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Abstract

This paper considers the partially functional linear model (PFLM) where all predictive
features consist of a functional covariate and a high dimensional scalar vector. Over an
infinite dimensional reproducing kernel Hilbert space, the proposed estimation for PFLM
is a least square approach with two mixed regularizations of a function-norm and an `1-
norm. Our main task in this paper is to establish the minimax rates for PFLM under high
dimensional setting, and the optimal minimax rates of estimation are established by using
various techniques in empirical process theory for analyzing kernel classes. In addition, we
propose an efficient numerical algorithm based on randomized sketches of the kernel matrix.
Several numerical experiments are implemented to support our method and optimization
strategy.

Keywords: Functional linear models, minimax rates, sparsity, randomized sketches,
reproducing kernel Hilbert space.

1. Introduction

In the problem of functional linear regression, a single functional feature X(·) is assumed
to be square-integrable over an interval T , and the classical functional linear regression
between the response Y and X is given as

Y = 〈X, f∗〉L2 + ε, (1.1)

where the inner product 〈·, ·〉L2 is defined as 〈f, g〉L2 :=
∫
T f(t)g(t)dt for any f, g ∈ L2(T ).

Here f∗ is some slope function within L2(T ) and ε denotes an error term with zero-mean.
Let (Yi, Xi) : i = 1, ..., n denote independent and identically distributed (i.i.d.) realizations
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from the population (Y,X), there is extensive literature on estimation of the slope function
f∗, or the value of 〈X, f∗〉L2 .

In practice, it is often the case that a response is affected by both a high-dimensional
scalar vector and some random functional variables as predictive features. These scenarios
partially motivate us to study PFLM under high dimensional setting. For simplifying the
notations, this paper assumes that Y and X(·) are centered. To be more precise, we are
concerned with partially functional linear regression with the functional featureX and scalar
predictors Z = (Z1, ..., Zp)

T ∈ Rp, and a linear model links the response Y and predictive
features U = (X,Z) that

Y = 〈X, f∗〉L2 + ZTγ∗ + ε, (1.2)

where γ∗ = (γ∗1 , ..., γ
∗
p)T denotes the regression coefficients of the scalar covariates, and ε is

a standard normal variable and independent of X and Z. It is interesting to note that X
and Z are not required to be independent here. Under the sparse high dimensional setting, a
standard assumption is that the cardinality of the active set S0 := {j : γ∗j 6= 0, j = 1, ..., p} is
far less than p, while p and p0 := |S0| are allowed to diverge as the sample size n increases.
It is interesting to point out that PFLM (1.2) is particularly attractive to analyze data
consisting of both functional features and many scalar predictors, which commonly appear
in many real-world problems as pointed out by Kong et al. 2016. In fact, estimation and
variable selection issues for partially functional linear models have been investigated via
FPCA methods by Shin and Lee (2012); Lu et al. (2014) and Kong et al. (2016), respectively.

In this paper, we focus on a least square regularized estimation for the slope function
and the regression coefficients in (1.2) under a kernel-based framework and high dimension
setting. The estimators obtained are based on a combination of the least-squared loss with a
`1-type penalty and the square of a functional norm, where the former penalty corresponds
to the regression coefficients and the latter one is used to control the kernel complexity.
The optimal minimax rates of estimation are established by using various techniques in
empirical process theory for analyzing kernel classes, and an efficient numerical algorithm
based on randomized sketches of the kernel matrix is implemented to verify our theoretical
findings.

1.1 Our Contributions

This paper makes three main contributions to this functional modeling literature.

Our first contribution is to establish Theorem 1 stating that with high probability,
under mild regularity conditions, the prediction error of our procedure under the squared

L2-norm is bounded by
(p0 log p

n + n−
2r

2r+1
)
, where the quantity r > 1/2 corresponds to the

kernel complexity of one composition kernel K1/2CK1/2 with K denoting some bounded
kernel and C(s, t) = E[X(s)X(t)] for any t, s ∈ T . Note that the boundedness of K is
required to apply the spectral decomposition and Bousquet inequality in our theoretical
analysis. The proof of this upper bound involves two different penalties for analyzing the
obtained estimator in high dimensions, and we want to emphasize that it is very hard to
prove constraint cone set that has often been used to define a critical condition (constraint
eigenvalues constant) for high-dimensional problems (Bickel, Ritov, and Tsybakov, 2009;
Verzelen, 2012). To handle this technical difficulty, we combine the methods used in Müller
and Van de Geer (2015) for high dimensional partial linear models with various techniques
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in empirical process theory for analyzing kernel classes (Aronszajn, 1950; Steinwart and
Christmann, 2008; Cai and Yuan, 2012; Yuan and Cai, 2010; Zhu et al., 2014).

Our second contribution is to establish algorithm-independent minimax lower bounds
under the squared L2 norm. These minimax lower bounds, stated in Theorem 3, are deter-
mined in terms of the metric entropy of the composition kernel K1/2CK1/2 and the sparsity
structure of high dimensional scalar coefficients. For the commonly-used kernels, including
the Sobolev classes, these lower bounds match our achievable results, showing optimality of
our estimator for PFLM. It is worthy noting that, the lower bound of parametric part does
not depend on nonparametric smoothness indices, coinciding with the classical sparse esti-
mation rate in the high dimensional linear models (Verzelen, 2012). By contrast, the lower
bound for estimating f∗ turns out to be affected by the regression coefficient γ∗. The proof
of Theorem 3 is based on characterizing the packing entropies of the class of nonparamet-
ric kernel models, interaction between the composition kernel and high dimensional scalar
vector, combined with classical information theoretic techniques involving Fano’s inequality
and variants (Yang and Barron, 1999; Van. de. Geer, 2000; Tsybakov, 2009).

Our third contribution is to consider randomized sketches for our original estimation
with statistical dimension. Despite these attractive statistical properties stated as above,
the computational complexity of computing our original estimate prevents it from being
routinely used in large-scale problems. In fact, a standard implementation for any kernel
estimator leads to the time complexity O(n3) and space complexity O(n2) respectively. To
this end, we employ the random projection and sketching techniques developed in Yang
et al. (2017); Mahoney (2011), where it is proposed to approximate n-dimensional kernel
matrix by projecting its row and column subspaces to a randomly chosen m-dimensional
subspace with m � n. We give the sketch dimension m proportional to the statistical
dimension, under which the resulting estimator has a comparable numerical performance.

1.2 Related Work

A class of conventional estimation procedures for functional linear regressions in the statis-
tical literature are based on functional principal components regression (FPCA) or spline
functions; see (Ramsay and Silverman, 2005; Ferraty and Vieu, 2006; Kong, Xue, Yao, and
Zhang, 2016) and (Cardot, Ferraty, and Sarda, 2003) for details. These truncation ap-
proaches to handle an infinity-dimensional function only depend on the information of the
feature X. In particular, commonly-used FPCA methods that form an available basis for
the slope function f∗ are determined solely by empirical covariance of the observed feature
X, and these basis may not act as an efficient representation to approximate f∗, since the
slope function f∗ and the leading functional components are essentially unrelated. Similar
problems also arise when spline-based finite representation are used.

To avoid inappropriate representation for the slope function, reproducing kernel methods
have been known to be a family of powerful tools for directly estimating infinity-dimensional
functions, and the optimal rates for the regularized least-squares estimation has been pro-
vided in Caponnetto and De Vito (2007). When the slope function is assumed to reside in a
reproducing kernel Hilbert space (RKHS), denoted by HK , several existing work (Yuan and
Cai, 2010; Cai and Yuan, 2012; Zhu, Yao, and Zhang, 2014) for functional linear or additive
regression have proved that the minimax rate of convergence depends on both the kernel
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K and the covariance function C of the functional feature X. In particular, the alignment
of K and C can significantly affect the optimal rate of convergence. However, it is well
known that kernel-based methods suffer a lot from storage cost and computational burden.
Specially, kernel-based methods need to store a n×n matrix before running algorithms and
are limited to small-scale problems.

1.3 Paper Organization

The rest of this paper is organized as follows. Section 2 introduces some notations and the
basic knowledge on kernel method, and formulates the proposed kernel-based regularized
estimation method. Section 3 is devoted to establish the minimax rate of the prediction
problem for PFLM and provide detailed discussion on the obtained results, including the
desired convergence rate of the upper bounds and a matching set of minimax lower bounds.
In Section 4, a general sketching-based strategy is provided, and an approximate algorithm
for solving (2.2) is employed. Several numerical experiments are implemented in Section 5 to
support the proposed approach and the employed optimization strategy. A brief summary of
this paper is provided in Section 6. Appendix A and B contain several core proof procedures
of the main results, including the technical proofs of Theorems 1–3. Some useful lemmas
and more technical details are provided in Appendix C.

2. Problem Statement and Proposed Method

2.1 Notation

Let u, v be two general random variables, and denote the joint distribution of (u, v) by Q
and the marginal distribution of u(resp. v) by Qu(resp. Qv). For a measurable function
f : u × v → R, we define the squared L2-norm by ‖f‖2 := EQf2(u, v), and the squared
empirical norm is given by ‖f‖2n := 1

n

∑n
i=1 f

2(ui, vi), where {(ui, vi)}ni=1 are i.i.d. copies
of (u, v). Note that Q may differ from line to line. For a vector γ ∈ Rp, the `1-norm and

`2-norm are given by ‖γ‖1 :=
∑p

j=1 |γj | and ‖γ‖2 :=
(∑p

j=1 γ
2
j

)1/2
, respectively. With a

slight abuse of notation, we write ‖f‖2L2 := 〈f, f〉L2 with 〈f, g〉L2 =
∫
T f(t)g(t)dt. For two

sequences {ak : k ≥ 1} and {bk : k ≥ 1}, ak . bk (or ak = O(bk)) means that there exists
some constant c such that ak ≤ cbk for all k ≥ 1. Also, we write ak & bk if there is some
positive constant c such that ak ≥ cbk for all k ≥ 1. Accordingly, we write ak � bk if both
ak . bk and ak & bk are satisfied.

2.2 Kernel Method

Kernel methods are one of the most powerful learning schemes in machine learning, which
often take the form of regularization schemes in a reproducing kernel Hilbert space (RKHS)
associated with a Mercer kernel (Aronszajn, 1950). A major advantage of employing the
kernel methods is that the corresponding optimization task over an infinite dimensional
RKHS are equivalent to a n-dimensional optimization problems, benefiting from the so-
called reproducing property, and thus kernel method has become a time-proven popular
mainstay in the literature of machine learning (Steinwart and Christmann, 2008; Cai and
Yuan, 2012; Yang et al., 2017; Marteau-Ferey et al., 2019; Della Vecchia et al., 2021).
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Recall that a kernel K(·, ·) : T × T → R is a continuous, symmetric, and positive semi-
definite function. Let HK be the closure of the linear span of functions {Kt(·) := K(t, ·), t ∈
T } endowed with the inner product 〈

∑n
i=1 αiKti ,

∑n
j=1 βjKtj 〉K :=

∑n
i,j=1 αiβjK(ti, tj), for

any {ti}ni=1, {ti}ni=1 ∈ T n and n ∈ N+. An important property on HK is the reproducing
property stating that

f(t) = 〈f,Kt〉K , for any f ∈ HK .

This property ensures that an RKHS inherits many nice properties from the standard finite
dimensional Euclidean spaces. Throughout this paper, we assume that the slope function
f∗ resides in a specified RKHS, still denoted by HK . In addition, another RKHS can be
naturally induced by the stochastic process of X(·). Without loss of generality, we assume
that X(·) is square integrable over T with zero-mean, and thus the covariance function of
X, defining as

C(s, t) = E[X(s)X(t)], ∀ t, s ∈ T ,

is also a real and semi-definite kernel.
Note that the kernel complexity is characterized explicitly by a kernel-induced integral

operator. Precisely, for any bounded kernel K(·, ·) : T × T → R, we define the integral
operator LK : L2(T )→ L2(T ) by

LK(f)(·) =

∫
T
K(s, ·)f(s)ds.

By the reproducing property, LK can be equivalently defined as

〈f, LK(g)〉K = 〈f, g〉L2 , ∀ f ∈ HK , g ∈ L2(T ).

Since the operator LK is linear, bounded and self-adjoint in L2(T ), the spectral theorem
implies that there exist a family of orthonormalized eigenfunctions {φK` : ` ≥ 1} and a
sequence of eigenvalues θK1 ≥ θK2 ≥ ... > 0 such that

K(s, t) =
∑
`≥1

θK` φ
K
` (s)φK` (t), ∀s, t ∈ T ,

and thus by definition, it holds

LK(φK` ) = θK` φ
K
` , ` = 1, 2, ...

Based on the semi-definiteness of LK , we can always decompose it into the following form

LK = LK1/2 ◦ LK1/2 ,

where LK1/2 is also a kernel-induced integral operator associated with a fractional kernel
K1/2 that

K1/2(s, t) :=
∑
`≥1

√
θK` φ

K
` (s)φK` (t), s, t ∈ T .

Also, it holds

LK1/2(φK` ) :=
√
θK` φ

K
` .
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Given two kernels K1,K2, we define

(K1K2)(s, t) :=

∫
T
K1(s, u)K2(t, u)du,

and then it holds LK1K2 = LK1 ◦ LK2 . Note that K1K2 is not necessarily a symmetric
kernel.

In the rest of this paper, we focus on the RKHS HK in which the slope function f∗

in (1.2) resides. Given the kernel K, the covariance function C and by using the above
notation, we define the linear operator LK1/2CkK1/2 by

LK1/2CK1/2 := LK1/2 ◦ LC ◦ LK1/2 .

If the both operators LK1/2 and LC are linear, bounded and self-adjoint, so is LK1/2CK1/2 .
By the spectral theorem, there exist a sequence of positive eigenvalues s1 ≥ s2 ≥ ... > 0
and a set of orthonormalied eigenfunctions {ϕ` : ` ≥ 1} such that

K1/2CK1/2(s, t) =
∑
`≥1

s`ϕ`(s)ϕ`(t), ∀ s, t ∈ T ,

and particularly
LK1/2CK1/2(ϕ`) = s`ϕ`, ` = 1, 2, ...

It is worthwhile to note that the eigenvalues {s` : ` ≥ 1} of the linear operator LK1/2CK1/2

depend on the eigenvalues of both the reproducing kernel K and the covariance function
C. To be more precise, it is easy to verify that s` = θK` θ

C
` under the case that φK` = φC` .

Yet, in general, only the eigenvalues of K and C cannot determine the decay rate of the
eigenvalues of LK1/2CK1/2 , which heavily relies on the alignments of the eigenfunctions of
K and C. We shall show in Section 3 that the minimax rate of convergence of the excess
prediction risk is determined by the decay rate of the eigenvalues {s` : ` ≥ 1}.

2.3 Regularized Estimation and Randomized Sketches

Given the sample {Yi, (Xi,Zi)}ni=1 which are independently drawn from (1.2), the proposed
estimation procedure for PFLM (1.2) is formulated in a least square regularization scheme
by solving

(f̂ , γ̂) = argmin
f∈HK ,γ∈Rp

{ 1

n

n∑
i=1

(
Yi − 〈Xi, f〉L2 − ZTi γ

)2
+ µ2‖f‖2K + λ‖γ‖1

}
, (2.1)

where the parameter µ2 > 0 is used to control the smoothness of the nonparametric compo-
nent and λ > 0 associated with the `1-type penalty is used to generate sparsity with respect
to the scalar covariates.

Note that although the proposed estimation procedure (2.1) is formulated within an
infinite-dimensional Hilbert space, the following lemma shows that this optimization task
is equivalent to a finite-dimensional minimization problem.

Lemma 1 The proposed estimation procedure (2.1) defined on HK × Rp is equivalent to
a finite-dimensional parametric convex optimization. That is, f̂(t) =

∑n
k=1 αkBk(t) with

unknown coefficients α = (α1, ..., αn)T , for any t ∈ T . Here each basis function Bk(t) =
〈Xk,K(t, )〉L2(T ) ∈ HK , k = 1, ..., n.
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To rewrite the minimization problem (2.1) into a matrix form, we define a n× n semi-
definite matrix Kc = (Kc

ik)
n
i,k=1 with Kc

ik := 〈Xi, Bk〉L2 =
∫∫

Xk(u)Xi(t)K(t, u)dudt, and
by the reproducing property on K, we also get 〈Bi, Bk〉K = Kc

ik, i, k = 1, ..., n. Thus, by
Lemma 1, the matrix form of (2.1) is given as

min
α∈Rn,γ∈Rp

1

n

∥∥y −Kcα− Zγ
∥∥2

2
+ µ2αTKcα+ λ‖γ‖1, (2.2)

where Z ∈ Rn×p denotes the design matrix of Z. Since the unconstrained problem (2.2) is
convex for both α and γ, the standard alternative optimization (Boyd and Vandenberghe,
2004) can be applied directly to approximate a global minimizer of (2.2). Yet, due to the
fact that Kc is a n×n matrix, both computation cost and storage burden are very heavy in
standard implementation, with the orders O(n3) and O(n2), respectively. To alleviate the
computational issue, we propose an approximate numerical optimization instead of (2.2)
in Section 4. Precisely, a class of general random projections are adopted to compress the
original kernel matrix Kc and improve the computational efficiency.

3. Main Results: Minimax Rates

In this section, we present the main theoretical results of the proposed estimation in the
minimax sense. Specifically, we derive the minimax rates in terms of prediction error for
the estimators in (2.1) under high dimension and kernel-based frameworks. The first two
theorems prove the convergence of the obtained estimators, while the last one provides an
algorithmic-independent lower bound for the prediction error.

3.1 Upper Bounds

We denote the short-hand notation

G :=
{
gf,γ(X,Z) = 〈X, f〉L2 + ZTγ, f ∈ HK , γ ∈ Rp

}
,

and the functional g∗(U) := 〈X, f∗〉L2 + ZTγ∗ for U = (X,Z). With a slight confusion of
notation, we sometimes also write G :=

{
g = (f,γ), f ∈ HK , γ ∈ Rp

}
. To split the scalar

components and the functional component involved in our analysis, we define the projec-
tion of a random variable U concerning HK as Π(U |HK) = argminf∈HK ‖U − 〈X, f〉L2‖

2,
where ‖ · ‖2 is defined as ‖U‖2 := E[U2] for a random variable U . For each component of
Z = (Z1, ..., Zp)

T , let Π(Zj |X) = 〈X,Π(Zj |HK)〉L2 and ΠZ|X = (Π(Z1|X), ...,Π(Zp|X))T ,

and then we denote Z̃ := Z − ΠZ|X as a random vector of Rp. For any g1(U) :=

〈X, f1〉L2 +ZTγ1 ∈ G and g2(U) := 〈X, f2〉L2 +ZTγ2 ∈ G, we have the following orthogonal
decomposition that

g1(U)− g2(U) = ZT (γ1 − γ2) + 〈X, f2 − f1〉L2
= Z̃T (γ1 − γ2) + ΠT

ZT |X(γ1 − γ2) + 〈X, f2 − f1〉L2 ,

and by the definition of projection, it holds

‖g1 − g2‖2 = ‖Z̃T (γ1 − γ2)‖2 + ‖ΠT
Z|X(γ1 − γ2) + 〈X, f2 − f1〉L2‖2. (3.1)
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To establish the refined upper bounds of the prediction and estimation errors, we sum-
marize and discuss the main conditions needed in the theoretical analysis below.
Condition A(Eigenvalues condition). The smallest eigenvalue Λ2

min of E[Z̃Z̃T ] is positive,
and the largest eigenvalue Λ2

max of E[ΠZ|XΠT
Z|X ] is finite.

Condition B(Design condition). For some positive constants Cz, Cπ, Ch, there holds:

|Zj | ≤ Cz, ‖Π(Zj |X)‖∞ ≤ Cπ, and ‖Π(Zj |HK)‖K ≤ Ch, for any j = 1, ..., p.

Condition C(Light tail condition). There exist two constants c1, c2 such that

P{‖LK1/2X‖L2 ≥ t} ≤ c1 exp(−c2t
2), for any t > 0.

Condition D(Entropy condition). For some constant 1/2 < r < ∞, the sequence of
eigenvalues s` satisfy that

s` = O(`−2r), ` ∈ N+.

Condition A is commonly used in literature of semiparametric modelling ; see (Müller
and Van de Geer, 2015) for reference. This condition ensures that there is enough informa-
tion in the data to identify the parameters in the scalar part. Condition B imposes some
boundedness assumptions, which are not essential and are used only for simplifying the tech-
nical proofs. Note that for the unbounded case, we may need construct a truncation way or
assume some exponential-tail decay conditions for theses quantities to apply the empirical
processes theory. The readers are referred to Theorems 3 and 4 and the corresponding
discussions of Cai and Yuan (2012) for reference. Condition C implies that the random
process LK1/2X has an exponential decay rate and the same condition is also considered
in Cai and Yuan (2012). Particularly, it is naturally satisfied if X is a Gaussian process.
In Condition D, the parameters s` are related to the alignment between K and C, which
plays an important role in determining the minimax optimal rates. Moreover, the decay of
s` characterizes the kernel complexity and has close relation with various covering numbers
and Radmeacher complexity. Specially, the polynomial decay assumed in Condition D is
satisfied for the classical Sobolev class and Besov class.

The following theorem states that with an appropriately chosen (µ, λ), the predictor
ĝ := 〈X, f̂〉L2 + ZT γ̂ attains a sharp convergence rate under L2-norm.

Theorem 1 Suppose that Conditions A-D hold. With the choice of the tuning parameters
(µ, λ), such that

µ � n−
r

2r+1 +
√

log(2p)/n, λ �
√

log(2p)/n.

Then with probability at least 1 − 2 exp[−n(δ′′1)2µ2], the proposed estimation for PFLM
satisfies

‖ĝ − g∗‖2 .
(
n−

2r
2r+1 +

p0 log(2p)

n

)
,

where δ
′′
1 is some appropriately small quantity.

The proof of Theorem 1 will be given in the first part of Appendix A before Appendix
A2. Note that the explicit definition of δ

′′
1 is provided in Lemma 4 and may depend on n.

Theorem 1 shows that the proposed estimation (2.1) achieves a fast convergence rate in the
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term of prediction error. Note that the derived rate depends on the kernel complexity of
K1/2CK1/2 and the sparsity of scalar components. It is interesting to note that even there
exists some underlying correlation structure between the functional feature and the scalar
covariates, the choice of hyper-parameter µ depends on the structural information of all the
features, while the sparsity hyper-parameter λ only depends on the scalar component.

Theorem 2 Suppose that all the conditions in Theorem 1 are satisfied. Then with proba-
bility at least 1− 4 exp[−n(δ′′1)2µ2]− 5

2p , there holds

‖Z̃T (γ̂ − γ∗)‖2 +
λ

8
‖γ̂ − γ∗‖1 .

( p0

Λ2
min

log(2p)

n

)
, (3.2)

and in addition, we have

‖〈X, ĝ − g∗〉L2‖2 .
(
n−

2r
2r+1 +

p0 log(2p)

n

)
. (3.3)

The proof of Theorem 2 will be given in Appendix A2 below. Note that the exponential-type
dependence in n or s is characterized in δ′′1 , and the term 5

2p results from the high dimensional
scalar vector. Theorem 2 shows that the parameter estimator and the functional estimator
can achieve the fast convergence rate. Specifically, the estimation error of the parametric
estimator γ̂ can achieve the optimal convergence rate in the high dimensional linear models
(Verzelen, 2012), even in the presence of nonparametric components. This result in the
functional literature is similar in spirit to the classical high dimensional partial linear models
(Müller and Van de Geer, 2015; Yu, Levine, and Cheng, 2019).

3.2 Lower Bounds

In this part, we establish the lower bounds on the minimax risk of estimating γ∗ and
〈X, f∗〉L2 separately. Let B[p0, p] be a set of p-dimensional vectors with at most p0 non-
zero coordinates, and BK be the unit ball of HK . Moreover, we define the risk of estimating
γ∗ as

Rγ∗(p0, p,BK) := inf
γ̂

sup
γ∗∈B[p0,p],f∗∈BK

E[‖γ̂ − γ∗‖22],

where inf is taken over all possible estimators for γ∗ in model (1.2). Similarly, we define
the risk of estimating 〈X, f∗〉L2 as

Rf∗(s0, p,BK) := inf
f̂

sup
γ∗∈B[p0,p],f∗∈BK

E[〈X, f̂−f∗〉2L2 ] = inf
f̂

sup
γ∗∈B[p0,p],f∗∈BK

‖LC1/2(f̂−f∗)‖2L2 .

Note that to derive a sharp lower bound on any minimax error, one focuses on the
worst case of the objective function in a hypothesis space, to avoid any meaningless lower
bound (e.g. sufficiently close to zero). Technically, Fano inequality and packing entropy are
generally adopted to derive a sharp lower bound. Hence, a lower bound of the eigenvalue
decay is required to lower bound the interested quantity, which is clearly stated in the
following.
Condition D̃(Entropy condition). For some constant 1/2 < r < ∞, the sequence of
eigenvalues s` satisfy that

s` � `−2r, ` ∈ N+.
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The following theorem provides the lower bounds of the minimax optimal estimation
error for γ∗ and the predictor error for f∗, respectively.

Theorem 3 Given n i.i.d. samples from (1.2) with the entropy condition (Condition D̃).
When p is diverging and p0 � p, the minimax risk for estimating γ∗ can be bounded from
below as

Rγ∗(p0, p,BK) &
p0 log(p/p0)

n
;

the minimax risk for estimating 〈X, f∗〉L2 can be bounded from below as

Rf∗(p0, p,BK) & max
{p0 log(p/p0)

n
, n−

2r
2r+1

}
.

The proof of Theorem 3 is provided in Appendix B. As mentioned previously, these results
indicate that the best possible estimation of γ∗ is not affected by the existence of non-
parametric components, while the minimax risk for estimating the (nonparametric) slope
function not only depends on the smoothness itself, but also on the dimensionality and
sparsity of the scalar covariates. From the lower bound of Rf∗(p0, p,BK), we observe that a
rate-switching phenomenon occurring between a sparse regime and a smooth regime. Par-

ticularly when p0 log(p/p0)
n dominates n−

2r
2r+1 corresponding to the sparse regime, the lower

bound becomes the classical high dimensional parametric rate p0 log(p/p0)
n . Otherwise, this

corresponds to the smooth regime and thus has similar behaviors as classical nonparamet-
ric models. We also notice that the minimax lower bound obtained for the predictor error
generalizes the previous results for the pure functional linar model (Cai and Yuan, 2012).

4. Randomized Sketches and Optimization

This section is devoted to considering an approximate algorithm for (2.2), based on con-
straining the original parameter α ∈ Rn to an m-dimensional subspace of Rn, where m� n
is the projection dimension. We define this approximation via a sketch matrix S ∈ Rm×n
such that the m-dimensional subspace is generated by the row span of S. More precisely,
the sketched kernel partial functional estimator is given by first solving

(α̂s, γ̂s) : = arg min
α∈Rm,γ∈Rp

1

n
α(SKc)(SKc)Tα− 2

n
αTSKc(y − Zγ) +

1

n
‖y − Zγ‖22

+ µ2αTSKcSTα+ λ‖γ‖1. (4.1)

Then the resulting predictor for the slope function f∗ is given as

f̂s(t) :=

n∑
k=1

(ST α̂s)kBk(t) = α̂Ts SB(t), ∀ t ∈ T .

where B(t) = (B1(t), ..., Bn(t))T ∈ Rn, where Bk(t) is defined in Lemma 1. By doing ran-
domized sketches, an approximate form of the kernel estimate α̂s can be obtained by solving
an m-dimensional quadratic program when γ̂s is fixed, which involves time and space com-
plexity O(m3) and O(m2). Computing the approximate kernel matrix is a preprocessing
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step with time complexity O(n2 log(m)) for properly chosen projections. It is worthy point-
ing out that the random sketch techniques are only adopted to facilitate the computational
issue which has been well-studied for the nonparametirc regression in a RKHS (Yang et al.,
2017; Lin and Cevher, 2020), and some other techniques can also be considered, such as the
Nyström type subsampling approach (Rudi et al., 2015).

4.1 Alternating Optimization

This section provides the detailed computational issues of the proposed approach. Precisely,
we aim to solve the following optimization task that

(α̂s, γ̂s) := argmin
α∈Rm,γ∈Rp

1

n
αT (SKc)(SKc)Tα− 2

n
αTSKc(y − Zγ)+

1

n
(y − Zγ)T (y − Zγ) + µ2αTSKcSTα+ λ‖γ‖1. (4.2)

To solve (4.2), a splitting algorithm with proximal operator is applied, which updates the
representer coefficients α and the linear coefficients γ sequentially. Specifically, at the t-
th iteration with current solution (αt,γt), the following two optimization tasks are solved
sequentially to obtain the solution of the (t+ 1)-th iteration

αt+1 = argmin
α∈Rm

{ 1

n
αT (SKc)(SKc)Tα− 2

n
αTSKc(y − Zγt) + µ2αTSKcSTα

}
, (4.3)

γt+1 = argmin
γ∈Rp

{
Rn(αt+1,γ) + λ‖γ‖1

}
, (4.4)

where Rn(αt+1,γ) := 2
n(αt+1)TSKcZγ + 1

n(y − Zγ)T (y − Zγ).
To update α, it is clear that the optimization task (4.3) has an analytic solution that

αt+1 =
(
(SKc)(SKc)T + nµ2SKcST

)−1SKc(y − Zγt).

To update γ, we first introduce the proximal operator (Moreau, 1962), which is defined as

Proxλ‖·‖1(u) := argmin
u

{1

2
‖u− v‖22 + λ‖u‖1

}
. (4.5)

Note that the solution of optimization task (4.5) is the well-known soft-thresholding operator
with solution that (

Proxλ‖·‖1(u)
)
i

= sign(ui)(|ui| − λ)+.

Then, for the optimization task (4.4), we have

γt+1 = Prox λ
D
‖·‖1

(
γt − 1

D
∇γRn(αt+1,γt)

)
,

where D denotes an upper bound of the Lipschitz constant of Rn(αt+1,γt), and compute
∇γRn(αt+1,γt) = 2

nZ
T (SKc)Tαt+1 + 2

nZ
TZγt− 2

nZ
Ty. We repeat the above iteration steps

until some pre-specified stopping rule is satisfied.
It should be pointed out that the exact value of D is often difficult to determine in

large-scale problems. A common way to handle this problem is to use a backtracking
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scheme (Boyd and Vandenberghe, 2004) as a more efficient alternative to approximately
compute an upper bound of it. It is also worthy pointing out that alternating optimization
is commonly adopted for solving optimization problem with more than one parameter, and
its convergence results have been well-studied in literature (Bezdek and Hathaway, 2003;
Li et al., 2019).

4.2 Choice of Random Sketch Matrix

In this paper, we consider three random sketch methods, including the sub-Gaussian ran-
dom sketch (GRS), randomized orthogonal system sketch (ROS) and sub-sampling random
sketch (SUB). Precisely, we denote the i-th row of the random matrix S as si and consider
three different types of si as follows.
Sub-Gaussian sketch (GRS): The row si of S is zero-mean 1-sub-Gaussian if for any
u ∈ Rn, we have

P
(
〈si,u〉 ≥ t‖u ‖2

)
≤ e−t2/2, ∀ t ≥ 0.

Note that the row si with independent and identical distributed N(0, 1) entries is 1-sub-
Gaussian. For simplicity, we further rescale the sub-Gaussian sketch matrix S such that
the rows si have the covariance matrix 1√

m
In, where In denotes a n dimensional identity

matrix.
Randomized orthogonal system sketch (ROS): The row si of the random matrix S is
formed with i.i.d rows of the form

si =

√
n

m
RHT I(i), for i = 1, ...,m,

where R ∈ Rn×n is a random diagonal matrix whose diagonal entries are i.i.d. Rademacher
variables taking value {−1, 1} with equal probability, H = {Hij}ni,j=1 ∈ Rn×n is an orthonor-

mal matrix with bounded entries that Hij ∈ [− 1√
n
, 1√

n
], and the n-dimensional vectors

I(1), ..., I(m) are drawn uniformly at random without replacement from the n-dimensional
identity matrix In .
Sub-sampling sketches (SUB): The rows si of the random matrix S has the form that

si =

√
n

m
I(i),

where the n-dimensional vectors I(1), ..., I(m) are drawn uniformly at random without re-
placement from a n dimensional identity matrix. Note that the sub-sampling sketches
method can be regarded as a special case of the ROS sketch by replacing the matrix RTH
with a n-dimensional identity matrix In.

4.3 Choice of the Sketch Dimension

In practice, we are interested in the m × n sketch matrices with m � n to enhance com-
putational efficiency. Note that the existence of a n× n kernel matrix in Lemma 1 is only
a sufficient condition for equivalent optimization. It has been shown theoretically in the
kernel regression (Yang et al., 2017) that the kernel matrix can be compressed to be the
one with small size, based on some intrinsic low-dimensional notations. Despite the model
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difference from Yang et al. (2017), our kernel matrix Kc does not depend on the scalar
covariates Z, and thus those derived results for the kernel regression are still applicable to
our case.

Consider the eigen-decomposition Kc = UDUT of the kernel matrix, where U ∈ Rn×n
is an orthonormal matrix of eigenvectors, and D = diag{µ̂1, ..., µ̂n} is a diagonal matrix of
eigenvalues, where µ̂1 ≥ µ̂2 ≥ ... ≥ µ̂n ≥ 0. We define the kernel complexity function as

R̂(δ) =

√√√√ 1

n

n∑
j=1

min{δ, µ̂j}.

The critical radius is defined to be the smallest positive solution of δn > 0 to the inequality

R̂(δ) ≤ δ2/σ.

Note that the existence and uniqueness of this critical radius is guaranteed for any kernel
class. Based on this, we define the statistical dimension of the kernel is

dn := min{j ∈ [n] : µ̂j ≤ δ2
n}.

Recall that, Theorem 2 in Yang et al. (2017) shows that various forms of randomized
sketches can achieve the minimax rate using a sketch dimension proportional to the sta-
tistical dimension dn. In particular, for Gaussian sketches and ROS sketches, the sketch
dimension m is required satisfy a lower bound of the form

m ≥

{
cdn for Gaussian sketches,

cdn log4(n) for ROS sketches.

Here c is some constant. In this paper, we adopt this specified sketch dimension m to
implement our experiments.

5. Numerical Experiments

In this part, we examine the numerical performance of the proposed method in several
simulated examples and one real-life example. Specifically, we apply the proposed method
to some simulated data under various scenarios to verify our theoretical findings in Section
5.1. In Section 5.2, we apply the proposed method to a real dataset from the National
Mortality, Morbidity, and Air Pollution Study to illustrate its real application.

5.1 Simulated Examples

In this section, we illustrate the numerical performance of the proposed method with random
sketches in two numerical examples. Specifically, we assume that the true generating model
is

Yi =

∫
T
f∗(t)Xi(t)dt+ ZTi γ

∗ + εi, (5.1)
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where εi ∼ N(0, σ2) with σ = 1, and T is set as [0, 1]. Note that the generating scheme is the
same as that in Hall and Horowitz 2007 and Yuan and Cai 2010. In practice, the integrals
in calculation of B and Kc are approximated by summations, and thus we generate 1000
points in T = [0, 1] with equal distance and evaluate the integral by using the generated
points. As the proper choice of tuning parameters plays a crucial role in achieving the
desired performance of the proposed method, we adopt 5-fold cross-validation to select the
optimal values of the tuning parameters µ and λ.

In all the simulated cases, we consider a RKHS HK induced by a reproducing kernel
function on T × T that

K(s, t) =
∑
k≥1

2

(kπ)4
cos(kπs) cos(kπt)

=
∑
k≥1

1

(kπ)4
cos(kπ(s− t)) +

∑
k≥1

1

(kπ)4
cos(kπ(s+ t))

= −1

3
B4

( |s− t|
2

)
− 1

3
B4

(s+ t

2

)
,

where B2m(·) denotes the 2m-th Bernoulli polynomial that

B2m(s) = (−1)m−12(2m)!
∑
k≥1

cos(2πks)

(2πk)2m
, for any s ∈ T .

Note that the RKHS HK induced by K(s, t) contains the functions in a linear span of the
cosine basis that

f(s) =
√

2
∑
k≥1

gk cos(kπs), for any s ∈ T .

such that
∑

k≥1 k
4g2
k <∞ and the endowed norm is

‖f‖2K =

∫
T

(√
2
∑
k≥1

(kπ)2gk cos(kπt)
)2
dt =

∑
k≥1

(kπ)4g2
k.

The performance of the proposed method is evaluated under the following two numerical
examples.
Example 1. We consider the true slope function f∗ and the random function X are

f∗(t) =

50∑
k=1

4(−1)k+1k−2
√

2 cos(kπt),

and

X(t) = ξ1U1 +

50∑
k=2

ξkUk
√

2 cos(kπt),

where Uk ∼ U(−
√

3,
√

3) and ξk = (−1)k+1k−v/2. For the linear part, the true regression
coefficients are set as γ0 = (2,−2, 0, ..., 0)T and the sample Z = (Z1, ...,Zn)T ∈ Rn×p with
Zi = (zi1, ..., zip)

T are generated i.i.d. as zij ∼ U(0, 1).
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Example 2. The generating scheme is the same as Example 1, except that

ξk =


1, k = 1,

0.2(−1)k+1(1− 0.0001k), 2 ≤ k ≤ 4,

0.2(−1)k+1
[
(5bk/5c)−υ/2 − 0.0001(k mod 5)

]
, k ≥ 5.

Clearly, ξ2
k’s are the eigenvalues of the covariance function C and we choose v = 1.1, 2

and 4 to evaluate the effect of the smoothness of ξk in the both examples. Note that
in Example 1, these eigenvalues are well spaced, and the covariance function C and the
reproducing kernel K share the same eigenvalues, while in Example 2, these eigenvalues are
closely spaced and the alignment between K and C is considered.

To comprehend the effect of sample size, we consider the same settings as in Yang et al.
(2017) that n = 256, 512, 1024, 2048, 4096, 8192 and 16384 and conservatively, take m =
bn1/3c for the three random sketch methods introduced in Section 4.2. Note that with the
choice of m, the time and store complexities reduce to O(n) and O(n2/3), respectively. Each
scenario is replicated 50 times and the performance of the proposed method is evaluated by
various measures, including the estimation accuracy of the linear coefficients, the integrated
prediction error in terms of the slope function and the prediction error. Specifically, the
estimation accuracy of the linear coefficients is evaluated by ‖γ̂ − γ0‖22 =

∑p
l=1(γ̂l − γ0

l )2,
and Figure 1 shows the estimation accuracy of the coefficients with different choice of v.

Figure 1: Estimation accuracy of the coefficients in Example 1 under various scenarios.

It is clear that the estimation error of the coefficients converges linearly as sample size
n increases and becomes stable when n is sufficiently large, and the three employed sketch
methods have similar performance. It is also interesting to notice that the convergence
patterns under difference choice of v are almost the same, which concurs with our theoretical
findings that estimation of γ∗ is not affected by the existence of nonparametric components
in Theorems 1 and 3.

Let (Y ′, X ′(·),Z′) denotes an independent copy of (Y,X(·),Z) and the integrated pre-
diction error in terms of the slope function is reported by

ÊX′‖f̂ − f∗‖2 = ÊX′
( ∫
T

(f̂(t)− f∗(t))X ′(t)dt
)2

The empirical expectation Ê is evaluated by a testing sample with size 10000 and Ŷ ′ =∫
T f̂(t)X

′
i(t)dt+ (Z

′
i)
T γ̂ and the numerical performance are summarized in Figure 2.
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Figure 2: Prediction error of the slope function in Example 1 under various scenarios.

Note that Figure 2 suggests that the prediction error of the slope function converges at
some polynomial rate as sample size n, which agrees with our theoretical results in Section
3, and the three employed sketch methods yield similar numerical performance. Moreover,
it can be seen that with the increase of the value of v, the prediction error goes down, which
also concurs with our theoretical findings in Theorems 2 and 3 that the faster decay rate of
the eigenvalues, the smaller the prediction error.

We also report the integrated prediction error of the response by calculating

ÊY ′,X′‖Ŷ ′ − Y ′‖22.

The empirical expectation Ê is also evaluated by a testing sample with size 10000 and the
numerical performance are summarized in Figure 3.

Figure 3: Prediction error of the response in Example 1 under various scenarios.

Clearly, we conclude that prediction error of the response converges at some polynomial
rate as sample size n and the prediction error becomes smaller with v increases, which
agrees with our theoretical results in Theorem 2. It is also interesting to point out that
the three employed sketch methods yield similar numerical performance and the prediction
errors tends to converge to 1, which is the variance of ε in the true modelling. This verifies
the efficiency of the proposed estimation and the proper choice of m.

Note that the numerical results in Example 2 where the eigenvalues are closely spaced
are similar to those in the case with well-spaced eigenvalues in Example 1. Figure 4 shows
the numerical performance under the closely spaced eigenvalues setting in Example 2.
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Figure 4: Numerical performance of the proposed method in Example 2 under various sce-
narios.

5.2 Real Data Analysis

In this section, we apply the proposed method to analyze a real dataset from the National
Mortality, Morbidity, and Air Pollution Study, where the measurements of air pollution and
the counts of mortality for several U.S. cities are collected during the census in 2000. The
main interest of this study is to investigate that how the air pollution and some other factors
from the U.S. census affect the nonaccidental mortality rate across different cities. We con-
sider the measurements of PM 2.5 (The particulate matter with an aerodynamic diameter
of less than 2.5 µm) collected from 1 April 2000 to 31 August 2000 as the random functional
feature, which has attracted tremendous attention due to its association with many adverse
health outcomes, and treat 7 factors collected from the U.S. census in 2000 as the scalar
predictors, including the household owners proportion, the urban population proportion,
the population proportion with at least a high school diploma, the population proportion
with at least a university degree, the population proportion below the poverty line, land
area per individual and water area per individual. We are interested in studying how the
functional feature and scalar predictors affect the log-transformed total nonaccidental mor-
tality rate of individuals with age at least 65 in the next month, September 2000, since this
group accounts for the majority of nonaccidental deaths. Following a similar treatment as
that in Kong et al., 2016, we remove the records of cities with more than ten consecutive
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Figure 5: The estimated slope function (solid) and the corresponding 95% confidence inter-
val (dashed) based on 1000 bootstrap samples.

missing PM2.5 measurements, and thus the total number of cities considered in our study
is 69.

Since the sample size in the dataset is relatively small, we apply the proposed method
without using the random sketch technique by setting S as the identity matrix. To be
more precise, we implement the proposed method with the whole data to estimate the slope
function and coefficients of the scalar predictors, and then we refit the selected model by
setting µ = 0 and λ = 0 based on 1000 bootstrap samples to compute the standard errors.
Consequently, the proposed method finds that only one scalar predictor, the population
proportion with at least a university degree, has a negative effect on the log-transformed
total nonaccidental mortality rate with the estimated coefficient -0.19 and standard error
0.004. This indicates that cities with larger proportion of population with high education
level have a lower mortality rate. Figure 5 illustrates the estimated slope function as well
as the corresponding 95% confidence interval using the bootstrap samples.

From Figure 5, it is clear that the estimated slope function has an increasing trend with
Time, especially in July and August, and thus the higher concentrations of PM2·5 in the
summer can lead to the increasing of the nonaccidental mortality in the next period, which
coincides with the conclusions in Kong et al., 2016 and the reference therein. To further
evaluate the effect of functional feature, PM2.5, we further fit two models where one uses
the selected scalar predictor and functional feature and the other one only uses the selected
scalar predictor, and the obtained values of R2 are 0.3487 and 0.1866, respectively. This
further supports the significance of the functional feature, PM2.5, in our analysis.

6. Conclusion

This paper establishes the optimal minimax rate for the estimation of partially functional
linear model (PFLM) under kernel-based and high dimensional setting. The optimal min-
imax rates of estimation is established by using various techniques in empirical process
theory for analyzing kernel classes, and an efficient numerical algorithm based on random-
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ized sketches of the kernel matrix is implemented to verify our theoretical findings. It is
interesting to point out that the random sketch techniques in Section 4 are only adopted
to facilitate the computational issue and it would be of great interest to further study the
theoretical properties of the approximate estimator in the future work. Moreover, we be-
lieve that the current work provides a general routine to investigate the optimal properties
of semi-parametric functional models under various settings, and thus it can be extended
to other interesting kernel problems, such as combing the semi-parametric functional model
with the sparsity-induced kernel methods and mis-specified kernel settings, to establish the
minimax rates.
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Appendix A: Technical proofs for upper bounds

For any constant R > 0, we define

τR,µ(g) := τ(g) :=
λ‖γ‖1
R
√
δ0/2

+

√∥∥〈X, f〉L2 + ZTγ
∥∥2

+ µ2‖f‖2K , ∀ g ∈ G.

where δ0 is a fixed small constant determined later.

For each R > 0, we define

G(R) := {g : τR,µ(g) ≤ R}

and the event

T := T1(δ0, R) ∩ T2(δ0, R)

where

T1(δ0, R) :=
{

(X,Z) : sup
g∈G(R)

∣∣‖g‖2n − ‖g‖2∣∣ ≤ δ0R
2
}

and

T2(δ0, R) :=
{

(U, ε) : sup
g∈G(R)

∣∣εT g(U)/n
∣∣ ≤ δ0R

2
}
,

with g(U) = (g(U1), ..., g(Un))T and Ui = (Xi(·),Zi).
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Lemma 2 Suppose that Condition A holds. Assume that a constant R can be chosen such
that

µ2 ≤ δ0R
2

8‖f∗‖2K
,
λ2p0

Λ2
min

≤ 1

4
δ0R

2.

Then, on the event T , we have

τ(ĝ − g∗) ≤ R.

Proof of Lemma 2. We first define a linear combination of ĝ and g∗ by

g̃ = sĝ + (1− s)g∗ = 〈X, f̃〉L2 + ZT γ̃

where f̃ = sf̂ + (1 − s)f∗, γ̃ = sγ̂ + (1 − s)γ∗ and s = R
R+τ(ĝ−g∗) . By convexity and the

definition of (f̂ , γ̂) in (2.1), we have

‖y − g̃‖2n + µ2‖f̃‖2K + λ‖γ̃‖1 ≤ s
(
‖y − 〈X, f̂〉L2 − ZT γ̂‖2n + µ2‖f̂‖2K + λ‖γ̂‖1

)
+ (1− s)

(
‖y − 〈X, f∗〉L2 − ZTγ∗‖2n + µ2‖f∗‖2K + λ‖γ∗‖1

)
≤ ‖y − g∗‖2n + µ2‖f∗‖2K + λ‖γ∗‖1.

This is referred to as “basic inequality”. By plugging the model y = g∗(U) + ε into the
above inequality, it can be rewritten as

‖g̃ − g∗‖2n + µ2‖f̃‖2K + λ‖γ̃‖1 ≤ 2εT
(
g̃ − g∗

)
(U)/n+ µ2‖f∗‖2K + λ‖γ∗‖1.

Note that

τ(g̃ − g∗) = sτ(ĝ − g∗) =
Rτ(ĝ − g∗)
R+ τ(ĝ − g∗)

≤ R,

which means that g̃ − g∗ ∈ G(R). Hence, on T (δ0, R), we have

‖g̃ − g∗‖2 + µ2‖f̃‖2K + λ‖γ̃‖1 ≤ 3δ0R
2 + µ2‖f∗‖2K + λ‖γ∗‖1.

By the identity ‖γ̃‖1 = ‖γ̃Sc0‖1 + ‖γ̃S0
‖1 and the triangle inequality, there holds

‖g̃ − g∗‖2 + µ2‖f̃‖2K + λ‖γ̃Sc0‖1 ≤ 3δ0R
2 + µ2‖f∗‖2K + λ‖(γ̃ − γ∗)S0‖1.

In addition, since Z̃ is orthogonal with 〈X, f〉L2 for any f ∈ HK , this leads to

‖Z̃T (γ̃ − γ∗)‖2 + ‖〈X, f̃ − f∗〉L2 + ΠZ|X(γ̃ − γ∗)‖2 + µ2‖f̃‖2K + λ‖γ̃Sc0‖1
≤ 3δ0R

2 + µ2‖f∗‖2K + λ‖(γ̃ − γ∗)S0‖1. (.1)

By the basic inequality uv ≤ u2 + v2/4 for any u, v ∈ R, we also get

λ‖(γ̃ − γ∗)S0‖1 ≤ λ
√
p0‖(γ̃ − γ∗)S0‖2 ≤ λ

√
p0‖γ̃ − γ∗‖2

≤
λ
√
p0

Λmin
‖Z̃T (γ̃ − γ∗)‖ ≤ λ2p0

Λ2
min

+
‖Z̃T (γ̃ − γ∗)‖2

4
. (.2)
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Also, we notice that ‖f̃‖2K ≥
1
2‖f̃ − f

∗‖2K −‖f∗‖2K . This together with (.1) and (.2) implies
that

3

4
‖Z̃T (γ̃ − γ∗)‖2 + ‖〈X, f̃ − f∗〉L2 + ΠZ|X(γ̃ − γ∗)‖2 +

µ2

2
‖f̃ − f∗‖2K

≤ 3δ0R
2 + 2µ2‖f∗‖2K +

λ2p0

Λ2
min

≤ 3δ0R
2 +

1

4
δ0R

2 +
1

4
δ0R

2, (.3)

where the last inequality follows from the constraints that µ2 ≤ δ0R2

8‖f∗‖2K
and λ2p0

Λ2
min
≤ 1

4δ0R
2.

From this, it easily follows that

‖g̃ − g∗‖2 +
µ2

2
‖f̃ − f∗‖2K ≤ 10δ0R

2. (.4)

On the other hand, adding the term λ‖(γ̃ − γ∗)S0‖1 on the both sides of (.1), we have

λ‖(γ̃ − γ∗)‖1 ≤ 3δ0R
2 + µ2‖f∗‖2K + 2λ‖(γ̃ − γ∗)S0‖1

≤ 3δ0R
2 +

δ0R
2

8
+
δ0R

2

2
+ ‖Z̃T (γ̃ − γ∗)‖2/2, (.5)

where the last inequality follows from the constraints on (µ2, λ) and (.2). Note that by (.3),
it holds ‖Z̃T (γ̃ − γ∗)‖2 ≤ 14

3 δ0R
2 . Hence, combining (.4) with (.5), we conclude that

τ(g̃ − g∗) ≤ (
√

20δ0 + 6
√

2δ0)R ≤ R

2
,

provided that δ0 is small properly such that δ0 ≤ 1/(4
√

5 + 12
√

2). Moreover, we have

τ(g̃ − g∗) = sτ(ĝ − g∗) =
Rτ(ĝ − g∗)
R+ τ(ĝ − g∗)

≤ R

2
,

which implies that
τ(ĝ − g∗) ≤ R.

This completes the proof. �

Appendix A1: For the event T

We now show that the event T has probability close to one. To this end, a concentration
inequality will be applied. Lemma 3 is from Bousquet (2002), who improves the results
from Ledoux (1997).

Lemma 3 (Concentration Theorem (Bousquet, 2002)) Let U1, ..., Un be independent ran-
dom variables with values in some space U and let H be a class of real-valued functions on
U , satisfying for some positive constants ηn and τn,

‖h‖∞ ≤ ηn, and
1

n

n∑
i=1

var(h(Ui)) ≤ τ2
n, ∀h ∈ H.

Define S := suph∈H

∣∣∣ 1
n

∑n
i=1

(
h(Ui)− Eh(Ui)

)∣∣∣. Then for t > 0

P
(
S ≥ E(S) + t

√
2(τ2

n + 2ηnE(S)) +
2ηnt

2

3

)
≤ exp[−nt2].
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Lemma 4 Suppose that Conditions A-D hold true, and we take µ2 ≥ c(δ0)R2 with c(δ0) <
δ0/(8‖f∗‖2K) and λ2 ≤ R2 ≤ λ ≤ 1. For constants δ1, δ

′′
1 and κ1 with our suitable choices,

we set λ0 :=
√

2 log(2p)/n and

δ1λ ≥ λ0, µ
2 ≥ κ1n

− 2r
2r+1 .

Then we conclude

sup
g∈G(R)

∣∣‖g‖2n − ‖g‖2∣∣ ≤ δ0R
2

with probability at least 1− exp[−n(δ′′1)2µ2].

Proof of Lemma 4. To verify all the conditions of Lemma 3, we denote S := supg∈G(R)

∣∣‖g‖2n−
‖g‖2

∣∣ with H =: G(R) and U := (X,Z). Direct computation yields that

‖g2‖∞ =
∥∥(〈X, f〉L2 + ZTγ

)2∥∥
∞ ≤ 2〈X, f〉2L2 + 2C2

z‖γ‖21 ≤ 2κ2‖X‖2L2‖f‖
2
K + 2C2

z‖γ‖21,

where κ := maxs,t∈T |K(s, t)|. Note that for g ∈ G(R), it follows that

‖γ‖1 ≤
√
δ0/2R

2

λ
, and ‖f‖2K ≤

R2

µ2
,

which implies that

‖g2‖∞ ≤ 2κ2‖X‖2L2
R2

µ2
+ δ0C

2
z

R4

λ2
≤ 2κ2‖X‖2L2/c(δ0) + δ0C

2
z ,

where the last inequality follows from the fact that µ2 ≥ c(δ0)R2 and that R2 ≤ λ ≤ 1. By
taking C̃ := 2κ2‖X‖2L2/c(δ0) + δ0C

2
z , for any g ∈ G(R), we also have

var(g2) ≤ E[g4] ≤ ‖g2‖∞E[g2] ≤ C̃R2. (.6)

We still need to provide an upper bound of E[S]. Let {σi}ni=1 be a Rademacher sequence
independent of {(Xi,Zi)}ni=1. By symmetrization [see e.g. van der Vaart and Wellner
(1996)], we have

E[S] ≤ 2E
(

sup
g∈G(R)

∣∣∣ 1
n

n∑
i=1

g2
i σi

∣∣∣) ≤ 2E
(

sup
f∈G(R)

∣∣∣ 1
n

n∑
i=1

〈Xi, f〉2L2σi
∣∣∣)

+ 2E
(

sup
γ∈G(R)

∣∣∣ 1
n

n∑
i=1

(ZTi γ)2σi

∣∣∣)+ 4E
(

sup
g∈G(R)

∣∣∣ 1
n

n∑
i=1

(ZTi γ)〈Xi, f〉L2σi
∣∣∣).

In the following, we bound the above three quantities respectively. Note that if 〈X, f〉L2 +
ZTγ ∈ G(R), Condition B leads to

‖ZTγ‖∞ ≤ Cz
√
δ0/2R

2

λ
≤ Cz

√
δ0

2
,
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where the last inequality follows from the fact that R2 ≤ λ. By the contraction inequality
of Rademacher complexity [see Ledoux and Talagrand (1991)], it holds

E
(

sup
γ∈G(R)

∣∣∣ 1
n

n∑
i=1

(ZTi γ)2σi

∣∣∣) ≤ 4Cz

√
δ0

2
E
(

sup
γ∈G(R)

∣∣∣ 1
n

n∑
i=1

(ZTi γ)σi

∣∣∣).
Moreover, we have

E
(

sup
γ∈G(R)

∣∣∣ 1
n

n∑
i=1

(ZTi γ)σi

∣∣∣) ≤ E
(

sup
γ∈G(R)

∥∥∥ 1

n

n∑
i=1

Ziσi

∥∥∥
∞
‖γ‖1

)
≤
√
δ0/2R

2

λ
E
∥∥∥ 1

n

n∑
i=1

Ziσi

∥∥∥
∞
≤ Cz

λ0R
2√

2/δ0λ
≤
(
δ1Cz

√
δ0/2

)
R2,

where the first inequality follows from the Cauchy-Schwarz inequality, the third inequality

follows from the fact that E
∥∥∥ 1
n

∑n
i=1 Ziσi

∥∥∥
∞
≤ λ0Cz, and the last inequality follows from

the condition that λ ≥ λ0/δ1.
Combining the above two inequalities, it holds

E
(

sup
γ∈G(R)

∣∣∣ 1
n

n∑
i=1

(ZTi γ)2σi

∣∣∣) ≤ 2δ1C
2
z δ0R

2. (.7)

Next, we provide a sharp bound on E
(

supf∈G(R)

∣∣∣ 1
n

∑n
i=1〈Xi, f〉2L2σi

∣∣∣). As above, it

is shown that |〈X, f〉L2 | ≤ κ‖X‖L2‖f‖K ≤ κR
µ ‖X‖L2 . By the contraction property of

Rademacher sequences again, we have

E
(

sup
f∈G(R)

∣∣∣ 1
n

n∑
i=1

〈Xi, f〉2L2σi
∣∣∣) ≤ 2κE[‖X‖L2 ]

R

µ
· E
(

sup
f∈G(R)

∣∣∣ 1
n

n∑
i=1

〈Xi, f〉L2σi
∣∣∣)

≤ c6κE[‖X‖L2 ]κ
− 2r+1

4r
1 R2, (.8)

which follows from the obtained result in Appendix. Similarly, we have

E
(

sup
g∈G(R)

∣∣∣ 1
n

n∑
i=1

(ZTi γ)〈Xi, f〉L2σi
∣∣∣) ≤ E sup

g∈G(R)

∥∥∥ 1

n

n∑
i=1

Zi〈Xi, f〉L2σi
∥∥∥
∞
‖γ‖1

≤ R2

λ

√
δ0/2E max

1≤j≤p
sup

f∈G(R)

∣∣∣ 1
n

n∑
i=1

zij〈Xi, f〉L2σi
∣∣∣

≤ R2

λ
Cz
√
δ0/2E

(
sup

g∈G(R)

∣∣∣ 1
n

n∑
i=1

〈Xi, f〉2L2σi
∣∣∣)

≤ c6Cz
√
δ0/2κE[‖X‖L2 ]κ

− 2r+1
4r

1 R2, (.9)

where the third inequality follows from the contraction property of Rademacher complexity,
and the last inequality follows from (.18) in Appendix B. Along the lines of (.7), (.8) and
(.9), we get

E[S] ≤
(
4δ1C

2
z δ0 + 2c6κE[‖X‖L2 ]κ

− 2r+1
4r

1 + 4c6Cz
√
δ0/2κE[‖X‖L2 ]κ

− 2r+1
4r

1

)
R2.
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Therefore, by the concentration theorem in Lemma 3, we have

P
(
S ≥ DR2 +

√
t

n

√
2(C̃R2 + 2C̃DR2) +

2C̃2t

3n

)
≤ exp[−t], ∀ t > 0,

where D := 4δ1C
2
z δ0 + 2c6κE[‖X‖L2 ]κ

− 2r+1
4r

1 + 4c6Cz
√
δ0/2κE[‖X‖L2 ]κ

− 2r+1
4r

1 . We now take
t = n(δ′′1)2µ2. Taking δ1 and δ′′1 small enough but κ1 large enough, such that

D + 2C̃(δ′′1)2 + 2C̃D(δ′′1)2 +
2

3
C̃2(δ′′1)2 ≤ δ0.

So that
P
(

sup
g∈G(R)

∣∣‖g‖2n − ‖g‖2∣∣ ≥ δ0R
2
)
≤ exp[−n(δ′′1)2µ2].

Thus, Lemma 4 is proved and the event T1 is justified. �
To verify that the event T2(δ0, R) occurs with high probability, we make use of some

concentration results on Gaussian processes, stated in Lemma 12 of Appendix B.

Lemma 5 Suppose that all the conditions in Lemma 4 are satisfied, it holds

sup
g∈G(R)

∣∣∣ 1
n

n∑
i=1

εig(Xi, Zi)
∣∣∣ ≤ δ0R

2,

with probability at least 1− exp[−n(δ′′1)2µ2].

Appendix A2: Optimal parametric rates For Theorem 2

Proposition 1 Suppose that Conditions A-D hold. We define some function c(·) of δ such
that c(δ0) < δ0/(8‖f∗‖2K), and D′′ is constant appearing in our proof. For constants δ1, δ

′′
1

and κ1 with suitable choices in our proofs, we set λ0 :=
√

2 log(2p)/n and

max{λ0/δ1, 4D
′′R2} ≤ λ ≤ min{1, 1

2

√
δ0/p0Λmin}R,

max{κ1n
− 2r

2r+1 , c(δ0)R2} ≤ µ2 ≤ δ0R
2/(8‖f∗‖2K).

Then with probability at least 1− 4 exp[−n(δ′′1)2µ2]− 5
2p , there holds

‖Z̃T (γ̂ − γ∗)‖2 + λ/8‖γ̂ − γ∗‖1 ≤ p0λ
2/Λ2

min. (.10)

Proof of Proposition 1. Our initial idea of the proof is the first order optimization for
convex problems. Define

γ̂sj = γ̂ + sej , f̂
j
s = f̂ − sΠ(Zj |HK), j = 1, ..., p,

where ej is the jth unit vector of Rp. Since (f̂ , γ̂) is the minimizer of the penalized least
square approach in (2.1), the Karush-Kuhn-Tucker Condition is applied to yield

d

ds

( 1

n

n∑
i=1

(
Yi − 〈Xi, f̂

j
s 〉L2 − ZTi γ̂

s
j

)2
+ µ2‖f̂ js ‖2K + λ‖γ̂sj‖1

)∣∣∣
s=0

= 0, j = 1..., p.
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Hence, we have

− 1

n

n∑
i=1

(
Yi − 〈Xi, f̂〉L2 − ZTi γ̂

)(
ZTi ej −Π(Zj |Xi)

)
+
λ

2
τ̂j − µ2〈Π(Zj |HK , f̂〉K = 0,

where τ̂j ∈ [−1, 1] is a sub-gradient of |γ̂j |. Let Z = (Z1, ...,Zn)T , ΠZ|X = (ΠZ|X1
, ...,ΠZ|Xn)T ,

τ̂ = (τ̂1, ..., τ̂p) and Z̃ := Z − ΠZ|X is an empirical matrix of Z̃. Also, we define a map
ΠZ|HK from HK to Rp by ΠZ|HK (f) = (〈Π(Z1|HK , f〉K , ..., 〈Π(Zp|HK , f〉K), and similarly

X(f) := (〈X1, f〉L2 , ..., 〈Xn, f〉L2)T . Using differentiating and matrix notation, one gets:

−
(
y − X(f̂)− Zγ̂

)T Z̃/n+ λτ̂/2− µ2ΠZ|HK (f̂) = 0.

Recalling the model Yi = 〈Xi, f
∗〉L2 + ZTi γ

∗ + εi, we have(
X(f̂ − f∗) + Z(γ̂ − γ∗)− ε

)T Z̃/n+ λτ̂/2− µ2ΠZ|HK (f̂) = 0.

Rearranging the above equality leads to

(γ̂ − γ∗)T Z̃T Z̃/n+ (γ̂ − γ∗)TΠT
Z|XZ̃/n+ X(f̂ − f∗)T Z̃/n− 2εT Z̃/n+ λτ̂/2− µ2ΠZ|HK (f̂) = 0.

Multiplying by γ̂ − γ∗, we have

(γ̂ − γ∗)T Z̃T Z̃(γ̂ − γ∗)/n+ λ/2‖γ̂‖1 − λ/2τ̂ γ∗

= −(γ̂ − γ∗)TΠT
Z|XZ̃(γ̂ − γ∗)/n− X(f̂ − f∗)T Z̃(γ̂ − γ∗)/n+ 2εT Z̃(γ̂ − γ∗)/n

+ µ2ΠZ|HK (f̂)(γ̂ − γ∗),

where we use the equality ‖γ̂‖1 = τ̂ γ̂. Note that τ̂ γ∗ ≤ ‖γ∗‖1 and thus τ̂ γ∗ − ‖γ̂S0
‖1 ≤

‖(γ̂ − γ∗)S0‖1. Then, we have

(γ̂ − γ∗)T Z̃T Z̃(γ̂ − γ∗)/n+ λ/2‖γ̂Sc0‖1
≤ λ/2‖(γ̂ − γ∗)S0‖1 − (γ̂ − γ∗)TΠT

Z|XZ̃(γ̂ − γ∗)/n− X(f̂ − f∗)T Z̃(γ̂ − γ∗)/n

+ 2εT Z̃(γ̂ − γ∗)/n+ µ2ΠZ|HK (f̂)(γ̂ − γ∗). (.11)

We will separately provide upper bounds of each term on the right-hand side of (.11).

Lemma 6 Suppose that Condition B holds and ε is a standard Gaussian variable. Then

εT Z̃(γ̂ − γ∗)/n ≤ 2(Cz + Cπ‖X‖L2)

√
log(2p)

n
‖γ̂ − γ∗‖1,

with probability at least 1− 1/p.

Lemma 7 With the same conditions as Lemma 2. Then on event T

µ2ΠZ|HK (f̂)(γ̂ − γ∗) ≤
( δ0C

2
h

4‖f∗‖2K
+
δ0

8
+

1

2

)
R2‖γ̂ − γ∗‖1.
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Lemma 8 Assume the conditions of lemma 1. With probability at least 1−p exp[−n(δ′′1)2µ2],
there holds ∣∣X(f̂ − f∗)T Z̃(γ̂ − γ∗)/n

∣∣ ≤ c8δ0

√
log pR2‖γ̂ − γ∗‖1.

Lemma 9 Assume Conditions A-B. Then with probability at least 1− 1/p, there holds

∣∣(γ̂ − γ∗)TΠT
Z|XZ̃(γ̂ − γ∗)/n

∣∣ ≤ D̃√δ0/2

√
2(log 2 + 3 log p)

n
‖γ̂ − γ∗‖21,

where D̃ := Cπ(Cz + κCh).

Lemma 10 Assume that Condition B holds. With probability at least 1− 1
2p , there holds

|(γ̂ − γ∗)T Z̃T Z̃(γ̂ − γ∗)/n− ‖Z̃T (γ̂ − γ∗)‖2| ≤ 20(Cz + Cπ)2
√

log(2p)/n‖γ̂ − γ∗‖21.

Using Lemma 6–Lemma 9 stated as above, we conclude from (.11) that

(γ̂ − γ∗)T Z̃T Z̃(γ̂ − γ∗)/n+ λ/2‖γ̂Sc0‖1

≤ λ/2‖(γ̂ − γ∗)S0‖1 +D′′
(√ log(2p)

n
+R2 +

√
log 2

n

)
‖γ̂ − γ∗‖1, (.12)

where we use the conclusion in Lemma 2 (e.g. ‖γ̂ − γ∗‖1 ≤
√
δ0/2R

2/λ) and D′′ :=

8(Cz + Cπ‖X‖L2) +
δ0C2

h

2‖f∗‖2K
+ δ0

4 + 1 + 2c8δ0
√

log p+ D̃
√

2δ0. Adding λ/2‖(γ̂ − γ∗)S0‖1 to

both sides of (.12) again, we easily obtain

(γ̂ − γ∗)T Z̃T Z̃(γ̂ − γ∗)/n+ λ/2‖γ̂ − γ∗‖1
≤ λ‖(γ̂ − γ∗)S0‖1 +D′′

(√
log(2p)/n+R2 +

√
log 2/n

)
‖γ̂ − γ∗‖1. (.13)

Provided that λ ≥ 4D′′
(

2

√
log(2p)
n +R2

)
is satisfied, (.13) can be simplified to be

(γ̂ − γ∗)T Z̃T Z̃(γ̂ − γ∗)/n+ λ/4‖γ̂ − γ∗‖1
≤ λ‖(γ̂ − γ∗)S0‖1 ≤ λ

√
p0‖γ̂ − γ∗‖2

≤ λ√p0/Λmin‖Z̃T (γ̂ − γ∗)‖ ≤ λ2p0/(2Λ2
min) +

1

2
‖Z̃T (γ̂ − γ∗)‖2

≤ λ2p0/(2Λ2
min) +

1

2
(γ̂ − γ∗)T Z̃T Z̃(γ̂ − γ∗)/n+ E′′

√
log(2p)/n‖γ̂ − γ∗‖21, (.14)

where E′′ := 10(Cz + Cπ)2 for brevity and the third inequality is based on Condition A
and the last inequality follows from Lemma 10. Using ‖γ̂ − γ∗‖1 ≤

√
δ0/2R

2/λ again, and
when E′′

√
log(2p)/n

√
δ0/2R

2 ≤ λ2/8, from (.14) we conclude that

(γ̂ − γ∗)T Z̃T Z̃(γ̂ − γ∗)/n+ λ/4‖γ̂ − γ∗‖1 ≤ λ2p0/Λ
2
min. (.15)

Finally, by Lemma 10 again, rearranging the above inequality and parameters constraints
yields our desired results. �
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Appendix B: Proof for lower bounds

We now turn to the proof of the minimax lower bounds presented in Theorem 3. To this
end, we need to introduce a useful lemma from Theorem 2.5 in Tsybakov (2009), that gives
a lower bound based on Kullkack divergences.
Proof of Theorem 3. Note that any lower bound for a specific case yields immediately
a lower bound for the general case. Thus, it is easy to see that the minimax lower bound
for estimating γ∗ is trivial based on the existing results for high dimensional linear models
derived from Verzelen (2012) that

Rγ∗(p0, p,HK(1)) ≥ inf
γ̂

sup
γ∗∈B[p0,p]

E[‖γ̂ − γ∗‖22] = Ω
(p0

n
log
( p
p0

))
.

In the following, we focus on the lower bound of the minimax risk for the prediction risk
of the nonparametric component. Recall the partial linear functional model

Y = 〈X, f∗〉L2 + ZTγ∗ + ε. (.16)

As above, we remove the sup-mum of γ∗ in Rf∗(p0, p,HK) and obtain

Rf∗(p0, p,HK) ≥ inf
f̂

sup
f∗∈HK(1)

E[〈X, f̂ − f∗〉2L2 ] = n−
2r

2r+1 ,

where the lower bound of the prediction risk for the linear functional model has been
established in Cai and Yuan (2012).

The remaining task is to establish the second part of the minimax lower bound, i.e.,
δn := p0/n log(p/p0). To attain this lower bound, it suffices to consider the specific case of

δn ≥ n−
2r

2r+1 . This implies that p goes to infinity as n increases, which will be used in our
proof.

For some θ = (θM+1, ..., θ2M ) ∈ {0, 1}M := Θ1. The Varshamov-Gibert bound shows
that for any M ≥ 8, there exists a set Θ1 = {θ(0),θ(1), ...,θ(N1)} ∈ {0, 1}M such that
(a) θ(0) = (0, ..., 0)T ;
(b) H(θ,θ′) > M/8 for anyθ 6= θ′ ∈ Θ1,where H(·, ·) denotes the Hamming distance;
(c) N1 ≥ 2M/8.

We now employ the results from Tsybakov (2009) to establish the lower bound that is
based upon testing multiple hypotheses.

Lemma 11 Assume that N ≥ 2 and suppose that Θ with some pseudometric d contains
elements θ(0),θ(1), ...,θ(N) such that:
(i) d(θ(j),θ(k)) ≥ 2s > 0, ∀ 0 ≤ j ≤ k ≤ N ;
(ii) Pj � P0, ∀ j = 1, 2, ..., N , and

1

N

N∑
j=1

DKL(Pj , P0) ≤ α logN

with 0 < α < 1/8 and Pj = P
θ(j), j = 0, 1, ..., N . Then

inf
θ̂

sup
θ∈Θ

Pθ
(
d(θ̂,θ) ≥ s

)
≥

√
N

1 +
√
N

(
1− 2α− 2α

logN

)
> 0.
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Fix α ∈ (0, 1/8). In order to apply Lemma 11, we need to check the following three
conditions:
(i) f

θ(j) ∈ HK(1), j = 0, 1, ..., N ,

(ii) d(θ(j),θ(k)) ≥ 2s > 0, , 0 ≤ j ≤ k ≤ N ,
(iii) 1

N

∑N
j=1DKL(Pj , P0) ≤ α logN .

We will now show that these conditions are satisfied for all sufficiently large n. Before
this, we first need to define a pseudometric between pairs θ(1) = (γ1, f1) and θ(2) = (γ2, f2)
as the L2-distance between f1 and f2 works out well. To this end, we define the pseudometric
d(θ(1),θ(2)) := d1(f1, f2), where d1(f1, f2) = ‖LC1/2(f1 − f2)‖L2 . It is easy to verify that
all of the metric properties are satisfied for d(θ1,θ2) except that, of course, it is possible to
have d(θ(1),θ(2)) = 0 while θ(1) 6= θ(2). Obviously, d is qualified as a pseudo-metric. In this
case, we define Θ = (γ, f) for all γ ∈ B[p0, p] and f ∈ HK(1). Then we have

inf
f̂

sup
γ∈B[p0,p],f∗∈HK(1)

E[〈X, f̂ − f∗〉2L2 ] ≥ inf
θ̂

sup
θ∈Θ

d(θ̂,θ)2.

Our second definition is to construct an appropriate finite subset of Θ. To this end, we
start with constructing a set of test functions with the form

fθ = M−1/2
2M∑

k=M+1

θkLK1/2ϕk, θ = (θM+1, ..., θ2M )T ∈ {0, 1}M .

Since LK1/2(ϕk) ∈ HK for all k ∈ N, this implies that fθ ∈ HK . Define a finite subset of

Θ that consists of θ̄
(j)

= (γj , fθ(j)) where γj ∈ B[p0, p] is arbitrary for 0 ≤ j ≤ N and

particularly θ̄
(0)

= (0, 0, ..., 0). In the following, the second part of Θ is denoted by Θ1.

First of all, we will verify condition (i). Note that 〈LK1/2f, LK1/2g〉K = 〈f, g〉L2 for any
f, g ∈ L2, by orthogonality and |θk| ≤ 1 we have

‖fθ‖
2
K = M−1

2M∑
k=M+1

θ2
k

∥∥LK1/2ϕk
∥∥2

K
≤M−1

2M∑
k=M+1

∥∥ϕk∥∥2

L2 = 1.

So this verifies condition (i). Next, we denote by P¯θ the joint normal distribution of

{(Yi, Xi,Zi), i ≥ 1} with the conditional mean fθ(Ti) + ZTi γ. For any θ̄, θ̄
′ ∈ Θ, denote by
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H(θ,θ′) the Hamming distance on Θ1. Note that

d2(θ̄, θ̄
′
) = ‖LC1/2(fθ − fθ′)‖

2
L2

=
∥∥∥M−1/2

2M∑
k=M+1

(θk − θ′k)LC1/2LK1/2ϕk

∥∥∥2

L2

= M−1
2M∑

k=M+1

(θk − θ′k)2
∥∥LC1/2LK1/2ϕk

∥∥2

L2

= M−1
2M∑

k=M+1

(θk − θ′k)2sk

≥M−1s2M

2M∑
k=M+1

(θk − θ′k)2

= M−1s2MH(θ,θ′).

Besides, by Varshamov-Gibert bound and the entropy assumption (Condition D), we further
have

d(θ̄, θ̄
′
) ≥

√
s2M/8 ≥ c12−(r+2)M−r.

Here we take M = bδ−1/(2r)
n c, leading to

d(θ̄, θ̄
′
) ≥ c12−(r+2)

√
δn := 2s.

Thus Condition (ii) is verified. Finally, for any θ̄ ∈ Θ, we notice that

log(P¯θ/P¯θ
(0)) =

n∑
i=1

(
Yi − 〈Xi, fθ〉L2 − ZTi γ

)(
〈Xi, fθ〉L2

)
− 1

2

n∑
i=1

[
〈Xi, fθ〉L2

]2
.

Hence, the Kullback-Leibler distance between P¯θ and P¯θ
(0) can be expressed by

DKL(P¯θ, P¯θ
(0)) =

∫
log(P¯θ/P¯θ

(0))dP¯θ = n
(
‖LC1/2(fθ)‖2L2

)
.

Note that

〈LC1/2LK1/2ϕk, LC1/2LK1/2ϕj〉L2 = 〈ϕk, LK1/2LCLK1/2ϕj〉L2 = 〈ϕk, sjϕj〉L2 = sjδkj .

A similar argument as above leads to

‖LC1/2(fθ)‖2L2 ≤
sM
M

2M∑
k=M+1

(θk)
2 =

sM
M

H(θ,θ′) ≤ c2M
−2r,
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where we use Condition D and the fact that s` is a decreasing sequence of `. Then, we
claim that

1

N

N∑
j=1

DKL(Pj , P0) ≤ nc2M
−2r ≤ α logN,

where N := N1

(
p
p0

)
deriving from Conclusion (c) of the Varshamov-Gibert bound and all

the possible sparse cases for the parametric part. Indeed, it is easy to check that

logN ≥ c3

(
M + (p− p0) log(p/p0)

)
≥ c2nM

−2r,

with the choice of M given as above when δn ≥ n−
2r

2r+1 . Here we also use the relation
log
(
p
p0

)
' (p − p0) log(p/p0) when p is diverging and p � p0. This means that we verify

Condition (iii).

As a consequence, an application of Lemma 11 yields that

inf
f̂

sup
γ∈B[p0,p],f∗∈HK(1)

Pθ̄

(
‖LC1/2(f̂−f0)‖L2 ≥ c

√
p0 log(p/p0)

n

)
≥

√
N

1 +
√
N

(
1−2α− 2α

logN

)
.

As n goes to infinity, so are M,N . This means that there exist sufficiently large n while a

suitable choice of α (e.g. α = 1/10), such that
√
N

1+
√
N

(
1− 2α− 2α

logN

)
> 9/10− 3α > 0. �

Appendix C: Some useful Lemmas

The Gaussian concentration inequality from Theorem 7.1 of Ledoux (2001) is a useful tool
in our refined analysis, which provides tighter bounds than the general sub-Gaussian cases.
In particular, the super-norm bounds of random variables are not needed, as opposed to
Rademacher concentration inequality presented in Lemma 3 as above.

Lemma 12 Let G = {Gt}t∈T be a centered Gaussian process indexed by a countable set T
such that supt∈T Gt <∞ almost surely. Then

P
(

sup
t∈T

Gt ≥ E[sup
t∈T

Gt] + r
)
≤ exp(− r2

2σ2
),

where σ2 = supt∈T E[G2
t ] <∞.

Proof of Lemma 5. Note that for any g ∈ G(R),

∣∣∣ 1
n

n∑
i=1

εig(Xi,Zi)
∣∣∣ ≤ ∣∣∣ 1

n

n∑
i=1

εi〈X, f〉L2
∣∣∣+ sup

j

∣∣∣ 1
n

n∑
i=1

εizij

∣∣∣‖γ‖1.
On one hand, we conclude from Lemma 14 that

E
(

sup
g∈G(R)

∣∣∣ 1
n

n∑
i=1

εi〈Xi, f〉L2
∣∣∣) ≤ R

µ
E[‖Gn‖B(δ̃)] ≤

√
2R

µ
γn(δ̃),
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where δ̃ :=
(
1+Λmax

Λmin

)
µ. In addition, since εi’s are standard Gaussian variables and |Zji | ≤ Cz

by Condition B, Bernstein inequality is applied to yield

E
∥∥∥ 1

n

n∑
i=1

Ziσi

∥∥∥
∞
≤ λ0Cz.

Thus, using similar arguments to (.7) and (.8) yields that

E sup
g∈G(R)

∣∣∣ 1
n

n∑
i=1

εig(Xi,Zi)
∣∣∣ ≤ √2R

µ
γn(δ̃) + Czλ0

√
δ0/2R

2

λ
≤ (c7κ

− 2r+1
4r

1 + Cz
√
δ0/2δ1)R2,

which follows from ‖γ‖1 ≤
√
δ0/2R2

λ and the derived inequality appearing in (.18). Observe

that
∣∣∣ 1
n

∑n
i=1 εig(Xi,Zi)

∣∣∣ is a centered Gaussian process, and also check that σ2 ≤ 1
nR

2 in

Lemma 12. Then, by the Gaussian concentration inequality with r = 2(δ′′1)2µ2R2, we have

sup
g∈G(R)

∣∣∣ 1
n

n∑
i=1

εig(Xi,Zi)
∣∣∣ ≤ 2(δ′′1)2µ2R2 + (c7κ

− 2r+1
4r

1 + Cz
√
δ0/2δ1)R2,

As long as δ1, δ
′′
1 are small sufficiently and κ1 is properly large, we can obtain the desired

result. �
Due to the functional style of X, we consider the following Rademacher type of process:

Rn(h) =
1

n

n∑
i=1

〈Xi, h〉L2σi.

Then, we define the function set

B(δ) = {h ∈ HK : ‖h‖K ≤ 1 and ‖LC1/2h‖L2 ≤ δ},

and the norm
‖Rn‖B(δ) = sup

h∈B(δ)
|Rn(h)|.

The following lemma, from Lemma 5 of Cai and Yuan (2012), gives some lower bound
and an upper bound of the Rademacher complexity Rn over B.

Lemma 13 Let γn(δ) :=
(

1
n

∑
`≥1 min{s`, δ2}

)1/2
for any δ > 0 and assume that Condition

C holds true. Then there exist constants c3, c4, c5 > 0 such that

c3γn(δ)− c4n
−1(log n) ≤ E[‖Rn‖B(δ)] ≤ c5γn(δ).

For any g(U) = 〈X, f〉L2 + ZTγ ∈ G(R), we have ‖f‖K ≤ R
µ as discussed before.

Besides, we also get, ‖Z̃Tγ‖2 + ‖〈X, f〉L2 + ΠT
Z|Xγ‖

2 ≤ R2. Thus, ‖γ‖22 ≤ R2/Λ2
min, so that

‖ΠT
Z|Xγ‖

2 ≤ R2Λ2
max/Λ

2
min. Hence,

‖LC1/2f‖L2 =
∥∥〈X, f〉L2∥∥ ≤ ‖〈X, f〉L2 + ΠT

Z|Xγ‖+ ‖ΠT
Z|Xγ‖ ≤

(
1 +

Λmax

Λmin

)
R. (.17)
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Thus, we conclude from Lemma 13 that

E
(

sup
g∈G(R)

∣∣∣ 1
n

n∑
i=1

〈Xi, f〉L2σi
∣∣∣) ≤ R

µ
E[‖Rn‖B(δ̃)] ≤ c5

R

µ
γn(δ̃),

where δ̃ :=
(
1 + Λmax

Λmin

)
µ. By direct calculation, it follows from Condition D that

γ2
n(δ) � 1

n
δ2− 1

r , ∀ δ > 0.

This along with (.8) implies that, there exists some constant c6 such that

E
(

sup
g∈G(R)

∣∣∣ 1
n

n∑
i=1

〈Xi, f〉2L2σi
∣∣∣) ≤ c6κ‖X‖L2

R2

√
nµ

2r+1
2r

≤ c6κ‖X‖L2κ
− 2r+1

4r
1 R2, (.18)

where we used the assumption that µ2 ≥ κ1n
− 2r

2r+1 .

We now consider another functional complexity involving the Gaussian variables. To
this end, we define Gaussian complexity with the alignment of two kernels:

Gn(h) :=
1

n

n∑
i=1

εi〈Xi, h〉L2 , ∀h ∈ B(δ),

and

‖Gn‖B(δ) = sup
h∈B(δ)

|Gn(h)|.

Lemma 14 Let γn(δ) be defined as that in Lemma 13. For any δ > 0, we have

E[‖Gn‖B(δ)] ≤
√

2γn(δ).

Proof of Lemma 14. For brevity, we define T = LK1/2CK1/2 in the following. It is obvious
that B(δ) = LK1/2(HK(δ)), where

HK(δ) =
{
h ∈ L2 : ‖h‖L2 ≤ 1 and ‖T 1/2h‖L2 ≤ δ2

}
.

Denote

G =
{∑
`≥1

α`ϕ` :
∑
`≥1

( α`
min{1, δ/√s`}

)2
≤ 1
}

It can be readily shown that G ⊂ HK(δ) ⊂
√

2G. This immediately implies that

sup
h∈G
|Gn(LK1/2h)| ≤ ‖Gn‖B(δ) ≤

√
2 sup
h∈G
|Gn(LK1/2h)|.

By Jensen’s inequality, we have

E sup
h∈G
|Gn(LK1/2h)| ≤

(
E sup
h∈G
|Gn(LK1/2h)|2

)1/2
.
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By Cauchy-Schwartz inequality, for any h ∈ G

|Gn(LK1/2h)|2 =
∣∣∣∑
`≥1

α`Gn(LK1/2ϕ`)
∣∣∣2

≤
(∑
`≥1

( α2
`

min{1, δ2/s`}

)(∑
`≥1

min{1, δ2/s`}G2
n(LK1/2ϕ`)

)
which implies that

sup
h∈G
|Gn(LK1/2h)|2 ≤

∑
`≥1

min{1, δ2/s`}G2
n(LK1/2ϕ`).

Note that

EG2
n(LK1/2ϕ`) = E

( 1

n

n∑
i=1

εi〈Xi, LK1/2ϕ`〉L2
)2

=
1

n
E〈Xi, LK1/2ϕ`〉2L2 = n−1s`.

Thus, we have

E sup
h∈G
|Gn(LK1/2h)|2 ≤

∑
`≥1

min{1, δ2/s`}EG2
n(LK1/2ϕ`) = γ2

n(δ),

which further implies that
E‖Gn‖B(δ) ≤

√
2γn(δ).

This completes the proof. �
Proof of Lemma 6. First of all, we notice that

εT Z̃(γ̂ − γ∗)/n ≤ ‖εT Z̃/n‖∞‖γ̂ − γ∗‖1.

When Z̃ is fixed, εT Z̃/n is Gaussian. Then for all r > 0 and all j,

P
(
|εT Z̃j/n| ≥

√
2r

n
‖Z̃j‖n

)
≤ 2 exp(−r).

Hence, by the union bound we have

P
(
‖εT Z̃/n‖∞ ≥

√
2(r + log p)

n
max

1≤j≤p
‖Z̃j‖n

)
≤ 2 exp(−r).

Moreover, by Condition B, there always holds

‖Z̃j‖n ≤ |Zj |+ ‖X‖L2‖Π(Zj |X)‖L2 ≤ Cz + Cπ‖X‖L2 , ∀ j = 1, ..., p.

By the use of total probability principle and taking r = log(2p), we obtain the desired
result. �
Proof of Lemma 7. Note that, it follows from Cauchy-Schwartz inequality that

µ2ΠZ|HK (f̂)(γ̂ − γ∗) ≤ µ2 max
1≤j≤p

|〈Π(Zj |HK), f̂〉K |‖γ̂ − γ∗‖1

≤ µ2/2
(
‖f∗‖2K + 2‖Π(Zj |HK)‖2K + ‖f̂ − f∗‖2K

)
‖γ̂ − γ∗‖1.
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Moreover, by Lemma 2, on event T , µ2‖f̂ − f∗‖2K ≤ R2. With the choice of µ2 ≤ δ0R2

8‖f∗‖2K
in

Lemma 2, we obtain the desired result. �
Proof of Lemma 8. Note that

∣∣X(f̂ − f∗)T Z̃(γ̂ − γ∗)/n
∣∣ ≤ max

1≤j≤p

∣∣∣ 1
n

n∑
i=1

Z̃ij〈Xi, f̂ − f∗〉L2
∣∣∣‖γ̂ − γ∗‖1.

We now bound the term
∣∣∣ 1
n

∑n
i=1 Z̃ij〈Xi, f̂ − f∗〉L2

∣∣∣ using by concentration inequality. By

the definition of projection vector Z̃, there holds E[Z̃j〈X, f〉L2 ] = 0 for any f ∈ HK . So

we define S := supf∈G(R)

∣∣∣ 1
n

∑n
i=1 Z̃ij〈Xi, f − f∗〉L2

∣∣∣, dropping off the dependence of j. To

apply Lemma 3, we define h(U) = Z̃j〈X, f〉L2 with g = 〈X, f〉L2 +ZTγ ∈ G(R). As before,
we can obtain

‖h‖∞ ≤ κ(Cz + Cπ‖X‖L2)‖X‖L2R/µ ≤ κ(Cz + Cπ‖X‖L2)‖X‖L2/
√
c(δ0),

with the choice of µ ≥
√
c(δ0)R. Besides, it follows from (.17) that

var(h(U)) ≤ E[h2(U)] ≤ (Cz + Cπ‖X‖L2)2E[〈X, f〉2L2 ] ≤ (Cz + Cπ‖X‖L2)2
(
1 +

Λmax

Λmin

)2
R2.

In addition, recall δ̃ =
(
1 + Λmax

Λmin

)
µ, we also obtain

E[Z] ≤ 2(Cz + Cπ‖X‖L2)
R

µ
E[‖Gn‖B(δ̃)],

where we use the symmetrization technique and the contraction property of Rademacher
complexity. By similar arguments between (.17) and (.18), we further get

E[Z] ≤ c7κ
− 2r+1

4r
1 δ0R

2.

By the concentration result presented in Lemma 3 and a simple calculation, we obtain from
the union bound

max
1≤j≤p

∣∣∣ 1
n

n∑
i=1

Z̃ij〈Xi, f̂ − f∗〉L2
∣∣∣ ≤ c8δ0

√
log pR2,

with probability at least 1− exp[−n(δ′′1)2µ2]. This completes the proof. �
Proof of Lemma 9. Observe that

(γ̂ − γ∗)TΠT
Z|XZ̃(γ̂ − γ∗)/n = (γ̂ − γ∗)T

[ 1

n

n∑
i=1

ΠZ|Xi(Zi −ΠZ|Xi)
T
]
(γ̂ − γ∗).

This immediately implies that

∣∣(γ̂ − γ∗)TΠT
Z|XZ̃(γ̂ − γ∗)/n

∣∣ ≤ max
1≤j,k≤p

∣∣∣ 1
n

n∑
i=1

Π(Zj |Xi)(Zik −Π(Zk|Xi))
∣∣∣‖γ̂ − γ∗‖21.
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For any given j, k, since Π(Zj |Xi)(Zik − Π(Zk|Xi))’s are i.i.d. centered random variables
from the definition of protection, and by Condition B there holds:∣∣Π(Zj |X)(Zk −Π(Zk|X))

∣∣ ≤ Cπ(Cz + κCh) = D̃.

Then, by the Hoeffding inequality, we have

P
(∣∣∣ 1
n

n∑
i=1

Π(Zj |Xi)(Zik −Π(Zk|Xi))
∣∣∣ > r

)
≤ 2 exp(− nr

2

2D̃2
),

which together with the union bound implies

max
1≤j,k≤p

∣∣∣ 1
n

n∑
i=1

Π(Zj |Xi)(Zik −Π(Zk|Xi))
∣∣∣ ≤ D̃√2(log 2 + 3 log p)

n
,

with probability at least 1− 1/p, where setting r := D̃

√
2(log 2+3 log p)

n . The proof ends with
the conclusion of Lemma 2. �
Proof of Lemma 10. By Lemma 14.14 in Bühlmann and Van. de. Geer (2011), it follows
that

Emax
j,k

∣∣∣ 1
n

n∑
i=1

(Z̃ijZ̃ik − E[Z̃ijZ̃ik])
∣∣∣ ≤ 8

√
log(2p)/n(Cz + Cπ)2,

and by Massart’s inequality for all r, it holds

P
(

max
j,k

∣∣∣ 1
n

n∑
i=1

(Z̃ijZ̃ik − E[Z̃ijZ̃ik])
∣∣∣ ≥ 8(Cz + Cπ)2

[√
log(2p)/n+

√
2r/n

])
≤ exp(−r).

By taking r = log(2p), we have

P
(

max
j,k

∣∣∣ 1
n

n∑
i=1

(Z̃ijZ̃ik − E[Z̃ijZ̃ik])
∣∣∣ ≥ 20(Cz + Cπ)2

√
log(2p)/n

)
≤ 1/(2p).

Finally, we observe that

(γ̂ − γ∗)T Z̃T Z̃(γ̂ − γ∗)/n− ‖Z̃T (γ̂ − γ∗)‖2

=
∑
j,k

(γ̂j − γ0
j )
( 1

n

n∑
i=1

(Z̃ijZ̃ik − E[Z̃ijZ̃ik])
)

(γk − γ0
k)

≤ max
j,k

∣∣∣ 1
n

n∑
i=1

(Z̃ijZ̃ik − E[Z̃ijZ̃ik])
∣∣∣‖γ̂ − γ∗‖21.

Thus, the desired result is obtained. �
Proof of Lemma 1. By the first optimality of convex optimization within the RKHS HK ,
taking partial derivative of f for (2.1) but fixing γ, we have

1

n

n∑
i=1

(
Yi − 〈Xi, f̂〉L2 − ZTi γ

)
〈Xi,K(·, )〉L2 − λf̂(·) = 0,
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where the reproducing property of RKHS is applied. Letting θi = Yi − 〈Xi, f̂〉L2 − ZTi γ be
a sequence of scalars, we can rewrite the last formula as:

f̂(·) =
1

λn

n∑
i=1

θi〈Xi,K(·, )〉L2 , λ 6= 0,

meaning that f̂(·) can be expressed by a finite basis expansion, where each basis function
Bi(·) is generated naturally by Bi(·) = 〈Xi,K(·, )〉L2 , i = 1, ..., n. Since Xi’s are available
and K is specified in advance, Bi(·)’s can be obtained from a simple integration. In other
words, f̂(·) can be expressed as a linear combination of n basis functions.

In the end, plugging the above finite formula on f̂ into our original objective (2.1) yields
our desired finite optimization. This completes the proof of Lemma 1. �
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