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Abstract

Nonparametric varying coefficient (NVC) models are useful for modeling time-varying ef-
fects on responses that are measured repeatedly for the same subjects. When the number
of covariates is moderate or large, it is desirable to perform variable selection from the vary-
ing coefficient functions. However, existing methods for variable selection in NVC models
either fail to account for within-subject correlations or require the practitioner to specify
a parametric form for the correlation structure. In this paper, we introduce the nonpara-
metric varying coefficient spike-and-slab lasso (NVC-SSL) for Bayesian high-dimensional
NVC models. Through the introduction of functional random effects, our method allows
for flexible modeling of within-subject correlations without needing to specify a parametric
covariance function. We further propose several scalable optimization and Markov chain
Monte Carlo (MCMC) algorithms. For variable selection, we propose an Expectation Con-
ditional Maximization (ECM) algorithm to rapidly obtain maximum a posteriori (MAP)
estimates. Our ECM algorithm scales linearly in the total number of observations N and
the number of covariates p. For uncertainty quantification, we introduce an approximate
MCMC algorithm that also scales linearly in both N and p. We demonstrate the scala-
bility, variable selection performance, and inferential capabilities of our method through
simulations and a real data application. These algorithms are implemented in the publicly
available R package NVCSSL on the Comprehensive R Archive Network.
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1. Introduction

1.1 Model set-up

Consider the nonparametric varying coefficient (NVC) model with p covariates,

yi(tij) =

p∑
k=1

xik(tij)βk(tij) + εij(tij), i = 1, . . . , n, j = 1, . . . ,mi, (1)

where yi(t) is the response for the ith subject at time point t ∈ T , T is the time interval
on which the mi different measurements are taken, xik(t) is a possibly time-dependent
covariate with corresponding smooth coefficient function βk(t), and εij := εij(tij) is random
error. Throughout this paper, we denote N =

∑n
i=1mi as the total number of observations.

We also assume that the error terms εi = (εi1, . . . , εimi)
>, i = 1, . . . , n, are independent,

zero-mean Gaussian processes. That is, εi ∼ N (0,Σi), i = 1, . . . , n, where Σi is the mi×mi

variance-covariance matrix that captures the temporal correlation between the ni responses,
yi(ti1), . . . , yi(timi), for the ith subject.

NVC models (1) arise in many real applications. A prominent example is in longitudinal
data analysis where we aim to model the response for the ith experimental subject at mi

different time points (Hoover et al., 1998). NVC models can also be used for functional data
analysis where the objective is to model functional responses yi(t), i = 1, . . . , n, varying over
a continuum t ∈ T (Rice, 2004). Hastie and Tibshirani (1993) and Fan and Zhang (2008)
provide some further examples of applications of these models. Under (1), the primary aim
is to estimate and conduct inference for the varying coefficients βk(t), k = 1, . . . , p.

There has been extensive frequentist work on fitting NVC models. Typical approaches
to fitting (1) use local polynomial kernel smoothing (Fan and Zhang, 2000; Wu and Chiang,
2000) or basis expansions (Huang et al., 2004; Qu and Li, 2006; Xue and Qu, 2012) to
estimate the varying coefficients. Bayesian approaches to NVC models have also been
developed. Liu et al. (2018) and Guhaniyogi et al. (2022) endow the varying coefficients
with a Gaussian process (GP) prior. Biller and Fahrmeir (2001) and Huang et al. (2015)
use splines to model the βk(t)’s in (1) and place multivariate normal priors on the groups of
basis coefficients. Li et al. (2015) use a scale-mixture of a multivariate normal distribution
as a prior to shrink groups of basis coefficients towards zero. Deshpande et al. (2020) use
Bayesian additive regression trees (BART) to model the varying coefficients.

1.2 Related work

When the number of covariates p is large, it is often desirable to perform variable selection
from the varying coefficient functions. In the frequentist literature, many authors have
applied penalty functions such as the group lasso (Yuan and Lin, 2006) in order to threshold
many of the βk(t)’s to zero. See, e.g. Wang and Xia (2009), Wang et al. (2008), and Wei
et al. (2011). These frequentist penalized NVC models do not account for the within-
subject temporal correlations, essentially solving penalized likelihood objective functions
with ε = (ε>1 , . . . , ε

>
n )> ∼ N (0, IN ) in (1).

In low-dimensional settings and without regularizing the parameter space, Krafty et al.
(2008) and Chen and Wang (2011) incorporated estimation of within-subject correlations
into NVC models. However, to the best of our knowledge, no similar extension has been
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made for high-dimensional, penalized NVC models. While many researchers, e.g. Wang
and Xia (2009), Wang et al. (2008), Wei et al. (2011), and Xue and Qu (2012), have shown
that consistent estimation of the βk’s and model selection consistency can still be achieved
for penalized NVC models, failing to account for the error variances can nevertheless lead
to invalid inferences in finite samples (Liang and Zeger, 1993). Thus, it seems prudent to
explicitly model temporal dependence in NVC models. Furthermore, while point estimates
are easily attained, another major limitation of current penalized NVC models is their lack
of inferential capabilities.

Unlike frequentist penalized approaches, the Bayesian approaches of Liu et al. (2018),
Li et al. (2015), Deshpande et al. (2020), and Guhaniyogi et al. (2022) explicitly model
dependencies by specifying a parametric correlation structure for the residual errors or
the cross-covariance correlation function. Liu et al. (2018) employ subject-specific random
effects with a random intercept and a random slope, Deshpande et al. (2020) use a compound
symmetry covariance structure, Li et al. (2015) use a first-order autoregressive process, and
Guhaniyogi et al. (2022) use the exponential or the Gneiting’s correlation functions. The
choices of covariance structure in Deshpande et al. (2020), Li et al. (2015), and Guhaniyogi
et al. (2022) are parameterized by one to three hyperparameters (e.g. an autocorrelation
parameter ρ). Suitable priors are then placed on these hyperparameters. Apart from
being able to properly handle correlations, Bayesian NVC models also allow for natural
uncertainty quantification of the varying coefficients through their posterior distributions.

While the aforementioned Bayesian approaches enable modeling of within-subject corre-
lation, one of their limitations is the need to prespecify a parametric correlation structure.
In practice, the final estimates can be sensitive to the choice of kernel function (Stephenson
et al., 2022), and misspecifying the correlation structure may lead to incorrect inferences
about the model parameters. For example, if there are long-range dependencies, then corre-
lation functions that decay exponentially with distance (such as the ones used in Guhaniyogi
et al. (2022)) will not be able to adequately capture the dependence between responses ob-
served at far apart time points.

Another challenge with Bayesian NVC models is computational. In practice, Markov
chain Monte Carlo (MCMC) is typically used to fit these Bayesian NVC models. However,
when the number of observations N and/or the number of predictors p is large, MCMC can
be computationally prohibitive. Recently, there have been efforts to scale up Bayesian NVC
models when N is large. Guhaniyogi et al. (2022) employ divide-and-conquer MCMC which
divides the N data points into subsets of much smaller size, runs MCMC in parallel on each
subset, and then combines the posterior samples in a principled manner to approximate
the full data posterior. In a separate line of work, Guhaniyogi et al. (2023) employed data
sketching, which first compresses the dataset to a much smaller size through a random linear
transformation and then fits an NVC model to the compressed data using MCMC.

The approaches in Guhaniyogi et al. (2022) and Guhaniyogi et al. (2023) do not perform
variable selection and are specifically designed to handle the “large N , small p” situation.
In contrast, the methodology and algorithms that we introduce in this paper are meant to
be applied in the “small N , large p” scenario. This scenario arises often in practice, for
example, in genome-wide association studies (GWAS) and other analyses of high-throughput
biological data (Li et al., 2015). For example, Li et al. (2015) used NVC modeling to model
the changes in body mass index (BMI) for n = 865 subjects using p = 33,239 single
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nucleotide polymorphisms (SNPs) from the Framingham Heart Study. In this study, BMI
was measured at irregular time points from age 29 to age 61 for each of the n subjects,
and a multivariate Laplace prior was used to select the SNP varying coefficients that are
significantly associated with BMI.

1.3 Our contributions

The goal of this paper is to introduce a comprehensive methodological and computational
framework for high-dimensional Bayesian varying coefficient models. Our framework ad-
dresses all of the issues of variable selection, estimation, and uncertainty quantification.
Methodologically, we introduce a new approach to Bayesian function selection in NVC
models that flexibly accounts for unknown within-subject covariances. Despite the utility
of Bayesian methods for inference, there is currently a lack of Bayesian variable selection
methods for NVC models that are scalable in the number of covariates p. This work ad-
dresses this gap by proposing scalable optimization and MCMC algorithms when p is large
and variable selection is a primary objective for the data analyst.

In fitting a Bayesian NVC model, we have the following desiderata: 1) our method
should perform variable selection, 2) our method should be able to flexibly accommodate a
wide variety of unknown within-subject correlation structures, and 3) our method should be
scalable for large p. To the best of our knowledge, there are no existing Bayesian methods
for NVC models that accomplish all three goals. In this paper, we address all of these issues.
We focus mainly on methodology and computation. However, theoretical considerations for
“small N , large p” Bayesian varying coefficient models are briefly discussed and are reported
in much greater detail in a follow-up work by Bai (2023b).

Recently, there has been a rapid development in spike-and-slab lasso (SSL) methods
to solve various high-dimensional problems, including (generalized) linear models (Ročková
and George, 2018; Tang et al., 2017; Deshpande et al., 2019; Bai et al., 2022; Bai, 2023a),
factor analysis (Ročková and George, 2016; Moran et al., 2021), graphical models (Gan
et al., 2019a; Li et al., 2019; Gan et al., 2019b), and nonparametric additive regression (Bai
et al., 2022). SSL methods endow regression coefficients with spike-and-slab priors such that
the posterior mode gives exact sparsity. In this work, we extend the SSL methodology to
functional and longitudinal data analysis. Our contributions can be summarized as follows:

• We introduce the nonparametric varying coefficient spike-and-slab lasso (NVC-SSL)
for Bayesian estimation and variable selection in NVC models. Our method provides
several advantages over previously proposed methodology for high-dimensional vary-
ing coefficient models. First, unlike existing frequentist penalized NVC models, NVC-
SSL incorporates estimation of the within-subject covariance structure and borrows in-
formation across functional components through a non-separable beta-Bernoulli prior.
Second, unlike existing Bayesian approaches, the NVC-SSL model does not assume
known within-subject covariance functions.

• For scalable variable selection, we propose an ECM algorithm for MAP estimation that
scales linearly in both p and N . Our approach gives exact sparsity, thereby allowing
the MAP estimator to automatically perform selection from the varying coefficient
functions.
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• For scalable uncertainty quantification, we provide both an exact MCMC algorithm
and an approximate MCMC algorithm. The exact algorithm scales linearly in p and
quadratically in N , while the approximate MCMC algorithm scales linearly in both
p and N . The approximate MCMC algorithm is shown to provide massive speed-
ups over the exact algorithm as p increases. We quantify the tradeoffs of using the
approximate MCMC algorithm in place of the exact algorithm.

The rest of this paper is structured as follows. In Section 2, we introduce the NVC-SSL
model. In Section 3, we propose a fast ECM algorithm for rapidly obtaining MAP estimates
of the varying coefficients under NVC-SSL. In Section 4, we provide exact and approximate
MCMC algorithms for scalable uncertainty quantification. Section 5 presents simulation
studies validating the variable selection performance, scalability, and inferential capability
of NVC-SSL. Section 6 applies NVC-SSL to a real data application of identifying important
transcription factors in the yeast cell cycle. Finally, Section 7 concludes the paper with a
brief discussion.

We use the following notation in this paper. A Gaussian process with mean function
m := m(x) and covariance function k := k(x, x′) is denoted as GP(m, k). For a vector v,
‖v‖2 denotes its `2-norm. For two matrices A and B, the Kronecker product is denoted
by A⊗B, and the direct sum of A and B is denoted by A⊕B. For a square matrix C,
det(C) denotes its determinant and tr(C) denotes its trace. For two square matrices C
and D of the same dimension, C ≥D means that C −D is non-negative definite.

2. The Nonparametric varying coefficient spike-and-slab lasso

2.1 Modeling of unknown within-subject correlations

In order to accommodate unknown within-subject correlations, we suppose that we can
decompose the error εi(tij) in (1) into two terms: a functional random effect (Guo, 2002)
and a measurement error term. Thus, our model is

yi(tij) =

p∑
k=1

xik(tij)βk(tij) + αi(tij) + rij , αi(t) ∼ GP(0, ki), rij ∼ N (0, σ2), (2)

where the rij ’s are independent measurement errors at each time point tij , and the αi(t)’s
are subject-specific functional random effects that independently follow zero-mean Gaussian
processes GP(0, ki). In (2), the covariance function ki models the ith subject’s within-
subject temporal correlations. In particular, the mi-dimensional random effects vector
αi(ti) = (αi(ti1), . . . , αi(timi))

> follows a multivariate Gaussian distribution N (0,K(ti)),
where the (j, j′)th entry of K(ti) is ki(tij , tij′), 1 ≤ j, j′ ≤ mi.

The functional random effect αi(t) in (2) deserves some explanation. Functional ran-
dom effect models generalize mixed effects models with a random intercept αi ∼ N (0, σ2

α)
(Guo, 2002). The random intercept model is equivalent to the compound symmetry (CS)
covariance function, k(t, t′) = σ2I(t = t′) + σ2

α. Models that specify a random intercept
(and a random slope), e.g. the approach in Liu et al. (2018), are thus imposing a spe-
cific parametric covariance function on the model. The more general formulation in (2)
where αi(ti) ∼ N (0,K(ti)) allows for many other covariance functions to characterize the
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within-subject correlations. For example, if the squared exponential (SE) kernel function is
used, then ki(t, t

′) = s2 exp{−(t− t′)2/2`2}, where s is the scale factor and ` is the length-
scale. The SE covariance function assumes that the correlation between time points t and
t′ decreases exponentially as the distance |t− t′| grows.

In this work, we treat the within-subject covariance functions ki’s as completely unknown
and model these ki’s nonparametrically. This makes our model more flexible than previous
works which ignore within-subject correlations (Wang and Xia, 2009; Wang et al., 2008;
Wei et al., 2011) or which require specific parametric forms for the covariance functions
(Liu et al., 2018; Li et al., 2015; Deshpande et al., 2020; Guhaniyogi et al., 2022).

2.2 Basis expansion representation of the NVC model

Following the development in Wang and Xia (2009), Wang et al. (2008), and Wei et al.
(2011), we approximate each coefficient function βk in (1) by a linear combination of d
basis functions, i.e. at a particular time t,

βk(t) ≈
d∑
l=1

γklBkl(t), (3)

where Bkl(t), l = 1, . . . , d, are the basis functions with corresponding basis coefficients γkl.
In addition, we approximate the unknown functional random effect αi(t) in (2) as a linear
combination of q basis functions with random coefficients, i.e. for a particular time t,

αi(t) ≈
q∑
l=1

B̃il(t)ηil, ηi = (ηi1, . . . , ηiq)
> ∼ Nq(0,Ω), (4)

where Ω is a q × q positive-definite matrix and B̃il(t), l = 1, . . . , q, are the basis functions.
Combining (3)-(4), the model (2) can be approximated as

yi(tij) ≈
p∑

k=1

d∑
l=1

xik(tij)γklBkl(tij) +

q∑
l=1

B̃il(tij)ηik + rij . (5)

From (4), it is clear that the within-subject covariance function ki(t, t
′) is approximated by

ki(t, t
′) ≈ B̃>i (t)ΩB̃i(t

′), (6)

where B̃i(t) = (B̃i1(t), . . . , B̃iq(t))
> ∈ Rq. We see from (6) that our formulation affords a

great deal of flexibility in modeling the unknown within-subject covariances. In particular,
the covariance function ki(tij , tij′) for the ith subject is modeled by a quadratic form of

the subject-specific basis function vectors B̃i(tij) and B̃i(tij′). Therefore, if we choose a

flexible family of basis functions for the B̃i’s, then we can capture a wide variety of within-
subject covariance functions. In practice, we use B-splines with equispaced knots as the
basis functions for both the Bkl(t)’s and B̃il(t)’s, due to their computational simplicity,
numerical stability, and excellent local approximation properties (Wei et al., 2011; Yoo
and Ghosal, 2016). However, other basis functions such as natural splines, trigonometric
functions, and wavelets could also be used to model the Bkl(t) and B̃il(t)’s.
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Recall that N =
∑n

i=1mi is the total number of observations. Let X = [x1, . . . ,xp] ∈
RN×p, with xk = (x1k(t11), . . . , x1k(t1m1), . . . , xnk(tn1), . . . , xnk(tnmn))>. Further, we define
B(t) as a p× dp basis expansion matrix containing the Bkl(t)’s from (3),

B(t) =

B11(t) B12(t) . . . B1d(t) 0 . . . 0 0 . . . 0
...

...
...

...
...

...
...

0 0 . . . 0 0 . . . Bp1(t) Bp2(t) . . . Bpd(t)

 ,

and we define

Ui = (ui1, . . . ,uimi)
> ∈ Rmi×dp, (7)

where

u>ij = x>(tij)B(tij)

for i = 1, . . . , n, j = 1, . . . ,mi, and x(tij) ∈ Rp denotes the row of X corresponding to
the jth observation for the ith subject. We also define Zi as the matrix with (j, l)th entry
B̃il(tij) from (4), i.e.

Zi = (B̃i(ti1), . . . , B̃i(timi))
> ∈ Rmi×q. (8)

Let γ = (γ>1 , . . . ,γ
>
p )> ∈ Rdp, where the kth subvector γk = (γk1, . . . , γkd) ∈ Rd consists

of the basis coefficients γkl’s in (3) corresponding to the kth varying coefficient βk(t). Let
Yi = (yi(ti1, . . . , yi(timi))

> and ri = (ri1, . . . , rimi)
> denote the mi-dimensional vectors of

responses and measurement errors for the ith subject. Then (5) can be written in matrix
form as

Yi = Uiγ +Ziηi + ri, ηi ∼ N (0,Ω), ri ∼ N (0, σ2Imi), i = 1, . . . , n, (9)

where Ui and Zi are as in (7) and (8). Letting Y = (Y >1 , . . . ,Y >n )> ∈ RN , U =
(U>1 , . . . ,U

>
n )> ∈ RN×dp, Z = Z1 ⊕ · · · ⊕ Zn ∈ RN×nq, η = (η>1 , . . . ,η

>
n )> ∈ Rnq, and

r = (r>1 , . . . , r
>
n )> ∈ RN , we can also express (9) for all N observations as

Y = Uγ +Zη + r, η ∼ N (0, In ⊗Ω), r ∼ N (0, σ2IN ). (10)

Before introducing the NVC-SSL model, we make a few remarks about our model setup.
First, although we focus on continuous responses with Gaussian errors for concreteness, our
method can easily be extended to NVC models with discrete or non-Gaussian responses by
recasting our model into the generalized linear mixed model (GLMM) framework. In this
case, we would employ a monotonically increasing link function g to relate the conditional
expectation of yi(tij) given the p covariates xi(tij) = (xi1(tij), . . . , xip(tij))

> to the varying
coefficients βk(t)’s as

E[yi(tij) | xi(tij)] = g−1

(
p∑

k=1

xik(tij)βk(tij) + αi(tij)

)
= g−1

(
u>ijγ + z>ijηi

)
, ηi ∼ N (0,Ω), (11)
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where uij is the jth row of Ui in (7) and zij is the jth row of Zi in (8). For example, if
the response variables are binary, we can assume that yi(tij) | xi(tij) ∼ Bernoulli(pij) and
employ the logit link function g(pij) = log(pij/(1 − pij)) to obtain a logistic NVC model.
By putting the same priors on (γ,Ω) in (11) as those introduced in Section 2.3, we can
implement NVC-SSL for logistic NVC models. In particular, the ECM algorithm in Section
3 can be extended to logistic NVC models using the approach in Bai (2023a), and the
MCMC algorithms in Section 4 can also be extended to GLMMs straightforwardly using
Pólya-gamma data augmentation (Polson et al., 2013).

Secondly, our method can also be easily extended to NVC models where the varying
coefficients are multivariate functions, e.g. spatial models where βk := βk(s), k = 1, . . . , p,
and s ∈ S where S is a spatial domain. If the varying coefficients are multivariate functions,
we can replace the univariate basis functions Bkl(t) and B̃il(t) in (3) with tensor products
of basis functions (see e.g., Bai et al. (2022)). For example, if the varying coefficients are
functions of two variables, βk(u, v), we can approximate the varying coefficients as

βk(u, v) ≈
du∑
l=1

dv∑
m=1

γklmBkl(u)Bkm(v),

and the functional random effects as

αi(u, v) ≈
du∑
l=1

dv∑
m=1

B̃il(u)B̃im(v)ηilm.

We would then proceed to estimate the model parameters, e.g. the basis coefficients, exactly
the same way as we would in the case of univariate varying coefficient functions βk(t).

2.3 Prior specification for NVC-SSL

Having rewritten our NVC model (2) in matrix form (10), parameter estimation reduces
to estimating (γ,Ω, σ2). We take a Bayesian approach and endow these parameters with
suitable priors. In particular, estimating the varying coefficient functions βk(t)’s in (2) are
straightforward once we have estimates of the basis coefficients γ. By (3), we can estimate
β̂k(t) =

∑d
l=1 γ̂klBkl(t), k = 1, . . . , p, once we have an estimate γ̂.

As discussed in Section 1.2, we are interested in not only estimating the varying co-
efficient functions in (2), but also performing variable selection from them. Under the
assumption of sparsity, most of the βk(t)’s in (2) should equal zero. To facilitate variable
selection, we endow the vector of basis coefficients γ = (γ>1 , . . . ,γ

>
p )> in (10) with the

spike-and-slab group lasso (SSGL) prior of Bai et al. (2022),

π(γ | θ) =

p∏
k=1

[(1− θ)Ψ(γk | λ0) + θΨ(γk | λ1)] , (12)

where θ ∈ (0, 1) is a mixing proportion, or the expected proportion of nonzero γk’s, and
Ψ(· | λ) denotes a multivariate Laplace density indexed by hyperparameter λ,

Ψ(γk | λ) =
λde−λ‖γk‖2

2dπ(d−1)/2Γ((d+ 1)/2)
, k = 1, . . . , p.
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The SSGL prior (12), which we denote as SSGL(λ0, λ1, θ) going forward, can be considered
a two-group refinement of the group lasso (Yuan and Lin, 2006). Under the prior (12), the
posterior mode for γ gives exact sparsity (i.e. some of the γk vectors will be exactly 0).
This allows SSGL(λ0, λ1, θ) to perform joint estimation and variable selection (Bai et al.,
2022). In the present context, if the posterior mode for γk is γ̂k = 0, then the kth function
will be estimated as β̂k(t) =

∑dk
l=1 γ̂klBkl(t) = 0 and thus thresholded out of the model.

We typically set λ0 � λ1 in (12), so that the first mixture component Ψ(· | λ0) (the
spike) is heavily concentrated around the d-dimensional zero vector 0 for each k = 1, . . . , p.
Meanwhile, the slab component Ψ(· | λ1) stabilizes the posterior estimates of large coeffi-
cients, preventing them from being downward biased. One of the chief advantages of SSGL
over other group penalties such as group lasso, group smoothly clipped absolute deviation
(SCAD), or group minimax concave penalty (MCP) (Yuan and Lin, 2006; Breheny and
Huang, 2015) is the SSGL’s ability to perform adaptive shrinkage. Group lasso, group
SCAD, and group MCP all contain a single regularization parameter λ > 0 controlling the
sparsity of the solution. Consequently, if λ is large, then all groups may be overshrunk.
In contrast, the slab hyperparameter λ1 in SSGL(λ0, λ1, θ) applies minimal shrinkage to
groups with larger coefficients, allowing these groups to escape the pull of the spike.

To model the uncertainty of the mixing proportion θ in (12), we endow θ with a beta
prior,

θ ∼ B(a, b), (13)

where a > 0 and b > 0 are fixed positive constants. Unlike the group lasso, group SCAD, and
group MCP, this prior (13) on θ ultimately renders our Bayesian penalty non-separable in
the sense that the groups γk, k = 1, . . . , p are a priori dependent. This non-separability pro-
vides several benefits. First, the prior on θ allows the NVC-SSL model to share information
across functional components and self-adapt to ensemble information about sparsity. Sec-
ond, with appropriate choices for the hyperparameters in θ ∼ B(a, b), namely a = 1, b = p,
our prior performs an automatic multiplicity adjustment (Scott and Berger, 2010) and fa-
vors parsimonious models in high dimensions. This helps NVC-SSL to avoid the curse of
dimensionality for large p.

To complete the NVC-SSL prior specification, we place independent conditionally con-
jugate priors on the parameters (Ω, σ2) in (10). Namely, we endow Ω with the prior,

Ω ∼ Inverse-Wishart(ν,Φ), (14)

where the degrees of freedom ν > q− 1 and the scale matrix Φ is positive-definite. Finally,
we endow the measurement error variance σ2 with the prior,

σ2 ∼ Inverse-Gamma(c0/2, d0/2), (15)

where c0 > 0, d0 > 2.

2.4 Theoretical considerations

In the literature on Bayesian asymptotics, a common theme is to study the posterior con-
traction rate, or the speed at which the posterior distribution converges to a point mass at
the true parameter as sample size N grows to infinity. Recently, in the “fixed p” regime,
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posterior contraction rates have been derived for Bayesian NVC models by Deshpande et al.
(2020), Guhaniyogi et al. (2022), and Guhaniyogi et al. (2023). However, these papers do
not consider the case where p is allowed to diverge with n.

In a follow-up paper to this article, Bai (2023b) derives sufficient conditions for pos-
terior contraction in high-dimensional Bayesian NVC models when p � n and p grows
subexponentially with n. To summarize briefly, the prior distribution is required to be
heavily concentrated near zero (to capture sparsity) and to have a sufficiently heavy tail (to
capture the true nonzero varying coefficients). With appropriately chosen hyperparameters,
Bai (2023b) shows that the NVC-SSL prior can achieve adaptive posterior contraction to
the true varying coefficients. The NVC-SSL prior is adaptive in the sense that it adapts to
the unknown sparsity level and the unknown smoothness of the varying coefficients. These
sufficient conditions are not specific to the NVC-SSL prior; other multivariate priors that
satisfy the conditions in Bai (2023b) would also theoretically achieve adaptive posterior
contraction. This general theory for Bayesian NVC models when p > n is described in
detail in Bai (2023b).

3. Scalable MAP estimation for variable selection

3.1 ECM algorithm

We now detail how to implement NVC-SSL, i.e. the model (5) with priors (12)-(15), for
variable selection. We first present a very fast ECM algorithm which targets the posterior
mode. Once we have obtained the MAP estimator γ̂, the varying coefficients can then be
estimated as β̂k(t) =

∑d
l=1 γ̂klBkl(t), k = 1, . . . , p. As discussed in Section 2.3, the MAP

estimator under NVC-SSL is exactly sparse, with many γk’s thresholded to zero. This
enables the MAP estimator to perform automatic variable selection, since β̂k(t) = 0 if
γ̂k = 0.

Let Ξ denote the collection Ξ = {γ, θ,η,Ω, σ2}. Based on (10) and the prior densities
(12)-(15), the log-posterior density for Ξ (up to an additive constant) is given by

log π(Ξ | Y ) =− N

2
log σ2 − ‖Y −Uγ −Zη‖

2

2σ2
+
n

2
log(det(Ω−1))− 1

2

n∑
i=1

η>i Ω−1ηi

+

p∑
k=1

log
(

(1− θ)λd0e−λ0‖γk‖2 + θλd1e
−λ1‖γk‖2

)
+ (a− 1) log θ + (b− 1) log(1− θ)

+
ν + q + 1

2
log
(
det(Ω−1)

)
− 1

2
tr(ΦΩ−1)−

(
c0 + 2

2

)
log σ2 − d0

2σ2
. (16)

Our objective is to maximize the log-posterior (16) with respect to Ξ. We first intro-
duce latent 0-1 indicators, τ = (τ1, . . . , τp)

>, i.e. τk ∈ {0, 1} for k = 1, . . . , p. Then
the SSGL(λ0, λ1, θ) prior (12) can be expressed as the marginal prior under a hierarchical

10
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beta-Bernoulli prior,

π(γ | τ ) =

p∏
k=1

[(1− τk)Ψ(γk | λ0) + τkΨ(γk|λ1)] ,

π(τ | θ) =

p∏
k=1

θτk(1− θ)1−τk .

(17)

With the augmented log-posterior log π(Ξ, τ | Y ), we can now implement an ECM algo-
rithm to find the MAP estimator Ξ̂ = {γ̂, θ̂, η̂, Ω̂, σ̂2}. We first initialize the parameters
Ξ(0), and then in each tth iteration, we iterate between the E-step and the CM-steps until
convergence. In the E-step, we treat the latent indicator variables τ in (17) as missing data
and compute F (t)(γ, θ,η,Ω, σ2) = Eτ

[
log(Ξ, τ | Y ) | Ξ(t−1)

]
. In the CM-step, we then

optimize F (t)(γ, θ,η,Ω, σ2) with respect to Ξ by performing two iterative updates:

1. Update (θ,η), holding (γ,Ω, σ2) fixed at their previous values, i.e. solve

(θ(t),η(t)) = arg max
θ,η

F (t)(γ(t−1), θ,η,Ω(t−1), σ2(t−1)).

2. Update (γ,Ω, σ2), holding (θ,η) fixed at their current values, i.e. solve

(γ(t),Ω(t), σ2(t)) = arg max
γ,Ω,σ2

F (t)(γ, θ(t),η(t),Ω, σ2).

To be more specific, in the E-step, we compute Eτ [τk | Y ,Ξ(t−1)] = p?k(γ
(t−1)
k , θ(t−1)), k =

1, . . . , p, where

p?k(γk, θ) =
θΨ(γk|λ1)

θΨ(γk|λ1) + (1− θ)Ψ(γk|λ0)
, (18)

is the conditional posterior probability that γk is drawn from the slab distribution rather
than from the spike. We then compute λ?k, k = 1, . . . , p, where

λ?k = Eτ
[
log
(

(1− θ)λd0e−λ0‖γk‖2 + θλd1e
−λ1‖γk‖2

)
| Y ,Ξ

]
= λ1p

?
k + λ0(1− p?k). (19)

Based on (18)-(19),

F (t)(γ, θ,η,Ω, σ2) = Eτ
[
log π(Ξ | Y ) | Ξ(t−1)

]
= −N

2
log σ2 − ‖Y −Uγ −Zη‖

2
2

2σ2
+
n

2
log
(
det(Ω−1)

)
− 1

2

n∑
i=1

η>i Ω−1ηi

+

p∑
k=1

λ?k‖γk‖2 +

(
a− 1 +

p∑
k=1

p?k

)
log θ +

(
b− 1 + p−

p∑
k=1

p?k

)
log(1− θ)

+
ν + q + 1

2
log
(
det(Ω−1)

)
− 1

2
tr
(
ΦΩ−1

)
−
(
c0 + 2

2

)
log σ2 − d0

2σ2
. (20)
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The CM-step maximizes the objective (20). First, holding (γ(t−1),Ω(t−1), σ2(t−1)) fixed, θ
has the following closed form update,

θ(t) =
a− 1 +

∑p
k=1 p

?
k

a+ b+ p− 2
. (21)

Meanwhile, each ηi, i = 1, . . . , n in η can be updated individually in closed form as

η
(t)
i = BZi

(
Yi −Uiγ(t−1)

)
, (22)

where

BZi =
(
Z>i Zi + σ2(t−1)Ω(t−1)

)−1
Z>i ,

and Yi, Ui, and Zi are as in (9).
Next, we update (γ,Ω, σ2) holding (θ(t),η(t)) fixed. First, in order to update γ, we

solve the following optimization:

γ(t) = arg max
γ

−1

2
‖Ỹ −Uγ‖22 −

p∑
k=1

σ2(t−1)λ?k‖γk‖2, (23)

where Ỹ = Y − Zη(t) and the λ?k’s are as in (19). It can be seen that (23) is an adaptive
group lasso problem with group-specific weights σ2(t−2)λ?k. This optimization can be solved
with any standard group lasso algorithm (Yuan and Lin, 2006; Breheny and Huang, 2015).
We opt to use the coordinate ascent algorithm of Breheny and Huang (2015) due to its
speed and numerical stability.

Although each CM step requires solving the optimization (23), it should be reiterated
that λ?k = λ1p

?
k + λ0(1 − p?k) in (23). Under sparsity, most of the p?k’s in (18) are very

close to zero (i.e. most of the γk’s come from the spike density in (17)), and thus, most of
the λ?k’s satisfy λ?k ≈ λ0. Therefore, as long as the spike hyperparameter λ0 is large, most
of the group-specific weights in (23) will also be large. Since a larger penalty is applied
these respective groups, most of them will be thresholded to zero very early on and then
remain at zero in the group optimization algorithm. This ensures that the coordinate ascent
algorithm for solving (23) converges very rapidly. At the same time, for the few nonzero
varying coefficients, we have p?k ≈ 1 and λ?k ≈ λ1 (where λ1 � λ0). We are therefore able
to apply a weaker penalty to basis coefficients γk with larger entries.

Finally, the updates for Ω and σ2 have the closed forms,

Ω(t) =
1

n+ ν + q + 1

(
Φ +

n∑
i=1

η
(t)
i (η

(t)
i )>

)
, (24)

and

σ2(t) =
‖Y −Uγ(t) −Zη(t)‖22 + d0

N + c0 + 2
. (25)

In particular, as long as the scale matrix Φ in (24) is chosen to be positive-definite, the
update for Ω is also guaranteed to be positive-definite.
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Algorithm 1 ECM algorithm for MAP estimation under NVC-SSL

Input: Initial values γ(0), θ(0), Ω(0), σ2(0), t = 0
Output: Estimated varying coefficients β̂k(t), k = 1, . . . , p

while diff > ε do

1. Increment t

2. E-step:

for k = 1, . . . , p do

(a) Compute pk = p?(γ
(t−1)
k , θ(t−1)) as in (18)

(b) Set λ?k = λ1pk + λ0(1− pk)

3. M-step:

(a) Update θ(t) according to (21)

(b) For i = 1, . . . , n, update η
(t)
i according to (22)

(c) Update γ(t) by solving (23)

(d) Update Ω(t) according to (24)

(e) Update σ2(t) according to (25)

4. Set diff = ‖γ(t) − γ(t−1)‖22/‖γ(t−1)‖22

return β̂k(t) =
∑d

l=1 γ̂klBkl(t), k = 1, . . . , p

The complete algorithm for the NVC-SSL model is given in Algorithm 1. Conver-
gence can be assessed using the criterion ‖γ(t) − γ(t−1)‖22/‖γ(t−1)‖22 < 10−6. Let t =
(t11, . . . , t1m1 , . . . , tn1, . . . , tnmn)> be the vector of all observation times for all subjects.
Once we have obtained the final MAP estimate γ̂, we can estimate the varying coefficients
as β̂k(t) =

∑d
l=1 γ̂klBkl(t), k = 1, . . . , p, where β̂k(t) is the N × 1 vector of β̂k evaluated at

all N time points in t.

Since the ECM algorithm has the ascent property, our algorithm is guaranteed to con-
verge to a local mode. However, the NVC-SSL log-posterior (16) is a nonconvex function of
its parameters, and hence, Algorithm 1 is not guaranteed to converge to the global mode.
Nevertheless, we have not found local convergence to be a practical problem. The (local)
MAP estimate under the NVC-SSL model performs very well in practice, as demonstrated
in Sections 5 and 6. In addition, the ECM algorithm is also relatively fast. When there
are dp = 40,000 parameters in γ, the ECM algorithm takes 44 seconds on average to finish
running for a well-chosen spike hyperparameter λ0 (see Figure 5).

An alternative way to perform variable selection is to fit NVC-SSL with MCMC and to
use the MCMC samples to estimate the posterior inclusion probabilities P (τk = 1 | Y ), k =
1, . . . , p. Selection can then be performed by thresholding these probabilities. For example,
we can use the median probability model (MPM) (Barbieri and Berger, 2004; Barbieri et al.,
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2021) and select βk(t) if P (τk = 1 | Y ) ≥ 0.5. In Appendix A, we explore the use of MPM
for selection. We found that the MPM approach was inferior to using the MAP estimator for
variable selection, and the MAP estimator was better able to detect weak signals. Thus, if
variable selection is a primary objective of the data analyst, we recommend using the ECM
algorithm presented in this section to select the varying coefficient functions. If inference is
also desirable, then the analyst can additionally use the MCMC algorithms in Section 4 to
obtain uncertainty intervals.

The ECM algorithm that we introduced in this section is based specifically on a beta-
Bernoulli hierarchical construction (17) for the SSGL(λ0, λ1, θ) prior (12), and therefore, it
is not applicable to other NVC models. On the other hand, if one is able to obtain good
estimates for (Ω, σ2) in (10), then it may be possible to use the profile likelihood approach of
Fan and Li (2012) to perform (non-Bayesian) variable selection under a penalized regression
framework for (10). When there is no sparsity in the βk(t)’s, restricted maximum likelihood
(REML) can be used to estimate (Ω, σ2) (Guo, 2002). However, under sparsity and/or high
dimensions, it is not as straightforward to estimate variance components in the penalized
regression framework (Reid et al., 2016). In contrast, estimating (Ω, σ2) is fairly simple
under a fully Bayesian framework, where we can endow these parameters with appropriate
priors (14)-(15) and use our ECM algorithm to estimate them.

3.2 Computational complexity

Recall that mi is the number of repeated measurements for subject i, and for n subjects,
there are a total of N =

∑n
i=1mi observations. With p varying coefficients, each represented

by a basis expansion (3) with d basis functions, the number of unknown parameters in γ
is dp. Meanwhile, we have nq unknown parameters in η and q2 unknown parameters in Ω,
where q is the number of basis functions in (4). The computational cost of performing the
E-step is O(d2p) operations, which arises from computing p `2-norms ‖γk‖2, k = 1, . . . , p,
in Ψ(γk | λ1) ∝ exp(−λ1‖γk‖2) and Ψ(γk | λ0) ∝ exp(−λ0‖γk‖2) to obtain the p?k’s
in (18). In the M-step, the costs of updating θ, η, γ, Ω, and σ2 are respectively O(p),
O(Ndp+Nq2 + q3), O(Ndpr), O(nq2), and O(Ndp+Nnq+N2), where r is the number of
iterations it takes for the group coordinate ascent algorithm of Breheny and Huang (2015)
to converge.

Assuming that max{d, q} � n and dp > N , the most expensive step in the ECM
algorithm is therefore solving for γ in (23). This gives Algorithm 1 an overall computational
complexity ofO(Ndpr). However, as discussed in Section 3.1, r (i.e. the number of iterations
it takes for the group coordinate ascent algorithm to solve (23)) tends to be small provided
that λ0 is sufficiently large. Thus, our ECM algorithm not only scales linearly in both N
and p, but it is also quite efficient in practice. We verify the speed and efficiency of our
ECM algorithm in Section 5.3.

3.3 Choice of hyperparameters

We now provide our recommendations for setting the hyperparameters in the NVC-SSL
prior (12)-(15). We fix the slab hyperparameter λ1 in the SSGL prior (12) to be λ1 = 1.
This allows the slab density Ψ(· | λ1) to be fairly diffuse so that it is able to prevent
overshrinkage of important covariates. We also set the shape parameters in the prior (13)
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on the mixing proportion θ to be a = 1 and b = p. This ensures that θ is small with high
probability, and therefore, most of the γk’s will belong to the spike density Ψ(· | λ0) in the
SSGL prior (12). Finally, to ensure that the priors on the variance parameters Ω and σ2

are weakly informative, we set ν = q+ 2 and Φ = Iq in (14) and c0 = 1 and d0 = 1 in (15).
The spike hyperparameter λ0 in the SSGL prior (12) plays the role of a regularization

parameter on γ, with larger values of λ0 leading to more basis coefficients being thresholded
to zero. Hence, the practical performance of NVC-SSL is governed heavily by the choice
of λ0. While one could fix λ0 a priori to a positive value where λ0 � λ1, the speed of
the ECM algorithm that we introduced in Section 3.1 makes it computationally feasible to
determine a more optimal choice of λ0 from a set of candidate values.

To this end, we fit NVC-SSL using several choices of λ0 from a grid of L decreasing λ0

values λ1
0 > λ2

0 > . . . > λL0 . Following Wei et al. (2011), we choose λl0, 1 ≤ l ≤ L, using
the Bayesian information criterion (BIC) of Schwarz (1978). We have from (10) that the
marginal likelihood of Y is Y ∼ N (Uγ,Z(In⊗Ω)Z>+ σ2IN ). Let `(γ,Ω, σ2) denote the
log-marginal likelihood of Y . For a given λ0, the BIC in our present context is

BIC(λ0) = −2 `(γ̂λ0 , Ω̂λ0 , σ̂
2
λ0) + logN ×# of nonzero elements in γ̂λ0 , (26)

where (γ̂λ0 , Ω̂λ0 , σ̂
2
λ0

) are the MAP estimates for (γ,Ω, σ2) with λ0 as the spike hyper-

parameter in (12). We select the λ0 ∈ {λ1
0, . . . , λ

L
0 } which minimizes the BIC (26). An

alternative to minimizing BIC is to choose λ0 using cross-validation (CV). However, CV
requires refitting the model KL times, where K is the number of folds. In contrast, BIC
only requires solving L optimization problems, one for each λ0 in the grid. Thus, using CV
is roughly K times slower than minimizing BIC.

In order to accelerate the computation of the L optimizations for λ0 ∈ {λ1
0, . . . , λ

L
0 },

we employ a warm starting strategy, where for each λl0, 2 ≤ l ≤ L, we initialize the ECM
algorithm with γ(0) = γ̂(λl−1

0 ), where γ̂(λl−1
0 ) denotes the MAP estimator obtained from

fitting NVC-SSL with the previous λ0 in the grid. Since γ̂(λl−1
0 ) serves as a reasonable

initialization for γ(0), the ECM algorithm for each λl0 converges very quickly to a local
mode. As shown in Section 5.3, the ECM algorithm typically converges in 10 or fewer
iterations. In all of our numerical experiments and real data applications, we found that
tuning λ0 from the equispaced grid {300, 290, . . . , 20, 10} worked well in practice.

Finally, using B-splines as the basis functions in (3)-(4), we determined that it is suffi-
cient to fix the basis dimensions to be d = q = 8. While it is possible to further tune these
values (for instance, we could use the BIC (26) to select (λ0, d, q) from a grid of triplets), we
found that increasing d and q to be greater than eight offered little to no benefits in terms
of improved estimation or variable selection. Thus, we recommend only tuning the spike
hyperparameter λ0, while keeping all other hyperparameters in the priors (12)-(15) and the
basis dimensions in the model (5) fixed at the default values suggested in this section.

4. MCMC for scalable uncertainty quantification

Apart from the ease with which one can incorporate unknown within-subject covariances
through appropriate prior distributions, another advantage of Bayesian NVC models over
penalized frequentist NVC models is their ability to provide natural uncertainty quan-
tification through their posterior distributions. However, posterior sampling can be very
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challenging if p is large. In this section, we demonstrate how NVC-SSL is amenable to fast
posterior sampling for uncertainty quantification.

We emphasize that the algorithms in this section are intended to be used in cases where
p � N . If p is small and N is very large, then it is more advisable to use the scalable
approaches introduced in Guhaniyogi et al. (2022) and Guhaniyogi et al. (2023) instead. In
Section 7, we discuss some avenues for future work where both N and p could be very large.

4.1 Exact Gibbs sampling algorithm

We first introduce an exact Gibbs sampling algorithm for fitting the NVC-SSL model.
In order to obtain closed form updates in the Gibbs sampler, it will be convenient to
reparameterize the SSGL(λ0, λ1, θ) prior (17) as a Gaussian scale mixture density. First,
note that for γk ∼ Ψ(γk | λ) ∝ λd exp(−λ‖γk‖2), γk is the marginal density of the scale
mixture,

γk | ξk ∼ N (0, ξkId), ξk ∼ Gamma

(
d+ 1

2
,
λ2

2

)
.

Consequently, for ξ = (ξ1, . . . , ξp)
>, we can rewrite the prior (17) as the hierarchical model,

γ | ξ ∼ N (0,Dξ), where Dξ = Bdiag(ξ1Id, . . . , ξpId),

ξk | τk ∼ Gamma
(
d+1

2 ,
(λ?k)2

2

)
, where λ?k = τkλ1 + (1− τk)λ0,

τk | θ ∼ Bernoulli(θ), k = 1, . . . , p,

(27)

and Bdiag denotes a block-diagonal matrix. With the likelihood function for (10), the
hierarchical priors in (27) for γ, and the priors (14)-(15) on (Ω, σ2), we obtain as the joint
posterior for all parameters,

π(γ, ξ, τ , θ,η,Ω, σ2 | Y ) ∝ (σ2)−N/2 exp

(
−‖Y −Uγ −Zη‖

2
2

2σ2

)
× (det(Ω))−1/2 exp

(
−η
>Ω−1η

2

)
× π(γ | ξ)× π(ξ | τ )× π(τ | θ)× π(Ω)× π(σ2), (28)

where the terms in the last line of the display denote the prior densities for the respective
parameters in (27), (14), and (15). Based on (28), we can derive an exact Gibbs sampling
algorithm where all conditional distributions are available in closed form. This MCMC
algorithm is given in Algorithm 2.

As shown in Algorithm 2, the main computational bottleneck in the exact Gibbs sampler
is sampling the basis coefficients γ ∈ Rdp in Step 6, which overwhelms the cost of sampling
from any of the other parameters when dp > N . Note that sampling from the ηi vectors
and Ω is not expensive, since we only need to sample q-dimensional vectors and a q ×
q matrix respectively in this case. Typically, q (the number of basis functions) is not
overwhelming large. On the other hand, if the number of covariates p is large, then it
can be computationally demanding to sample a dp-dimensional random Gaussian vector.
Typical methods based on Cholesky decomposition require O(d3p3) operations to compute
the Cholesky decomposition for the covariance matrix Σγ (Bhattacharya et al., 2016).
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Algorithm 2 MCMC algorithm for NVC-SSL

Input: Initial values γ(0), θ(0), Ω(0), ξ(0), σ2(0), T (number of MCMC samples to run),
B (number of samples to discard as burn-in)

Output: MCMC samples for varying coefficients βk(t), k = 1, . . . , p

for t = 1, . . . , T do

1. for i = 1, . . . , n do

Sample η
(t)
i ∼ N (ζi, Ξi), where Ξi =

{
Z>i Zi/σ

2(t−1) + (Ω(t−1))−1
}−1

and

ζi = ΞiZ
>
i (Yi −Uiγ(t−1))/σ2(t−1)

2. Sample Ω(t) ∼ Inverse-Wishart
(
ν + n, Φ +

∑n
i=1 η

(t)
i (η

(t)
i )>

)
3. Sample σ2(t) ∼ Inverse-Gamma

(
N+c0

2 ,
‖Y −Uγ(t−1)−Zη(t)‖22+d0

2

)
4. for k = 1, . . . , p do

(a) Sample τ
(t)
k ∼ Bernoulli

(
π1

π1+π0

)
, where π1 = θ(t−1)λd+1

1 exp{−λ2
1ξ

(t−1)
k /2} and

π0 = (1− θ(t−1))λd+1
0 exp{−λ2

0ξ
(t−1)
k /2}

(b) Sample ξ
(t)
k ∼ Generalized-Inverse-Gaussian

(
1
2 , ‖γ

(t−1)
k ‖22, (λ?k)2

)
, where

λ?k = τ
(t)
k λ1 + (1− τ (t)

k )λ0

5. Sample θ(t) ∼ Beta
(
a+

∑p
k=1 τ

(t)
k , b+ p−

∑p
k=1 τ

(t)
k

)
6. Sample γ(t) ∼ N (µγ ,Σγ), where µγ = ΣγU

> (Y −Zη(t)
)
/σ2(t),

Σγ = {U>U/σ2(t) +D−1
ξ }

−1, and Dξ = Bdiag (ξ
(t)
1 Id, . . . , ξ

(t)
p Id)

return β
(B+1)
k (t) =

∑d
l=1 γ

(B+1)
kl Bkl(t), . . . , β̂

(T )
k (t) =

∑d
l=1 γ

(T )
kl Bkl(t) for k = 1, . . . , p

In order to alleviate the cost of directly sampling from N (µγ ,Σγ) in Step 6 of Algorithm
2 when dp > N , we can employ the fast sampling method of Bhattacharya et al. (2016).
The algorithm of Bhattacharya et al. (2016) indirectly samples from N (µγ ,Σγ) by solving
a system of linear equations with N equations and is much more efficient than methods
based on Cholesky decomposition. This algorithm for sampling γ is given in Algorithm 3.

The computational complexity of Algorithm 3 is O(N2dp) when dp > N . Here, the main
bottleneck is computing the matrix product UDξU

>/σ2 in Step 3 which requires O(N2dp)
operations and is more expensive than even inverting the matrix K = UDξU

>/σ2 + IN in
Step 4, which requires O(N3) operations.

Using Algorithm 3 to sample from γ enables NVC-SSL to scale linearly in p per MCMC
iteration rather than cubically. However, the fact that this exact algorithm scales quadrat-
ically in terms of total sample size N may still be problematic. In particular, the multi-
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Algorithm 3 Exact algorithm for sampling γ in Step 6 of Algorithm 2 when dp > n

Input: Most recent MCMC samples of ξ, η, and σ
Output: An exact sample of γ from Step 6 of Algorithm 2

1. Sample m ∼ N (0,Dξ) and δ ∼ N (0, IN ) independently

2. Set v = (U/σ)m+ δ and v? = (Y −Zη)/σ − v

3. Set K = UDξU
>/σ2 + IN

4. Set w = K−1v?

5. Set γ = m+DξU
>w/σ

return γ

plicative factor of N2 in O(N2dp) might still render it costly to run the exact NVC-SSL
Gibbs sampler if p is large. For many large-scale problems, it is desirable to sample from
the marginal posteriors in linear time with respect to sample size N . This motivates us
to develop an approximate MCMC algorithm in the next section that has a computational
complexity of O(Ndp) per iteration.

4.2 Approximate Gibbs sampling algorithm and its computational complexity

Before introducing our approximate MCMC algorithm, we first review several other recently
proposed approaches for sampling from spike-and-slab models that also scale linearly in
both the number of covariates and the sample size. Biswas et al. (2022) proposed an exact
sampling method that has order max{N2pt, Np}, where pt is the number of covariates that
switch between the spike and the slab states between iterations t − 1 and t. Typically,
pt is much smaller than p, potentially offering substantial speed-ups over Algorithm 3.
However, the algorithm of Biswas et al. (2022) requires both the spike and slab densities to
be Gaussian and cannot be used for Laplace densities (or other scale-mixture densities) like
the ones employed by SSGL(λ0, λ1, θ). For NVC-SSL, we use multivariate Laplace densities
in the prior (12) so that the MAP estimator is exactly sparse (a feature that is not the case
for Gaussian spike-and-slab priors). This rules out the approach of Biswas et al. (2022).

In another line of work, Narisetty et al. (2019) proposed the skinny Gibbs algorithm. In
each iteration of skinny Gibbs, the components of the regression coefficients vector γ are
partitioned as γ = (γ>S ,γ

>
Sc)>, where S denotes the set of variables belonging to the slab

density and Sc denotes the set of those belonging to the spike density. Suppose that the set
S is of size s. Skinny Gibbs decreases the cost of sampling γ to O(Np) by “sparsifying” the
covariance matrix for the conditional distribution of γ. That is, the cross-covariances in the
conditional distribution of γ are set to be zero, i.e. cov(γS ,γSc) = 0, and the off-diagonal
entries of cov(γSc) are also set to be zero. Thus, skinny Gibbs independently samples γS
from an s-dimensional multivariate Gaussian distribution and then independently samples
the p− s the entries in γSc from univariate Gaussian distributions.
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While the skinny Gibbs algorithm has a computational complexity that is linear in
both N and p, ignoring the correlations between γS and γSc changes the posterior in a
very nontrivial way. In particular, Theorem 1 of Narisetty et al. (2019) shows that the
conditional distribution of γ under skinny Gibbs is separable in γS and γSc (i.e. it can
be written as a product of two functions f1(γS) and f2(γSc)), which is not the case for
the conditional distribution in Step 6 of Algorithm 2. In the present context, we want
to use MCMC to conduct inference rather than variable selection. Therefore, we aim to
approximate the transition kernel of the NVC-SSL Markov chain so that we preserve the
correlations between the active set and the inactive set in the conditional distribution of γ.

To achieve an order N speed-up, we adopt a similar idea as Johndrow et al. (2020) who
devised an approximate MCMC algorithm for the horseshoe prior (Carvalho et al., 2010) in
univariate Gaussian regression. However, unlike spike-and-slab priors, the horseshoe prior
does not naturally partition the covariates into “significant” and “insignificant” groups.
Consequently, Johndrow et al. (2020) require artificially segregating the covariates into
two groups by using a user-specified threshold δ > 0 to determine significant groups (i.e.
regression coefficients with magnitude larger than δ are deemed to be “significant”). In
practice, it can be difficult to specify an appropriate threshold for δ. In contrast, the
binary indicators τ in our spike-and-slab prior (17) naturally partition the groups of basis
coefficients γk’s in the (10) as either belonging to the spike or the slab. The automatic
partitioning scheme allows us to construct a suitable approximate MCMC algorithm.

First, for the indicator variables τ = (τ1, . . . , τp)
> in (27), define the set S = {k : τk = 1},

i.e. S is the set of indices of the varying coefficients belonging to the slab density in (17).
Suppose that the cardinality of S is |S| = s. Then Sc = {1, . . . , p} \ S denotes the indices
of the varying coefficients belonging to the spike density in (17), and |Sc| = p− s. Let US
denote the N×ds submatrix of U in (7) whose columns correspond to S, i.e. for each k ∈ S,
US contains the d columns of U that correspond to the kth varying coefficient. Similarly,
let DS = Bdiag{ξkId}k∈S denote the ds×ds block-diagonal submatrix of Dξ in (27) whose
diagonal blocks correspond to the s indices of S.

When τk = 0 in (27), λ?k ≈ λ0 and ‖γk‖2 ≈ 0 in step 4(b) of Algorithm 2. Hence, ξk ≈ 0
for k ∈ Sc. As a result, the N × N matrix product UDξU

> can be well-approximated

by USDSU
>
S (Johndrow et al., 2020). Likewise, if we let D̃ξ = Bdiag{ξkIdI(τk = 1)}

denote the block-diagonal matrix where we replace the ξk, k ∈ S, in Dξ with zero, then the

matrix product DξU
> is well-approximated by D̃ξU

>. This suggests that we can make
the following replacements in Algorithm 3 to obtain an approximate MCMC algorithm:

• We can approximate K in Step 3 with K̃, where K̃ = USDSU
>
S /σ

2 + IN .

• We can approximate K−1 in Step 4 with K̃−1.

• We can approximate Dξ in Step 5 with D̃ξ.

In particular, using the Woodbury matrix identity, we have that

K̃−1 = IN −US
(
U>S US/σ

2 +D−1
S

)−1
U>S /σ

2, (29)

i.e. computing the inverse of K̃ requires inverting only an ds×ds matrix now instead of an
N ×N matrix. Under sparsity and a relatively small basis dimension d, we typically have
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Algorithm 4 Approximate algorithm for sampling γ in Step 6 of Algorithm 2 when dp > n

Input: Most recent MCMC samples of ξ, η, τ and σ
Output: An approximate sample of γ from Step 6 of Algorithm 2

1. Sample m ∼ N (0,Dξ) and δ ∼ N (0, IN ) independently

2. Set v = (U/σ)m+ δ and v? = (Y −Zη)/σ − v

3. Set K̃ = IN −US(U>S US/σ
2 +D−1

S )−1U>S /σ
2

4. Set w = K̃−1v?, where K̃−1 is computed as in (29)

5. Set γ = m+ D̃ξU
>w/σ, where D̃ξ = Bdiag{ξkIdI(τk = 1)}

return γ

that ds� N . In addition, the matrix multiplication D̃ξU
>w/σ costs O(Nds) operations,

instead of the O(Ndp) operations that are required to compute the product DξU
>w/σ in

Algorithm 3.

The complete approximate MCMC algorithm for approximately sampling from γ is
given in Algorithm 4. By examining Algorithm 4, we see that the most expensive operation
is now computing the matrix-vector product (U/σ)m in Step 2, which requires O(Ndp)
operations. If dp is very large, then O(Ndp) represents a substantial cost reduction from
the O(N2dp) cost of the exact sampling scheme in Algorithm 3.

In short, Algorithm 4 allows us to approximately sample from the basis coefficients γ in
the NVC-SSL model with a runtime per MCMC iteration that is linear in both the number
of covariates p and the total sample size N . The approximate MCMC algorithm has an even
faster per iteration runtime than the ECM algorithm introduced in Section 3.1, which has
time complexity of O(Ndpr), r > 1, per iteration. However, the ECM algorithm typically
converges after a few iterations, whereas we may need to run MCMC for a much larger
number of iterations to obtain enough posterior samples for good inference.

4.3 Trade-offs between exact and approximate Gibbs sampling algorithms

Algorithm 4 reduces the per iteration cost of posterior sampling by a factor of N . In Section
5.3, we demonstrate that as dp increases, this offers a very significant reduction in MCMC
runtime. However, the trade-off for faster computation is that the pointwise uncertainty
intervals for the varying coefficients are slightly more conservative. This finding stands in
contrast to that of Johndrow et al. (2020) who claimed that inference from their approximate
MCMC algorithm for the horseshoe prior was “virtually indistinguishable” from inference
under the exact MCMC algorithm. In this section, we precisely quantify this trade-off.

Specifically, we investigate the implications of Algorithm 4 on the posterior mean and
variance of the conditional distribution for γ. Without loss of generality, assume that
S = {1, . . . , s} and Sc = {s + 1, . . . , p}. Then we can partition the basis coefficients γ as
γ = (γ>S ,γ

>
Sc)>, where γS consists of the first s groups (ds entries) in γ, while γSc consists
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of the last p−s groups (d(p−s) entries) in γ. Instead of exactly sampling from N (µγ ,Σγ) in
Step 6 of Algorithm 2, the steps in Algorithm 4 amount to sampling γ from the conditional
distribution N (µ̃γ , Σ̃γ) (Johndrow et al., 2020), where

µ̃γ =

(
µ̃γS
µ̃γSc

)
=

((
U>S US/σ

2 +D−1
S

)−1
U>S (Y −Zη)/σ2

0(dp−ds)×1

)
, (30)

and

Σ̃γ =

(
Σ̃γS Σ̃γS,Sc

Σ̃>γS,Sc Σ̃γSc

)
=

( (
U>S US/σ

2 +D−1
S

)−1 −DSU
>
S K̃

−1UScDSc/σ2

−DScU>ScK̃−1USDS/σ
2 DSc

)
.

(31)
We see from (30) that the marginal conditional distribution of γS has the same mean as
the mean of the conditional distribution for γ if we were to fit NVC-SSL to only the first
s varying coefficients. Meanwhile, the conditional mean for γSc is a zero vector of length
d(p− s). Under sparsity, the exact MCMC algorithm will also result in MCMC samples for
γSc that are centered around a mean that is very close to zero. Based on these observations,
we expect fairly negligible differences between the estimated posterior mean of γ under the
exact and approximate MCMC algorithms. This is confirmed in our numerical experiments
in Section 5.2.

Unlike the skinny Gibbs algorithm (Narisetty et al., 2019), we also observe from (31)
that Algorithm 4 preserves the cross-correlations between γS and γSc , i.e. cov(γS ,γSc) =
Σ̃γS,Sc 6= 0ds×(dp−ds). However, while there is negligible bias for the posterior means, the
marginal posterior variances for γ under the approximate MCMC algorithm are slightly
inflated. This is formalized in the next proposition.

Proposition 1 Let ΣγS and ΣγSc denote the marginal covariance matrices for the condi-
tional distributions of γS and γSc respectively under the exact MCMC algorithm (Algorithm
3). Meanwhile, let Σ̃γS and Σ̃γSc denote the marginal covariance matrices for the condi-
tional distributions of γS and γSc under the approximate MCMC algorithm (Algorithm 4),
as defined in (31). Then Σ̃γS ≥ ΣγS and Σ̃γSc ≥ ΣγSc .

The proof of Proposition 1 is given in Appendix B, which also gives precise expressions
for Σ̃γS − ΣγS and Σ̃γSc − ΣγSc . The implication of Proposition 1 is that the variances
in the marginal posteriors for the entries in γ will tend to be larger under the approxi-
mate MCMC algorithm than under the exact MCMC algorithm. As a consequence, the
pointwise posterior credible intervals for the varying coefficients βk(t) will also tend to
be wider. To see this, suppose that, based on the posterior samples for γ, we form the
credible intervals [γLkl, γ

U
kl], k = 1, . . . , p, l = 1, . . . , d with a prescribed level of probability

1 − α, α ∈ (0, 1). Then the (1 − α) × 100% posterior credible intervals for βk(t) will be
[
∑d

l=1 γ
L
klBkl(t),

∑d
l=1 γ

U
klBkl(t)]. As a result of Proposition 1, the endpoints [γLkl, γ

U
kl] will

tend to be further apart under Algorithm 4, leading to wider pointwise credible intervals
for the varying coefficients βk(t)’s than those under Algorithm (3).

Nevertheless, our approximate MCMC algorithm for NVC-SSL is still a practical choice
if computational time is a primary concern. In Section 5.3, we show that when dp = 40,000,
the approximate MCMC algorithm reduces the average runtime for 1000 MCMC iterations
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from 5.6 hours (for the exact algorithm) to 18.9 minutes. This is a substantial computational
gain and suggests that Algorithm 4 is much more scalable for large p than Algorithm 3.
Sparse and/or low-rank approximations like Algorithm 4 are also routinely employed in
practice to improve the scalability and computational feasibility of fully Bayesian inference,
at the expense of not performing exact inference. See, for example, the Gaussian process
and spatial statistics literature (Rasmussen and Williams, 2006; Banerjee et al., 2013; Datta
et al., 2016; Hughes and Haran, 2013).

Moreover, if one is interested in simultaneous coverage of the varying coefficient functions
rather than pointwise coverage, then wider credible intervals are actually preferred. We show
in Section 5.2 that the approximate MCMC algorithm has higher simultaneous coverage of
the true varying coefficients than the exact MCMC algorithm. The approximate MCMC
algorithm also manages to produce uncertainty intervals that capture the true shape of the
varying coefficients, as shown in the right three panels of Figure 3.

5. Simulation studies

Here, we conduct simulation studies for NVC-SSL to validate its variable selection and
estimation performance, inferential capabilities, and scalability. All of the methods in this
section were implemented in the publicly available R package NVCSSL, which can be found
on the Comprehensive R Archive Network.

5.1 Variable selection and estimation performance

We first assessed the performance of the NVC-SSL MAP estimator obtained from the ECM
algorithm in Section 3. In particular, we investigated the MAP estimator’s ability to:

1. capture different shapes for the varying coefficients, including nonzero but constant
(i.e. non-time varying) functions;

2. detect weak signals, i.e. varying coefficients with small magnitudes for ‖βk(t)‖∞;

3. perform well under a variety of unknown within-subject covariance functions, includ-
ing those that allow for long-range correlation and zero covariance functions (i.e. zero
within-subject correlations).

We generated data for n = 50 subjects from model (2) as follows. To simulate the observa-
tion times tij ’s, we first sampled from {1, 2, . . . , 20}, where each time point has a 60 percent
chance of being skipped. This way, we had very irregularly spaced data, with mi being
different for different subjects. We then added random perturbation from U(−0.5, 0.5) to
the non-skipped time points.

To model the high-dimensional scenario, we set p = 500, with the first six variables
xi1, . . . , xi6 being the relevant ones. The first covariate xi1 was simulated from U(t/10, 2 +
t/10) for any given time point t. The covariates xik, k = 2, . . . , 5, conditioned on xi1, were
i.i.d. drawn from a normal distribution with mean zero and variance (1 + xi1)/(2 + xi1).
The covariate xi6, independent of xik, k = 1, . . . , 5, was normal with mean 1.5 exp(t/40) and
variance 1. Finally, for k = 7, . . . , 500, each xik, independent of the others, was drawn from
a multivariate normal distribution with covariance structure cov(xik(t), xik(s)) = ρ−|t−s|,
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with ρ = 0.5. The true coefficient functions were

β1(t) = 10 sin

(
πt

15

)
, β2(t) = −0.6t+ 6, β3(t) = −1 + 2 sin

(
π(t− 25)

8

)
,

β4(t) = 1 + 2 cos

(
π(t− 25)

15

)
, β5(t) = 2 +

10

1 + e10−t , β6(t) = −5,

β7(t) = · · · = βp(t) = 0.

In particular, β3 and β4 are weak signals with small magnitudes for ‖βk(t)‖∞. Meanwhile,
β2 is a linear function, β5 is a sigmoid curve with flat regions, and β6 is a nonzero constant
(non-time varying) function. For the measurement error term in (2), we fixed the noise
variance σ2 = 1. For the unknown within-subject covariances, we considered the following
five experimental settings for the covariance function k(t, t′) in (2):

• Experiment 1: first-order autoregressive (AR(1)). We set ki(tij , tij′) = s2
i ρ
|tij−tij′ |
i ,

1 ≤ j, j′ ≤ mi.

• Experiment 2: compound symmetry (CS). We set ki(tij , tij′) = s2
i {1(tij = tij′) +

ρi1(tij 6= tij′)}, 1 ≤ j, j′ ≤ mi.

• Experiment 3: squared exponential (SE). We set ki(tij , tij′) = s2
i exp(−(tij−tij′)2/`2i ),

1 ≤ j, j′ ≤ mi.

• Experiment 4: periodic. We set ki(tij , tij′) = s2
i exp(−2[sin2(π|tij − tij′ |/pi)]/`2i ),

1 ≤ j, j′ ≤ mi.

• Experiment 5: zero (i.id. errors). We set ki(tij , tij′) = 0, 1 ≤ j, j′ ≤ mi.

We sampled the within-subject variance hyperparameters s2
i ∈ {0.5, 0.75, 1, 1.25, 1.5}, the

autocorrelation hyperparameters ρi ∈ {0.2, 0.4, 0.6, 0.8}, the lengthscale hyperparameters
`i ∈ {0.3, 0.6, 0.9, 1.2, 1.5, 1.8}, and the period hyperparameters pi ∈ {0.5, 1, 1.5, 2}.

We briefly discuss our choices of covariance functions. The AR(1) and SE covariance
functions in Experiments 1 and 3 embody the belief that correlations between two time
points t and t′ decreases exponentially as |t − t′| increases. The behavior implied by these
kernel functions is not appropriate when there could be strong correlations between far
apart time points. In contrast, the CS covariance function in Experiment 2 implies that
the correlation between t and t′ is the same for all t 6= t′, making it suitable for capturing
long-range correlations. The periodic covariance function in Experiment 4 exhibits periodic
oscillation, meaning that as |t− t′| increases, the correlation could be either weak or strong
between t and t′. Finally, the zero covariance function in Experiment 5 simply means that
there are no within-subject correlations, and we are operating under the assumption of i.i.d.
errors.

To implement the NVC-SSL method, we tuned the spike hyperparameter λ0 from the
grid {300, 290, . . . , 10} and selected λ0 using the BIC criterion (26). Meanwhile, we fixed
all the other hyperparameters to the ones recommended in Section 3.3 and fixed the basis
dimensions as d = q = 8 in (5). We compared our approach to the group lasso (gLASSO),
group smoothly clipped absolute deviation (gSCAD), and group minimax concave penalty
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(gMCP) (Yuan and Lin, 2006; Breheny and Huang, 2015). For high-dimensional NVC
models, these methods solve the following optimization problem:

γ̂ = arg max
γ

1

2
‖Y −Uγ‖22 +

p∑
k=1

penλ(γk),

where U is defined as in (7) and penλ(·) is a penalty function that depends on a tuning
parameter λ. These penalized approaches, which we refer to NVC-gLASSO, NVC-gSCAD,
and NVC-gMCP respectively, have been considered by numerous authors in the varying
coefficient literature (Wang and Xia, 2009; Wang et al., 2008; Wei et al., 2011). For these
methods, we also fixed the basis dimension d = 8 and tuned λ using the BIC criterion.

While Wang et al. (2008), Wang et al. (2008), and Wei et al. (2011) demonstrated com-
petitive performance of their methods even when failing to account for within-subject cor-
relations, we wanted to see whether explicitly incorporating estimation of unknown within-
subject correlations (as with the NVC-SSL model) could improve estimation and variable
selection. Moreover, Experiment 5 (i.e. zero covariance function) was conducted in order
to fairly compare NVC-SSL to NVC-gLASSO, NVC-gSCAD, and NVC-gMCP, since the
setting of Experiment 5 is the exact NVC model implied by the latter three methods.

To compare these methods, we evaluated the estimation error, out-of-sample prediction
error, and variable selection performance. For estimation error, we computed the mean
squared error (MSE),

MSE =
1

Np

p∑
k=1

n∑
i=1

mi∑
j=1

[
β̂k(tij)− β0k(tij)

]2
.

For out-of-sample prediction, we generated 30 new observations (Ynew, tnew,Xnew), calcu-
lated a new U matrix (7), and computed the mean squared prediction error (MSPE),

MSPE =
1

N
‖Ynew −Unewγ̂‖22.

Finally, to evaluate variable selection performance, we compared the sensitivity (Sens),
specificity (Spec), and Matthews correlation coefficient (MCC), given by

Sens =
TP

TP + FN
, Spec =

TN

TN + FP
,

MCC =
TP× TN− FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
,

where TP, TN, FP, and FN are the number of true positives, true negatives, false positives,
and false negatives respectively. MCC takes values between -1 and 1, with higher values
indicating better overall variable selection performance.

We repeated Experiments 1-5 for 200 replications each. In Table 1, we report our
results averaged across the 200 replicates. We see that under all of the different unknown
within-subject covariance structures, NVC-SSL had the lowest MSE and the lowest MSPE,
indicating the best estimation and predictive performance. For variable selection, NVC-SSL
had the highest average sensitivity, indicating the best ability to detect the true nonzero
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Table 1: Simulation results for NVC-SSL, NVC-gLASSO, NVC-gSCAD, and NVC-gMCP,
averaged across 200 replicates. To better highlight the differences in estimation
performance, we rescale the MSE by 100, i.e. we report MSE × 100 in the first
column. The empirical standard error is reported in parentheses following the
average.

Experiment 1: AR(1) covariance function

MSE × 100 MSPE Sens Spec MCC

NVC-SSL 0.114 (0.049) 4.057 (1.976) 0.988 (0.052) 0.999 (0.002) 0.948 (0.069)
NVC-gLASSO 0.989 (0.128) 8.559 (2.948) 0.688 (0.057) 1 (0) 0.827 (0.033)
NVC-gSCAD 0.291 (0.030) 4.752 (2.043) 0.667 (0) 1 (0) 0.815 (0)
NVC-gMCP 0.284 (0.025) 4.729 (2.050) 0.667 (0) 1 (0) 0.815 (0)

Experiment 2: CS covariance function

MSE × 100 MSPE Sens Spec MCC

NVC-SSL 0.113 (0.046) 4.255 (2.254) 0.989 (0.041) 0.999 (0.002) 0.947 (0.067)
NVC-gLASSO 0.990 (0.116) 8.884 (3.175) 0.681 (0.050) 0.999 (0.001) 0.823 (0.029)
NVC-gSCAD 0.291 (0.029) 4.956 (2.266) 0.667 (0) 1 (0) 0.815 (0)
NVC-gMCP 0.284 (0.024) 4.930 (2.274) 0.667 (0) 1 (0) 0.815 (0)

Experiment 3: SE covariance function

MSE × 100 MSPE Sens Spec MCC

NVC-SSL 0.112 (0.056) 4.448 (2.536) 0.989 (0.053) 0.999 (0.002) 0.946 (0.071)
NVC-gLASSO 0.980 (0.129) 9.347 (3.784) 0.681 (0.050) 0.999 (0.001) 0.823 (0.029)
NVC-gSCAD 0.287 (0.031) 5.056 (2.486) 0.667 (0) 1 (0) 0.815 (0)
NVC-gMCP 0.280 (0.024) 5.030 (2.498) 0.667 (0) 1 (0) 0.815 (0)

Experiment 4: Periodic covariance function

MSE × 100 MSPE Sens Spec MCC

NVC-SSL 0.106 (0.042) 4.062 (2.134) 0.981 (0.045) 0.999 (0.002) 0.965 (0.054)
NVC-gLASSO 0.996 (0.128) 8.706 (3.213) 0.688 (0.055) 0.999 (0.001) 0.827 (0.033)
NVC-gSCAD 0.291 (0.029) 4.737 (2.106) 0.667 (0) 1 (0) 0.815 (0)
NVC-gMCP 0.286 (0.026) 4.722 (2.096) 0.667 (0) 1 (0) 0.815 (0)

Experiment 5: Zero covariance function (i.i.d. errors)

MSE × 100 MSPE Sens Spec MCC

NVC-SSL 0.062 (0.024) 3.027 (2.269) 0.999 (0.012) 0.999 (0.002) 0.962 (0.055)
NVC-gLASSO 0.966 (0.111) 7.784 (3.123) 0.680 (0.045) 1 (0) 0.823 (0.026)
NVC-gSCAD 0.268 (0.023) 3.798 (2.284) 0.667 (0) 1 (0) 0.815 (0)
NVC-gMCP 0.261 (0.017) 3.775 (2.278) 0.667 (0) 1 (0) 0.815 (0)

varying coefficient functions. NVC-gSCAD and NVC-gMCP had higher specificity, but
NVC-SSL’s average specificity was still quite good, at 0.999. Moreover, NVC-SSL had the
highest average MCC, indicating the best overall ability to correctly select the true nonzero
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Table 2: Simulation results for estimation and variable selection of the nonzero varying
coefficients β1(t), β2(t), β3(t), β4(t), β5(t), β6(t) for NVC-SSL, NVC-gLASSO,
NVC-gSCAD, and NVC-gMCP, averaged across 200 replicates. “Proportion” gives
the proportion of replicates that selected the varying coefficient.

Experiment 1: AR(1) covariance function

MSE Proportion

β1 β2 β3 β4 β5 β6 β1 β2 β3 β4 β5 β6

NVC-SSL 0.060 0.081 0.093 0.103 0.113 0.042 1 1 0.97 0.96 1 1
NVC-gLASSO 0.870 1.082 0.468 0.565 1.068 0.894 1 1 0.045 0.08 1 1
NVC-gSCAD 0.074 0.136 0.476 0.577 0.136 0.058 1 1 0 0 1 1
NVC-gMCP 0.073 0.105 0.476 0.577 0.134 0.057 1 1 0 0 1 1

Experiment 2: CS covariance function

MSE Proportion

β1 β2 β3 β4 β5 β6 β1 β2 β3 β4 β5 β6

NVC-SSL 0.066 0.080 0.094 0.094 0.114 0.045 1 1 0.965 0.97 1 1
NVC-gLASSO 0.890 1.068 0.472 0.566 1.036 0.916 1 1 0.025 0.06 1 1
NVC-gSCAD 0.085 0.129 0.475 0.577 0.132 0.056 1 1 0 0 1 1
NVC-gMCP 0.084 0.096 0.475 0.577 0.131 0.056 1 1 0 0 1 1

Experiment 3: SE covariance function

MSE Proportion

β1 β2 β3 β4 β5 β6 β1 β2 β3 β4 β5 β6

NVC-SSL 0.063 0.076 0.087 0.098 0.106 0.043 1 1 0.975 0.96 1 1
NVC-gLASSO 0.848 1.059 0.473 0.562 1.051 0.908 1 1 0.015 0.07 1 1
NVC-gSCAD 0.078 0.128 0.474 0.574 0.122 0.058 1 1 0 0 1 1
NVC-gMCP 0.076 0.100 0.474 0.574 0.121 0.056 1 1 0 0 1 1

Experiment 4: Periodic covariance function

MSE Proportion

β1 β2 β3 β4 β5 β6 β1 β2 β3 β4 β5 β6

NVC-SSL 0.065 0.079 0.092 0.098 0.110 0.042 1 1 0.97 0.975 1 1
NVC-gLASSO 0.899 1.047 0.471 0.562 1.122 0.878 1 1 0.035 0.09 1 1
NVC-gSCAD 0.089 0.125 0.476 0.578 0.133 0.056 1 1 0 0 1 1
NVC-gMCP 0.089 0.101 0.476 0.578 0.132 0.056 1 1 0 0 1 1

Experiment 5: Zero covariance function (i.i.d. errors)

MSE Proportion

β1 β2 β3 β4 β5 β6 β1 β2 β3 β4 β5 β6

NVC-SSL 0.039 0.041 0.045 0.048 0.082 0.026 1 1 1 0.995 1 1
NVC-gLASSO 0.839 1.032 0.470 0.570 1.010 0.907 1 1 0.045 0.035 1 1
NVC-gSCAD 0.054 0.093 0.475 0.576 0.099 0.040 1 1 0 0 1 1
NVC-gMCP 0.053 0.064 0.475 0.576 0.097 0.039 1 1 0 0 1 1
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Figure 1: Plots of the MAP estimates (dashed blue lines) for βk(t), k = 1, . . . , 6, under the
NVC-SSL model from one replication of Experiment 1 (i.e. AR(1) within-subject
covariance function). The true functions are the solid black lines.

functions while excluding the spurious ones. Our results suggest that accounting for within-
subject correlations can greatly improve estimation, prediction, and variable selection.

An interesting thing to point out is that in Experiment 5 (i.e. zero within-subject
correlations), NVC-SSL still managed to outperform NVC-gLASSO, NVC-gSCAD, and
NVC-gMCP. One might assume that the latter three methods would be competitive in this
setting, since the implied model under these methods is i.i.d. errors with noise variance
σ2 = 1. However, NVC-SSL continued to have lower MSE and MSPE and higher MCC in
this scenario. This suggests the following two things. First, the NVC-SSL method is flexible
enough to also estimate covariance functions equal to zero, and thus, NVC-SSL can work
well in the case where the residual errors truly are i.i.d. Secondly, our results also point to
the practical benefit having a slab density Ψ(· | λ1), in addition to a spike density Ψ(· | λ0)
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Figure 2: Plots of the MAP estimates (dashed blue line), posterior mean estimates (dashed
red line with dots), and 95% posterior credible intervals (dotted purple lines) for
βk(t), k = 1, . . . , 6, under the NVC-SSL model from one replication of Experiment
2 (i.e. CS within-subject covariance function). The true functions are the solid
black lines.

in the SSGL(λ0, λ1, θ) prior (12). Meanwhile, gLASSO, gMCP, and gSCAD only have one
regularization parameter λ > 0 controlling the level of sparsity. As a result, these other
methods may overshrink many of the functions to zero when λ is large.

We also compared how well NVC-SSL, NVC-gLASSO, NVC-gSCAD, and NVC-gMCP
were able to estimate and select the true nonzero varying coefficients β1, . . . , β6. These re-
sults are reported in Table 2. In this case, we computed the MSE for the individual functions
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as MSE = N−1
∑N

i=1

∑mi
j=1[βk(tij) − β0k(tij)]

2. Table 2 shows that in all our experiments,
NVC-SSL had the lowest average MSE, indicating that it estimated the nonzero functions
the best. We also kept track of the proportion of the 200 replicates that selected β1, . . . , β6.
As shown in Table 2, NVC-gLASSO, NVC-gSCAD, and NVC-gMCP were unable to select
the weak signals β3 and β4 in almost all replications, which explains their lower average
sensitivity and MCC in Table 1. In contrast, NVC-SSL selected β3 and β4 in 96% to 100%
of the replicates. This verifies that NVC-SSL is especially well-suited for detecting weak
signals. Our results in Table 2 further reinforce the benefit of having a slab density in the
SSGL(λ1, λ0, θ) prior (12) for NVC-SSL, which helps smaller signals to escape the pull of
the spike and thus be detected.

Figure 1 plots the estimated varying coefficients (dashed line) against the true varying
coefficients (solid line) for βk(t), k = 1, . . . , 6 from one replication of Experiment 1. Figure
1 shows that the MAP estimator under NVC-SSL is able to capture the true shapes of these
functions, including the weaker signals (β3 and β4). Moreover, NVC-SSL was also able to
capture the linear trend in β2, the flat regions of the function β5, and the constant nonzero
(non time-varying) function β6. This demonstrates the flexibility of our model and justifies
the use of B-splines as the basis functions in (5).

In Appendix A, we report additional results for our Experiments 1-5 where we used the
MCMC algorithm in Section 4.1 to fit the NVC-SSL model. We conclude that the MAP
estimator is superior as a point estimator for function selection and estimation in high
dimensions. This is demonstrated in Figure 2 where the MAP estimator (dashed line) is
shown to better capture the shapes of the weak signals β3 and β4 than the posterior mean
(dotted and dashed line). However, posterior inference from the 95% credible intervals
(dotted lines in Figure 2) is still quite good, even if the MAP estimator is preferred for
point estimation.

5.2 Performance of MCMC for inference

In this section, we compare the performance of the exact and approximate MCMC algo-
rithms introduced in Section 4 for inference. We simulated data from n = 100 subjects.
For each ith subject, mi = 8 time points were randomly sampled from U(0, 20), leading to
a total of N = 800 observations. We set p = 1000, with the true varying coefficients,

β1(t) = 10 sin

(
πt

15

)
, β2(t) = 8 cos

(
π(t− 20)

5

)
, β3(t) = 2 +

10

1 + e10−t ,

β4(t) = · · · = βp(t) = 0,

i.e. β1, β2, and β3 are nonzero functions and the rest of the varying coefficients are zero. We
generated the time-varying covariates xk(t) the same way as we did in Section 5.1, and we
simulated the response variables y(t) from the model (2) under the following within-subject
covariance structures (see Experiments 1-5 in Section 5.1 for details):

• Experiment 6: AR(1) covariance function

• Experiment 7: CS covariance function

• Experiment 8: SE covariance function
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• Experiment 9: periodic covariance function

• Experiment 10: zero covariance function (i.e. no within-subject correlations)

In Experiments 6 through 10, the hyperparameters in the within-subject covariance func-
tions ki(tij , tij′) for each ith subject were simulated the same way as those described in
Section 5.2.

Each experiment was repeated 200 times. In all replications, we ran both the exact and
approximate MCMC algorithms introduced in Section 4 for 2000 iterations, discarding the
first 500 iterations as burnin. The remaining 1500 MCMC samples were used to approxi-
mate the posteriors and perform uncertainty quantification. Our MCMC algorithms were
initialized with the MAP estimator obtained from the ECM algorithm, and all hyperpa-
rameters and basis dimensions were the same as those used for the ECM algorithm. With
the MAP estimator as our choice of initialization, the effective sample size (prior to burnin)
was very close to 2000 for each of the basis coefficients in γ, suggesting that 2000 MCMC
iterations was sufficient.

We used the posterior samples of γ to estimate the posterior mean for each kth varying
coefficient as β̃k(t) =

∑d
l=1 γ̃klBkl(t), where γ̃ denotes the posterior mean of γ. In order

to obtain the pointwise 95% posterior credible intervals for each varying coefficient, we
used the 2.5th and 97.5 sample quantiles of the MCMC samples for γ. That is, the 95%
credible interval for each varying coefficient function βk(t) at time t was [βLk (t), βUk (t)], where

βLk (t) =
∑d

l=1 γ
L
klBkl(t) and βUk (t) =

∑d
l=1 γ

U
klBkl(t), and γLkl and γUkl were the 2.5 and 97.5

quantiles for the MCMC samples of γkl.
We compared the MSE for the posterior mean functions β̃k(t)’s obtained from the exact

MCMC and the approximate MCMC algorithms. We also compared the average width
and the empirical coverage probability (ECP) of the 95% posterior credible intervals. We
looked at both the pointwise ECP (i.e. the proportion of pointwise credible intervals that
contained the true value of βk(tij) for each observed time point tij 1 ≤ i ≤ n, 1 ≤ j ≤ mi)
and the simultaneous ECP. Here, the simultaneous ECP was determined by the proportion
of simulations where all of the posterior credible intervals covered all of the true varying
coefficient functions in the entire time domain. It is important to note that in high di-
mensions, a Bayesian credible set is not necessarily a confidence set (van der Pas et al.,
2017). Nevertheless, investigating the ECP is a good way to gauge whether the Bayesian
uncertainty intervals are reasonable or not.

Our results are reported in Table 3. We can see that the average MSE for the posterior
means under the exact MCMC and approximate MCMC algorithms were practically iden-
tical, which aligns with our theoretical analysis in Section 4.3. However, the average width
of credible intervals were slightly larger for the approximate MCMC algorithm than for the
exact algorithm. We theoretically quantified this trade-off in Section 4.3.

While the pointwise ECP was comparable for both algorithms, Table 3 shows that the
simultaneous ECP was considerably higher for the approximate MCMC algorithm. Namely,
99 to 100 percent of simulations in each experiment had credible intervals which contained
all of the true varying coefficient functions. This can be attributed to the larger size of the
uncertainty intervals produced by the approximate MCMC algorithm.

Figure 3 plots the posterior mean varying coefficients for β1(t), β2(t), and β3(t) from
one replication of Experiment 9. The ground truth is plotted as a solid line, while the
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Table 3: Simulation results for the exact MCMC algorithm and the approximate MCMC
algorithm, averaged across 200 replicates. The rescaled MSE (i.e. MSE × 100) is
reported for the posterior mean. The standard errors for the rescaled MSE and the
average width of the pointwise 95% posterior intervals are reported in parentheses.

Experiment 6: AR(1) covariance function

MSE × 100 Width Pointwise ECP (%) Simultaneous ECP (%)

Exact 0.202 (0.049) 2.128 (0.003) 99.9 85
Approximate 0.202 (0.049) 2.423 (0.009) 100 100

Experiment 7: CS covariance function

MSE × 100 Width Pointwise ECP (%) Simultaneous ECP (%)

Exact 0.174 (0.046) 2.128 (0.003) 99.9 89
Approximate 0.174 (0.046) 2.422 (0.008) 99.9 99

Experiment 8: SE covariance function

MSE × 100 Width Pointwise ECP (%) Simultaneous ECP (%)

Exact 0.199 (0.044) 2.128 (0.003) 99.9 91
Approximate 0.199 (0.044) 2.423 (0.008) 99.9 99

Experiment 9: Periodic covariance function

MSE × 100 Width Pointwise ECP (%) Simultaneous ECP (%)

Exact 0.190 (0.046) 2.129 (0.004) 99.9 87
Approximate 0.190 (0.046) 2.423 (0.008) 100 100

Experiment 10: Zero covariance function (i.i.d. errors)

MSE × 100 Width Pointwise ECP (%) Simultaneous ECP (%)

Exact 0.136 (0.038) 2.127 (0.003) 99.9 89
Approximate 0.136 (0.038) 2.421 (0.008) 99.9 99

posterior mean and 95% posterior credible intervals are plotted as dashed lines. The results
for the exact algorithm are shown in the left panels and the results for the approximate
algorithms are shown in the right panels. Figures 2 and 3 show that despite having wider
credible intervals, the approximate algorithm still captures the shape of the true varying
coefficients. Running the exact algorithm for 2000 iterations also took 2.3 hours for the one
replicate in Figure 3, whereas the approximate algorithm only took only 6.2 minutes on
an 11th Gen Intel Core i5-1135G7 processor. In short, the approximate MCMC algorithm
gives slightly more conservative pointwise uncertainty intervals but it also provides better
simultaneous coverage and it is much faster and more scalable than the exact algorithm.

5.3 Timing and efficiency comparisons

Here, we report results for the timing and efficiency of the algorithms that we introduced
in Sections 3 and 4. To conduct our experiments, we modified Experiment 8 from Section
5.2 (i.e. SE within-subject covariance function for n = 100 subjects and N = 800 total ob-
servations). Namely, we varied p ∈ {500, 1000, . . . , 5000}, but kept all the other simulation
settings the same. We again used d = 8 basis functions for each varying coefficient, leading
to a total of dp ∈ {4000, 8000, . . . , 40,000} unknown basis coefficients in γ. We report timing
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Figure 3: Plots of the results from one replication of Experiment 9 (i.e. periodic within-
subject covariance function) under the exact MCMC algorithm (left three figures)
and the approximate MCMC algorithm (right three figures). The true functions
β1(t), β2(t), and β3(t) are the solid black lines, the posterior mean estimates are
the thick dashed blue lines, and the 95% posterior credible intervals are the thin
red dashed lines.

results for the optimal λ0 chosen from BIC (26). To stress that we are in fact dealing with
a very high-dimensional problem, we report our results using dp instead of merely p. All
of our experiments were performed on an Intel Xeon 8358 Platinum processor with 2.6GHz
CPU and 128 GB memory.

We first compared the average per-iteration runtime for the ECM algorithm of Section 3
and the exact MCMC and approximate MCMC algorithms of Section 4 across 50 replicates.
Figure 4 plots the average runtime per iteration for these three methods against dp. We see
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Figure 4: Plots of the average runtime per iteration (seconds) across 50 replications for the
ECM algorithm, exact MCMC algorithm, and approximate MCMC algorithm
against the dimension dp of the basis coefficients vector. The lightly shaded areas
indicate the regions within one standard deviation of the mean.

that all methods scale linearly with p. In particular, for dp = 40,000, the average runtime
for one iteration was 5.8 seconds for the ECM algorithm, 20.2 seconds for the exact MCMC
algorithm, and 1.1 seconds for the approximate MCMC algorithm.

As shown in Figure 4, the approximate MCMC algorithm had on average the fastest
runtime per iteration, the ECM algorithm was the second fastest, and the exact MCMC
algorithm was the slowest. This matches our earlier complexity analysis, since the compu-
tational complexity of the ECM algorithm is O(Ndpr), where r is the number of iterations
it takes to numerically solve for γ in (23). Meanwhile, the approximate MCMC algorithm
in Section 4.2 has complexity of O(Ndp). The extra factor of r > 1 in the ECM algorithm
accounts for its slower per-iteration runtime than the approximate MCMC algorithm. With
time complexity of O(N2dp), the exact MCMC algorithm has the slowest runtime, indicat-
ing that in general, N � r.

Although the per iteration cost was the fastest for the approximate MCMC algorithm,
the ECM algorithm also terminated very quickly. In all of experiments, the ECM algorithm
converged within 10 iterations, even when dp = 40,000. On the other hand, we would
typically run MCMC algorithms for much more than 10 iterations – usually for at least a
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Figure 5: Left panel: Box plots of the number of iterations it took for the ECM algorithm
to converge (50 replications). Right panel: Plot of the average total runtime
(seconds) across 50 replications for the ECM algorithm to finish running against
the dimension dp of the basis coefficients vector. The lightly shaded area in the
right plot indicates the region within one standard deviation of the mean.

couple hundred iterations. As a result, the overall time to complete the MCMC algorithm
may still be greater than that for the MAP estimation algorithm.

In the left panel of Figure 5, we plot the box plots for the number of iterations that it
took for the ECM algorithm to finish running for each dp ∈ {4000, 8000, . . . , 40,000}. The
right panel of Figure 5 reports the total runtime for the ECM algorithm as a function of dp.
For dp = 40,000, it took on average 7.54 iterations and 44 seconds for the ECM algorithm to
converge. These results demonstrate the scalability and computational feasibility of finding
the MAP estimator for NVC-SSL.

In the left panel of Figure 6, we compare the total runtime of the exact MCMC and the
approximate MCMC algorithms for 1000 iterations. Both algorithms were initialized with
the MAP estimator for γ obtained from the ECM algorithm. For dp = 4000, the average
total runtime was 1.6 minutes for the approximate MCMC algorithm vs. 34.5 minutes for
the exact MCMC algorithm. For dp = 40,000, the average total runtime was 18.8 minutes
for the approximate MCMC algorithm vs. 338.9 minutes (or 5.6 hours) for the exact MCMC
algorithm. It is clear that the approximate MCMC algorithm provides orders of magnitude
speedup, especially when dp is very large.

Perhaps a more transparent way to compare the MCMC algorithms is their efficiency,
or their effective sample size (ESS) per second. For correlated MCMC samples, the ESS
estimates the number of independent samples that would have given the same precision (or
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Figure 6: Left panel: Plots comparing the average total runtime (minutes) across 50 repli-
cations for the exact MCMC and approximate MCMC algorithms to run 1000
iterations. Right panel: Plot of the MCMC efficiency (ESS per second) across 50
replications for the exact MCMC and approximate MCMC algorithms based on
1000 iterations. In both plots, the lightly shaded areas are the regions within one
standard deviation of the mean.

variance) as the MCMC samples. Thus, a higher ESS per second indicates greater MCMC
efficiency. We used the R package sns to estimate the ESS for all dp entries in γ and then
took the average ESS for these parameters in γ. In the right panel of Figure 6, we plot the
average efficiency against dp for the exact MCMC and the approximate MCMC algorithms.
Figure 6 shows that the approximate MCMC algorithm has much higher efficiency. In
particular, when dp = 4000, the average efficiency was 639.7 samples per second vs. only
28.9 samples per second for the exact algorithm. For dp = 40,000, the average efficiency was
54.4 samples per second for the approximate algorithm vs. only 3.1 samples per second for
the exact algorithm. Thus, even though we have only approximated the MCMC transition
kernel in the approximate algorithm, we have not done so at the expense of efficiency – in
fact, we significantly increased the efficiency of our MCMC samples.

6. Yeast cell cycle data analysis

The cell cycle is a tightly regulated set of processes by which cells grow, replicate their
DNA, segregate their chromosomes, and divide into daughter cells. Transcription factors
(TFs) are sequence-specific DNA binding proteins which regulate the transcription of genes
from DNA to mRNA by binding specific DNA sequences. To better understand how TFs
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regulate the cell cycle, we applied our proposed NVC-SSL procedure to a dataset of cell-cycle
regulated yeast genes and associated TFs.

The data that we used comes from the α-factor synchronized cultures of Spellman et al.
(1998) and the CHIP-chip data of Lee et al. (2002). Spellman et al. (1998) measured
genome-wide mRNA levels for 6178 yeast open reading frames (ORFs) over approximately
two cell cycle periods, with measurements at 7-minute intervals for 119 minutes (for a total
of 18 time points). The data of Lee et al. (2002) contains binding information of 96 TFs
which elucidates which TFs bind to promoter sequences of genes across the yeast genome.
We aimed to fit the varying coefficient model to these 96 TFs and an intercept function
β0(t) representing the baseline change in mRNA over time, i.e.

yi(tij) = β0(tij) +

96∑
k=1

xikβk(tij) + εi(tij), i = 1, . . . , n, j = 1, . . . , 18. (32)

where yi(tij) denotes the mRNA level for the ith gene at the jth time point. Thus, including
the intercept function, we have p = 97 varying coefficients. Like other authors (Wang et al.,
2008; Xue and Qu, 2012), we also penalized β0(t) in order to ensure the identifiability of all
varying coefficients.

Previous works for fitting (32) assumed that the error terms εi(tij)’s were i.i.d. for all i
and j (Wang et al., 2008; Wei et al., 2011). However, de Lichtenberg et al. (2005) identified
113 yeast genes most likely to be periodically expressed (or to display periodicities over time)
in small-scale experiments, including 104 genes used by Spellman et al. (1998). This suggests
that at least some genes display temporal correlation, and the independence assumptions
previously used are not appropriate. The NVC-SSL model allows us to flexibly model the
genes’ temporal correlations by decomposing the error εi(tij) into a functional random effect
(where all mi random effects αi(ti1), . . . , αi(timi) for the ith subject are correlated) and a
measurement error term rij , as in (2).

Using the datasets in Spellman et al. (1998) and Lee et al. (2002), we extracted the 104
genes identified as periodically expressed by de Lichtenberg et al. (2005). After excluding
genes with missing values in either of the experiments, we were left with n = 47 genes, for
a total of N = 846 observations.

6.1 Results for variable selection and out-of-sample prediction

We compared the NVC-SSL, NVC-gLASSO, NVC-gSCAD, and NVC-gMCP models. BIC
was used to select the spike hyperparameter λ0 in NVC-SSL and the penalty parameter λ
in NVC-gLASSO, NVC-gSCAD, and NVC-gMCP. To assess their variable selection perfor-
mance, we fit these models using all n = 47 genes. We also examined the models’ predictive
power. To do so, we randomly divided the dataset into 37 training observations and 10 test
observations. We fit the NVC models to the training data and then used our fitted models
to predict the trajectories of mRNA level ŷ(t) for the 10 test observations and compute the
out-of-sample MSPE. We repeated this procedure 200 times, so that we had 200 different
test sets on which to evaluate these different methods.

All four methods selected the intercept function β0(t). These intercept functions are
plotted in Figure 7. We see that all four methods concluded that there is a baseline periodic
trend in mRNA levels over time. However, the NVC-SSL curve for β0(t) is a bit more
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Figure 7: Plots of the estimated intercept function β0(t) representing the baseline trend in
mRNA level over time for NVC-SSL, NVC-gLASSO, NVC-gSCAD, and NVC-
gMCP.

pronounced and less smooth, with a higher amplitude. The smaller amplitudes for NVC-
gLASSO’s, NVC-gSCAD’s, and NVC-gMCP’s estimates of β0(t) indicate that these methods
all penalized the baseline trend more heavily than NVC-SSL.

Table 4 shows our results for the number of TFs selected and the out-of-sample prediction
error. The NVC-SSL model selected the most TFs and had the second lowest average
MSPE. Figure 8 gives the names of the 17 TFs selected by NVC-SSL and plots their
estimated transcriptional effects over time. NVC-gLASSO, NVC-gSCAD, and NVC-gMCP
all selected more parsimonious models, with NVC-gMCP selecting the sparsest model with
only three TFs. In addition, NVC-gMCP had the lowest average MSPE. However, the
signals in this dataset were rather weak to begin with, so it may not be surprising that
the most parsimonious model also had the best predictive accuracy – a model that always
selects the null model on this dataset would likely give a similar predictive performance.
We saw from our simulations in Section 5.1 that NVC-SSL was better able to detect weak
signals, and that may also be the case here.

The NVC-SSL model was able to detect meaningful biological signal in the data. The cell
cycle is an ordered set of events, culminating in cell growth and division into two daughter
cells. Stages of the cell cycle are commonly divided into G1-S-G2-M. The G1 stage stands
for “GAP 1.” The S stage stands for “Synthesis” and is the stage when DNA replication
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Table 4: Average MSPE on 200 test sets (standard errors in parentheses) and number
of transcription factors selected by NVC-SSL, NVC-gLASSO, NVC-gSCAD, and
NVC-gMCP.

MSPE Number of TFs Selected

NVC-SSL 0.512 (0.141) 17
NVC-gLASSO 0.515 (0.129) 7
NVC-gSCAD 0.554 (0.290) 7
NVC-gMCP 0.433 (0.167) 3

occurs. The G2 stage stands for “GAP 2.” The M stage stands for “mitosis,” when nuclear
(chromosomes separate) and cytoplasmic (cytokinesis) division occur. The NVC-SSL model
selected several TFs that have also been shown to be significant at various stages of the
cell cycle in the literature. In particular, the NVC-SSL method selected SWI5 and ACE2.
Simon et al. (2001) found that the SWI5 and ACE2 proteins activate genes at the end of
M and early G1.

The TFs selected by NVC-SSL also included several pairs of syneristic, or “cooperative,”
TFs that have been reported in the literature (Banerjee and Zhang, 2003; Tsai et al.,
2005). These pairs of TFs are thought to cooperate together to regulate transcription in
the yeast cell cycle. Among the 17 TFs selected by NVC-SSL, seven of them (ACE2, HIR1,
HIR2, STB15, SUM1, SWI5) belonged to cooperative pairs of TFs identified by Banerjee
and Zhang (2003), including the complete cooperative pairs HIR1-HIR2 and ACE-SWI5.
On the other hand, NVC-gLASSO and NVC-gSCAD only found four genes belonging to
cooperative pairs (HIR1, HIR2, SWI5, SWI6) and one complete cooperative pair HIR1-
HIR2, while NVC-gMCP found three genes belonging to cooperative pairs (HIR1, STB1,
and SWI5) but no complete cooperative pairs.

6.2 Variable selection performance with added synthetic noise variables

In order to investigate the performance and stability of our variable selection approach
in high dimensions, we artificially added 1000 noise variables so that p = 1097. For
each ith gene, these noise variables were randomly generated from a uniform distribu-
tion Uniform(xi,min, xi,max), where xi,min and xi,max denote the minimum and maximum
binding information values for the ith gene. We then fit the NVC-SSL, NVC-gLASSO,
NVC-gSCAD, and NVC-gMCP models with p = 1097 varying coefficients. With d = 8
basis functions, we thus had to estimate 8776 unknown basis coefficients γ in (5).

We repeated the above procedure 200 times, adding 1000 artificial noise variables to the
original dataset each time. For each of the 200 replications, we recorded the number of true
TFs selected and the number of noise variables selected. We also kept track of the TFs that
were always selected by each method in all 200 experiments.

Our results are shown in Table 5. The NVC-SSL selected on average 6.55 real TFs
and 1.685 noise variables. NVC-gSCAD and NVC-gMCP selected more noise variables
on average than NVC-SSL. In particular, NVC-gMCP selected an average of 8.75 noise
variables and only 4.40 real TFs, indicating that NVC-gMCP performed the worst in terms
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Figure 8: Plots of the estimated transcriptional effects over time for the 17 TFs selected by
NVC-SSL.

of being able to exclude noise variables. On this particular dataset, NVC-gLASSO tended to
select the most parsimonious model (an average of 5.24 real TFs and 0.09 noise variables),
with typically the least number of noise variables selected.

However, Table 5 also shows that NVC-gLASSO only selected one real TF (HIR1) in all
200 experiments, indicating that variable selection was not as consistent for NVC-gLASSO
across the replicates. Although NVC-SSL selected on average 1.685 noise variables, NVC-
SSL also exhibited the greatest overall variable selection stability, selecting four real TFs
(HIR1, RME1, SFP1, and SWI5) in all 200 replications, compared to three for NVC-gSCAD
and two for NVC-gMCP. The four TFs that NVC-SSL selected in all 200 experiments were
also selected by NVC-SSL on the original dataset with only p = 97. Our results demonstrate
that variable selection for NVC-SSL is fairly stable in the presence of many known noise
variables.
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Table 5: Variable selection results after adding 1000 noise variables to the dataset. The
first two columns report the average number of real TFs and the average number
of noise variables selected across 200 replications, with the empirical standard
error in parentheses. The third column lists the TFs that were selected in all 200
experiments.

Real TFs Noise Variables TFs Always Selected

NVC-SSL 6.55 (1.76) 1.69 (1.15) HIR1, RME1, SFP1, SWI5
NVC-gLASSO 5.24 (1.75) 0.09 (0.28) HIR1
NVC-gSCAD 6.89 (3.03) 1.82 (11.68) HIR1, RME1, SWI5
NVC-gMCP 4.40 (3.72) 8.75 (14.16) HIR1, SWI5

7. Discussion

In this paper, we have introduced the nonparametric varying coefficient spike-and-slab lasso,
a new Bayesian approach for estimation and variable selection in high-dimensional NVC
models. The NVC-SSL extends the spike-and-slab lasso methodology (Ročková and George,
2018) to the functional regression setting with dependent responses. NVC-SSL performs
simultaneous estimation and variable selection of the functional components. Moreover,
the NVC-SSL flexibly models the unknown within-subject covariance structure. This is
in sharp contrast to frequentist penalized approaches to NVC models which have ignored
these temporal correlations entirely or previous Bayesian approaches which have required
the prespecification of a parametric covariance structure. Unlike frequentist approaches, the
NVC-SSL model also employs a non-separable penalty which allows for automatic model
complexity control and self-adaptivity to the true sparsity in the data.

For variable selection and estimation, we introduced an efficient ECM algorithm to
rapidly obtain MAP estimates. For uncertainty quantification, we proposed an approximate
MCMC algorithm. Both our ECM and approximate MCMC algorithms scale linearly in p
and inN . We demonstrated through extensive simulation studies and a real data application
that our method provides reliable variable selection, function estimation, and uncertainty
quantification under a variety of within-subject correlation structures. NVC-SSL is also
able to detect weak signals and capture many different function shapes, including functions
with flat regions and non-time varying (constant) functions.

The NVC-SSL enjoys strong theoretical support. However, we have deferred the theo-
retical treatment of our method to a follow-up paper (Bai, 2023b). Bai (2023b) gives general
sufficient conditions for adaptive posterior contraction in high-dimensional p� n Bayesian
NVC models (adaptive in the sense that the posterior can adapt to the unknown sparsity
level and the unknown smoothness of the varying coefficient functions). The NVC-SSL prior
is one particular choice of prior that can be shown to satisfy these sufficient conditions with
well-chosen hyperparameters.

This paper has focused solely on the “large p” problem, where we implicitly assumed that
N was not too large. The “small N , large p” scenario arises in many practical settings such
as GWAS studies (Li et al., 2015; Johndrow et al., 2020). However, it is also worthwhile to
explore scalable Bayesian NVC models in the “large N , large p” setting, where both N and
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p could be massive. One possible direction is the prior-preconditioned conjugate gradient
(PPCG) method of Nishimura and Suchard (2022). One of the benefits of the approach
of Nishimura and Suchard (2022) is the fact that it bypasses matrix inversions entirely. In
preliminary work, we did attempt to implement a version of the PPCG method for NVC-
SSL. However, we found that when N � p, PPCG was actually slower than the exact
MCMC algorithm that we introduced in Section 4. This is because each MCMC iteration
of the PPCG method requires iteratively solving a linear system using conjugate gradient
descent (CGD), and the number of iterations it took for the CGD to converge was often
greater than N . Nevertheless, we believe that PPCG is a useful avenue to pursue if N and
p are both large, and the cost of iteratively solving a linear system with CGD is minimal
compared to the cost of using direct methods such as Cholesky decomposition.

Another possible direction for scalable uncertainty quantification is to extend the weighted
Bayesian bootstrap (WBB) (Newton et al., 2021; Nie and Ročková, 2022) to the NVC set-
ting. Roughly speaking, WBB methods approximate the posterior by performing MAP
estimation on many independently perturbed datasets. Recently, in linear regression with
i.i.d. errors, Nie and Ročková (2022) employed WBB to approximately sample from the
posterior distribution under spike-and-slab lasso priors. The approach of Nie and Ročková
(2022) is shown to scale favorably in both N and p. However, WBB requires the obser-
vations to be independent, which is not the case for the NVC models in this paper. An
extension of WBB to the dependent data setting considered in this paper is also of interest.
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Appendix A. Additional simulation results

In this section, we compare the results obtained from MCMC for Experiments 1-5 in Section
5.1 to those obtained from the ECM algorithm. Namely, we assessed the performance of the
estimated posterior mean as a point estimate. We also used MPM (Barbieri and Berger,
2004; Barbieri et al., 2021) to perform variable selection. Unlike the MAP estimator, the
posterior mean under the NVC-SSL model is not exactly sparse. However, for spike-and-slab
models, one can threshold the posterior inclusion probabilities P (τk = 1 | Y ), k = 1, . . . , p,
to select variables. These posterior inclusion probabilities can be estimated as

P̂ (τk = 1 | Y ) =
1

T −B

T∑
t=B+1

τ
(t)
k ,

41



Bai, Boland, and Chen

Table 6: Simulation results for NVC-SSL using the exact MCMC algorithm in Section 4.1
vs. the ECM algorithm in Section 3.1, averaged across 200 replicates. To better
highlight the differences in estimation performance, we rescale the MSE by 100,
i.e. we report MSE × 100 in the first column. The empirical standard error is
reported in parentheses following the average. For MCMC, the posterior mean is
used to compute the MSE and MSPE, and the MPM is used to select variables and
compute Sens, Spec, and MCC. For ECM, the MAP estimator is used to compute
all performance metrics.

Experiment 1: AR(1) covariance function

MSE × 100 MSPE Sens Spec MCC

MCMC 0.670 (0.095) 6.579 (2.297) 0.667 (0) 1 (0) 0.815 (0)
ECM 0.144 (0.049) 4.057 (1.976) 0.988 (0.052) 0.999 (0.002) 0.948 (0.069)

Experiment 2: CS covariance function

MSE × 100 MSPE Sens Spec MCC

MCMC 0.679 (0.102) 6.597 (2.710) 0.667 (0) 1 (0) 0.815 (0)
ECM 0.113 (0.046) 4.255 (2.254) 0.989 (0.041) 0.999 (0.002) 0.947 (0.067)

Experiment 3: SE covariance function

MSE × 100 MSPE Sens Spec MCC

MCMC 0.663 (0.098) 6.318 (2.187) 0.667 (0) 1 (0) 0.815 (0)
ECM 0.112 (0.056) 4.448 (2.536) 0.989 (0.053) 0.999 (0.002) 0.946 (0.071)

Experiment 4: Periodic covariance function

MSE × 100 MSPE Sens Spec MCC

MCMC 0.663 (0.110) 6.511 (2.324) 0.667 (0) 1 (0) 0.815 (0)
ECM 0.106 (0.042) 4.062 (2.134) 0.991 (0.045) 0.999 (0.002) 0.965 (0.054)

Experiment 5: Zero covariance function (i.i.d. errors)

MSE × 100 MSPE Sens Spec MCC

MCMC 0.619 (0.098) 5.198 (2.306) 0.667 (0) 1 (0) 0.815 (0)
ECM 0.062 (0.024) 3.027 (2.269) 0.999 (0.012) 0.999 (0.002) 0.962 (0.055)

where τ
(t)
k is the tth MCMC sample drawn for τk in Step 4(a) of Algorithm 2, T is the

total number of MCMC iterations, and B is the number of burnin samples. In the present
context, MPM selects the kth varying coefficient βk(t) if P (τk = 1 | Y ) ≥ 0.5.

We repeated Experiments 1-5 from Section 5.1 for 200 replications each, where we used
the exact MCMC algorithm in Section 4.1 to estimate the varying coefficients. The MAP
estimator was used to initialize the MCMC algorithm, and the hyperparameters were the
same as those in the ECM algorithm. We ran the algorithm for 2000 iterations, with a
burnin period of 500 samples. The effective sample size prior to burnin was very close to
2000 for each of the basis coefficients in γ, suggesting that the number of MCMC iterations
we used was sufficient.
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Table 7: Simulation results for estimation and variable selection of the nonzero varying
coefficients β1(t), β2(t), β3(t), β4(t), β5(t), β6(t) using the exact MCMC algorithm
in Section 4.1 vs. the ECM algorithm in Section 3.1, averaged across 200 replicates.
“Proportion” gives the proportion of replicates that selected the varying coefficient.

Experiment 1: AR(1) covariance function

MSE Proportion

β1 β2 β3 β4 β5 β6 β1 β2 β3 β4 β5 β6

MCMC 0.252 0.693 0.344 0.440 0.657 0.177 1 1 0 0 1 1
ECM 0.060 0.081 0.093 0.103 0.113 0.042 1 1 0.97 0.96 1 1

Experiment 2: CS covariance function

MSE Proportion

β1 β2 β3 β4 β5 β6 β1 β2 β3 β4 β5 β6

MCMC 0.254 0.728 0.349 0.440 0.656 0.181 1 1 0 0 1 1
ECM 0.066 0.080 0.094 0.094 0.114 0.045 1 1 0.965 0.97 1 1

Experiment 3: SE covariance function

MSE Proportion

β1 β2 β3 β4 β5 β6 β1 β2 β3 β4 β5 β6

MCMC 0.256 0.680 0.345 0.435 0.622 0.179 1 1 0 0 1 1
ECM 0.063 0.076 0.087 0.098 0.106 0.043 1 1 0.975 0.96 1 1

Experiment 4: Periodic covariance function

MSE Proportion

β1 β2 β3 β4 β5 β6 β1 β2 β3 β4 β5 β6

MCMC 0.246 0.681 0.343 0.438 0.623 0.183 1 1 0 0 1 1
ECM 0.065 0.079 0.092 0.098 0.110 0.042 1 1 0.97 0.975 1 1

Experiment 5: Zero covariance function (i.i.d. errors)

MSE Proportion

β1 β2 β3 β4 β5 β6 β1 β2 β3 β4 β5 β6

MCMC 0.251 0.708 0.347 0.440 0.587 0.171 1 1 0 0 1 1
ECM 0.039 0.041 0.045 0.048 0.082 0.026 1 1 0.97 0.975 1 1

Tables 6 and 7 report our results from using MCMC to perform estimation and variable
selection, contrasted with the results from using the ECM algorithm. Our results show that
the MAP estimator obtained from the ECM algorithm gave superior variable selection,
both overall (Table 6) and with respect to the six true nonzero varying coefficient functions
(Table 7). In particular, the MAP estimator had lower average MSE (both overall and for
βk(t), k = 1, . . . , p) across all the different scenarios. Table 7 shows that the MPM method
consistently failed to select the weak signals β3 and β4, similar to the competing methods
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NVC-gLASSO, NVC-gSCAD, and NVC-gMCP (Table 2). This is demonstrated in Figure
2, which shows that the MAP estimator is better able to detect and capture the true shape
of smaller magnitude varying coefficient functions than the posterior mean.

On the other hand, uncertainty quantification from the 95% posterior credible intervals
obtained from MCMC was quite good, with a pointwise ECP of 99.9% in all simulations.
This is illustrated by the credible bands in Figure 2. We therefore conclude that the NVC-
SSL MAP estimator is preferable for variable selection – especially in the presence of weak
signals, while the MCMC algorithm is very useful for uncertainty quantification.

Appendix B. Proof of Proposition 1

Under the exact MCMC algorithm, the conditional distribution of γ in Step 6 of Algorithm
2 has the covariance matrix,

Σγ =
(
U>U/σ2 +D−1

ξ

)−1
=

(
U>S US/σ

2 +D−1
S U>S USc/σ2

U>ScUS/σ
2 U>ScUSc/σ2 +D−1

Sc

)−1
∆
=

(
A B
B> C

)−1

.

Since A = U>S US/σ
2 +D−1

S and C = U>ScUSc/σ2 +D−1
Sc are both positive-definite (with

smallest eigenvalues greater than or equal to [max1≤k≤p{ξk}]−1 > 0), we can write

Σγ =

(
A−1 +A−1B(C −B>A−1B)−1B>A−1 −A−1B(C −B>A−1B)−1

−(C −B>A−1B)−1B>A−1 (C −B>A−1B)−1

)
, (33)

and the Schur complement (C −B>A−1B)−1 is also positive-definite. Thus, noting that
Σ̃γS = A−1 by (31), we have that

Σ̃γS −ΣγS = A−1B(C −B>A−1B)−1B>A−1.

But for any x ∈ Rds,

x>(Σ̃γs −Σγs)x = x>A−1B(C −B>A−1B)−1B>A−1x

= ‖(C −B>A−1B)−1/2B>A−1x‖22 ≥ 0.

Thus, Σ̃γS −ΣγS is non-negative definite, i.e. Σ̃γS ≥ ΣγS .

Now, using the facts that Σ̃γSc = D−1
Sc , ΣγSc = (C−B>A−1B)−1, andB = U>S USc/σ2

by (31) and (33), two applications of the Woodbury matrix identity give that

Σ̃γSc −ΣγSc

= DSc
U>Sc

σ

(
IN +

UScDScU>Sc

σ2

)−1
USc

σ
DSc +C−1B>(A−1 +BC−1B>)−1BC−1.

Now, for any y ∈ Rd(p−s), we have

y>(Σ̃γSc −ΣγSc )y

= y>DSc
U>Sc

σ

(
IN +

UScDScU>Sc

σ2

)−1
USc

σ
DScy + y>C−1B>(A−1 +BC−1B>)−1BC−1y

=

∥∥∥∥(IN +
UScDScU>Sc

σ2

)−1/2
USc

σ
DScy

∥∥∥∥2

2

+ ‖(A−1 +BC−1B>)−1/2BC−1y‖22 ≥ 0 + 0.

Thus, Σ̃γSc −ΣγSc is also non-negative definite, i.e. Σ̃γSc ≥ ΣγSc . �
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Stéphanie van der Pas, Botond Szabó, and Aad van der Vaart. Uncertainty quantification
for the horseshoe (with discussion). Bayesian Analysis, 12(4):1221 – 1274, 2017.

Hansheng Wang and Yingcun Xia. Shrinkage estimation of the varying coefficient model.
Journal of the American Statistical Association, 104(486):747–757, 2009.

Lifeng Wang, Hongzhe Li, and Jianhua Z. Huang. Variable selection in nonparametric
varying-coefficient models for analysis of repeated measurements. Journal of the American
Statistical Association, 103(484):1556–1569, 2008.

Fengrong Wei, Jian Huang, and Hongzhe Li. Variable selection and estimation in high-
dimensional varying-coefficient models. Statistica Sinica, 21:1515–1540, 2011.

Colin O. Wu and Chin-Tsang Chiang. Kernel smoothing on varying coefficient models with
longitudinal dependent variable. Statistica Sinica, 10(2):433–456, 2000.

Lan Xue and Annie Qu. Variable selection in high-dimensional varying-coefficient models
with global optimality. Journal of Machine Learning Research, 13(1):1973–1998, 2012.

William Weimin Yoo and Subhashis Ghosal. Supremum norm posterior contraction and
credible sets for nonparametric multivariate regression. The Annals of Statistics, 44(3):
1069–1102, 2016.

Ming Yuan and Yi Lin. Model selection and estimation in regression with grouped variables.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68(1):49–67,
2006.

49


	Introduction
	Model set-up
	Related work
	Our contributions

	The Nonparametric varying coefficient spike-and-slab lasso
	Modeling of unknown within-subject correlations
	Basis expansion representation of the NVC model
	Prior specification for NVC-SSL
	Theoretical considerations

	Scalable MAP estimation for variable selection
	ECM algorithm
	Computational complexity
	Choice of hyperparameters

	MCMC for scalable uncertainty quantification
	Exact Gibbs sampling algorithm
	Approximate Gibbs sampling algorithm and its computational complexity
	Trade-offs between exact and approximate Gibbs sampling algorithms

	Simulation studies
	Variable selection and estimation performance
	Performance of MCMC for inference
	Timing and efficiency comparisons

	Yeast cell cycle data analysis
	Results for variable selection and out-of-sample prediction
	Variable selection performance with added synthetic noise variables

	Discussion

