
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a
(1)
1
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(2)
1

a
(3)
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(1)
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(2)
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a
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R
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(3)
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Figure 1: CP decomposition of a 3-way tensor.

M th−order tensor X ∈ RI1×I2×...×IM is defined element-wise as

xi1i2...iM
∼=

∑
r0,...,rM

G
(1)
r0,i1,r1

G
(2)
r1,i2,r2

· · ·G(M)
rM−1,iM ,rM

,

X ∼= 〈〈G(1),G(2), . . . ,G(M)〉〉, (2)

where G(m) ∈ RRm−1×Im×Rm , m = 1, . . . ,M, are 3rd-order tensors called TT-cores (see Figure 2),
and R0, . . . , RM with R0 = RM = 1 are called TT-ranks. The alluring capability of the TT format

G2G1 G3

X

I2

I1 I3

I2

I1

I3

∼=

R1 R2

I1 I2 I3

R3R0

R1 R2

I1
I2

I3

Figure 2: TT decomposition of a 3-way tensor.

is its ability to perform algebraic operations directly on TT-cores avoiding full tensors. Moreover, we
can compute a quasi-optimal TT approximation of any given tensor using the SVD. This builds on
the fact that the TT decomposition constitutes a recursive matrix factorization, where each TT-rank is
the matrix rank of the appropriate unfolding of the tensor, and hence the TT approximation problem
is well-posed (Oseledets, 2011).

2.3 Support Vector Machine

In this section, we recall the SVM method. For a given training data set {(xi, yi)}Ni=1, with input
data xi ∈ Rm and labels yi ∈ {−1, 1}, the dual-optimization problem for the nonlinear binary
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classification can be defined as,

max
α1,...,αN

N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyj〈φ(xi), φ(xj)〉

subject to 0 ≤ αi ≤ C,
N∑
i=1

αiyi = 0, (3)

where a tuning function φ defines the nonlinear decision boundary with φ : xi → φ (xi). In practice,
we compute directly 〈φ (xi) , φ

(
xj
)
〉 using the so-called Kernel Trick (Schölkopf et al., 2001).

2.3.1 FEATURE MAP AND KERNEL TRICK

The function φ : Rm → F is called feature map, and the feature space F is a Hilbert Space (HS).
Every feature map is defined via a kernel such that ki,j = k

(
xi,xj

)
= 〈φ(xi), φ(xj)〉F. Employing

the properties of the inner product, we conclude that [ki,j ] is a symmetric positive semi-definite
matrix. The kernel trick lies in defining and computing directly k

(
xi,xj

)
instead of φ(x). It is

used to get a linear learning algorithm to learn a nonlinear boundary, without explicitly knowing
the nonlinear function φ. The only task needed for the SVM is thus to choose a legitimate kernel
function. That is how we work with the input data in the high-dimensional space while doing all
the computation in the original low dimensional space. Figure 3 illustrates the linear separation in a
higher dimensional space.

k(x, y)

(a) (b)

Figure 3: Nonlinear mapping using kernel trick: (a) Nonlinear classification of data in R2, (b)
Linear classification in higher dimension (R3).

2.4 Kernelized Support Tensor Machine

In our case, we have a data set {(Xi, yi)}Ni=1 with input data in the form of a tensor Xi ∈
RI1×I2×...×IM . We take the maximum margin approach to get the separation hyperplane. Hence, the
objective function for a nonlinear boundary in the tensor space can be written as follows (Cai et al.,
2006):

min
w,b

1

2
‖w‖2 + C

N∑
i=1

ξi (4)

subject to yi(〈Ψ(Xi), w〉+ b) ≥ 1− ξi ξi ≥ 0 ∀i.
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The classification setup given in (4) is known as Support Tensor Machine (STM) (Tao et al., 2005).
The dual formulation of the corresponding primal problem can be given as follows:

max
α1,...,αN

N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyj〈Ψ(Xi),Ψ(Xj)〉

subject to 0 ≤ αi ≤ C,
N∑
i=1

αiyi = 0 ∀i. (5)

The nonlinear feature mapping Ψ: RI1×I2×...×IM → F takes tensorial input data to a higher dimen-
sional space similarly to the vector case. Therefore, by using the kernel trick, explained in Section
2.3.1, STM can be defined as follows:

max
α1,...,αN

N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyjK(Xi,Xj)

subject to 0 ≤ αi ≤ C,
N∑
i=1

αiyi = 0 ∀i. (6)

The STM classifier for predicting correct labels of test tensor data is given by

G(X) = sign

 N∑
i=1

αiyi〈Ψ(Xi),Ψ(X)〉+ b0

 . (7)

By using the kernel trick (Schölkopf et al., 2001), this becomes,

G(X) = sign

 N∑
i=1

αiyiK(Xi,X) + b0

 . (8)

The value of b0 is given as follows,

b0 =
1

N0

∑
i:αi∈(0,C)

yi − N∑
j=1

αj〈Ψ(Xj),Ψ(Xi)〉

 ,

=
1

N0

∑
i:αi∈(0,C)

yi − N∑
j=1

αjK(Xj ,Xi)

 , with N0 =
∑

i:αi∈(0,C)

1. (9)

We call this setup the Kernelized STM (KSTM). Once we have the real-valued function (kernel)
value for each pair of tensors, we can use state-of-the-art LIBSVM (Chang and Lin, 2011), which
relies on the Sequential Minimal Optimization algorithm to optimize the weights αi and provides
optimal parameter values αi and b0. Hence, the preeminent part is the kernel function K(Xi,Xj).
However, the direct treatment of large tensors can be both numerically expensive and inaccurate due
to overfitting. Therefore, we need to choose a kernel that exploits the tensor decomposition. In the
next section we propose a particular choice of the kernel for tensor data.

8



EFFICIENT STRUCTURE-PRESERVING STTM

3. The Proposed Algorithm

The first essential step towards using tensors is to approximate them in a low-parametric representa-
tion. To achieve a stable learning model, we start with computing the TT approximations of all data
tensors. The second most expensive part is the computation of K

(
Xi,Xj

)
for each pair of tensors.

Therefore, an approximation of the kernel is required. Besides, we would like the kernel to exploit
the factorized tensor representation. These issues are resolved in the rest of this section.

3.1 Uniqueness Enforcing TT- SVD

Since the TT decomposition is computed using the SVD (Oseledets, 2011), the particular factors
G(1),G(2), . . . ,G(M) are defined only up to a sign indeterminacy. For example, in the first step, we
compute the SVD of the 1-mode matricization,

X(1) = σ1u1v
>
1 + · · ·+ σI1uI1v

>
I1 ,

followed by truncating the expansion at rank R1 or according to the accuracy threshold ε, choosing
R1 such that σR1+1 < ε. However, any pair of vectors {ur1 , vr1} can be replaced by {−ur1 ,−vr1}
without changing the whole expansion. While this is not an issue for data compression, classification
using TT factors can be affected significantly by this indeterminacy. For example, tensors that are
close to each other should likely produce the same label. In contrast, even a small difference in the
original data may lead to a different sign of the singular vectors, and consequently, significantly
different values in the kernel matrix K(Xj ,Xi) and the predicted label (8). As it will be explained in
Section 3.5, the kernels are functions of the left singular values ui only (Algorithm 2).

We fix the signs of the singular vectors as follows. For each r1 = 1, . . . , R1, we find the position
of the maximum in modulus element in the left singular vector, i∗r1 = arg maxi=1,...,I1 |ui,r1 |, and
make this element positive,

ūr1 := ur1/sign(ui∗r1 ,r1), v̄r1 := vr1 · sign(ui∗r1 ,r1).

Finally, we collect ūr1 into the first TT core, G(1)
r0,i1,r1

= ūi1,r1 , and continue with the TT-SVD
algorithm using v̄r1 as the right singular vectors. In contrast to the sign, the whole dominant singular
terms ur1v

>
r1 depend continuously on the input data, and so do the maximum absolute elements. The

procedure is summarized in Algorithm 1.

Lemma 7 Assume that the singular values σ(m)
1 , . . . , σ

(m)
Rm

are simple for each m = 1, . . . ,M − 1.
Then Algorithm 1 produces the unique TT decomposition.

Proof The m-th TT core produced in TT-SVD is a reshape of the left singular vectors of the Gram
matrix of the current unfolding, Am := ZmZ

>
m. To set up an induction, we notice that Z1 =

Ẑ1 = X(1) is unique, and assume that Zm is unique too. Consider the eigenvalue decomposition

AmUm = UmΛm, Λm = diag(λ
(m)
1 , . . . , λ

(m)
Rm−1Im

). Since the eigenvalues λ(m)
i = (σ

(m)
i )2 are

simple, each of them corresponds to an eigenspace of dimension 1, spanned by the corresponding
column of Um. This means that each eigenvector is unique up to a scalar factor, and, if the eigenvector
is real and has Euclidean norm 1, the scalar factor can only be 1 or −1. The latter is unique if we
choose it as the sign of the largest in modulus element of the eigenvector (which is always nonzero),
with ties broken to take the first of identical elements. It remains to establish the uniqueness of Zm+1

9
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Algorithm 1: Uniqueness Enforcing TT-SVD
1: Input: M -dimensional tensor X ∈ RI1×I2×...×IM , relative error threshold ε.
2: Ensure: Cores G(1),G(2), · · · ,G(M) of the TT-approximation X′ to X in the TT-format with TT-

rounding ranks rm equal to the δ-ranks of the unfoldings X(m) of X, where δ =
√

ε
M−1‖A‖F .

3: Initialize Ẑ1 = X(1), R0 = 1.
4: for m = 1 to M − 1 do
5: Zm := reshape

(
Ẑm, [Rm−1Im, Im+1 · · · IM ]

)
6: Compute δ-truncated SVD: Zm = UmSmVT

m + Em, ‖Em‖F ≤ δ, where
Um = [u

(m)
1 , u

(m)
2 , . . . , u

(m)
Rm

],Sm = diag(σ
(m)
1 , σ

(m)
2 , . . . , σ

(m)
Rm

),Vm = [v
(m)
1 , v

(m)
2 , . . . , v

(m)
Rm

]
7: for rm = 1 to Rm do
8: i∗rm = arg maxi=1,...,Rm−1Im |u

(m)
i,rm
| (with ties broken to first element)

9: ū
(m)
rm := u

(m)
rm /sign(u

(m)
i∗rm ,rm

), v̄
(m)
rm := v

(m)
rm · sign(u

(m)
i∗rm ,rm

)

10: G
(m)
rm−1,im,rm

= ū
(m)
rm−1+(Im−1)Rm−1, rm

, V̄m = [v̄
(m)
1 , v̄

(m)
2 , . . . , v̄

(m)
Rm

]

11: end for
12: Ẑm+1 := SmV̄T

m

13: end for
14: G(M) = ẐM

to complete the induction. By the orthogonality of Ūm = [ū
(m)
1 , . . . , ū

(m)
Rm

], we get Ẑm+1 = ŪT
mZm,

and since the reshape is unique, so is Zm+1.

Remark 8 Most of the data featuring in machine learning are noisy. Therefore, the singular values
of the corresponding matricizations are simple almost surely, and hence the TT decomposition
delivered by Algorithm 1 is unique almost surely.

3.2 TT-CP Expansion

Despite the difficulties in computing a CP approximation, its simplicity makes the CP format a
convenient and powerful tool for revealing hidden classification features in the input data. However,
as long as the TT decomposition is available, it can be converted into the CP format suitable for the
kernelized classification.

Proposition 9 For a given TT decomposition (2), we can obtain a CP decomposition

∑
r0,...,rM

G
(1)
r0,i1,r1

G
(2)
r1,i2,r2

· · ·G(M)
rM−1,iM ,rM

=
R∑
r=1

Ĥ
(1)
i1,r
Ĥ

(2)
i2,r
· · · Ĥ(M)

iM ,r, (10)

by merging the ranks r1, r2, . . . rM into one index r = r1 + (r2− 1)R1 + . . .+ (rM − 1)
∏M−1
`=1 R`,

r = 1, . . . , R, R = R1 · · ·RM , and introducing the CP factors

Ĥ
(m)
im,r

= G
(m)
rm−1,im,rm

, m = 1, . . . ,M.

This transformation is free from any new computations, and needs simply rearranging and
replicating the original TT cores. Although this expansion is valid for arbitrary dimension, higher
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dimensions may increase the number of terms massively. However, many experimental datasets are
usually three or four dimensional tensors, for which the TT-CP expansion is feasible.

Note that the number of terms R in the CP decomposition (10) can be larger than the minimal CP
rank of the exact CP decomposition of the given tensor. However, the nonlinear kernel function is
more sensitive to the features of the data rather than the number of CP terms per se. In the numerical
tests, we observe that the expansion (10) gives actually a better classification accuracy than an attempt
to compute an optimal CP approximation using an ALS method.

3.3 Norm Equilibration

In our preliminary experiments, we tried using directly the TT-CP expansion as above with the CP
kernel from (He et al., 2017a). However, this did not lead to better classification results. The DuSK
kernel (He et al., 2017a) introduces the same width parameter for all CP factors. This requires all CP
factors to have identical (or at least close) magnitudes. In contrast, different TT cores have different
norms in the plain TT-SVD algorithm (Oseledets, 2011). Here, we rescale the TT-CP expansion to
ensure that the columns of the CP factors have equal norms, and hence produce the same kernel
features with the same width parameter. We have found this to be a key ingredient for the successful
TT-SVM classification.

Given a rank-r TT-CP decomposition JĤ(1), Ĥ(2), · · · , Ĥ(M)K, we compute the total norm of
each of the rank-1 tensors

nr =
∥∥∥Ĥ(1)

r

∥∥∥ · · ·∥∥∥Ĥ(M)
r

∥∥∥ , (11)

and distribute this norm equally among the factors,

H(m)
r :=

Ĥ
(m)
r∥∥∥Ĥ(m)
r

∥∥∥ · n1/Mr , m = 1, 2, · · · ,M. (12)

3.4 Noise-aware Threshold and Rank Selection

Generally, data coming from real world applications are affected by measurement or preprocessing
noise. This can affect both computational and modeling aspects, increasing the TT ranks (since a
tensor of noise lacks any meaningful TT decomposition), and spoiling the classification if the noise
is too large. However, the SVD can serve as a de-noising algorithm automatically: the dominant
singular vectors are often “smooth” and hence represent a useful signal, while the latter singular
vectors are more oscillating and capture primarily the noise. Therefore, it is actually beneficial to
compute the TT approximation with deliberately low TT ranks / large truncation threshold. On the
other hand, the TT rank must not be too low in order to approximate the features of the tensor with
sufficient accuracy. Cross-validation is a technique to evaluate the effectiveness of the model, which
is done by re-sampling the data into training-testing data sets. Since the precise magnitude of the
noise is unknown, we carry out a k-fold cross-validation test (k = 5) to find the optimal TT rank.

3.5 Nonlinear Mapping

Equipped with the homogenized TT-CP decompositions of the input tensors, we are ready to define
a nonlinear kernel function. We follow closely the rationale behind DuSK proposed in He et al.
(2014, 2017a) and express its generalized form for tensors of arbitrary dimension. We assume that
the feature map function from the space of tensors to a tensor product Reproducing Kernel Hilbert

11
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Space (Signoretto et al., 2013) Ψ: RI1 × · · · ×RIM 7→ F consists of separate feature maps acting on
different CP factors,

Ψ:
R∑
r=1

H(1)
r ⊗H(2)

r ⊗ · · · ⊗H(M)
r 7→

R∑
r=1

φ(H(1)
r )⊗ φ(H(2)

r )⊗ · · · ⊗ φ(H(M)
r ). (13)

This allows us to exploit the fact that the data is given in the CP format to aid the classification.
However, the feature function φ(a) is to be defined implicitly through a kernel function. Similarly to
the standard SVM, applying the kernel trick to (13) gives us a practically computable kernel. Given
CP approximations of two tensors X = [xi1,...,iM ] and Y = [yi1,...,iM ],

xi1,...,iM ≈
R∑
r=1

H
(1)
i1,r
H

(2)
i2,r
· · ·H(M)

iM ,r, yi1,...,iM ≈
R∑
r=1

P
(1)
i1,r
P

(2)
i2,r
· · ·P (M)

iM ,r,

we compute

〈Ψ(X),Ψ(Y)〉 = K(X,Y)

= K

 R∑
r=1

H(1)
r ⊗H(2)

r ⊗ · · · ⊗H(M)
r ,

R∑
r=1

P (1)
r ⊗ P (2)

r ⊗ · · · ⊗ P (M)
r

 ,

= 〈Ψ(
R∑
r=1

H(1)
r ⊗H(2)

r ⊗ · · · ⊗H(M)
r ),Ψ(

R∑
r=1

P (1)
r ⊗ P (2)

r ⊗ · · · ⊗ P (M)
r )〉,

=
R∑

i,j=1

〈φ(H
(1)
i ), φ(P

(1)
j )〉〈φ(H

(2)
i ), φ(P

(2)
j )〉 · · · 〈φ(H

(M)
i ), φ(P

(M)
j )〉,

=

R∑
i,j=1

k(H
(1)
i , P

(1)
j )k(H

(2)
i , P

(2)
j ) · · · k(H

(M)
i , P

(M)
j ), (14)

where

k(h,p) = exp

(
−‖h−p‖

2

2σ2

)
.

This kernel approximation is computed for each pair of the tensor input data, represented by its
CP factors. The width parameter σ > 0 needs to be chosen judiciously to ensure accurate learning.

Since the entire calculation starts from the TT decomposition, we call this proposed model the
Tensor Train Multi-way Multi-level Kernel (TT-MMK). It fulfills the objectives of extracting optimal
low-rank features, and of building a more accurate and efficient classification model. Plugging
the kernel values (14) into the STM optimizer (6) completes the algorithm. The overall idea is
summarized in Algorithm 2.

4. Numerical Tests

• Experimental Settings
All numerical experiments have been done in MATLAB 2016b. In the first step, we compute
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Algorithm 2: TT-CP approximation of the STM Kernel

Input: data {Xn}Nn=1RI1×I2×...×IM , TT-rank R.
Output: Kernel matrix approximation

[
K(Xu,Xv)

]
∈ RN×N

for n = 1 to N do
Compute TT approximation Xn

∼= 〈〈G(1,n),G(2,n), · · · ,G(M,n)〉〉 using Algorithm 1.
Compute TT-CP expansion JH(1,n), H(2,n), · · · , H(M,n)K = 〈〈G(1,n),G(2,n), · · · ,G(M,n)〉〉 as
(10) with equilibrated norms as (12).

end for
for u, v = 1 to N do
K (Xu,Xv) ≈

∑R
i,j=1 k(H

(1,u)
i , H

(1,v)
j )k(H

(2,u)
i , H

(2,v)
j ) · · · k(H

(M,u)
i , H

(M,v)
j ) as (14).

end for

the TT format of an input tensor using the TT-Toolbox1, where we modified the func-
tion @tt_tensor/round.m to enforce the uniqueness enforcing TT-SVD (Section 3.1).
Moreover, we have implemented the TT-CP conversion, together with the norm equilibration.
For the training of the TT-MMK model, we have used the svmtrain function available in the
LIBSVM2 library. We have run all experiments on a machine equipped with Ubuntu release
16.04.6 LTS 64-bit, 7.7 GiB of memory, and an Intel Core i5-6600 CPU @ 3.30GHz×4 CPU.
The codes are available publicly on GitHub3.

• Parameter Tuning
The entire TT-SVM model depends on three parameters. First, to simplify the selection of TT
ranks, we take all TT ranks equal to the same value R ∈ {1, 2, . . . 10}. Another parameter is
the width of the Gaussian Kernel σ. Finally, the third parameter is a trade-off constant C for the
KSTM optimization technique (6). Both σ and C are chosen from {2−8, 2−7, . . . , 27, 28}. For
tuning R, σ and C to the best classification accuracy, we use the k-fold cross validation with
k = 5. Along with this, we repeat all computations 20 times and compute statistics (average,
standard deviation, and numerical quantiles) over these runs. This ensures a confident and
reproducible comparison of different techniques.

4.1 Data Collection

1. Resting-state fMRI Datasets

• Alzheimer Disease (ADNI): The ADNI4 stands for Alzheimer Disease Neuroimaging
Initiative. It contains the resting state fMRI images of 33 subjects. The data set was
collected from the authors of the paper (He et al., 2017a). The images belong to either
Mild Cognitive Impairment (MCI) with Alzheimer Disease (AD), or normal controls.
Each image is a tensor of size 61× 73× 61, containing 271633 elements in total. The
AD+MCI images are labeled with −1, and the normal control images are labeled with 1.
Preprocessing of the data sets is explained in (He et al., 2014).

1. https://github.com/oseledets/TT-Toolbox
2. https://www.csie.ntu.edu.tw/~cjlin/libsvm/
3. https://github.com/mpimd-csc/Structure-preserving_STTM
4. http://adni.loni.usc.edu/
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• Attention Deficit Hyperactivity Disorder (ADHD): The ADHD data set is collected
from the ADHD-200 global competition data set5. It is a publicly available preprocessed
fMRI data set from eight different institutes, collected at one place. The original data
set is unbalanced, so we have chosen 200 subjects randomly, ensuring that 100 of them
are ADHD patients (assigned the classification label −1) and the 100 other subjects are
healthy (denoted with label 1). Each of the 200 resting state fMRI samples contains
49× 58× 47 = 133574 voxels.
Note: As mentioned in the MMK paper (He et al., 2017a), the exact indices of the
collected data are not mentioned. Hence, our collected dataset might not be exactly the
same. Therefore, accuracy percentages are not directly comparable to the MMK paper.

2. Hyperspectral Image (HSI) Datasets: We have taken the mat file for both the datasets and
their corresponding labels6. The following datasets have three dimensional tensor structure
of different sizes, where each tensor data point represents a pixel value. Therefore, for our
experiment we have taken a patch of size 5× 5 for two different pixel values, in order to get a
binary classification dataset.

• Indian Pines: The HSI images were collected via the Aviris Sensor7 over the Indian
Pines test site. The size of the dataset is 145×145 pixels over 224 spectral values. Hence,
the size of the tensor data is 145 × 145 × 224. The mat file we have collected for our
experiment has reduced band size 200. This excludes bands covering the region of water
absorption: [104-108], [150-163]. The original dataset contains 16 different labels to
identify different corps and living areas. We have taken only 50 datapoints for each of
the two labels 11 (Soybean-mintill ) and 7 (Grass-pasture-mowed).

• Salinas: This HSI images data was collected by 224 band Aviris Sensor over Salinas
valley, California. Similar to Indian Pines, in this case, we have also collected samples
for two GroundTruths, namely 9 (Soil-vinyard-develop) and 15 (Vinyard-untrained) each
with 50 datapoints. The size of the dataset is 512× 217 pixels over 224 spectral values.
Hence, the size of the tensor data is 512× 217× 224.

4.2 Influence of Individual Algorithmic Steps

In the first test we investigate the impact of each individual transformation of the TT decomposition,
outlined in Section 3.1–Section 3.3. Firstly, we can apply a counterpart of the DuSK kernel (14)
directly to the initial TT approximation of the data tensors. Given TT decompositions

xi1,i2,i3 =

R1,R2∑
r1,r2=1

G
(1)
i1,r1

G
(2)
r1,i2,r2

G
(3)
r2,i3

and yi1,i2,i3 =

R1,R2∑
t1,t2=1

S
(1)
i1,t1

S
(2)
t1,i2,t2

S
(3)
t2,i3

,

we compute a separable kernel similarly to (14) via

k(X,Y) =

R1∑
r1,t1=1

R2∑
r2,t2=1

k(G(1)
r1 ,S

(1)
t1

)k(G(2)
r1,r2 ,S

(2)
t1,t2

)k(G(3)
r2 ,S

(3)
t2

). (15)

5. http://neurobureau.projects.nitrc.org/ADHD200/Data.html
6. http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
7. https://aviris.jpl.nasa.gov/
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A similar approach was also proposed recently in Chen et al. (2022). We compare two versions
of this TT-DuSK kernel: “uTT” and “TT”, which correspond to the TT-SVD algorithm with and
without uniqueness enforcement (Algorithm 1), respectively.

Next, we expand the TT format without uniqueness enforcement into the CP format as described
in Section 3.2 and (10), but without equilibrating the norms, and apply the DuSK kernel (14). The
corresponding classifier is called “TTCP”. Note that for a given TT decomposition and its exact
TT-CP expansion the values of the kernels (15), and (14) coincide. However, different runs of the
classification algorithm may produce different signs of the singular vectors in the TT-SVD algorithm,
different initial guesses in the SVM, and different splitting of the data into training and test sets
during the cross validation.

Finally, we make the norms of the CP factors equilibrated as described in Section 3.3 and (12),
followed by the DuSK kernel (14). Depending on using or not using the uniqueness enforcement
during the initial TT computation, the corresponding classifiers are called “uTTCPe” and “TTCPe”,
respectively.

Figure 4: Test classification accuracy of different versions of the TT-MMK algorithm: “TT” vs
“uTT” (left top), “TT” vs “TTCP” (right top), “TTCP” vs “TTCPe” (left bottom), and
“TTCPe” vs the final algorithm “uTTCPe” (right bottom) for the ADNI dataset. Lines
denote averages, and shaded areas denote 95% confidence intervals over 20 runs.
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In Figure 4 we compare these versions of the algorithm pairwise to ensure clarity of overlapping
confidence intervals. Top left plot of Figure 4 shows that the direct TT counterpart of the DuSK
kernel (15) gives a poor test accuracy, although the uniqueness enforcement can improve it slightly
for higher ranks.

Next, we compare TT and TTCP DuSK kernels (top right of Figure 4). This is merely a sanity
check, since deterministic algorithms would give the same results. Indeed, randomized algorithms
give results that are statistically indistinguishable.

In the bottom left plot of Figure 4 we compare TTCP DuSK kernels with and without norm
equilibration, but without uniqueness of the underlying TT decomposition. We see that the norm
equilibration gives a higher test accuracy at rank 5 which is statistically significant. Nevertheless, the
mean accuracy is still below 65%.

Finally, when we plug in both the unique TT format and its norm-equilibrated TTCP expansion
(Figure 4, bottom right), we boost the test accuracy above 70%, with the best average accuracy of
73% achieved for rank 4. This shows that all steps of the TT-MMK classifier are important.

Figure 5: Hyperspectral images with different labels: (a) GroundTruth of Indian Pines dataset, (b)
GroundTruth of Salinas dataset.

4.3 Comparison to Other Methods

Next, we compare the classification accuracy of the final proposed TT-MMK method (“uTTCPe”)
with the accuracy of the following existing approaches.

SVM: the standard SVM with Gaussian Kernel. This is the most used optimization method
for vector input based on the maximum margin technique. The objective function mentioned
in (3) has been optimized using LIBSVM using the kernel trick (Schölkopf et al., 2001).

STuM: The Support Tucker Machine (STuM) (Kotsia and Patras, 2011) uses the Tucker
decomposition. The weight parameters of the SVM are computed for optimization into Tucker
factorization form.
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DuSK: The idea of DuSK (He et al., 2014) is based on defining the kernel approximation for
the rank-one decomposition. This is one of the first methods in this direction. He et al. (2014)
solves the STM (6), with kernel approximation using the DuSK format similar to (14).

MMK: This method is an extension of DuSK to the KCP input. The latter is the CP format
with factor matrices (1) projected onto a covariance or random matrix (He et al., 2017a). We
used the original DuSK and MMK codes provided by the authors of the paper (He et al.,
2017a).

Improved MMK: This is actually a simplified MMK, where the projection of the CP onto the
KCP is omitted (the covariance/random matrices are replaced by the identity matrices).

KSTTM: This method is applied directly on the TT-cores with two different types of kernel
computations, namely K-STTM prod and K-STTM sum (Chen et al., 2022). In our experiments,
this method ran out of memory for the ADHD dataset during the computation of the kernel
matrix.

TT-MMK: This is our proposed method.

Our key observations from the results shown in Table 2 and Figure 7 are as follows.

(In)sensitivity to the TT Rank Selection: Figures 7 and Figure 4 (bottom right) show that
the proposed method gives almost the same accuracy for different TT ranks. For some samples,
even the TT rank of 2 gives a good classification. Note that this is not the case for MMK,
which requires a careful selection of the CP rank.

Computational Robustness: while the CP decomposition can be computed using only iter-
ative methods in general, all steps of the kernel computation in TT-MMK are “direct” in a
sense that they require a fixed number of linear algebra operations, such as the SVD and matrix
products.

Computational Complexity: approximating the full tensor in the TT format has the same
O(nM+1) cost as the Tucker and CP decompositions. All remaining operations with the
factors scale linearly in the dimension M and mode sizes, and polynomially in the ranks.

Classification Accuracy: the proposed method gives the best average classification accuracy
compared to five other state of the art techniques.

Running Time: The time taken by the MMK and TT-MMK experiments for the ADNI data
with C, σ ∈

[
2−8, 2−7, . . . , 27, 28

]
are ≈ 17 minutes and ≈ 3.5 hours, respectively, for the

entire range of R ∈ {1, 2, . . . 10}. However, if we look closer at Figure 6, the TT-MMK
achieves nearly the best accuracy for any rank starting from 2. This means that even though
the TT-MMK process takes more time than MMK for the same TT ranks due to the higher CP
rank induced by (10), the higher test accuracy is a reasonable reward for the larger CPU time.
In particular, if we reduce the range of R to {1, . . . , 5}, which is sufficient to discover the best
classifiers for both methods, the timings are closer: MMK needs about 1 minute for its best
variant (CP rank 5), while the TT rank 4 solution of a better accuracy is computed in about 3
minutes. This slightly higher runtime is acceptable for a better classification accuracy.

Reproducibility: Figure 7 shows that the MMK method has a higher empirical standard
deviation (0.05 for the ADNI dataset, 0.02 for the ADHD dataset) compared to the TT-
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MMK method with standard deviations of 0.03 and 0.01 for the ADNI and ADHD datasets,
respectively. This shows that TT-MMK is more predictable.

Generalization: Top accuracy (see Table 2) in datasets from two different areas (fMRI and
HSI) shows that the method is suitable for a wide range of binary tensor classification problems.
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Figure 6: CPU time vs classification accuracy for ADNI data with truncation rank from 1 to 10.

Figure 7: Classification accuracy, average (lines) ± one standard deviation (shaded areas) over 20
runs. Left: ADNI dataset. Right: ADHD dataset.

5. Conclusions

We have proposed a new kernel model for SVM classification of tensor input data. Our kernel extends
the DuSK approach (He et al., 2017a) to the TT decomposition of the input tensor with enforced
uniqueness and norm distribution. The TT decomposition can be computed more reliably than the
CP decomposition used in the original DuSK kernel. Using fMRI and Hyperspectral Image data sets,
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Table 2: Average classification accuracy in percentage for different methods and data sets

METHODS ADNI ADHD INDIAN PINES SALINAS

SVM 49 52 46 47
STUM 51 54 57 74
DUSK 55 57 60 92
MMK 69 58 93 98
IMPROVED MMK 70 58 94 98
K-STTM PROD 60 - 76 100
K-STTM SUM 60 - 73 100
TT-MMK 73 63 99 99

we have demonstrated that the new TT-MMK method provides higher classification accuracy for an
unsophisticated choice of the TT ranks for a wide range of classification problems. We have found
out that the each component of the proposed scheme (uniqueness enforced TT, TT-CP expansion and
norm equilibration) is crucial for achieving this accuracy.

Further research will consider improving the computational complexity of the current scheme,
as well as a joint optimization of the TT cores and SVM weights. Similarly to the neural network
compression in the TT format (Novikov et al., 2015), such a targeted iterative refinement of the TT
decomposition may improve the prediction accuracy.
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