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Abstract

Understanding the iterative behavior of stochastic optimization algorithms for minimizing
nonconvex functions remains a crucial challenge in demystifying deep learning. In partic-
ular, it is not yet understood why certain simple techniques are remarkably effective for
tuning the learning rate in stochastic gradient descent (SGD), arguably the most basic
optimizer for training deep neural networks. This class of techniques includes learning
rate decay, which begins with a large initial learning rate and is gradually reduced. In
this paper, we present a general theoretical analysis of the effect of the learning rate in
SGD. Our analysis is based on the use of a learning-rate-dependent stochastic differential
equation (LR-dependent SDE) as a tool that allows us to set SGD distinctively apart from
both gradient descent and stochastic gradient Langevin dynamics (SGLD). In contrast to
prior research, our analysis builds on the analysis of a partial differential equation that
models the evolution of probability densities, drawing insights from Wainwright and Jor-
dan (2006); Jordan (2018). From this perspective, we derive the linear convergence rate
of the probability densities, highlighting its dependence on the learning rate. Moreover,
we obtain an explicit expression for the optimal linear rate by analyzing the spectrum
of the Witten-Laplacian, a special case of the Schrödinger operator associated with the
LR-dependent SDE. This expression clearly reveals the dependence of the linear conver-
gence rate on the learning rate—the linear rate decreases rapidly to zero as the learning
rate tends to zero for a broad class of nonconvex functions, whereas it stays constant for
strongly convex functions. Based on this sharp distinction between nonconvex and convex
problems, we provide a mathematical interpretation of the benefits of using learning rate
decay for nonconvex optimization.
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1. Introduction

Gradient-based optimization has been the workhorse algorithm powering recent develop-
ments in statistical machine learning. Many of these developments involve solving noncon-
vex optimization problems, which raises new challenges for theoreticians, given that classical
theory has often been restricted to the convex setting.

A particular focus in machine learning is the class of gradient-based methods referred to
as stochastic gradient descent (SGD), given its desirable runtime properties, and its desirable
statistical performance in a wide range of nonconvex problems. Consider the minimization
of a (nonconvex) function f defined in terms of an expectation:

f(x) = Eζf(x; ζ),

where the expectation is over the randomness embodied in ζ. A simple example is empirical
risk minimization, where the loss function,

f(x) =
1

n

n∑
i=1

fi(x),

is averaged over n data points, where the datapoint-specific losses, fi(x), are indexed by
i and where x denotes a parameter. When n is large, it is computationally prohibitive to
obtain the full gradient of the objective function, and SGD provides a compelling alternative.
SGD is a gradient-based update based on a (noisy) gradient evaluated from a single data
point or a mini-batch:

∇̃f(x) :=
1

B

∑
i∈B
∇fi(x) = ∇f(x) + ξ,

where the set B of size B is sampled uniformly from the n data points and therefore the
noise term ξ has mean zero. Starting from an initial point x0, SGD updates the iterates
according to

xk+1 = xk − s∇̃f(xk) = xk − s∇f(xk)− sξk, (1)

where ξk denotes the noise term at the kth iteration. Note that the step size s > 0, also
known as the learning rate, can either be constant or vary with the iteration Bottou (2010).

The learning rate plays an essential role in determining the performance of SGD and
many of the practical variants of SGD Bengio (2012).1 The overall effect of the learning
rate can be complex. In convex optimization problems, theoretical analysis can explain
many aspects of this complexity, but in the nonconvex setting the effect of the learning
rate is yet more complex and theory is lacking Zeiler (2012); Kingma and Ba (2014). As a
numerical illustration of this complexity, Figure 1 plots the error of SGD with a piecewise
constant learning rate in the training of a neural network on the CIFAR-10 dataset. With

1. Note that the mini-batch size as another parameter can be, to some extent, incorporated into the learning
rate. See the discussion later in this section.
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Figure 1: Training error using SGD with mini-batch size 32 to train an 8-layer convolutional neural
network on CIFAR-10 Krizhevsky (2009). The first 90 epochs use a learning rate of
s = 0.006, the next 120 epochs use s = 0.003, and the final 190 epochs use s = 0.0005.
Note that the training error decreases as the learning rate s decreases and a smaller s
leads to a larger number of epochs for SGD to reach a plateau. See He et al. (2016) for
further investigation of this phenomenon.

a constant learning rate, SGD quickly reaches a plateau in terms of training error, and
whenever the learning rate decreases, the plateau decreases as well, thereby yielding better
optimization performance. This illustration exemplifies the idea of learning rate decay, a
technique that is used in training deep neural networks (see, e.g., He et al., 2016; Bottou
et al., 2018; Sordello and Su, 2019). Despite its popularity and the empirical evidence of its
success, however, the literature stops short of providing a general and quantitative approach
to understanding how the learning rate impacts the performance of SGD and its variants
in the nonconvex setting You et al. (2019); Li et al. (2019b). Accordingly, strategies for
setting learning rate decay schedules are generally ad hoc and empirical.

In the current paper, we provide theoretical insight into the dependence of SGD on the
learning rate in nonconvex optimization. Our approach builds on a recent line of work in
which optimization algorithms are studied via the analysis of their behavior in continuous-
time limits Su et al. (2016); Jordan (2018); Shi et al. (2018). Specifically, in the case of
SGD, we study stochastic differential equations (SDEs) as surrogates for discrete stochastic
optimization methods (see, e.g., Kushner and Yin, 2003; Li et al., 2017; Krichene and
Bartlett, 2017; Chaudhari et al., 2018; Diakonikolas and Jordan, 2019). The construction
is roughly as follows. Taking a small but nonzero learning rate s, let tk = ks denote a time
step and define xk = Xs(tk) for some sufficiently smooth curve Xs(t). Applying a Taylor
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expansion in powers of s, we obtain:

xk+1 = Xs(tk+1) = Xs(tk) + Ẋs(tk)s+O(s2).

Let W be a standard Brownian motion, where we assume that the noise term ξk is approx-
imately normally distributed with unit variance. Informally, this leads to2

−
√
sξk = W (tk+1)−W (tk) = s

dW (tk)

dt
+O(s2).

Plugging the last two displays into (1), we get

Ẋs(tk) +O(s) = −∇f(Xs(tk)) +
√
s

dW (tk)

dt
+O

(
s

3
2

)
.

Retaining both O(1) and O(
√
s) terms but ignoring smaller terms, we obtain a learning-

rate-dependent stochastic differential equation (LR-dependent SDE) that approximates the
discrete-time SGD algorithm:

dXs = −∇f(Xs)dt+
√
sdW, (2)

where the initial condition is the same value x0 as its discrete counterpart. More generally,
Li et al. (2019a); Chaudhari and Soatto (2018) consider SDEs with variable-dependent noise
covariance as approximating surrogates for SGD. The LR-dependent SDE (2) is a convenient
simple model that allows for a fine-grained analysis, as we will show in this paper. As an
indication of the generality of this formulation, we note that it can seamlessly take account
of the mini-batch size B; in particular, the effective learning rate scales as O(s/B) in the
mini-batch setting (see more discussion in Smith et al. (2017)). Throughout this paper we
focus on (2) and regard s alone as the effective learning rate.3

Intuitively, a larger learning rate s gives rise to more stochasticity in the LR-dependent
SDE (2), and vice versa. Accordingly, the learning rate must have a substantial impact on
the dynamics of SGD in its continuous-time formulation. In stark contrast, this parame-
ter plays a fundamentally different role on gradient descent (GD) and stochastic gradient
Langevin dynamics (SGLD) when one considers their approximating differential equations.
In particular, consider GD:

xk+1 = xk − s∇f(xk),

which can be modeled by the following ordinary differential equation (ODE):

Ẋ = −∇f(X),

and the SGLD algorithm, which adds Gaussian noise ξk to the GD iterates:

xk+1 = xk − s∇f(xk) +
√
sξk,

2. Although a Brownian motion is not differentiable, the formal notation dW (t)/dt can be given a rigorous
interpretation Evans (2012); Villani (2006).

3. Recognizing that the variance of ξk is inversely proportional to the mini-batch size B, we assume that the
noise term ξk has variance σ2/B. Under this assumption the resulting SDE reads dXs = −∇f(Xs)dt+
σ
√
s/BdW . In light of this, the effective learning rate through incorporating the mini-batch size is

O(σ2s/B).
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and its SDE model:
dX = −∇f(X)dt+ dW.

These differential equations are derived in the same way as (2), namely by the Taylor
expansion and retaining O(1) and O(

√
s) terms.4 While the SDE for modeling SGD sets

the square root of the learning rate to be its diffusion coefficient, both the GD and SGLD
counterparts are completely free of this parameter. This distinction between SGD and
the other two methods is reflected in their different numerical performance as revealed in
Figure 2. The right plot of this figure shows that the behaviors of both GD and SGLD in
the time t = ks scale are almost invariant in terms of optimization error with respect to
the learning rate. In striking contrast, the stationary optimization error of SGD decreases
significantly as the learning rate decays. As a consequence of this distinction, GD and
SGLD do not exhibit the phenomenon that is shown in Figure 1.
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Figure 2: Illustrative examples showing distinct behaviors of GD, SGD, and SGLD. The y-axis
displays the optimization error f(xk) − f(x?), where f(x?) denotes the minimum value
of the objective and in the case of SGD and SGLD f(xk) denotes an average over 1000
replications. The objective function is f(x1, x2) = 5 × 10−2x21 + 2.5 × 10−2x22, with an
initial point (8, 8), and the noise ξk in the gradient follows a standard normal distribution.
Note that SGD with s = 1 is identical to SGLD with s = 1. As shown in the right panel,
taking time t = ks as the x-axis, the learning rate has little to no impact on GD and
SGLD in terms of optimization error.

1.1 Overview of contributions

The discussion thus far suggests that one may examine the effect of the learning rate in
SGD using the LR-dependent SDE (2). In particular, this SDE distinguishes SGD from
GD and SGLD. Accordingly, in the current paper, we study the LR-dependent SDE and
make the following contributions.

1. LR-dependent Fokker–Planck–Smoluchowski equation. The perspective of
considering the evolution behavior of probability distributions over points instead of

4. The coefficients of the O(
√
s) terms turn out to be zero in both differential equations. See more discussion

in Appendix A.1 and particularly Figure 12 therein.
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a single point is proposed in Wainwright and Jordan (2006); Jordan (2018). In this
paper, we instantiate this perspective for SGD via the LR-dependent SDE and use ex-
isting techniques to derive the governing LR-dependent Fokker–Planck–Smoluchowski
equation for the evolution of the probability densities. By utilizing the error decom-
position in Raginsky et al. (2017), we show that, for a large class of (nonconvex)
objectives, the continuous-time formulation of SGD converges to its stationary distri-
bution at a linear rate.5 In particular, the solution Xs(t) to the LR-dependent SDE
obeys

Ef(Xs(t))− f? ≤ ε(s) + C(s)e−λst, (3)

where f? denotes the global minimum of the objective function f , ε(s) denotes the
risk at stationarity, and C(s) depends on both the learning rate and the distribution
of the initial x0. Notably, we show that ε(s) decreases monotonically to zero as s→ 0,
which is conducted from the temperature parameter in Raginsky et al. (2017). For
any fixed time T > 0, this bound can be carried over to the discrete case by a uniform
approximation between SGD and the LR-dependent SDE (2). Specifically, the term
C(s)e−λst becomes C(s)e−λsks, showing that the convergence is linear as well in the
discrete regime. This is consistent with the numerical evidence from Figure 1 and
Figure 2.

This convergence result sheds light on why SGD performs so well in many practical
nonconvex problems. In particular, while GD can be trapped in a local minimum,
SGD can efficiently escape it provided that the linear rate λs is not too small (this
is the case if s is sufficiently large; see the second contribution). This superiority of
SGD in the nonconvex setting must be attributed to the noise in the gradient and
this implication is consistent with earlier work showing that stochasticity in gradients
significantly accelerates the escape of saddle points for gradient-based methods Jin
et al. (2017); Lee et al. (2016).

2. Effect of learning rate on the nonconvex functions. The first contribution
stops short of saying anything about how λs depends on the learning rate s and the
geometry of the objective f . Such an analysis is fundamental to an explanation of
the differing effects of the learning rate in deep learning (nonconvex optimization)
and convex optimization. In the current paper we show that if the objective f is a
nonconvex function and satisfies certain regularity conditions, we have:6

λs � e−
2Hf
s , (4)

for a certain value Hf > 0 that only depends on f . This expression for λs enables
a concrete interpretation of the effect of learning rate in Figure 1. In brief, in the
nonconvex setting, λs decreases to zero quickly as the learning rate s tends to zero.
As a consequence, with a large learning rate s at the beginning, SGD converges rapidly
to stationarity and the rate becomes smaller as the learning rate decreases.

5. Roughly speaking, stationarity refers to the distribution of Xs(t) in the limit t→∞. See a more precise
definition in Figure 3.

6. We write am � bm if there exist positive constants c and c′ such that cbm ≤ am ≤ c′bm for all m.
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For comparison, λs is equal to µ if f is µ-strongly convex for µ > 0, regardless of
the learning rate s. (In this case, the solution to the SDE converges to the global
minimum with a learning rate of 1/t Hazan et al. (2008).) As such, the convergence
behaviors of SGD are necessarily different between convex and nonconvex objectives.
To appreciate this implication, we refer to Figure 3. Note that all four plots show
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Figure 3: The dependence of the optimization dynamics of SGD on the learning rate differs
between convex objectives and nonconvex objectives. The learning rate is set to ei-
ther s = 0.1 or s = 0.05. The two top plots consider minimizing a convex function
f(x1, x2) = 5× 10−2x21 + 2.5× 10−2x22, with an initial point (8, 8), and the bottom plots
consider minimizing a nonconvex function f(x1, x2) = [(x1 + 0.7)2 + 0.1](x1 − 0.7)2 +
(x2+0.7)2[(x2−0.7)2+0.1], with an initial point (−0.9, 0.9). The gradient noise is drawn
from the standard normal distribution. All results are averaged over 10000 independent
replications.

that a larger learning rate gives rise to a larger stationary risk, as predicted by the
monotonically increasing nature of ε with respect to s in (3). The most salient part of
this figure is, however, shown in the right panel. Specifically, the right panel, which
uses time t as the x-axis, shows that in the (strongly) convex setting the linear rate of
the convergence is roughly the same between the two choices of learning rate, which is
consistent with the result that λs is constant in the case of a strongly convex objective.
In the nonconvex case (bottom right), however, the rate of convergence is more rapid
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with the larger learning rate s = 0.1, which is implied by the fact that λ0.1 > λ0.05.
In stark contrast, the two plots in the left panel, which use the number k of iterations
for the x-axis, are observed to have a larger rate of linear convergence with a larger
learning rate. This is because in the k scale the rate λss of linear convergence always
increases as s increases no matter if the objective is convex or nonconvex.

The mathematical tools that we bring to bear in analyzing the LR-dependent SDE (2)
are as follows. We establish the linear convergence via a Poincaré-type inequality that
is due to Villani Villani (2009). The asymptotic expression for the rate λs is proved by
making use of the spectral theory of the Schrödinger operator or, more concretely, the
Witten-Laplacian associated with the Fokker–Planck–Smoluchowski equation that governs
the LR-dependent SDE. Different from the traditional probabilistic analysis, functional
approaches are based on couplings, and the analysis based on the Schrödinger operator is
based on the spectral theory of the operator, which is essentially an infinite-dimensional
generalization of the finite-dimensional matrix. In other words, the analysis from operators
reposes on an infinite-dimensional system, and generalizes the classical convergence analysis
for a finite-dimensional dynamical system via the eigenvalues of the matrix Hirsch et al.
(2012). Additionally, the spectral theory can be easily generalized to the momentum case.
We believe that these tools will prove to be useful in theoretical analyses of other stochastic
approximation methods.

1.2 Related work

Recent years have witnessed a surge of research devoted to explanations of the effectiveness
of deep neural networks, with a particular focus on understanding how the learning rate
affects the behavior of stochastic optimization. In Smith et al. (2017); Keskar et al. (2016),
the authors uncovered various tradeoffs linking the learning rate and the mini-batch size.
Moreover, Jastrzebski et al. (2017, 2018) related the learning rate to the generalization
performance of neural networks in the early phase of training. This connection has been
further strengthened by the demonstration that learning rate decay encourages SGD to learn
features of increasing complexity Li et al. (2019b); You et al. (2019). From a topological
perspective, Davis et al. (2019) establish connections between the learning rate and the
sharpness of local minima. Empirically, deep learning models work well with non-decaying
schedules such as cyclical learning rates Loshchilov and Hutter (2016); Smith (2017) (see
also the review Sun (2019)), with recent theoretical justification Li and Arora (2019).

In a different direction, there has been a flurry of activity in using dynamical systems
to analyze discrete optimization methods. For example, Su et al. (2016); Wibisono et al.
(2016); Shi et al. (2018) derived ODEs for modeling Nesterov’s accelerated gradient methods
and used the ODEs to understand the acceleration phenomenon (see the review Jordan
(2018)). In the stochastic setting, this approach has been recently pursued by various
authors Chaudhari et al. (2018); Chaudhari and Soatto (2018); Mandt et al. (2016); Lee
et al. (2016); Caluya and Halder (2019); Li et al. (2017) to establish various properties of
stochastic optimization. As a notable advantage, the continuous-time perspective allows us
to work without assumptions on the boundedness of the domain and gradients, as opposed
to older analyses of SGD (see, for example, Hazan et al. (2008)).
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Our work is motivated in part by the recent progress on Langevin dynamics, in particular
in nonconvex settings Villani (2009); Pavliotis (2014); Helffer et al. (2004); Bovier et al.
(2005). In relating to Langevin dynamics, s in the LR-dependent SDE can be thought
of as the temperature parameter and, under certain conditions, this SDE has a stationary
distribution given by the Gibbs measure, which is proportional to exp(−2f/s). Of particular
relevance to the present paper from this perspective is a line of work that has considered
the optimization properties of SGLD and analyzed its convergence rates Hwang (1980);
Raginsky et al. (2017); Zhang et al. (2017). The LR-dependent SDE is formally similar
to SGLD, in particular they both share the same Gibbs invariant distribution Raginsky
et al. (2017). Linear convergence can be established for SGLD via the technique of the
synchronous coupling Eberle (2016). Our approach provides an alternative to this line of
work. The LR-dependent SDE is derived in our work as a surrogate for approximating SGD,
and our analysis makes use of the Poincaré inequality under the Villani condition to obtain
the L2-distance of the probability densities instead of the 2-Wasserstein distance Raginsky
et al. (2017). The advantages of our analysis hinge on the fact that it provides a concise and
sharp delineation of the convergence rate based on the geometric properties of the objective
function.

1.3 Organization

The remainder of the paper is structured as follows. In Section 2 we introduce basic as-
sumptions and techniques employed throughout the paper. Section 3 develops our main
theorems. In Section 4, we use the results of Section 3 to offer insights into the benefit of
taking a larger initial learning rate followed by a sequence of decreasing learning rates in
training neural networks. Section 5 formally proves the linear convergence (3) and Section 6
further specifies the rate of convergence (4). Technical details of the proofs are deferred
to the appendices. We conclude the paper in Section 7 with a few directions for future
research.

2. Preliminaries

Throughout this paper, we assume that the objective function f is infinitely differentiable
in Rd; that is, f ∈ C∞(Rd). We use ‖ · ‖ to denote the standard Euclidean norm.

Definition 1 (Confining condition Pavliotis (2014); Markowich and Villani (1999))
A function f is said to be confining if it is infinitely differentiable and satisfies lim‖x‖→+∞ f(x) =
+∞ and exp(−2f/s) is integrable for all s > 0:∫

Rd
e−

2f(x)
s dx < +∞.

This condition is quite mild; it essentially requires that the function grows sufficiently
rapidly when x is far from the origin. This condition is met, for example, when an `2
regularization term is added to the objective function f or, equivalently, weight decay is
employed in the SGD update.

Next, we need to show that the LR-dependent SDE (2) with an arbitrary learning rate
s > 0 admits a unique global solution under mild conditions on the objective f . We will
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show in Section 3.3 that the solution to this SDE approximates the SGD iterates well.
The formal description is shown rigorously in Proposition 8. Recall that the LR-dependent
SDE (2) is

dXs = −∇f(Xs)dt+
√
sdW,

where the initial point Xs(0) is distributed according to a probability density function
ρ in Rd, independent of the standard Brownian motion W . It is well known that the
probability density ρs(t, ·) of Xs(t) evolves according to the LR-dependent Fokker–Planck–
Smoluchowski equation

∂ρs
∂t

= ∇ · (ρs∇f) +
s

2
∆ρs, (5)

with the boundary condition ρs(0, ·) = ρ. Here, ∆ ≡ ∇ · ∇ is the Laplacian. For complete-
ness, in Appendix A.2 we derive this LR-dependent Fokker–Planck–Smoluchowski equation
from the LR-dependent SDE (2) by Itô’s formula. If the objective f satisfies the confining
condition, then this equation admits a unique invariant Gibbs distribution that takes the
form

µs =
1

Zs
e−

2f
s . (6)

The proof of uniqueness is shown in Appendix A.3. The normalization factor is Zs =∫
Rd e−

2f
s dx. Taking any initial probability density ρs(0, ·) ≡ ρ in L2(µ−1s ) (a measurable

function g is said to belong to L2(µ−1s ) if ‖g‖µ−1
s

:=
(∫

Rd g
2µ−1s dx

) 1
2 < +∞), we have the

following guarantee:

Lemma 2 (Existence and uniqueness of the weak solution) For any confining func-
tion f and any initial probability density ρ ∈ L2(µ−1s ), the LR-dependent SDE (2) admits a
weak solution whose probability density in C1

(
[0,+∞), L2(µ−1s )

)
is the unique solution to

the LR-dependent Fokker–Planck–Smoluchowski equation (5).

The proof of Lemma 2 can be obtained by Harnack’s inequality, a classical approach
using a second-order elliptic operator, as described in Bogachev et al. (2009). We present
an alternative proof of Lemma 2 based on the spectral theory of the Schrödinger operator
in Appendix A.4. We also present a companion result in Lemma 10 in Section 5, which
shows that the probability density ρs(t, ·) converges to the Gibbs distribution as t → ∞.
Finally, we need a condition that is due to Villani for the development of our main results
in the next section.

Definition 3 (Villani condition Villani (2009)) A confining function f is said to sat-
isfy the Villani condition if ‖∇f(x)‖2/s−∆f(x)→ +∞ as ‖x‖ → +∞ for all s > 0.

This condition amounts to saying that the gradient has a sufficiently large squared norm
compared with the Laplacian of the function. Strictly speaking, some loss functions used
for training neural networks might not satisfy this condition. However, the Villani condition
does not look as stringent as it appears since this condition is essentially concerned with
the function at infinity. In this paper, we use the Villani condition to derive the Poincaré
inequality and the discrete spectrum of the Witten-Laplacian. There are alternatives to the
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Villani condition; see (Bakry et al., 2008, Corollary 1.6). For example, we can replace the
Villani condition with the following condition

〈x,∇f(x)〉
|x|

→ +∞

as ‖x‖ → +∞. However, it is unknown whether these conditions lead to the result that the
spectrum of Witten-Laplacian is discrete.

3. Main Results

In this section, we state our main results. In brief, in Section 3.1 we show linear convergence
to stationarity for SGD in its continuous formulation, the LR-dependent SDE. In Section 3.2,
we derive a quantitative expression of the rate of linear convergence and study the difference
in the behavior of SGD in the convex and nonconvex settings. This distinction is further
elaborated in Section 3.3 by carrying over the continuous-time convergence guarantees to
the discrete case. Finally, Section 3.4 offers an exposition of the theoretical results in the
univariate case. Proofs of the results presented in this section are deferred to Section 5 and
Section 6.

3.1 Linear convergence

In this subsection we are concerned with the expected excess risk, Ef(Xs(t)) − f?. Recall
that f? = infx f(x).

Theorem 1 Let f satisfy both the confining condition and the Villani condition. Then
there exists λs > 0 for any learning rate s > 0 such that the expected excess risk satisfies

Ef(Xs(t))− f? ≤ ε(s) +D(s)e−λst, (7)

for all t ≥ 0. Here ε(s) = ε(s; f) ≥ 0 is a strictly increasing function of s depending only
on the objective function f , and D(s) = D(s; f, ρ) ≥ 0 depends only on s, f , and the initial
distribution ρ.

Briefly, the proof of this theorem is based on the following decomposition of the excess
risk:

Ef(Xs(t))− f? = Ef(Xs(t))− Ef(Xs(∞)) + Ef(Xs(∞))− f?,

where we informally use Ef(Xs(∞)) to denote EX∼µsf(X) in light of the fact that Xs(t)
converges weakly to µs as t → +∞ (see Lemma 10). The question is thus to quantify
how fast Ef(Xs(t)) − Ef(Xs(∞)) vanishes to zero as t → ∞ and how the excess risk at
stationarity Ef(Xs(∞))− f? depends on the learning rate. The following two propositions
address these two questions. Recall that ρ ∈ L2(µ−1s ) is the probability density of the initial
iterate in SGD.

Proposition 4 Under the assumptions of Theorem 1, there exists λs > 0 for any learning
rate s such that

|Ef(Xs(t))− Ef(Xs(∞))| ≤ C(s) ‖ρ− µs‖µ−1
s

e−λst,
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for all t ≥ 0, where the constant C(s) > 0 depends only on s and f , and where

‖ρ− µs‖µ−1
s

=

(∫
Rd

(ρ− µs)2 µ−1s dx

) 1
2

measures the gap between the initialization and the stationary distribution.

Loosely speaking, it takes O(1/λs) time to converge to stationarity. In relating to
Theorem 1, D(s) can be set to C(s) ‖ρ− µs‖µ−1

s
. Notably, the proof of Proposition 4

shall reveal that C(s) increases as s increases. Turning to the analysis of the second term,
Ef(Xs(∞))− f?, we henceforth write ε(s) := Ef(Xs(∞))− f?.

Proposition 5 Under the assumptions of Theorem 1, the excess risk at stationarity, ε(s),
is a strictly increasing function of s. Moreover, for any S > 0, there exists a constant A
that depends only on S and f and satisfies

ε(s) ≡ Ef(Xs(∞))− f? ≤ As,

for any learning rate 0 < s ≤ S.

The two propositions are proved in Section 5. The proof of Theorem 1 is a direct
consequence of Proposition 4 and Proposition 5. More precisely, the two propositions taken
together give

Ef(Xs(t))− f? ≤ O(s) + C(s)e−λst, (8)

for a bounded learning rate s. Note that a dimension-dependent upper bound of O(ds) is
provided for ε(s) in (Raginsky et al., 2017, Section 3.5). This estimate is obtained by evalu-
ating both the second moment of the invariant distribution via the Euclidean 2-Wasserstein
distance and the integral constant based on the global gradient Lipschitz condition. How-
ever, it is worth noting that the global gradient Lipschitz condition may not be practical in
real-world scenarios. In line with Theorem 2, the constant A in this case is also dependent
on the geometry of f ; for more details see Section 5.2.

Taken together, these results offer insights into the phenomena observed in Figure 1.
In particular, Proposition 4 states that, from the continuous-time perspective, the risk of
SGD with a constant learning rate applied to a (nonconvex) objective function converges
to stationarity at a linear rate. Moreover, Proposition 5 demonstrates that the excess risk
at stationarity decreases as the learning rate s tends to zero. This is in agreement with the
numerical experiments illustrated in Figure 1, Figure 2, and Figure 3. For comparison, this
property is not observed in GD and SGLD. The following result gives the time complexity
of SGD in its continuous-time formulation.

Corollary 6 Under the assumptions of Proposition 5, for any ε > 0, if the learning rate

s ≤ min{ε/(2A), S} and t ≥ 1
λs

log
2C(s)‖ρ−µs‖

µ−1
s

ε , then

Ef(Xs(t))− f? ≤ ε.

12
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3.2 The rate of linear convergence

We now turn to the key issue of understanding how the linear rate λs depends on the
learning rate. In this subsection, we show that for certain objective functions, λs admits
a simple expression that allows us to interpret how the convergence rate depends on the
learning rate.

We begin by considering a strongly convex function. Recall the definition of strong
convexity: for µ > 0, a function f is µ-strongly convex if

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
µ

2
‖y − x‖2,

for all x, y. Equivalently, f is µ-strong convex if all eigenvalues of its Hessian ∇2f(x) are
greater than or equal to µ for all x (note that here f is assumed to be infinitely differentiable).
As is clear, a strongly convex function satisfies the confining condition. In Appendix B.1,
we prove the following proposition by making use of a Poincaré-type inequality, the Bakry–
Emery theorem Bakry et al. (2013).

Proposition 7 In addition to the assumptions of Theorem 1, assume that the objective f
is a µ-strongly convex function. Then, λs in (7) satisfies λs = µ.

We turn to the more challenging setting where f is nonconvex. Let us refer to the
objective f as a Morse function if its Hessian has full rank at any critical point x (that is,
∇f(x) = 0).7

Theorem 2 In addition to the assumptions of Theorem 1, assume that the objective f is
a Morse function and has at least two local minima.8 Then the constant λs in (7) satisfies

λs = (α+ o(s))e−
2Hf
s , (9)

for 0 < s ≤ s0, where s0 > 0, α > 0, and Hf > 0 are constants that all depend only on f .

The proof of this result relies on tools in the spectral theory of Schrödinger operators
and is deferred to Section 6. From now on, we call λs in (7) the exponential decay constant.
To obviate any confusion, o(s) in Theorem 2 stands for a quantity that tends to zero as
s→ 0, and the precise expression for Hf shall be given in Section 6, with a simple example
provided in Section 3.4. To leverage Theorem 2 for understanding the phenomena discussed
in Section 1, however, it suffices to recognize the fact that Hf is completely determined by
f . Moreover, we remark that while Theorem 1 shows that λs exists for any learning rate,
the present theorem assumes a bounded learning rate.

The key implication of this result is that the rate of convergence is highly contingent upon
the learning rate s: the exponential decay constant increases as the learning rate s increases.
Accordingly, the linear convergence to stationarity established in Section 3.1 is faster if s is
larger, and, by recognizing the exponential dependence of λs on s, the convergence would

7. See Section 6.2 for a discussion of Morse functions. Note that (infinitely differentiable) strongly convex
functions are Morse functions.

8. We call x a local minimum of f if ∇f(x) = 0 and the Hessian ∇2f(x) is positive definite. By convention,
in this paper a global minimum is also considered a local minimum.
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be very slow if the learning rate s is very small. For example, if Hf = 0.05, setting s = 0.1
and s = 0.001 gives

λ0.1
λ0.001

≈ e−1

e−100
= 9.889× 1042.

Moreover, as we will see clearly in Section 6, λs is completely determined by the geometry
of f . In particular, it does not depend on the probability distribution of the initial point
or the dimension d given that the constant Hf has no direct dependence on the dimension
d. For comparison, the linear rate in the nonconvex case is shown by Theorem 2 to depend
on the learning rate s, while the linear rate of convergence stays constant regardless of s
if the objective is strongly convex. This fundamental distinction between the convex and
nonconvex settings enables an interpretation of the observation brought up in Figure 1, in
particular the right panel of Figure 3. More precisely, with time t being the x-axis, SGD
with a larger learning rate leads to a faster convergence rate in the nonconvex setting, while
for the (strongly) convex setting the convergence rate is independent of the learning rate.
For further in-depth discussion of the implications of Theorem 2, see Section 4.

3.3 Discretization

In this subsection, we carry over the results developed from the continuous perspective to
the discrete regime. In addition to assuming that the objective function f satisfies the
Villani condition, satisfies the confining condition, and is a Morse function, we also now
assume f to be L-smooth; that is, f has L-Lipschitz continuous gradients in the sense that
‖∇f(x)−∇f(y)‖ ≤ L‖x−y‖ for all x, y. Moreover, we restrict the learning rate s to be no
larger than 1/L. The following proposition is the key theoretical tool that allows translation
to the discrete regime.

Proposition 8 For any L-smooth objective f and any initialization Xs(0) drawn from a
probability density ρ ∈ L2(µ−1s ), the LR-dependent SDE (2) has a unique global solution Xs

in expectation; that is, EXs(t) as a function of t in C1([0,+∞);Rd) is unique. Moreover,
there exists B(T ) > 0 such that the SGD iterates xk satisfy

max
0≤k≤T/s

|Ef(xk)− Ef(Xs(ks))| ≤ B(T )s,

for any fixed T > 0.

We note that there exists a sharp bound on B(T ) in Bally and Talay (1996). For complete-
ness, we also remark that the convergence can be strengthened to the strong sense:

max
0≤k≤T/s

E ‖xk −Xs(ks)‖ ≤ B′(T )s.

This result has appeared in Mil’shtein (1975); Talay (1982); Pardoux and Talay (1985);
Talay (1984); Kloeden and Platen (1992) and we provide a self-contained proof in Ap-
pendix B.2.

We now state the main result of this subsection.
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Theorem 3 In addition to the assumptions of Theorem 1, assume that f is L-smooth.
Then, for any T > 0, the iterates of SGD with learning rate 0 < s ≤ 1/L satisfy

Ef(xk)− f? ≤ (A+B(T ))s+ C ‖ρ− µs‖µ−1
s

e−sλsk, (10)

for all k ≤ T/s, where λs is the exponential decay constant in (7), A as in Proposition 5
depends only on 1/L and f , C = C1/L is as in Proposition 4, and B(T ) depends only on
the time horizon T and the Lipschitz constant L.

Theorem 3 follows as a direct consequence of Theorem 1 and Proposition 8. Note
that if f is a Morse function with at least two local minima, then λs appearing in (10) is
given by (9), and if f is µ-strongly convex then λs = µ. As earlier in the continuous-time
formulation, we also mention that the dimension parameter d is not an essential parameter
for characterizing the rate of linear convergence. In relating to Figure 3, note that its left
panel with k being the x-axis shows a faster linear convergence of SGD when using a larger
learning rate, regardless of convexity or nonconvexity of the objective. This is because the
linear rate sλs in (10) is always an increasing function of s even for the strongly convex
case, where λs itself is constant.

3.4 A one-dimensional example

In this section we provide some intuition for the theoretical results presented in the preceding
subsections. Our priority is to provide intuition rather than rigor. Consider the simple
example of f presented in Figure 4, which has a global minimum x?, a local minimum x•,
and a local maximum x◦.9 We use this toy example to gain insight into the expression (9)
for the exponential decay constant λs; deferring the rigorous derivation of this number in
the general case to Section 6.

From (7) it appears that the LR-dependent SDE (2) takes about O(1/λs) time to achieve
approximate stationarity. Intuitively, for the specific function in Figure 4, the bottleneck
in achieving stationarity is to pass through the local maximum x◦. Now, we show that it
takes about O(1/λs) time to pass x◦ from the local minimum x•. For simplicity, write

f(x) =
θ

2
(x− x•)2 + g(x),

where g(x) = f(x•) stays constant if x ≤ x◦ − ν for a very small positive ν and θ > 0.
Accordingly, the LR-dependent SDE (2) is reduced to the Ornstein–Uhlenbeck process,

dXs = −θ(Xs − x•)dt+
√
sdW,

before hitting x◦. Denote by τx◦ the first time the Ornstein–Uhlenbeck process hits x◦. It
is well known that the hitting time obeys

Eτx◦ ≈
√
πs

(x◦ − x•)θ
√
θ

e
2
s
· 1
2
θ(x◦−x•)2 ≈

√
πs

(x◦ − x•)θ
√
θ

e
2Hf
s , (11)

9. We can also regard x◦ as a saddle point in the sense that the Hessian at this point has one negative
eigenvalue. See Section 6.2 for more discussion.
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x•

x◦

x?

Hf

Figure 4: A one-dimensional nonconvex function f . The height difference between x◦ and x• in this
special case is the Morse saddle barrier Hf . See the formal definition in Definition 20.

where Hf := f(x◦) − f(x•) ≈ f(x◦) − g(x◦) = 1
2θ(x

◦ − x•)2. This number, which we
refer to as the Morse saddle barrier, is the difference between the function values at the
local maximum x◦ and the local minimum x• in our case. As an implication of (11), the

continuous-time formulation of SGD takes time (at least) of the order e(1+o(1))
2Hf
s to achieve

approximate stationarity. This is consistent with the exponential decay constant λs given
in (9).

In passing, we remark that the discussion above can be made rigorous by invoking the
theory of the Kramers’ escape rate, which shows that for this univariate case the hitting
time satisfies

Eτx◦ = (1 + o(1))
π√

−f ′′(x•)f ′′(x◦)
e

2Hf
s .

See, for example, Freidlin and Wentzell (2012); Pavliotis (2014). Furthermore, we demon-
strate the view from the theory of viscosity solutions and singular perturbations in Ap-
pendix B.3.

4. Why Learning Rate Decay?

As a widely used technique for training neural networks, learning rate decay refers to tak-
ing a large learning rate initially and then progressively reducing it during the training
process. This technique has been observed to be highly effective especially in the minimiza-
tion of nonconvex objective functions using stochastic optimization methods, with a very
recent strand of theoretical effort aiming at understanding its benefits You et al. (2019);
Li et al. (2019b). In this section, we offer a new and crisp explanation by leveraging the
results in Section 3. To highlight the intuition, we primarily work with the continuous-time
formulation of SGD.

For purposes of illustration, Figure 5 presents numerical examples for this technique
where the learning rate is set to 0.1 or 0.05. This figure clearly demonstrates that SGD
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Figure 5: Scatter plots of the iterates xk ∈ R2 of SGD for minimizing the nonconvex function in
Figure 3. This function has four local minima, of which the bottom right one is the global
minimum. Each column corresponds to the same value of t = ks, and the first row and
second row correspond to learning rates 0.1 and 0.05, respectively. The gradient noise is
drawn from the standard normal distribution. Each plot is based on 10000 independent
SGD runs using the noise generator “state 1-10000” in Matlab2019b, starting from an
initial point (−0.9, 0.9).

with a larger learning rate converges much faster to the global minimum than SGD with
a smaller learning rate. This comparison reveals that a large learning rate would render
SGD able to quickly explore the landscape of the objective function and efficiently escape
bad local minima. On the other hand, a larger learning rate would prevent SGD iterates
from concentrating around a global minimum, leading to substantial suboptimality. This is
clearly illustrated in Figure 6. As suggested by the heuristic work on learning rate decay,
we see that it is important to decrease the learning rate to achieve better optimization
performance whenever the iterates arrive near a local minimum of the objective function.

Despite its intuitive plausibility, the exposition above stops short of explaining why
nonconvexity of the objective is crucial to the effectiveness of learning rate decay. Our results
in Section 3, however, enable a concrete and crisp understanding of the vital importance of
nonconvexity in this setting. Motivated by (8), we consider an idealized risk function of the
form R(t) = as+ (b−as)e−λst, with λs set to e−c/s, where a, b, and c are positive constants
for simplicity as opposed to the non-constants in the upper bound in (7). This function is
plotted in Figure 7, with two quite different learning rates, s1 = 0.1 and s2 = 0.001, as an
implementation of learning rate decay. When the learning rate is s1 = 0.1, from the right
panel of Figure 7, we see that rough stationarity is achieved at time t = ks ≈ 25; thus,
the number of iterations k0.1 ≈ 25/s = 250. In the case of s = 0.001, from the left panel
of Figure 7, we see now it requires ks ≈ 2.5 × 1044 to reach rough stationarity, leading to
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Figure 6: The same setting as in Figure 5. Both plots correspond to the same value of t = ks =
1000.

k0.001 ≈ 2.5× 1047. This gives
k0.001
k0.1

≈ 1045.

In contrast, the sharp dependence of ks on the learning rate s is not seen for strongly
convex functions, because λs = µ stays constant as the learning rate s varies. Following the
preceding example, we have

k0.001
k0.1

≈ 102.
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Figure 7: Idealized risk function of the form R(t) = as+(b−as)e−e
c
s t with the identification t = ks,

which is adapted from (8). The parameters are set as follows: a = 1, b = 100, c = 0.1,
and the learning rate is s = 0.1 or 0.001. The right plot is a locally enlarged image of
the left.

While a large initial learning rate helps speed up the convergence, Figure 7 also demon-
strates that a larger learning rate leads to a larger value of the excess risk at stationarity,
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ε(s) ≡ Ef(Xs(∞)) − f?, which is indeed the claim of Proposition 5. Leveraging Proposi-
tion 4, we show below why annealing the learning rate at some point would improve the
optimization performance. To this end, for any fixed learning rate s, consider a stopping
time T δs that is defined as

T δs := inf
t
{|Ef(Xs(t))− Ef(Xs(∞))| ≤ δε(s)} ,

for a small δ > 0. In words, the LR-dependent SDE (2) at time T δs is approximately
stationary since its risk Ef(Xs(t))−f? is mainly comprised of the excess risk at stationarity
ε(s), with a total risk of no more than (1+ δ)ε(s). From Proposition 4 it follows that (recall
that ρ is the initial distribution):

T δs ≤
1

λs
log

C(s) ‖ρ− µs‖µ−1
s

δε(s)
=

e
2Hf
s

γ + o(s)
log

C(s) ‖ρ− µs‖µ−1
s

δε(s)
. (12)

In addition to taking a large s, an alternative way to make T δs small is to have an initial
distribution ρ that is close to the stationary distribution µs. This can be achieved by using
the technique of learning rate decay. More precisely, taking a larger learning rate s1 for a
while, at the end the distribution of the iterates is approximately the stationary distribution
µs1 , which serves as the initial distribution for SGD with a smaller learning rate s2 in the
second phase. Taking ρ ≈ µs1 , the factor ‖ρ− µs‖µ−1

s
in (12) for the second phase of

learning rate decay is approximately

‖µs1 − µs2‖µ−1
s2

=

(∫
(µs1 − µs2)2µ−1s2 dx

) 1
2

=

(∫
µ2s1
µs2

dx− 1

) 1
2

. (13)

Both µs1 and µs2 are decreasing functions of f and, therefore, have the same modes. As
s1 → 0, both µs1 and µs2 tend to δ(x−x?), thereby implying µs1/µs2 → 1. As a consequence,
the integral of µ2s1/µs2 minus one is small by appealing to the rearrangement inequality,
thereby leading to fast convergence of SGD with learning rate s2 to the stationary risk
ε(s2). In contrast, ‖ρ − µs2‖µ−1

s2
would be much larger for a general random initialization

ρ. Put simply, SGD with learning rate s2 cannot achieve a risk of approximately ε(s2)
given the same number of iterations without the warm-up stage using learning rate s1. See
Figure 8 for an illustration.

ρ ≈ µs1 ≈ µs2
large learning rate s1 small learning rate s2

Figure 8: Learning rate decay. The first phase uses a larger learning rate s1, at the end of which
the SGD iterates are approximately distributed as µs1 . The second phase uses a smaller
learning rate s2 and at the end the distribution of the SGD iterates roughly follows µs2 .

In Chiang et al. (1987), the concept of simulated annealing is introduced to the diffusion
process. It is equivalent to the time-decay learning rate as s = c/ log t in the LR-dependent
SDE. Through probabilistic analysis, Chiang et al. (1987) derives that the linear rate is t−c

′
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and the invariant distribution is exp(−2f(x) log t/c).10 Although the invariant distribution
concentrates on the global minima as t approaches infinity, the linear rate decays rapidly,
resulting in extremely slow convergence of the distribution. However, it is worth noting
that the process described in Chiang et al. (1987) is a single-phase process. In practice, the
phenomenon generated by the learning rate decaying piecewise is likely a two-phase process.
The first phase involves global convergence with the learning rate exp(−2Hf/s1), while the
second phase is likely the local convergence with the learning rate µ. This is because most
of the invariant distribution exp(−2f(x)/s1) concentrates on the neighborhood of the global
minima. We note also that Kushner (1987) provides a derivation of both the mean escape
time and the mean transition time using the theory of large deviations for the discrete case.

5. Proof of the Linear Convergence

In this section, we prove Proposition 4 and Proposition 5, leading to a complete proof of
Theorem 1.

5.1 Proof of Proposition 4

To better appreciate the linear convergence of the LR-dependent SDE (2), as established
in Proposition 4, we start by showing the convergence to stationarity without a rate. In
fact, this intermediate result constitutes a necessary step in the proof of Proposition 4. The
techniques presented in this section are standard in the literature (see, for example, Villani
(2009); Pavliotis (2014)).

Convergence without a rate. Recall that we use ρ to denote the initial probability den-
sity in L2(µ−1s ). Superficially, it seems that the most natural space for probability densities
is L1(Rd). However, it is mathematically convenient to work on an inner product space
as opposed to a general Banach space to prove convergence results for the LR-dependent
SDE. Indeed, studying densities in L2(µ−1s ) is a common strategy. Formally, the following
result says that any (nonnegative) function in L2(µ−1s ) can be normalized to be a density
function. The proof of this simple lemma is shown in Appendix C.1.

Lemma 9 Let f satisfy the confining condition. Then, L2(µ−1s ) is a subset of L1(Rd).

The following result shows that the solution to the LR-dependent SDE converges to
stationarity in terms of the dynamics of its probability densities over time.

Lemma 10 Let f satisfy the confining condition and denote the initial distribution as ρ ∈
L2(µ−1s ). Then, the unique solution ρs(t, ·) ∈ C1

(
[0,+∞), L2(µ−1s )

)
to the Fokker–Planck–

Smoluchowski equation (5) converges in L2(µ−1s ) to the Gibbs invariant distribution µs,
which is specified by (6).

10. The constant c′ mentioned here is used to distinguish it from the previous constant c. It serves as a
separate identifier to avoid confusion or ambiguity.
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Proof [Proof of Lemma 10] We have

d

dt
‖ρs(t, ·)− µs‖2µ−1

s
=

d

dt

∫
Rd

(hs(t, x)− 1)2 dµs

= 2

∫
Rd

(hs − 1)Ls(hs − 1)dµs,

where the last equality is due to (15). Next, we proceed by making use of Lemma 11:

2

∫
Rd

(hs − 1)Ls(hs − 1)dµs = −s
∫
Rd
∇(hs − 1) · ∇(hs − 1)dµs

= −s
∫
Rd
‖∇hs‖2dµs ≤ 0. (14)

Thus, ‖ρs(t, ·)− µs‖2µ−1
s

is a strictly decreasing function, decreasing asymptotically towards
the equilibrium state ∫

Rd
‖∇hs‖2dµs = 0.

This equality holds, however, only if hs(t, ·) is constant. Because both ρs(t, ·) and µs are
probability densities, this case must imply that hs(t, ·) ≡ 1; that is, ρs(t, ·) ≡ µs. Therefore,
ρs(t, ·) ∈ C1

(
[0,+∞), L2(µ−1s )

)
converges to the Gibbs invariant distribution µs in L2(µ−1s ).

Note that the existence and uniqueness of ρs(t, ·) is ensured by Lemma 2. The conver-
gence guarantee on ρs(t, ·) in Lemma 10 relies heavily on the following lemma (Lemma 11).
This preparatory lemma introduces the transformation

hs(t, ·) = ρs(t, ·)µ−1s ∈ C1
(
[0,+∞), L2(µs)

)
,

which allows us to work in the space L2(µs) in place of L2(µ−1s ) (a measurable function g

is said to belong to L2(µs) if ‖g‖µs :=
(∫

Rd g
2dµs

) 1
2 < +∞).11 It is not hard to show that

hs satisfies the following equation

∂hs
∂t

= −∇f · ∇hs +
s

2
∆hs, (15)

with the initial distribution hs(0, ·) = ρµ−1s ∈ L2(µs). The linear operator

Ls = −∇f · ∇+
s

2
∆ (16)

has a crucial property, as stated in the following lemma, whose proof is provided in Ap-
pendix C.2.

Lemma 11 The linear operator Ls in (16) is self-adjoint and nonpositive in L2(µs). Ex-
plicitly, for any g1, g2, this operator obeys∫

Rd
(Lsg1)g2dµs =

∫
Rd
g1Lsg2dµs = −s

2

∫
Rd
∇g1 · ∇g2dµs.

11. Here, dµs stands for the probability measure dµs ≡ µsdx = 1
Zs

exp(−2f/s)dx.
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Linear convergence. We turn to the proof of linear convergence. We first state a lemma
which serves as a fundamental tool for us to prove a linear rate of convergence for Proposi-
tion 4.

Lemma 12 (Theorem A.1 in Villani (2009)) If f satisfies both the confining condition
and the Villani condition, then there exists λs > 0 such that the measure dµs satisfies the
following Poincaré-type inequality∫

Rd
h2dµs −

(∫
Rd
hdµs

)2

≤ s

2λs

∫
Rd
‖∇h‖2dµs,

for any h such that the integrals are well defined.

For completeness, we provide a proof of this Poincaré-type inequality in Appendix C.3.
For comparison, the usual Poincaré inequality is put into use for a bounded domain, as
opposed to the entire Euclidean space as in Lemma 12. In addition, while the constant
in the Poincaré inequality in general depends on the dimension (see, for example, (Evans,
2010, Theorem 1, Chapter 5.8)), λs in Lemma 12 is completely determined by geometric
properties of the objective f . See details in Section 6.

Importantly, Lemma 12 allows us to obtain the following lemma, from which the proof of
Proposition 4 follows readily. The proof of this lemma is given at the end of this subsection.

Lemma 13 Under the assumptions of Proposition 4, ρs(t, ·) converges to the Gibbs invari-
ant distribution µs in L2(µ−1s ) at the rate

‖ρs(t, ·)− µs‖µ−1
s
≤ e−λst ‖ρ− µs‖µ−1

s
. (17)

Proof [Proof of Proposition 4] Using Lemma 13, we get

|Ef(Xs(t))− Ef(X(∞))| =
∣∣∣∣∫

Rd
(f(x)− f?) (ρs(t, x)− µs(x)) dx

∣∣∣∣
≤
(∫

Rd
(f(x)− f?)2µs(x)dx

) 1
2
(∫

Rd
(ρs(t, x)− µs(x))2 µ−1s dx

) 1
2

≤ C(s)e−λst ‖ρ− µs‖µ−1
s
,

where the first inequality applies the Cauchy-Schwarz inequality and

C(s) =

(∫
Rd

(f − f?)2µsdx
) 1

2

is an increasing function of s.

We conclude this subsection with the proof of Lemma 13, which is well known and can
be found in Bakry et al. (2014) for instance.
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Proof [Proof of Lemma 13] It follows from (14) that

d

dt
‖ρs(t, ·)− µs‖2µ−1

s
= −s

∫
Rd
‖∇hs‖2dµs.

Next, using Lemma 12 and recognizing the equality
∫
Rd hsdµs =

∫
Rd ρs(t, x)dx = 1, we get

d

dt
‖ρs(t, ·)− µs‖2µ−1

s
≤ −2λs

(∫
Rd
h2sdµs − 1

)
= −2λs ‖ρs(t, ·)− µs‖2µ−1

s
.

Integrating both sides yields (17), as desired.

5.2 Proof of Proposition 5

Next, we turn to the proof of Proposition 5. We first state a technical lemma, deferring its
proof to Appendix C.4.

Lemma 14 Under the assumptions of Proposition 5, the excess risk at stationarity ε(s)
satisfies

dε(0)

ds
= 0.

Using Lemma 14, we now finish the proof of Proposition 5.

Proof [Proof of Proposition 5]

Letting g = f − f?, we write the excess risk at stationarity as

ε(s) = Ef(Xs(∞))− f? =

∫
Rd ge−

2g
s dx∫

Rd e−
2g
s dx

,

which yields the following derivative:

dε(s)

ds
=

2
s2

∫
Rd g

2e−
2g
s dx

∫
Rd e−

2g
s dx− 2

s2

(∫
Rd ge−

2g
s dx

)2
(∫

Rd e−
2g
s dx

)2 .

Making use of the Cauchy-Schwarz inequality, the derivative satisfies dε(s)
ds ≥ 0 for all s > 0.

In fact, the equality holds only in the case of a constant f is a constant, which contra-
dicts both the confining condition and the Villani condition. Hence, the inequality can be
strengthened to

dε(s)

ds
> 0,

for s > 0. Consequently, we have proven that the excess risk ε(s) at stationarity is a strictly
increasing function of s ∈ [0,+∞).
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Next, from Fatou’s lemma we get

ε(0) ≤ lim sup
s→0+

ε(s) ≤
∫
Rd

lim
s→0+

gµsdx = f? − f? = 0

ε(0) ≥ lim inf
s→0+

ε(s) ≥
∫
Rd

lim
s→0+

gµsdx = f? − f? = 0.

As a consequence, ε(0) = 0. Lemma 14 shows that for any S > 0, there exists A = AS such

that 0 ≤ dε(s)
ds ≤ A for all 0 ≤ s ≤ S. This fact, combined with ε(0) = 0, immediately gives

ε(s) ≤ As for all 0 ≤ s ≤ S.

6. Geometrizing the Exponential Decay Constant

Having established the linear convergence to stationarity for the LR-dependent SDE, we
now offer a quantitative characterization of the exponential decay constant λs for a class
of nonconvex objective functions. This is crucial for us to obtain a clear understanding of
the dynamics of SGD and especially its dependence on the learning rate in the nonconvex
setting.

6.1 Connection with a Schrödinger operator

We begin by deriving a relationship between the LR-dependent SDE (2) and a Schrödinger
operator.12 Recall that the probability density ρs(t, ·) of the SDE solution is assumed to be
in L2(µ−1s ). Consider the transformation

ψs(t, ·) =
ρs(t, ·)√

µs
∈ L2(Rd).

This transformation allows us to equivalently write the Fokker–Planck–Smoluchowski equa-
tion (5) as

∂ψs
∂t

=
s

2
∆ψs −

(
‖∇f‖2

2s
− ∆f

2

)
ψs = −−s∆ + Vs

2
ψs, (18)

with the initial condition ψs(0, ·) = ρ√
µs
∈ L2(Rd). −s∆ + Vs is a Schrödinger perator,

where the potential

Vs =
‖∇f‖2

s
−∆f

is positive for sufficiently large ‖x‖ due to the Villani condition.

Now, we collect some basic facts concerning the spectrum of the Schrödinger operator
−s∆ + Vs. First, it is a positive semidefinite operator, as shown below. Recognizing the
uniqueness of the Gibbs distribution (6), it is not hard to show that

√
µs is the unique

12. The theory of Schrödinger operators is a major component of classical spectral theory; please see the
references Hislop and Sigal (2012); Helffer (2013); Reed and Simon (1978).
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eigenfunction of −s∆ + Vs with a corresponding eigenvalue of zero. Using this fact, from
the proof of Lemma 13, we get

〈(−s∆ + Vs)ψs(t, ·), ψs(t, ·)〉 = 〈(−s∆ + Vs)(ψs(t, ·)−
√
µs), ψs(t, ·)−

√
µs〉

= − d

dt
〈ψs(t, ·)−

√
µs, ψs(t, ·)−

√
µs〉

= − d

dt
‖ρs(t, ·)− µs‖2µ−1

s

= s

∫
Rd
‖∇(ρs(t, ·)µ−1s )‖2dµs

≥ 0,

where 〈·, ·〉 denotes the standard inner product in L2(Rd). In fact, this inequality can be
extended to 〈(−s∆ + Vs)g, g〉 ≥ 0 for any g. This verifies the positive semidefiniteness of
the Schrödinger operator −s∆ + Vs.

Next, making use of the fact that 1
sVs(x)→ +∞ as ‖x‖ → +∞, we state the following

well-known result in spectral theory—that the Schrödinger operator has a purely discrete
spectrum in L2(Rd) Hislop and Sigal (2012). A spectrum is said to be discrete if it takes on
distinct eigenvalues, with gaps between one value and the next (see, for example, (Hislop
and Sigal, 2012, Definition 1.4)).

Lemma 15 (Theorem 10.7 in Hislop and Sigal (2012)) Assume that V is continu-
ous, and V (x) → +∞ as ‖x‖ → +∞. Then the operator −∆ + V has a purely discrete
spectrum.

Taken together, the positive semidefiniteness of −s∆ + Vs and Lemma 15 allow us to
order the eigenvalues of −s∆ + Vs in L2(Rd) as

0 = ζs,0 < ζs,1 ≤ · · · ≤ ζs,` ≤ · · · < +∞.

Let {ψs,i(x)}∞i=0 represent the eigenfunctions of the Schrödinger operator −s∆ + Vs in
L2(Rd). The solution to the equivalent form of the Fokker–Planck–Smoluchowski equa-
tion (18) can be expressed in the following form:

ψs(t, x) =

∞∑
i=0

ci(t)ψs,i(x). (19)

By substituting (19) into (18), we obtain the following equality:

∞∑
i=0

ċi(t)ψs,i(x) = −1

2

∞∑
i=0

ci(t)(−s∆ + Vs)ψs,i(x) = −1

2

∞∑
i=0

ζs,ici(t)ψs,i(x).

Additionally, we know that the coefficients decay exponentially in t:

ci(t) = e−
1
2
ζs,itci(0).
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Therefore, the closed-form solution to (18) is

ψs(t, ·) =
∞∑
i=0

e−
1
2
ζs,itci(0)ψs,i(·).

A crucial fact from this representation is that the exponential decay constant λs in Lemma 13
can be set to

λs =
1

2
ζs,1. (20)

To see this, note that ψs(t, ·) −
√
µs also satisfies (18) and is orthogonal to the null eigen-

function
√
µs. Therefore, the norm of ψs(t, ·) −

√
µs must decay exponentially at a rate

determined by half of the smallest positive eigenvalue of Hs.
13 That is, we have

〈ψs(t, ·)−
√
µs, ψs(t, ·)−

√
µs〉 ≤ e−2

ζs,1
2
t 〈ψs(0, ·)−

√
µs, ψs(0, ·)−

√
µs〉

= e−ζs,1t 〈ψs(0, ·)−
√
µs, ψs(0, ·)−

√
µs〉 ,

which is equivalent to

‖ρs(t, ·)− µs‖µ−1
s
≤ e−

ζs,1
2
t‖ρ− µs‖µ−1

s
.

As such, we can take λs = 1
2ζs,1 in the proof of Lemma 13.

As a consequence of this discussion, we seek to study the Fokker–Planck–Smoluchowski
equation (5) by analyzing the spectrum of the linear Schrödinger operator (18), especially
its smallest positive eigenvalue δs,1. To facilitate the analysis, a crucial observation is that
this Schrödinger operator is equivalent to the Witten-Laplacian,

∆s
f := s(−s∆ + Vs) = −s2∆ + ‖∇f‖2 − s∆f, (21)

by a simple scaling. Denoting by the eigenvalues of the Witten-Laplacian as 0 = δs,0 <
δs,1 ≤ · · · ≤ δs,` ≤ · · · < +∞, we obtain the simple relationship

δs,` = sζs,`,

for all `.

The spectrum of the Witten-Laplacian has been the subject of a large literature Helffer
and Nier (2005); Bovier et al. (2005); Nier (2004); Arnol’d and Khesin (1999), and in
the next subsection, we exploit this literature to derive a closed-from expression for the
first positive eigenvalue of the Witten-Laplacian, thereby obtaining the dependence of the
exponential decay constant on the learning rate for a certain class of nonconvex objective
functions Hérau et al. (2011); Michel (2019).

13. Here, the norm of ψs(t, ·)−
√
µs is induced by the inner product in L2(Rd). That is,

‖ψ(t, ·)−√µs‖L2(Rd) =
√
〈ψ(t, ·)−√µs, ψ(t, ·)−√µs〉.
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6.2 The spectrum of the Witten-Laplacian: nonconvex Morse functions

We proceed by imposing the mild condition on the objective function that its first-order and
second-order derivatives cannot be both degenerate anywhere. Put differently, the objective
function is a Morse function. This allows us to use the theory of Morse functions to provide
a geometric interpretation of the spectrum of the Witten-Laplacian.

Basics of Morse theory. We give a brief introduction to Morse theory at the minimum
level that is necessary for our analysis. Let f be an infinitely differentiable function defined
on Rn. A point x is called a critical point if the gradient ∇f(x) = 0. A function f is said to
be a Morse function if for any critical point x, the Hessian ∇2f(x) at x is nondegenerate;
that is, all the eigenvalues of the Hessian are nonzero. The objective f is assumed to be
a Morse function throughout Section 6.2. Note also that we refer to a point x as a local
minimum if x is a critical point and all eigenvalues of the Hessian at x are positive.

Next, we define a certain type of saddle point. To this end, let η1(x) ≥ η2(x) ≥ · · · ≥
ηd(x) be the eigenvalues of the Hessian ∇2f(x) at x.14 A critical point x is said to be
an index-1 saddle point if the Hessian at x has exactly one negative eigenvalue, that is,
η1(x) ≥ · · · ≥ ηd−1(x) > 0, ηd(x) < 0. Of particular importance to this paper is a special
kind of index-1 saddle point that will be used to characterize the exponential decay constant.
Letting Kν :=

{
x ∈ Rd : f(x) < ν

}
denote the sublevel set at level ν, for an index-1 saddle

point x, it is intuitive to imagine that the set Kf(x) ∩ {x′ : ‖x′− x‖ < r} can be partitioned
into two connected components, say C1(x, r) and C2(x, r), if the radius r is sufficiently
small. The following definition rigorously differentiates index-1 separating saddle points
from the other saddle points.

Definition 16 Let x be an index-1 saddle point and r > 0 be sufficiently small. If C1(x, r)
and C2(x, r) are contained in two different (maximal) connected components of the sublevel
set Kf(x), we call x an index-1 separating saddle point.

The remainder of this section aims to relate index-1 separating saddle points to the
convergence rate of the LR-dependent SDE. For ease of reading, the remainder of the paper
uses x◦ to denote an index-1 separating saddle point and writes X ◦ for the set of all these
points. To give a geometric interpretation of Definition 16, let x•1 and x•2 denote local minima
in the two maximal connected components of Kf(x◦), respectively. Intuitively speaking, the
index-1 separating saddle point x◦ is the bottleneck of any path connecting the two local
minima. More precisely, along a path connecting x•1 and x•2, by definition the function f
must attain a value that is at least as large as f(x◦). In this regard, the function value at
x◦ plays a fundamental role in determining how long it takes for the LR-dependent SDE
initialized at x•1 to arrive at x•2. See an illustration in Figure 9.

As is assumed in this section, f is a Morse function and satisfies both the confining and
the Villani conditions; in this case, it can be shown that the number of the critical points
of f is finite. Thus, denote by n◦ the number of index-1 separating saddle points of f and
let n• denote the number of local minima.

14. Note that here we order the eigenvalues from the largest to the smallest, as opposed to the case of the
Schrödinger operator previously.
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Figure 9: The landscape of a two-dimensional nonconvex Morse function. Here, x•1 and x•2 denote
two local minima. Both x◦ and x+ are index-1 saddle points, but only the former is an
index-1 separating saddle point since f(x◦) < f(x•). In the two bottom plots, the deep
blue regions form the sublevel sets at f(x◦) or f(x•). Note that the sublevel set induced
by x◦ is the union of two connected components.

Hérau–Hitrik–Sjöstrand’s generic case. To describe the labeling procedure, consider
the set of the objective values at index-1 separating saddle points V = {f(x◦) : x◦ ∈ X ◦}.
This is a finite set and we use I to denote the cardinality of this set. Write V = {ν1, . . . , νI}
and sort these values as

+∞ = ν0 > ν1 > · · · > νI , (22)

where by convention ν0 = +∞ corresponds to a fictive saddle point at infinity.

Next, we follow Hérau et al. (2011) and define a type of connected components of sublevel
set.

Definition 17 A connected component E of the sublevel set Kν for some ν ∈ V is called a
critical component if either ∂E ∩ X ◦ 6= ∅ or E = Rd, where ∂E is the boundary of E.

In this definition, the case of E = Rd applies only if ν = ν0 = +∞. If ν = νi for some
1 ≤ i ≤ I is only attained by one index-1 separating saddle point, the sublevel set Kνi has
two critical components. See Definition 16 for more details.
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With these preparatory notions in place, we describe the following procedure for labeling
index-1 separating saddle points and local minima Hérau et al. (2011). See Figure 10 for
an illustration of this process.

ν0

=

+∞

ν1

ν2

ν3

•
x?

•
x•1,1

◦
x◦1,1

•
x•2,1

◦
x◦2,1

•
x•2,2

◦
x◦2,2

•
x•2,3

◦
x◦2,3

•
x•3,1

◦
x◦3,1

•
x•3,2

◦
x◦3,2

E0
1

E1
1

E2
1 E2

2 E2
3

E3
1 E3

2

Figure 10: A generic one-dimensional Morse function. The labeling process gives rise to a one-to-
one correspondence between the local minimum x•ij and the index-1 separating saddle
point x◦i,j (which are also local maxima) for all i, j.

1. Let E0
1 := Rd. Note that the global minimum x? is contained in E0

1 and denote

x•0 := x? = argmin
x∈E0

1

f(x).

Let X •0 denote the singleton set {x?}.

2. Let E1
j for j = 1, . . . ,m1 be the critical components of the sublevel set Kν1 . Note

that E1
1 ∪ · · · ∪ E1

m1
is a (proper) subset of Kν1 . Without loss of generality, assume

x? ∈ E1
m1

. Then, we select x•1,j1 as

x•1,j1 = argmin
x∈E1

j1

f(x).

Define X •1 := {x•1,1, . . . , x•1,m1−1}.

3. For i = 2, . . . , I, let Eij for j = 1, . . . ,mi be the critical components of the sublevel set
Kνi . Without loss of generality, we assume that the critical components are ordered
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such that there exists an integer ki ≤ mi satisfying ki⋃
j=1

Eij

⋂(
i−1⋃
`=0

X •`

)
= ∅

and

Eij
⋂(

i−1⋃
`=0

X •`

)
6= ∅,

for any j = ki + 1, . . . ,mi. Set x•i,j to

x•i,j = argmin
x∈Eij

f(x),

for j = 1, . . . , ki. Define X •i := {x•i,1, . . . , x•i,ki}.

To make the labeling process above valid, however, we need to impose the following
assumption on the objective. This assumption is generic in the sense that it should be
satisfied by a generic Morse function.

Assumption 18 (Generic case Hérau et al. (2011)) For every critical component Eij
selected in the labeling process above, where i = 0, 1, . . . , I, we assume that

• The minimum x•i,j of f in any critical component Eij is unique.

• If Eij ∩X ◦ 6= ∅, there exists a unique x◦i,j ∈ Eij ∩X ◦ such that f(x◦i,j) = max
x∈Eij∩X ◦

f(x).

In particular, Eij ∩ Kf(x◦i,j) is the union of two distinct critical components.

The first condition in this assumption requires that there exists a unique minimum of
the objective f in every critical component Eij . In particular, the global minimum x? is
unique under this assumption. In addition, the second condition requires that among all
index-1 separating saddle points in Eij , if any, f attains the maximum at exactly one of
these points.

Under Assumption 18, the above labeling process includes all the local minima of f .
Moreover, it reveals a remarkable result: there exists a bijection between the set of local
minima and the set of index-1 separating saddle points (including the fictive one) X ◦∪{∞}.
As shown in the labeling process, for any local minimum x•i,j , we can relate it to the index-1

separating saddle point at which f attains the maximum in the critical component Eij . See
Figure 10 for an illustrative example. Interestingly, this shows that the number of local
minima is always larger than the number of index-1 separating saddle points by one; that
is, n◦ = n• − 1.

In light of these facts, we can relabel the index-1 separating saddle points x◦` for ` =
0, 1, . . . , n◦ with x◦0 = ∞, and the local minima x•` for ` = 0, 1, . . . , n• − 1 with x•0 = x?,
such that

f(x◦0)− f(x•0) > f(x◦1)− f(x•1) ≥ . . . ≥ f(x◦n•−1)− f(x•n•−1), (23)

where f(x◦0)−f(x•0) = f(∞)−f(x?) = +∞. A detailed description of this bijection is given
in (Hérau et al., 2011, Proposition 5.2).
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With the pairs (x◦` , x
•
` ) in place, we readily state the following fundamental result con-

cerning the first n• − 1 smallest positive eigenvalues of the Witten-Laplacian ∆s
f in (21).

Recall that the nonconvex Morse function f satisfies the confining condition and the Villani
condition.

Proposition 19 (Theorem 1.2 in Hérau et al. (2011)) Under Assumption 18 and the
assumptions of Theorem 2, there exists s0 > 0 such that for any s ∈ (0, s0], the first n• − 1
smallest positive eigenvalues of the Witten-Laplacian ∆s

f associated with f satisfy

δs,` = s (γ` + o(s)) e−
2(f(x◦` )−f(x

•
` ))

s

for ` = 1, 1, . . . , n• − 1, where

γ` =
|ηd(x◦` )|

π

(
det(∇2f(x•` ))

−det(∇2f(x◦` ))

) 1
2

, (24)

and ηd(x
◦
` ) is the unique negative eigenvalue of ∇2f(x◦` ).

Using Proposition 19 in conjunction with the simple relationship between the exponen-
tial decay constant and the spectrum of the Schrödinger operator/Witten-Laplacian (20),
it is a stone’s throw to prove Theorem 2 when f is generic. First, we give the definition of
the Morse saddle barrier.

Definition 20 Let f satisfy the assumptions of Theorem 2. We call Hf = f(x◦1) − f(x•1)
the Morse saddle barrier of f .

Proof [Proof of Theorem 2 in the generic case] By Proposition 19, we can set the exponential
decay constant to

λs =
1

2s
δs,1 =

(
|ηd(x◦1)|

2π

(
det(∇2f(x•1))

−det(∇2f(x◦1))

) 1
2

+ o(s)

)
e−

2Hf
s

in Theorem 2. Taking α = 1
2
|ηd(x◦1)|

2π

(
det(∇2f(x•1))
− det(∇2f(x◦1))

) 1
2

in (9), we complete the proof when f

falls into the generic case.

However, the generic assumption for the labeling process is complex, leading to the
lack of a geometric interpretation of the objective function required for the labeling pro-
cess. To gain further insight, we present a simplifying assumption that is a special case of
Assumption 18. This simplification is due to Nier (2004).

Assumption 21 (Simplified generic case Nier (2004)) The objective functions f takes
different values at its local minima and index-1 separating saddle points. That is, let-
ting x1 be a local minimum or an index-1 separating saddle point, and x2 likewise, then
f(x1) 6= f(x2). Furthermore, the differences f(x◦`1)− f(x•`2) are distinct for any `1 and `2.

The following result follows immediately from Proposition 19.

Corollary 22 (Theorem 3.1 in Nier (2004)) Under Assumption 21 and the assump-
tions of Theorem 2, Proposition 19 holds. Therefore, Theorem 2 holds in this case.
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Michel’s degenerate case. We say that a Morse function is degenerate if it satisfies
the assumptions of Theorem 2 but not Assumption 18. To violate the generic assumption,
for example, we can change the objective value f(x•3,1) to f(x•1,1) or change f(x•3,2) to
f(x•2,3) in Figure 10. In this situation, the first condition in Assumption 18 is not satisfied.
Alternatively, if the objective value at x◦3,1 is changed to f(x◦2,1), the second condition in
Assumption 18 is not met. Figure 11 presents an example of a degenerate Morse function.

The main challenge in the degenerate case is the lack of uniqueness of the pairs (x◦` , x
•
` )

derived from the labeling process. Nevertheless, the uniqueness can be maintained if we work
on the function values. Explicitly, the labeling process can be adapted to the degenerate
case and still yields unique pairs (f(x◦` ), f(x•` )) obeying

f(∞)− f(x?) = f(x◦0)− f(x•0) > f(x◦1)− f(x•1) ≥ . . . ≥ f(x◦n•−1)− f(x•n•−1).

In particular, the number of local minima remains larger than that of index-1 separating
saddle points by one in this case. The following result extends Proposition 19 to the
degenerate case, which is adapted from Theorem 2.8 of Michel (2019).

ν0

=

+∞

ν1
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ν3

•
x?

•
x•1,1

◦
x◦1,1

•
x•2,1

◦
x◦2,1

•
x•2,2

◦
x◦2,2

•
x•2,3

◦
x◦2,3

•
x•2,4

◦
x◦2,4

•
x•3,1

◦
x◦3,1

E0
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E1
1

E2
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2 E2
3E2

4

E3
1

Figure 11: A degenerate one-dimensional Morse function. The labeling of its index-1 separating
saddle points x◦i,j and local minima x•i,j is not unique. Nevertheless, the labeling process
gives a unique one-to-one correspondence between the function values at the two types
of points. See Figure 10 for a comparison.

Proposition 23 (Theorem 2.8 in Michel (2019)) Assume that the assumptions of The-
orem 2 are satisfied but not Assumption 18. Then, there exists s0 > 0 such that for any
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s ∈ (0, s0], the first n• − 1 smallest positive eigenvalues of the Witten-Laplacian ∆s
f associ-

ated with f satisfy

δs,` = s (γ` + o(s)) e−
2Hf,`
s ,

for ` = 1, . . . , n• − 1, where f(x◦` )− f(x•` ) ≤ Hf,` ≤ f(x◦1)− f(x?). The constants Hf,` and
γ` all depend only on the function f .

Taken together, Proposition 19 and Proposition 23 yield a full proof of Theorem 2. As is
clear, the Morse saddle barrier in Definition 20 for the degenerate case is set to Hf = Hf,1.
For completeness, we remark that this result applies to Assumption 18, in which case we
conclude that Hf,` = f(x◦` )−f(x•` ) and γ` is given the same as (24). As such, Proposition 19
is implied by Proposition 23.

7. Discussion

In this paper, we have presented a theoretical perspective on the convergence of SGD in
nonconvex optimization as a function of the learning rate. Introducing the notion of an LR-
dependent SDE, we have leveraged advanced tools from the study of diffusions, in particular
the spectral theory of diffusion operators, to analyze the dynamics of SGD in a continuous-
time model. Our findings demonstare that, under certain regularity conditions, the solution
to the SDE converges linearly to stationarity. Additionally, we have presented a concise
expression for the linear rate of convergence, which transparently depend on the learning
rate for nonconvex Morse functions. Our results show that the linear rate is a constant
in the strongly convex case, whereas it decreases rapidly as the learning rate decreases in
the nonconvex setting. We have thus uncovered a fundamental distinction between convex
and nonconvex problems. As one implication, we note that noise in the gradients plays a
more determinative role in stochastic optimization with nonconvex objectives as opposed
to convex objectives. We also note that our results provide a justification for the use of a
large initial learning rate in training neural networks.

We suggest several avenues for future research to enhance and extend the framework
for analyzing stochastic optimization methods via SDEs. One area of particular interest
is to explore optimization problems where the objective is not L-smooth.15 It would be
intriguing to extend convex quadratic optimization to the infinite-dimensional case, which
involves unbounded linear operators. Such an extension would provide valuable insights into
the convergence behaviors of the discrete SGD based on the dynamics of the LR-dependent
SDE. It is worth noting that in the finite-dimensional case, gradient descent converges
linearly to the convex quadratic function. This result is derived by taking the continuous
gradient flow as a perspective rather than relying on the error estimate from the numerical
method (Proposition 8). With this in mind, it is reasonable to ask whether Theorem 3 can
be improved to

Ef(xk)− f? ≤ O(s+ (1− λss)k).

It is important to highlight that for any learning rate s, there exists some τ > 0 such that
when λ > τ , the sequence {(1−λs)k}∞k=0 diverges as k increases. This divergence exhibits a
different iteration behavior compared to e−λt, so this direct analogy may not hold. However,

15. For a rigorous definition of L-smooth objective functions, please refer to (Shi et al., 2022, Section 1.4).
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in the linear case, considering the implicit discretization still works, it is possible to obtain
the following bound in the infinite-dimensional case:

Ef(xk)− f? ≤ O(s+ (1 + λss)
−k).

More generally, it would be of interest to extend our results to SDEs with variable-dependence
noise variance Dieuleveut et al. (2017); Chaudhari and Soatto (2018); Li et al. (2019a). To
widen the scope of this framework, it is important to extend our results to the setting
where the gradient noise is heavy-tailed Simsekli et al. (2019). Additionally, from a differ-
ent angle, it is noteworthy that (s/2)∆ρs in the Fokker–Planck–Smoluchowski equation (5)
corresponds to vanishing viscosity in fluid mechanics. Appendix B.3 presents several open
problems from this viewpoint.

Another potential direction that go beyond the scope of the L-smooth condition is
to explore the optimization problems involving finite-dimensional objective functions with
stronger nonlinearity such as the quartic function f = ‖x‖4. It is worth noting that while
the continuous gradient flow always converges, we cannot guarantee the convergence of
the discrete gradient descent from arbitrary initial x0 ∈ Rd. From a different perspective,
we can view the quartic function f = ‖x‖4 as ‖∇2f(x)‖2 ≤ L0 + L1‖x‖2 with L0 = 0
and L1 = 12, which can be seen as another natural generalization of L-smooth objective
functions. Behind the remarkable success of deep learning in the industry, the variants of
SGD widely used in practice are the Ada-series, including Adagrad Duchi et al. (2011),
Adam Tieleman and Hinton (2012) and RMSProp Kingma and Ba (2014). Let us take the
Adagrad as a representative example. In the deterministic case, the Adagrad can be written
as follows:

xk+1 = xk −
s∇f(xk)√

ε+
k∑
i=0
‖∇f(xi)‖2

. (25)

With the above generalized L-smooth condition, it is not hard to show the average of iterates
of the Adagrad (25) converges as

f

(
x0 + · · ·+ xk−1

k

)
≤ O

(
1

k

)
.

Furthermore, by performing some basic transformations, we can rewrite this equation (25)
as

xk+1 − xk
s2

= − ∇f(xk)√
εs2 +

k∑
i=0

s2‖∇f(xi)‖2
.

Then, by taking the lowest-order continuous limit, we obtain the Adagrad flow as

Ẋ = − ∇f(X)√∫ t
0 ‖∇f(X)‖2ds

. (26)

By considering the error, f(X) − f(x?), as a Lyapunov function, it becomes evident that
the error decreases in (26). Furthermore, it is also possible to explore the evolution of the
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probability density by introducing noise to the nonconvex objective function. In practical
terms, it seems promising to extend our SDE-based analysis to various learning rate sched-
ules used in practice in training deep neural networks, such as diminishing learning rate
and cyclical learning rates Bottou et al. (2018); Smith (2017).

We note also that our results could be useful in guiding the choice of hyperparameters of
deep neural networks from an optimization viewpoint. For instance, recognizing the essence
of the exponential decay constant λs in determining the convergence rate of SGD, it is of
interest to consider how to choose the neural network architecture and the loss function so
as to get a small value of the Morse saddle barrier Hf . Indeed, Nelson (1966) proposed a
stochastic interpretation of quantum mechanics, indicating that the non-deterministic na-
ture of quantum particles could be explained by a stochastic process similar to Brownian
motion in classical mechanics. Moreover, the concept of stochastic quantization is intro-
duced in (Parisi and Wu, 1981) to simulate the classical field theory. Currently, based on
the reverse viewpoint of stochastic quantization, the quantum algorithm has been explored
to speed up the computation compared to local update Metropolis sampling as the ratio of
the barrier height over the temperature ratio increases (Mazzola, 2021). Finally, we won-
der if the LR-dependent SDE might give insights into generalization properties of neural
networks such as local elasticity He and Su (2020) and implicit regularization Zhang et al.
(2016); Gunasekar et al. (2018).
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Appendix A. Technical Details for Sections 1 and 2

A.1 Approximating differential equations

Figure 12 presents a diagram that shows approximating surrogates for GD, SGD, and SGLD
at multiple scales. In the case of SGD, for example, the inclusion of only O(1) terms leads
to the ODE Ẋ = −∇f(X), whereas the inclusion of up to O(

√
s) terms leads to the LR-

dependent SDE (2). For GD and SGLD, O(
√
s) terms are not found in the expansion as in

the derivation of (2). The O(
√
s)-approximation, therefore, leads to the same differential

equation as the O(1)-approximation for both GD and SGLD.
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GD:

xk+1 = xk − s∇f(xk)

SGD:

xk+1 = xk − s∇f(xk) + sξk

SGLD:

xk+1 = xk − s∇f(xk) +
√
sξk

Gradient flow:

Ẋ = −∇f(X)

LR-dependent SDE:

dX = −∇f(X)dt +
√
sdW

SDE:

dX = −∇f(X)dt + dW

O(1)-approximation

O(
√
s)-approximation

O(1)-approximation

O(
√
s)-approximation

O(1)-approximation

O(
√
s)-approximation

Figure 12: Diagram showing the relationship between three discrete algorithms and their O(1)-
approximating and O(1) + O(

√
s)-approximating differential equations. Note that the

inclusion of only O(1)-terms does not distinguish between GD and SGD.

A.2 Derivation of the Fokker–Planck–Smoluchowski equation

To derive the LR-dependent Fokker–Planck–Smoluchowski equation (5), we first state the
following lemma.

Lemma 24 (Itô’s lemma) For any f ∈ C∞(Rd) and g ∈ C∞([0,+∞)×Rd), let Xs(t) be
the solution to the LR-dependent SDE (2). Then, we have

dg(t,Xs(t)) =

(
∂g

∂t
−∇f · ∇g +

s

2
∆g

)
dt+

√
s

(
d∑
i=1

∂g

∂xi

)
dW. (27)

From this lemma, we get

dE[g(t,Xs(t))|Xs(t
′)]

dt
=
∂E[g(t,Xs(t))|Xs(t

′)]

∂t
−∇f · ∇E[g(t,Xs(t))|Xs(t

′)]

+
s

2
∆E[g(t,Xs(t))|Xs(t

′)], (28)

for t ≥ t′. Setting vs(t
′, x) = E[g(t,Xs(t))|Xs(t

′) = x]. Since E[g(t,Xs(t))|Xs(t
′) = x]

is invariant with time t, from (28) we see that vs(t
′, x) satisfies the following differential

equation:

∂vs
∂t′

= ∇f · ∇vs −
s

2
∆vs, vs(t, x) = g(t, x). (29)
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Recognizing the invariance of translation of time and letting us(t− t′, x) = vs(t
′, x), we can

reduce (29) to the following backward Fokker–Planck–Smoluchowski equation:

∂us
∂t

= −∇f · ∇us +
s

2
∆us, us(0, x) = g(t, x). (30)

Next, from the Chapman–Kolmogorov equation, we get

ρs(t, x) =

∫
Rd
ρs(t, x|0, y)ρs(0, y)dy,

where ρs(t, x|0, y) = ρs(X(t) = x|X(0) = y) and by switching the order of the integration,
we obtain ∫

Rd
us(0, x)ρs(t, x)dx =

∫
Rd
g(t, x)ρs(t, x)dx

=

∫
Rd
g(t, x)

(∫
Rd
ρs(t, x|0, y)ρs(0, y)dy

)
dx

=

∫
Rd
ρs(0, y)us(t, y)dy =

∫
Rd
ρs(0, x)us(t, x)dx. (31)

Making use of the backward Fokker–Planck–Smoluchowski equation (30) and switching the
order of integration (31), we get∫

Rd
us(0, x)

∂ρs(t, x)

∂t

∣∣∣∣
t=0

dx =

∫
Rd

∂us(t, x)

∂t

∣∣∣∣
t=0

ρs(0, x)dx

=

∫
Rd
us(0, x)

(
∇ · (ρs(0, x)∇f(x)) +

s

2
∆ρs(0, x)

)
dx.

Hence, we derive the forward Fokker–Planck–Smoluchowski equation at t = 0 for an arbi-
trary smooth function us(0, x) = g(t, x). Noting that t = 0 can be replaced by any time t,
we complete the derivation of the Fokker–Planck–Smoluchowski equation.

A.3 The uniqueness of Gibbs invariant distribution

We begin by proving that the probability density µs is an invariant distribution of (5).
Plugging

∇µs = −2

s
(∇f)µs

into (5) gives

∇ · (µs∇f) = ∇µs · ∇f + µs∆f = −2

s
‖∇f‖2µs + (∆f)µs (32)

and

∆µs = −2

s
∇f · ∇µs −

2

s
µs∆f =

4

s2
‖∇f‖2µs −

2

s
µs∆f. (33)

Combining (32) and (33) yields

∇ · (µs∇f) +
s

2
∆µs = 0.
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We now proceed to show that the probability density µs is unique. To derive a contra-
diction, we assume that there exists another distribution ϑs satisfying the Fokker–Planck–
Smoluchowski equation:

∇ · (ϑs∇f) +
s

2
∆ϑs = 0. (34)

Write $s = ϑsµ
−1
s and recall the operator Ls defined in Section 5.1. We can rewrite (34)

as
Ls$s = 0.

Using Lemma 11, we have

0 =

∫
Rd

(Ls$s)$sdµs = −s
2

∫
Rd
‖∇$s‖2dµs ≤ 0.

Hence, $s must be a constant on Rd. Furthermore, since both µs and ϑs are probability
densities, it must be the case that $s ≡ 1. In other words, ϑs is identical to µs. The proof
is complete.

A.4 Proof of Lemma 2

Recall that Section 6.1 shows that the transition probability density ρs(t, x) in C1([0,+∞), L2(µ−1s ))
governed by the Fokker–Planck–Smoluchowski equation (5) is equivalent to the function
ψs(t, x) in C1([0,+∞), L2(Rd)) governed by (18). Moreover, in Section 6.1, we have shown
that the spectrum of the Schrödinger operator −s∆ + Vs satisfies

0 = ζs,0 < ζs,1 ≤ · · · ≤ ζs,` ≤ · · · < +∞.

Since L2(Rd) is a Hilbert space, there exists a standard orthogonal basis corresponding to
the spectrum of −s∆ + Vs:

µs = φs,0, φs,1, . . . , φs,`, . . . ∈ L2(Rd).

Then, for any initialization ψs(0, x) ∈ L2(Rd), there exist constants c` (` = 1, 2, . . .) such
that

ψs(0, ·) =
√
µs +

+∞∑
`=1

c`φs,`.

Thus, the solution to the partial differential equation (18) is

ψs(t, ·) =
√
µs +

+∞∑
`=1

c`e
−ζs,`tφs,`.

Recognizing the transformation ψs(t, ·) = ρs(t, ·)/
√
µs, we recover

ρs(t, ·) = µs +
+∞∑
`=1

c`e
−ζs,`tφs,`

√
µs.

Note that ζs,` is positive for ` ≥ 1. Thus, the proof is finished.
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Appendix B. Technical Details for Section 3

B.1 Proof of Lemma 7

Here, we prove Lemma 7 using the Bakry–Emery theorem, which is a Poincaré-type inequal-
ity for µ-strongly convex functions. As a direct consequence of this lemma, the exponential
decay constant for strongly convex objectives does not depend on the learning rate s and
the ambient dimension d.

Lemma 25 (Bakry–Emery theorem) Let f be an infinitely differentiable function de-
fined on Rd. If f is µ-strongly convex, then the measure dµs satisfies the Poincaré-type
inequality as in Lemma 12 with λs = µ; that is, for any smooth function h with a compact
support, ∫

Rd
h2dµs −

(∫
Rd
hdµs

)2

≤ s

2µ

∫
Rd
‖∇h‖2dµs.

Lemma 25 serves as the main technical tool in the proof of Lemma 7. Its proof is in
Appendix B.1.1. Now, we prove the following result using Lemma 25.

Lemma 26 Under the same assumptions as in Lemma 7, ρs(t, ·) converges to the Gibbs
distribution µs in L2(µ−1s ) at the rate

‖ρs(t, ·)− µs‖µ−1
s
≤ e−µt ‖ρs − µs‖µ−1

s
. (35)

Proof [Proof of Lemma 26] It follows from (14) that

d

dt
‖ρs(t, ·)− µs‖2µ−1

s
= −s

∫
Rd
‖∇hs‖2dµs.

Next, using Lemma 25 and recognizing the equality
∫
Rd hsdµs =

∫
Rd ρs(t, x)dx = 1, we get

d

dt
‖ρs(t, ·)− µs‖2µ−1

s
≤ −2µ

∫
Rd

(hs − 1)2dµs = −2µ ‖ρs(t, ·)− µs‖2µ−1
s
.

Integrating both sides yields (35), as desired.

Leveraging Lemma 26, we proceed to complete the proof of Lemma 7.
Proof [Proof of Lemma 7] Using Lemma 26, we get

≤ C(s)e−µt ‖ρ− µs‖µ−1
s
,

where the first inequality applies the Cauchy-Schwarz inequality and

C(s) =

(∫
Rd

(f − f?)2µsdx
) 1

2

is an increasing function of s.
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B.1.1 Proof of Lemma 25

We introduce two operators Γs and Γs,2 that are built on top of the linear operator Ls

defined in (16). For any g1, g2 ∈ L2(µs), let

Γs(g1, g2) =
1

2
[Ls(g1g2)− g1Lsg2 − g2Lsg1] (36)

and

Γs,2(g1, g2) =
1

2
[LsΓs(g1, g2)− Γs(g1,Lsg2)− Γs(g2,Lsg1)] . (37)

A simple relationship between the two operators is described in the following lemma.

Lemma 27 Under the same assumptions as in Lemma 25, for any g ∈ L2(µs) we have

Γs,2(g, g) ≥ µΓs(g, g).

Proof [Proof of Lemma 27]
Note that

Ls(g1g2) = −g1(∇f · ∇g2)− g2(∇f · ∇g1) +
s

2
(g1∆g2 + g2∆g1 + 2∇g1 · ∇g2)

and
g1Lsh2 = −g1∇f · ∇g2 +

s

2
g1∆g2, g2Lsg1 = −g2∇f · ∇g1 +

s

2
g2∆g1.

Then, the operator Γs must satisfy

Γs(g, g) =
s

2
(∇g · ∇g) . (38)

Next, together with the equality

1

2
∆(‖∇g‖2) = ∇g · ∇(∆g) + Tr[(∇2g)T (∇2g)],

we obtain that the operator Γs,2 satisfies

Γs,2(g, g) =
s

2
(∇g)T∇2f(∇g) +

s2

4
Tr[(∇2g)T (∇2g)], (39)

where Tr is the standard trace of a squared matrix. Recognizing that the objective f is
µ-strongly convex, a comparison between (38) and (39) completes the proof.

Recall that hs(t, ·) ∈ L2(µs) is the solution to the partial differential equation (15), with
the initial condition hs(0, ·) = h. Define

Λ1,s(t) =

∫
Rd
h2s(t, ·)dµs. (40)

The following lemma considers the derivatives of Λ1,s(t).
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Lemma 28 Under the same assumptions as in Lemma 25, we have

Λ̇1,s(t) = −2

∫
Rd

Γs(hs, hs)dµs, Λ̈1,s(t) = 4

∫
Rd

Γs,2(hs, hs)dµs. (41)

Proof [Proof of Lemma 28]
Taking together (14) and (38), we have∫

Rd
Γs(hs, hs)µsdµs = −

∫
Rd
hsLshsdµs.

Since hs(t, ·) ∈ L2(µs) is the solution to the partial differential equation (15), we get

Λ̇1,s(t) = 2

∫
Rd
hsLshsdµs = −2

∫
Rd

Γs(hs, hs)dµs.

Furthermore, by the definition of Γs,2 and integration by parts, we have16∫
Rd

Γs,2(hs, hs)dµs =

∫
Rd

(Lshs)
2dµs.

From Lemma 11, we know that the linear operator Ls is self-adjoint. Then, we obtain the
second derivative as

Λ̈1,s(t) = 2

∫
Rd

(Lshs)
2dµs + 2

∫
Rd
hsL

2
s hsdµs = 4

∫
Rd

Γs,2(hs, hs)dµs.

Finally, we complete the proof of Lemma 25.
Proof [Proof of Lemma 25] Using Lemma 27 and Lemma 28, we obtain the following
inequality:

Λ̈1,s(t) ≥ −2µΛ̇1,s(t). (42)

From the definition of Λ1,s(t), we have

Λ1,s(0)− Λ1,s(∞) =

∫
Rd
h2dµs −

(∫
Rd
hdµs

)2

,

where the second term on the right-hand side follows from Lemma 10 and∫
Rd
hdµs =

∫
Rd
ρdx = 1.

By Lemma 10, we get hs(∞, ·) ≡ 1, which together with (41) gives

Λ̇1,s(0)− Λ̇1,s(∞) = −2

∫
Rd

Γs(h, h)dµs = −s
∫
Rd
‖∇h‖2dµs.

The final equality follows from (38). Integrating both sides of the inequality (42), we have

−2µ (Λ1,s(0)− Λ1,s(∞)) ≤ Λ̇1,s(0)− Λ̇1,s(∞),

which completes the proof.

16. See the calculation in Bakry et al. (2013).
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B.2 Proof of Proposition 8

By Lemma 2, let ρs(t, ·) ∈ C1([0,+∞), L2(µ−1s )) denote the unique transition probability
density of the solution to the LR-dependent SDE. Taking an expectation, we get

E[Xs(t)] =

∫
Rd
xρs(t, x)dx.

Hence, the uniqueness has been proved. Using the Cauchy–Schwarz inequality and Lemma 13,
we obtain:

‖E[Xs(t)]‖ ≤
∥∥∥∥∫

Rd
x(ρs(t, ·)− µs)dx

∥∥∥∥+

∥∥∥∥∫
Rd
xµsdx

∥∥∥∥
≤
(∫

Rd
‖x‖2dµs

) 1
2 (
e−λst ‖ρ− µs‖µ−1

s
+ 1
)
< +∞,

where the integrability
∫
Rd ‖x‖

2µs(x)dx is due to the fact that the objective f satisfies the
Villani condition. The existence of a global solution to the LR-dependent SDE (2) is thus
established.

For the strong convergence, the LR-dependent SDE (2) corresponds to the Milstein
scheme in numerical methods. The original result is obtained by Milstein Mil’shtein (1975)
and Talay Talay (1982); Pardoux and Talay (1985), independently. We refer the readers
to (Kloeden and Platen, 1992, Theorem 10.3.5 and Theorem 10.6.3), which studies nu-
merical schemes for stochastic differential equation. For the weak convergence, we can
obtain numerical errors by using both the Euler-Maruyama scheme and Milstein scheme.
The original result is obtained by Milstein Mil’shtein (1986) and Talay Pardoux and Talay
(1985); Talay (1984) independently and (Kloeden and Platen, 1992, Theorem 14.5.2) is also
a well-known reference. Furthermore, there exists a more accurate estimate of B(T ) shown
in Bally and Talay (1996). The original proofs in the aforementioned references only assume
finite smoothness such as C6(Rd) for the objective function.

B.3 Connection with vanishing viscosity

Taking s = 0, the zero-viscosity steady-state equation of the Fokker–Planck–Smoluchowski
equation (5) reads

∇ · (µ0∇f) = 0. (43)

A solution to this zero-viscosity steady-state equation takes the form

µ0(x) =

m∑
i=1

ciδ(x− xi), with

m∑
i=1

ci = 1, (44)

where xi’s are critical points of the objective f . As is clear, the solution is not unique. How-
ever, we have shown previously that the invariant distribution µs is unique and converges
to

µs→0(x) = δ(x− x?)

in the sense of distribution, which is a special case of (44). Clearly, when there exists more
than one critical point, µs→0(x) is different from µ0(x) in general. In contrast, µs→0(x)
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and µ0(x) must be the same for (strictly) convex functions. In light of this comparison, the
correspondences between the case s > 0 and the case s = 0 are fundamentally different in
nonconvex and convex problems.

Next, we consider the rate of convergence in the convex setting. Let

f(x) =
1

2
θx2,

where θ > 0. Plugging into the Fokker-Planck-Smoluchowski equation (5), we have
∂ρs
∂t

= θ
∂(xρs)

∂x
+
s

2

∂2ρs
∂x2

ρ(0, ·) = ρ ∈ L2(
√
sπ/θeθx

2/s)).

(45)

The solution to (45) is

ρs(t, x) =

√
θ

πs (1− e−2θt)
exp

[
−θ
s

(
x− x0e−θt

)2
1− e−2θt

]
. (46)

For any φ(x) ∈ L2(
√
sπ/θeθx

2/s), we have

〈ρs, φ〉 =

〈√
θ

πs (1− e−2θt)
exp

[
−θ
s

(
x− x0e−θt

)2
1− e−2θt

]
, φ(x)

〉

=

〈
1√
2π

e−
x2

2 , φ

(√
s(1− e−2θt)

2θ
· x+ x0e

−θt

)〉
→ φ

(
x0e
−θt
)

=
〈
δ(x− x0e−θt), φ(x)

〉
as s→ 0, where δ(x− x0e−θt) denotes the solution to the following zero-viscosity equation

∂ρ0
∂t

= ∇ · (ρ0∇f) . (47)

Furthermore, using the following inequality∥∥∥∥∥φ
(√

s(1− e−2θt)

2θ
· x+ x0e

−θt

)
− φ

(
x0e
−θt
)∥∥∥∥∥
∞

≤ O
(√
s
)
,

we get 〈ρ(t, x), ψ(x)〉 → 〈δ(x− x0e−θt), ψ(x)〉 at the rate O (
√
s) for a test function ψ.

The phenomenon presented above is called singular perturbation. It appears in math-
ematical models of boundary layer phenomena (Chorin and Marsden, 1990, Chapter 2.2,
Example 1 and Example 2), WKB theory for Schrödinger equations (Gasiorowicz, 2007,
Supplement 4A), KAM theory for circle diffeomorphisms (Arnol’d, 2012, Chapter 2, Sec-
tion 11) and that for Hamilton systems (Arnol’d, 2013, Appendix 8). Moreover, the singular
perturbation phenomenon shows that there exists a fundamental distinction between the
O(1)-approximating ODE for SGD and the LR-dependent SDE (2). In particular, the learn-
ing rate s → 0 in the Fokker–Planck–Smoluchowski equation (5) corresponds to vanishing
viscosity. The vanishing viscosity phenomenon was originally observed in fluid mechan-
ics Chorin and Marsden (1990); Kundu et al. (2008), particularly in the degeneration of
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the Navier–Stokes equation to the Euler equation Chen and Frid (1999). As a milestone,
the vanishing viscosity method has been used to study the Hamilton–Jacobi equation Cran-
dall and Lions (1983); Evans (1980); Crandall et al. (1984). In fact, the Fokker–Planck–
Smoluchowski equation (5) and its stationary equation are a form of Hamilton–Jacobi equa-
tion with a viscosity term, for which the Hamiltonian is

H(x, ρ,∇ρ) = ∆fρ+∇f · ∇ρ. (48)

The Hamiltonian (48) is different from the classical case Lions (1982); Cannarsa and Sines-
trari (2004); Evans (2010), which is generally nonlinear in ∇ρ (cf. Burger’s equation). Al-
though the Hamiltonian depends linearly on ρ and ∇ρ, the coefficients depend on ∆f and
∇f . Hence, it is not reasonable to apply directly the well-established theory of Hamilton–
Jacobi equations Crandall and Lions (1983); Evans (1980); Crandall et al. (1984); Lions
(1982); Cannarsa and Sinestrari (2004); Evans (2010) to the Fokker–Planck–Smoluchowski
equation (5) and its stationary equation. Furthermore, for the aforementioned example,
which proves the O(

√
s) convergence for the Fokker–Planck–Smoluchowski equation with

the quadratic potential f(x) = θ
2x

2, is also a viscosity solution to the Hamilton–Jacobi
equation Crandall and Lions (1983), since the Hamiltonian (48) for the quadratic potential
degenerates to

H(x, ρ,∇ρ) = 2tr(A)ρ+ 2Ax · ∇ρ,

where f(x) = xTAx and A is positive definite and symmetric. Thus, we remark that the
general theory of viscosity solutions to Hamilton–Jacobi equations cannot be used directly
to prove the theorems in the main body of this paper.

In closing, we present several open problems.

• Consider the stationary solution µs(x) to the Fokker–Planck–Smoluchowski equa-
tion (5). For a convex or strongly convex objective f with Lipschitz gradients, can we
quantify the rate of convergence? Does the rate of convergence remain O(

√
s)?

• Let T > 0 be fixed and consider the solution ρs(t, x) to the Fokker–Planck–Smoluchowski
equation (5) in [0, T ]. For a convex or strongly convex objective f with Lipschitz gra-
dients, does the solution to the Fokker–Planck–Smoluchowski equation (5) converge
to the solution to its zero-viscosity equation (47)? Is the rate of convergence still
O(
√
s)?

• Consider the solution ρs(t, x) to the Fokker–Planck–Smoluchowski equation (5) in
[0,+∞). For a convex or strongly convex objective f with Lipschitz gradients, does
the global solution to the Cauchy problem of the Fokker–Planck–Smoluchowski equa-
tion (5) converge to the solution of its zero-viscosity equation (47)? Is the rate of
convergence still O(

√
s)?
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Appendix C. Technical Details for Section 5

C.1 Proof of Lemma 9

From the Cauchy–Schwarz inequality, we get∫
Rd
|g(x)|dx ≤

(∫
Rd
g2(x)e

2f(x)
s dx

) 1
2
(∫

Rd
e−

2f(x)
s dx

) 1
2

< +∞.

This completes the proof.

C.2 Proof of Lemma 11

Recall that the linear operator Ls in (16) is defined as

Ls = −∇f · ∇+
s

2
∆f.

Note that we have∫
Rd

(Lsg1) g2dµs = − s

2Zs

∫
Rd

(∇g1 · ∇g2)e−
2f
s dx = −s

2

∫
Rd

(∇g1 · ∇g2)dµs.

Therefore, Ls is self-adjoint in L2(µs) and is non-positive.

C.3 Proof of Lemma 12

For completeness, we show below the original proof of Theorem 12 from Villani (2009) in
detail. Let Vs = ‖∇f‖2/s−∆f , then for any h ∈ C∞c (Rd) with mean-zero condition∫

Rd
hdµs = 0, (49)

we can obtain the following key inequality Deuschel and Stroock (2001)∫
Rd
Vsh

2dµs ≤ s
∫
Rd
‖∇h‖2dµs. (50)

To show (50), note that

0 ≤
∫
Rd

∥∥∥∇(he−
f
s

)∥∥∥2 dx

=

∫
Rd

∥∥∥∥(∇h)e−
f
s − h

s
(∇f)e−

f
s

∥∥∥∥2 dx

=

∫
Rd
‖∇h‖2e−

2f
s dx+

1

s

∫
Rd

(h2∆f)e−
2f
s dx−

(
1

s

)2 ∫
Rd
h2‖∇f‖2e−

2f
s dx.

Recognizing µs ∝ e−
2f
s , this proves (50).

Let R0,s > 0 be large enough such that Vs(x) > 0 for ‖x‖ ≥ R0,s. For Rs > R0,s, we can
define εs as

εs(Rs) :=
1

inf{Vs(x) : ‖x‖ ≥ Rs}
. (51)
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Then ε(Rs)→ 0 as Rs →∞. Furthermore, we assume the Rs is large enough such that∫
‖x‖≤Rs

dµs ≥
1

2
. (52)

From the key inequality (50), we obtain that∫
|x|≥Rs

h2dµs ≤ ε(Rs)
[
s

∫
Rd
‖∇h‖2dµs − ( inf

x∈Rd
Vs(x))

∫
Rd
h2dµs

]
. (53)

Let BRs be the ball centered at the origin of radius Rs in Rd and define

µs,Rs =

[∫
|x|≤Rs

dµs

]−1
µs1|x|≤Rs .

Using the Poincaré inequality in a bounded domain (Evans, 2010, Theorem 1, Chapter 5.8),
we get ∫

x∈Rd
h2dµs,Rs ≤ sC(Rs)

∫
x∈Rd

‖∇h‖2µs,Rsdµs,Rs +

(∫
x∈Rd

hdµs,Rs

)2

,

where C(Rs) is a constant depending on Rs. Furthermore, using the inequality (52), we
obtain ∫

‖x‖≤Rs
h2dµs ≤ sC(Rs)

∫
‖x‖≤Rs

‖∇h‖2dµs + 2

(∫
‖x‖≤Rs

hdµs

)2

. (54)

Making use of the mean-zero property of h, we have(∫
‖x‖≤Rs

hdµs

)2

=

(∫
‖x‖>Rs

hdµs

)2

≤
∫
‖x‖>Rs

h2dµs. (55)

Combining (54) and (55), we get∫
x∈Rd

h2dµs ≤ sC(Rs)

∫
x∈Rd

‖∇h‖2dµs + 3

∫
‖x‖≥Rs

h2dµs. (56)

Taking (53) and (56) together, we obtain∫
Rd
h2dµs ≤ s[C(Rs) + 3ε(Rs)]

∫
Rd
‖∇h‖2dµs − 3( inf

x∈Rd
Vs(x)).εs(Rs)

∫
x∈Rd

h2dµs (57)

Apparently, from the definition of εs(x), we can select Rs > 0 large enough such that
1 + 3s( inf

x∈Rd
Vs(x))ε(Rs) > 0. Then, we can rewrite (57) as∫

Rd
h2dµs ≤

s

2
· 2(C(Rs) + 3ε(Rs))

1 + 3s( inf
x∈Rd

Vs(x))ε(Rs)

∫
x∈Rd

‖∇h‖2dµs. (58)

Finally, using h−
∫
Rd hdµs instead of h in the inequality (58), we prove the desired Poincaré

inequality by taking

λs =

1 + 3s( inf
x∈Rd

Vs(x))ε(Rs)

2(C(Rs) + 3ε(Rs))
.
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C.4 Proof of Lemma 14

For convenience, we introduce a shorthand:

Π
(g
s

)
=

e−
2g
s∫

Rd e−
2g
s dx

.

Then, we can rewrite the derivative as

dε(s)

ds
=

2
s2

∫
Rd g

2e−
2g
s dx

∫
Rd e−

2g
s dx− 2

s2

(∫
Rd ge−

2g
s dx

)2
(∫

Rd e−
2g
s dx

)2
= 2

∫
Rd

(g
s

)2
Π
(g
s

)
dx− 2

(∫
Rd

g

s
·Π
(g
s

)
dx

)2

.

Next, we assume that ζk(x) = xke−x
α
, where α < 1 is a fixed positive constant and k = 1, 2.

The facts that ζk(0) = 0 and lim
x→+∞

ζk(x) = 0 give

0 ≤ lim
s→0+

(g
s

)k
Π
(g
s

)
≤ lim

s→0+
ζk

(g
s

)
= 0.

Then, by Fatou’s lemma, we get

0 ≤ lim inf
s→0+

dε(s)

ds
≤ lim sup

s→0+

dε(s)

ds

= 2 lim sup
s→0+

∫
Rd

(g
s

)2
Π
(g
s

)
dx− 2 lim inf

s→0+

(∫
Rd

g

s
·Π
(g
s

)
dx

)2

≤ 2

∫
Rd

lim sup
s→0+

(g
s

)2
Π
(g
s

)
dx− 2

(∫
Rd

lim inf
s→0+

g

s
·Π
(g
s

)
dx

)2

= 0.

The proof is complete.
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