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Abstract

We consider Generative Adversarial Networks (GANs) and address the underlying func-
tional optimization problem ab initio within a variational setting. Strictly speaking, the
optimization of the generator and discriminator functions must be carried out in accordance
with the Euler-Lagrange conditions, which become particularly relevant in scenarios where
the optimization cost involves regularizers comprising the derivatives of these functions.
Considering Wasserstein GANs (WGAN) with a gradient-norm penalty, we show that the
optimal discriminator is the solution to a Poisson differential equation. In principle, the
optimal discriminator can be obtained in closed form without having to train a neural
network. We illustrate this by employing a Fourier-series approximation to solve the Poisson
differential equation. Experimental results based on synthesized Gaussian data demonstrate
superior convergence behavior of the proposed approach in comparison with the baseline
WGAN variants that employ weight-clipping, gradient or Lipschitz penalties on the discrim-
inator on low-dimensional data. We also analyze the truncation error of the Fourier-series
approximation and the estimation error of the Fourier coefficients in a high-dimensional
setting. We demonstrate applications to real-world images considering latent-space prior
matching in Wasserstein autoencoders and present performance comparisons on benchmark
datasets such as MNIST, SVHN, CelebA, CIFAR-10, and Ukiyo-E. We demonstrate that
the proposed approach achieves comparable reconstruction error and Fréchet inception
distance with faster convergence and up to two-fold improvement in image sharpness.

Keywords: Generative adversarial networks, Calculus of variations, Euler-Lagrange
conditions, Fourier-series approximation, Wasserstein autoencoder.

1. Introduction

The optimization of a generative adversarial network (GAN), originally proposed by Good-
fellow et al. (2014), (Standard GAN, or SGAN) is a min-max game between two players

— a generator (G) and a discriminator (D). The role of the generator is to create fake
samples that mimic the ones coming from the training data distribution. The discriminator
D is tasked with telling apart the real samples from the fake ones. The optimal G is the
one that outsmarts D into confusing the fake samples for real. The SGAN optimization
comprises the generator and the discriminator with respective loss functions. The generator

c©2023 Siddarth Asokan and Chandra Sekhar Seelamantula.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v24/20-1390.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v24/20-1390.html


Asokan and Seelamantula

G accepts high-dimensional noise z ∼ p` as input and generates fake samples G(z) ∼ pg.
The discriminator D accepts an input x, which could come from either the data distribution
pd, or the generator distribution pg, and outputs a value D(x). Effectively, the generator
must learn a mapping from the noise distribution to the data distribution, whereas the
discriminator must learn the optimal two-class classifier. Over the past decade, numerous
variants of GANs have been proposed with several successful applications. Almost all known
GAN flavors minimize either a divergence metric or an integral probability metric. In the
following, we review important GANs under each category.

Divergence-minimizing GANs: GANs were originally designed to minimize the diver-
gence between the true data distribution pd and the generator distribution pg. For instance,
the SGAN formulation minimizes the Jensen-Shannon divergence, whereas the least-squares
GAN (LSGAN) (Mao et al., 2017) is optimized for the Pearson-χ2 divergence. The f -GAN
formulation (Nowozin et al., 2016) is a generalization that includes a chosen f -divergence.
In the original SGAN, the discriminator output is constrained to the interval [0, 1], repre-
senting the probability of the input sample being real or fake, whereas LSGAN requires the
discriminator output to match the chosen class-labels. In f -GANs, the discriminator output
is real-valued, but the activation function maps it to a desired interval.

Integral probability metric GANs: In certain GAN flavors, the discriminator is replaced
with a real-valued critic C that differentiates between the generator and data distributions
in terms of an integral probability metric (IPM) defined over the class of critics to choose
from. The choice of the class of critics gives rise to variants such as the Wasserstein GAN
(WGAN) (Arjovsky et al., 2017) with a Lipschitz-1 critic, the minimum-mean discrepancy
GAN (MMD-GAN) (Li et al., 2017) where the critic is bounded by a ball in a reproducing-
kernel Hilbert space, or the Fisher GAN (Mroueh and Sercu, 2017) in which the second-order
moments of the critic are constrained to be bounded. Sobolev GANs (Mroueh et al., 2018)
favor critics with a finite energy in the gradient. The critic is a neural network similar
to the discriminator, where the constraints are enforced appropriately, either by means of
an adjustment of the network weights (Arjovsky et al., 2017; Roth et al., 2019; Wang and
Liu, 2016), or through a suitable penalty incorporated into the loss function (Gulrajani
et al., 2017; Roth et al., 2017; Mescheder et al., 2018). In our formulation, we use the term
discriminator D(x) to refer to either a divergence-based discriminator or the IPM-based
critic with the context resolving any ambiguity.

In this paper, we will primarily focus on the IPM loss as considered in the context of
WGANs. Within this framework, the regularized optimization problem takes the form

min
pg

max
D

{
Ex∼pd [D(x)]− Ex∼pg [D(x)] + Ω(D(x))

}
,

where E denotes the expectation operator and Ω is a suitable regularizer on D. The objective
of the min-max optimization is to ensure that the optimal generator distribution p∗g(x)
matches the data distribution pd(x). Typically, one considers gradient-based regularizers,
which enforce smoothness on the discriminator.

The stupendous success of GANs in generating realistic images has resulted in significant
efforts trying to explain them analytically. While divergence-minimizing GANs are analyzed
in a probabilistic setting, IPM based GANs have been analyzed within the framework of
optimal transport (Sanjabi et al., 2018; Bousquet et al., 2017; Lei et al., 2019). The energy
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based GAN (EBGAN) (Zhao et al., 2017) and related works (Finn et al., 2016; Che et al.,
2020) interpret the GAN loss as an energy function that assigns large values to regions of the
manifold where there is a mismatch between the generator and data distributions. The min-
max game could also be viewed as an instance of imitation learning (Finn et al., 2016; Ho and
Ermon, 2016; Grnarova et al., 2018), drawing parallels to reinforcement and online learning
paradigms. GANs have also been analyzed in a game-theoretic setting with convergence to
the Nash equilibrium (Oliehoek et al., 2019; Fedus et al., 2018; Gao and Tembine, 2018),
and in an information-theoretic setting, for instance, in the context of entropy minimization
for interpolation in the latent space (Chen et al., 2016), or stochastic procedures to estimate
ratios of densities and functions thereof (Mohamed and Lakshminarayanan, 2016). The
convergence guarantees of various GAN training algorithms have been analyzed in a series of
contributions (Salimans et al., 2016; Gulrajani et al., 2017; Roth et al., 2017; Kodali et al.,
2017; Mescheder et al., 2018; Li et al., 2018).

On GANs and Partial Differential Equations: GANs have been employed to solve
stochastic differential equations and various classical partial differential equations (PDEs)
encountered in the context of harmonic oscillation, nonlinear oscillation (Yang et al., 2019),
and more recently, infectious disease modelling (Randle et al., 2020), to name a few. On the
flip side, ordinary differential equations (ODEs) have been used for GAN training. More
specifically, the stability of GANs has been shown to improve when the discrete gradient-
descent based network updates were replaced with a numerical solver for the corresponding
ODE (Qin et al., 2020). The discriminator and generator are first parametrized as neural
networks and subsequently solved for via an ODE. In contrast with these approaches, we view
the GAN training problem as a regularized functional optimization problem, which cannot
always be addressed using point-wise optimization. The argument becomes more compelling
when gradient-based penalties are incorporated. The proposed variational approach is generic
and subsumes the unregularized formulations, for instance, the original GAN formulation
of Goodfellow et al. (2014). The optimization requires one to solve a PDE. This formalism
yields new insights into the interplay between the generator and the discriminator. The
Sobolev GAN formulation (Mroueh et al., 2018), which employs the IPM comes closest to our
approach. Preliminary connections between the Sobolev GAN and the Fokker-Planck PDE
were established in Mroueh et al. (2018). However, an in-depth analysis of the PDE was
not carried out, and the connection was not leveraged to optimize the GAN more efficiently.
Sobolev GAN implementation ultimately relies on an empirical approach for computing the
gradient-based penalty in the optimization (Gulrajani et al., 2017). We show how the PDE
connection can be leveraged to make the GAN optimization more efficient and insightful.

1.1 Our Contributions

In this paper, we analyze GANs within a variational framework by enforcing the Euler-
Lagrange (EL) conditions to determine the optimum. In scenarios where the GAN loss
does not involve derivative terms, the EL conditions degenerate to performing point-wise
optimization. Unlike the existing results in the GAN literature, we explicitly enforce essential
conditions, namely non-negativity and area under the density equal to unity, which the
optimal generator distribution must satisfy in order to qualify as a valid density. We carry
out the analysis for several GAN flavors: SGAN, LSGAN, and f -GANs (Appendix A).
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To concretely demonstrate the importance and efficacy of the Euler-Lagrange variational
framework, we consider the Wasserstein GAN loss proposed by Arjovsky et al. (2017), but
with a difference — we consider a gradient-norm penalty on the discriminator, which is a novel
variant of the penalty proposed by Mroueh et al. (2018). The penalized Wasserstein GAN
loss necessitates Euler-Lagrange analysis because the new optimization objective involves
gradient terms. The chosen gradient-norm penalization has an interesting consequence —
the optimal discriminator, given the generator, turns out to be the solution to the Poisson
PDE. In principle, the optimal discriminator could be determined in a single shot. By
analyzing the PDE, first in 1-D, and subsequently, generalizing to higher dimensions, we
show that the corresponding optimal generator, given the optimal discriminator, learns the
desired target distribution (Sections 3 - 4). Our formulation also allows one to determine
the optimal Lagrange multiplier in the gradient-norm-penalized Wasserstein GAN loss.

Since the GAN optimization alternates between the discriminator and generator, one
could start with an initial generator distribution and determine the corresponding optimal
discriminator single-shot by solving the Poisson PDE. In the next step, we solve for the
generator distribution using the optimal discriminator. Our analysis also shows that the
optimal generator distribution coincides with the data distribution.

In a real-world scenario, we only have discrete data, and solving the PDE becomes
impractical. In such circumstances, we resort to an approximate solution by considering
a Fourier-series representation of the discriminator. The choice of the Fourier bases is
motivated by the fact that they are eigenfunctions of linear differential operators. Also,
the separability and orthogonality properties of the multidimensional Fourier bases give
rise to a computationally elegant approach to finding the solution, which obviates the need
to optimize a neural network. The underlying formulation remains continuous, while the
computations are carried out in discrete. We use the Fourier-series approximation mainly to
illustrate the point and to serve as a proof of concept, although in principle, one could employ
alternative and possibly more parsimonious bases expansions. In order to substantiate the
developments, we provide experimental validations employing simulated unimodal and
multimodal Gaussian data. Since the Fourier-series model complexity increases exponentially
with the dimension of data, we resort to truncation and sampling of the Fourier coefficients.
The superior performance of the Fourier-series approximations in lower dimensions motivates
us to consider the Wasserstein autoencoder (WAE), where we replace the neural network
discriminator with a Fourier-series solver operating in the latent space (Section 6).

We present results obtained by training the WAE on several datasets such as MNIST (Le-
Cun et al., 1998), SVHN (Netzer et al., 2011), CelebA (Liu et al., 2015), Ukiyo-E (Pinkney
and Adler, 2020), and CIFAR-10 (Krizhevsky, 2009). The experiments demonstrate that
the Fourier-series based discriminator leads to a faster and stabler convergence of the GAN
component in WAE measured in terms of the Fréchet inception distance (FID) (Heusel
et al., 2017) and reconstruction error, while also generating substantially sharper images on
the datasets considered. The notable aspect is that these advantages accrue even without
having to train a discriminator neural network. While our objective is not to avoid training
a neural network for the discriminator, the proposed approach gives valuable insights into
how closely coupled the discriminator and the generator optimization are, and gives us a
deeper understanding of what exactly the neural-network based discriminator is trying to
achieve.
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The contributions of this paper may be summarized as follows. In the context of gradient-
norm penalized WGAN, we show that the optimal discriminator, given the generator, solves
a Poisson PDE. The solution relates to potential functions between the generator and data
distributions in high dimensions. The solution is obtained using a truncated Fourier-series
model, whose coefficients are obtained in closed form. This readily allows one to determine
the optimal discriminator given the generator, while training only the generator network. We
also show that the optimal value of the Lagrange multiplier can also be computed in closed
form using a primal-dual approach. The advantage is that tracking the optimal Lagrange
multiplier becomes a viable alternative for measuring training convergence in practical
settings. We derive bounds on the errors introduced by the Fourier series truncation and
sample estimation. Experimental validations on synthetic Gaussian and real-world datasets
show that training a GAN with the proposed Fourier-series based discriminator outperforms
baseline methods that consider a neural network for the discriminator. The applicability of
the proposed framework is demonstrated for variants of divergence-minimizing GAN losses,
with and without regularizers.

2. Mathematical Preliminaries

The cornerstone of our analysis is the Euler-Lagrange (EL) framework, which is at the heart
of Calculus of Variations (Gelfand and Fomin, 1964; Mesterton-Gibbons, 2009). The EL
conditions are of fundamental importance in solving several problems in physics (Goldstine,
1980; Ferguson, 2004).

Consider the functional optimization of a cost L defined as

L
(
y(x), y′(x)

)
=

b∫
a

F
(
x, y(x), y′(x)

)
dx, (1)

with respect to y(x), x ∈ [a, b], which is assumed to be continuously differentiable or at
least continuous with a piecewise-smooth derivative y′(x), with finite Dirichlet boundary
conditions. Let y∗(x) denote the optimizer of L. The first variation of L at the optimum y∗,

is defined as the Gateaux derivative δL(y∗, η) =
∂Lε(y∗)
∂ε

∣∣∣∣
ε=0

, where

Lε(y∗) = L
(
y∗(x) + ε η(x), y∗

′
(x) + ε η′(x)

)
=

b∫
a

F
(
x, y∗(x) + ε η(x), y∗

′
(x) + ε η′(x)

)
dx,

where, in turn, η(x) is a family of compactly supported, infinitely differentiable functions
that are identically zero at the boundaries x = a and x = b. Setting the first variation
to zero and invoking the fundamental lemma of Calculus of Variations gives rise to the
Euler-Lagrange condition. The fundamental lemma of Calculus of Variations states that if a
function f(x) satisfies the condition∫ b

a
f(x) η(x) dx = 0
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for all compactly supported, infinitely differentiable functions η(x), then f must be identically
zero almost everywhere in [a, b].

The Euler-Lagrange condition that the optimizer y∗(x) must satisfy is given as follows:

∂F
∂y
− ∂

∂x

(
∂F
∂y′

) ∣∣∣∣∣
y=y∗(x)

= 0. (2)

In the special case where the cost L does not involve the derivative of y, the EL condition
reduces to the degenerate version:

∂F
∂y

∣∣∣∣∣
y=y∗(x)

= 0,

which simply corresponds to a point-wise optimization of y over x ∈ [a, b].
In the multivariate case, that is, x ∈ Rn, the cost is of the type

L
(
y (x) ,

{
y′i
}n
i=1

)
=

∫
X⊆Rn

F
(
x, y,

{
y′i
}n
i=1

)
dx,

where X is the domain of integration and y′i denotes the partial derivative of y(x) w.r.t. the
ith entry of x, that is, xi. The corresponding EL condition is

∂F
∂y
−

N∑
i=1

[
∂

∂xi

(
∂F
∂y′i

)]∣∣∣∣∣
y=y∗(x)

= 0. (3)

The EL condition is a first-order condition and enforcing it yields the optimum. Whether the
optimum corresponds to a minimizer or maximizer of the cost must be checked by invoking
the second-order condition, more specifically the Legendre-Clebsch necessary condition for a

minimizer. In the 1-D case, the condition is given by
∂2F
∂y′2

≥ 0. In the multivariate setting,

this condition translates to the positive-semi-definiteness (p.s.d.) of the Hessian matrix H of
the Hamiltonian H, computed with respect to {y′i(x)}ni=1 and evaluated at y(x) = y∗(x):

Hy,H

∣∣∣∣
y=y∗

� 0, where � denotes the p.s.d. property. The Hamiltonian is given by

H =

n∑
i=1

(
y′i
∂F
∂y′i

)
−F ,

and the entries of the Hessian are given by

[Hy,H]i,j =
∂2H
∂y′i∂y

′
j

.

We now apply the EL conditions to analyze Wasserstein GANs (WGANs) subject to the
gradient-norm penalty in Section 3, and present similar analysis for divergence minimizing
f -GAN variants in Appendix A and other gradient-regularized GAN losses in Appendix F.
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3. Wasserstein GANs

The WGAN minimizes earth mover’s distance (EMD) between the generator and the target
data distributions, pg and pd, respectively. Earth mover’s distance is a special case of the
Wasserstein distance between two distributions. Through Kantorovich-Rubinstein duality,
the WGAN optimization is specified via the min-max problem:

min
pg

{
max
D

{
Ex∼pd [D(x)]− Ex∼pg [D(x)]

}}
,

which is equivalent to the sequential minimization:

D∗(x, pg) = arg min
D: ‖D‖L≤1

LWGAN
D , where LWGAN

D = −Ex∼pd [D(x)] + Ex∼pg [D(x)], and

p∗g(x) = arg min
pg
LWGAN
G , where LWGAN

G = Ex∼pd [D
∗(x, pg)]− Ex∼pg [D

∗(x, pg)]

where in turn, ‖D(x)‖L ≤ 1 denotes the Lipschitz constraint on the discriminator and
D∗(x, pg) is the optimal discriminator for a given generator distribution pg. The optimal
discriminator D∗ is the one that penalizes regions of the input space where pg differs from
pd, while satisfying the Lipschitz constraint. The constraint is typically imposed by clipping
the weights of the discriminator network.

An alternative to weight-clipping is spectral normalization of the weights (Roth et al.,
2019). Subsequent works (Gulrajani et al., 2017; Petzka et al., 2018; Terjék, 2020) replaced
the Lipschitz constraint with a gradient penalty to avoid exploding gradients in a neural-
network setting. For example, Gulrajani et al. (2017) replaced the Lipschitz-1 penalty with
the gradient penalty (WGAN-GP): (‖∇D(x)‖2−1)2 =0. It is well-known that a function
whose gradient has a bounded norm satisfies the Lipschitz constraint (Adler and Lunz, 2018).

Table 1 lists a few important gradient-based regularizers proposed in the WGAN literature,
which are considered in this paper. The original WGAN-GP empirically evaluated the
discriminator gradient on samples drawn from the interpolated distribution αpg + (1− α)pd,
0 ≤ α ≤ 1, and penalizes values far away from 1 in the norm-squared sense. Petzka et al.
(2018) incorporated a one-sided hinge-like penalty in the WGAN-LP formulation (LP stands
for Lipschitz penalty). The gradient magnitude is upper-bounded by 1, by penalizing the
discriminator only when the gradient magnitude exceeds 1. The gradients were evaluated
empirically on an interpolated distribution as in the case of WGAN-GP. In the adversarial
Lipschitz regularization proposed in WGAN-ALP (Terjék, 2020), for a sample drawn from
either the data or generator distributions, the regularizer was evaluated along the adversarial
penalty direction radv — the one along which the Lipschitz constraint is maximally violated.
Mroueh et al. (2018) considered a gradient-norm penalty in the Sobolev GAN formulation,
where they bounded the energy in the gradient of the discriminator, evaluated with respect
to a base measure νp(x). From an implementation standpoint, they considered two base
measures: (a) The midpoint distribution νp(x) =

pd+pg
2 , which is a special case of the

WGAN-GP penalty (Gulrajani et al., 2017); and (b) A noise-convolved version of pd, also
considered in DRAGAN (Kodali et al., 2017). Mescheder et al. (2018) employed gradient
penalties evaluated independently over real data (WGAN-Rd), over the generated data
(WGAN-Rg), or a weighted combination of both (WGAN-RdRg) which can be seen as special
cases of the Sobolev GAN penalty. Subsequent works extended the Wasserstein-1 distance
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WGAN flavor Discriminator loss

WGAN LWGAN
D = −Ex∼pd [D(x)] + Ex∼pg [D(x)]

WGAN-GP LWGAN
D + λEx∼αpg+(1−α)pd

[
(‖∇D(x)‖2 − 1)2

]
; 0 ≤ α ≤ 1

WGAN-RdRg LWGAN
D + λ1

2 Ex∼pd
[
‖∇D(x)‖22

]
+ λ2

2 Ex∼pg
[
‖∇D(x)‖22

]
Sobolev GAN LWGAN

D +λEx∼νp(x)

[
‖∇D(x)‖22

]
, where νp(x) ≥ 0;

∫
X νp(x)dx = 1

WGAN-LP LWGAN
D + λEx∼αpg+(1−α)pd

[
(max(‖∇D(x)‖2 − 1, 0))2

]
; 0 ≤ α ≤ 1

WGAN-ALP
LWGAN
D + λEx∼pd

[(
max

(
D(x)−D(x+radv)

‖radv‖2 − 1, 0
))2

]
,

where radv = max
r:‖r‖2>0

{
D(x)−D(x+r)

‖r‖2

}
WGAN-GNP
(Proposed)

LWGAN
D + λd

∫
x∈X

(
‖∇D(x)‖22 − 1

)
dx

Table 1: Discriminator loss functions corresponding to various WGAN variants considered in
the literature alongside the proposed WGAN with gradient-norm penalty (WGAN-
GNP). The key difference lies in how the Lipschitz penalty is enforced on the
discriminator. While the vanilla WGAN clips the discriminator network weights,
the other WGAN flavors, including ours, consider gradient-based regularization.

based GAN to general Lp-norm spaces (Adler and Lunz, 2018) or propose solving the primal
problem through differentiable Sinkhorn fixed-point iterations (Genevay et al., 2018).

3.1 WGAN with Gradient-norm Penalty

Let X denote the convex hull that contains the supports of pd and pg. In this work, we
consider the following gradient-norm penalty (GNP) for the WGAN:

ΩD :

∫
X

(
‖∇D(x)‖22 − 1

)
dx. (4)

In WGAN-GP, the gradients are evaluated over an interpolated distribution. As in the case
of WGAN-Rd or WGAN-Rg, the proposed penalty can be viewed as a particular case of
the penalty considered in the Sobolev GAN formulation. While WGAN-Rd and WGAN-Rg

enforce the penalty on the supports of pd and pg, respectively, the proposed WGAN-GNP
considers a uniform distribution on X , resulting in a closed-form solution to the discriminator,
given the generator. In the WGAN-GNP setting, we constrain the generator and data
distributions as follows:
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Assumption 1 (C1(X ) distributions). The generator and data distributions are compactly
supported and continuously differentiable functions.

Incorporating ΩD into the WGAN discriminator cost results in the following optimization
problem for the discriminator:

D∗(x, pd, pg) = arg min
D

{
−Ex∼pd [D(x)] + Ex∼pg [D(x)] + λd

∫
X

(
‖∇D(x)‖22 − 1

)
dx

}
︸ ︷︷ ︸

LD

.

(5)

The generator optimization is then given by

p∗g(x) = arg min
pg
{LG} , where

LG = Ex∼pd [D
∗(x, pd, pg)]− Ex∼pg [D

∗(x, pd, pg)] + λp

(∫
X
pg(x) dx− 1

)
+

∫
X
µp(x)pg(x) dx, (6)

where λp and µp(x) are the Karush-Kunh-Tucker (KKT) multipliers for the integral constraint
Ωpg :

∫
X pg(x)dx = 1, and the non-negativity constraint Φpg : pg(x) ≥ 0, respectively. These

constraints explicitly enforce pg to be a valid p.d.f.
We analyze WGAN-GNP in the one-dimensional setting first and subsequently extend

the analysis to higher dimensions.

3.2 WGAN-GNP and Euler-Lagrange Conditions in 1-D

In the 1-D setting, the gradient norm penalty in Equation (4) takes the following form:

ΩD :

∫
X

(
|D′(x)|2 − 1

)
dx,

where D′ denotes the first derivative of D. The WGAN-GNP discriminator loss is given by

LD = −Ex∼pd [D(x)] + Ex∼pg [D(x)] + λd

∫
X

(
|D′(x)|2 − 1

)
dx. (7)

The optimal discriminator in 1-D is given in the following result.

Theorem 1. Optimal WGAN-GNP discriminator (1-D): Consider the optimization
of the one-dimensional WGAN-GNP discriminator loss given in Equation (7). The optimal
discriminator D∗(x), given the generator pg, is a solution to one-dimensional Poisson’s
second-order differential equation:

D′′(x) =
pg(x)− pd(x)

2λd
, ∀ x ∈ X , (8)

and is given by the closed-form solution involving the twice-iterated antiderivatives:

D∗(x) =
1

2λd

∫ (∫
(pg(x)− pd(x)) dx

)
dx± x, ∀ x ∈ X , (9)

where λd is the Lagrange multiplier corresponding to the gradient penalty, and
∫

denotes the
antiderivative.
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Proof. The integrand in LD in Equation (7) is given by

F
(
x,D,D′

)
= D(x)(pg(x)− pd(x)) + λd

(
|D′(x)|2 − 1

)
.

The Euler-Lagrange condition in Equation (2), when applied to F results in the ordinary
differential equation (ODE) given in Equation (8). The homogeneous solution to the 1-D
Laplace equation D′′ = 0 takes the form D∗h(x) = a1x + a0, while the particular solution
D∗p(x, pg, pd) is twice-iterated antiderivative of the right-hand side of Equation (8). The
optimal discriminator D∗(x, pg, pd) is the sum of the homogeneous and particular solutions:

D∗(x, pg, pd) = D∗p(x, pg, pd) +D∗h(x)

=
1

2λd

∫ (∫
(pg(x)− pd(x)) dx

)
dx+ a1x+ a0.

The constants a0 and a1 must be estimated based on the boundary conditions. Upon
convergence of the GAN, the optimal generator distribution must match the data distribution,
that is, p∗g = pd. In this scenario, the optimal discriminator D∗opt(x) = D∗

(
x, p∗g, pd

)
, which

implies that the particular solution D∗p = 0 and D∗opt(x) is the solution to Laplace’s equation,
that is, D∗opt(x) = D∗h(x). Enforcing the gradient-norm penalty: |(D∗opt)

′|2 = 1 yields
a1 = ±1. The choice of a0 remains free, as the gradient-norm penalty is satisfied for all
a0 ∈ R, which merely offsets D∗ by a constant. Without loss of generality, we set a0 = 0.
Thus, we obtain the optimal closed-form WGAN-GNP discriminator for a given generator,
given in Equation (9).

While the homogeneous component can be estimated based on the form of ΩD, we will
show (in Theorem 2) that the generator optimization is independent of Dh. Therefore, the
choice of a1 and a0 are inconsequential to the GAN training. While D∗h(x) is independent of
the distributions, we note that the particular solution D∗p (x, pg, pd) and thereby, the sum
D∗(x, pg, pd) depend on the data being modelled, and the generator distribution from which
the samples are provided. Henceforth, we use the notation D∗p(x) and D∗(x) for brevity,
while bearing in mind that the optimal discriminator is always determined for a given pair
of generator and data distributions.

We now present an alternative, but equivalent, formulation of the optimal discriminator
involving the fundamental solution of D′′(x) = δ(x), where δ(x) denotes the Dirac-delta
distribution. The reason for providing the alternative solution is that it readily generalizes
to higher dimensions.

Lemma 1. Fundamental WGAN-GNP discriminator: Given the 1-D Laplace equa-
tion in the distributional setting D′′(x) = δ(x) together with its fundamental solution
φ(x) = r(x) + b1x+ b0, where r(x) is the one-sided ramp function r(x) = x for x ≥ 0, and 0
elsewhere. The solution to the second-order ODE in Equation (8) is given by the convolution
integral:

D∗(x) =
1

2λd
(φ ∗ (pg − pd)) (x) + a1x+ a0. ∀ x ∈ X . (10)

Proof. The fundamental solution is obtained by taking the second-order antiderivative of
δ(x) by interpreting the derivative in the distributional sense. The antiderivative of δ(x) is

10
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the Heaviside unit-step function, and in turn, the antiderivative of the unit-step function
is the one-sided ramp function r(x). This yields φ(x) = r(x) + b1x + b0. The symmetric
fundamental solution φ(x) = 1

2 |x| can be obtained as a special case by setting b1 = 0.5. The
solution to Equation (8) can be obtained by convolving the right-hand side of (8) with the
fundamental solution φ(x) (Evans, 2010). Including the homogeneous solution a1x + a0

results in Equation (10).

We would like to remark that the convolutional form of D∗(x), which solves Poisson’s
PDE, is a special case of the Riemann-Liouville integral (Stein, 1970) given by

Iα1 [f ](x) = cα1

∫ x

0
(x− y)α−1f(y) dy,

where α is the order of the derivative of f , α ∈ [0, 1], and D∗p(x) = I2
1[pg − pd](x).

Lemma 2. Optimal Lagrange multiplier λ∗d (1-D): The optimal Lagrange multiplier
for the one-dimensional discriminator function given in Equation (10) is

λ∗d =
1

4

√
1

|X |

∫
X

((sgn ∗ (pg − pd)) (x) + a1)2 dx , (11)

where sgn(x) = x
|x| denotes the signum function, |X | is the length of the interval X in 1-D,

and the positive root results in a D∗(x) that minimizes LD.

Proof. Enforcing the gradient-norm penalty on D∗(x) yields the optimal Lagrange multiplier
λ∗d. The positive root is chosen based on the Legendre-Clebsch second-order condition (cf.
Section 2), which yields 2λ∗d > 0 for D∗ to be a minimizer of LD. The proof is provided in
Appendix B.1.

Given the optimal discriminator D∗, recall the Lagrangian of the WGAN generator cost
given in Equation (6):

LG = Ex∼pd [D
∗(x)]− Ex∼pg [D

∗(x)] +

∫
X

(λp + µp(x)) pg(x) dx− λp,

where λp and µp(x) are the KKT multipliers associated with the integral and non-negativity
constraints, respectively. The following result presents the optimal WGAN-GNP generator
given the optimal discriminator D∗(x).

Theorem 2. Optimal WGAN-GNP generator (1-D): Consider the optimization of
the integral cost LG given by

LG =

∫
X

(D∗(x)(pd(x)− pg(x)) + (λp + µp(x))pg(x)) dx− λp,

where D∗(x) is given in Equation (10), and λp and µp(x) are the KKT multipliers satisfying
−∞ < µp(x) ≤ 0, µp(x)pg(x) = 0, ∀ x ∈ X , and λp is a finite real value. Minimization of
LG yields

p∗g(x) = pd(x), and µ∗p(x) = 0, ∀ x ∈ X ,

and the solution is optimal for all finite real values of λp.
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Proof. LG involves a convolution term inside the integrand. Hence, it is not in a form
where the Euler-Lagrange conditions can be readily applied. Early manifestations of
such cost functions was in the context of elastodynamics (Gurtin, 1964a) and initial-value
problems (Gurtin, 1964b). In order to solve such problems, Gurtin introduced variational
analysis of convolutional costs starting from first principles and developed the corresponding
counterpart of the fundamental lemma of calculus of variations. We adopt a similar approach
by evaluating the first variation of LG and then applying the fundamental lemma of calculus
of variations (cf. Section 2). The result is the following equation:

(φ ∗ (pd − p∗g))(x) =
µp(x) + λp + a1 x

2
,

where φ is the fundamental solution to the Laplace equation. Considering the Laplacian
on both sides gives p∗g(x) = pd(x) − cµ′′p(x). Enforcing the integral and non-negativity
constraints on p∗g(x) results in the desired optimum p∗g(x) = pd(x). The optimal solution p∗g
is independent of the homogeneous component of the discriminator Dh(x). The detailed
derivation is provided in Appendix B.2.

3.3 Constraint Space of the Discriminator (1-D)

The appropriate class of functions that the discriminator must be drawn from depends
on the choice of the regularizer. For gradient-based regularizers, Sobolev spaces are most
appropriate (Mroueh and Sercu, 2017; Mroueh et al., 2018). The first-order L2-normed
Sobolev Space W 1,2(X , ν) consists of finite-energy functions whose first-order derivative is
also of finite energy with respect to measure ν defined over X . Consider the discriminator
D ∈W 1,2 with the Sobolev norm

‖D‖W 1,2 =
√
‖D‖22,ν + ‖D′‖22,ν =

√∫
X
|D(x)|2 dν +

∫
X
|D′(x)|2 dν <∞.

In Sobolev GAN, Mroueh et al. (2018) consider the space W 1,2
0 , which consists of functions

from W 1,2 that disappear on the boundary of a compact domain X . Consequently, invoking
the Poincaré inequality, it suffices to consider functions with finite energy in the gradi-
ent (Sobolev, 1963) and the semi-norm ‖D‖

W 1,2
0
≤ r‖∇D‖2,ν , for some positive constant r.

The WGAN-GNP discriminator can therefore be interpreted as belonging to W 1,2
0 (X ,UX ),

where UX denotes the uniform measure over X .

3.4 Fourier-series Approximation

The closed-form optimal discriminator given by Equations (9) or (10) involves evaluating an
integral. Further, in a practical GAN setting, we do not have access to pd and pg in closed
form. Hence, in practice, one must resort to alternative approaches to solve the ODE in
Equation (8). Typical alternatives include basis function expansions or discretization of the
differential operators, which gives rise to a finite-difference equation.

The existing GAN approaches, in particular, the WGAN approaches, employ a neural
network for the discriminator and optimize it, agnostic to the underlying differential equation
formulation of the discriminator. On the other hand, we prefer to solve the differential
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equation, even if approximately, instead of employing a neural network. We use a Fourier
bases expansion to solve the differential equation to serve as a proof of concept, although
other basis expansions could be considered as well. Our approach is motivated by that
of Fourier himself who introduced the series expansion to solve the heat equation in a
metal (Fourier, 1807). The choice of Fourier bases is motivated by the fact that they are
eigenfunctions of the Laplace operator, and the multidimensional Fourier bases can be
expressed as a tensor product of the univariate counterparts, which simplifies computation of
the Fourier coefficients. We refer to WGAN-GNP with the Fourier solver as WGAN-FS. From
Assumption 1 and Section 3.3, the data and generator distributions, and the discriminator
functions admit valid Fourier series expansions.

Consider the Fourier-series expansions of the data density, generator density, and the
discriminator, respectively

pd(x) =
∑
m∈Z

αme
jωomx, pg(x) =

∑
m∈Z

βme
jωomx, and D(x) =

1

λd

∑
m∈Z

γme
jωomx,

respectively. The Fourier-series model assumes periodicity and the fundamental frequency
ωo has to be specified. Strictly speaking, although pd, pg, and D(x) are not periodic, we
are concerned with these expansions only over a certain domain of interest. This is also
considered as the fundamental period, which could be determined based on prior knowledge
of the data being modelled. Substituting the Fourier expansions in Equation (8) gives

−(ωom)2

λd
γm exp(jωomx) =

(
βm − αm

2λd

)
exp(jωomx), ∀ m 6= 0,

⇒ γm =
αm − βm
2ω2

om
2
, ∀ m 6= 0, (12)

which are the Fourier coefficients corresponding to the discriminator, except γ0. While the
value of γ0 can be determined based on the boundary conditions on D(x), we observed
experimentally that it merely introduces a constant offset in the optimal discriminator, and
can therefore be ignored when training the generator. The Fourier-series approximation
specifies the discriminator by relating its Fourier coefficients to those of pd and pg. The
advantage of the Fourier expansion of a function is that the derivatives also admit an
expansion in the same bases, so long as they have finite L2 norm. Clubbing the homogeneous
solution a1 x + a0 with the particular solution obtained above gives the general solution.
Without loss of generality, we set a0 = 0 and a1 = 1. The optimal WGAN-FS discriminator,
given the generator (equivalently, its Fourier coefficients), takes the form:

D∗FS(x) = x+
1

λ∗FS

∑
m∈Z−{0}

γme
jωomx,

where λ∗FS is the optimal Lagrange multiplier corresponding to the Fourier-series discrimina-
tor. The value of λ∗FS must be determined by enforcing additional conditions such as the
gradient-norm penalty. This aspect will be discussed in Section 3.6.
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3.5 Fourier Series of a Probability Density Function

Consider the Fourier-series expansion of a compactly supported density p(x) over [0, T ]:

p(x) =
∑
m∈Z

ame
jωomx, x ∈ [0, T ].

The Fourier coefficient am is given by

am =
1

T

∫ T

0
p(x)e−jωomx dx =

1

T
E
x∼p

[
e−jωomx

]
=

1

T
ϕ∗p(ωom),

where ϕ∗p(ω) denotes the complex conjugate of the characteristic function ϕp(ω) = E[ejωx].
Effectively, the coefficient am is determined by uniformly sampling the characteristic function
at ω = ωom,m ∈ Z. Similarly, αm = 1

T ϕ
∗
pd

(ωom) and βm = 1
T ϕ
∗
pg(ωom), where ϕpd and ϕpg

are the characteristic functions of pd and pg, respectively. For an infinitely supported density,
such as the Gaussian, one could consider a sufficiently large interval (T > 10σ) about the
mean for truncation. Then, the above expansion will hold only approximately, and in the
limiting sense (T →∞), the series approximation approaches the Fourier transform.

Thus, the discriminator can be computed in closed-form given the generator and data
distributions. The differential equation formalism and the Fourier-series approximation
obviate the need for training a neural-network-based discriminator.

3.6 Practical Considerations in 1-D

For distributions whose characteristic function can be evaluated in closed-form, the com-
putation of the Fourier coefficients and thereby the discriminator is straightforward. In
practice, the infinite-order summations are truncated. Further, the characteristic function
is not often available in closed form and instead, only data is given. In this scenario, we
replace the Fourier coefficients am = 1

T ϕ
∗
p(ωom) with their sample estimates as follows:

ām =
1

NT

∑
xk∈D

e−jωonxk ,

D = {xk | k = 1, 2, . . . , N} being the given data that follows the distribution p(x).
The convergence properties of empirical characteristic functions have been extensively
explored in the literature (Giardina and Chirlian, 1972; Feuerverger and Mureika, 1977). A 1-
D function p(x) ∈ C1(X ) supported over X is of bounded variation VX [p(x)] =

∫
X |p′(x)| dx ≤

B. The mean-squared error ε2p in truncating the series to M terms is bounded above by B2

πωoM

(Giardina and Chirlian, 1972). For D∗FS(x), the mean-squared error is given by ε2D ≤ c
ω3
oM

3 ,

for some positive constant c. The proof is included in Appendix D.1. We observe that the
error in approximating D decays as 1

M3 . Therefore, we expect that the truncated series will
yield accurate approximations even for moderate M . Experimental results in Appendix E.1
support this claim.

Further, from an implementation perspective, as in the case of TensorFlow (Abadi et al.,
2016), one could avoid complex arithmetic by using a trigonometric Fourier-series expansion
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of the type

p̃(x) =
ā0

2
+

M∑
m=1

ārm cos(ωomx) + āim sin(ωomx),

where ārm = Real{ām} and āim = Imag{ām}. Considering truncated trigonometric Fourier-
series expansions of pg and pd, and accounting for the homogeneous solution, we obtain

D̃∗FS(x) = x+
1

λ∗FS

M∑
m=1

γrm cos(ωomx) + γim sin(ωomx).

It has been reported in the literature that employing the ideal discriminator for a given
generator prevents stable training of the generator due to vanishing gradients (Liu et al.,
2017), while a very coarse approximation might not capture the modes present in the
data distribution (Daskalakis et al., 2018). Hence, a smooth approximation of the ideal
discriminator is considered a good compromise — this is precisely what the truncated
Fourier-series approximation implicitly also achieves.

Enforcing the gradient-norm penalty on D̃∗FS(x) enables one to determine the optimal
λ∗FS associated with the Fourier-series discriminator. In terms of the data D, λ∗FS can be
approximated as follows:

λ∗FS ≈

√√√√√(2M + 1)

 M∑
m=1

(τ im + τ rm) +
1

N

∑
xk∈D

M∑
m=1

(τ im − τ rm) cos(2ωomxk)

,
where τ rm = 1

2(γrmωom)2, and τ im = 1
2(γimωom)2. The derivation is provided in Appendix B.3.

Similar to the Fourier coefficients of D̃∗FS(x), we observe that τ rm and τ im are functions of
γrm and γim, respectively, which in turn depend on the Fourier coefficients of pd and pg. As
the generator distribution converges toward the optimal solution p∗g = pd, λ

∗
d in Equation (11)

as well as λ∗FS converge to zero. Therefore, monitoring λ∗FS in a WGAN-FS training scenario
serves as a practical alternative to computing the divergence between pg and pd. As shown
in Section 6.2 and Appendix E.1, this alternative is particularly useful when dealing with
real-world images with no closed-form representation for the underlying distribution.

3.7 Illustration Using Synthetic 1-D Data

As a preliminary validation, we compare the performance of the proposed WGAN-FS on the
1-D Gaussian learning task.

Baselines: We compare WGAN-FS with the following two categories of baselines: (i)
WGAN and its variants with different penalties, such as the gradient penalty (WGAN-
GP), Lipschitz penalty (WGAN-LP), Sobolev GAN and stable alternatives to GP, such as
WGAN-Rd and WGAN-Rg; and (ii) base WGAN with variations of the proposed gradient-
norm penalty (GNP), evaluated empirically on sample points drawn from the two datasets.
WGAN-GNP implements the WGAN-GP algorithm with the GNP cost. While we compute
the optimal Lagrange multiplier λd in closed-form in WGAN-FS, in Sobolev GANs, λd is
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optimized to maximize the discriminator loss through stochastic gradient-descent (Mroueh
et al., 2018). Recently, multi-layer networks with periodic sinusoidal activations (SIREN)
have been shown to achieve state-of-the-art performance in learning image, sound and
wavefield representations (Sitzmann et al., 2020). We therefore adopt two variants of SIREN
for the discriminator: (a) A three-layer fully connected network with sin activation, called
WGAN-GNP (3S); and (b) A single-layer fully connected network with sin activation and
the same number of nodes as terms in the Fourier-series expansion, called WGAN-GNP
(1S). Training WGAN-GNP (1S) is equivalent to learning the Fourier coefficients in the
WGAN-FS formulation.

Experimental setup: The generator in all GAN variants is considered to be a linear
transformation of the input: y = w z + b. Gaussian training data is drawn from N (10, 1),
while noise z that is input to the generator is sampled from the standard Gaussian N (0, 1).
While WGAN-FS uses a closed-form Fourier-series discriminator, the baselines use a three-
layer fully connected discriminator network with leaky ReLU activation. The batch size is
500. For the baseline techniques, each training step involves 5 iterations of the discriminator
network optimization followed by one iteration of the generator. WGAN-FS, on the other
hand, uses a single-shot discriminator during each training step. Based on additional ex-
periments conducted in Appendix E.1, we set the period T = 2π

ωo
to 15 and the truncation

frequency M to 10. The Adam optimizer (Kingma and Ba, 2015) is used with a learning
rate η = 0.05, and the exponential decay parameters for the first and second moments are
β1 = 0.5 and β2 = 0.999, respectively. The implementation was carried out using TensorFlow
2.0 (Abadi et al., 2016).

Results: Figures 1(a) and (b) show the discriminators learnt by the various GANs under
consideration. The optimal classifier between the two Gaussians is also plotted for the
sake of reference. All classifier outputs are rescaled to [−0.5, 0.5] to facilitate comparison.
While the discriminator peak values depend on the network architecture for the baselines,
it is a function of the period T and the constant a0 in WGAN-FS. We observe that the
discriminator in WGAN-FS is closer to the optimal classifier than the ones learnt by the
baseline WGAN variants. In the case of GNP variants, WGAN-GNP is comparable to
the best case baseline WGAN-LP. The WGAN-GNP (3S) model is able to localize the
target distribution, but the mismatch between the periodicity of the data and the activation
function results in undesirable harmonics in D(x). On the other hand, WGAN-GNP (1S),
due to its Fourier-series structure, comes closest to the WGAN-FS discriminator. This
experiment shows that solving the differential equation single-shot, even if approximately, is
a more accurate alternative to training a network for the discriminator.

Figures 1(c) and (d) compare the Wasserstein-2 distance (W2,2) between the target
and generator Gaussians. These plots show that WGAN-FS converges much faster than
the baseline techniques. This is a direct consequence of solving the differential equation
within the training process. The poor performance of WGAN-GNP (3S) and WGAN-GNP
(1S) is attributed to the mismatch between the fundamental frequency of the sinusoid
and the assumed periodicity. Figures 1(d) and (e) compare the Kullback-Leibler (KL)
divergence between the generator and true data distributions. We observe similar performance
improvements in WGAN-FS compared with the baselines, as in the W2,2 case.
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Figure 1: ( Color online) Experiments on 1-D Gaussian data: (a) & (b) Discriminator
learnt by WGAN-FS in comparison with those learnt by the baselines and WGAN-
GNP variants. Baseline implementation with empirical gradient estimates learn
piecewise linear discriminators, while WGAN-FS and variants of WGAN-GNP with
sinusoidal activations learn a smoother function. The WGAN-FS discriminator
is closest to the ideal classifier, while being smooth. Wasserstein-2 distance
between pd and pg (W2,2(pd, pg)) versus iterations for (c) WGAN-FS and the
baseline WGANs and (d) WGAN-FS and WGAN-GNP variants. Kullback-Leibler
divergence versus iterations for (e) WGAN-FS and the baseline WGANs and (f)
WGAN-FS and WGAN-GNP variants. WGAN-FS attained the lowest (best)
values in terms of both metrics substantially faster than the baselines.
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4. Multivariate WGAN-GNP

In the n-dimensional WGAN-GNP scenario, the discriminator loss takes the form:

LD = −Ex∼pd [D(x)] + Ex∼pg [D(x)] + λd

∫
X

(
‖∇D(x)‖22 − 1

)
dx

=

∫
X

(
D(x) (pg(x)− pd(x)) + λd

(
‖∇D(x)‖22 − 1

))
dx. (13)

We now determine the optimal discriminator corresponding to the loss given in Equation (13).

Theorem 3. Optimal WGAN-GNP discriminator in n-D: Consider the n-D WGAN
discriminator loss subject to the gradient-norm penalty as given by Equation (13). The
optimizer of LD solves Poisson’s partial differential equation given by

−∆D (x) =
pd(x)− pg(x)

2λd
, (14)

where ∆ = ∇.∇ =
(
∂2
x1 + ∂2

x2 + . . .+ ∂2
xn

)
denotes the Laplacian operator, with xi being

the ith entry of x, and ∂2
xi = ∂2

∂x2i
. The closed-form particular solution is given by the

multidimensional convolution integral

D∗p(x) =
1

2λd

∫
X
φ(x− y) (pd(y)− pg(y)) dy, (15)

where φ(x) denotes the fundamental solution to the Laplace equation: −∆D(x) = δ(x). The
fundamental solution is given by

φ(x) =


− 1

2π
ln(‖x‖), for n = 2, and

1

n(n− 2)v(n)

1

‖x‖n−2
, for n ≥ 3,

(16)

where ‖x‖ =
√
x2

1 + x2
2 + . . .+ x2

n and v(n) is the volume of the unit sphere in Rn given by

v(n) = π
n
2

(
Γ
(
n
2 + 1

))−1
, with Γ(n) denoting the gamma function.

Proof. Consider the integrand in Equation (13): D(x)(pg(x)− pd(x)) + λd‖∇D(x)‖22. Ap-
plying the Euler-Lagrange condition from Equation (3) for obtaining the optimum results in
Poisson’s partial differential equation (PDE) given in Equation (14).

A closed-form solution to Poisson’s equation is obtained similar to the 1-D case. Solving
the n-D inhomogeneous differential equation −∆D(x) = δ(x) in polar coordinates yields the
fundamental solution φ(x) given in Equation (16) (Evans, 2010). The solution to Poisson’s

equation −∆D(x) =
pd(x)−pg(x)

2λd
is the convolution between φ(x) and

pd(x)−pg(x)
2λd

, which
results in Equation (15).

For the specific case n = 2, we obtain

D∗p(x) =
−1

4πλd

∫
X

ln(‖x− y‖) (pd(y)− pg(y)) dy. (17)
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For n ≥ 3, we obtain

D∗p(x) =
1

2λdn(n− 2)v(n)

∫
X

1

‖x− y‖n−2
(pd(y)− pg(y)) dy. (18)

Including the family of homogeneous solutions D∗h(x) = 〈a,x〉 + constant, the general
solution becomes

D∗(x) = D∗p(x) + 〈a,x〉+ constant. (19)

As in the 1-D case, upon convergence of the GAN, we expect p∗g(x) = pd(x). The optimal
discriminator in this scenario is given by D∗opt(x) = D∗h(x). Enforcing the gradient-norm
penalty, we obtain the condition ‖a‖ = 1, with the constant term merely resulting in an
offset of D∗(x).

Equations (17) and (18) are specific instances of the Calderon-Zygmund singular inte-
gral (Stein, 1970), with kernels KD,2(x,y) = ln(‖x− y‖) and KD,n(x,y) = ‖x − y‖2−n,
respectively, with singularities along x = y. The integrals are evaluated in the Cauchy
principal-value sense. D∗p(x) for n ≥ 3 is also a specific instance of the Riesz potential (Riesz,
1949; Landkof, 1972) given by

Iαn[f ](x) = cαn

∫
X⊆Rn

‖x− y‖α−nf(y) dy, 0 < α < n,

which, in turn, is an n-dimensional generalization of the Riemann-Liouville integral (Stein,
1970). In the present context, D∗p(x) = I2

n[pg − pd](x).
In the language of electrostatics, D∗p(x) could be interpreted as the difference between the

Newtonian potentials of the functions pg and pd. The charge-free space scenario corresponds
to p∗g = pd, which results in D∗p(x) = 0.

A similar elliptic differential equation, defined via the Stein operator (Oates et al.,
2017), was encountered in the context of Sobolev GANs derived using the Sobolev integral
probability metric (Mroueh et al., 2018). Our choice of a uniform prior in ΩD results in the
Laplacian operator, and subsequently, Poisson’s PDE, which is relatively easier to solve than
Stein’s operator based elliptic PDE.

The optimal Lagrange multiplier λ∗d associated with optimal WGAN-GNP discriminator
D∗(x) is presented next.

Lemma 3. Optimal Lagrange multiplier λ∗d (n-D) : Consider the n-dimensional
discriminator function given by Equation (19). The associated optimal Lagrange multiplier
is given by

λ∗d =

√√√√ 1

|X |

∫
X

n∑
i=1

((
Kλ
n,i ∗ (pg − pd)

)
(x) + ai

)2
dx,

where |X | denotes the volume of the support X , and Kλ
n,i is a singular convolutional kernel

given by

Kλ
n,i(x) =

∂KD,n(x)

∂xi
=


2

κ2

(
xi
‖x‖

)
, for n = 2, and

2− n
κn

(
xi
‖x‖n

)
, for n ≥ 3.

(20)
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The positive square-root of λ∗d results in a D∗(x) that minimizes the cost function LD given
in Equation (13).

Proof. As in the 1-D case, the optimal Lagrange multiplier λ∗d can be found by enforcing
the gradient-norm penalty ΩD on D∗(x).

The choice of the sign of the square-root is given by the second-order (Legendre-Clebsch)
condition for a minimizer: 2λ∗dIn � 0, where In is the n-dimensional identity matrix and �
indicates positive-definiteness. The positive root minimizes the cost, whereas the negative
root maximizes it. A detailed proof is presented in Appendix C.1.

The kernel Kλ
n,i(x) in Equation (20) is closely related to the Riesz kernels given by

KRj (x,y) =
xj−yj

‖x−y‖n+1 . More precisely, Kλ
n,i(x,y) = KRi(x,y)‖x− y‖.

Given the optimal discriminator and the Lagrange multiplier, consider the optimization
of the generator cost. Similar to the 1-D case, the Lagrangian LG of the WGAN-GNP cost
in Rn is given as follows:

LG = LWGAN
G + λp

(∫
X
pg(x) dx− 1

)
+

∫
X
µp(x)pg(x) dx,

where λp and µp(x) are the KKT multipliers. The following result gives the optimal generator
distribution.

Theorem 4. Optimal WGAN-GNP generator (n-D): Consider the n-dimensional
generator loss LG subject to the integral constraint Ωpg and non-negativity constraint Φpg ,
given by

LG =

∫
X

(D∗(x) (pd(x)− pg(x)) + (λp + µp(x)) pg(x)) dx− λp,

where D∗(x) is given by Equation (19), and the KKT multipliers satisfy −∞ < µp(x) ≤ 0,
µp(x)pg(x) = 0, and λp is a finite real value. Then, the optimal solution set is

p∗g(x) = pd(x), and µ∗p(x) = 0, ∀ x ∈ X ,

and the solution is optimal for all finite real values of λp.

Proof. The proof is similar to the 1-D case and is given in Appendix C.2.

4.1 Constraint Space of the Discriminator (n-D)

Consider the multivariate setting of the first-order L2-normed Sobolev Space W 1,2(X , ν),
with the norm given by

‖D‖W 1,2 =
√
‖D‖22,ν + ‖∇D‖22,ν =

√∫
X
‖D(x)‖2 dν +

∫
X
‖∇D(x)‖2 dν <∞.

As in the 1-D case, since we do not explicitly enforce a bound on the energy of the
discriminator, by virtue of the Poincaré inequality ‖D‖

W 1,2
0
≤ r‖∇D‖2,ν , the WGAN-GNP

discriminator can be seen as coming from the semi-normed space W 1,2
0 (X ,UX ), where UX

denotes the uniform measure over X .

20



Euler-Lagrange Analysis of GANs

4.2 Multi-dimensional Fourier-series Solution

As in the 1-D case, we solve the discriminator PDE in Equation (14) using a Fourier-series
expansion, but this time considering the multivariate counterparts:

pd(x)=
∑

m∈Zn
αme

j〈ωm,x〉, pg(x)=
∑

m∈Zn
βme

j〈ωm,x〉, and DFS(x)=
1

λd

∑
m∈Zn

γme
j〈ωm,x〉,

(21)

with frequency harmonics ωm = [m1ω1,m2ω2, . . . ,mnωn]T. Substituting the Fourier-series
expansions in (14) and comparing terms on both sides gives

γm =
1

2

(
αm − βm
‖ωm‖2

)
, m ∈ Zn − {0}. (22)

The value of γ0 introduces a DC offset in DFS(x), and without loss of generality, we set
γ0 = 0. Similar to the 1-D case, we have αm =

(
1
T

)n
ϕ∗pd(ωm) and βm =

(
1
T

)n
ϕ∗pg(ωm),

where ϕ∗ represents the complex conjugate of the characteristic function of the corresponding
distribution. We now present results on applying the WGAN-FS discriminator for 2-D
Gaussian and Gaussian mixture learning problems. As in the 1-D case, we truncate the
Fourier series to M terms along each dimension, and replace the complex Fourier series with
its trigonometric counterpart.

4.3 Illustration Using Synthetic 2-D Data

Experimental setup: We conduct experiments on 2-D Gaussian and 8-component Gaussian
mixture models (GMM). We draw Gaussian data from N (0.7512, 0.1I2), where 12 denotes
a 2-D vector with both entries equal to 1, and I2 denotes the 2 × 2 identity matrix. The
noise that is input to the generator is drawn from a Gaussian N (02, I2). The choice of
baselines, training parameters (learning rate, batch size, Fourier-series parameters, and the
Adam optimizer decay rates) and the architectures of the generator and the discriminator
are identical to the 1-D scenario (cf. Section 3.7).

In the 8-component GMM experiment, isotropic Gaussians are considered with standard
deviation 0.05 and means lying in [0, 1]× [0, 1]. The noise that is input to the generator is
drawn from N (0100, I100). The generator architecture for all WGAN models under consid-
eration consists of three fully connected layers of 128, 64, and 32 nodes with LeakyReLU
activation in each layer. The output layer has two nodes and a sigmoid activation. The
discriminator network for the baseline models is a three-layer fully connected network as in
the 1-D case. The training parameters are the same as in the 1-D case.

Results: Figures 2(a) and (b) show the Wasserstein-2 distanceW2,2(pd, pg) between the gen-
erator and true data distributions as a function of the iterations for the WGAN and WGAN-
GNP flavors under consideration, respectively, for 2-D Gaussian data. The Wasserstein-2
distance decays much faster in the case of WGAN-FS compared with the baseline variants.
As in the 1-D case, we observe that replacing the baseline gradient penalty with that of
WGAN-GNP results in a performance on par with the best-case baseline. Similarly, training
a single-layer discriminator with a sinusoidal activation function to approximately learn
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Figure 2: ( Color online) Experiments on 2-D Gaussian data: (a) & (b) Wasserstein-2
distance (W2,2(pd, pg)) between WGAN-FS and (a) baseline WGAN variants, (b)
trainable variants of the proposed WGAN-GNP. The closed-form Fourier-series
approach to enforcing the gradient-norm penalty converges an order faster than
the baselines and trainable variants of the same loss. (c) Wasserstein-2 distance
(W2,2(pd, pg)) for WGAN-FS trained with different learning rates for the generator.
WGAN-FS is robust to changes in the learning rate, and converges stably in terms
of W2,2 for learning rates lr lower than 10−1.
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Figure 3: ( Color online) Experiments on 2-D Gaussian-mixture data: Comparison of
(a) Wasserstein-2 distance (W2,2(pd, pg)), and (b) Kullback-Leibler divergence
between the data and generator distributions for WGAN-FS and baseline WGANs.
WGAN-FS converges to a lower (better) value than the baselines in terms of both
metrics. (c) Comparison of W2,2(pd, pg) versus iterations for WGAN-FS with and
without the homogeneous solution Dh(x). The convergence of the WGAN-FS
generator is relatively unaffected by the homogeneous component.
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Figure 4: ( Color online) Convergence of generator distribution (green) to the target
multimodal Gaussian data (red) on the considered WGAN variants. The heat
map represents the values taken by discriminator. The ideal D(x) is the one that
takes larger values at locations where pd > pg and vice versa, converging to a
constant after p∗g approaches pd. The Fourier-series approximation of WGAN-FS
approach leads to a better representation of the discriminator during the initial
iterations than the baselines, leading to faster convergence. 1K = 1000.
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the Fourier coefficients results in poorer performance compared with WGAN-FS, as the
suboptimal coefficients cannot represent the distributions pd or pg accurately. Figure 2(c)
shows W2,2(pd, pg) for WGAN-FS as the iterations progress considering several learning
rates in the generator network. The plot indicates that learning rates in the range of 10−2

to 10−3 are optimal for smooth convergence. For lower learning rates, the convergence is
not smooth as evidenced by the noise in W2,2. Learning rates larger than 0.1 resulted in the
generator weights blowing up.

Figures 3(a) and (b) depict the W2,2 metric and KL divergence, respectively, as a
function of iterations for the WGAN baseline models and the proposed WGAN-FS on the
GMM learning task. The KL divergence is estimated parametrically by binning batches of
samples to form histograms. The Wasserstein-2 distance is computed as a sample estimate
using the publicly released Python optimal transport library (Flamary et al., 2021). We
observe that, for the given choice of parameters, the baseline WGAN and WGAN-GP
models latched on to different modes of the GMM at different stages of the optimization,
failing to capture the entire distribution. We observe that WGAN-FS converges to lower
values of the metrics compared with the baselines. Figure 4 shows the convergence of the
generator distribution to the target data distribution in each case, while the associated
heat-map represents the level-set of D∗(x) at the given iteration. We observe that, during
the initial iterations of training, WGAN-FS learns a significantly better representation of
the underlying distributions compared with the baselines. This is evident from the fact that,
while the baselines require optimizing a neural network for the discriminator, WGAN-FS
provides the optimal discriminator for a given generator in closed form/single-shot at each
iteration. Figure 3(c) compares the difference in performance of WGAN-FS with and
without the homogeneous solution included. The generator optimization is independent
of the homogeneous solution, with nearly identical performance in both cases, which is in
accordance with the theoretical results.

5. Implementing the Fourier Series in Higher Dimensions

In higher dimensions, there is a combinatorial explosion in the number of terms — given data
in Rn, a Fourier-series expansion comprising M harmonics would have nM terms. To get a
feel for the kind of computational challenge that we are faced with, consider the MNIST
dataset (LeCun et al., 1998) with data in R784. Even if one were to consider a truncated
Fourier-series approximation with a mere 50 terms along each dimension, the total number
of Fourier coefficients would be 78450, which is of the order of 10144. To gauge how big this
number is, consider the following fact: According to an estimate, there are 1080 atoms in
the known observable universe (Fermi-LAT Collaboration, 2018).

In this section, we derive bounds on the truncation error and discuss implementation
related issues. Experiments on synthetic Gaussian and real-world image data validating
these results are provided in Appendix E

5.1 Fourier Series in n-D

Given the Fourier-series expansions as in Equation (21), consider the case where the fun-
damental frequency ωo is the same along all dimensions. Further, consider the following
assumptions on pd and pg:
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Assumption 2 (Generator and data distributions). The generator and data distribu-
tions are compactly supported, `-times continuously differentiable functions (pg, pd ∈ C`(Rn)),
with bounded energy in their gradients up to, and including order k (pg, pd ∈W k,2(X )), and
vanish on the boundary of X , i.e., we have pg, pd ∈ C`(X )

⋂
W k,2(X ), where ` > k.

It is known that such functions have rapidly decaying Fourier coefficients (Sobolev, 1963;
Fefferman, 1973). Similar assumptions on the generator and data distributions were required
when deriving the convergence rate of the training algorithms for Sobolev GANs (Liang,
2021). We now derive the bound on the mean-squared error incurred while truncating the
Fourier series of the discriminator and p.d.f.s with the square partial sum:

p̃d(x) =
∑

m∈[M ]n

αme
jωo〈m,x〉, p̃g(x) =

∑
m∈[M ]n

βme
jωo〈m,x〉, and

D̃FS(x) =
1

λd

∑
m∈[M ]n

γme
jωo〈m,x〉, (23)

where [M ]n denotes the Cartesian product space {−M,−M + 1, . . . ,M − 1,M}n.

Theorem 5. Bounds on the truncation error for the discriminator: Consider the
generator and data distributions coming from C`(X )

⋂
W k,2(X ), ` > k, for finite k, and

the infinite and truncated Fourier-series expansions defined in Equations (21) and (23),
respectively, where the coefficients γm are given by Equation (22). The mean-squared error
in truncation can be bounded as follows:

ε2D = ‖DFS(x)− D̃FS(x)‖22 ≤ Cn,T

(
(M2n)−(k−2)

k − 2

)
, (24)

where Cn,T is a positive constant that depends only on the dimensionality of the data (n),
and the period (T ).

The proof is provided in Appendix D.2. While the bound given in Theorem 5 is valid
for finite k, given the truncation order M and the dimensionality of the data n, smoother
functions (larger k) result in tighter bounds. While the ambient dimension of images is large
(for example, MNIST in R784 or CelebA in R106), thanks to the Manifold Hypothesis (Kelley,
2017), it is reasonable to assume that images reside in lower-dimensional manifolds, or unions
thereof (Lui et al., 2017; Khayatkhoei et al., 2018; Lei et al., 2019). We therefore propose
to perform the Fourier-series approximation in learning latent representations of the data,
where the bound in Equation (24) is more likely to be useful. This is effectively latent-space
matching akin to that considered in Wasserstein autoencoders (WAEs) (Tolstikhin et al.,
2018). The generator samples are low-dimensional representations of images learnt by an
autoencoder, and the target distribution is a truncated Gaussian. We present comparisons on
learning multivariate Gaussians using WGAN-FS in Appendix E.2, and learning image-space
distributions with WGAN-FS in Appendix E.3.

While truncating the Fourier series is one-side of the approximation, the other is that of
estimating the coefficients. Consider the Fourier-series representation of the data distribution
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pd, where αrm and ᾱrm are the true Fourier coefficient and its N -sample estimate, given by

αrm =

∫
X

cos(ωo〈m,x〉)pd(x) dx and ᾱrm =
1

N

N∑
k=1

xk∼pd

cos(ωo〈m,xk〉), (25)

respectively. Then, the expected error in approximating pd through the sample estimate is
given by the following theorem:

Theorem 6. Bound on the Fourier series approximation error for the data dis-
tribution: Let the Fourier-series representation of the data distribution pd be as given
in Equation (21). Consider the true and N-sample estimates of the Fourier coefficients
given in Equation (25). For finite k, the mean-squared error in approximating the truncated
Fourier-series expansion of pd can be bounded as follows:

Ex

[
ε2pd
]
≤ Mn

N

(
1− mpd

nk+n+1
2

)
︸ ︷︷ ︸

εstat

+ MpdC
′
n,k

(
1

M2k+1

)
︸ ︷︷ ︸

εtrunc

, (26)

where mpd <Mpd are two positive constants, C′n,k is a positive constant whose value depends
on the dimensionality of the data n and the Sobolev order k, and εstat and εtrunc represent
the statistical and deterministic components of the error, respectively.

The proof is provided in Appendix D.3. A similar bound can also be derived for the
generator distribution pg. The key takeaway from Theorem 6 is that there exists a trade-off
between minimizing the truncation error εtrunc, and the statistical error εstat. For the
approximation error εstat to decay, given M and n, the batch size must increase at least
at a rate of N ≈ Mn+1. This results in a trade-off between discarding high-frequency
components versus inaccurately estimating them due to finite sample size, which result in
Gibbs’ oscillations. Experiments illustrating this phenomenon on 1-D data are presented in
Appendix E.1. We discuss the choice of the truncation length M in Section 5.2.

5.2 Practical Considerations in Truncated Fourier-series

Motivated by the result in Theorems 5 and 6, we make certain reasonable and simplifying
assumptions on the Fourier-series expansion to circumvent the computational barrier.

In order to reduce the number of terms in the summation, we consider the fundamental
frequency ωo to be the same along all dimensions. We consider two truncation frequencies,
Mlow and Mhigh. Since images have a significant low-frequency content, we deterministically
include all low-frequency components along each dimension to Mlow. To improve the
representation of high-frequency components, we perform uniform random sampling in the
coefficient space between Mlow and Mhigh. We consider a tiny subset of harmonics from
the set of nM harmonic frequencies. We pick L frequencies uniformly at random from
U [Mlow,Mhigh]. The matrix of sampled frequencies is given as follows:

M =

U ,


1
1
...
1


n×1

,



j 1 . . . 1
1 j . . . 1
...

...
. . .

...
1 1 . . . j


n×n


Mlow

j=2


n×L1

, (27)
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where U is an n× L matrix whose elements are drawn from (Mlow,Mhigh]. These simplifica-
tions together with a trigonometric Fourier expansion as in the 1-D case give rise to the
following sampled Fourier-series approximation of the optimal discriminator:

D∗FS(x) ≈ 1

λ∗FS

(
γ0
2

+
∑

m∈M
γrm cos(ωo〈m,x〉) +

∑
m∈M

γim sin(ωo〈m,x〉)
)
, (28)

whereM is a set comprising the columns of M. Additionally, as in the 1-D case, the Fourier
coefficients of pd and pg are obtained using their sample estimates computed over batches of
size N :

ᾱrm ≈
1

NT

N∑
k=1

xk∼pd

cos(ωo〈m,xk〉), ᾱim ≈
1

NT

N∑
k=1

xk∼pd

sin(ωo〈m,xk〉),

β̄rm ≈
1

NT

N∑
k=1

xk∼pg

cos(ωo〈m,xk〉), and β̄im ≈
1

NT

N∑
k=1

xk∼pg

sin(ωo〈m,xk〉).

Enforcing the gradient-norm penalty ΩD on (28) results in λ∗FS in n-D. The worst-case
value of λ∗FS satisfies:

λ∗FS ≈

√√√√(2|M|+ 1)

( ∑
m∈M

(τ im + τ rm) +
1

N

N∑
k=1

∑
m∈M

(τ im − τ rm) cos(2ωo〈m,xk〉)
)
,

where

τ rm =
1

2
(γrm)2ω2

o‖m‖2, and τ im =
1

2
(γim)2ω2

o‖m‖2,

and the samples xk are drawn from the uniform mixture of pd and pg. The derivation
is included in Appendix C.3. The quality of the sample estimates, measured in terms of
the variance and mean-squared approximation error are presented in Appendix D.3. The
trade-off between the truncation error (caused by discarding harmonics above a truncation
order M), and the approximation error (caused by estimating the Fourier coefficients with
N -sample averages), suggest that including low-frequency components improves the overall
quality of estimation. Based on multiple experiments on synthetic learning tasks, we set
Mlow = 2, Mhigh = 10, and L = 103 (cf. Appendix E.2).

6. Wasserstein Adversarial Autoencoder

We extend the Fourier-series based WGAN to high-dimensional latent space matching based
on Wasserstein autoencoders (WAEs) (Tolstikhin et al., 2018) and adversarial autoencoders
(AAE) (Makhzani et al., 2015). In WAE, a vanilla autoencoder’s (Hinton and Zemel, 1994;
Schmidhuber, 2014) latent space representation is required to conform to a given prior
distribution, usually a Gaussian or a mixture of Gaussians, through an auxiliary network
that minimizes the distance between the two distributions. The encoder-decoder pair is
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trained by minimizing an appropriate distance measured between the input data distribution
and that of the reconstructed samples. In the WAE-GAN setting, the encoder of the WAE
plays the role of the GAN generator, which is trained using a discriminator network to force
the latent space distribution to match the prior using a suitable GAN loss. Considering the
Euclidean distance metric between a data sample x and the corresponding reconstruction x̃,
and the SGAN loss, we obtain the AAE formulation. The vanilla WAE-GAN formulation
employs the Euclidean loss for the reconstruction in combination with the KL divergence for
the GAN loss. Sliced WAE (Kolouri et al., 2019) extended the framework to accommodate
the sliced Wasserstein loss (Deshpande et al., 2018). As an alternative to the adversarial
formulation, maximum mean discrepancy (MMD) based variations of the WAE have also
gained popularity. The most recent of which, the Cramèr-Wold autoencoder (CWAE) (Knop
et al., 2020) presents a characteristic kernel that allows for closed-form computation of the
distance between the latent distribution and a standard Gaussian. Optimal transport based
approaches either approximate the semi-discrete latent-space transportation map with the
continuous Bernier potential by drawing links between the latent-space matching and the
Monge-Ampère equation (Lei et al., 2019; An et al., 2020) or determine the Kantorovich
potential in a two-step manner to learn a mapping from the source/prior distribution to
the target using a WGAN-GP discriminator (Liu et al., 2018). Adding regularizers to the
discriminator cost in AAEs has shown to improve the interpolation capabilities for the
autoencoder component (Berthelot et al., 2019).

We introduce WAEFR, which is the Fourier-series representation of the discriminator
integrated within the WAE-GAN framework. The block diagram is presented in Figure 5.
Within WAEFR, the roles of the target and generator distributions are swapped, compared
to WGAN-FS. In WAEFR, the target is the standard normal distribution N (0, I), while
the latent space distribution is optimized to match the target. In WAEFR, we use the
mean-squared error for training the encoder-decoder pair:

LAE(x, x̃) = ‖x− x̃‖22,

where x̃ = Decoder(Encoder(x)) is the reconstruction of x. The encoder-discriminator
pair is trained using the WGAN-FS algorithm described in Section 4.2. We first solve
for the Fourier coefficients β̄m and ᾱm corresponding to the latent space distribution,
pd` = Encoder(pd), and the latent space prior p`, respectively, which gives us the closed-form
discriminator. Subsequently, the encoder is trained with the WGAN loss:

LG = Ez̃∼pd` [D(z̃)]− Ez∼p` [D(z)].

The training procedure for WAEFR is summarized in Algorithm 1.

6.1 Fourier-series Discriminator

To implement D(x) such that the gradients flow to train the generator, the TensorFlow data
handling pipeline was used gainfully by representing Equation (28) as a static two-layer
network with an intermediate Fourier-series solver that computes the network weights in
each iteration. Figure 6 depicts the network architecture. The operation ωo〈m,x〉, with the
associated weight matrix ωoM as given in Equation (27), constitutes the first layer and is
followed by cosine/sine activations. The output of the first layer is used over batches of data
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Figure 5: ( Color online) The training and testing pipelines of WAEFR, the Wasserstein
autoencoder with the Fourier-series representation of the discriminator. The
discriminator function is evaluated in closed form based on the Fourier coefficients
determined from the latent space distribution and the desired prior.

Figure 6: ( Color online) Fourier-series based discriminator architecture. The latent
representations are in Rn, the data is input to the network in batches of size N ,
and the Fourier-series summation is truncated to L terms.

of size N to estimate the Fourier-series coefficients, from which the discriminator weights
γrm and γim, and the parameters τ rm and τ im that determine the Lagrange multiplier are
evaluated (Section 5.1). Dense network connections with these weights, together with the
evaluation of the homogeneous component Dh and Lagrange multiplier λ∗FS , form the second
layer of the discriminator network. While the first layer is fixed throughout the training of
the GAN, the weights and biases of the second layer are evaluated for each batch of data.
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Algorithm 1 WAEFR − Training the Wasserstein Autoencoder with a Fourier-series
discriminator.

Inputs: Training data x ∼ pd, prior distribution N (µz,Σz), batch size N , learning rate
η, number of GAN pre-training epochs nGAN

Models: Encoder/Generator Encθ; Decoder Decψ; Fourier-series discriminator D∗FS .
GAN pre-training:
for nGAN iterations do

Sample: x ∼ pd − A batch of N real data samples.
Sample: z̃ = Encθ(x) − Latent encoding of real data.
Sample: z ∼ N (µz,Σz) − A batch of N prior distribution samples.
Compute: Fourier coefficients αm and βm
Compute: Discriminator coefficients γm
Compute: Optimal Lagrange multiplier λ∗FS
Evaluate: WGAN-FS loss LG(D∗FS(z̃), D∗FS(z))
Update: Generator Encθ ← η∇θ[LG]

end for
WAEFR training:
while Encθ,Decψ not converged do

Sample: x ∼ pd − A batch of N real samples.
Sample: z̃ = Encθ(x) − Latent encoding of real samples.
Sample: x̃ = Decψ(z̃) − Reconstructed samples.
Evaluate: Autoencoder Loss: LAE(x, x̃)
Update: Autoencoder Encθ ← η∇θ[LAE ]; Decψ ← η∇ψ[LAE ]
Sample: z ∼ N (µz,Σz) − A batch of N prior distribution samples.
Compute: Fourier coefficients ᾱm, β̄m, and γm
Compute: Optimal Lagrange multiplier λ∗FS
Evaluate: WGAN-FS loss LG(D∗FS(z̃), D∗FS(z))
Update: Generator Encθ ← η∇θ[LG]

end while
Output: Reconstructed random prior samples: Decψ(z)

6.2 Experiments on Image Datasets

To illustrate the performance of WAEFR, we consider a learning task on several standard
datasets: MNIST (LeCun et al., 1998), SVHN (Netzer et al., 2011), CelebA (Liu et al.,
2015), CIFAR-10 (Krizhevsky, 2009), and Ukiyo-E faces (Pinkney and Adler, 2020). On
CIFAR-10, we consider both multi-class and single-class learning tasks.
Experimental setup: The convolutional autoencoder model proposed by Tolstikhin et al.
(2018) is employed for both the baseline WAEs and WAEFR. The prior distribution is a
16-D Gaussian for MNIST, and 64-D Gaussian for the other datasets. In WAEFR, the
Fourier-series period is set to T = 15, and the latent representation is passed through a linear
activation with saturation (clipping) of the latent vector amplitudes beyond [−10, 10] in order
to prevent latching on to an aliased Fourier representation. Based on the analysis presented
in Appendix E.2, the Fourier-series summation is truncated with Mlow = 2 and Mhigh = 10
with L = 102 randomly sampled high-frequency terms. While the baseline WAEs uses the
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deep convolutional discriminators (Tolstikhin et al., 2018), the WAEFR discriminator is
as described in Section 6.1 where the weights are determined single-shot. This facilitates
faster training of the encoder compared against an out-of-loop evaluation of D(x). A batch
size of 150 is used. The networks are trained using the Adam optimizer (Kingma and Ba,
2015). A learning rate of 2× 10−4 is used for all the variants. The models are trained on
2× 104 batches for MNIST, 5× 104 batches for CIFAR-10, 7× 104 batches for SVHN and
105 batches for CelebA and Ukiyo-E. We consider the following baselines:

• The Jensen-Shannon divergence GAN loss, which is equivalent to the base WAE
configuration (Tolstikhin et al., 2018).

• The KL-divergence based Wasserstein Autoencoder (WAE-KL) (Tolstikhin et al., 2018)

• The WGAN loss, corresponding to a Wasserstein adversarial autoencoder (WAAE)
with the Lipschitz penalty (Petzka et al., 2018) (WAAE-LP).

• The WGAN loss with adversarial Lipschitz penalty (Terjék, 2020) (WAAE-ALP).

• The Cramér-Wold autoencoder (CWAE) (Knop et al., 2020), which computes the
Cramér-Wold distance between the latent-space and target Gaussian distributions.

The autoencoder loss is the mean-squared error in all the cases. Additionally, for all WAE
baselines, the discriminator is updated thrice for every update of the generator. Pre-training
the GAN component (Encoder-discriminator pair) for 10 epochs was found to result in
faster convergence across all WAE-GAN variants. CelebA and Ukiyo-E images are resized
to 64× 64× 3. Pixel intensities are rescaled to [−1, 1] in all experiments.

Evaluation metrics: The WAE variants are evaluated on the following metrics:

• The adversarial network’s ability to match the latent and prior distributions, in terms
of the Fréchet inception distance (FID) (Heusel et al., 2017) evaluated on batches
of images decoded from prior sample vectors.

• The quality of the autoencoder’s reconstructed samples, measured in terms of the
average reconstruction error 〈RE〉 on unseen test set images, and defined as
follows: 〈RE〉 = 1

N

∑N
i=1 ‖xi − x̃i‖22, where {xi} are the samples and {x̃i} are the

corresponding reconstructions.

• The continuity of the latent space, demonstrated visually by decoding the inter-
polated points between the latent representations of two target data samples.

• The sharpness of the decoded images measured using the variance of the Laplacian
of the image as proposed by Tolstikhin et al. (2018).

Additional details on the computation of these metrics are included in Appendix E.4.
We analyze the FID and average reconstruction error as a function of the iterations. To
demonstrate the continuity of the latent space, we linearly interpolate between the latent
representations of the test set images and present the decoded interpolated images. We
tabulate FID scores and 〈RE〉 for the converged models. For the case of single-class learning
on CIFAR-10, all metrics are averaged across results obtained from training the models on

31



Asokan and Seelamantula

each of the ten classes, while images are presented for the Boat class. For WAEFR, we also
plot λ∗FS as a function of iterations to quantify the convergence of pd` to p`.
Results: Figure 7 presents the generator loss LG and the optimal Lagrange multiplier λ∗FS
as a function of iterations when training WAEFR on each of the datasets considered. We
observe that, in each case, λ∗FS converges in less than 200 iterations. This indicates that
the GAN component of WAEFR converges early in the training, with the latent space of
the generator taking the form of the desired prior, while subsequent training improves the
accuracy of the autoencoder’s mapping from the latent space to the target images.

Figure 8 presents reconstructed samples of test images for all the variants under consid-
eration. We observe that the reconstructed image quality of WAEFR is on par with that
of the baseline approaches. From the 〈RE〉 versus iterations plots shown in Figure 9, we
observe that the reconstruction error of WAEFR after convergence is lower than that of the
baselines on all datasets. Further, 〈RE〉 of WAEFR converges more smoothly compared with
the baselines. The jitter in case of the baseline models may be attributed to the switching
between the GAN and the autoencoder components of the WAE. On the other hand, since
WAEFR considers a closed-form evaluation of the discriminator, the convergence behavior
of the GAN, and consequently, the autoencoder, is smoother and superior. Figure 10 shows
images generated by decoding randomly drawn samples from the prior distribution. While
WAEFR generates images of visually comparable quality, the samples from CelebA are
sharper and more diverse than the baseline models. All the variants generated more realistic
images on single-class learning than on the multi-class task in CIFAR-10. Figure 11 shows
the convergence of the FID score as the iterations progress. WAEFR outperforms the
baselines by a significant margin when the latent space dimension is small, as in the case of
MNIST, or when training with limited data, such as the Ukiyo-E dataset. WAEFR is on
par with WAAE-LP and CWAE baselines on high-dimensional data.

Figures 12–17 show the images obtained by decoding interpolated points in the latent
space. The first and last images in each case depict the ground truth reference images. The
interpolations in WAEFR are on par with the baselines on MNIST. On the SVHN, CelebA,
and Ukiyo-E datasets, WAEFR generates sharper images than the baselines. In the case
of multi-class CIFAR-10, all variants failed to generate a realistic interpolation. This may
be attributed to the large inter-class diversity in CIFAR-10. Table 2 presents the best-case
FID scores, 〈RE〉 values, and the sharpness metric of the various models. Sharpness is
evaluated in two scenarios: images obtained by decoding the latent-space interpolation
between images; and the decoded samples drawn randomly following a prior distribution.
WAEFR outperforms the baselines in terms of FID on CelebA, SVHN, and Ukiyo-E datasets,
while achieving comparable performance on MNIST and CIFAR-10. In all the cases, WAEFR
achieved the lowest reconstruction error. WAEFR also achieves up to two-fold improvement
in image sharpness on face image datasets such as CelebA and Ukiyo-E in comparison with
the baselines.
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Figure 7: ( Color online) Convergence of the optimal Lagrange multiplier λ∗FS and generator
loss LG versus iterations for WAEFR trained on various datasets. The Lagrange
multiplier is a measure of how quickly and stably the GAN component of the WAE
converges. We observe that in all cases, the latent-space distribution matching is
achieved by the GAN component in fewer than 200 iterations.
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Figure 8: ( Color online) Reconstructed images from WAE, WAE-KL, WAAE-LP, WAAE-
ALP, CWAE and WAEFR. While WAEFR generates sharper and more detailed
reconstructions on face image datasets such as CelebA or natural image datasets
such as CIFAR-10, its performance on the other datasets is on par with the
baselines.
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Figure 9: ( Color online) Average reconstruction error 〈RE〉 versus iterations for various
WAE GAN approaches considered. WAEFR converges to a lower 〈RE〉 in all the
cases considered and its convergence is also smoother than the baseline variants.
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Figure 10: ( Color online) Images generated by WAE, WAE-KL, WAAE-LP, WAAE-
ALP, CWAE and WAEFR by decoding random samples drawn from the prior
distribution. WAEFR generates images of comparable quality on MNIST and
CIFAR-10, while producing more diverse and sharper images on the SVHN,
CelebA, and Ukiyo-E datasets.
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Figure 11: ( Color online) FID vs. iterations for the various WAE GAN flavors con-
sidered, when evaluated on images generated by decoding randomly drawn
samples following a prior distribution. WAEFR exhibits faster convergence on
lower-dimensional latent-space representations (as in the case of MNIST) and
comparable convergence for the higher-dimensional ones (the remaining datasets).
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Figure 12: Images generated by decoding interpolated points between the latent space rep-
resentations of two test images from the MNIST dataset. WAEFR interpolation
gives rise to sharper images and superior convergence to the target image.
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Figure 13: ( Color online) Images generated by decoding interpolated points between the
latent space representations of two validation set images on SVHN. Interpolations
in WAEFR are sharper. CWAE fails to learn accurate reconstructions. Recon-
structions of interpolated points produce visually sharper images in WAEFR.
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Figure 14: ( Color online) Interpolation on the CelebA dataset. The images generated by
WAEFR are sharper, preserve more details, and are closer to the ground truth
indicating that the representations learnt by WAEFR are more accurate.
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Figure 15: ( Color online) Images generated by decoding interpolated points between the
latent space representations of two validation set images from the Ukiyo-E faces
dataset. WAEFR results in much sharper images than the baselines.

41



Asokan and Seelamantula

Figure 16: ( Color online) Images generated by decoding interpolated points between the
latent representations of two test set images from the Boat class of CIFAR-10.
The performance of WAEFR is comparable to that of the baseline models.
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Figure 17: ( Color online) Interpolation across image classes from CIFAR-10 dataset. In all
the cases, the interpolated images are unrealistic, which indicates that the inter-
class variability is too high to produce a semantically meaningful interpolation.
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GAN flavor MNIST SVHN CelebA Ukiyo-E CIFAR-10
(Averaged)

CIFAR-10
F

ID
↓

WAE 21.676 46.083 42.943 204.446 124.165 123.88

WAE-KL 26.231 59.717 59.223 215.013 112.650 115.96

WAAE-LP 20.240 47.332 43.509 195.133 108.512 108.95

WAAE-ALP 22.306 48.128 45.628 200.330 107.509 110.223

CWAE 22.125 46.757 47.963 207.350 114.689 102.062

WAEFR 19.793 44.811 37.195 192.049 108.804 100.754

〈R
E
〉↓

WAE 0.0827 0.0425 0.0939 0.0520 0.1786 0.125

WAE-KL 0.0707 0.0380 0.0776 0.0421 0.1254 0.116

WAAE-LP 0.0747 0.0353 0.0868 0.0429 0.1382 0.117

WAAE-ALP 0.0836 0.0377 0.0956 0.0479 0.1294 0.119

CWAE 0.0735 0.0478 0.0852 0.0831 0.1729 0.112

WAEFR 0.0693 0.0310 0.0762 0.0417 0.1227 0.107

S
h

a
rp

n
es

s

R
a
n

d
o
m

WAE 0.1567 0.0018 0.0015 0.1210 0.0625 0.0011

WAE-KL 0.1317 0.0014 0.0018 0.1255 0.0039 0.0032

WAAE-LP 0.1520 0.0017 0.0044 0.1566 0.0155 0.0029

WAAE-ALP 0.1609 0.0017 0.0035 0.1441 0.0150 0.0039

CWAE 0.1703 0.0019 0.0036 0.0821 0.0158 0.0086

WAEFR 0.1717 0.0028 0.0084 0.2275 0.0194 0.0110

In
te

rp
o
la

ti
o
n

WAE 0.1681 0.0022 0.0032 0.0270 0.0035 0.0027

WAE-KL 0.1629 0.0022 0.0044 0.0229 0.0053 0.0054

WAAE-LP 0.1706 0.0024 0.0044 0.0383 0.0036 0.0041

WAAE-ALP 0.1031 0.0019 0.0038 0.0345 0.0061 0.0031

CWAE 0.1387 0.0028 0.0034 0.0136 0.0061 0.0045

WAEFR 0.1746 0.0029 0.0077 0.0330 0.0068 0.0064

Benchmark 0.1950 0.0051 0.0318 0.1805 0.0278 0.0361

Table 2: A comparison of various GAN flavors in terms of the performance metrics across
several standard datasets. The best values are highlighted in boldface. CIFAR-10
(Averaged) corresponds to the metric computed per class followed by averaging
across classes. The FID and 〈RE〉 scores (lower the better, indicated by ↓) are the
best for WAEFR for almost all datasets. Sharpness (Random) is the sharpness
computed based on random samples drawn from the prior distribution, whereas
Sharpness (Interpolation) is the sharpness computed based on the interpolated
images. Sharpness (Benchmark) is the sharpness value obtained over the entire
dataset. Closer the sharpness to the benchmark, better is the model. We observe
that WAEFR achieves almost two-fold improvement in sharpness values over the
best-case baselines on CelebA.
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7. Conclusion and Discussion

In this paper, we considered the functional optimization of standard GAN losses in a
variational setting, by enforcing the Euler-Lagrange (EL) conditions to determine the
optimum. While this approach subsumes point-wise optimization when the integral costs do
not contain terms involving the gradients of the discriminator D or generator distribution
pg, the EL conditions become indispensable when gradient penalties or constraints are
enforced. To truly appreciate the importance of Euler-Lagrange analysis, we considered the
Wasserstein GAN subjected to a novel variant of the gradient-norm penalty (WGAN-GNP).
This resulted in the optimal discriminator being the solution to a second-order partial
differential equation (PDE). In principle, solving the PDE obviates the need for learning
a neural network based discriminator. We showed analytically, both in the univariate as
well as the multivariate settings, that the WGAN-GNP formulation results in the optimal
generator distribution that matches with the desired data distribution. We did so not by
assuming pg to be a distribution, but by enforcing it through constraints of point-wise
non-negativity and unit area under the curve. In addition, the discriminator PDE allows us
to obtain a closed-form expression for the optimal Lagrange multiplier λ∗d corresponding to
the gradient-norm penalty, obviating the need to perform a hyperparameter search for the
optimal λd based on empirical evidence.

The PDE connection for the optimal discriminator provides a novel viewpoint for GAN
optimization. By employing a Fourier-series approximation, we showed that a single-shot
solution can be obtained for the discriminator, given the generator. The solution relies on
the estimates of the characteristic functions of the data and generator distributions. The
superior performance of this novel approach was demonstrated in the univariate as well
as low-dimensional multivariate Gaussian settings. A shortcoming, however, is that the
approach does not scale well with the dimensionality of the data. In order to overcome
this hurdle, we proposed several approximations in the high-dimensional scenario: Fourier-
series model-order truncation, sample estimates of the characteristic function, and random
sampling of the high-frequency harmonics. We presented bounds on the approximation error
in each of these cases, which brought to light a trade-off between the truncation error and
sample estimation error. While including higher-order terms improves the quality of the
approximation, poorly estimating the high-frequency coefficients due to limited batches of
data increases the estimation error. All of these approximations operating in the latent
space of the high-dimensional data, as discovered by a Wasserstein autoencoder, resulted in
a tractable model, as also demonstrated through experimental results on several standard
datasets. It is important to mention that, despite several simplifications in the Fourier-series
model, the proposed single-shot optimal discriminator in WGAN-FS and WAEFR resulted
in a performance that is on par with the more sophisticated neural network counterparts,
not only achieving faster convergence, but also up to two-fold improvement in the sharpness
measure on face image datasets such as CelebA and Ukiyo-E.

Future Scope: The choice of Fourier bases was motivated by the specific PDE to be
solved, which has a natural connection to harmonic functions, by virtue of the eigenfunction
property. Owing to the orthogonality property of the Fourier bases, determining the
coefficients also became significantly simpler. The Fourier approach serves as a proof of
concept, and alternative, and potentially more parsimonious, bases representations (for

45



Asokan and Seelamantula

instance, wavelets) could also be employed for function approximation. In the context of
WGAN-FS, the need for continuously differentiable distributions gives insights into potential
generator architectures. Networks that can approximate the Laplacian of the discriminator
function, or those with infinitely differentiable activation functions are potential directions
for further exploration. Analogous to the WGAN-FS model, one could also consider bases
expansions in the context of other GANs, for instance, the Stein operator (Oates et al.,
2017) in Sobolev GANs. Euler-Lagrange analysis can also be employed to GAN losses that
cannot be accommodated within the standard divergence minimization framework. While
we presented results for non-saturating SGAN (Appendix A.3) and LSGAN (Appendix A.4),
other variants such as the relativistic discriminator based GANs (Jolicoeur-Martineau, 2019)
or the cycle consistent GAN (Zhu et al., 2017) could also be analyzed in the Euler-Lagrange
framework. The framework would also be applicable in the scenario where the GAN loss
includes derivatives of the generator distribution as well. It would also be suitable for several
other regularized GAN variants (Kodali et al., 2017; Roth et al., 2017; Mescheder et al.,
2018; Arbel et al., 2018) as illustrated in Appendix F.
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An Overview of the Appendices

The appendices are structured as follows: Appendix A presents an analysis of divergence
minimizing GANs and their variants within the Euler-Lagrange framework. Appendix B
provides proofs of theorems in 1-D, while extensions to n-D are presented in Appendix C. We
analyze the various sources of error in the Fourier-series approximation in Appendix D. In
Appendix E, we present additional experiments on learning multivariate synthetic Gaussians
and image-space distributions with WGAN-FS. Appendix F contains the analysis of the
Wasserstein GAN subject to the other gradient penalties proposed by Gulrajani et al.
(2017) and Mescheder et al. (2018), and the SGAN and LSGAN subjected to the proposed
gradient-norm penalty.

Appendix A. Euler-Lagrange Analysis of Divergence Minimizing GANs

We analyze the various divergence minimizing GANs within the variational framework and
show that the degenerate Euler-Lagrange condition applies to determine the optimum in
these GANs. Table 3 shows the discriminator and generator loss functions of various GANs
that fall under this category. The standard GAN (SGAN) proposed by Goodfellow et al.
(2014) considers both saturating and non-saturating losses. The term saturation refers
to the generator gradients vanishing during training. The vanilla SGAN (employing the
saturating loss) results in a min-max zero-sum game where the optimal generator minimizes
the Jensen-Shannon divergence between pd and pg. On the contrary, the SGAN with a
non-saturating loss (SGAN-NS) does not readily map to a divergence, but is preferred in
a neural-network implementation as it provides better gradients at the cost of increased
sensitivity to hyperparameters (Fedus et al., 2018). In the least-squares GAN (LSGAN),
one minimizes the squared distance between the discriminator prediction and the class
labels (a, b, c) for fake, real, and generated samples, respectively, with the optimization ob-
jective minimizing the Pearson-χ2 divergence when b−c = 1 and b−a = 2 (Mao et al., 2017).

Nowozin et al. (2016) considered f -divergences of the form:

Df (pd‖pg) =

∫
X
pg(x)f

(
pd(x)

pg(x)

)
dx,

where the divergence function f : R+ → R is convex, lower-semicontinuous and satisfies
f(1) = 0, and X is a suitable domain of integration. Nowozin et al. (2016) demonstrated that,
in a GAN setting, the minimization of Df (pd‖pg) is equivalent to the sequential minimization
of the discriminator and generator losses:

LfD = − E
x∼pd

[T (x)] + E
x∼pg

[f c(T (x))], and (29)

LfG = E
x∼pd

[T ∗(x)]− E
x∼pg

[f c(T ∗(x))], (30)

with respect to D and pg, respectively, where T (x) is the output of the discriminator
subjected to activation g, that is, T (x) = g(D(x)) and T ∗(x) = g(D∗(x)), where D∗(x) is
the optimal discriminator, and f c is the Fenchel conjugate of f . The choice of the divergence
f and the activation g gives rise to GANs that minimize divergences such as Kullback-Leibler
(KL), reverse KL, Pearson-χ2, squared Hellinger, Jensen-Shannon, etc.
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GAN Discriminator loss LD Generator loss LG
SGAN LSD=−Ex∼pd [lnD(x)]−Ex∼pg [ln(1−D(x))] LSG=Ex∼pd [lnD∗(x)]+Ex∼pg [ln(1−D∗(x))]

SGAN-NS LNS
D =−Ex∼pd [lnD(x)]−Ex∼pg [ln(1−D(x))] LNS

G =−Ex∼pd [ln(1−D∗(x))]−Ex∼pg [lnD∗(x)]

LSGAN LLS
D =Ex∼pd [(D(x)−b)2]+Ex∼pg [(D(x)−a)2] LLS

G =Ex∼pd [(D∗(x)−c)2]+Ex∼pg [(D∗(x)−c)2]

f -GAN LfD=−Ex∼pd [g(D(x))]+Ex∼pg [fc(g(D(x)))] LfG=Ex∼pd [g(D∗(x))]−Ex∼pg [fc(g(D∗(x)))]

Table 3: A summary of various divergence minimizing GAN losses considered in this paper.
The SGAN and f -GAN losses are symmetric and lead to a min-max optimization
problem, whereas the LSGAN and SGAN-NS are not symmetric.

A.1 f-GANs and the Euler-Lagrange Condition

We now reformulate f -GANs subject to the non-negativity and integral constraints within
the Euler-Lagrange framework. The results obtained are consistent with those available in
the literature.

Theorem 7. Optimality of f-GANs: Consider the optimization of the f-GAN losses
LfD and LfG given in Equations (29) and (30), respectively. Let pg be subject to the integral
constraint Ωpg :

∫
X pg(x)dx = 1, and the non-negativity constraint Φpg : pg(x) ≥ 0. The

f -GAN optimization is formulated as:

max
D

{∫
X
Ff (x, T, pg) dx

}
, and (31a)

min
pg

{∫
X
Ff (x, T ∗, pg) + (λp + µp(x)) pg(x) dx

}
, (31b)

where

Ff (x, T, pg) = (T (x)pd(x)− f c(T (x))pg(x)) , and T ∗(x) = g(D∗(x)),

D∗ being the optimal discriminator function, and λp and µp(x) being the Karush-Kuhn-
Tucker (KKT) multipliers, such that µp(x) ≤ 0 and µp(x)pg(x) = 0, ∀x ∈ X . The integrals
are assumed to be well-defined over the support X . The optimal discriminator D∗(x) for a
given pg satisfies:

∂f c

∂T

∣∣∣∣
T=T ∗

=
pd
pg
, (32)

and the optimal generator p∗g(x), given D∗(x), satisfies:

f c(T ∗)

∣∣∣∣
pg=p∗g

= λ∗p + µ∗p(x), (33)

where λ∗p and µ∗p(x) are the optimal KKT multipliers.
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Proof. The proof proceeds by applying the Euler-Lagrange conditions to the costs given
in Equations (31a) and (31b). Consider the f -GAN discriminator and generator losses (cf.
Equations (29) and (30)):

LfD = − E
x∼pd

[T (x)] + E
x∼pg

[f c(T (x))], and LfG = E
x∼pd

[T ∗(x)]− E
x∼pg

[f c(T ∗(x))],

respectively. Expressing the expectations in integral form gives

LfD =

∫
X

(T (x)pd(x) + f c(T (x))pg(x)) dx =

∫
X
FfD(x, T (x)) dx.

As the optimization of LfD over D(x) does not involve gradient terms, the Euler-Lagrange

condition applies point-wise:
∂FfD
∂D = 0, which yields(
pd − pg

∂f c(T )

∂T

)
∂T

∂D

∣∣∣∣
T=T ∗

= 0, (34)

where

T = g(D) ⇒ ∂T

∂D
= g′(D),

g being the activation function at the output of the discriminator network. Based on the
f -GAN formulations of Nowozin et al. (2016) (cf. Column 2 of Table 4), we observe that
g′(D) 6= 0, ∀ x such that D(x) 6= 0. This yields the first result of Theorem 7:

∂f c(T )

∂T

∣∣∣∣
T=T ∗

=
pd
pg
.

The optimal discriminator D∗(x) is the one that satisfies the above equation with the
corresponding output function T ∗ = g(D∗). Given T ∗, the generator optimization is carried

out on LfG, subject to the integral constraint Ωpg and non-negativity constraint Φpg . The
Lagrangian of the cost becomes

LfG =

∫
X

(T ∗pd + f c(T ∗)pg + λppg + µp(x)pg) dx, (35)

where λp and µp(x) are the KKT multipliers. Applying the EL condition to LfG gives:(
pd − pg

∂f c(T ∗)
∂T ∗

)
∂T ∗

∂D∗
∂D∗

∂pg
− f c(T ∗) + λp + µp(x) = 0.

Using (34) gives the condition that the optimal generator p∗g must satisfy:

f c(T ∗)
∣∣
pg=p∗g

= λp + µp(x).

The feasible KKT multipliers satisfy the integral and non-negativity constraints when
enforced on p∗g: ∫

X
p∗g(x) dx = 1, and p∗g(x) ≥ 0, ∀ x ∈ X .
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f -divergence g(D) f c(T ) D∗(x) p∗g(x) (λ∗p, µ
∗
p)

Kullback-Leibler (KL) D eT−1 1 + ln
(
pd
pg

)
pd(x)
λ∗p+µ∗p

(1, 0)

Reverse KL −e−D −1− ln(−T ) ln
(
pd
pg

)
pd(x)

eλ
∗
p+µ
∗
p+1 (−1, 0)

Pearson-χ2 D 1
4T

2 + T 2
(
pd−pg
pg

)
pd(x)√
λ∗p+µ∗p+1

(0, 0)

Squared-Hellinger 1− e−D T
1−T

1
2 ln

(
pd
pg

)
pd(x)

(λ∗p+µ∗p+1)2
(−2, 0)

SGAN ln
(

eD

eD+1

)
ln
(

1
1−eT

)
ln
(
pd
pg

)
pd(x)

eλ
∗
p+µ
∗
p−1

(ln 2, 0)

Table 4: The optimal discriminator D∗(x) and generator p∗g for various f -GANs (Nowozin
et al., 2016) given the activation function g and the Fenchel conjugate f c. The
optima D∗(x) and p∗g are the solutions to Equations (32) and (33), respectively.

In addition, µp(x) ≤ 0 and it satisfies the complementary slackness condition

µp(x)p∗g(x) = 0, ∀ x ∈ X ,

which gives µp(x) = 0 whenever p∗g(x) > 0, and µp(x) ≤ 0 whenever p∗g(x) = 0. For all
x such that pd(x) = 0, the generator cost evaluated at the optimal generator distribution

LfG(p∗g, λp, µp(x)) becomes zero, and subsequently, the choice of µ∗p(x) over this set is

immaterial. Subsequent optimization of LfG(p∗g, λp, µp(x)), ∀ x such that pd(x) > 0, over
the KKT multipliers gives us the optimal multipliers λ∗p and µ∗p(x). This yields the second
result of Theorem 7:

f c(T ∗)
∣∣
pg=p∗g

= λ∗p + µ∗p(x).

When applied to any f -GAN variant (Nowozin et al., 2016), Theorem 7 yields the optimal
discriminator D∗ and optimal generator p∗g, as listed in Table 4, which are consistent with the
results known in f -GAN literature. We provide the proofs in Appendix A.2. Enforcing the
complementary slackness condition: µ∗p(x)p∗g(x) = 0, ∀ x ∈ X , in addition to the integral
and non-negativity constraints yields the optimal λ∗p and µ∗p(x) for each f -GAN. We observe
from Table 4 that the optimal generator distribution p∗g(x) is non-negative for all f -GAN
variants. Consequently, the optimal KKT multiplier µ∗p(x) = 0, ∀ x such that pd(x) > 0.
The calculations show that it suffices to enforce only the integral constraint and the optimal
solution automatically satisfies the non-negativity constraint. For the f -GAN variants
considered, the optimal generator is p∗g(x) = pd(x), which is indeed the desired solution of
the GAN optimization.
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A.2 The Optimality of f-GANs

We now consider each of the f -GAN variants proposed by Nowozin et al. (2016) and present
the optimal discriminator and generator functions in each case.

KL divergence: As an illustration, consider the f -GAN formulation with Kullback-Leibler
divergence, which corresponds to g(D) = D and f c(T ) = eT−1. Following Theorem 7, the
optimal discriminator and generator are given by:

D∗(x) = 1 + ln

(
pd(x)

pg(x)

)
and p∗g(x) =

pd(x)

λp + µp(x)
,

respectively. The support of the solution is restricted to supp(pd). We split the support
X into two disjoint sets: X+ = {x | pd(x) > 0} and X0 = {x | pd(x) = 0}. The loss
LG(p∗g, λp, µp(x)) vanishes everywhere outside X+, and hence the optimization is undefined
over X0. Within X+, enforcing the complementary slackness condition on µp gives:

µ∗p(x) = 0, ∀ x such that pd(x) > 0.

Enforcing the integral constraint yields λ∗p = 1 as the only feasible solution. This gives us
the optimal generator distribution:

p∗g(x) = pd(x), ∀ x ∈ X .

In summary, the optimal generator perfectly agrees with the data distribution.

Reverse-KL divergence: The EL analysis of the reverse-KL divergence based f -GAN
closely follows the analysis for the KL-divergence based GAN. We have g(D) = −e−D and
f c(T ) = −1 − ln(−T ). Following Theorem 7, we obtain the optimal discriminator and
generator functions as

D∗(x) = ln

(
pd(x)

pg(x)

)
and p∗g(x) =

pd(x)

eλp+µp(x)+1
,

respectively. Enforcing the complementary slackness condition µp(x)p∗g(x) = 0, we obtain

the condition:
µp(x)

eλp+µp(x)+1 = 0, ∀ x such that pd(x) > 0. In conjunction with µp(x) ≤ 0,

we obtain µ∗p(x) = 0 as the only feasible solution. As in the case of the KL-divergence
f -GAN, the EL analysis is applicable only when the integrand in the cost is non-zero, that
is, pg(x) > 0. Enforcing the integral constraint results in λp = −1 as the only solution.
This gives us the optimal KKT multipliers µ∗p(x) = 0, ∀ x ∈ X+, and λ∗p = −1. The
corresponding optimal generator distribution is p∗g(x) = pd(x).

Jensen-Shannon divergence: In this case, the f -GAN formulation considers g(D) =
ln(2)− ln

(
1 + e−D

)
and f c(T ) = − ln

(
2− eT

)
. From Theorem 7, we have

D∗(x) = ln

(
pd(x)

pg(x)

)
and p∗g(x) =

pd(x)

2e(λp+µp(x)) − 1
.
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Enforcing the integral, non-negativity, and complementary slackness constraints, we obtain
the only feasible (and therefore optimal) set of KKT multipliers: µ∗p(x) = 0, ∀ x ∈ X+

and λ∗p = 0. Since both KKT multipliers are zero, it can be verified that unconstrained
optimization over pg also yields the same solution. Therefore, for this choice of divergence,
the constraints are automatically satisfied.

SGAN divergence: The f -divergence of the SGAN is closely related to the Jensen-Shannon
divergence, but for the ln(2) term (Goodfellow et al., 2014). The SGAN f -divergence for-
mulation considers g(D) = − ln

(
1 + e−D

)
and f c(T ) = − ln

(
1− eT

)
. Applying Theorem 7

gives

D∗(x) = ln

(
pd(x)

pg(x)

)
, and p∗g(x) =

pd(x)

e(λp+µp(x)) − 1
. (36)

The optimal output function corresponding to D∗(x) is given by

T ∗(x) = g(D∗(x)) = ln

(
pd(x)

pd(x) + pg(x)

)
= ln (D∗SGAN(x)) ,

where D∗SGAN is the optimal discriminator corresponding to the SGAN formulation pro-
posed by Goodfellow et al. (2014). As in the KL and reverse KL divergence based f -
GANs, the only feasible KKT multiplier associated with the non-negativity constraint is
µ∗p(x) = 0, ∀ x such that pd(x) > 0, and the associated multiplier for the equality constraint
is given by λp = ln(2). In summary, the optimal KKT multipliers are: µ∗p(x) = 0, ∀ x ∈ X+,
and λ∗p = ln(2).

Pearson-χ2 divergence: The Pearson-χ2 divergence corresponds a special case of the
LSGAN loss. The f -GAN formulation considers g(D) = D and f c(T ) = 1

4T
2 + T . The

associated optimal discriminator and generator functions, derived following Theorem 7, are
given by

D∗(x) = 2

(
pd(x)− pg(x)

pg(x)

)
and p∗g(x) =

pd(x)√
λp + µp(x) + 1

,

respectively. Applying the integral constraint Ωpg , we obtain λp + µp(x) = 0. In addition,
enforcing the non-negativity and complementary slackness conditions yields µp(x) = 0, ∀x,
such that pd(x) > 0, as the only feasible solution. Similar to the Jensen-Shannon divergence
case, we obtain the degenerate case of KKT multipliers: µ∗p(x) = 0, ∀x ∈ X+ and λ∗p = 0,
corresponding to the solution obtained in the unconstrained optimization problem.

Squared Hellinger divergence: The f -GAN associated with the squared Hellinger diver-
gence has g(D) = 1− e−D and f c(T ) = T

1−T . Applying Theorem 7, we obtain

D∗(x) =
1

2
ln

(
pd(x)

pg(x)

)
and p∗g(x) =

pd(x)

(λp + µp(x) + 1)2
, (37)

respectively. Enforcing the integral constraints, we obtain the conditions:

λp + µp(x) = 0 or λp + µp(x) = −2.
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The optimal KKT multiplier corresponding to the inequality constraint, as in the previous
cases, is µ∗p(x) = 0, ∀ x ∈ X+. The corresponding feasible set for λp is {−2, 0}. To find the
optimal λp, we consider the dual optimization problem associated with only the integral
constraint:

λ∗p = arg max
λp∈{−2, 0}

{
g(λp) = inf

pg
LG(pg, D

∗)
}
,

= arg max
λp∈{−2,0}

LG(p∗g, D
∗).

Substituting for D∗(x) and p∗g(x) from Equation (37), considering µ∗p(x) = 0, we obtain:

λ∗p = arg max
λp∈{−2, 0}

{
−

λ2
p

λp + 1

}
.

By inspection, λ∗p = −2. Hence, the optimal KKT multipliers are µ∗p(x) = 0, ∀ x ∈ X+ and
λ∗p = −2.
In addition to the f -divergence based GAN losses considered above, there exist two closely
related variants: (i) The non-saturating SGAN (SGAN-NS) (Goodfellow et al., 2014) that
alleviates the vanishing gradient problem in a practical GAN setting, and (ii) The general
least-squares GAN (Mao et al., 2017) setting with class labels (a, b, c).

A.3 Euler-Lagrange Analysis of the Non-saturating SGAN

The non-saturating SGAN (SGAN-NS) proposed by Goodfellow et al. (2014) is a practical
alternative to the SGAN loss, which ensures that the gradients do not vanish while training
the generator and discriminator networks. However, it does not fit within the framework of
divergence based GANs. Therefore, a straightforward divergence minimization argument
does not apply, nevertheless a variational analysis can be carried out. Since the discriminator
losses in both SGAN and SGAN-NS are the same, the optimal discriminator given by D∗(x) =

pd(x)

pd(x) + pg(x)
remains unchanged. Given the optimal discriminator, the Lagrangian of the

generator loss, taking into account the integral constraint Ωpg , is given as follows:

LSGAN−NS
G = −Ex∼pg [ln(D∗(x))]− Ex∼pd [ln (1− ln(D∗(x))) + λp

(∫
X
pg(x) dx− 1

)
,

=

∫
X

(−pg(x) ln(D∗(x))− pd(x) ln (1−D∗(x)) + λppg(x)) dx− λp.

Applying the EL condition yields:

ln(D∗(x)) +
D∗(x)

1−D∗(x)

∣∣∣∣
pg=p∗g

= λp + 1, (38)

⇒
(

pd(x)

pd(x) + p∗g(x)

)
exp

(
pd(x)

p∗g(x)

)
= eλp+1. (39)

The optimal generator distribution p∗g(x) is the one that solves the above transcendental
equation. While no closed-form approaches exist for solving Equation (39), one could solve
it approximately.
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A second alternative suggested by Goodfellow et al. (2014) involves the removal of the
expectation term associated with pd in LSGAN−NS

G , since this term does not contribute toward
the training of the generator network in practice. Incorporating this modification gives us
the following Lagrangian of the generator loss:

LSGAN−NS
G = −Ex∼pg [ln(D∗(x))] + λp

(∫
X
pg(x) dx− 1

)
,

=

∫
X
pg(x)

(
− ln(D∗(x)) + λp

)
dx− λp.

Applying the EL condition gives the following transcendental equation:

D∗(x)eD
∗(x)
∣∣
pg=p∗g

= eλp+1, (40)

⇒
(

pd(x)

pd(x) + p∗g(x)

)
exp

(
pd(x)

pd(x) + p∗g(x)

)
= eλp+1. (41)

Equation (41) can be solved through the principal branch of the Lambert-W function
W0(·) (Lambert, 1758; Corless et al., 1996; Bateman and Erdelyi, 1953), where the equation
yey = z for y, z ∈ R has a solution, if and only if z ≥ −1/e. For z ≥ 0, the solution is unique
and is given by y = W0(z). Noting that the right-hand size of Equation (41) is always
non-negative, we write:

pd(x)

pd(x) + p∗g(x)
= W0

(
eλp+1

)
⇒ p∗g(x) =

W0

(
eλp+1

)
1−W0

(
eλp+1

)pd(x). (42)

The optimal generator p∗g(x) = pd(x) requires W0

(
eλp+1

)
= 0.5, which is achieved when λp ≈

−1.1935. A similar link with the Lambert-W function was observed in the context analyzing
SGAN-NS with infinite-width discriminators employing the neural tangent kernel (Franceschi
et al., 2021)

In existing implementations, the integral constraint on pg is not imposed explicitly.
Instead, the generator network in trained to learn the inversion mapping implicitly. It was
observed that, in practice, while SGAN-NS alleviates the problem of vanishing gradients,
the training procedure is more sensitive to hyper-parameter tuning than the training of
SGAN (Fedus et al., 2018). We attribute the sensitivity to the implicit inversion of the
transcendental equations (38) or (40), in comparison with the linear mapping present in the
saturating SGAN variant (cf. Equation (36)).

A.4 Euler-Lagrange Analysis of the Least-squares GAN

As a generalization to the Pearson-χ2 divergence based f -GAN, we consider the least-squares
GAN formulation presented by Mao et al. (2017). Consider the LSGAN discriminator and
generator costs given by

LLSGAN
D =

1

2
Ex∼pd [(D(x)− b)2] +

1

2
Ex∼pg [(D(x)− a)2], and

LLSGAN
G =

1

2
Ex∼pd [(D

∗(x)− c)2] +
1

2
Ex∼pg [(D

∗(x)− c)2] + λp

(∫
X
pg(x) dx− 1

)
,
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respectively, where D∗(x) is the minimizer of LLSGAN
D . The discriminator learns a regression

model onto the target labels a and b for the generated and true data samples, respectively.
The generator learns to output images that are classified by the discriminator with target
label c. The generator loss is subjected to only the integral constraint, as the analysis in
Appendix A.2 shows that the non-negativity constraint is met automatically. To optimize
the discriminator loss, we consider LLSGAN

D in its integral form:

LLSGAN
D =

1

2

∫
X

(
(D(x)− b)2pd(x) + (D(x)− a)2pg(x)

)
dx.

Applying the EL conditions yields the optimal discriminator function given a generator
distribution:

D∗(x) =
a pg(x) + b pd(x)

pg(x) + pd(x)
.

Given the optimal discriminator, consider the generator loss:

LLSGAN
G =

1

2

∫
X

(
(D∗(x)− c)2 (pd(x) + pg(x)) + λppg(x)

)
dx− λp.

Applying the EL condition gives

(D∗(x)− c)2 + 2(D∗(x)− c)(pg(x) + pd(x))
∂D∗(x)

∂pg
+ λp = 0.

Algebraic simplification results in the following quadratic in pg:

p2
g(x)

(
(a− c)2 + λp

)
+ 2pg(x)pd(x)

(
(a− c)2 + λp

)
+ p2

d(x) ((b− c)(2a− b− c) + λp) = 0.

Solving for the optimal generator distribution, we obtain:

p∗g(x) = −pd(x)± pd(x)

√
(a− b)2

(a− c)2 + λp
.

Only the positive root yields a valid solution. Applying the integral constraint gives the
optimal Lagrange multiplier

λ∗p =
(a− b)2

4
− (a− c)2.

The choice of b− c = 1 and b− a = 2 proposed by Mao et al. (2017) gives λ∗p = −1, and the
optimal generator p∗g(x) = pd(x). Similarly, setting b− a = 2 and a− c = 1 yields λ∗p = 0,
and the corresponding GAN loss minimizes the Pearson-χ2 divergence.

While in theory, infinitely many sets of (a, b, c) solve for the desired optimum p∗g(x) =
pd(x), those labels that correspond to the Pearson-χ2 loss are preferred as the corresponding
p∗g automatically satisfies the integral constraint without requiring an explicit penalty term.
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Appendix B. Optimality of WGAN-GNP (1-D)

In this appendix, we present the proofs for the optimal WGAN-GNP Lagrange multiplier
and generator function in the 1-D setting.

B.1 Optimal Lagrange Multiplier (1-D)

Consider the optimal discriminator function in 1-D given by

D∗(x) =
1

2λd
(φ ∗ (pg − pd)) (x) + a1x+ a0.

Its derivative is given by

dD∗(x)

dx
=

1

4λd

∫
Y

x− y
|x− y| (pg(y)− pd(y)) dy + a1

=
1

4λd
(sgn ∗ (pg − pd))(x) + a1,

where sgn(x) = x
|x| denotes the signum function. Enforcing the constraint that the gradient

must have unit norm, we get the optimal Lagrange multiplier in 1-D:

λ∗d =
1

4

√
1

|X |

∫
X

((
x

|x| ∗ (pg − pd)
)

(x) + a1

)2

dx. (43)

To analyze the second-order condition, consider the WGAN integral cost:

L
(
D(x), D′(x)

)
=

∫
X
F
(
x,D(x), D′(x)

)
dx.

The Legendre-Clebsch condition states that a minimizer must satisfy the second-order
partial-differential condition

FD′D′ =
∂2F
∂D′2

≥ 0, ∀ x ∈ X .

Consider the integrand F :

F
(
x,D,D′

)
= D(x)(pg(x)− pd(x)) + λd

(
|D′(x)|2 − 1

)
,

⇒ FD′D′ = 2λd,

which implies that a positive value for λd results in a minimizer.
In summary, considering the positive square-root in the expression for the optimal

Lagrange multiplier in (43) results in a minimizer of LD.
We now analyze λ∗d as a function of pd and pg. First, consider the convolution term

inside the integral of Equation (43):

(sgn ∗ (pg − pd)) (x) =

∫ ∞
−∞

(pg(y)− pd(y)) sgn(x− y)dy

=

∫ x

y=−∞
(pg(y)− pd(y)) dy −

∫ ∞
y=x

(pg(y)− pd(y)) dy

= Fpg(x)− Fpd(x)−
(
1− Fpg(x)− (1− Fpd(x))

)
= 2

(
Fpg(x)− Fpd(x)

)
,
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where Fpg and Fpd denote the cumulative density functions (CDFs) of pg and pd, respectively.
Substituting the above into Equation (43), we get:

λ∗d =
1

4

√
1

|X |

∫
X

(
2
(
Fpg(x)− Fpd(x)

)
+ a1

)2
dx.

In a practical setting, as the training of the GAN progresses, the Fourier coefficients of pg(x)
converge to those of pd(x). As the distributions become closer to one another in the L2 sense,
their difference, and therefore the difference between their CDFs also reduces. Therefore,
upon convergence of the GAN, ideally, we have αm = βm ∀ m ∈ Z, and consequently
p∗g(x) = pd(x), yielding

λ∗d

∣∣∣∣
p∗g=pd

=
1

4

√
1

|X |

∫
X
a2

1 dx =
|a1|
4
.

As observed in Theorem 2, the convergence of pg to pd is independent of the choice of a1,
which is part of the homogeneous solution. Therefore, without loss of generality, we set
a1 = 0, which gives us the favorable property that, λ∗d → 0 as pg(x)→ pd(x), which can be
used as a proxy for tracking the convergence of the GAN training.

B.2 Optimal WGAN-GNP Generator (1-D)

Consider the Lagrangian of the generator cost in 1-D:

LG =

∫
X

((pd(x)− pg(x))D∗(x) + (λp + µp(x))pg(x)) dx− λp,

with D∗(x) given by Equation (19):

D∗(x) =
1

2λ∗d

∫
X
φ(x− y) (pd(y)− pg(y)) dy + a1 x+ a0,

where X is the convex hull containing the supports of pd and pg. Without loss of generality, we
consider the symmetric fundamental solution φ(x) = 1

2 |x|+ b0. Since the integrand involves
a convolution integral, it is not in the standard form considered in Equation (1). Hence,
the EL conditions cannot be applied directly. Starting from first principles, we evaluate the
first variation of LG and set it to zero to obtain the optimizer. Consider an ε-perturbation
of the loss LG about the optimal generator p∗g, denoted by LG,ε(pg) = LG(p∗g(x) + εη(x)),
where η(x) is a family of compactly supported, absolutely integrable, infinitely differentiable
functions that are identically zero at the boundaries of X . The corresponding perturbed
discriminator is represented by D∗ε (x). Consider

LG,ε(pg) =

∫
X

(
D∗ε (x)(pd(x))− p∗g(x)− εη(x)) + (λp + µp(x))(p∗g(x) + εη(x))

)
dx,

where

D∗ε (x) =

∫
X
φ(x− y)

(
p∗g(y) + εη(y)− pd(y)

2λ∗d

)
dy + a1 x+ a0

=
(
φ ∗ (p∗g + εη − pd)

)
(x) + a1 x+ a0.
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Consider the following derivatives with respect to ε:

dLG,ε
dε

=

∫
X

(
dD∗ε (x)

dε
(pd(x))− p∗g(x)− εη(x))−D∗εη(x) + (λp + µp(x))η(x)

)
dx, and

dD∗ε (x)

dε
=

1

2λ∗d

∫
X
φ(x− y)η(y) dy.

Substituting for D∗ε (x) and its derivative into
dLG,ε

dε , and evaluating it at ε = 0 gives the first
variation in LG:

∂LG =

∫
X

∫
X
φ(x− y)η(y)(p∗g(x)− pd(x)) dy dx

+

∫
X

(
2αd(λp + µp(x)) + a1x−

(
φ ∗ (pd − p∗g)

)
(x)

)
η(x) dx,

= T1 + T2,

where αd =
λ∗d
4

. Next, consider

T1 =

∫
X

∫
X
φ(x− y)η(y)(p∗g(x)− pd(x)) dy dx.

Considering a compact domain of integration and the functions φ, p∗g, and pd to be absolutely
integrable over the domain, we apply Fubini’s theorem and interchange the order of integration
to obtain

T1 =

∫
X
η(y)

∫
X

(
p∗g(x)− pd(x)

)
φ(x− y) dx dy.

Since φ is symmetric, T1 simplifies to

T1 =

∫
X
η(y)(φ ∗ (p∗g − pd))(y) dy.

Substituting for T1 in the first variation yields

∂LG =

∫
X

(
2αd(λp + µp(x)) + a1x− 2

(
φ ∗ (pd − p∗g)

)
(x)
)
η(x) dx.

Setting ∂LG to zero and invoking the fundamental lemma of calculus of variations (cf.
Section 2) gives rise to the following condition

(
φ ∗ (pd − p∗g)

)
(x) = αd(λp + µp(x)) +

1

2
a1x, (44)

which the optimal generator p∗g must satisfy. Rearranging (44) yields

αdµp(x) =
(
φ ∗ (pd − p∗g)

)
(x)− αdλp −

1

2
a1x,
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from which we obtain the Laplacian:

αdµ
′′
p(x) = pd(x)− p∗g(x),

which gives the optimal generator distribution in terms of the KKT multiplier µp(x):

p∗g(x) = pd(x)− αdµ′′p(x). (45)

An alternative approach using Fourier analysis: The Fourier transform proves to be
an efficient tool to arrive at Equation (45) starting from Equation (44). Recall φ(x) = 1

2 |x|.
Its Fourier transform cannot be defined in the L1 or L2 sense, but only in the sense of
distributions: F{φ(x)} = − 1

ω2 , ω ∈ R − {0}. The Fourier transform of x is also given in
the distributional sense as F{x} = −jδ′(ω), where δ′(ω) is the derivative of the Dirac delta,
and must be understood in a distributional sense by its action on a test function f ∈ C∞(R):
〈δ′(ω), f(ω)〉 = −f ′(0). Writing (44) in the Fourier domain gives

1

ω2

(
p̂∗g(ω)− p̂d(ω)

)
= αdλpδ(ω) + αdµ̂p(ω)− j

a1

2
δ′(ω)

⇒ p̂∗g(ω) = p̂d(ω) + αd
(
λpω

2δ(ω) + ω2µ̂p(ω)
)
− j

a1

2
ω2δ′(ω),

where p̂∗g(ω) and p̂d(ω) are the Fourier transforms of p∗g(x) and pd(x), respectively. From the
properties of the Dirac delta, it follows that ω2δ(ω) = 0 and ω2δ′(ω) = 0. Hence, we obtain

p̂∗g(ω) = p̂d(ω) + αdω
2µ̂p(ω). (46)

Invoking the differentiation property of the Fourier transform, we have

µ′′p(x)
F←→ −ω2µ̂p(ω).

Taking the inverse Fourier transform on both sides of Equation (46) gives

p∗g(x) = pd(x)− αdµ′′p(x),

which is identical to Equation (45).
We observe that p∗g is independent of λp, while the optimal µ∗p(x) must be determined,

which can be done by enforcing the integral constraint:∫
X
p∗g(x) dx =

∫
X

(
pd(x) + αdµ

′′
p(x)

)
dx = 1

⇒
∫
X
µ′′p(x) dx = 0. (47)

Recall from Theorem 2 that µp(x) ≤ 0, ∀ x ∈ X , in order to satisfy the non-negativity
constraint. Let us now split X into two disjoint sets:

X0 = {x | pd(x) = 0}, and X+ = {x | pd(x) > 0}.

Consider the complementary slackness condition:

µp(x)p∗g(x) = µp(x)pd(x)− αdµp(x)µ′′p(x) = 0, ∀ x ∈ X .
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For x ∈ X+, we have either µp(x) = 0 or µ′′p(x) =
pd
αd

as feasible solutions, but in view

of the condition in Equation (47), the latter becomes invalid. Therefore, for x ∈ X+,
µp(x) = 0 is the only solution. For x ∈ X0, the complementary slackness condition requires
that µp(x)µ′′p(x) = 0. Consequently, either µp(x) = 0 or µp(x) = c1 x + c0. The former
solution implies that µp(x) = 0, ∀ x ∈ X . If we consider the latter and enforce that
µp(x) ≤ 0, ∀ x ∈ X , then c1 is necessarily zero, while c0 is a finite negative value.

Consolidating, we get the following optimal solutions for the Lagrangian parameter:

µ∗p(x) = 0, ∀ x ∈ X , or µ∗p(x) =

{
0, ∀ x ∈ X+, and

−∞ < c0 ≤ 0, ∀ x ∈ X0.
(48)

Both are equally good optima as far as satisfying the constraints µp(x) ≤ 0 and Equation (47)
go, because in both cases, the loss function LG evaluates to zero, rendering the specific
choice of c0 irrelevant. Without loss of optimality, we set µ∗p(x) = 0, ∀ x ∈ X .

The preceding analysis strongly suggests that p∗g(x) = pd(x), ∀ x ∈ X is the optimal
solution. From Equation (45), we observe that the optimality of p∗g does not depend on the
value of λp. For the loss LG to be finite, λp must, however, be a finite real number.

Further, the optimality of the generator is unaffected by the homogeneous component of
the optimal discriminator.

In summary, the optima are given as follows:

p∗g(x) = pd(x), µ∗p(x) = 0, ∀x ∈ X , and λp ∈ (−∞,∞).

B.3 Optimal Lagrange Multiplier in WGAN-FS (1-D)

Consider the truncated Fourier-series approximation for the discriminator

D∗FS(x) =
1

λ∗FS

(
a1x+ a0 +

M∑
m=1

(
γrm cos(ωomx) + γim sin(ωomx)

))
.

In order to enforce the gradient-norm penalty, we require the square of the derivative:

(
dD∗FS

dx

)2

=
1

λ∗2FS

(
a1 −

M∑
m=1

(
γrmωom sin(ωomx) + γimωom cos(ωomx)

))2

.

By Cauchy-Schwartz inequality, we have

(
n∑
i=1

ui.1

)2

≤ n
n∑
i=1

u2
i . Using this inequality

allows us to place the following bound:(
dD∗FS

dx

)2

≤ 2M + 1

λ∗2FS

(
a2

1 +
M∑
m=1

ω2
om

2
(
γr

2

m sin2(ωomx) + γi
2

m cos2(ωomx)
))

=
2M + 1

λ∗2FS

(
a2

1 +

M∑
m=1

((
τ im + τ rm

)
+
(
τ im − τ rm

)
cos(2ωomx)

))
,
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where

τ rm =
1

2
(γrm)2ω2

om
2, and τ im =

1

2
(γim)2ω2

om
2.

Enforcing the gradient-norm penalty gives

0 ≤
∫
X

(
(2M + 1)

(
a2

1 +
M∑
m=1

((
τ im + τ rm

)
+
(
τ im − τ rm

)
cos(2ωomx)

))
− λ∗2FS

)
dx.

Simplifying, we obtain:

λ∗
2

FS ≤
(2M + 1)

|X |

∫
X

(
a2

1 +
M∑
m=1

((
τ im + τ rm

)
+
(
τ im − τ rm

)
cos(2ωomx)

))
dx.

= (2M + 1)

(
a2

1 +
M∑
m=1

(
τ im + τ rm

))
+

(2M + 1)

|X |
M∑
m=1

(
τ im − τ rm

)(∫
X

cos(2ωomx) dx

)
.

In practice, we have data, and computing a sample estimate of the upper bound over a
batch of size N gives the following

λ∗FS ≤

√√√√(2M + 1)

(
a2

1 +

M∑
m=1

(τ im + τ rm) +
1

N

N∑
k=1

M∑
m=1

(τ im − τ rm) cos(2ωomxk)

)
.

Recall that a1 = ±1 for the optimal discriminator to satisfy the gradient-norm penalty when
p∗g = pd (cf. Section 3.2). We observed that, in practice, the contribution of a1 is negligible
and the upper bound could be used for λ∗FS .

Appendix C. Optimality of WGAN-GNP (n-D)

In this appendix, we present the multivariate counterparts of the 1-D proofs presented in
Appendix B.

C.1 Optimal Lagrange Multiplier (n-D)

Consider the optimal WGAN discriminator in n-D (n ≥ 3):

D∗(x) =
κn
2λd

∫
X

1

‖x− y‖n−2
(pg(y)− pd(y)) dy + 〈a,x〉+ constant,

where a = [a1, a2, . . . , an]T, κn = (n(n− 2)v(n))−1, and X is the convex hull of the supports
of pd and pg, where in turn, v(n) is the volume of the unit sphere in Rn given by v(n) =

π
n
2

(
Γ
(
n
2 + 1

))−1
. Consider the partial derivative with respect to xi, the ith element of x:

∂D∗

∂xi
=

1

2nv(n)λd

∫
X

xi − yi
‖x− y‖n (pg(y)− pd(y)) dy + ai.
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Squaring and summing over all i gives

‖∇D∗‖22 =
1

4n2v(n)2λ2
d

n∑
i=1

(∫
X

xi − yi
‖x− y‖n (pg(y)− pd(y)) dy + ai

)2

.

Enforcing the gradient-norm penalty:
∫
X
(
‖∇D∗‖22 − 1

)
dx = 0 gives us the following

condition on the optimal Lagrange multiplier λ∗d for a given optimal discriminator:

λ∗d = ±

√√√√ 1

4n2v(n)2|X |

∫
X

(
n∑
i=1

(∫
X

xi − yi
‖x− y‖n (pg(y)− pd(y)) dy + ai

)2
)

dx, (49)

where |X | =
∫
X 1 dx denotes the volume of X .

We next have to determine the appropriate sign of λ∗d, which is obtained by considering
the second-order necessary conditions for optimality. Consider the n-D cost:

LD
(
D(x), {D′i(x)}ni=1

)
=

∫
X
F
(
x, D(x), {D′i(x)}ni=1

)
dx,

where D′i(x) = ∂D
∂xi

. Recall that the Legendre-Clebsch condition (cf. Section 2) in the
multidimensional case translates to positive-definiteness of the Hessian matrix H of the
Hamiltonian H of the cost LD computed with respect to {D′i}ni=1, evaluated at λd =
λ∗d, D(x) = D∗(x):

HD,H

∣∣∣∣
λd=λ∗d;D(x)=D∗(x)

� 0,

where � denotes positive-definiteness. The entries of HD,H are given by

[HD,H]i,j =
∂2H

∂D′i∂D
′
j

, where the Hamiltonian H =
n∑
i=1

(
D′i

∂F
∂D′i

)
−F .

Considering the integrand F of the WGAN-GNP cost given in Equation (13), the Hamiltonian
turns out to be

H = λd

(
n∑
i=1

(
D′i(x)

)2)−D(x)(pg(x)− pd(x)).

Evaluating the Hessian with respect to D′i yields the following:

[HD′,H]i,j =

{
2λd, for i = j, and

0, for i 6= j.

⇒HD′,H

∣∣∣∣
λd=λ∗d;D(x)=D∗(x)

= 2λ∗d In,

where In is the n× n identity matrix. This condition is analogous to the 1-D case, where,
picking the positive square-root for λ∗d in Equation (49) results in D∗(x) being a minimizer
of the chosen cost.

63



Asokan and Seelamantula

C.2 Optimal WGAN-GNP Generator (n-D)

The derivation of the optimal generator p∗g proceeds along the lines of the first-variation
analysis in 1-D, taking into account the fact that the generator cost does not involve terms
containing the derivatives of pg. Consider the Lagrangian

LG =

∫
X

((pd(x)− pg(x))D∗(x) + (λp + µp(x))pg(x)) dx− λp,

where D∗(x) is as given in Equation (19):

D∗(x) =
1

λd

∫
X
φ(x− y) (pd(y)− pg(y)) dy + 〈a,x〉+ constant,

with φ(x) = κn‖x‖2−n, where x ∈ Rn, n ≥ 3, κn = 1
n(n−2)v(n) , v(n) is the volume of the

unit sphere in Rn, and X is the convex hull of the supports of pd and pg. Denote the
optimal generator as p∗g(x). Consider the perturbation p∗g(x) + ε η(x), where η(x) is the
n-dimensional counterpart of η(x) defined in Appendix B.2. The first variation ∂LG is given
by

∂LG =

∫
X

∫
X
φ(y)η(x− y)(p∗g(x)− pd(x)) dy dx

+

∫
X

(
2αd (λp + µp(x)) + 〈a,x〉 −

(
φ ∗ (pd − p∗g)

)
(x)

)
η(x) dx

= T1 + T2,

where αd =
λ∗d
4

. The term T1 involves a convolution with a singular kernel φ(y), with

the singularity at the origin. The integrals therefore have to be evaluated in the Cauchy
principal-value sense. We make the interpretation explicit by defining:

p.v.

∫
X

( · ) dx = lim
ξ→0

∫
X ξ

( · ) dx,

where X ξ = X −B(0, ξ), which is formed by removing a ball of radius ξ centered at the origin.
Recall that X is assumed to be compactly supported, and hence X ξ is compactly supported
as well. Consider η to be absolutely integrable over X ξ. Applying Fubini’s theorem to T1

yields

T1 = lim
ξ→0

∫
X ξ
φ(y)

∫
X ξ

(
p∗g(x)− pd(x)

)
η(x− y) dx dy,

= lim
ξ→0

∫
X ξ

∫
X ξ
φ(y)

(
p∗g(x + y)− pd(x + y)

)
η(x) dx dy.

Swapping the order of integration yields

T1 = lim
ξ→0

∫
X ξ
η(x)

(
φ ∗
(
p∗g − pd

)
(x)
)

dx,
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since φ is radially symmetric. Substituting T1 back into ∂LG, setting it to zero, and invoking
the fundamental lemma of calculus of variations (cf. Section 2), we obtain the condition(

φ ∗ (p∗g − pd)
)

(x) = αd(λp + µp(x)) +
1

2
〈a,x〉, (50)

which the optimal generator p∗g must satisfy. Applying the Laplacian operator ∆ on both
sides of Equation (50) and noting that −∆φ(x) = δ(x) from Theorem 3, we get

p∗g(x) = pd(x) + αd∆µp(x). (51)

An alternative approach to obtaining Equation (51) from (50) involves the use of the
Fourier transform of distributions. The Fourier transform of 〈a,x〉 can be defined in the
distributional sense as follows:

〈a,x〉 =

n∑
i=1

aixi
F←→

n∑
i=1

j ai

δ′(ωi)∏
k 6=i

δ(ωk)


︸ ︷︷ ︸

δ′i(ω)

,

where δ′(ωi) denotes the derivative of the Dirac delta considered along ωi, which is the ith

element of ω = [ω1, ω2, . . . , ωn]T. Similarly, consider the n-dimensional radially symmetric
function:

fτ (x) = 2−
τ
2
‖x‖τ

Γ
(
n+τ

2

) ,
where x ∈ Rn and Γ(·) denotes the gamma function. Gelfand and Shilov (1958) showed that
the Fourier transform of fτ (x) is also radially symmetric, and has an expression given again
in terms of fτ as follows:

F{fτ (x)} = (2π)
n
2 f−n−τ (ω). (52)

Multiplying Equation (50) by 2
n−2
2 gives

(
f2−n(x) ∗ (pd − p∗g)

)
(x) =

2
n−2
2 αd
κn

(λp + µp(x)) +

(
2
n−4
2

κn

)
〈a,x〉.

Taking the Fourier transform on both sides, we get

f−2(ω)
(
p̂d(ω)− p̂∗g(ω)

)
=

(
2
n−2
2 αd
κn

)
(λpδ(ω) + µ̂p(ω)) +

(
2
n−4
2

κn

)
n∑
i=1

(
j aiδ

′
i(ω)

)
, (53)

where p̂∗g(ω), p̂d(ω), and µ̂p(ω) are the n-dimensional Fourier transforms of p∗g(x), pd(x),
and µp(x), respectively. Rearranging the terms, we get

p̂∗g(ω) = p̂d(ω)−
(

2
n−4
2 Γ

(
n−2

2

)
αd

κn

)
(λpδ(ω) + µ̂p(ω)) ‖ω‖2

+

(
2
n−6
2 Γ

(
n−2

2

)
κn

)
n∑
i=1

(
j aiδ

′
i(ω)

)
‖ω‖2.
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It can be verified that ‖ω‖2δ(ω) = 0, and ‖ω‖2δ′i(ω) = 0. Consequently, the above equation
simplifies to

p̂∗g(ω) = p̂d(ω) +

(
2
n−4
2 Γ

(
n−2

2

)
αd

κn

)
(−‖ω‖22)µ̂p(ω). (54)

Invoking the derivative properties of the n-dimensional Fourier transform, we have

∂2µp(x)

∂x2
i

F←→− ω2
i µ̂p(ω),

⇒ ∆µp(x) =

n∑
i=1

∂2µp(x)

∂x2
i

F←→− ‖ω‖22 µ̂p(ω).

Taking the inverse transform on both sides of (54) gives the optimal generator

p∗g(x) = pd(x) +

(
2
n−4
2 Γ

(
n−2

2

)
αd

(2π)
n
2 κn

)
∆µp(x).

Recall that κn = 1
n(n−2)v(n) , where v(n) = π

n
2

Γ(n2 +1)
, which is the volume of the unit hyper-

sphere in Rn. Substituting into the above yields

p∗g(x) = pd(x) + αd∆µp(x),

which is in agreement with the solution obtained in (51).
The next step would be to determine the optimal KKT multipliers λp and µp(x). The

analysis follows analogously to the 1-D case, by replacing the second derivative operator with
the Laplacian operator. Consider splitting X into disjoint sets X+ = {x | pd(x) > 0} and
X0 = {x | pd(x) = 0}. Enforcing the integral, non-negativity, and complementary slackness
constraints on p∗g(x) yields the following choices for µ∗p(x):

µ∗p(x) = 0, ∀ x ∈ X , or µ∗p(x) =

{
0, ∀ x ∈ X+, and

−∞ < c0 ≤ 0, ∀ x ∈ X0.
(55)

Either choice of µ∗p(x) results in the generator loss LG evaluating to zero, and the optimal
generator distribution matching the data distribution: p∗g(x) = pd(x). Further, the optimality
of the generator is independent of the value of λp.

Summarizing, the optima are:

p∗g(x) = pd(x); µ∗p(x) = 0, ∀ x ∈ X and λp ∈ (−∞,∞)

The preceding derivation considered the n-dimensional case with n ≥ 3. The n = 1 case was
presented in Appendix B.2. The analysis for n = 2 is presented next. The analysis follows
analogously to the n ≥ 3 case up until Equation (50). Thereafter, the difference lies in the
Fourier transform of φ(x). We have

φ(x) =

{
− 1

2π ln(‖x‖), x ∈ Rn − {0}, n = 2

κn‖x‖2−n n ≥ 3
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To determine the Fourier transform of φ(x) = − 1

2π
ln(‖x‖), we must pay attention to the

singularity at the origin. The Fourier transform must be defined in the distributional sense.

Vladimirov (1984) showed that the Fourier transform of
1

‖x‖2 , x ∈ Rn − {0} is given in the

distributional sense as follows:

F

{
1

‖x‖2
}

= −2π ln(‖ω‖)− 2πC0, ω ∈ Rn − {0},

where

C0 =

∫ 1

0

1− J0(u)

u
du−

∫ ∞
1

J0(u)

u
du,

where in turn, J0(u) is the zeroth-order Bessel function of the first kind (Abramowitz, 1974).
From the duality property of the Fourier transform, we have

F {φ(x)} = F

{
− 1

2π
ln(‖x‖)

}
=

1

2π

1

‖ω‖2 +
C0

2π
δ(ω).

From here on, the rest of the analysis corresponding to the optimal WGAN-GNP generator
proceeds as in the n ≥ 3 case in particular, Equation (53) onward, where f−2(ω) is replaced
with the above Fourier transform. Ultimately, the optimal solution, p∗g(x) = pd(x), remains
unchanged.

C.3 Optimal Lagrange Multiplier in WGAN-FS (n-D)

Consider the Fourier-series (FS) discriminator D∗FS(x) in the multivariate case:

D∗FS(x) ≈ 1

λ∗2FS

(
〈a,x〉+ constant +

∑
m∈M

(
γrm cos(ωo〈m,x〉) + γim sin(ωo〈m,x〉)

))
.

Taking the derivative with respect to x` and squaring, we get:

(
∂D∗FS
∂x`

)2

=
1

λ∗2FS

(
a` −

∑
m∈M

(
γrmωom` sin(ωo〈m,x〉) + γimωom` cos(ωo〈m,x〉)

))2

.

Using the Cauchy-Schwartz inequality:(
n∑
`=1

u`.1

)2

≤ n
n∑
`=1

u2
` ,

we obtain the following bound:(
∂D∗FS
∂x`

)2

≤ 2|M|+ 1

λ∗2FS

(
a2
` +

∑
m∈M

ω2
om

2
`

(
γr

2

m sin2(ωo〈m,x〉) + γi
2

m cos2(ωo〈m,x〉)
))

,
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where |M| is the cardinality of the set M of the selected harmonics. Summing over ` yields:

‖∇D∗‖22 ≤
2|M|+ 1

λ∗2FS

(
‖a‖2 +

∑
m∈M

ω2
o‖m‖2

(
γr

2

m sin2(ωo〈m,x〉) + γi
2

m cos2(ωo〈m,x〉)
))

⇒ ‖∇D∗‖22 ≤
2|M|+ 1

λ∗2FS

(
‖a‖2 +

∑
m∈M

((
τ im + τ rm

)
+
(
τ im − τ rm

)
cos(2ωo〈m,x〉)

))
,

where τ rm =
1

2
(γrm)2ω2

o‖m‖2, and τ im =
1

2
(γim)2ω2

o‖m‖2.

Enforcing the gradient-norm penalty:
∫
X
(
‖∇D∗‖22 − 1

)
dx = 0, gives

0 ≤
∫
X

(
(2|M|+ 1)

(
‖a‖2 +

∑
m∈M

((
τ im + τ rm

)
+
(
τ im − τ rm

)
cos(2ωo〈m,x〉)

))
− λ∗2FS

)
dx.

Simplifying the above gives the condition on the optimal Lagrange multiplier:

λ∗
2

FS ≤
(2|M|+ 1)

|X |

∫
X

(
‖a‖2 +

∑
m∈M

((
τ im + τ rm

)
+
(
τ im − τ rm

)
cos(2ωo〈m,x〉)

))
dx.

= (2|M|+ 1)

(
‖a‖2 +

∑
m∈M

(
τ im + τ rm

)
+
∑

m∈M

((
τ im − τ rm
|X |

)∫
X

cos(2ωo〈m,x〉)dx
))

.

Given the data

D = {xk} = {xd, s.t. xd ∼ pd}
⋃
{xg, s.t. xg ∼ pg}

of cardinality |D| = N , we can estimate the upper bound on λ∗FS as follows:

λ∗FS ≤

√√√√(2|M|+ 1)

(
‖a‖2 +

∑
m∈M

(τ im + τ rm) +
1

N

N∑
k=1

∑
m∈M

(τ im − τ rm) cos(2ωo〈m,xk〉)
)
.

Recall that ‖a‖ = 1 for the optimal discriminator to satisfy the gradient-norm penalty ΩD

when p∗g = pd (cf. Section 4). In practice, the contribution of ‖a‖ was found to be negligible
in comparison with the other terms. The worst-case choice for the Lagrange multiplier is

λ∗FS =

√√√√(2|M|+ 1)

( ∑
m∈M

(τ im + τ rm) +
1

N

N∑
k=1

∑
m∈M

(τ im − τ rm) cos(2ωo〈m,xk〉)
)
.

Appendix D. Fourier-series Error Analysis

In this appendix, we analyze the various sources of error in approximating the infinite
Fourier series of the generator and data distributions, and the discriminator, and derive
upper bounds for the mean-squared error when truncating the Fourier series, and when
computing the Fourier coefficients through sample estimates. Our analysis is inspired by
the 1-D analysis reported in Giardina and Chirlian (1972). We also generalize the results to
higher dimensions, which is pertinent to the present discussion.
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D.1 Fourier-series Truncation Error (1-D)

Consider the infinite and truncated Fourier series expansions of pd, pg and D∗(x), given as
follows:

pd(x) =
∑
m∈Z

αme
jωomx, and p̃d(x) =

M∑
m=−M

αme
jωomx,

pg(x) =
∑
m∈Z

βme
jωomx, and p̃g(x) =

M∑
m=−M

βme
jωomx, and

DFS(x) =
1

λd

∑
m∈Z

γme
jωomx, and D̃FS(x) =

1

λd

M∑
m=−M

γme
jωomx.

Considering the Fourier expansion of pd, the mean-squared error in truncation is given by

ε2pd = ‖pd(x)− p̃d(x)‖22 =

∫ ∞
−∞

(pd(x)− p̃d(x))2 dx.

Applying Parseval’s identity, we get

ε2pd = (2T )

∞∑
m=M+1

|αm|2.

A continuously differentiable and compactly supported function pd ∈ C1
c is of bounded

variation over the support X , denoted by VX [pd] =
∫
X |p′d(x)| dx ≤ Bd. Consider the

modulus of the Fourier coefficient αm:

|αm| =
1

T

∣∣∣∣∣
∫ T

2

−T
2

pd(x)e−jωomxdx

∣∣∣∣∣
=

1

ωomT

∣∣∣∣∣
∫ T

2

−T
2

pd(x) d(e−jωomx)

∣∣∣∣∣ .
Integrating by parts, and noting that pd(x)e−jωomx is T -periodic, we have:

|αm| =
1

ωomT

∣∣∣∣∣
∫ T

2

−T
2

e−jωomx d (pd(x))

∣∣∣∣∣
≤ 1

ωomT
VX [pd(x)] . (56)

This gives us the bound |αm| ≤ Bd
2πm . Substituting this result into the mean-squared error

yields

ε2pd ≤
B2
d

πωo

∞∑
m=M+1

1

m2
.
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Bounding the tail sum with an integral results in the following:

ε2pd ≤
B2
d

πωo

∫ ∞
y=M

1

y2
dy

⇒ ε2pd ≤
(
B2
d

πωo

)
1

M
.

Similarly, the mean-squared error in the truncation of pg is bounded as follows:

ε2pg ≤
(
B2
g

πωo

)
1

M
,

where Bg is the bound on the variation of pg.
These truncation errors result in the following error in the truncated Fourier series of the
discriminator:

ε2D = (2T )

∞∑
m=M+1

|γm|2 =
2T

ω2
o

∞∑
m=M+1

|αm − βm|2
m2

.

Using the inequality (a− b)2 ≤ 2(a2 + b2) gives

ε2D ≤
4T

ω2
o

∞∑
m=M+1

|αm|2 + |βm|2
m2

.

From the result in Equation (56), we have

ε2D ≤
4(B2

d +B2
g)

ω3
o

∞∑
m=M+1

1

m4
.

Bounding the tail sum with an integral gives

ε2D ≤
4(B2

d +B2
g)

ω3
o

∫ ∞
y=M

1

y4
dy

=
4(B2

d +B2
g)

3ω3
oM

3
,

which is the desired bound on the truncation error of the Fourier-series expansion of the
discriminator.

D.2 Fourier-series Truncation Error (n-D)

The infinite and truncated complex Fourier-series expansions of D(x) are given by

DFS(x) =
1

λd

∑
m∈Zn

γme
jωo〈m,x〉, and D̃FS(x) =

1

λd

∑
m∈[M ]n

γme
jωo〈m,x〉,
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respectively, where x ∈ Rn, m = [m1,m2, . . . ,mn]T ∈ Zn+, [M ]n denotes the Cartesian
product space {−M,−M + 1, . . . ,M − 1,M}n and ωo is the fundamental frequency common
to all the dimensions. The mean-squared error in truncation is given by

ε2D = ‖DFS(x)− D̃FS(x)‖22 =

∫ ∞
−∞

(
DFS(x)− D̃FS(x)

)2
dx.

From Parseval’s identity, we have:

ε2D = (2T )n
∞∑

m1=M+1

∞∑
m2=M+1

. . .
∞∑

mn=M+1

|γm|2

= (2T )n
∑

m∈Zn+\[M ]n+

|γm|2,

where [M ]n+ denotes the Cartesian product space {1, 2, . . . ,M − 1,M}n. Substituting for
γm from Equation (22) gives

ε2D =
(2T )n

4ω4
o

∑
m∈Zn+\[M ]n+

|αm − βm|2
‖m‖4 .

From Cauchy-Schwartz inequality, we have |αm − βm|2 ≤ 2
(
α2
m + β2

m

)
. Substituting into

the above equation, we have

ε2D ≤
(2T )n

ω4
o

∑
m∈Zn+\[M ]n+

|αm|2 + |βm|2
‖m‖4 . (57)

The right-hand side of the truncation error can be improved by invoking additional smooth-
ness assumptions on pd and pg. Consider pd and pg to be in C`(X )

⋂
W k,2(X ); ` > k (cf.

Assumption 2). The fact that the functions are in C`(X ) ensures that the derivatives of
pd and pg are well-defined in classical sense (as opposed to the weak derivatives, that are
considered in the case of Sobolev spaces). Recall the definition of the Sobolev-k space W k,2

that subsumes Ck(X ) functions:

W k,2(X ) =

{
f ; ‖f‖Wk,2 =

(
‖f‖22 +

k∑
i=1

‖f (i)‖22

)
<∞

}
≡
{
f ; ‖f‖′Wk,2 = ‖f‖22 + ‖f (k)‖22 <∞

}
,

where f (i) denotes the vector consisting of all ith partial derivatives of f , and the equivalence
holds in the sense of the topology induced by the norms ‖f‖Wk,2 and ‖f‖′

Wk,2 (Sobolev,

1963). Furthermore, when considering the Fourier-series expansion of functions in W k,2, the
following equivalences hold in terms of the Fourier coefficients holds (Sobolev, 1963):

W k,2(X )=

{
f ∈ L2(X ) ; s.t.

∑
m∈Zn

(
1 + ‖m‖2 + ‖m‖4 + . . .+ ‖m‖2k

)
|fm|2 <∞

}
(58)
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where {fm} denote the Fourier coefficients of f . From the bound in Equation (58), for the
infinite sum to converge, given data in Rn, we require the individual terms |fm|2 to decay
at a rate greater than ‖m‖−(2k+n). Therefore, there exists a constant Mf <∞ such that,
for finite k, we have

|fm|2 ≤Mf‖m‖−(2k+n+1), ∀ m.

While a similar bound can be derived using the exponent −(2k + n+ τ), τ = 1, 2, . . ., we
set τ = 1 to obtain a tight bound. This bound on |fm| is adequate for the infinite sum in
Equation (58) to be bounded, as shown in Appendix D.2.1. Substituting the above bound
into Equation (57) yields

ε2D ≤
(

(2T )n(Mpd + Mpg)

ω4
o

) ∑
m∈Zn+\[M ]n+

‖m‖−(2k+n+4).

The sum can be bounded by considering an appropriate integral as shown below:∑
m∈Zn\[M ]n

‖m‖−(2k+n+4) ≤
∫ ∞
y1=M

∫ ∞
y2=M

. . .

∫ ∞
yn=M

‖y‖−(2k+n+4) dy1dy2 . . . dyn,

where yi is the ith entry in y. Converting to n-dimensional spherical coordinates and
simplifying, we get ∑

m∈Zn\[M ]n

‖m‖−(2k+n+4) ≤ Sn−1

∫ ∞
r=M

√
n
r−(2k+5) dr,

where Sn−1 = π
n
2

(
Γ
(
n
2

))−1
is the hyper-surface area of the n-dimensional unit sphere.

Evaluating the integral on the right-hand side yields the following bound:∑
m∈Zn\[M ]n

‖m‖−(2k+n+4) ≤ Sn−1

(2k + 4)
(M
√
n)−(2k+4).

Using this bound gives us the desired result of Theorem 5:

ε2D ≤
(2T )n(Mpd + Mpg)Sn−1

2ω4
o︸ ︷︷ ︸

Cn,T

(
(M2n)−(k+2)

(k + 2)

)
= Cn,T

(
(M2n)−(k+2)

(k + 2)

)
.

Extension to Infinitely Differentiable Functions: The above analysis can be extended
to the case when pd and pg belong to C∞(X ), i.e., they are infinitely differentiable. In this
case, the definition in Equation (58) holds for all k, and we have:

|fm|2 ≈M′fe
−‖m‖2 ,

where M′fm is a constant dependent on f , that is, the Fourier coefficients decay exponentially.

Substituting the above in ε2MS and bounding the sum by the n-dimensional integral in
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hyperspherical coordinates gives

ε2D ≤
(

(2T )n(M′pd + M′pg)

ω4
o

)
Sn−1

∫ ∞
r=M

√
n
e−r

2
rn−1 dr

=

(
(2T )n(M′pd + M′pg)

ω4
o

)
Sn−1

∫ ∞
s=M2n

e−ss
n
2
−1 ds,

where the equality results from the change of variable s = r2. The integral is the upper
incomplete gamma function Γ

(
n
2 ,M

2 n
)
, This gives us the bound

ε2D ≤
(

(2T )n(M′pd + M′pg)

ω4
o

)
Sn−1︸ ︷︷ ︸

C′n,T

Γ
(n

2
,M2 n

)
.

Asymptotically, as M →∞, the upper incomplete gamma function satisfies the property:
Γ
(
n
2 ,M

2 n
)
→ (M2n)

n
2 e−M

2n.

D.2.1 Bound on the Fourier Coefficients

Consider the Sobolev-k space W k,2. For functions drawn from W k,2(X ), the coefficients of
the Fourier-series expansion {fm} must satisfy (Sobolev, 1963):

Sk =
∑

m∈Zn

((
1 + ‖m‖2 + ‖m‖4 + . . .+ ‖m‖2k

)
|fm|2

)
= |f0|2 +

∑
m∈Zn\{0}

((
1 + ‖m‖2 + ‖m‖4 + . . .+ ‖m‖2k

)
|fm|2

)
<∞. (59)

Consider the bound on the Fourier coefficients for finite k, given by:

|fm|2 ≤Mf‖m‖−(2k+n+1), ∀ m.

Since we are working with Fourier-series representations of p.d.f.s, we have f0 = 1. Therefore

Sk ≤ 1 + Mf

∑
m∈Zn\{0}

((
1 + ‖m‖2 + ‖m‖4 + . . .+ ‖m‖2k

)
‖m‖−(2k+n+1)

)
= 1 + Mf

∑
m∈Zn\{0}

(
‖m‖−(2k+n+1) + ‖m‖−((2k−2)+n+1) + . . .+ ‖m‖−(n+1)

)
≤ 1 + (k + 1)Mf

∑
m∈Zn\{0}

‖m‖−(n+1),

where the second inequality is obtained by approximating each term in the summation by
the largest one. Further bounding the infinite sum by an appropriate integral as follows:

Sk ≤ 1 + 2(k + 1)Mf

∫ ∞
y1=1

. . .

∫ ∞
yn=1

‖y‖−(n+1) dy1 . . . dyn,
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and converting to n-dimensional spherical coordinates, we get

Sk ≤ 1 + (k + 1)Mf Sn−1

∫ ∞
r=
√
n
r−2 dr,

where Sn−1 is the hyper-surface area of the n-D unit sphere. Evaluating the integral yields

Sk ≤ 1 + (k + 1)Mf Sn−1n
− 1

2 ,

which is finite.

D.3 Error in the Sample Estimation of Fourier Coefficients

In Appendix D.2, we analyzed the effect of truncating the Fourier series with a rectangular
sum of M terms along each dimension. In practice, in addition to truncating the Fourier
series, there is also error arising out of approximating the Fourier coefficients of pd and pg.
Consider the trigonometric Fourier expansion of pd:

pd(x) =
α0

2
+
∑

m∈Zn+

αrm cos(ωo〈m,x〉) + αim sin(ωo〈m,x〉)

and its M th-order approximation:

p̃d(x) =
ᾱ0

2
+

∑
m∈[M ]n+

ᾱrm cos(ωo〈m,x〉) + ᾱim sin(ωo〈m,x〉),

where x ∈ Rn, Zn+ denotes the set of positive non-zero integers, [M ]n+ represents the product
space {1, 2, . . . ,M}n, m = [m1,m2, . . . ,mn] ∈ Zn+, and αrm and ᾱrm are the true Fourier
coefficient and its N -sample estimate given by

αrm =

∫
X

cos(ωo〈m,x〉)pd(x) dx = Ex∼pd [cos(ωo〈m,x〉)] , and

ᾱrm =
1

N

N∑
k=1

xk∼pd

cos(ωo〈m,xk〉),

respectively. Considering independent and identically distributed (i.i.d.) samples {xi}, it
can be shown that

Ex [ᾱrm] =
1

N

N∑
k=1

xk∼pd

Ex [cos(ωo〈m,xk〉)] = αrm

Similarly, the variance of the estimate is given by

Var (ᾱrm) = Ex

[
(ᾱrm)2

]
− (Ex [ᾱrm])2 = Ex

[
(ᾱrm)2

]
− (αrm)2 . (60)
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Expanding the first term on the right-hand side yields

Ex

[
(ᾱrm)2

]
=

1

N2
Ex

( N∑
i=1

cos (ωo〈m,xi〉)
)2


=
1

N2

N∑
i=1

Ex

[
cos2 (ωo〈m,xi〉)

]
+

1

N2

N∑
i=1

N∑
j=1
j 6=i

Ex [cos (ωo〈m,xi〉) cos (ωo〈m,xj〉)] .

For i.i.d. samples {xi}, we have

Ex

[
(ᾱrm)2

]
=

1

N2

N∑
i=1

Ex

[
cos2 (ωo〈m,xi〉)

]
+

1

N2

N∑
i=1

N∑
j=1
j 6=i

Ex [cos (ωo〈m,xi〉)]Ex [cos (ωo〈m,xj〉)]

=
1

N2

N∑
i=1

Ex

[
cos2 (ωo〈m,xi〉)

]
+

(
N2 −N
N2

)
(αrm)2 .

Applying the half-angle trigonometric formulae gives

Ex

[
(ᾱrm)2

]
=

1

N2

N∑
i=1

Ex

[
1

2
+

1

2
cos (2ωo〈m,xi〉)

]
+

(
N2 −N
N2

)
(αrm)2 ,

=
1

2N
+

1

2N
Ex [cos (2ωo〈m,xi〉)] +

(
N2 −N
N2

)
(αrm)2 ,

⇒ Ex

[
(ᾱrm)2

]
=

1

2N
+

1

2N
αr2m +

(
N2 −N
N2

)
(αrm)2 .

Substituting the above into Equation (60) yields:

Var (ᾱrm) =
1

N

(
1

2
+

1

2
αr2m − (αrm)2

)
. (61)

A similar analysis for ᾱim gives

Ex

[
ᾱim
]

= αim, and Var
(
ᾱim
)

=
1

N

(
1

2
− 1

2
αr2m − (αrm)2

)
. (62)

We first bound the mean-squared error between the target expansion pd(x) and the approxi-
mation p̃d(x) in general, and subsequently, specialize the result for infinitely differentiable
functions. Consider the error

ε2pd = ‖pd(x)− p̃d(x)‖22 =

∫
X

(pd(x)− p̃d(x))2 dx.
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From Parseval identity, we have:

ε2pd =
|ᾱ0 − α0|2

2
+

∑
m∈[M ]n+

(
|ᾱrm − αrm|2 + |ᾱim − αim|2

)
+

∑
m∈Zn+\[M ]n+

(
|αrm|2 + |αim|2

)
.

The analysis for m = 0 can be accounted for in ᾱrm, and we have Ex[ᾱr0] = αr0 = 1 with
Var(ᾱr0) = 0. Taking the expected value of ε2MS with respect to x, we get

Ex

[
ε2pd
]

=
∑

m∈[M ]n+

Ex

[
(ᾱrm − αrm)2

]
+ Ex

[(
ᾱim − αim

)2]
+

∑
Zn+\[M ]n+

|αrm|2 + |αim|2

=
∑

m∈[M ]n+

Var(ᾱrm) + Var(ᾱim)

︸ ︷︷ ︸
T1

+
∑

Zn+\[M ]n+

|αrm|2 + |αim|2︸ ︷︷ ︸
T2

,

where T1 the statistical component of the error, caused by the error in approximating
the Fourier coefficient by replacing expectations with their samples estimates, and T2 is
deterministic, given the choice of the truncation frequency M . Substituting for the variance
terms and simplifying, we get:

Ex

[
ε2pd
]

=
1

N

∑
m∈[M ]n+

(
1− |αrm|2 − |αim|2

)
+

∑
Zn+\[M ]n+

(
|αrm|2 + |αim|2

)
,

=
Mn

N
−

∑
m∈[M ]n+

|αm|2 +
∑

Zn+\[M ]n+

|αm|2, (63)

where αm = αrm + jαim are the coefficients of the exponential Fourier series. Akin to the
analysis in Appendix D.2, consider mpd‖m‖−(2k+n+1) ≤ |αm|2 ≤Mf‖m‖−(2k+n+1), where
mpd <Mpd . Employing these bounds yields

Ex

[
ε2MS

]
≤ Mn

N
− mpd

N

∑
m∈[M ]n+

‖m‖−(2k+n+1)

︸ ︷︷ ︸
S1

+Mpd

∑
m∈Zn+\[M ]n+

‖m‖−(2k+n+1)

︸ ︷︷ ︸
S2

.

We can bound the elements in sum S1 considering m = [1, 1, . . . , 1]T. S2 can be bounded by
the integral in hyperspherical coordinates similar to the procedure employed in Appendix D.2:

S2 =
∑

m∈Zn+\[M ]n+

‖m‖−(2k+n+1)

≤
∫ ∞
y1=M

∫ ∞
y2=M

. . .

∫ ∞
yn=M

‖y‖−(2k+n+1) dy1dy2 . . . dyn

= Sn−1

∫ ∞
r=M

√
n
r−(2k+2) dr,

where Sn−1 is the surface area of the n-D unit hypersphere. For finite k, we have

S2 ≤
(

Sn−1

(2k + 1)n(k+ 1
2

)

)
︸ ︷︷ ︸

C′n,k

1

M2k+1
= C′n,k

1

M2k+1
.
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Substituting for S1 and S2 gives

Ex

[
ε2pd
]
≤ Mn

N

(
1− mpd

nk+n+1
2

)
︸ ︷︷ ︸

εstat

+ MpdC
′
n,k

1

M2k+1︸ ︷︷ ︸
εtrunc

, (64)

where εstat and εtrunc denote the statistical and deterministic contributions to the error,
respectively. Observe that as the dimensionality of data increases, the batch size must
increase at a rate of N ≈ Mn+1 for the approximation error εstat to decay. For a given
N , increasing M results in poorer estimates of the Fourier coefficients. One requires more
samples to estimate the high-frequency components accurately, failing which, undesirable
oscillations will appear in the representation. Experimental illustrations of this oscillation
phenomenon will be presented in Appendix E.1. The contribution of εstat associated with the
sample estimation of αm is larger than the truncation error εtrunc for most M . This results
in a trade-off between discarding high-frequency components versus poorly estimating them
due to insufficient samples. The relative effect of εstat and εtrunc indicates that it is indeed
better to discard the high-frequency terms in these scenarios. We restrict our Fourier-series
expansions in all experimentation to include up to Mlow = 2 harmonics along all dimensions.
For data in n-D, this results in an exponential blow-up of terms at the rate of nMlow for
larger M. For instance, with Mlow = 3 for 64-D data, there would be 643 ∼ 2× 105 terms in
the Fourier expansion. To improve the representation of high-frequency components, we
also uniformly randomly sample L1 = O(103) harmonics between Mlow = 2 and Mhigh = 10.

Extension to Infinitely Differentiable Functions: We now extend the result in Equa-
tion (64) to the case when pd and pg are infinitely differentiable. For C∞(X ) functions, each

term in the Fourier series is approximately O(e−‖m‖
2
). Similar to case when k is finite, there

exist two constants m′pd <M′pd such that:

Ex

[
ε2D
]
∼ Mn

N
−

m′pd
N

∑
m∈[M ]n+

e−‖m‖
2

︸ ︷︷ ︸
S1

+ M′pd
∑

m∈Zn+\[M ]n+

e−‖m‖
2

︸ ︷︷ ︸
S2

.

Each term in S1 can be bound by the largest value, as in the Ckc case. The sum in S2 can be
bounded by the hyperspherical integral as shown in Appendix D.2, which yields

S2 =
∑

m∈Zn+\[M ]n+

e−‖m‖
2 ≤

∫ ∞
y1=M

∫ ∞
y2=M

. . .

∫ ∞
yn=M

e−‖y‖
2

dy1dy2 . . . dyn

= Sn−1

∫ ∞
r=M

√
n
e−r

2
rn−1dr,

where, as before, Sn−1 denotes the surface area of a unit hypersphere in Rn. As in Ap-
pendix D.2, the above integral represents the upper incomplete Gamma function, which
gives the bound:

S2 ≤ Sn−1Γ
(n

2
,M2 n

)
.
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Substituting back for S1 and S2 gives:

Ex

[
ε2pd
]
∼ Mn

N

(
1−m′pde

−n)︸ ︷︷ ︸
εstat

+ M′pdSn−1Γ
(n

2
,M2 n

)
︸ ︷︷ ︸

εtrunc

,

where εstat and εtrunc are the statistical and deterministic components of the approximation
error, as discussed for the Ck(X ) case, which is the desired bound on the approximation
for C∞(X ) functions. This gives us a bound on the error when approximating the Fourier
series of truncated Gaussian distributions, such as in the case of latent-space matching in
Wasserstein autoencoders.

Appendix E. Additional Experimentation

In this appendix, we present additional experiments and results on univariate and multivariate
synthetic Gaussian data, and on learning the image-space distributions with WGAN-FS. We
also provide additional details on the evaluation metrics used.

E.1 Additional Experiments on 1-D and 2-D Gaussians

To begin with, we present results on learning 1-D and 2-D Gaussians and Gaussian mixtures
with the WGAN-FS algorithm.
Accuracy of the Fourier-series approximation: The experimental setup is as described
in Section 3.7. The fundamental period T is set to 7 in all the experiments. In Figure 18,
we present the target distribution pd and its Fourier-series approximation for various choices
of truncation order M and batch size N to illustrate the trade-off between truncating the
Fourier series at low frequencies, and the error in approximating high-frequency coefficients
with sparse samples. We observe that, when M is small (e.g., M = 5), introducing additional
samples does not improve the quality of the approximation. This is a manifestation of the
truncation error (εtrunc) seen in Equation (64). For larger M , (e.g., M ≥ 25), we observe
that, in line with the theory, the high-frequency terms have a larger variance in their estimate
and require larger N to be estimated accurately. This is the statistical component of the
error, (εstat), which can be reduced by increasing N . As inferred from Equation (64), the
artifacts can be suppressed from the approximation by setting N > Mn+1 (for example,
with N = 500 for M = 10 and N = 1000 for M = 25). We observe similar performance
trade-offs in the case of learning a bimodal Gaussian mixture in 1-D, as shown in Figure 19.
Additionally, when N and M are both small, the Fourier-series approximation fails to capture
the smaller mode. Based on these observations, we expect WGAN-FS to perform relatively
better with lower M even in the high-dimensional setting.
Choosing the fundamental period T : We next present results on varying the assumed
period T , given truncation order M and batch size N . Based on the previous experiments,
we set M = 10 and N = 100. We consider the 1-D Gaussian learning scenario as described
in Section 3.7. The target is a Gaussian N (5, 1), while the noise distribution is N (0, 1). We
compare results for various choices of the time period T ∈ {2, 5, 7, 11, 25, 75}. Figure 20
compares the quality of the Fourier-series approximation of the target distribution for each
value of T . Since a Gaussian is infinitely supported, there will be aliasing in the Fourier
representation no matter what the choice of the period is. In order to capture maximum area
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under the curve, to keep the aliasing error small, and to prevent the generator from latching
on to an aliased version of the target density, we choose T to encompass 12σ supports of
both the generator and the target densities in the fundamental period (for example, T ≥ 6
for the standard normal distribution). A good choice of the fundamental period T is one that
is centered around the generator distribution, but also encompasses the target distribution.
For the scenario where the standard normal N (0, 1) is chosen as the noise distribution when
learning a target N (µ, σ) we observe that T ≈ max{6, µ+ 6σ} results in a superior quality
of the Fourier-series approximation of the target.

Figures 21(a) and (b) plot the Wasserstein-2 distance W2,2 and generator loss LG,
respectively, as a function of iterations for various T . We observe that, for small T , the
generator latches on to an aliased version of the target, resulting in a large value for W2,2,
although the loss LG converges to zero. Choosing a large value of T makes the distribution
appear like a spike (high-frequency) in the fundamental period and therefore, an accurate
representation requires a larger value of M . For large M , although the Fourier-series
approximation is not accurate, the generator samples converge to the desired target samples
in terms of W2,2 and LG by virtue of uniqueness of the Fourier representation for a given
set of samples. Figure 21(c) shows the learnt discriminator for various choices of T . For
small T , the learnt discriminator is unable to classify the target and generator distributions
accurately. By virtue of the truncated Fourier-series approximation, the discriminator always
learns a smooth approximation of the target classifier.
Convergence of the optimal Lagrange multiplier: We next illustrate the suitability
of the optimal Lagrange multiplier λ∗FS to serve as a proxy to measure convergence of the
GAN generator during training. Figure 22 shows λ∗FS and the Wasserstein-2 distance (W2,2)
between pd and pg as a function of iterations. We observe that, for higher learning rates
(lr ≈ 10−1), λ∗FS does not converge to zero, which may be attributed to the fact that the
W2,2 metric measures the convergence only between the first- and second-order statistics,
while λ∗FS measures the coefficient-wise convergence between the Fourier-series of pd and pg,
which indirectly measures the L2 error between the generator and target densities. This
suggests that, while the models converge in the Wasserstein-2 sense for higher learning rates,
convergence in the L2 sense occurs for lower rates (here, lr ≤ 10−2). Based on these results,
we set the learning rate to 10−3 for the generator in the subsequent experiments.
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Figure 18: ( Color online) Comparison of the quality of the Fourier-series approximation
of a Gaussian pd(x) for various batch sizes N and truncation frequencies M .
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Figure 19: ( Color online) Comparison of the quality of the Fourier-series approximation of
a bimodal Gaussian pd for various batch sizes N and truncation frequencies M .

81



Asokan and Seelamantula

Figure 20: ( Color online) Comparison of the quality of the 10-component Fourier-series
approximation of a Gaussian pd(x) for various choices of the fundamental period
T . Underestimating the time period results in aliasing, while overestimating
it results in worse approximations of the distribution and requires additional
high-frequency components in the expansion to improve upon the quality.
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Figure 21: ( Color online) Experiments on 1-D Gaussian data: Comparison of (a)
Wasserstein-2 distance W2,2(pd, pg); and (b) Generator loss LG as a function of
iterations when training WGAN-FS for various choices of T . For small T , the
generator latches on to periodic replicas of the target, resulting in higher W2,2

values but low LG. (c) Comparison of the learnt discriminator when training
WGAN-FS for various choices of T . WGAN-FS learns a smooth approximation
of the true classifier for all T that contain 12σ windows of the generator and
target distribution, thereby avoiding aliasing.
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Figure 22: ( Color online) Convergence of the optimal Lagrange multiplier λ∗FS alongside
Wasserstein-2 distance between pd and pg (W2,2(pd, pg)) for various learning
rates. For higher learning rates, while the model appears to converge in the
sense of W2,2(pd, pg), which is a measure only up to second-order statistics, we
observe from λ∗FS that the distributions converge in the L2 sense (the Fourier
representation of pg converging to that of pd) only for learning rates lower than
10−2. For very low rates (such as 10−5), the convergence is not smooth. Therefore,
we use learning rates in the range [10−2, 10−4] in the subsequent experiments.
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E.2 Experiments on n-dimensional Gaussians

We now present experimental results on learning multivariate Gaussian data with truncated
Fourier-series expansions for WGAN-FS based on the sampling scheme described in Sec-
tion 5.1.

Experimental Setup: The experiments are conducted on n-D Gaussian data drawn from
N (0.751n, 0.2In), where 1n denotes an n-dimensional vector with all entries equal to 1, and
In is the n-dimensional identity matrix. The input to the generator is 100-D Gaussian noise.
To simulate the scenario of training on real-world images with the WAE Encoder (Tolstikhin
et al., 2018), the noise input is provided to a fully connected layer with 32× 32× 3 nodes,
whose output is reshaped to (32, 32, 3). Subsequently, the reshaped noise vectors are provided
as input to a network consisting of four convolution layers with 1024, 256, 128, and 64 filters
in successive layers. The output of the convolution layers is flattened and provided to a fully
connected layer with n output nodes. The learning rate is set to 10−2, and batch size to
N = 100. Recall that the Fourier-series expansion consists of two levels of approximation,
one for the low-frequency part and the other for the high-frequency part. We consider all
harmonics up to Mlow, and a set of L distinct uniformly drawn/sampled harmonics between
Mlow and Mhigh. We pick 10 ≤ n ≤ 256 to represent different latent space dimensions used
in standard autoencoder architectures for images (Tolstikhin et al., 2018).

Results: Figure 23 shows the Wasserstein-2 metric W2,2, generator loss LG and Lagrange
multiplier λ∗FS as a function of iterations, when training WGAN-FS to learn 10-D Gaussian
data. We set Mlow = 2 and Mhigh = 10. We experiment on multiple choices of the sample
size: L ∈ {5, 10, 20, 100, 500, 1000, 10000, 25000}. We observe from Figure 23(a) that the
model converges faster for smaller L (for example L ≤ 500 in the experiments). However,
as seen in Figure 23(b), for small L, the value of LG is higher. From Figure 23(c), we
see that for large L (such as L > 103), the convergence of the model in terms of λ∗FS is
slower. We attribute this to the slower convergence of the high-frequency components in
the Fourier-series expansions due to increased variance in estimating these components
for a given batch size N . This disparity is more pronounced when λ∗FS is plotted on the
logarithmic scale, as seen in Figure 23(b). We therefore chose 102 ≤ L ≤ 104 to be a good
compromise between achieving lower values of the generator loss and faster convergence
of the model. The findings were similar when training the WGAN-FS model on 64-D and
128-D Gaussians (cf. Figures 24 and 25, respectively).

In order to motivate the need for latent space matching, we compare the performance
of WGAN-FS for various n, given the sampling parameters Mlow = 2, Mhigh = 10 and
L = 1000. From Figure 26, we observe that, as n increases, bothW2,2 and λ∗FS exhibit poorer
convergence (saturation to higher values). There is also increased jitter in the convergence
of the loss and λ∗FS as n increases. From these results, it is evident that the WGAN-FS
discriminator exhibits superior performance on low-dimensional distribution matching, such
as in the case of latent-space matching in adversarial or Wasserstein autoencoders (Makhzani
et al., 2015; Tolstikhin et al., 2018).
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Figure 23: ( Color online) Experiments on 10-D Gaussian data: Plots comparing the
convergence of: (a) Wasserstein-2 distance W2,2; (b) Generator loss LG; (c)
Optimal Lagrange multiplier λ∗FS , and (d) the natural logarithm of λ∗FS as
a function of iterations when training WGAN-FS with L randomly sampled
high-frequency components. The convergence is slower for large L as the error
in estimating the coefficients increases with an increase in the number of high
frequency terms.
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Figure 24: ( Color online) Experiments on 64-D Gaussian data: Plots comparing the
convergence of: (a) Wasserstein-2 distance W2,2; (b) Generator loss LG; (c)
Optimal Lagrange multiplier λ∗FS , and (d) the natural logarithm of λ∗FS when
training WGAN-FS on 64-dimensional Gaussian data for various number of
sampled high-frequency coefficients, L. We observe that λ∗FS converges to a
worse (higher) value for larger L, while Wasserstein-2 distance W2,2(pd, pg) and
generator loss LG are worse for small L. Setting L to be around 103 is a viable
compromise.
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Figure 25: ( Color online) Experiments on 128-D Gaussian data: Plots comparing the
convergence of: (a) Wasserstein-2 distance W2,2; (b) Generator loss LG; (c)
Optimal Lagrange multiplier λ∗FS , and (d) the natural logarithm of λ∗FS when
training WGAN-FS on 128-dimensional Gaussian data for various number of
sampled high-frequency coefficients, L. We observe that the models converge to
worse (higher) values of λ∗FS as L increases. This suggests that Fourier-series-
based discriminator performs better when fewer high-frequency components are
included in the approximation.

88



Euler-Lagrange Analysis of GANs

250 500 750 1000

ITERATIONS

0

100

200

300

400

W
2
,2
(p
d
,
p g
)

250 500 750 1000

ITERATIONS

0.05

0.10

0.15

0.20

L G
(a) (b)

250 500 750 1000

ITERATIONS

0

200

400

600

800

λ
∗ F
S

200 400 600 800

ITERATIONS

2

3

4

5

6

ln
(λ

∗ F
S
)

(c) (d)200 400 600 800 1000

0.05

0.10

0.15

0.20

n = 10

n = 16

n = 32

n = 48

n = 64

n = 128

n = 192

n = 256

Figure 26: ( Color online) Plots comparing the convergence of (a) Wasserstein-2 distance
W2,2(pd, pg), (b) Generator loss LG, (c) the optimal Lagrange multiplier λ∗FS ,
and (d) the natural logarithm of λ∗FS when training WGAN-FS on n-dimensional
data, for various n. Across all three metrics, we observe that the models converge
to worse (higher) values as the dimensionality of the data increases. This suggests
that Fourier-series-based discriminator performs better on lower-dimensional
latent-space matching.
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MNIST MNIST (only Digit 4)

(a) (b)

Figure 27: Images generated by training WGAN-FS on 784-dimensional data consisting
of vectorized images drawn from (a) the entire MNIST dataset; and (b) only
the Digit 4 class of MNIST. WGAN-FS fails to converge when trained on the
complex MNIST multimodal data due to errors in estimating the full distribution
with a truncated Fourier series and a small batch size. While the performance is
better in the case of single-class learning, the images are sub-par compared to
the baseline GANs.

E.3 Image-space Matching with WGAN-FS

In an n-dimensional setting, the Fourier-series approximation, and thereby, the WGAN-FS
approach require that the underlying distributions are at least dn2 e-times continuously dif-
ferentiable for the truncation error derived in Appendix D.2 to be finite. However, it is
widely accepted that image datasets lie in unions of low-dimensional manifolds in a higher
dimensional space (Lui et al., 2017) resulting in a multimodal pd. This can lead to poorer
estimates of the Fourier-series coefficients of pd and pg, and the WGAN-FS generator will
not learn the data distribution accurately. To validate this, we trained the WGAN-FS
model on vectorized MNIST data, with x ∈ R784. The generator consists of a 3-layer fully
connected network with 128, 256, and 512 nodes, in successive layers with the hyperbolic−tan
activation. The output layer consists of 784 nodes with a sigmoid activation and the input
to the network is a 100-dimensional Gaussian vector. The fundamental period of the Fourier
series is set to 2. The sampling scheme described in Appendix E.2 is used, with Mlow = 2,
Mhigh = 10 and L = 1000. The model is trained with the Adam (Kingma and Ba, 2015)
optimizer with a learning rate of 10−3 and a batch size of 250.

Figure 27(a) shows the images generated by WGAN-FS when trained with the entire
MNIST dataset. We observe that the model has failed to learn the data distribution
accurately. Instead, it learns only the average statistics (such as the mean digit) of the
dataset. Figure 27(b) shows that the model performs better on a single-class learning task,
where the data distribution is more structured. However, the visual quality of the generated
images is below par than those generated by the baseline GAN variants (Arjovsky et al., 2017;
Gulrajani et al., 2017; Terjék, 2020). We attribute this poor performance to inaccuracies in
estimating the Fourier-series coefficients from a small batch size and insufficient harmonics,
given that the ambient dimension of the data is 784. We also note that the WGAN-FS
model did not converge when trained on 3072-dimensional CIFAR-10 or SVHN images or
other high-resolution datasets. These results further motivate the need for training the
Fourier-series model on latent space representations of the data.
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E.4 Additional Details on Evaluation Metrics

In this appendix, we provide additional details on the evaluation metrics used in Sec-
tions 3.7, 4.3, and 6 of the main manuscript:

• Wasserstein-2 distance: For Gaussian generator and target distributions, the
Wasserstein-2 distance has a closed-form expression:

W2,2 (N (µd,Σd),N (µg,Σg)) = ‖µd − µg‖22 + Trace

(
Σd + Σg − 2

(
Σ

1
2
d ΣgΣ

1
2
d

) 1
2

)
.

• Fréchet Inception Distance (FID): The FID was introduced by Heusel et al. (2017)
to measure the visual quality of images generated by GANs. FID is highly correlated
with human evaluation of such images. In this setting, we first consider the InceptionV3
model (Szegedy et al., 2015) without the topmost layer, loaded with pre-trained weights
for ImageNet (Deng et al., 2009) classification, to generate embeddings of the real and
generated data. Next, we assume that the embeddings of the real and generated data
are distributed as N (µd,Σd) and N (µg,Σg), respectively, and compute FID as the
Fréchet distance between them:

Fr (N (µd,Σd),N (µg,Σg)) = ‖µd − µg‖22 + Trace
(

Σd + Σg − 2 (ΣdΣg)
1
2

)
.

The InceptionV3 model accepts input dimensions in the range of 76 × 76 × 3 to
229 × 229 × 3. For consistency with the literature, color images are upscaled to
229× 229× 3 using bilinear interpolation. Grayscale images are upscaled to 229× 229
and replicated across the color channels. The FID score is measured over batches of 104

images. The best-case FID scores of the converged models are measured using 5× 104

samples drawn from both the target dataset and the WAE in all cases except Ukiyo-E
and single-class CIFAR-10, where the entire target class (about 5 × 103 images) is
used. We use the publicly available TensorFlow implementation of clean-fid (Parmar
et al., 2021) to compute the metric. Our implementation of CWAE (Knop et al., 2020)
and WAE (Tolstikhin et al., 2018) produced FID scores that are consistent with the
literature on CIFAR-10 and CelebA datasets. FID scores for MNIST, SVHN and
Ukiyo-E datasets were not reported in the baselines.

• Image Sharpness: We employ the metric proposed by Tolstikhin et al. (2018) to
characterize image sharpness. The sharpness metric is measured on two sets of data:
(i) Images obtained by decoding sample vectors drawn from the prior distribution;
and (ii) Images obtained by decoding interpolated latent vectors. The test images are
rescaled to have pixel intensities in [0, 1], and convolved with the Laplacian kernel−1 −1 −1
−1 8 −1
−1 −1 −1

 to emphasize edges. The variance of the pixel intensities in the

Laplacian of the image is evaluated and averaged over a batch of 103 images to measure
sharpness. Blurred images possess fewer distinct edges thereby resulting in a lower
variance than sharper images.
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Appendix F. Other Gradient-Regularized GANs

In this appendix, we consider Wasserstein GAN with the gradient penalty (WGAN-GP) (Gul-
rajani et al., 2017) and the centered WGAN-Rd and WGAN-Rg gradient penalties (Mescheder
et al., 2018) within the Euler-Lagrange framework. We also consider the SGAN and LSGAN
subject to the considered gradient-norm penalty, resulting in SGAN-GNP and LSGAN-GNP,
respectively.

WGAN-GP: Consider the WGAN-GP discriminator loss given by

LD =− Ex∼pd [D(x)] + Ex∼pg [D(x)] + λEx∼αpg+(1−α)pd

[
(‖∇D(x)‖2 − 1)2

]
=

∫
X

(
D(x) (pg(x)− pd(x)) + (pg(x) + (1− α)pd(x)) (‖∇D(x)‖2 − 1)2

)
dx.

Applying the EL condition for optima yields the following condition that the optimal
discriminator D∗(x) must satisfy:

(αpg(x) + (1− α)pd(x))
(
1− ‖∇D(x)‖−1

)
∆D(x) +

(
pd(x)− pg(x)

2λ

)
+ (α〈∇pg(x),∇D(x)〉+ (1− α)〈∇pd(x),∇D(x)〉)

(
1− ‖∇D(x)‖−1

)
+ (αpg(x) + (1− α)pd(x)) ‖∇D(x)‖−3

〈
(∇D(x)).2, diag(HD)

〉 ∣∣∣∣
D=D∗

= 0,

where

∇D = [D′1, D
′
2, . . . , D

′
n]T, with D′i =

∂D

∂xi

is the gradient vector, (∇D).2 represents element-wise squaring, and

diag(HD) = [D′′11, D
′′
22, . . . , D

′′
nn]T, with D′′ii =

∂2D

∂x2
i

is the vector formed by the diagonals of the Hessian matrix of D. The result is an intractable,
non-linear, second-order differential equation.

WGAN-RdRg: The WGAN-RdRg loss presented by Mescheder et al. (2018) is:

LD = −Ex∼pd [D(x)] + Ex∼pg [D(x)] +
λ1

2
Ex∼pd

[
‖∇D(x)‖22

]
+
λ2

2
Ex∼pg

[
‖∇D(x)‖22

]
=

∫
X

(
D(x) (pg(x)− pd(x)) +

1

2
(λ1pd(x) + λ2pg(x)) ‖∇D(x)‖22

)
dx,

where the EL condition for optimality results in the following differential equation:

∆D +
〈λ1∇pd + λ2∇pg,∇D〉

λ1pd + λ2pg
=

pg − pd
λ1pd + λ2pg

.

Unlike WGAN-GP, this formulation results in a second-order elliptic differential equation
with a variable coefficient. This is an instance of the Stein operator considered by Mroueh
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et al. (2018), where the gradient penalty is evaluated with respect to the measure λ1pd+λ2pg.
Fourier transform based techniques could be employed to solve the PDE.

SGAN-GNP : Based on a finding that the gradient penalty improves the performance of
WGANs (Gulrajani et al., 2017), the same penalty was used to improve the performance of
several f -GAN variants by Roth et al. (2017). The expectations are evaluated with respect
to an interpolated distribution between pd(x) and pg(x) by Roth et al. (2017) and between
pd(x) and the standard Gaussian by Kodali et al. (2017).

We consider the application of the gradient-norm penalty introduced in the context
of WGANs in this paper to SGAN and LSGAN. Consider the optimization of the SGAN
discriminator in 1-D with the gradient-norm penalty:

min
D(x)

LSGAN
D s.t.

∫
X

(
|D′(x)|2 − 1

)
dx = 0.

The integrand in the Lagrangian of the constrained discriminator loss is

F
(
x,D,D′

)
= ln (D(x)) pd(x) + ln (1−D(x)) pg(x) + λd|D′(x)|2.

Following the Euler-Lagrange condition, the optimal discriminator must satisfy the following
differential equation:

D′′(x) =
pd(x)− (pd(x) + pg(x))D(x)

2λdD(x)(1−D(x))
. (65)

A similar solution can be obtained in the multidimensional case as well, where the SGAN
optimization problem becomes

min
D(x)

LSGAN
D s.t.

∫
X

(
‖∇D(x)‖22 − 1

)
dx = 0.

The Euler-Lagrange condition gives the second-order non-linear PDE:

∆D(x) =
pd(x)− (pd(x) + pg(x))D(x)

2λdD(x)(1−D(x))
. (66)

Equations (65) and (66) are not amenable to a closed-form solution. A practical alternative
would be to use a numerical solver.

LSGAN-GNP : Finally, consider LSGAN with the gradient-norm penalty in 1-D:

min
D(x)

LLSGAN
D s.t.

∫
X

(
|D′(x)|2 − 1

)
dx = 0.

The integrand in the Lagrangian of the constrained discriminator loss is

F
(
x,D,D′

)
= (D(x)− b)2pd + (D(x)− a)2pg + λd|D′(x)|2.
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Applying the Euler-Lagrange condition gives

−D′′(x)︸ ︷︷ ︸
T1

+

(
pg(x) + pd(x)

λd

)
D(x)︸ ︷︷ ︸

T2

=
apg(x) + bpd(x)

λd︸ ︷︷ ︸
T3

. (67)

The Fourier-series expansions of pg(x), pd(x), and D(x) as defined in Section 3.4 simplify T1

and T3 readily, whereas T2 could be simplified using the convolution property:

T2 =
1

λd

∞∑
n=−∞

χne
jωonx, where χn =

∞∑
`=−∞

γ`(αn−` + βn−`).

The sequence {χn} is a sum of two convolutions, one between the sequences {α`} and {γ`},
and the other between {β`} and {γ`}. The sequence {γ`} has to be determined in order to
arrive at the discriminator. Simplifying (67) in view of the Fourier-series representations
gives the following optimality conditions in terms of the Fourier coefficients:

λdω
2
on

2γn −
(
aαn + bβn

)
+

∞∑
`=−∞

γ`(αn−` + βn−`) = 0, ∀ n ∈ Z− {0}, (68)

which is an infinite system of linear equations. One approach may be to consider a truncated
Fourier-series expansion, which would give rise to a finite system of linear equations that
can be solved using iterative algorithms or the Moore-Penrose pseudo-inverse.

Let us now consider the discriminator loss in n dimensions:

min
D(x)

LLSGAN
D s.t.

∫
X

(
‖∇D(x)‖22 − 1

)
dx = 0.

The EL condition applied to the Lagrangian of the discriminator loss results in the following:

−∆D(x) +

(
pd(x) + pg(x)

λd

)
D(x) =

apg(x) + bpd(x)

λd
.

The above PDE is of the form −∆D(x) +β1(x)D(x) = β0(x). As in the 1-D case, one could
consider Fourier-series expansions and take advantage of the multidimensional convolution
property. However, the computational complexity would increase exponentially with n.
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