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Abstract

We introduce Tree-AMP, standing for Tree Approximate Message Passing, a python pack-
age for compositional inference in high-dimensional tree-structured models. The package
provides a unifying framework to study several approximate message passing algorithms
previously derived for a variety of machine learning tasks such as generalized linear mod-
els, inference in multi-layer networks, matrix factorization, and reconstruction using non-
separable penalties. For some models, the asymptotic performance of the algorithm can
be theoretically predicted by the state evolution, and the measurements entropy estimated
by the free entropy formalism. The implementation is modular by design: each module,
which implements a factor, can be composed at will with other modules to solve complex
inference tasks. The user only needs to declare the factor graph of the model: the inference
algorithm, state evolution and entropy estimation are fully automated. The source code
is publicly available at https://github.com/sphinxteam/tramp and the documentation at
https://sphinxteam.github.io/tramp.docs.
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1. Introduction

Probabilistic models have been used in many applications, as diverse as scientific data anal-
ysis, coding, natural language and signal processing. They also offer a powerful framework
(Bishop, 2013) for several challenges in machine learning: dealing with uncertainty, choosing
hyper-parameters, causal reasoning and model selection. However, the difficulty of deriving
and implementing approximate inference algorithms for each new model may have hindered
the wider adoption of Bayesian methods. The probabilistic programming approach seeks
to make Bayesian inference as user friendly and streamlined as possible: ideally the user
would only need to declare the probabilistic model and run an inference engine. Several
probabilistic programming frameworks have been proposed, well suited for different con-
texts and leveraging variational inference or sampling methods to automate inference. To
give a few examples, pomegranate (Schreiber, 2018) fits probabilistic models using maxi-
mum likelihood. Church (Goodman et al., 2008) and successors are universal languages for
representing generative models. Infer.NET (Minka et al., 2018) implements several message
passing algorithms such as expectation propagation. Stan (Carpenter et al., 2017) uses
Hamiltonian Monte Carlo, while Anglican (Wood et al., 2014) uses particle MCMC as the
sampling method. Turing (Ge et al., 2018) offers a Julia implementation. Recently, Edward
(Tran et al., 2016) and Pyro (Bingham et al., 2019) tackle deep probabilistic problems,
scaling inference up to large data and complex models.

In this paper, we present Tree-AMP (Tree Approximate Message Passing). In the current
rich software ecosystem, Tree-AMP aims to fill a particular niche: using message passing
algorithms with theoretical guarantees of performance in specific asymptotic settings. As
will be detailed in Section 2, Tree-AMP uses the expectation propagation (EP) algorithm
(Minka, 2001a) as its inference engine, which is also implemented by Infer.NET. Application-
wise, for inference in statistical models or Bayesian machine learning tasks, the scope of
Tree-AMP is very limited compared to the Infer.NET package. Indeed Tree-AMP is restricted
to models like the ones presented in Figure 1, that is tree-structured factor graphs connecting
high-dimensional variables, while Infer.NET can be applied to generic factor graphs with
variables of arbitrary dimensions and types. However for the models considered in Figure 1,
under specific asymptotic settings, Tree-AMP offers an in-depth theoretical analysis of its
performance as will be detailed in Section 3: its errors can be predicted using the state
evolution formalism, the free entropy formalism further predicts when the algorithm achieves
or not the Bayes-optimal performance and also allows to estimate information theoretic
quantities. For this reason, we believe the Tree-AMP package should be of special interest
to theoretical researchers seeking a better understanding of EP/AMP algorithms. As an
alternative to Tree-AMP let us mention the Vampyre package that allows inference in multi-
layer networks (Fletcher et al., 2018).

There is a long history behind message passing (Yedidia et al., 2003; Mézard and Mon-
tanari, 2009), approximate message passing (AMP) (Donoho et al., 2009) and vector ap-
proximate message passing (VAMP) (Schniter et al., 2017), that we shall discuss later on.
As exemplified in the context of compressed sensing, the AMP algorithm has a fundamental
property: its performance on random instances in the high-dimensional limit, measured by
the mean squared error on the signals, can be rigorously predicted by the so-called state
evolution (Donoho et al., 2009; Bayati and Montanari, 2011), a rigorous version of the
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Figure 1: Tree-structured models. (a) Generalized linear model with separable prior p0(x),
separable likelihood pout(y|z) and linear channel z = Wx. (b) Reconstruction
using a sparse gradient prior where sparsity is enforced by the Gauss-Bernoulli
prior Nρ = [1 − ρ]δ + ρN . (c) Low-rank matrix factorization with separable
priors pU and pV , separable likelihood pout(Y |Z) and factorization Z = UV ᵀ

√
N

.

(d) Multi-layer network with activation functions al = σl(zl) and linear channels
zl = Wlal−1. (e) Committee machine with three experts.

physicists “cavity method” (Mézard et al., 1987). These performances can be shown, in
some cases, to reach the Bayes optimal one in polynomial time (Barbier et al., 2016; Reeves
and Pfister, 2016), quite a remarkable feat! More recently, variant of the AMP approach
has been developed with (some) correlated data and matrices (Schniter et al., 2017; Ma and
Ping, 2017), again with guarantees of optimally in some cases (Barbier et al., 2018; Gerbe-
lot et al., 2020). These approaches are intimately linked with the expectation propagation
algorithm (Minka, 2001a) and the expectation consistency framework (Opper and Winther,
2005a).

3



Baker, Aubin, Krzakala and Zdeborová

The state evolution and the Bayes optimal guarantees were extended to a wide variety
of models including for instance generalized linear models (GLM) (Rangan, 2011; Barbier
et al., 2019), matrix factorization (Rangan and Fletcher, 2012; Deshpande and Montanari,
2014; Dia et al., 2016; Lesieur et al., 2017), committee machines (Aubin et al., 2018),
optimization with non separable penalties (such as total variation) (Som and Schniter, 2012;
Metzler et al., 2015; Tan et al., 2015; Manoel et al., 2018), inference in multi-layer networks
(Manoel et al., 2017; Fletcher et al., 2018; Gabrié et al., 2018) and even arbitrary trees of
GLMs (Reeves, 2017). In all these cases, the entropy of the system in the high dimensional
limit can be obtained as the minimum of the so-called free entropy potential (Yedidia et al.,
2003, 2005; Krzakala et al., 2014) and this allows the computation of interesting information
theoretic quantities such as the mutual information between layers in a neural network
(Gabrié et al., 2018). Furthermore, the global minimizer of the free entropy potential
corresponds to the minimal mean squared error, which allows to determine fundamental
limits to inference. Interestingly, the mean squared error achieved by AMP, predicted by
the state evolution, is a stationary point of the same free entropy potential, which allows for
an interesting interpretation of when the algorithm actually works (Zdeborová and Krzakala,
2016) in terms of phase transitions.

Unfortunately the development of AMP algorithms faced the same caveat as proba-
bilistic modeling: for each new model, the AMP algorithm and the associated theory (free
entropy and state evolution) had to be derived and implemented separately, which can be
time-consuming. However, a key observation is that the factor graphs (Kschischang et al.,
2001) for all the models mentioned above are tree-structured as illustrated in Figure 1.
Each factor corresponds to an elementary inference problem that can be solved analytically
or approximately. The Tree-AMP python package offers a unifying framework for all the
models discussed above and extends to arbitrary tree-structured models. Similar to other
probabilistic programming frameworks, the user only has to declare the model (here a tree-
structured factor graph) then the inference, state evolution and entropy estimation are fully
automated. The implementation is also completely modularized and extending Tree-AMP
is in principle straightforward. If a new factor is needed, the user only has to solve (analyt-
ically or approximately) the elementary inference problem corresponding to this factor and
implement it as a module in Tree-AMP.

Many of the AMP algorithms previously mentioned, especially the vectorized versions
considered in (Schniter et al., 2017; Manoel et al., 2018; Fletcher et al., 2018), can be stated
as particular instances of the expectation propagation (EP) algorithm (Minka, 2001a). The
EP algorithm is equivalent to the expectation consistency framework (Opper and Winther,
2005a) which further yields an approximation for the log-evidence. Actually both ap-
proaches are solutions of the same relaxed Bethe variational problem (Heskes et al., 2005).
In Section 2 we present the weak consistency derivation of EP by (Heskes et al., 2005) which
offers a unifying framework that extends the previously mentioned AMP algorithms to tree-
structured models. These are classic results but we hope that this pedagogical review will
clarify the link between the various free energy formulations of the EP/AMP algorithms.
Besides it allows us to introduce the key quantities (posterior moments and log-evidence)
at the heart of the Tree-AMP implementation. Next in Section 3 we heuristically derive the
replica free entropy (Mézard and Montanari, 2009) by using weak consistency on the over-
laps and conjecture the state evolution. Even if the derivation is non-rigorous, we recover
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earlier results derived for specific models. Interestingly, the state evolution and the free en-
tropy potential can be reinterpreted as simple ensemble average of the posterior variances
and log-evidence estimated by EP. This allows us to extend the state evolution and free
entropy formalism to tree-structured models and implement them in the Tree-AMP package.
Finally, in Section 4 we illustrate the package on a few examples.

2. Expectation Propagation

In this section we review the derivation of EP as a relaxed variational problem. First we
briefly recall the variational inference framework and the Bethe decomposition of the free
energy (Yedidia et al., 2003) which is exact for tree-structured models. Then following Hes-
kes et al. (2005), the Bethe variational problem can be approximately solved by enforcing
moment-matching instead of full consistency of the marginals, which yields the EP algo-
rithm. The EP solution consists of exponential family distributions which satisfy a duality
between natural parameters and moments (Wainwright and Jordan, 2008). The EP free
energy (Minka, 2001b) is shown to be equivalent to the AMP free energies and satisfies a
tree decomposition which is at the heart of the modularization in the Tree-AMP package.
Finally we expose the Tree-AMP implementation of EP and maximum a posteriori (MAP)
estimation.

2.1 Model Settings

The Tree-AMP package is limited to high-dimensional tree-structured factor graphs, like
the models presented in Figure 1. To define more precisely such models and set some
notation, consider an inference problem p(x,y) where x = (xi)i∈V are the signals to infer
and y = (yj)j∈O the measurements. We emphasize that in our context each signal xi ∈ RNi
and measurement yj ∈ RNj is itself a high dimensional object. The model is typically

considered in the large N limit with ratios αi = Ni
N = O(1) and αj =

Nj
N = O(1). We will

assume that p(x,y) can be factorized as a tree-structured probabilistic graphical model:

p(x,y) =
1

ZN

∏
k∈F

fk(xk; yk), ZN =

∫
dxdy

∏
k∈F

fk(xk; yk), (1)

with factors (fk)k∈F . The factorization structure can be conveniently represented as a factor
graph (Kschischang et al., 2001): a bipartite graph G = (V, F,E), where each signal xi is
represented as a variable node i ∈ V (circle), each factor fk by a factor node k ∈ F (square),
with an edge (i, k) ∈ E connecting the variable node i to the factor node k if and only if
xi is an argument of fk. We will use the symbol ∂ to denote the neighbors nodes in the
factor graph. Thus i ∈ ∂k denotes the variable nodes neighboring the factor node k and
the arguments of the factor fk are xk = (xi)i∈∂k. Similarly k ∈ ∂i denotes the factor nodes
neighboring the variable node i.

Note that while we denote RNi the integration domain of the signal xi our inference
tasks are not limited to real high-dimensional variables. Indeed a high-dimensional binary,
sparse, categorical or complex variable can always be embedded in some RNi and its type
enforced by an appropriate factor. For instance a binary variable x ∈ ±N can be enforced
by a binary prior p0(x) = p+δ+(x)+p−δ−(x). As a consequence, we allow generic measures
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for the factors, including Dirac measures. This additionally allows us to represent hard
constraints as factors, for example the linear channel z = Wx will be represented by the
factor δ(z −Wx). The high-dimensional factor fk has to be simple enough to lead to a
tractable inference problem as will be explained in Section 2.8. Some representative models
are given in Examples 1-4.

The goal of the inference is then to get the posterior p(x | y) and evidence p(y), or
equivalently the negative log-evidence known as surprisal in information theory. For the
factorization Eq. (1) the posterior is equal to:

p(x | y) =
1

ZN (y)

∏
k∈F

fk(xk; yk), ZN (y) =

∫
dx
∏
k∈F

fk(xk; yk). (2)

The Helmholtz free energy is here defined as the negative log partition

F (y) = − lnZN (y) = − ln p(y)− lnZN (3)

and gives the surprisal up to a constant.

Remark 1 (Bayesian network) In a Bayesian network, the factors correspond to the
conditional distributions fk(xk; yk) = p(x+

k , yk | x−k ) where x+
k (resp. x−k ) denote the outputs

(resp. inputs) variables of the factor, besides ZN = 1 so the Helmholtz free energy Eq. (3)
directly gives the surprisal. All the models considered in Figure 1 are Bayesian networks,
with the exception of (b).

Example 1 (GLM) The factor graph for the generalized linear model (GLM) is shown in
Figure 1 (a). A high-dimensional signal x ∈ RN is drawn from a separable prior p0, a
high-dimensional measurement y ∈ RM is obtained through a separable likelihood pout from
z = Wx ∈ RM , where W is a given M × N matrix. The model is typically considered in
the large N limit with α = M

N = O(1). The variables to infer are x = (xi)i∈V = (x, z), the
observation y = (yj)j∈O = y and the factors (fk)k∈F = (p0(x), δ(z −Wx), pout(y|z)).

Example 2 (Low rank matrix factorization) The factor graph for the low rank ma-
trix factorization model considered in (Lesieur et al., 2017) is shown in Figure 1 (c). Two
matrices U ∈ RN×r and V ∈ RM×r are drawn from separable priors pU and pV , a high-
dimensional measurement Y ∈ RN×M is obtained through a separable likelihood pout from
Z = UV ᵀ

√
N
∈ RN×M . The model is typically considered in the large N limit with α = M

N =

O(1) and finite rank r = O(1). The variables to infer are x = (xi)i∈V = (U, V, Z), the obser-
vation y = (yj)j∈O = Y and the factors (fk)k∈F = (pU (U), pV (V ), δ(Z − UV ᵀ

√
N

), pout(Y |Z)).

Example 3 (Extensive rank matrix factorization) The factor graph for the extensive
rank matrix factorization model considered in (Kabashima et al., 2016) is the same as the
low rank case but considered in a different asymptotic regime. Two matrices F ∈ RM×N and
X ∈ RN×P are drawn from separable priors pF and pX , a high-dimensional measurement
Y ∈ RM×P is obtained through a separable likelihood pout from Z = FX√

N
∈ RM×P . The

model is typically considered in the large N,M,P limit with fixed ratios α = M
N = O(1)

and π = P
N = O(1). The variables to infer are x = (xi)i∈V = (F,X,Z), the observation

y = (yj)j∈O = Y and the factors (fk)k∈F =
(
pF (F ), pX(X), δ(Z − FX√

N
), pout(Y |Z)

)
.
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Example 4 (Sparse gradient regression) The factor graph for this model is shown in
Figure 1 (b). Compared to the GLM, we wish to infer a signal x ∈ RN which gradi-
ent x′ = ∇x ∈ Rd×N is sparse (we view the signal as having d axis, for instance d = 2
for an image, and consequently the gradient is taken along d directions). The sparsity
is enforced by a Gauss-Bernoulli prior Nρ = [1 − ρ]δ + ρN . The variables to infer are
x = (xi)i∈V = (x, x′, z), the observation y = (yj)j∈O = y and the factors (fk)k∈F =
(p0(x), δ(x′ −∇x),Nρ(x′), δ(z −Wx), pout(y|z)). The factor graph is not a Bayesian net-
work, in particular the partition function Eq. (1) is equal to:

ZN =

∫
RN

dxN (x)Nρ(∇x) 6= 1. (4)

2.2 Bethe Free Energy

We briefly recall the Bethe variational formulation of the belief propagation algorithm fol-
lowing (Yedidia et al., 2003) and refer the reader to this reference or (Wainwright and Jor-
dan, 2008) for further details. We are interested in computationally hard inference problems
and seek an approximation p̃ of the posterior distribution p̃(x) ' p(x | y). Consider such
an approximation p̃ and the following functional

F [p̃] = KL[p̃(x)‖p(x | y)] + F (y) , (5)

called the variational free energy. As the KL divergence is always positive and equal to zero
only if the two distributions are equal, we can formally get the posterior and the Helmholtz
free energy F (y) as the solution of the variational problem:

F (y) = min
p̃
F [p̃] for p̃?(x) = p(x | y). (6)

However, for a tree-structured model it can be shown that the posterior factorizes as

p(x | y) =

∏
k∈F p(xk | y)∏

i∈V p(xi | y)ni−1
, (7)

where p(xi | y) is the marginal of the variable xi, p(xk | y) is the joint marginal over
xk = (xi)i∈∂k and ni = |∂i| is the number of neighbor factors of the variable xi. Therefore
we can restrict the variational problem Eq. (6) to distributions of the form

p̃(x) =

∏
k∈F p̃k(xk)∏

i∈V p̃i(xi)
ni−1

, (8)

and minimize over the collection of variable marginals p̃V = (p̃i)i∈V and factor marginals
p̃F = (p̃k)k∈F . This collection however has to satisfy a strong self-consistency constraint:
whenever the variable xi is an argument of the factor fk, the i-marginal of the factor
marginal p̃k must give back the variable marginal p̃i. In other words the collection of
marginals (p̃V , p̃F ) must belong to the set:

M =

{
(p̃V , p̃F ) : ∀(i, k) ∈ E, p̃i(xi) = p̃k(xi) =

∫
dxk\i p̃k(xk)

}
. (9)
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For distributions of the type Eq. (8), the variational free energy Eq. (5) is equal to

FBethe[p̃V , p̃F ] =
∑
k∈F

Fk[p̃k] +
∑
i∈V

(1− ni)Fi[p̃i] ,

with Fk[p̃k] = KL[p̃k‖fk] , Fi[p̃i] = −H[p̃i] , (10)

called the Bethe free energy (Yedidia et al., 2003), where KL and H denote respectively
the Kullback-Leibler divergence and the entropy. Therefore for a tree-structured model we
have:

F (y) = min
(p̃V ,p̃F )∈M

FBethe[p̃V , p̃F ] at

{
p̃?k(xk) = p(xk | y) for all k ∈ F
p̃?i (xi) = p(xi | y) for all i ∈ V

(11)

The solution of this Bethe variational problem actually leads to the belief propagation
algorithm (Pearl, 1988; Yedidia et al., 2003).

2.3 Weak Consistency

For tree-structured models the Bethe variational problem Eq. (11) yields the exact posterior
and Helmoltz free energy, and is solved by the belief propagation algorithm. Unfortunately
for the models introduced in Figure 1, which involve high-dimensional vectors or matrices,
the belief propagation algorithm is not tractable. Following Heskes et al. (2005) we con-
sider instead a relaxed version of the Bethe variational problem, by replacing the strong
consistency constraint Eq. (9) by the weak consistency constraint:

Mφ = {(p̃V , p̃F ) : ∀(i, k) ∈ E, Ep̃iφi(xi) = Ep̃kφi(xi)} , (12)

for a collection φ = (φi)i∈V of sufficient statistics φi : RNi → Rdi for each variable xi. In
other words instead of requiring the full consistency of the marginals we only require moment
matching. The collection φ is a choice and each choice leads to a different approximation
scheme. As the notation suggests, one can choose different sufficient statistics for each
variable xi. Following Wainwright and Jordan (2008) we use 〈λi, φi(xi)〉 to denote the
Euclidian inner product in Rdi of the so-called natural parameter λi ∈ Rdi with φi(xi) ∈ Rdi .
Currently the Tree-AMP package only supports isotropic Gaussian beliefs (Example 5) but
we plan to include more generic Gaussian beliefs (Examples 6-8) in future versions of the
package. The relaxed Bethe variational problem:

Fφ(y) = min
(p̃V ,p̃F )∈Mφ

FBethe[p̃V , p̃F ] ' F (y) at

{
p̃?k(xk) ' p(xk | y) for all k ∈ F
p̃?i (xi) ' p(xi | y) for all i ∈ V

(13)

leads to the following solution as proven by (Heskes et al., 2005). Let λi→k ∈ Rdi denotes the
Lagrange multiplier associated to the moment matching constraint Ep̃iφi(xi) = Ep̃kφi(xi).
The (approximate) factor marginal p̃?k(xk) belongs to the exponential family

pk(xk | λk) =
1

Zk[λk]
fk(xk; yk)e

〈λk,φk(xk)〉, Zk[λk] =

∫
dxkfk(xk; yk)e

〈λk,φk(xk)〉 (14)
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with natural parameter and sufficient statistics

λk = (λi→k)i∈∂k, φk(xk) = (φi(xi))i∈∂k , 〈λk, φk(xk)〉 =
∑
i∈∂k
〈λi→k, φi(xi)〉. (15)

The (approximate) variable marginal p̃?i (xi) belongs to the exponential family

pi(xi | λi) =
1

Zi[λi]
e〈λi,φi(xi)〉, Zi[λi] =

∫
dxie

〈λi,φi(xi)〉 (16)

with natural parameter given by

(ni − 1)λi =
∑
k∈∂i

λi→k, (17)

or introducing the factor-to-variable messages λk→i = λi − λi→k:

λi =
∑
k∈∂i

λk→i. (18)

The moment matching condition can be written as:

µ?i = µi[λi] = µki [λk] (19)

where µi[λi] = Epi(xi|λi)φi(xi) and µki [λk] = Epk(xk|λk)φi(xi) are the moments of the variable
xi as estimated by the variable and factor marginal respectively. This is the fixed point
searched by the EP algorithm (Minka, 2001a).

Example 5 (Isotropic Gaussian belief) It corresponds to the sufficient statistics φi(xi) =
(xi,−1

2‖xi‖2) so di = Ni + 1. The associated natural parameters are λi = (bi, ai) with
bi ∈ RNi and scalar precision ai ∈ R+. The inner product leads to an isotropic Gaussian

belief e〈λi,φi(xi)〉 = e−
ai
2
‖xi‖2+bᵀi xion xi.

Example 6 (Diagonal Gaussian belief) It corresponds to the sufficient statistics φi(xi) =
(xi,−1

2x
2
i ) so di = 2Ni and the precision ai ∈ RNi+ is a vector.

Example 7 (Full covariance Gaussian belief) It corresponds to the sufficient statis-

tics φi(xi) = (xi,−1
2xix

ᵀ
i ) so di = Ni + Ni(Ni+1)

2 and the precision ai is a Ni ×Ni positive
symmetric matrix. Note however that such a belief will be computationally demanding as
inverting the precision matrix will take O(N3

i ) time.

Example 8 (Structured Gaussian beliefs) When the high dimensional variable xi has
an inner structure with multiple indices, a more complex covariance structure can be envi-
sioned. For instance in the low rank matrix factorization problem (Example 2) Lesieur et al.
(2017) consider for U ∈ RN×r a Gaussian belief with a full covariance in the second coordi-
nate but diagonal in the first. In other words the low rank matrix U = (Un)Nn=1 is viewed as
a collection of vectors Un ∈ Rr with sufficient statistics φ(U) = (Un,−1

2UnU
ᵀ
n)Nn=1, natural

parameters λU = (bn, an)Nn=1 with bn ∈ Rr and an is a r × r positive symmetric matrix.

Then dU = Nr +N r(r+1)
2 and λU = (bU , aU ) with bU ∈ RN×r and aU ∈ RN×r×r.
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2.4 Moments and Natural Parameters Duality

As the solution of the relaxed Bethe variational problem involves exponential family distri-
butions, it is useful to recall some of their basic properties (Wainwright and Jordan, 2008).
The log-partitions

Ak[λk] = lnZk[λk] = ln

∫
dxk fk(xk; yk) e

〈λk,φk(xk)〉 , (20)

Ai[λi] = lnZi[λi] = ln

∫
dxi e

〈λi,φi(xi)〉 , (21)

are convex functions and provide the bijective mappings between the convex set of natural
parameters and the convex set of moments:

µk[λk] = Epk(xk|λk)φk(xk) = ∂λkAk[λk] , (22)

µi[λi] = Epi(xi|λi)φi(xi) = ∂λiAi[λi] , (23)

and the inverse mappings are given by:

λk[µk] = ∂µkGk[µk] , (24)

λi[µi] = ∂µiGi[µi] , (25)

where Gi[µi] and Gk[µk] are the Legendre transformations (convex conjugates) of the log-
partitions and are equal to the KL divergence and the negative entropy respectively:

Gk[µk] = max
λk
〈λk, µk〉 −Ak[λk] = KL[pk(xk | λk)‖fk(xk; yk)] , (26)

Gi[µi] = max
λi
〈λi, µi〉 −Ai[λi] = −H[pi(xi | λi)] . (27)

We recall that for the factor marginal the natural parameter, sufficient statistics and inner
product are given by Eq. (15). The corresponding moment is µk = (µki )i∈∂k and the mapping
Eq. (22) and the inner product in Eq. (26) are explicitly:

µki [λk] = Epk(xk|λk)φi(xi) = ∂λi→kAk[λk] for all i ∈ ∂k, (28)

〈λk, µk〉 =
∑
i∈∂k
〈λi→k, µki 〉. (29)

Example 9 (Duality for isotropic Gaussian beliefs) Let us consider isotropic Gaus-
sian beliefs (Example 5) with natural parameters λi = (bi, ai) ∈ RNi × R+. The corre-
sponding moments µi = (ri,−Ni

2 τi) are the mean ri = Epixi ∈ RNi and second moment

τi = Epi
‖xi‖2
Ni
∈ R+. The variable marginal Eq. (16) is the isotropic Gaussian

pi(xi | ai, bi) = e−
ai
2
‖xi‖2+bᵀi xi−Ai[bi,ai] = N (xi | ri, vi) (30)

with mean ri ∈ RNi and variance vi ∈ R+. The mapping between the two parametrizations
is particularly simple:

ri =
bi
ai
, vi =

1

ai
and bi =

ri
vi
, ai =

1

vi
. (31)

10
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The variable log-partition

Ai[ai, bi] =
‖bi‖2
2ai

+
Ni

2
ln

2π

ai
, (32)

gives consistently the forward mapping ri = ∂biAi = bi
ai

and −Ni
2 τi = ∂aiAi with τi =

‖ri‖2
Ni

+ vi and vi = 1
ai

. The variable negative entropy

Gi[ri, τi] = −Ni

2
ln 2πevi with vi = τi −

‖ri‖2
Ni

(33)

gives consistently the inverse mapping bi = ∂riGi = ri
vi

and −Ni
2 ai = ∂τiGi with ai = 1

vi
. The

moment matching condition Eq. (19) is equivalent to match the mean ri = rki and isotropic
variance vi = vki . The factor marginal Eq. (14) is the factor titled by Gaussian beliefs:

pk(xk | ak, bk) = f(xk; yk)e
− 1

2
ak‖xk‖2+bᵀkxk−Ak[ak,bk] (34)

where following Eq. (15) we denote compactly the inner product by:

−ak
2
‖xk‖2 + bᵀkxk =

∑
i∈∂k
−ai→k

2
‖xi‖2 + bᵀi→kxi (35)

The factor log-partition, mean and isotropic variance are explicitly given by:

Ak[ak, bk] = ln

∫
dxk f(xk; yk) e

− 1
2
ak‖xk‖2+bᵀkxk , (36)

rki [ak, bk] = Epk(xk|ak,bk)xi = ∂bi→kAk[ak, bk], (37)

vki [ak, bk] = 〈Varpk(xk|ak,bk)(xi)〉 = 〈∂2
bi→k

Ak[ak, bk]〉 (38)

where 〈·〉 denotes the average over components. Several factor log-partitions with isotropic
Gaussian beliefs are given in Appendix E.

2.5 Tree Decomposition of the Free Energy

We now present several but equivalent free energy formulations of the EP and AMP algo-
rithms. The expectation consistency (EC) Gibbs free energy (Opper and Winther, 2005b)
is a function defined over the posterior moments µV = (µi)i∈V :

G[µV ] =
∑
k∈F

Gk[µk] +
∑
i∈V

(1− ni)Gi[µi] where µk = (µi)i∈∂k. (39)

The EP free energy (Minka, 2001b) is a function defined over the variable λV = (λi)i∈V
and factor λF = (λk)k∈F natural parameters:

A[λV , λF ] =
∑
k∈F

Ak[λk] +
∑
i∈V

(1− ni)Ai[λi]. (40)

11
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The Tree-AMP free energy is the same as the EP free energy but is parameterized in term
of factor to variable messages and variable to factor messages λE = (λk→i, λi→k)(i,k)∈E :

A[λE ] =
∑
k∈F

Ak[λk]−
∑

(i,k)∈E

Ai[λ
k
i ] +

∑
i∈V

Ai[λi], (41)

where λk = (λi→k)i∈∂k λki = λi→k + λk→i, λi =
∑
k∈∂i

λk→i. (42)

The parametrization Eq. (42) in term of messages has a nice interpretation: the variable
natural parameter is the sum of the incoming messages (coming from the neighboring fac-
tors), the factor natural parameter is the set of the incoming messages (coming from the
neighboring variables).

Proposition 2 The relaxed Bethe variational problem Eq. (13) can be formulated in term
of the posterior moments using the EC Gibbs free energy, in term of the factor and variable
natural parameters using the EP free energy, or in term of the natural parameters messages
using the Tree-AMP free energy:

Fφ(y) = min
µV

G[µV ] (43)

= min
λV

max
λF
−A[λV , λF ] s.t. ∀i ∈ V : (ni − 1)λi =

∑
k∈∂i

λi→k (44)

= min extr
λE
−A[λE ]. (45)

Besides, any stationary point of the free energies (not necessarily the global optima) is an
EP fixed point:

µi = µki , (ni − 1)λi =
∑
k∈∂i

λi→k. (46)

The min extrλE notation in Eq. (45) means to search for stationary (in general saddle)
points of A[λE ] and among these critical points select the minimizer of G.

2.5.1 Proofs

There are several but separate derivations of these equivalences in the literature. In (Minka,
2001b) the optimization problem Eq. (44) is shown to lead to the EP algorithm, where
A[λV , λF ] is called the EP dual energy function while the relaxed Bethe variational problem
is called the EP primal energy function. Opper and Winther (2005a,b) further show that
the minimization Eq. (43), or equivalently the dual saddle point problem Eq. (44), yields the
so-called EC approximation of − lnZN (y), here denoted by Fφ(y). The EC approximation
is presented for a very simple factor graph with only one variable x and two factors fq(x) and
fr(x) but can be straightforwardly extended to a tree-structured factor graph which yields
A[λV , λF ] and G[µV ]. Finally, Heskes et al. (2005) unify the two formalisms as solutions to
the relaxed Bethe variational problem, and a similar approach is presented in (Wainwright
and Jordan, 2008) using an extended exponential family distribution. Proposition 2 is the
straightforward application of these ideas to the tree-structured models considered in this
manuscript. We present in Appendix A a condensed proof for the reader convenience using
the duality between moments and natural parameters.

12
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2.5.2 Exact Tree Decomposition

The Bethe, EC Gibbs, EP and Tree-AMP free energies all follow the same tree decom-
position: a sum over factors − sum over edges + sum over variables. The same tree
decomposition holds for the Helmholtz free energy F (y) and the EC approximation Fφ(y).
Indeed F (y) is simply the Bethe free energy evaluated at the true marginals according to
Eq. (11) and Fφ(y) is the EP/EC Gibbs/Tree-AMP free energy evaluated at the optimal
EP fixed point according to Proposition 2. This tree decomposition is at the heart of the
modularization (Section 2.8) in the Tree-AMP package. We emphasize that this tree de-
composition is exact, the approximate part in the inference comes from relaxing the full
consistency of the marginals to moment-matching, which effectively projects the marginals
onto exponential family approximate marginals Eq. (14) and Eq. (16) indexed by a finite-
dimensional natural parameter. It is this projection of the beliefs onto finite-dimensional
exponential family distributions which makes the inference tractable. Note however that
the factor log-partition Eq. (20) involves an integration over the high-dimensional factor
fk(xk; yk) and can still be a challenge to compute or approximate. See Section 2.8 for the
kind of factors that the Tree-AMP package can currently handle.

2.5.3 Iterative Schemes

The fixed point Eq. (46) consists of the moment matching constraint µi = µki and the
natural parameter constraint (ni − 1)λi =

∑
k∈∂i λi→k. The three optimization problems

in Proposition 2 suggest different iterative schemes to reach this fixed point. As shown
by (Minka, 2001b; Heskes et al., 2005), the optimization Eq. (44) of the EP free energy
naturally suggests the EP algorithm, where the natural parameter constraint is enforced
at each iteration. The iterative scheme suggested by the Tree-AMP free energy will be
presented in Section 2.6. The direct minimization Eq. (43) of the EC Gibbs free energy
enforces the moment-matching constraint at each iteration. Note that the EC Gibbs free
energy is in general not convex (Opper and Winther, 2005b) because:

G[µV ] =
∑
k∈F

Gk[µk]︸ ︷︷ ︸
convex

+
∑
i∈V

(1− ni)︸ ︷︷ ︸
≤0

Gi[µi]︸ ︷︷ ︸
convex

(47)

Message passing procedures can only aim1 at a local minimum. According to Eq. (43),
the global minimum / minimizer is expected to give the best approximation Fφ(y) of the
surprisal / posterior moments. The algorithm is said to be in a computational hard phase
if on typical instances the message passing procedure converges towards a sub-optimal
minimum.

2.5.4 Connection with AMP

Finally we note that many AMP algorithms, such as LowRAMP (Lesieur et al., 2017) for
the low-rank matrix factorization problem, GAMP (Zdeborová and Krzakala, 2016) for the
GLM, or (Kabashima et al., 2016) for the extensive rank matrix factorization problem,

1. Actually the EP and Tree-AMP algorithms are not even guaranteed to converge, although damping the
updates often works in practice. The double loop algorithm (Heskes and Zoeter, 2002) is guaranteed to
converge but is usually very slow.
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also follow a free energy formulation. The corresponding AMP free energies can be shown
to be equivalent to Proposition 2 through appropriate Legendre transformations using the
moment/natural parameter duality. They therefore seek the same fixed point Eq. (46)
but yield another iterative schemes (the AMP algorithms) to find this fixed point. The
EC Gibbs free energy is actually equal to the so-called variational Bethe energy in AMP
literature (Examples 10-12). This is quite remarkable as the derivation of AMP algorithms
and corresponding variational Bethe free energies follows a different path. In contrast with
the approach presented here, it starts by unfolding the factor graph at the level of individual
scalar components (as a result the factor graph is dense and far from being a tree) and then
considers the relaxation obtained in the asymptotic limit (Zdeborová and Krzakala, 2016).
The tree decomposition in Proposition 2 (at the level of the high-dimensional factors and
variables) is usually recovered “after the fact”.

Remark 3 (Variable neighbored by two factors) When the variable, say x, has two
factor neighbors, say f− and f+, the fixed point messages must satisfy:

λ+
x
.
= λf−→x = λx→f+ , λ−x

.
= λf+→x = λx→f− . (48)

x
f− f+

λ+
x λ+

x

λ−x λ−x

In many cases, for instance all the models in Figure 1 except (b), each variable has only
two factor neighbors, the reparametrization Eq. (48) allows to reduce by half the number of
messages. We use this reparametrization in the Examples 10-12 discussed below.

Example 10 (GLM) The Tree-AMP free energy for the GLM (Example 1), with isotropic
Gaussian beliefs (Example 5), is given by:

A[a±x , b
±
x , a

±
z , b
±
z ]

= Ap0 [a−x , b
−
x ] +AW [a+

x , b
+
x , a

−
z , b
−
z ] +Apout [a

+
z , b

+
z ]−Ax[ax, bx]−Az[az, bz] (49)

where ax = a+
x + a−x , bx = b+x + b−x (idem z). The factor log-partitions are given in Ap-

pendix E. The EC Gibbs free energy is given by:

G[rx, τx, rz, τz] = Gp0 [rx, τx] +Gpout [rz, τz]− G̃W [rx, τx, rz, τz] (50)

with G̃W = Gx+Gz−GW given in Appendix E.2.6 for a generic linear channel. In particular
when the matrix W has iid entries (Appendix E.2.7) one recovers exactly the variational
Bethe free energy of (Krzakala et al., 2014) which is shown to be equivalent to the GAMP
free energy.
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Example 11 (Low rank matrix factorization) The Tree-AMP free energy for the low
rank factorization (Example 2), with isotropic (Example 5) or structured (Example 8) Gaus-
sian beliefs on U and V , and diagonal Gaussian beliefs (Example 6) on Z, is given by:

A[a±U , b
±
U , a

±
V , b
±
V ]

= ApU [a−U , b
−
U ] +ApV [a−V , b

−
V ] +Aδ[a

+
U , b

+
U , a

+
V , b

+
V ; a−Z , b

−
Z ]−AU [aU , bU ]−AV [aV , bV ] (51)

where aU = a+
U + a−U , bU = b+U + b−U (idem V ). The factor log-partitions are given in

Appendix E. In the large N limit, the output channel do not contribute to the free energy
and its net effect is to send the constant messages:

a−Z = −∂2
z ln pout(y | z)|z=0,y=Y , b−Z = ∂z ln pout(y | z)|z=0,y=Y , (52)

a phenomenon known as channel universality in (Lesieur et al., 2017). The messages
a−Z , b

−
Z ∈ RN×M are thus viewed as fixed parameters. The EC Gibbs free energy is given by:

G[rU , τU , rV , τV ] = GpU [rU , τU ] +GpV [rV , τV ]− G̃δ[rU , τU , rV , τV ; a−Z , b
−
Z ] (53)

where G̃δ = GU+GV −Gδ is derived in (Lesieur et al., 2017) using a Plefka-Georges-Yedidia
expansion (Plefka, 1982; Georges and Yedidia, 1991), which is asymptotically exact in the
large N limit:

G̃δ[rU , τU , rV , τV ; a−Z , b
−
Z ]

=
1

2

N∑
n=1

M∑
m=1

(b−Z )2
nm

N
Tr(Σn

UΣm
V ) + 2

(b−Z )nm√
N

(rUr
T
V )nm −

(a−Z )nm
N

Tr τnUτ
m
V (54)

One recovers exactly2 the variational Bethe free energy of (Lesieur et al., 2017) which is
shown to be equivalent to the LowRAMP free energy.

Example 12 (Extensive rank matrix factorization) The Tree-AMP free energy for the
extensive rank factorization (Example 3), with diagonal Gaussian beliefs (Example 6), is
given by:

A[a±F , b
±
F , a

±
X , b

±
X , a

±
Z , b
±
Z , ] = ApF [a−F , b

−
F ] +ApX [a−X , b

−
X ] +Aδ[a

+
F , b

+
F , a

+
X , b

+
X , a

−
Z , b
−
Z ]

−AF [aF , bF ]−AX [aX , bX ]−AZ [aZ , bZ ] (55)

where aF = a+
F + a−F , bF = b+F + b−F (idem X,Z). The factor log-partitions are given in

Appendix E. Contrary to the low rank case, the output channel does contribute to the free
energy and the messages a−Z , b

−
Z are no longer constant. The EC Gibbs free energy is given

by:

G[rF , τF , rX , τX ] = GpF [rF , τF ]+GpX [rX , τX ]+GpZ [rZ , τZ ]−G̃δ[rF , τF , rX , τX , rZ , τZ ] (56)

2. We think there is a typo in Eq. (111) of (Lesieur et al., 2017) and that Eq. (54) is the correct expression.
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One recovers exactly the variational Bethe free energy of (Kabashima et al., 2016), which
is shown to be equivalent to the AMP free energy, with G̃δ = GF +GX +GZ −Gδ given by:

G̃δ[rF , τF , rX , τX , rZ , τZ ] = −1

2

M∑
m=1

P∑
p=1

vmpZ
Vmp

+ ln 2πVmp +
(vF vX)mp

N
g2
mp

with g =
rZ − rF rX√

N
vF vX
N

, V =
vF vX + r2

F vX + vF r
2
X

N
=
τF τX − r2

F r
2
X

N
. (57)

However we warn the reader that the derivation of (Kabashima et al., 2016) wrongly assumes
that Z behaves as a multivariate Gaussian as pointed out by (Maillard et al., 2022). In
consequence the free energy is not asymptotically exact and we expect the AMP algorithm of
(Kabashima et al., 2016) to be sub-optimal. See (Maillard et al., 2022) for the corrections
to the expression Eq. (57) of G̃δ.

2.6 Tree-AMP Implementation of Expectation Propagation

The Tree-AMP implementation of EP works with the full set of messages (λk→i, λi→k)(i,k)∈E .
Due to the parametrization Eq. (42) and the moment functions Eqs (23) and (28), a sta-
tionary point of A[λE ] satisfies:

∂λk→iA[λE ] = 0 =⇒ µi[λ
k
i ] = µi[λi] =⇒ λki = λi , (58)

∂λi→kA[λE ] = 0 =⇒ µi[λ
k
i ] = µki [λk] =⇒ λki = λi[µ

k
i [λk]] , (59)

which suggests the iterative procedure summarized in Algorithm 1, where E+ denotes a
topological ordering of the edges and E− the reverse ordering.

The message-passing schedule seems the most natural: iterate over the edges in topo-
logical order (forward pass) then iterate in reverse topological order (backward pass) and
repeat until convergence. In fact, if the exponential beliefs and the factors are conjugate3

then the moment-matching is exact and Algorithm 1 is actually equivalent to exact be-
lief propagation, where one forward pass and one backward pass yield the exact marginals
(Bishop, 2006).

Algorithm 1: Generic Tree-AMP algorithm
initialize λi→k, λk→i = 0
repeat

foreach edge e ∈ E+ ∪ E− do // forward and backward pass

if e = k → i then
λki = λi[µ

k
i [λk]] // moment-matching

λnew
k→i = λki − λi→k // message fk → xi

if e = i→ k then
λi =

∑
k′∈∂i λk′→i // posterior

λnew
i→k = λi − λk→i // message xi → fk

until convergence

3. For example Gaussian beliefs and the factors are either linear transform or Gaussian noise, prior or
likelihood
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For isotropic or diagonal Gaussian beliefs (Examples 5 and 6) the moment-matching is
equivalent to match the mean ri = rki and variance vi = vki which leads to Algorithm 2.
When the variable xi has only two neighbor factors, say fk and fl, the xi → fk update is
particularly simple. The variable just passes through the corresponding messages:

anew
i→k = al→i, bnew

i→k = bl→i (60)

in compliance with Remark 3. Algorithm 2 can be straightforwardly extended to full co-
variance and structured Gaussian beliefs (Example 7 and 8) using the moment-matching
update

aki = vki [ak, bk]
−1, bki = vki [ak, bk]

−1rki [ak, bk]

where vki is now a covariance matrix.

Algorithm 2: Expectation propagation in Tree-AMP (Gaussian beliefs)
initialize ai→k, bi→k, ak→i, bk→i = 0
repeat

foreach edge e ∈ E+ ∪ E− do // forward and backward pass

if e = k → i then

aki = 1
vki [ak,bk]

, bki =
rki [ak,bk]

vki [ak,bk]
// moment-matching

anew
k→i = aki − ai→k, bnew

k→i = bki − bi→k // message fk → xi

if e = i→ k then
ai =

∑
k′∈∂i ak′→i, bi =

∑
k′∈∂i bk′→i // posterior

anew
i→k = ai − ak→i, bnew

i→k = bi − bk→i // message xi → fk

until convergence

2.7 MAP Estimation

The Tree-AMP Algorithm can also be used for maximum at posteriori (MAP) estimation,
where the mode of the posterior Eq. (2) is the solution to the energy minimization problem:

x∗ = arg min
x

E(x,y), E(x,y) =
∑
k∈F

Ek(xk; yk) (61)

where Ek(xk; yk) is the energy associated to the factor fk(xk; yk) = e−Ek(xk;yk). Con-
versely any optimization problem of the form Eq. (61), with a tree-structured graph of
penalties/constraints, can be viewed as the MAP estimation of Eq. (2) with pseudo-factors
fk(xk; yk) = e−Ek(xk;yk). Following (Manoel et al., 2018) for the derivation of the TV-
VAMP algorithm, that we generalize to tree-structured models in Appendix B, the MAP
estimation / energy minimization can be derived by introducing an inverse temperature β
in the posterior Eq. (2) and considering the zero temperature limit, as usually done in the
statistical physics literature (Mézard and Montanari, 2009).

Proposition 4 (MAP estimation in Tree-AMP) The energy minimization / MAP es-
timation problem can be formulated as the β →∞ limit of Proposition 2:

min
x
E(x,y) = min extr

aE ,bE
−A[aE , bE ] (62)
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with MAP variable log-partition, mean and variance:

Ai[ai, bi] =
‖bi‖2
2ai

, ri[ai, bi] =
bi
ai
, vi[ai, bi] =

1

ai
, (63)

and MAP factor log-partition, mean and variance:

Ak[ak, bk] =
‖bk‖2
2ak

−M 1
ak
Ek(· ; yk)

(
bk
ak

)
, (64)

rk[ak, bk] = prox 1
ak
Ek(· ; yk)

(
bk
ak

)
, vk[ak, bk] = 〈∂bkrk[ak, bk]〉, (65)

where we introduce the Moreau envelop Mg(y) = minx{g(x) + 1
2‖x− y‖2} and the proximal

operator proxg(y) = arg minx{g(x) + 1
2‖x − y‖2}. A stationary point of A[aE , bE ] can be

searched with the Tree-AMP Algorithm 2. At the optimal fixed point, the “means” (ri)i∈V
actually yield the MAP estimate / minimizer x∗ = (x∗i )i∈V .

The TV-VAMP algorithm is recovered as a special case (Section 2.9). See the discussion
in (Manoel et al., 2018) for the close relationship to proximal methods in optimization
(Parikh and Boyd, 2014), in particular the “variances” (vi)i∈V can be viewed as adaptive
stepsizes in the Peaceman-Rachford splitting.

2.8 Expectation Propagation Modules

In the weak consistency framework, we have the freedom to choose any kind of approximate
beliefs, that is choose a set of sufficient statistics φi for each variable xi. Each choice
leads to a different approximate inference scheme, but all are implemented by the same
message passing Algorithm 1. Of course the algorithm requires each relevant module to
be implemented: in practice the variable xi (resp. factor fk) module should be able to
compute the log-partition Ai[λi] (resp. Ak[λk]) and its associated moment function µi[λi]
(resp. µk[λk]). Note that the definition of the module directly depends on the choice of
sufficient statistics φ, so choosing a different kind of approximate beliefs actually leads
to a distinct module. Currently the Tree-AMP package only supports isotropic Gaussian
beliefs (Example 5) but we plan to include more generic Gaussian beliefs (Examples 6-
8) in future versions of the package. The corresponding variable log-partition Ai[ai, bi],
mean ri[ai, bi] and variance ri[ai, bi] and factor log-partition Ak[ak, bk], mean rk[ak, bk] and
variance vk[ak, bk] are presented in Example 9. The implementation is detailed in the
documentation4. We list below the modules considered in Tree-AMP.

2.8.1 Variable Modules

A list of approximate beliefs is presented in Appendix E.1. As shown, such beliefs can
be defined over many types of variable: binary, sparse, real, constrained to an interval, or
circular for instance. The associated variable modules correspond to well known exponential
family distributions, including the Gauss-Bernoulli for a sparse variable. Even if the Tree-
AMP package only implements isotropic Gaussian beliefs, the variable modules are useful
to derive the factor modules.

4. See https://sphinxteam.github.io/tramp.docs/0.1/html/implementation.html
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2.8.2 Analytical vs Approximate Factor Modules

Note that the factor log-partition Eq. (20) involves the high-dimensional factor fk(xk; yk)
and can thus be a challenge to compute or approximate. Nonetheless, many factor modules
implemented in the Tree-AMP package can be analytically derived, which means provid-
ing an explicit formula for the factor log-partition Ak[ak, bk], mean rk[ak, bk] and variance
vk[ak, bk]. The following analytical modules are derived in Appendix E:

• linear channels which include the rotation channel, the discrete Fourier transform and
convolutional filters as special cases;

• separable priors such as the Gaussian, binary, Gauss-Bernoulli, and positive priors;

• separable likelihoods such as the Gaussian or a deterministic likelihood like observing
the sign, absolute value, modulus or phase;

• separable channels such as additive Gaussian noise or the piecewise linear activation
channel.

For other modules, that we did not manage to obtain analytically, one resorts to an approx-
imation or an algorithm to estimate the log-partition Ak[ak, bk] and the associated mean
rk[ak, bk] and variance vk[ak, bk]. One such example in the Tree-AMP package is the low
rank factorisation module Z = UV ᵀ

√
N

, for which we use the AMP algorithm developed in

(Lesieur et al., 2017) to estimate Ak[ak, bk], rk[ak, bk] and vk[ak, bk].

2.8.3 MAP Modules

The maximum a posteriori (MAP) modules are worth mentioning especially due to their
connection to proximal methods in optimization (Parikh and Boyd, 2014). They are of
course used in MAP estimation (Section 2.7) – where all modules are MAP modules – or can
be used in isolation for a specific factor to approximate. Indeed, for any factor fk(xf ; yk) =
e−Ek(xk;yk), one can use the Laplace method to obtain the MAP approximation Eqs (64)-
(65) to the log-partition, mean and variance. Two such MAP modules are implemented in
the Tree-AMP package for the penalties E(x) = λ‖x‖1 and E(x) = λ‖x‖2,1 associated to
the `1 and `2,1 norms. We recall that the `2,1 norm is defined as:

‖x‖2,1 =

N∑
n=1

‖xn‖2 =

N∑
n=1

√√√√ d∑
l=1

x2
ln for x ∈ Rd×N . (66)

The corresponding proximal operators are the soft thresholding and group soft thresholding
operators.

2.9 Related Algorithms

We recover several algorithms as special cases of Algorithm 2. For instance the G-VAMP
(Schniter et al., 2017), TV-VAMP (Manoel et al., 2018) and ML-VAMP (Fletcher et al.,
2018) algorithms correspond respectively to the factor graphs Figure 1 (a), (b) and (d). In
this subsection, we make explicit the equivalence with these algorithms and argue that the
modularity of Tree-AMP allows to tackle a greater variety of inference tasks and optimization
problems.
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+
l−1 a−l b
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−
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l b
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l

Figure 2: Message passing in ML-VAMP. (a) Multi-layer generalized linear model. (b) The
variable zl passes through the forward message a+

l b
+
l (green) during the forward

pass, and the backward message a−l b
−
l (red) during the backward pass. (c) The

factor pl always takes as inputs the messages a+
l−1b

+
l−1 and a−l b

−
l (blue). It outputs

the message a+
l b

+
l (green) during the forward pass, and the message a−l−1b

−
l−1 (red)

during the backward pass.

2.9.1 Inference in Multi-Layer Networks

The ML-VAMP algorithm (Fletcher et al., 2018) performs inference in multi-layer networks
such as Figure 1 (d). The one layer case reduces to the G-VAMP algorithm (Schniter et al.,
2017) for GLM such as Figure 1 (a). Following Fletcher et al. (2018) let us consider the
multi-layer model:

p(z) =

L∏
l=0

pl(zl | zl−1) (67)

where z = {zl}Ll=0 includes the measurement y = zL and the signals x = {zl}L−1
l=0 to

infer. The corresponding factor graph is displayed in Figure 2 (a). The model generally
consists of a succession of linear channels (with possibly a bias and additive Gaussian
noise) and separable non-linear activations; however, it is not necessary to specify further
the architecture as all factors are treated on the same footing in both ML-VAMP and
Algorithm 2.

We are interested in the isotropic Gaussian beliefs version of Algorithm 2. According
to Eq. (60), the zl → pl+1 update during the forward pass leads to

a+
l
.
= azl→pl+1

= apl→zl , b+l
.
= bzl→pl+1

= bpl→zl , (68)

while the zl → pl update during the backward pass leads to

a−l
.
= azl→pl = apl+1→zl , b−l

.
= bzl→pl = bpl+1→zl . (69)

Each variable in Figure 2 (a) has exactly two neighbors, so each variable just passes through
the corresponding messages as illustrated in Figure 2 (b).
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The pl → zl update during the forward pass leads to

rl = rplzl [a
+
l−1, b

+
l−1, a

−
l , b
−
l ], vl = vplzl [a

+
l−1, b

+
l−1, a

−
l , b
−
l ], (70)

al =
1

vl
, bl =

rl
vl
, a+

l = al − a−l , b+l = bl − b−l . (71)

while the pl → zl−1 update during the backward pass leads to

rl−1 = rplzl−1
[a+
l−1, b

+
l−1, a

−
l , b
−
l ], vl−1 = vplzl−1

[a+
l−1, b

+
l−1, a

−
l , b
−
l ], (72)

al−1 =
1

vl−1
bl−1 =

rl−1

vl−1
, a−l−1 = al−1 − a+

l−1, b−l−1 = bl−1 − b+l−1. (73)

as illustrated in Figure 2 (c). The ML-VAMP forward pass computes rl and vl using Eq. (70)
and updates the message according to Eq. (71) where these quantities in (Fletcher et al.,
2018) are denoted by:

a±l = γ±l , b±l = γ±l r
±
l , rl = ẑ+

l , al = η+
l . (74)

Similarly the backward pass in the ML-VAMP algorithm is equivalent to Eqs (72) and (73).
Finally the equivalence also holds for the prior p0(z0) and the likelihood pL(y|zL−1). The
prior is only used during the forward pass, it receives the backward message a−0 , b

−
0 as input

and outputs the forward message a+
0 , b

+
0 . The likelihood is only used during the backward

pass, it receives the forward message a+
L−1, b

+
L−1 as input and outputs the backward message

a−L−1, b
−
L−1.

Therefore the EP Algorithm 2 with isotropic Gaussian beliefs is exactly equivalent to
the ML-VAMP algorithm. It offers a direct generalization to any tree-structured model, for
instance the tree network of GLMs considered in (Reeves, 2017).

2.9.2 Optimization with Non-Separable Penalties

We now turn to the TV-VAMP algorithm (Manoel et al., 2018) designed to solve optimiza-
tion problem of the form:

x∗ = arg min
1

2∆
‖y −Ax‖2 + λf(Kx). (75)

This corresponds to the MAP estimate (Section 2.7) for the factor graph displayed in
Figure 3. Of particular interest is the case K = ∇ and f(z) = ‖z‖2,1 which is identical to
the total variation penalty for x.

We are interested in the version of Algorithm 2 with isotropic Gaussian beliefs on all
variables except x for which we consider a full covariance belief. The penalty term λf would
correspond to a factor e−λf(z) in a probabilistic setting, but here we are only considering
the MAP module for which the mean and variance are given by Eq. (65):

rf [af , bf ] = η λ
af

(
bf
af

)
, vf [af , bf ] =

1

af

〈
∇η λ

af

(
bf
af

)〉
, (76)

where we introduce the function ηλ(x) = proxλf (x) following Manoel et al. (2018).
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Figure 3: Message passing in TV-VAMP.

First note that each variable in Figure 3 has exactly two neighbors. According to
Eq. (60) the message passing is then particularly simple: the variable just passes through
the corresponding messages. The Gaussian likelihood ∆ (Appendix E.4.5) leads to the
messages:

aa→A = a∆→a =
1

∆
, ba→A = b∆→a =

y

∆
, (77)

and the linear channel A with full covariance belief on x (Appendix E.2.15) leads to the
messages:

ax→K = aA→x =
AᵀA

∆
, bx→K = bA→x =

Aᵀy

∆
. (78)

This stream of constant messages from the likelihood ∆ up to factor K is displayed on
Figure 3. The K → z update for the linear channel K with isotropic belief on z (Ap-
pendix E.2.1) leads to the messages:

rKx = ΣK
x

[
Aᵀy

∆
+Kᵀbz→K

]
, ΣK

x =

[
AᵀA

∆
+ az→KK

ᵀK

]−1

, (79)

rKz = KrKx , vKz =
1

Nz
Tr
[
KΣK

x K
ᵀ] , (80)

az→f = aK→z =
1

vKz
− az→K , bz→f = bK→z =

rKz
vKz
− bz→K , (81)

and the f → z update for the MAP module λf leads to the messages:

rfz = η λ
az→f

(
bz→f
az→f

)
, vfz =

1

az→f

〈
∇η λ

az→f

(
bz→f
az→f

)〉
, (82)

az→K = af→z =
1

vfz
− az→f , bz→K = bf→z =

rfz

vfz
− bz→f . (83)

In (Manoel et al., 2018) the following quantities at iteration t are denoted by:

az→K = ρt, bz→K = ut, rKx = xt, vKz = σtx, rfz = zt, vfz = σtz (84)

Then Eqs (79), (82) and (83) are exactly equivalent to the Eqs (24), (25) and (26) of (Manoel
et al., 2018) defining the TV-VAMP algorithm.
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As discussed in greater detail by Manoel et al. (2018), the TV-VAMP algorithm is
closely related to proximal methods: it can be viewed as the Peaceman-Rachford splitting
where the step-size ρt is set adaptively. Then Algorithm 2 offers a generalization to any
optimization problem for which the factor graph of penalty/constraints is tree-structured
(Section 2.7). For instance, while the TV-VAMP can only solve linear regression with a
TV penalty, Algorithm 2 can be easily applied to a classification setting: one just needs to
replace the Gaussian likelihood ∆ by the appropriate likelihood. Also Algorithm 2 offers
more flexibility in designing the approximate inference scheme: for example one can choose
isotropic or diagonal Gaussian belief for x to alleviate the computational burden of inverting
a matrix in Eq. (79).

2.10 EP, EC, AdaTAP and Message-Passing

There is a long history behind the methods used in this section and the literature on
statistical physics. In particular, broadening the class of matrices amenable to mean-field
treatments was the motivation behind a decades long series of works.

Parisi and Potters (1995) were among the pioneers in this direction by deriving mean-
field equations for orthogonal matrices. The adaTAP approach of Csató et al. (2001),
and their reinterpretation as a particular case of the expectation propagation algorithm
(Minka, 2001a) allowed for a generic reinterpretation of these ideas as an approximation
of the log partition named expectation consistency (EC) (Heskes et al., 2005; Opper and
Winther, 2005a,b). Many works then applied these ideas to problems such as the perceptron
(Shinzato and Kabashima, 2008b,a; Kabashima, 2003).

All these ideas were behind the recent renewal of interest of message-passing algorithms
with generic rotationally invariant matrices (Schniter et al., 2017; Ma and Ping, 2017;
Çakmak et al., 2014, 2016). In a recent work, Maillard et al. (2019) showed the consistency
and the equivalence of these approaches.

3. State Evolution and Free Entropy

In this section we present an heuristic derivation of the free entropy and state evolution
formalisms for the tree-structured models considered in Section 2.1. There is now a very vast
literature on the state evolution and free entropy formalisms applied to machine learning
models (Zdeborová and Krzakala, 2016) so an exhaustive review is beyond the scope of
this manuscript, however see Examples 13 and 14 for some representative prior works. Our
primary goal in this section is to tie these results together in an unifying framework, extend
them to tree-structured factor graphs and justify the modularization of the free entropy
and state evolution as done in the Tree-AMP package.

We first heuristically derive the so-called replica free entropy (Mézard and Montanari,
2009) using weak consistency (Heskes et al., 2005) on the overlaps. We expect our formulas
to be valid only when the overlaps are the relevant order parameters needed to describe
the ensemble average. The replica symmetric solution is exposed in Section 3.3 and we
present more specifically the Bayes-optimal setting in Section 3.4. The solution is easily
interpreted as local ensemble averages defined for each factor and variable and allows us
to conjecture the state evolution of the EP Algorithm 2. This effective ensemble average
is at the heart of the modularization of the free entropy and state evolution formalisms in

23



Baker, Aubin, Krzakala and Zdeborová

the Tree-AMP package. We express the free entropy potentials using information theoretic
quantities in Section 3.5 and recover (Reeves, 2017) formalism as a special case. Finally we
briefly list the state evolution modules currently implemented in the Tree-AMP package. We
emphasize that the derivation is non-rigorous and largely conjectural, however we recover
many replica free entropies and state evolutions previously derived for specific models, that
are conjectured to be exact or even rigorously proven in some cases (Examples 13 and 14).

Example 13 (Multi-layer and tree network of GLMs) A very general setting is the
tree network of GLMs proposed by Reeves (2017), which includes the GLM and multi-layer
network as special cases. A key assumption in such models is that the weight matrices in
linear channels are drawn from an orthogonally invariant ensemble. The state evolution is
rigorously proven in the multi-layer case (Fletcher et al., 2018) for the corresponding ML-
VAMP algorithm. The replica free entropy for the multi-layer case is derived in (Gabrié
et al., 2018). When the entries of the weight matrices are iid Gaussian (a special case
of an orthogonally-invariant ensemble) the replica free entropy was further be shown to be
rigorous in the compressed sensing (Reeves and Pfister, 2016) and GLM (Barbier et al.,
2019) cases.

Example 14 (Low rank matrix factorization) The replica free entropy for the low-
rank matrix factorization problem (Example 2) and the state evolution of the LowRAMP
algorithm are derived in (Lesieur et al., 2017). The replica free entropy was further shown
to be rigorous in (Miolane, 2017; Lelarge and Miolane, 2019). Stacking a multi-layer GLM
with a low rank factorization model was considered in (Aubin et al., 2019).

3.1 Model Settings

In this subsection we first present the teacher-student scenario and its high-dimensional
limit. Then we give a brief introduction to the replica free entropy computation. In partic-
ular we define the overlaps, that are here assumed to be the relevant order parameters to
describe the ensemble average.

3.1.1 Teacher-Student Scenario

We will consider a generic teacher-student scenario where the teacher generates the signals
x(0) and measurements y. The student is only given the measurements y and must infer
the signals. The teacher generative model is a tree-structured factor graph:

p(0)(x(0),y) =
1

Z
(0)
N

∏
k∈F

f
(0)
k (x

(0)
k ; yk), Z

(0)
N =

∫
dx(0)dy

∏
k∈F

f
(0)
k (x

(0)
k ; yk), (85)

where x(0) = (x
(0)
i )i∈V are the (ground truth) signals and y = (yj)j∈O the measurements,

see Section 2.1 for more information on the factor graph notation. For the student, we will
assume the same tree factorization as the teacher, however the student factors fk(xk; yk)
can be mismatched. The student generative model is given by Eq. (1) and the student
posterior by Eq. (2). The student posterior mean, variance and second moment are given
by:

ri(y) = Ep(x|y)xi, vi(y) = 〈Varp(x|y)xi〉, τi(y) = Ep(x|y)
‖xi‖2
Ni

=
‖ri(y))‖2

Ni
+vi(y). (86)
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The mismatched setting corresponds to the case where at least one of the student factors
is mismatched. On the opposite, the Bayes-optimal setting refers to the case where all the

student factors match the teacher factors fk(xk; yk) = f
(0)
k (xk; yk), consequently the student

and teacher generative models are identical p(x,y) = p(0)(x,y) and the student posterior
Eq. (2) is indeed Bayes-optimal, in particular the posterior mean ri(y) is the minimal
mean-squared-error (MMSE) estimator and the posterior variance vi(y) the MMSE.

3.1.2 High-Dimensional Limit

We will consider the high-dimensional limit N → ∞ where each signal xi ∈ RNi is itself a
high-dimensional object with scaling αi = Ni

N = O(1). We will denote by Nk the dimension
of the factor fk (for instance we can choose the dimension of its inputs signals by convention)
and αk = Nk

N = O(1) the corresponding scaling. Finally we will denote αki = Ni
Nk

= O(1) the
scaling of the variable xi wrt the factor fk. In the large N limit we expect the log-partition
to self-average:

AN (y) =
1

N
lnZN (y) ' Ā = lim

N→∞
Ep(0)(y)AN (y) (87)

where the log-partition AN (y) is scaled by N in order to be O(1). The ensemble average Ā
is called the free entropy and gives the cross-entropy up to a constant:

−Ā = lim
N→∞

1

N
H[p(0)(y), p(y)]−AN (88)

where AN = 1
N lnZN is the scaled log-partition associated to the student generative model

Eq. (1) and H[p, q] = −Ep ln q denotes the differential cross-entropy. In particular when the
model is a Bayesian network (Remark 1) ZN = 1 and AN = 0 so the free entropy directly
gives the cross-entropy. The goal of the free entropy formalism is to provide an analytical
expression for Ā and describe the limiting ensemble average.

3.1.3 Replica Free Entropy

The replica trick (Mézard et al., 1987) can be viewed as an heuristic method to compute

A(n) = lim
N→∞

1

N
lnEp(0)(y)ZN (y)n = lim

N→∞

1

N
lnEp(0)(y)e

NnAN (y) (89)

which is interpreted in large deviation theory (Touchette, 2009) as the scaled cumulant
generating function (SCGF) of the log-partition AN (y) = 1

N lnZN (y). If the SCGF is well
defined we can get the ensemble average log-partition as:

Ā =
d

dn
A(n)

∣∣∣∣
n=0

(90)

We can formally decompose Eq. (89) at finite N , before talking the N →∞ limit:

A(n) = A
(n)
N −A

(0)
N , A

(n)
N =

1

N
lnZ

(n)
N , A

(0)
N =

1

N
lnZ

(0)
N , (91)
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where Z
(0)
N is the partition function introduced in Eq. (85) and Z

(n)
N the partition function

of the replicated system:

p(n)({x(a)}na=0,y) =
1

Z
(n)
N

∏
k∈F

{
f

(0)
k (x

(0)
k ; yf )

n∏
a=1

fk(x
(a)
k ; yk)

}
(92)

where x(a) for a = 1 · · ·n denote the n replicas and x(0) the ground truth. The replica free

entropy is obtained by computing Z
(n)
N as if n ∈ N in Eq. (92), but then letting n → 0 in

Eq. (90) as if n was real (Mézard and Montanari, 2009). The replica method is non-rigorous,
however it has been successfully applied for decades and given numerous given exact results,
some of which were later confirmed by rigorous methods. There is therefore a very high
level of trust in the replica method by the statistical physics community.

3.1.4 Overlaps

In the statistical physics literature, the system is said to have a well defined thermodynamic
limit N →∞ if the limiting ensemble average is fully characterized by a few scalar param-
eters (called order parameters). Here we will restrict our analysis to systems where these
order parameters are the overlaps:

φ(x) =

(
x

(a)
i · x

(b)
i

Ni

)
i∈V,0≤a≤b≤n

(93)

which due to the definition of the replicated system Eq. (92) correspond to:

τ
(0)
i = Ep(n)

‖x(0)
i ‖2
Ni

= Ep(0)(x(0))

‖x(0)
i ‖2
Ni

(94)

τi = Ep(n)
‖x(a)

i ‖2
Ni

= Ep(0)(y)τi(y) for all 1 ≤ a ≤ n (95)

mi = Ep(n)
x

(a)
i · x

(0)
i

Ni
= Ep(0)(x(0),y)

ri(y) · x(0)
i

Ni
for all 1 ≤ a ≤ n (96)

q
(ab)
i = Ep(n)

x
(a)
i · x

(b)
i

Ni
for all 1 ≤ a 6= b ≤ n (97)

In the ensemble average, mi denotes the overlap with the ground truth, τ
(0)
i the teacher

prior second moment, and τi is the student posterior second moment. It is difficult to tell
under which conditions (on the high-dimensional factors and their arrangement in a tree
graph) the ensemble average will be fully characterized by the overlaps, and we hope that
future theoretical work could clarify this point. Examples 13 and 14 show however a few
representative models and conditions. For instance in GLMs and network of GLMs the
weight matrices in the linear channels must come from an orthogonally invariant ensemble.
The core of our heuristic derivation of the replica free entropy is to assume weak consistency
on the overlaps Eq. (93). We note that this weak consistency derivation could be extended
by adapting the sufficient statistics Eq. (93) to include other order parameters, if those turn
out to be relevant to describe the ensemble average.
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3.1.5 Replica Symmetry

The system is said to be replica symmetric if the overlap q
(ab)
i between two replicas concen-

trates to a single value qi which is then equal to

qi = Ep(0)(y)

‖ri(y))‖2
Ni

. (98)

In the Bayes-optimal setting, the system will always be replica symmetric (Nishimori, 2001;
Mézard and Montanari, 2009). In the mismatched setting, we expect the system to some-

times exhibit replica symmetry breaking, where the overlap q
(ab)
i between two replicas con-

verges instead to a discrete distribution:

P (qi) =

R∑
r=0

πrδ(qi − qri ), q0
i ≤ . . . ≤ qRi . (99)

This situation is called R-level symmetry breaking and the cumulative sr =
∑r

r′=0 πr′ which
satisfy 0 ≤ s0 ≤ . . . ≤ sR = 1 are called the Parisi parameters (Mézard and Montanari,
2009). The system can also undergo full replica symmetry breaking where the overlap
distribution has a continuous part. In this manuscript, we focus on the replica symmetric
solution, the replica symmetry breaking solution is deferred to a forthcoming publication.

3.2 Teacher Prior Second Moments

The replica symmetric solution requires the teacher prior second moments τV = (τ
(0)
i )i∈V

which we explain how to compute in this section. The weak consistency approximation of

the log-partition A
(0)
N = 1

NZ
(0)
N using the sufficient statistics

φi(x
(0)
i ) = −1

2‖x
(0)
i ‖2 for all i ∈ V (100)

is summarized by Proposition 5. It yields an approximation for both the log-partition A
(0)
N

and second-moments τ
(0)
V that we assume to be asymptotically exact in the large N limit.

The full derivation follows exactly the same steps as Section 2 for the student posterior
Eq. (2) but here applied to the teacher prior

p(0)(x(0)) =
1

Z
(0)
N

∏
k∈F

f
(0)
k (x

(0)
k ) with f

(0)
k (x

(0)
k ) =

∫
dyk f

(0)
k (x

(0)
k ; yk) (101)

obtained by marginalizing Eq. (85) over y.

Proposition 5 (Weak consistency derivation of A
(0)
N ) Solving the relaxed Bethe vari-

ational problem, using the sufficient statistics Eq. (100), leads to:

−A(0)
N = min

τ
(0)
V

G(0)[τ
(0)
V ] = min extr

τ̂
(0)
E

−A(0)[τ̂
(0)
E ]. (102)
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where the minimizer corresponds to the teacher prior second moments τ
(0)
V = (τ

(0)
i )i∈V

and τ̂
(0)
E = (τ̂

(0)
i→k, τ̂

(0)
k→i)(i,k)∈E denotes the dual natural parameter messages. The potentials

satisfy the tree decomposition:

G(0)[τ
(0)
V ] =

∑
k∈F

αkG
(0)
k [τ

(0)
k ] +

∑
i∈V

αi(1− ni)G(0)
i [τ

(0)
i ] with τ

(0)
k = (τ

(0)
i )i∈∂k (103)

A(0)[τ̂
(0)
E ] =

∑
k∈F

αkA
(0)
k [τ̂

(0)
k ]−

∑
(i,k)∈E

αiA
(0)
i [τ̂

k(0)
i ] +

∑
i∈V

αiA
(0)
i [τ̂

(0)
i ]

with τ̂
(0)
k = (τ̂

(0)
i→k)i∈∂k, τ̂

k(0)
i = τ̂

(0)
i→k + τ̂

(0)
k→i, τ̂

(0)
i =

∑
k∈∂i

τ̂
(0)
k→i. (104)

The scaled factor and variable log-partitions are given by:

A
(0)
k [τ̂

(0)
k ] =

1

Nk
ln

∫
dykdx

(0)
k f

(0)
k (x

(0)
k ; yk) e

− 1
2
τ̂
(0)
k ‖x

(0)
k ‖

2
(105)

A
(0)
i [τ̂

(0)
i ] =

1

Ni
ln

∫
dx

(0)
i e−

1
2
τ̂
(0)
i ‖x

(0)
i ‖

2
=

1

2
ln

2π

τ̂
(0)
i

(106)

A
(0)
k = 1

Nk
lnZ

(0)
k is the log-partition of the exponential family distribution that approximates

the teacher factor marginal p(0)(x
(0)
k , yk)

p
(0)
k (x

(0)
k , yk | τ̂ (0)

k ) =
1

Z
(0)
k [τ̂

(0)
k ]

f
(0)
k (x

(0)
k ; yk) e

− 1
2
τ̂
(0)
k ‖x

(0)
k ‖

2
. (107)

Similarly A
(0)
i = 1

Ni
lnZ

(0)
i is the log-partition of the zero-mean Normal that approximates

the teacher variable marginal p(0)(x
(0)
i )

p
(0)
i (x

(0)
i | τ̂

(0)
i ) =

1

Z
(0)
i [τ̂

(0)
i ]

e−
1
2
τ̂
(0)
i ‖x

(0)
i ‖

2
= N (x

(0)
i | 0, τ

(0)
i ) with τ

(0)
i =

1

τ̂
(0)
i

. (108)

The gradients of the factor and variable log-partitions give the dual mapping to the second
moments:

τ
k(0)
i [τ̂

(0)
k ] = E

p
(0)
k (x

(0)
k ,yk|τ̂

(0)
k )

‖x(0)
i ‖2
Ni

, −1

2
αki τ

k(0)
i = ∂

τ̂
(0)
i→k

A
(0)
k , (109)

τ
(0)
i [τ̂

(0)
i ] = E

p
(0)
i (x

(0)
i |τ̂

(0)
i )

‖x(0)
i ‖2
Ni

=
1

τ̂
(0)
i

, −1

2
τ

(0)
i = ∂

τ̂
(0)
i

A
(0)
i . (110)

G
(0)
k and G

(0)
i are the corresponding Legendre transforms. Any stationary point of the po-

tentials (not necessarily the global optima) is a fixed point:

τ
k(0)
i = τ

(0)
i , τ̂

(0)
i =

∑
k∈∂i

τ̂
(0)
k→i. (111)
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3.2.1 Bayesian Network Teacher

When the teacher factor graph is a Bayesian network (Remark 1) the fixed point in Propo-
sition 5 is particularly simple. If xi is an input signal of the factor fk:

τ̂
(0)
i→k = τ̂

(0)
i =

1

τ
(0)
i

, τ̂
(0)
k→i = 0. (112)

If xi is an output signal of the factor fk:

τ̂
(0)
k→i = τ̂

(0)
i =

1

τ
(0)
i

, τ̂
(0)
i→k = 0. (113)

In other words the forward messages are equal to the precisions while the backward messages
are null. The factor log-partition is equal to:

A
(0)
k [τ̂

(0)
k ] =

∑
i∈(∂k)−

αkiA
(0)
i [τ̂

(0)
i ] (114)

where (∂k)− denotes the input signals nodes of the factor node k. In particular Proposition 5
gives consistently:

A
(0)
N =

∑
k∈F

αkA
(0)
k [τ̂

(0)
k ] +

∑
i∈V

αi(1− ni)A(0)
i [τ̂

(0)
i ] = 0 (115)

as it should, because Z
(0)
N = 1 and A

(0)
N = 0 for a Bayesian network.

3.2.2 Computing the Fixed Point

In practice one can use the Tree-AMP Algorithm 3 to find the fixed point, which will compute

the second-moments τ
(0)
V as well as the messages τ̂

(0)
E . Note that in the usual state evolution

algorithms, for example in the multi-layer GLM case (Gabrié et al., 2018; Fletcher et al.,
2018), a first step is always to compute the teacher prior second moments, often invoking
the central limit theorem and using approximate isotropic Gaussian distributions along the
way. These routines are exactly equivalent to Algorithm 3, which indeed yields the fixed
point in a single forward pass when the teacher factor graph is a Bayesian network. By
contrast in factor graphs that are not Bayesian network the Tree-AMP Algorithm 3 will be
useful to find the fixed point which is no longer trivial and to compute the normalization

constant A
(0)
N .
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Algorithm 3: Tree-AMP algorithm for the teacher prior second moments
repeat

foreach edge e ∈ E+ ∪ E− do // forward and backward pass

if e = k → i then

τ̂
k(0)
i = 1/τ

k(0)
i [τ̂

(0)
k ]

τ̂
(0)new
k→i = τ̂

k(0)
i − τ̂ (0)

i→k // message fk → xi

if e = i→ k then

τ̂
(0)
i =

∑
k′∈∂i τ̂

(0)
k′→i

τ̂
(0)new
i→k = τ̂

(0)
i − τ̂

(0)
k→i // message xi → fk

until convergence

3.3 Replica Symmetric Free Entropy

The replica symmetric free entropy is derived by assuming weak consistency on the overlaps
Eq. (93). The full derivation is presented in Appendix C and summarized in Proposition 6.

We assume that the teacher prior second moments τ
(0)
V and dual messages τ̂

(0)
E are known

thanks to Proposition 5 and should be now considered as fixed parameters.

Proposition 6 (Replica symmetric Ā) The replica symmetric (RS) Ā is given by:

−Ā = min
mV ,qV ,τV

Ā∗[mV , qV , τV ] = min extr
m̂E ,q̂E ,τ̂E

−Ā[m̂E , q̂E , τ̂E ]. (116)

where the minimizer corresponds to the overlaps mV = (mi)i∈V and m̂E = (m̂i→k, m̂k→i)(i,k)∈E
denotes the dual natural parameter messages (idem q, τ). The RS potentials satisfy the tree
decomposition:

Ā∗[mV , qV , τV ] =
∑
k∈F

αkĀ
∗
k[mk, qk, τk] +

∑
i∈V

αi(1− ni)Ā∗i [mi, qi, τi]

with mk = (mi)i∈∂k (idem q, τ), (117)

Ā[m̂E , q̂E , τ̂E ] =
∑
k∈F

αkĀk[m̂k, q̂k, τ̂k]−
∑

(i,k)∈E

αiĀi[m̂
k
i , q̂

k
i , τ̂

k
i ] +

∑
i∈V

αiĀi[m̂i, q̂i, τ̂i]

with m̂k = (m̂i→k)i∈∂k, m̂k
i = m̂i→k + m̂k→i, m̂i =

∑
k∈∂i

m̂k→i (idem q̂, τ̂). (118)

The factor and variable RS potentials are given by:

Āk[m̂k, q̂k, τ̂k] = lim
Nk→∞

E
p
(0)
k (x

(0)
k ,yk,bk)

Ak[ak, bk; yk] (119)

Āi[m̂i, q̂i, τ̂i] = lim
Ni→∞

E
p
(0)
i (x

(0)
i ,bi)

Ai[ai, bi] (120)

where Ak[ak, bk; yk] and Ai[ai, bi] are the scaled student EP log-partitions with isotropic
Gaussian beliefs (Example 9):

Ak[ak, bk; yk] =
1

Nk
ln

∫
dxk f(xk; yk) e

− 1
2
ak‖xk‖2+bᵀkxk (121)

Ai[ai, bi] =
1

Ni
ln

∫
dxi e

− 1
2
ai‖xi‖2+bᵀi xi (122)
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and the factor and variable ensemble averages are taken with:

p
(0)
k (x

(0)
k , yk, bk) = N (bk | m̂kx

(0)
k , q̂k) p

(0)
k (x

(0)
k , yk | τ̂ (0)

k ) and ak = τ̂k + q̂k, (123)

p
(0)
i (x

(0)
i , bi) = N (bi | m̂ix

(0)
i , q̂i) p

(0)
i (x

(0)
i | τ̂

(0)
i ) and ai = τ̂i + q̂i, (124)

where p
(0)
k (x

(0)
k , yk | τ̂ (0)

k ) and p
(0)
i (x

(0)
i | τ̂

(0)
i ) are the approximate teacher marginals defined

in Eqs (107) and (108). The gradient of the factor RS potential give the dual mapping to
the overlaps:

mk
i [m̂k, q̂k, τ̂k] = E

p
(0)
k (x

(0)
k ,yk,bk)

rki [ak, bk; yk] · x(0)
i

Ni
, αkim

k
i = ∂m̂i→kĀk, (125)

qki [m̂k, q̂k, τ̂k] = E
p
(0)
k (x

(0)
k ,yk,bk)

‖rki [ak, bk; yk]‖2
Ni

, −1
2α

k
i q
k
i = ∂q̂i→kĀk, (126)

τki [m̂k, q̂k, τ̂k] = E
p
(0)
k (x

(0)
k ,yk,bk)

‖rki [ak, bk; yk]‖2
Ni

+ vki [ak, bk; yk], −1
2α

k
i τ

k
i = ∂τ̂i→kĀk, (127)

where rki [ak, bk; yk] and vki [ak, bk; yk] are the posterior mean and isotropic variance Eqs (37)
and (38) as estimated by the student EP factor marginal Eq. (34). The gradient of the
variable RS potential give the dual mapping to the overlaps:

mi[m̂i, q̂i, τ̂i] = E
p
(0)
i (x

(0)
i ,bi)

ri[ai, bi] · x(0)
i

Ni
, mi = ∂m̂iĀi, (128)

qi[m̂i, q̂i, τ̂i] = E
p
(0)
i (x

(0)
i ,bi)

‖ri[ai, bi]‖2
Ni

, −1
2qi = ∂q̂iĀi, (129)

τi[m̂i, q̂i, τ̂i] = E
p
(0)
i (x

(0)
i ,bi)

‖ri[ai, bi]‖2
Ni

+ vi[ai, bi], −1
2τi = ∂τ̂iĀi, (130)

where ri[ai, bi] = bi
ai

and vi[ai, bi] = 1
ai

are the posterior mean and isotropic variance as

estimated by the student EP variable marginal Eq. (30). Ā∗k and Ā∗i are the corresponding
Legendre transforms. The ensemble average variances are given by:

vki [m̂k, q̂k, τ̂k] = E
p
(0)
k (x

(0)
k ,yk,bk)

vki [ak, bk; yk] = τki [m̂k, q̂k, τ̂k]− qki [m̂k, q̂k, τ̂k], (131)

vi[m̂i, q̂i, τ̂i] = E
p
(0)
i (x

(0)
i ,bi)

vi[ai, bi] = τi[m̂i, q̂i, τ̂i]− qi[m̂i, q̂i, τ̂i]. (132)

Any stationary point of the potentials (not necessarily the global optima) is a fixed point:

mk
i = mi, m̂i =

∑
k∈∂i

m̂k→i, (idem q, τ) (133)

3.3.1 RS Potentials

The variable RS potential Eq. (120) is explicitly given by:

Āi[m̂i, q̂i, τ̂i] =
m̂2
i τ

(0)
i + q̂i
2ai

+
1

2
ln

2π

ai
with ai = τ̂i + q̂i, (134)
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which yields the dual mapping:

mi =
m̂iτ

(0)
i

ai
, qi =

m̂2
i τ

(0)
i + q̂i
a2
i

, τi = qi + vi with vi =
1

ai
. (135)

Several factor RS potentials are given in Appendix E.

3.3.2 Cross-Entropy Estimation and State Evolution

The ensemble average Ā which gives access to the cross-entropy through Eq. (88) is given
by the global minimum according to Proposition 6. The global minimizer gives access to

the ensemble average overlaps mi, qi, τi (as well as msei = τ
(0)
i −2mi+qi and vi = τi−qi) for

the student posterior Eq. (2). However the replica free entropy solution also appears as an
ensemble average of the underlying EP Algorithm 2 where the effective ensemble average is
defined locally for each factor Eq. (123) and variable Eq. (124). With this effective ensemble
average interpretation in mind, we conjecture Algorithm 4 to give the state evolution of the
EP Algorithm 2. Then the state evolution fixed point will give the overlaps mi, qi, τi (as

well as msei = τ
(0)
i − 2mi + qi and vi = τi − qi) corresponding to the student EP solution,

which is in general only a local minimizer in Proposition 6.

Algorithm 4: Tree-AMP State evolution (replica symmetric mismatched setting)
initialize m̂i→k, q̂i→k, τ̂i→k, m̂k→i, q̂k→i, τ̂k→i = 0
repeat

foreach edge e ∈ E+ ∪ E− do // forward and backward pass

if e = k → i then
vki = vki [m̂k, q̂k, τ̂k], mk

i = mk
i [m̂k, q̂k, τ̂k], qki = qki [m̂k, q̂k, τ̂k]

aki = 1
vki
, m̂k

i =
akim

k
i

τ
(0)
i

, q̂ki = (aki )
2qki − (m̂k

i )
2τ

(0)
i , τ̂ki = aki − q̂ki

m̂new
k→i = m̂k

i − m̂i→k, q̂new
k→i = q̂ki − q̂i→k, τ̂new

k→i = τ̂ki − τ̂i→k
if e = i→ k then

m̂i =
∑

k′∈∂i m̂k′→i, q̂i =
∑

k′∈∂i q̂k′→i, τ̂i =
∑

k′∈∂i τ̂k′→i
m̂new
i→k = m̂i − m̂k→i, q̂new

i→k = q̂i − q̂k→i, τ̂new
i→k = τ̂i − τ̂k→i

until convergence

3.3.3 Computational Hard Phase

When the SE fixed point happens to be the global minimizer, the EP algorithm is in a
sense optimal as its solution achieves the same overlaps as the student posterior according
to Proposition 6. By contrast, when the SE fixed point fails to be a global minimizer, the
EP algorithm is sub-optimal and is said to be in a computational hard phase. Finally note
that Algorithm 4 can be viewed more generally as an iterative routine to find stationary
points of the replica free entropy potential. When initialized as in Algorithm 4 it leads to
the SE fixed point, but if initialized in the right basin of attraction it leads to the global
minimizer.
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3.3.4 Connection with Previous Work

We recover several results as particular cases. The state evolution for the ML-VAMP algo-
rithm in the mismatched setting rigorously proven in (Pandit et al., 2020) is equivalent to
Algorithm 4 applied to the multi-layer network with orthogonally invariant weight matrices.
We recover the replica symmetric free entropy in the mismatched setting derived for the
GLM (with orthogonally invariant weight matrix) in (Kabashima, 2008) and the low rank
factorization in (Lesieur et al., 2017).

3.4 Bayes-Optimal Setting

In the Bayes-optimal setting, where all the student factors match the teacher factors

fk(xk, yk) = f
(0)
k (xk, yk), the solution should be replica symmetric (Nishimori, 2001) and

furthermore the ground truth x(0) should behave as one the replicas x(a) (a = 1 · · ·n) in
Eq. (92). In particular:

τi = τ
(0)
i , mi = qi, msei = vi = τ

(0)
i −mi. (136)

As the student and teacher generative models are identical p(x,y) = p(0)(x,y), the ensemble
average Ā in Eq. (88) now gives access to the entropy

−Ā(0) = lim
N→∞

1

N
H[p(0)(y)]−A(0)

N (137)

up to the constant A
(0)
N that can be estimated through Proposition 5. With these simplifi-

cations, we get the following free entropy.

Proposition 7 (Bayes-optimal setting Ā(0)) The Bayes-optimal (BO) setting Ā(0) is
given by:

−Ā(0) = min
mV

Ā(0)∗[mV ] = min extr
m̂E
−Ā(0)[m̂E ]. (138)

where the minimizer corresponds to the overlaps mV = (mi)i∈V and m̂E = (m̂i→k, m̂k→i)(i,k)∈E
denotes the dual natural parameter messages. The BO potentials satisfy the tree decompo-
sition:

Ā(0)∗[mV ] =
∑
k∈F

αkĀ
(0)∗
k [mk] +

∑
i∈V

αi(1− ni)Ā(0)∗
i [mi] with mk = (mi)i∈∂k, (139)

Ā(0)[m̂E ] =
∑
k∈F

αkĀ
(0)
k [m̂k]−

∑
(i,k)∈E

αiĀ
(0)
i [m̂k

i ] +
∑
i∈V

αiĀ
(0)
i [m̂i]

with m̂k = (m̂i→k)i∈∂k, m̂k
i = m̂i→k + m̂k→i, m̂i =

∑
k∈∂i

m̂k→i. (140)

The factor and variable BO potentials are given by:

Ā
(0)
k [m̂k] = lim

Nk→∞
E
p
(0)
k (x

(0)
k ,yk,bk)

A
(0)
k [ak, bk; yk] (141)

Ā
(0)
i [m̂i] = lim

Ni→∞
E
p
(0)
i (x

(0)
i ,bi)

A
(0)
i [ai, bi] (142)
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where A
(0)
k [ak, bk; yk] and A

(0)
i [ai, bi] are the scaled EP log-partitions with isotropic Gaussian

beliefs (Example 9):

A
(0)
k [ak, bk; yk] =

1

Nk
ln

∫
dxk f

(0)
k (xk; yk) e

− 1
2
ak‖xk‖2+bᵀkxk (143)

A
(0)
i [ai, bi] =

1

Ni
ln

∫
dxi e

− 1
2
ai‖xi‖2+bᵀi xi (144)

and the factor and variable ensemble averages are taken with:

p
(0)
k (x

(0)
k , yk, bk) = N (bk | m̂kx

(0)
k , m̂k) p

(0)
k (x

(0)
k , yk | τ̂ (0)

k ) and ak = τ̂
(0)
k + m̂k, (145)

p
(0)
i (x

(0)
i , bi) = N (bi | m̂ix

(0)
i , m̂i) p

(0)
i (x

(0)
i | τ̂

(0)
i ) and ai = τ̂

(0)
i + m̂i, (146)

where p
(0)
k (x

(0)
k , yk | τ̂ (0)

k ) and p
(0)
i (x

(0)
i | τ̂

(0)
i ) are the approximate teacher marginals defined

in Eqs (107) and (108). The gradient of the factor RS potential give the dual mapping to
the overlap:

mk
i [m̂k] = E

p
(0)
k (x

(0)
k ,yk,bk)

rki [ak, bk; yk] · x(0)
i

Ni
, 1

2α
k
im

k
i = ∂m̂i→kĀ

(0)
k , (147)

where rki [ak, bk; yk] and vki [ak, bk; yk] are the posterior mean and isotropic variance Eqs (37)
and (38) as estimated by the EP factor marginal Eq. (34). The gradient of the variable RS
potential give the dual mapping to the overlap:

mi[m̂i] = E
p
(0)
i (x

(0)
i ,bi)

ri[ai, bi] · x(0)
i

Ni
, 1

2mi = ∂m̂iĀ
(0)
i , (148)

where ri[ai, bi] = bi
ai

and vi[ai, bi] = 1
ai

are the posterior mean and isotropic variance as

estimated by the EP variable marginal Eq. (30). Ā
(0)∗
k and Ā

(0)∗
i are the corresponding

Legendre transforms. The ensemble average variances are given by:

vki [m̂k] = E
p
(0)
k (x

(0)
k ,yk,bk)

vki [ak, bk; yk] = τ
(0)
i −mk

i [m̂k], (149)

vi[m̂i] = E
p
(0)
i (x

(0)
i ,bi)

vi[ai, bi] = τ
(0)
i −mi[m̂i]. (150)

Any stationary point of the potentials (not necessarily the global optima) is a fixed point:

mk
i = mi, m̂i =

∑
k∈∂i

m̂k→i. (151)

3.4.1 BO Potentials

The variable BO potential Eq. (142) is explicitly given by:

Ā
(0)
i [m̂i] =

m̂iτ
(0)
i

2
+

1

2
ln

2π

ai
with ai = τ̂

(0)
i + m̂i (152)

which yields the dual mapping:

mi = τ
(0)
i − vi, vi =

1

ai
. (153)

Several factor BO potentials are given in Appendix E.
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3.4.2 Entropy Estimation and State Evolution

The ensemble average Ā(0) which gives access to the entropy through Eq. (137) is given
by the global minimum according to Proposition 7. The global minimizer gives access to

the ensemble average overlap mi as well as msei = τ
(0)
i −mi = vi for the student posterior

Eq. (2). As the student posterior is Bayes-optimal msei = mmsei is the MMSE. However
the replica free entropy solution also appears as an ensemble average of the underlying EP
Algorithm 2 where the effective ensemble average is defined locally for each factor Eq. (145)
and variable Eq. (146). With this effective ensemble average interpretation in mind we
conjecture Algorithm 5 to give the state evolution of the EP Algorithm 2 in the Bayes-
optimal setting. Then the state evolution fixed point will give the overlap mi as well as

msei = τ
(0)
i −mi = vi corresponding to the EP student solution, which is in general only a

local minimizer in Proposition 7.

Algorithm 5: Tree-AMP State evolution (Bayes-optimal setting)
initialize m̂i→k, m̂k→i = 0
repeat

foreach edge e ∈ E+ ∪ E− do // forward and backward pass

if e = k → i then

aki = 1/vki [m̂k], m̂k
i = aki − τ̂

k(0)
i // variance-matching

m̂new
k→i = m̂k

i − m̂i→k // message fk → xi

if e = i→ k then
m̂i =

∑
k′∈∂i m̂k′→i // precision

m̂new
i→k = m̂k

i − m̂k→i // message xi → fk

until convergence

3.4.3 Computational Hard phase

When the SE fixed point happens to be the global minimizer, the EP algorithm is in a sense
optimal as its solution achieves the same overlap as the Bayes-optimal posterior according
to Proposition 7, in particular msei = mmsei. By contrast, when the SE fixed point fails to
be a global minimizer, the EP algorithm is sub-optimal msei > mmsei and is said to be in
a computational hard phase. Finally note that Algorithm 5 can be viewed more generally
as an iterative routine to find stationary points of the replica free entropy potential. When
initialized as in Algorithm 5 it leads to the SE fixed point, but if initialized in the right
basin of attraction it leads to the global minimizer.

3.4.4 Connection with Previous Work

We recover several results as particular cases. The state evolution for the ML-VAMP
algorithm in the matched setting, rigorously proven in (Fletcher et al., 2018), is equivalent to
Algorithm 5 applied to the multi-layer network with orthogonally invariant weight matrices.
We recover the corresponding replica symmetric free entropy derived in (Gabrié et al., 2018).
The Reeves (2017) formalism, developed for tree networks of GLMs and expressed in term
of mutual information potentials, is shown to be equivalent to Proposition 7 in Section 3.5.
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3.5 Information Theoretic Expressions

In this subsection we wish to express the RS and BO potentials using information theoretic
quantities. These potentials are all given by a local ensemble average of the EP log-partition
which can be interpreted as a local teacher-student scenario. We will find that the BO
potential is related to a mutual information term, recovering (Reeves, 2017) formalism,
while the RS potential differs from the BO potential by a KL divergence term.

3.5.1 Local Teacher-Student Scenario

The RS factor potential Eq. (119) is given by a local ensemble average of the EP log-
partition. The effective ensemble average in Eq. (123) can be interpreted as a local teacher-
student scenario where the local teacher generative model is given by:

p
(0)
k (x

(0)
k , yk, bk) = N (bk | m̂kx

(0)
k , q̂k) f

(0)
k (x

(0)
k ; yk) e

− 1
2
τ̂
(0)
k ‖x

(0)
k ‖

2−NkA
(0)
k [τ̂

(0)
k ]︸ ︷︷ ︸

p
(0)
k (x

(0)
k ,yk|τ̂

(0)
k )

(154)

while the local student generative model is given by:

pk(xk, yk, bk) = N (bk | q̂kxk, q̂k) fk(xk; yk) e−
1
2
τ̂k‖xk‖2−NkAk[τ̂k]︸ ︷︷ ︸

pk(xk,yk|τ̂k)

. (155)

The teacher generates the ground truth signals x
(0)
k , the measurements yk and the messages

bk according to Eq. (154) and the goal of the student is to infer the signals xk from (yk, bk)
assuming Eq. (155). The local student posterior is then given by:

pk(xk | yk, bk) = fk(xk; yk) e
− 1

2
ak‖xk‖2+bᵀkxk−NkAk[ak,bk;yk] with ak = τ̂k + q̂k (156)

which we recognize as the EP factor marginal Eq. (34). Note that in this local teacher-
student scenario, the messages bk acts as pseudo-measurements of the signals xk corrupted
by Gaussian noise. We see that the local teacher Eq. (154) actually generates the messages

bk with signal-to-noise ratios (SNR) m̂
(0)
k = m̂2

k/q̂k while the student Eq. (155) believes that
they are generated with SNR q̂k.

3.5.2 Bayes-Optimal Setting

The teacher and student factors are matched fk = f
(0)
k and the local teacher and student

generative models are identical:

p
(0)
k (x

(0)
k , yk, bk) = N (bk | m̂kx

(0)
k , m̂k) f

(0)
k (x

(0)
k ; yk) e

− 1
2
τ̂
(0)
k ‖x

(0)
k ‖

2−A(0)
k [τ̂

(0)
k ]︸ ︷︷ ︸

p
(0)
k (x

(0)
k ,yk|τ̂

(0)
k )

(157)

We recall that in the Bayes-optimal setting m̂k = q̂k and τ̂k = τ̂
(0)
k and consistently the

teacher and student SNR are matched m̂
(0)
k = q̂k = m̂k. The local student posterior is the

EP factor marginal Eq. (34)

p
(0)
k (xk | yk, bk) = f

(0)
k (xk; yk)e

− 1
2
ak‖xk‖2+bᵀkxk−NkA

(0)
k [ak,bk;yk] with ak = τ̂

(0)
k + m̂k (158)

and is Bayes-optimal. In particular, for all i ∈ ∂k, the posterior mean rki [ak, bk; yk] is the
MMSE estimator of the signal xi and the posterior variance vki [ak, bk; yk] gives the MMSE.
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3.5.3 Decomposition of the RS and BO Factor Potentials

With these local teacher and student generative models, we can give the following informa-
tion theoretic interpretation of the RS factor potential Eq. (119) and BO factor potential
Eq. (141), see Appendix D for a proof.

Proposition 8 The RS potential Āk[m̂k, q̂k, τ̂k] differs from the BO potential Ā
(0)
k [m̂

(0)
k ] by

a KL divergence term:

Āk[m̂k, q̂k, τ̂k]−Ak[τ̂k] = Ā
(0)
k [m̂

(0)
k ]−A(0)

k [τ̂
(0)
k ]−Kk[m̂k, q̂k, τ̂k]

with Kk[m̂k, q̂k, τ̂k] = lim
Nk→∞

1

Nk
KL[p

(0)
k (yk, bk)‖pk(yk, bk)] and m̂

(0)
k =

m̂2
k

q̂k
, (159)

up to the student prior log-partition Ak[τ̂k] and teacher prior log-partition A
(0)
k [τ̂

(0)
k ], and

Kk[m̂k, q̂k, τ̂k] is the KL divergence between the local teacher evidence p
(0)
k (yk, bk) in Eq. (154)

and the local student evidence pk(yk, bk) in Eq. (155). The BO potential Ā
(0)
k [m̂k] is directly

related to an entropic term:

Ā
(0)
k [m̂k]−A(0)

k [τ̂
(0)
k ] =

∑
i∈∂k

αki m̂i→kτ
(0)
i

2
−Hk[m̂k]

with Hk[m̂k] = lim
Nk→∞

1

Nk
H[yk, bk]−

1

Nk
H[bk | x(0)

k ], (160)

where the entropies are defined over the random variables x
(0)
k , yk, bk distributed according

to Eq. (157).

3.5.4 Reeves Formalism

The entropic expression Eq. (160) in the Bayes-optimal setting allows to recover the (Reeves,
2017) formalism developed for a tree network of GLMs (Example 13) and extends it to
other tree-structured factor graphs. For a non-likelihood factor, that is yk = ∅, the entropic

potential Hk reduced to the mutual information between the signals x
(0)
k and the messages

bk:

Hk[m̂k] = Ik[m̂k] = lim
Nk→∞

1

Nk
I[x

(0)
k ; bk]. (161)

For a likelihood factor yk 6= ∅, the entropic potential Hk reduced to the mutual information

between the signals x
(0)
k and the pair of measurements yk and messages bk plus an entropic

noise term:

Hk[m̂k] = Ik[m̂k] + Ek,

Ik[m̂k] = lim
Nk→∞

1

Nk
I[x

(0)
k ; (yk, bk)], Ek = lim

Nk→∞

1

Nk
H[yk | x(0)

k ]. (162)

For a noiseless output channel (deterministic relationship between yk and x
(0)
k ) the mutual

information Ik[m̂k] and the entropic noise Ek can be ill-defined and the more general relation
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Eq. (160) should be preferred. The mutual information potential Ik[m̂k] and the entropic
potential Hk[m̂k] are functions of the SNR m̂k. Their gradients give the dual mapping with
the variances:

1

2
αki v

k
i = ∂m̂i→kIk[m̂k] = ∂m̂i→kHk[m̂k] for all i ∈ ∂k (163)

known as the I-MMSE theorem (Guo et al., 2005) as vki gives the MMSE of the signal xi.
Then Proposition 7 is exactly equivalent to (Reeves, 2017) formalism, where the BO po-

tentials Ā
(0)
k [m̂k] are replaced by the mutual information potentials Ik[m̂k] and the overlaps

mk by the variances vk.

3.5.5 RS and BO Variable Potentials

The RS variable potential Eq. (120) is given by the local ensemble average Eq. (124) of the
EP log-partition, which can again be interpreted as a local teacher-student scenario. The
local teacher and student generative models are the Gaussians:

p
(0)
i (x

(0)
i , bi) = N (bi | m̂ix

(0)
i , q̂i)N (x

(0)
i | 0, 1/τ̂

(0)
i ), (164)

pi(xi, bi) = N (bi | q̂ixi, q̂i)N (xi | 0, 1/τ̂i). (165)

In the Bayes-optimal setting m̂i = q̂i and τ̂i = τ̂
(0)
i so the local teacher and student gener-

ative models are identical. The RS and BO variable potentials follows the same decompo-
sition Eqs (159)-(160) as the factor potentials. But in that case the decomposition can be
straightforwardly checked from the explicit expressions:

Āi[m̂i, q̂i, τ̂i] =
m̂2
i τ

(0)
i + q̂i
2ai

+
1

2
ln

2π

ai
with ai = τ̂i + q̂i, Ai[τ̂i] =

1

2
ln

2π

τ̂i
, (166)

Ki[m̂i, q̂i, τ̂i] =
1

2

(
ln

∆S

∆T
+

∆T

∆S
− 1

)
with ∆T = q̂i +

m̂2
i

τ̂
(0)
i

, ∆S = q̂i +
q̂2
i

τ̂i
, (167)

Ā
(0)
i [m̂

(0)
i ] =

m̂
(0)
i τ

(0)
i

2
+

1

2
ln

2π

a
(0)
i

with a
(0)
i = τ̂

(0)
i + m̂

(0)
i , A

(0)
i [τ̂

(0)
i ] =

1

2
ln

2π

τ̂
(0)
i

, (168)

Hi[m̂
(0)
i ] = Ii[m̂

(0)
i ] =

1

2
ln a

(0)
i τ

(0)
i . (169)

Ki is the KL divergence between the local teacher evidence p
(0)
i (bi) = N (bi | 0,∆T ) in

Eq. (164) and the local student evidence pi(bi) = N (bi | 0,∆S) in Eq. (165).

3.6 State Evolution Modules

For each EP factor module with isotropic Gaussian beliefs (Section 2.8) one can easily imple-
ment the corresponding free entropy / state evolution module by taking the ensemble aver-
age Eq. (123) in the replica symmetric (RS) setting or Eq. (145) in the Bayes-optimal (BO)
setting. In practice the RS module must be able to compute the RS potential Āk[m̂k, q̂k, τ̂k]
given in Eq. (119) and the associated overlaps mk[m̂k, q̂k, τ̂k], qk[m̂k, q̂k, τ̂k] and τk[m̂k, q̂k, τ̂k]
given in Eqs (125)-(127). Similarly the BO module must be able to compute the BO po-

tential Ā
(0)
k [m̂k] given in Eq. (141) and the associated overlap mk[m̂k] given in Eq. (147).
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We have closed-form expressions for the linear channel in the RS (Appendix E.2.3) and
BO (Appendix E.2.4) cases. For separable factors the RS and BO potentials and asso-
ciated overlaps can be analytically obtained through a low dimensional integration: see
Appendix E.3.3-E.3.4 for a separable prior, Appendix E.4.3-E.4.4 for a separable likelihood,
and Appendix E.5.3-E.5.4 for a separable channel.

4. Examples

This section is dedicated to illustrating the Tree-AMP package. We first point out that its
reconstruction performances asymptotically reaches the Bayes optimal limit out of the hard
phase and that its fast execution speed often exceeds competing algorithms. Moreover we
stress that the cornerstone of Tree-AMP is its modularity, which allows it to handle a wide
range of inference tasks. To appreciate its great flexibility, we illustrate its performance on
various tree-structured models. Finally, the last section depicts the ability of Tree-AMP to
predict its own state evolution performance on two simple GLMs: compressed sensing and
sparse phase retrieval. The codes corresponding to the examples presented in this section
can be found in the documentation gallery5 or in the repository6.

4.1 Benchmark on Sparse Linear Regression

Let us consider a sparse signal x ∈ RN , iid drawn according to x ∼ ∏N
n=1Nρ(xn) where

Nρ = [1 − ρ]δ + ρN is the Gauss-Bernoulli prior and N the normal distribution. The
inference task is to reconstruct the signal x from noisy observations y ∈ RM generated
according to

y = Ax+ ξ (170)

where A ∈ RM×N is the sensing matrix with iid Gaussian entries Amn ∼ N (0, 1/N) and ξ
is a iid Gaussian noise ξm ∼ N (0,∆). We define α = M/N the aspect ratio of the matrix
A. The corresponding factor graph is depicted in Figure 4.

x

RN

z

RM

y

RMNρ ∆A

Figure 4: Sparse linear regression factor graph.

The sparse linear regression problem can be easily solved with the Tree-AMP package.
We simply need to import the necessary modules, declare the model, and run the expectation
propagation algorithm:

1 # import modules

2 from tramp.base import Variable as V

3 from tramp.priors import GaussBernoulliPrior

4 from tramp.likelihoods import GaussianLikelihood

5 from tramp.channels import LinearChannel

5. https://sphinxteam.github.io/tramp.docs/0.1/html/gallery/index.html
6. https://github.com/sphinxteam/tramp/tree/master/examples/figures
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Figure 5: Benchmark on a sparse linear regression task: rescaled MSE as a function of

α = M/N . The MSE achieved by Tree-AMP (blue) is compared to the Bayes-
optimal MMSE (black), Hamiltonian Monte-Carlo (orange) from PyMC3 (with
ns = 1000 distribution samples and NUTS sampler) and Lasso (green) from
Scikit-Learn (with the optimal regularization parameter obtained beforehand
by simulation). The above experiments have been performed with parameters
(N, ρ,∆) = (1000, 0.05, 0.01) and have been averaged over 100 samples.

6 # declare sparse linear regression model

7 model = (

8 GaussBernoulliPrior(rho=rho , size=N) @ V(’x’) @

9 LinearChannel(A) @ V(’z’) @

10 GaussianLikelihood(var=Delta , y=y)

11 ). to_model ()

12 # run EP

13 from tramp.algos import ExpectationPropagation

14 ep = ExpectationPropagation(model)

15 ep.iterate(max_iter =200)

We compare the Tree-AMP performance on this inference task to the Bayes optimal
theoretical prediction from (Barbier et al., 2019) to two state of the art algorithms for
this task: Hamiltonian Monte-Carlo from the PyMC3 package (Salvatier et al., 2016) and
Lasso (L1-regularized linear regression) from the Scikit-Learn package (Pedregosa et al.,
2011). Note that to perform our experimental benchmark in Figure 5 the Tree-AMP and
PyMC3 algorithms had access to the ground-truth parameters (ρ,∆) used to generate the
observations. In order to make the benchmark as fair as possible, we use the optimal
regularization parameter for the Lasso, obtained beforehand by simulation.

We observe in Figure 5 (left) that for this model Tree-AMP is Bayes-optimal and reaches
the MMSE, up to finite size fluctuations, just as PyMC3. They naturally both outperform
Lasso from Scikit-Learn that never achieves the Bayes-optimal MMSE for the full range of
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aspect ratio α under investigation. This is expected and unfair to Lasso as the two Bayesian
methods have full knowledge of the exact generating distribution in our toy model, but this
is rarely the case in real applications.

Whereas the Hamiltonian Monte-Carlo algorithm requires to draw a large number of
samples (ns = 103) to reach a given threshold of precision, Tree-AMP is an iterative al-
gorithm that converges in a few iterations varying broadly speaking between [100; 102]. It
leads interestingly to an execution time smaller by two orders of magnitude with respect to
PyMC3 as illustrated in Figure 5 (right). Hence the fast convergence and execution time
of Tree-AMP is certainly a deep asset over PyMC3, or similar Markov Chain Monte-Carlo
packages.

4.2 Depicting Tree-AMP Modularity

In order to show the adaptability and modularity of Tree-AMP to handle various inference
tasks, we present here different examples where the prior distributions are modified flexibly.
In particular, we consider first Gaussian denoising of synthetic data with either sparse dis-
crete Fourier transform (DFT) or sparse gradient, and second the denoising and inpainting
of real images drawn from the MNIST data set, using a trained Variational Auto-Encoder
(VAE) as a prior.

4.2.1 Sparse DFT/Gradient Denoising

Let us consider a signal x ∈ RN corrupted by a Gaussian noise ξ ∼ N (0,∆), that leads to
the observation y = x+ ξ ∈ RN . In contrast to the first section in which we considered the
signal x to be sparse, we assume here that the signal is dense but that a linear transformation
of the signal is sparse. In other words let us define the variable z = Ωx that we assume to be
sparse, where Ω denotes a linear operator acting on the signal. The factor graph associated
to this model is depicted in Figure 6.

x

RN
y

RN

z

∆

Ω
Nρ

N

Figure 6: Factor graph for sparse Ω denoising, where Ω represents either the DFT or the
gradient operator.

As a matter of clarity, we focus on two toy one-dimensional signals:

1. x ∈ RN such that ∀n ∈ [1 : N ], xn = cos(tn) + sin(2tn), with tn = 2π(−1 + 2n
N ). The

signal is sparse in the Fourier basis with only two spikes, that leads us to consider a
sparse DFT prior: Ω is the discrete Fourier transform,
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0 200 400

−3

−2

−1

0

1

y

y

0 200 400

−3

−2

−1

0

1

x

x∗

x̂

0 200 400

−2

−1

0

1

z = ∇x

z∗

ẑ

Figure 7: Sparse FFT/gradient denoising: (left) noisy observation y, (middle) ground
truth signal x∗ and predicted x̂ and (right) ground truth linear transform z∗ and
predicted ẑ for (upper) sparse DFT denoising with (N, ρ,∆) = (100, 0.02, 0.1)
and (lower) sparse gradient denoising with (N, ρ,∆) = (400, 0.04, 0.01).

2. x ∈ RN such that it is randomly drawn constant by pieces. Its gradient contains a lot
of zeros and therefore inference with a sparse gradient prior is appropriate: Ω is the
gradient operator.

After importing the relevant modules, declaring the model in the Tree-AMP package is
simple, for instance for the sparse gradient model:

1 # sparse gradient denoising

2 model = (

3 GaussianPrior(size=N) @ V(’x’, n_prev=1, n_next =2) @ (

4 GaussianLikelihood(var=Delta , y=y) + (

5 GradientChannel () +

6 GaussBernoulliPrior(rho=rho , size=(1,N))

7 ) @ V(’z’, n_prev=2, n_next =0)

8 )

9 ). to_model ()

For the sparse DFT model, one just needs to replace GradientChannel by DFTChannel.
Numerical experiments are shown in Figure 7. The left panel shows the observation y,
while the middle and right panels illustrate the Tree-AMP reconstruction of the signal x̂
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and of its linear transform ẑ compared to the ground truth x∗ and z∗. The Tree-AMP
reconstruction approaches closely the ground truth signal and leads to MSE ∼ 10−2/10−3

for signals 1/2.

4.2.2 Variational Auto-Encoder on MNIST

Let us consider a signal x ∈ RN (with N = 784) drawn from the MNIST data set. We
want to reconstruct the original image from a corrupted observation y = ϕ(x) ∈ RN , where
ϕ : RN → RN represents a noisy channel. In the following the noisy channel represents
either a Gaussian additive channel or an inpainting channel, that erases some pixels of the
input image.

In order to reconstruct correctly the MNIST image, we investigated the possibility of
using a generative prior such as a Variational Auto-Encoder (VAE) along the lines of (Bora
et al., 2017; Fletcher et al., 2018). The information theoretical and approximate message
passing properties of reconstruction of a low rank or GLM channel, using a dense feed-
forward neural network generative prior with iid weights has been studied in particular in
(Aubin et al., 2019, 2020). The VAE architecture is summarized in Figure 8 and the training
procedure on the MNIST data set follows closely the canonical one detailed in (Keras-VAE).
We considered two common inference tasks: denoising and inpainting.

z

R20

a1

R400

z1

R400

a2

R784

x

R784

y
N W1, b1 relu W2, b2 σ ϕ

Figure 8: Denoising/inpaiting a MNIST image with a VAE prior. The weights W1,W2 and
biases b1, b2 were learned beforehand on the MNIST data set.

Denoising: In that case, the corrupted channel ϕden,∆ adds a Gaussian noise and corre-
sponds to the noisy channel

ϕden,∆(x) = x+ ξ with ξ ∼ N (0,∆) .

Inpaiting: The corrupted channel erases a few pixels of the input image and corresponds
formally to

ϕinp,Iα(x) =

{
0 if i ∈ Iα ,

xi otherwise .

where Iα denotes the set of erased indexes of size bαNc for some α ∈ [0; 1]. As an illustration,
we consider two different manners of generating the erased interval Iα:

1. A central horizontal band of width bαNc: Iband
α = [bN

2 (1− α)c; bN
2 (1 + α)c]

2. Indices drawn uniformly at random bαNc : Iuni
α ∼ U([1,N]; bαNc)

Solving these inference tasks in Tree-AMP is straightforward: first declare the model
Figure 8 and then run expectation propagation as exemplified in Section 4.1 for the sparse
regression case. A few MNIST samples x∗ compared to the noisy observations y and Tree-
AMP reconstructions x̂ are presented in Figure 9, that suggest that Tree-AMP is able to use
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x∗ y x̂

x∗ y x̂

x∗ y x̂

x∗ y x̂

Figure 9: Illustration of the Tree-AMP prediction x̂ using a VAE prior from observation
y = ϕ(x∗) with x∗ a MNIST sample. (left) Denoising ϕ = ϕden,∆ with ∆ = 4.
(right-upper) Band-inpainting ϕinp,Ibandα

with α = 0.3 (right-lower) Uniform-
inpainting ϕinp,Iuniα

with α = 0.5.

the trained VAE prior information to either denoise very noisy observations or reconstruct
missing pixels.

4.3 Theoretical Prediction of Performance

Previous sections were devoted to applications of the expectation propagation (EP) Al-
gorithm 2 implemented in Tree-AMP. Moreover the state evolution (SE) Algorithm 5 has
also been implemented in the package. This two-in-one package makes it easier to obtain
performances of the EP algorithm on finite size instances as well as the infinite size limit
behavior predicted by the state evolution.

We illustrate this on two generalized linear models: compressed sensing and sparse phase
retrieval, whose common factor graph is represented in Figure 10. Briefly, we consider a
sparse x ∈ RN iid drawn from a Gauss-Bernoulli distribution Nρ. We observe y ∈ RM =
ϕ(Ax) with A ∈ RM×N a Gaussian iid matrix, and the noiseless channel is ϕ(x) = x in the
compressed sensing case and ϕ(x) = |x| in the phase retrieval one.

x

RN

z

RM

y

RMNρ A ϕ

Figure 10: Graphical model representing the compressed sensing (ϕ(x) = x)) and phase
retrieval (ϕ(x) = |x|)). We denote α = M/N the aspect ratio of the sensing
matrix A.
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Figure 11: MSE as a function of α = M/N for (left) Compressed sensing (ρ = 0.5), (right)
Sparse phase retrieval (ρ = 0.6).

Getting the MSE predicted by state evolution is straightforward in the Tree-AMP pack-
age. After importing the relevant modules, one just needs to declare the model and run the
SE algorithm. For instance for the sparse phase retrieval model:

1 # declare sparse phase retrieval model

2 model = (

3 GaussBernoulliPrior(rho=rho , size=N) @ V(’x’) @

4 LinearChannel(A) @ V(’z’) @

5 AbsLikelihood(y=y)

6 ). to_model ()

7 # run SE

8 from tramp.algos import StateEvolution

9 se = StateEvolution(model)

10 se.iterate(max_iter =200)

In Figure 11, we compare the MSE theoretically predicted by state evolution and the MSE
obtained on high-dimensional (N = 2000) instances of EP. Notably up to finite size effects,
the MSE averaged over 25 instances of EP match perfectly the MSE predicted by SE. Also
the MSE is equal to the Bayes optimal MMSE proven in (Barbier et al., 2019), except for a
region of α values known as the hard phase. In that phase, there is a significant gap between
the MMSE that is information-theoretically achievable and the MSE actually achieved by
EP.

Note that the MMSE is also a state evolution fixed point (Section 3.4) and can thus be
obtained by initializing the SE Algorithm 5 in the right basin of attraction. For the two
models discussed here, we found that initializing the incoming prior message m̂x→Nρ � 1
was sufficient to converge towards the MMSE and obtain the Bayes optimal curve.

45



Baker, Aubin, Krzakala and Zdeborová

5. Discussion

The Tree-AMP package aims to solve compositional inference tasks, which can be broken
down into local inference problems. As long as the underlying factor graph is tree-structured,
the global inference task can be solved by message passing using Algorithm 2, which is
just a particular instance of EP. Note that Algorithm 2 is generic, meaning that it can
be implemented independently of the probabilistic graphical model under consideration.
The main strength of the presented approach is therefore its modularity. In the Tree-
AMP package, each module corresponds to a local inference problem given by a factor
and associated beliefs on its variables. As long as the module is implemented (which means
computing the log-partition Af [λf ] and the moment function µf [λf ]), it can be composed at
will with other modules to solve complex inference tasks. Several popular machine learning
tasks can be reformulated that way as illustrated in Figure 1. We hope that the Tree-AMP
package offers a unifying framework to run these models, as well as study them theoretically
using the state evolution and free entropy formalism. Below, we review some shortcomings
of the Tree-AMP package and possible ways to overcome them.

5.1 Hyper-Parameter Learning

In principle, it should be straightforward to learn hyper-parameters. As usually done in
hierarchical Bayesian modelling, one simply needs to add the hyper-parameters as scalar
variables in the graphical model with associated hyper priors. In term of the Tree-AMP
package, one would simply need to implement the corresponding module (where the set
of variables of the factor now includes the hyper-parameters to learn). In the typical use
case, where the signals are high dimensional but the hyper-parameters are just scalars,
Algorithm 2 will likely be equivalent to the expectation-maximization (Dempster et al.,
1977) learning of hyper-parameters, as usually done in AMP algorithms (Krzakala et al.,
2012).

5.2 Generic Belief

While the message passing Algorithm 2 is formulated for any kind of beliefs, the current Tree-
AMP implementation only supports isotropic Gaussian beliefs. However we could consider
more generic beliefs to deal with more complicated types of variable, such as Gaussian
process beliefs (Rasmussen and Williams, 2006) for functions or harmonic exponential family
beliefs (Cohen and Welling, 2015) for elements of compact groups. Maybe one can recover
algorithms similar to (Opper and Winther, 2000) for Gaussian process classification or
(Perry et al., 2018) for synchronisation problems over compact groups, and reformulate
them in a more modular way. Even if we restrict ourselves to Gaussian beliefs, it may be
beneficial to go beyond the isotropic case and consider diagonal or full covariance beliefs
(Opper and Winther, 2005a), or any kind of prescribed covariance structure. As exemplified
in the committee machine keeping a covariance between experts leads to a more accurate
algorithm (Aubin et al., 2018).
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5.3 Beyond Trees

By design, the Tree-AMP package can only handle tree-structured factor graphs. To over-
come this fundamental limitation and extend to generic factor graphs, one could use the
Kikuchi free energy (Yedidia et al., 2003) in place of the Bethe free energy as a starting
point. Similar to the Bethe free energy which is exact for tree-structured factor graphs,
the Kikuchi free energy will be exact if the graphical model admits a hyper-tree factoriza-
tion (Wainwright and Jordan, 2008). The minimization of the Kikuchi free energy under
weak consistency constraints (Zoeter and Heskes, 2005) could be used to implement a gen-
eralization of Algorithm 2, however the message passing will be more challenging than in
the tree case. An equivalent of Proposition 2 will likely hold, where the tree decomposi-
tion Eqs (39)-(40) found for the EC Gibbs and EP free energies will be replaced by the
hyper-tree factorization.

5.4 Convergence

The message passing Algorithm 2, like other EP algorithms, is not guaranteed to converge.
This is a major drawback, and indeed on some instances the naive application of Algorithm 2
will diverge. Double loop algorithms like (Heskes and Zoeter, 2002) will ensure convergence,
but are unfortunately very slow. In practice, damping the updates is often sufficient to
converge towards a fixed point. In the Tree-AMP package the amount of damping has to
be chosen by the user. It will be therefore interesting to generalize the adaptive damping
scheme (Vila et al., 2015) in order to tune this damping automatically.

5.5 Proofs

In Section 3, we heuristically derive the free entropy using weak consistency on the overlaps
and conjecture the corresponding state evolution, but did not provide any rigorous proof.
We nonetheless recovered earlier derivations of these results for specific models. For instance
in the multi-layer model with orthogonally invariant weight matrices, the state evolution
was rigorously proven by Fletcher et al. (2018) while the free potential was heuristically
derived using the replica method (Gabrié et al., 2018). When the weight matrices are
Gaussian, the replica free entropy can further be shown to be rigorous (Reeves and Pfister,
2016; Barbier et al., 2019). One extension of our work would be to generalize existing proofs
to arbitrary tree-structured models. In particular it would be beneficial to determine under
which conditions the overlaps are the relevant order parameters and if our weak consistency
derivation is indeed asymptotically exact.
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Appendix A. Proof of Proposition 2

A.1 Minimization of the EC Gibbs Free Energy

Let’s first minimize the Bethe free energy at fixed moments µV = (µi)i∈V :

FµV = min
(p̃F ,p̃V )∈MµV

FBethe[p̃F , p̃V ] (171)

where MµV is the set of factor and variable marginals at fixed moment:

MµV = {(p̃F , p̃V ) : ∀(i, k) ∈ E, Ep̃iφi(xi) = Ep̃kφi(xi) = µi} . (172)

The solution will be a stationary point of the Lagrangian

L[p̃F , p̃V , λF , λV ] = FBethe[p̃F , p̃V ]

+
∑
k∈F

∑
i∈∂k
〈λi→k, µi − Ep̃kφi(xi)〉+

∑
i∈V

(1− ni)〈λi, µi − Ep̃iφi(xi)〉 (173)

with Lagrange multipliers λi→k and λi associated to the moment constraint Ep̃kφi(xi) = µi
and Ep̃iφi(xi) = µi. Then 0 = δp̃iL = δp̃kL = ∂λi→kL = ∂λiL leads to the solution:

p̃k(xk) = pk(xk | λk) = f(xk; yk) e
〈λk,φk(xk)〉−Ak[λk], (174)

p̃i(xi) = pi(xi | λi) = e〈λi,φi(xi)〉−Ai[λi], (175)

µi = µi[λi] = µki [λk]. (176)

Besides the minimal FµV is equal to:

FµV =
∑
k∈F

Fk[p̃k] +
∑
i∈V

(1− ni)Fi[p̃i]

=
∑
k∈F

KL[p̃k‖fk] +
∑
i∈V

(1− ni)(−H[p̃i])

=
∑
k∈F

KL[pk(xk | λk)‖fk(xk; yk)] +
∑
i∈V

(1− ni)(−H[pi(xi|λi)])

=
∑
k∈F

G[µk] +
∑
i∈V

(1− ni)Gi[µi]

= G[µV ],

due to the definition Eq. (10) of the Bethe free energy, the fact that the solutions p̃k and p̃i
belong to the exponential families Eqs (174)-(175), and the definitions Eqs (26)-(27) of Gk
and Gi. But then the relaxed Bethe variational problem Eq. (13) can be written as:

Fφ(y) = min
µV

min
(p̃F ,p̃V )∈MµV

FBethe[p̃F , p̃V ] = min
µV

FµV = min
µV

G[µV ]. (177)

Besides minimizing G[µV ] leads to:

0 = ∂µiG[µV ] =
∑
k∈∂i

λi→k + (1− ni)λi (178)

which is the natural parameter constraint. The solution is therefore the same as the EP
fixed point Eq. (46).
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A.2 Stationary Point of the EP Free Energy

Using the duality (Section 2.4) between natural parameters and moments:

min
µV

G[µV ] = min
µV

∑
k∈F

Gk[µk] +
∑
i∈V

(1− ni)Gi[µi]

= min
µV

∑
k∈F

max
λk
{〈λk, µk〉 −Ak[λk]}+

∑
i∈V

(1− ni)︸ ︷︷ ︸
≤0

max
λi
{〈λi, µi〉 −Ai[λi]}

= min
µV

min
λV

max
λF
−
∑
k∈F

Ak[λk]−
∑
i∈V

(1− ni)Ai[λi]

+
∑
i∈V
〈
∑
k∈∂i

λi→k + (1− ni)λi, µi〉

= min
λV

max
λF
−A[λV , λF ] s.t ∀i ∈ V : (ni − 1)λi =

∑
k∈∂i

λi→k. (179)

As a consistency check, let’s directly derive the solution to Eq. (179). Consider the La-
grangian

L[λV , λF , µV ] = A[λV , λF ] +
∑
i∈V
〈(ni − 1)λi −

∑
k∈∂i

λi→k, µi〉 (180)

with Lagrangian multiplier µi associated to the constraint (ni − 1)λi =
∑

k∈∂i λi→k. At a
stationary point:

∂µiL = 0 =⇒ (ni − 1)λi =
∑
k∈∂i

λi→k (181)

∂λi→kL = 0 =⇒ µi = µki [λk] (182)

∂λiL = 0 =⇒ µi = µi[λi] (183)

which is exactly the same as the EP fixed point Eq. (46). Furthermore the Lagrangian
multiplier is the posterior moment µi.

A.3 Stationary Point of the Tree-AMP Free Energy

Finally, the optimization under constraint of A[λV , λF ] is equivalent to finding a stationary
point of A[λE ] without any constraint. Indeed:

∂λk→iA[λE ] = 0 =⇒ µi[λ
k
i ] = µi[λi] =⇒ λki = λi (184)

∂λi→kA[λE ] = 0 =⇒ µki [λk] = µi[λ
k
i ] (185)

which implies the natural parameter constraint∑
k∈∂i

λi→k =
∑
k∈∂i

(λki − λk→i) = niλi − λi = (ni − 1)λi (186)

and the moment matching µki [λk] = µi[λi] defining the EP fixed point Eq. (46).
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Appendix B. MAP Estimation

To yield the maximum at posterior (MAP) estimate, we follow the derivation given in
Appendix A.1 of (Manoel et al., 2018) in the context of the TV-VAMP algorithm and
generalize it to tree-structured models. As usual in the statistical physics literature (Mézard
and Montanari, 2009) we introduce an inverse temperature β and consider the distribution:

p(β)(x | y) =
1

Z(β)(y)

∏
k∈F

fk(xk; yk)
β =

1

Z(β)(y)
e−β

∑
k∈F Ek(xk;yk) (187)

and take the zero temperature limit β → ∞ to make the distribution concentrate around
its mode. Indeed by the Laplace method:

F (β)(y) = − 1

β
lnZ(β)(y) = − 1

β

∫
dxe−βE(y) β→∞−−−→ F (∞)(y) = min

x
E(x,y) (188)

where E is the total energy of the system:

E(x,y) =
∑
k∈F

Ek(xk; yk). (189)

The inference problem becomes an energy minimization problem, the minimizer x∗ =
arg minxE(x,y) = arg maxx p(x | y) is the MAP estimate and called the ground state
in statistical physics (Mézard and Montanari, 2009).

B.1 Zero Temperature Limit of the Weak Consistency Derivation

At fixed β, the weak consistency approximation Proposition 2, here expressed for isotopic
Gaussian beliefs, gives:

F
(β)
φ (y) = min

r
(β)
V ,τ

(β)
V

G(β)[r
(β)
V , τ

(β)
V ] = min extr

a
(β)
E ,b

(β)
E

−A(β)[a
(β)
E , b

(β)
E ] (190)

The limiting behavior can easily be found by scaling the natural parameters a(β) = βa and
b(β) = βb. By the Laplace method, the factor log-partitions are given by:

A
(β)
k [a

(β)
k , b

(β)
k ] =

1

β
ln

∫
dxk fk(xk; yk)

βe−
a
(β)
k
2
‖xk‖2+b

(β)ᵀ
k xk

=
1

β
ln

∫
dxk e

−β{Ek(xk;yk)+
ak
2
‖xk‖2−bᵀkxk}

β→∞−−−→ A
(∞)
k [ak, bk] = −min

xk
Ek(xk; yk, ak, bk)

where we introduce the tilted energy function:

Ek(xk; yk, ak, bk) = Ek(xk; yk) +
ak
2
‖xk‖2 − bᵀkxk. (191)

The limiting factor log-partition is thus given by:

A
(∞)
k [ak, bk] = −Ek(x∗k; yk, ak, bk) with x∗k = arg min

xk

Ek(xk; yk, ak, bk) (192)
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which can be alternatively expressed as:

A
(∞)
k [ak, bk] =

‖bk‖2
2ak

−M 1
ak
Ek(.;yk)

(
bk
ak

)
, x∗k = prox 1

ak
Ek(.;yk)

(
bk
ak

)
(193)

using the Moreau envelopMg(y) = minx{g(x)+1
2‖x−y‖2} and proximal operator proxg(y) =

arg minx{g(x) + 1
2‖x− y‖2}. The moment / natural parameter duality becomes:

r
k(β)
i [a

(β)
k , b

(β)
k ] = ∂

b
(β)
i→k

βA
(β)
k [a

(β)
k , b

(β)
k ]

β→∞−−−→ r
k(∞)
i [ak, bk] = ∂bi→kA

(∞)
k [ak, bk]

−Ni

2
τ
k(β)
i [a

(β)
k , b

(β)
k ] = ∂

a
(β)
i→k

βA
(β)
k [a

(β)
k , b

(β)
k ]

β→∞−−−→ −Ni

2
τ
k(∞)
i [ak, bk] = ∂ai→kA

(β)
k [ak, bk]

As the precisions are scaled as a(β) = βa, the variances must be scaled as βv(β) = v(∞) and:

βv
k(β)
i [a

(β)
k , b

(β)
k ] = β〈∂2

b
(β)
i→k

βA
(β)
k [a

(β)
k , b

(β)
k ]〉 β→∞−−−→ vk∞i [ak, bk] = 〈∂2

bi→k
A

(∞)
k [ak, bk]〉.

where 〈·〉 denotes the average over components of xi. From Eq. (192), we then get the
posterior mean and second moment:

r
k(∞)
i [ak, bk] = ∂bi→kA

(∞)
k [ak, bk] = xk∗i , τ

k(∞)
i [ak, bk] = − 2

Ni
∂ai→kA

(∞)
k [ak, bk] =

‖xk∗i ‖2
Ni

in agreement with the concentration at the mode. Note that in the zero temperature limit

the second-moment is τ
(∞)
i =

‖r(∞)
i ‖2
Ni

6= ‖r(∞)
i ‖2
Ni

+ v
(∞)
i . Indeed βv

(β)
i

β→∞−−−→ v
(∞)
i is the

scaled variance, the actual variance v
(β)
i

β→∞−−−→ 0. The variable log-partition corresponds
to the Ei(xi) = 0 special case. The variable log-partition, mean and (scaled) variance are
explicitly given by:

A
(∞)
i [ai, bi] =

‖bi‖2
2ai

, r
(∞)
i [ai, bi] = ∂biA

(∞)
i =

bi
ai
, v

(∞)
i [ai, bi] = 〈∂2

bi
A

(∞)
i 〉 =

1

ai
. (194)

B.2 Zero Temperature Limit of the EP Algorithm

Let us denote EP(β) the instance of the EP Algorithm 2 running with a(β), b(β) and r(β), v(β),

which can be used to search a stationary point of A(β)[a
(β)
E , b

(β)
E ]. Then we have the well

defined limit EP(β) β→∞−−−→ EP(∞) where EP(∞) is the instance of the EP Algorithm 2 running
with a, b and r(∞), v(∞), which can be used to search a stationary point of A(∞)[aE , bE ]. At
an EP fixed point we will have

x∗i = ri = rki , vi = vki , (ni − 1)ai =
∑
k∈∂i

ai→k, (ni − 1)bi =
∑
k∈∂i

bi→k, (195)
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and therefore:

−A(∞)[aE , bE ] = −
∑
k∈F

A
(∞)
k [ak, bk]−

∑
i∈V

(1− ni)A(∞)
i [ai, bi]

=
∑
k∈F

Ek(x
∗
k; yk, ak, bk) +

∑
i∈V

(1− ni)Ei(x∗i ; ai, bi)

=
∑
k∈F

Ek(x
∗
k; yk)

−
∑
i∈V

‖x∗i ‖2
2

(∑
k∈∂i

ai→k + (1− ni)ai
)

︸ ︷︷ ︸
0

+
∑
i∈V

x∗ᵀi

(∑
k∈∂i

bi→k + (1− ni)bi
)

︸ ︷︷ ︸
0

= E(x∗,y).

B.3 Summary

To recap, the energy minimization / MAP estimation problem can be formulated as:

F
(∞)
φ (y) = min

x
E(x,y) = min extr

aE ,bE
−A(∞)[aE , bE ] (196)

which is the β → ∞ limit of Proposition 2. A stationary point of A(∞)[aE , bE ] can be
searched by the EP(∞) Algorithm, which is just Algorithm 2 using the MAP modules:

A
(∞)
k [ak, bk] =

‖bk‖2
2ak

−M 1
ak
Ek(.;yk)

(
bk
ak

)
,

r
(∞)
k [ak, bk] = prox 1

ak
Ek(.;yk)

(
bk
ak

)
, v

(∞)
k [ak, bk] = 〈∂bkr

(∞)
k [ak, bk]〉, (197)

A
(∞)
i [ai, bi] =

‖bi‖2
2ai

, r
(∞)
i = ∂biA

(∞)
i =

bi
ai
, v

(∞)
i = ∂2

bi
A

(∞)
i =

1

ai
. (198)

Appendix C. Proof of Proposition 6

C.1 Decomposition of the SCGF

We recall from Eq. (91) that we can formally decompose the SCGF A(n) as:

A(n) = A
(n)
N −A

(0)
N , A

(n)
N =

1

N
lnZ

(n)
N , A

(0)
N =

1

N
lnZ

(0)
N , (199)

where Z
(0)
N is the partition function of the teacher generative model:

p(0)(x(0),y) =
1

Z
(0)
N

∏
k∈F

f
(0)
k (x

(0)
k ; yk), (200)

and Z
(n)
N is the partition function of the replicated system:

p(n)({x(a)}na=0,y) =
1

Z
(n)
N

∏
k∈F

{
f

(0)
k (x

(0)
k ; yk)

n∏
a=1

fk(x
(a)
k ; yk)

}
(201)
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where x(a) for a = 1 · · ·n denote the n replicas and x(0) the ground truth. Now the key

observation is that both Z
(0)
N and Z

(n)
N are partition functions associated to a tree-structured

model (and this is actually the same tree). In that case we know that the log-partition can
be obtained exactly from the Bethe variational problem which is unfortunately intractable.
However following Heskes et al. (2005) we can solve the relaxed Bethe variational problem
by enforcing weak consistency (moment matching) instead of the full consistency of the
marginals, as reviewed in Section 2 for the derivation of the EP algorithm.

We must nonetheless specify for which sufficient statistics we want to enforce moment-
matching, which in that setting we interpret as identifying the relevant order parameters for
the thermodynamic limit. In the following, to make the connection with previously derived
replica formulas, we will assume that the relevant order parameters are the overlaps:

φ(x) =

(
x

(a)
i · x

(b)
i

Ni

)
i∈V,0≤a≤b≤n

(202)

In some settings other order parameters could be relevant, fortunately the following deriva-
tion could be easily extended to these cases.

C.2 Weak Consistency Derivation (Replicated System)

Solving the relaxed Bethe variational problem applied to the log-partition A
(n)
N = 1

N lnZ
(n)
N

of the replicated system, using the overlaps Eq. (202) as sufficient statistics, leads to:

−A(n)
N = min

QV
G(n)[QV ] = min extr

Q̂E

−A(n)[Q̂E ]. (203)

where the minimizer corresponds to the overlaps:

QV = (Q
(ab)
i )i∈V,0≤a≤b≤n, Q

(ab)
i = E

x
(a)
i · x

(b)
i

Ni
(204)

with corresponding dual natural parameter messages:

Q̂E = (Q̂
(ab)
i→k, Q̂

(ab)
k→i)(i,k)∈E,0≤a≤b≤n (205)

The potentials satisfy the tree decomposition:

G(n)[QV ] =
∑
k∈F

αkG
(n)
k [Qk] +

∑
i∈V

αi(1− ni)G(n)
i [Qi] with Qk = (Qi)i∈∂k, (206)

A(n)[Q̂E ] =
∑
k∈F

αkA
(n)
k [Q̂k]−

∑
(i,k)∈E

αiA
(n)
i [Q̂ki ] +

∑
i∈V

αiA
(n)
i [Q̂i]

with Q̂k = (Q̂i→k)i∈∂k Q̂ki = Q̂i→k + Q̂k→i, Q̂i =
∑
k∈∂i

Q̂k→i. (207)
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The factor and variable log-partition are given by:

A
(n)
k [Q̂k]

=
1

Nk
ln

∫
dykdx

(0)
k f

(0)
k (x

(0)
k ; yk)

[
n∏
a=1

dx
(a)
k fk(x

(a)
k ; yk)

]
e
∑
i∈∂k

∑
0≤a≤b≤n Q̂

(ab)
i→kx

(a)
i ·x

(b)
i (208)

A
(n)
i [Q̂i] =

1

Ni
ln

∫
dx

(0)
i

[
n∏
a=1

dx
(a)
i

]
e
∑

0≤a≤b≤n Q̂
(ab)
i x

(a)
i ·x

(b)
i (209)

and their gradients give the dual mapping to the overlaps:

αkiQ
k(ab)
i = ∂

Q̂
(ab)
i→k

A
(n)
k , Q

(ab)
i = ∂

Q̂
(ab)
i

A
(n)
i . (210)

G
(n)
k and G

(n)
i are the corresponding Legendre transforms. Any stationary point of the

potentials (not necessarily the global optima) is a fixed point:

Q
k(ab)
i = Q

(ab)
i , Q̂

(ab)
i =

∑
k∈∂i

Q̂
(ab)
k→i. (211)

C.3 Weak Consistency Derivation (Teacher)

The weak consistency derivation of the log-partition A
(0)
N is given in Proposition 5 and

consistently corresponds to the n = 0 case (ignoring the replicas and only keeping the

ground truth) of A
(n)
N . The teacher second moments and dual messages in A

(0)
N correspond

to the a = b = 0 overlaps and dual messages in A
(n)
N :

τ
(0)
i = Q

(00)
i = E

‖x(0)
i ‖2
Ni

, −1

2
τ̂

(0)
i→k = Q̂

(00)
i→k, −1

2
τ̂

(0)
k→i = Q̂

(00)
k→i. (212)

C.4 Weak Consistency Derivation of the SCGF

Now we can finally express the SCGF A(n) in Eq. (199) by subtracting the weak consistency

derivation of A
(0)
N to the weak consistency derivation of A

(n)
N . We assume that the teacher

second moments τ
(0)
V = Q

(00)
V are known (Section 3.2) and are now considered as fixed

parameters. The SCGF obtained by weak consistency on the overlaps is given by:

−A(n) = min
Q∗V

G(n)[Q∗V ] = min extr
Q̂∗E

−A(n)[Q̂∗E ]. (213)

where the minimizer corresponds to the overlaps (with the ab = 00 overlap omitted):

Q∗V = (Q
(ab)
i )i∈V,0≤a≤b≤n,ab6=00, Q

(ab)
i = E

x
(a)
i · x

(b)
i

Ni
(214)

with corresponding dual natural parameter messages:

Q̂∗E = (Q̂
(ab)
i→k, Q̂

(ab)
k→i)(i,k)∈E,0≤a≤b≤n,ab6=00 (215)
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The potentials satisfy the tree decomposition:

G(n)[Q∗V ] =
∑
k∈F

αkGk(n)[Q∗k] +
∑
i∈V

αi(1− ni)Gi(n)[Q∗i ] with Q∗k = (Q∗i )i∈∂k, (216)

A(n)[Q̂∗E ] =
∑
k∈F

αkAk(n)[Q̂∗k]−
∑

(i,k)∈E

αiAi(n)[Q̂k∗i ] +
∑
i∈V

αiAi(n)[Q̂∗i ]

with Q̂∗k = (Q̂∗i→k)i∈∂k Q̂k∗i = Q̂∗i→k + Q̂∗k→i, Q̂∗i =
∑
k∈∂i

Q̂∗k→i. (217)

The factor and variable log-partition are now given by:

Ak(n)[Q̂∗k] =
1

Nk
ln

∫
dykdx

(0)
k

p
(0)
k (x

(0)
k , yk | τ̂ (0)

k )

[
n∏
a=1

dx
(a)
k fk(x

(a)
k ; yk)

]
e
∑
i∈∂k

∑
0≤a≤b≤n,ab6=00 Q̂

(ab)
i→kx

(a)
i ·x

(b)
i (218)

Ai(n)[Q̂∗i ] =
1

Ni
ln

∫
dx

(0)
i p

(0)
i (x

(0)
i | τ̂

(0)
i )

[
n∏
a=1

dx
(a)
i

]
e
∑

0≤a≤b≤n,ab6=00 Q̂
(ab)
i x

(a)
i ·x

(b)
i (219)

and their gradients give the dual mapping to the overlaps:

αkiQ
k(ab)
i = ∂

Q̂
(ab)
i→k

A
(n)
k , Q

(ab)
i = ∂

Q̂
(ab)
i

A
(n)
i . (220)

Gk(n) and Gi(n) are the corresponding Legendre transforms. Any stationary point of the
potentials (not necessarily the global optima) is a fixed point:

Q
k(ab)
i = Q

(ab)
i , Q̂

(ab)
i =

∑
k∈∂i

Q̂
(ab)
k→i. (221)

Proof It follows straightforwardly from Q̂
(00)
k = −1

2 τ̂
(0)
k and Eq. (107):

Ak(n)[Q̂∗k] = A
(n)
k [Q̂k]−A(0)

k [τ̂
(0)
k ]

=
1

Nk
ln

∫
dykdx

(0)
k

1

Z
(0)
k [τ̂

(0)
k ]

f
(0)
k (x

(0)
k ; yk)e

− 1
2

∑
i∈∂k τ̂

0
i→k‖x

(0)
i ‖

2

︸ ︷︷ ︸
p
(0)
k (x

(0)
k ,yk|τ̂

(0)
k )

[
n∏
a=1

dx
(a)
k fk(x

(a)
k ; yk)

]

e
∑
i∈∂k

∑
0≤a≤b≤n,ab6=00 Q̂

(ab)
i→kx

(a)
i ·x

(b)
i

Similarly it follows straightforwardly from Q̂
(00)
i = −1

2 τ̂
(0)
i and Eq. (108):

Ai(n)[Q̂∗i ] = A
(n)
i [Q̂i]−A(0)

i [τ̂
(0)
i ]

=
1

Ni
ln

∫
dx

(0)
i

1

Z
(0)
i [τ̂

(0)
i ]

e−
1
2
τ̂0i ‖x

(0)
i ‖

2

︸ ︷︷ ︸
p
(0)
i (x

(0)
i |τ̂0i )

[
n∏
a=1

dx
(a)
i

]
e
∑

0≤a≤b≤n,ab6=00 Q̂
(ab)
i x

(a)
i ·x

(b)
i
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C.5 Replica Symmetric SCGF

We take the replica symmetric ansatz (Mézard et al., 1987) for the overlaps (1 ≤ a < b ≤ n):

τ = Q(aa), m = Q(0a), q = Q(ab), −1

2
τ̂ = Q̂(aa), m̂ = Q̂(0a), q̂ = Q̂(ab). (222)

The replica symmetric SCGF A(n) is given by:

−A(n) = min
mV ,qV ,τV

G(n)[mV , qV , τV ] = min extr
m̂E ,q̂E ,τ̂E

−A(n)[m̂E , q̂E , τ̂E ]. (223)

The potentials satisfy the tree decomposition:

G(n)[mV , qV , τV ] =
∑
k∈F

αkGk(n)[mk, qk, τk] +
∑
i∈V

αi(1− ni)Gi(n)[mi, qi, τi]

with mk = (mi)i∈∂k (idem q, τ), (224)

A(n)[m̂E , q̂E , τ̂E ]

=
∑
k∈F

αkAk(n)[m̂k, q̂k, τ̂k]−
∑

(i,k)∈E

αiAi(n)[m̂k
i , q̂

k
i , τ̂

k
i ] +

∑
i∈V

αiAi(n)[m̂i, q̂i, τ̂i]

with m̂k = (m̂i→k)i∈∂k, m̂k
i = m̂i→k + m̂k→i, m̂i =

∑
k∈∂i

m̂k→i (idem q, τ). (225)

The factor and variable log-partition are given by:

Ak(n)[m̂k, q̂k, τ̂k] =
1

Nk
E
p
(0)
k (x

(0)
k ,yk,bk)

eNknAk[ak,bk;yk] (226)

Ai(n)[m̂i, q̂i, τ̂i] =
1

Ni
E
p
(0)
i (x

(0)
i ,bi)

eNinAi[ai,bi] (227)

taken with:

p
(0)
k (x

(0)
k , yk, bk) = N (bk | m̂kx

(0)
k , q̂k) p

(0)
k (x

(0)
k , yk; τ̂

(0)
k ) and ak = τ̂k + q̂k, (228)

p
(0)
i (x

(0)
i , bi) = N (bi | m̂ix

(0)
i , q̂i) p

(0)
i (x

(0)
i ; τ̂

(0)
i ) and ai = τ̂i + q̂i, (229)

and where Ak[ak, bk; yk] and Ai[ai, bi] are the scaled EP log-partitions:

Ak[ak, bk; yk] =
1

Nk
ln

∫
dxk f(xk; yk) e

− 1
2
ak‖xk‖2+bᵀkxk (230)

Ai[ai, bi] =
1

Ni
ln

∫
dxi e

− 1
2
ai‖xi‖2+bᵀi xi . (231)

We have therefore the following large deviation theory interpretation:

A(n) = SCGF of AN (y) (232)

Ak(n) = SCGF of Ak[ak, bk; yk] (233)

Ai(n) = SCGF of Ai[ai, bi] (234)
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Proof The replica symmetric ansatz gives:

∑
0≤a≤b≤n,ab6=00

Q̂
(ab)
i→kx

(a)
i · x

(b)
i

∣∣∣∣∣∣
RS

= m̂i→kx
(0)
i ·

n∑
a=1

x
(a)
i + q̂i→k

∑
1≤a<b≤n

x
(a)
i · x

(b)
i −

τ̂i→k
2

n∑
a=1

‖x(a)
i ‖2

= m̂i→kx
(0)
i ·

n∑
a=1

x
(a)
i +

q̂i→k
2
‖

n∑
a=1

x
(a)
i ‖2 −

τ̂i→k + q̂i→k
2

n∑
a=1

‖x(a)
i ‖2

Using the Gaussian identity:

e
q̂i→k

2
‖
∑n
a=1 x

(a)
i ‖

2
=

∫
RNi

dξi→kN (ξi→k)e
√
q̂i→kξi→k·

∑n
a=1 x

(a)
i

we can express the replica symmetric Ak(n)[Q̂∗k] as:

Ak(n)[Q̂∗k]
∣∣∣
RS

=
1

Nk
ln

∫
dykdx

(0)
k p

(0)
k (x

(0)
k , yk | τ̂ (0)

k )

[∏
i∈∂k

dξi→kN (ξi→k)

][
n∏
a=1

dx
(a)
k fk(x

(a)
k ; yk)

]
n∏
a=1

e
∑
i∈∂k[m̂i→kx

(0)
i +
√
q̂i→kξi→k]·x(a)i −

τ̂i→k+q̂i→k
2

‖x(a)i ‖
2

=
1

Nk
ln

∫
dykdx

(0)
k p

(0)
k (x

(0)
k , yk | τ̂ (0)

k )

[∏
i∈∂k

dbi→kN (bi→k | m̂i→kx
(0)
i , q̂i→k)

]
[

n∏
a=1

dx
(a)
k fk(x

(a)
k ; yk)e

∑
i∈∂k −

ai→k
2
‖x(a)i ‖

2+bi→k·x
(a)
i

]
with bi→k = m̂i→kx

(0)
i +

√
q̂i→kξi→k, ai→k = τ̂i→k + q̂i→k

=
1

Nk
ln

∫
dykdx

(0)
k dbkN (bk | m̂kx

(0)
k , q̂k)p

(0)
k (x

(0)
k , yk | τ̂ (0)

k )
n∏
a=1

Zk[ak, bk; yk]

with Zk[ak, bk; yk] =

∫
dxk f(xk; yk) e

∑
i∈∂k −

1
2
ai→k‖xi‖2+bi→k·xk

=
1

Nk
lnE

p
(0)
k (x

(0)
k ,yk,bk)

Zk[ak, bk; yk]
n

=
1

Nk
lnE

p
(0)
k (x

(0)
k ,yk,bk)

eNknAk[ak,bk;yk] with Ak[ak, bk; yk] =
1

Nk
lnZk[ak, bk; yk]

= Ak(n)[m̂k, q̂k, τ̂k]

The proof is identical for the replica symmetric Ai(n)[Q̂∗i ].
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C.6 Replica Symmetric Free Entropy

We recall from Eq. (90) that the ensemble average Ā can be obtained by:

Ā =
d

dn
A(n)

∣∣∣∣
n=0

(235)

Taking the derivative Eq. (235) of the replica symmetric A(n) we get Proposition 6 with:

d

dn
Ak(n)[m̂k, q̂k, τ̂k]

∣∣∣∣
n=0

= E
p
(0)
k (x

(0)
k ,yk,bk)

Ak[ak, bk; yk] = Āk[m̂k, q̂k, τ̂k]

d

dn
Ai(n)[m̂i, q̂i, τ̂i]

∣∣∣∣
n=0

= E
p
(0)
i (x

(0)
i ,bi)

Ai[ai, bi] = Āi[m̂i, q̂i, τ̂i]

as expected from the large deviation theory interpretation Eqs (233)-(234).

Appendix D. Proof of Proposition 8

We recall that the local teacher generative model Eq. (154) is given by:

p
(0)
k (x

(0)
k , yk, bk) = N (bk | m̂kx

(0)
k , q̂k) p

(0)
k (x

(0)
k , yk | τ̂ (0)

k ),

while the local student generative model Eq. (155) is given by:

pk(xk, yk, bk) = N (bk | q̂kxk, q̂k) pk(xk, yk | τ̂k).

Interestingly by rescaling b
(0)
k = m̂k

q̂k
bk the local teacher generative model is equal to the

Bayes-optimal setting generative model Eq. (157):

p
(0)
k (x

(0)
k , yk, b

(0)
k ) = N (b

(0)
k | m̂

(0)
k x

(0)
k , m̂

(0)
k ) p

(0)
k (x

(0)
k , yk | τ̂ (0)

k ) with m̂
(0)
k =

m̂2
k

q̂k
.

Lemma 9 The RS potential Eq. (119) is related to the cross-entropy between the local

teacher evidence p
(0)
k (yk, bk) and the local student evidence pk(yk, bk):

Āk[m̂k, q̂k, τ̂k]−Ak[τ̂k]

= − 1

Nk
H[p

(0)
k (yk, bk), pk(yk, bk)] +

∑
i∈∂k

αki m̂
(0)
i→kτ

(0)
i

2
+
αki
2

ln 2πeq̂i→k. (236)

Similarly, the BO potential Eq. (141) is related to the entropy of the local Bayes-optimal

evidence p
(0)
k (yk, b

(0)
k ):

Ā
(0)
k [m̂

(0)
k ]−A(0)

k [τ̂
(0)
k ] = − 1

Nk
H[p

(0)
k (yk, b

(0)
k )] +

∑
i∈∂k

αki m̂
(0)
i→kτ

(0)
i

2
+
αki
2

ln 2πem̂
(0)
i→k. (237)
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Proof The local student evidence is equal to:

pk(yk, bk) =

∫
dxkpk(xk, yk, bk) =

∫
dxkpk(xk, yk | τ̂k)N (bk | q̂kxk, q̂k)

=

∫
dxkfk(xk; yk)e

− 1
2
τ̂k‖xk‖2−NkAk[τ̂k]e−

1
2
q̂k‖xk‖2+bᵀkxkN (bk | 0, q̂k)

=

∫
dxkfk(xk; yk)e

− 1
2
ak‖xk‖2+bᵀkxk−NkAk[τ̂k]N (bk | 0, q̂k) with ak = τ̂k + q̂k

= eNkAk[ak,bk;yk]−NkAk[τ̂k]N (bk | 0, q̂k)

Then:

Āk[m̂k, q̂k, τ̂k]−Ak[τ̂k] = E
p
(0)
k (x

(0)
k ,yk,bk)

Ak[ak, bk; yk]−Ak[τ̂k]

=
1

Nk
E
p
(0)
k (x

(0)
k ,yk,bk)

ln
pk(yk, bk)

N (bk | 0, q̂k)

= − 1

Nk
H[p

(0)
k (yk, bk), pk(yk, bk)] +

1

Nk
E
p
(0)
k (x

(0)
k ,yk,bk)

∑
i∈∂k

‖bi→k‖2
2q̂i→k

+
Ni

2
ln 2πq̂i→k

= − 1

Nk
H[p

(0)
k (yk, bk), pk(yk, bk)] +

1

Nk

∑
i∈∂k

Ni(m̂
2
i→kτ

(0)
i + q̂i→k)

2q̂i→k
+
Ni

2
ln 2πq̂i→k

= − 1

Nk
H[p

(0)
k (yk, bk), pk(yk, bk)] +

∑
i∈∂k

αki m̂
(0)
i→kτ

(0)
i

2
+
αki
2

ln 2πeq̂i→k

with m̂
(0)
i→k =

m̂2
i→k

q̂i→k
and αki = Ni

Nk
which proves Eq. (236). The proof for the BO potential

Eq. (237) is identical to the RS case with the simplifications m̂
(0)
k = q̂k = m̂k and τ̂k = τ̂

(0)
k .

From Lemma 9 we easily recover the decomposition Eq. (159) for the RS potential:

Āk[m̂k, q̂k, τ̂k]−Ak[τ̂k] = Ā
(0)
k [m̂

(0)
k ]−A(0)

k [τ̂
(0)
k ]− 1

Nk
KL[p

(0)
k (yk, bk)‖pk(yk, bk)]

and Eq. (160) for the BO potential:

Ā
(0)
k [m̂

(0)
k ]−A(0)

k [τ̂
(0)
k ] =

∑
i∈∂k

αki m̂
(0)
i→kτ

(0)
i

2
+

1

Nk
H[p

(0)
k (b

(0)
k | x

(0)
k )]− 1

Nk
H[p

(0)
k (yk, b

(0)
k )].

Proof The proof for the BO case is straightforward:

p
(0)
k (b

(0)
k | x

(0)
k ) = N (b

(0)
k | m̂

(0)
k x

(0)
k , m̂

(0)
k ) =⇒ 1

Nk
H[p

(0)
k (b

(0)
k | x

(0)
k )] =

∑
i∈∂k

αki
2

ln 2πem̂
(0)
i→k.

In the RS case, due to the rescaling b
(0)
k = m̂k

q̂k
bk we have for the densities:

1

Nk
ln p

(0)
k (yk, b

(0)
k ) =

1

Nk
ln p

(0)
k (yk, bk) +

∑
i∈∂k

αki ln
q̂i→k
m̂i→k
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which gives for the entropies:

− 1

Nk
H[p

(0)
k (yk, b

(0)
k )] = − 1

Nk
H[p

(0)
k (yk, bk)] +

∑
i∈∂k

αki ln
q̂i→k
m̂i→k

Then Eq. (237) at m̂
(0)
k =

m̂2
k

q̂k
can be written:

Ā
(0)
k [m̂

(0)
k ]−A(0)

k [τ̂
(0)
k ]

= − 1

Nk
H[p

(0)
k (yk, bk)] +

∑
i∈∂k

αki ln
q̂i→k
m̂i→k

+
∑
i∈∂k

αki m̂
(0)
i→kτ

(0)
i

2
+
αki
2

ln 2πe
m̂2
i→k

q̂i→k

= − 1

Nk
H[p

(0)
k (yk, bk)] +

∑
i∈∂k

αki m̂
(0)
i→kτ

(0)
i

2
+
αki
2

ln 2πeq̂i→k

By using Eq. (236) we finally get:

Āk[m̂k, q̂k, τ̂k]−Ak[τ̂k]

= Ā
(0)
k [m̂

(0)
k ]−A(0)

k [τ̂
(0)
k ]− 1

Nk
H[p

(0)
k (yk, bk), pk(yk, bk)] +

1

Nk
H[p

(0)
k (yk, bk)]

= Ā
(0)
k [m̂

(0)
k ]−A(0)

k [τ̂
(0)
k ]− 1

Nk
KL[p

(0)
k (yk, bk)‖pk(yk, bk)]

Appendix E. Tree-AMP Modules

E.1 Variable

The Tree-AMP package only implements isotropic Gaussian beliefs, but the variable log-
partitions presented here will be useful to derive the factor modules.

E.1.1 General Variable

An approximate belief, which we may as well call a variable type, is specified by the base
space X as well as the chosen set of sufficient statistics φ(x). Any variable type defines an
exponential family distribution

p(x | λ) = e〈λ,φ(x)〉−A[λ] (238)

indexed by the natural parameter λ. The family can be alternatively indexed by the mo-
ments µ = Ep(x|λ)φ(x). The log-partition

A[λ] = ln

∫
X
dxeλ

ᵀφ(x) (239)

provides the bijective mapping between the natural parameters and the moments:

µ[λ] = ∂λA[λ]. (240)
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For all the variable types considered below, we will always have x ∈ φ(x) in the set of
sufficient statistics. Its associated natural parameter b ∈ λ is thus dual to the mean r ∈ µ.
The mean and variance are given by:

r[λ] = ∂bA[λ], v[λ] = ∂2
bA[λ], (241)

We list below the log-partition, mean and variance for several variable types, which corre-
spond to well known exponential family distributions.

E.1.2 Isotropic Gaussian Variable

For x ∈ RN , sufficient statistics φ(x) = (x,−1
2x

ᵀx), natural parameters λ = (b, a) with
b ∈ RN and scalar precision a ∈ R.

A[a, b] = ln

∫
dx e−

1
2
axᵀx+bᵀx =

‖b‖2
2a

+
N

2
ln

2π

a
, (242)

r[a, b] =
b

a
, v[a, b] =

1

a
∈ R. (243)

The corresponding exponential family is the isotropic multivariate Normal:

p(x | a, b) = N (x | r, v) with r =
b

a
, v =

1

a
. (244)

E.1.3 Diagonal Gaussian Variable

For x ∈ RN , sufficient statistics φ(x) = (x,−1
2x

2), natural parameters λ = (b, a) with
b ∈ RN and diagonal precision a ∈ RN .

A[a, b] = ln

∫
dx e−

1
2
xᵀax+bᵀx =

N∑
n=1

b2n
2an

+
1

2
ln

2π

an
, (245)

r[a, b] =
b

a
, v[a, b] =

1

a
∈ RN . (246)

The corresponding exponential family is the diagonal multivariate Normal:

p(x | a, b) = N (x | r, v) with r =
b

a
, v =

1

a
. (247)

E.1.4 Full Covariance Gaussian Variable

For x ∈ RN , sufficient statistics φ(x) = (x,−1
2xx

ᵀ), natural parameters λ = (b, a) with
b ∈ RN and matrix precision a ∈ RN×N .

A[a, b] = ln

∫
dx e−

1
2
xᵀax+bᵀx =

1

2
bᵀa−1b+

1

2
ln det 2πa−1, (248)

r[a, b] =
b

a
, Σ[a, b] = a−1 ∈ RN×N , (249)

The corresponding exponential family is the full covariance multivariate Normal:

p(x | a, b) = N (x | r,Σ) with r =
b

a
, Σ = a−1. (250)
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E.1.5 Real Variable

For x ∈ R, sufficient statistics φ(x) = (x,−1
2x

2), natural parameters λ = (b, a).

A[a, b] = ln

∫
dx e−

1
2
ax2+bx =

b2

2a
+

1

2
ln

2π

a
, (251)

r[a, b] =
b

a
, v[a, b] =

1

a
. (252)

The corresponding exponential family is the Normal:

p(x | a, b) = N (x | r, v) with r =
b

a
, v =

1

a
. (253)

E.1.6 Binary Variable

For x ∈ ±, sufficient statistics φ(x) = x, natural parameter λ = b.

A[b] = ln
∑
x=±

ebx = ln(e+b + e−b), (254)

r[b] = tanh(b), v[b] =
1

cosh(b)2
. (255)

The corresponding exponential family is the Bernoulli (over ±):

p(x | b) = p+δ+1(x) + p−δ−1(x) (256)

where the natural parameter b = 1
2 ln p+

p−
is the log-odds.

E.1.7 Sparse Variable

For x ∈ R∪{0}, sufficient statistics φ(x) = (x,−1
2x

2, δ(x)), natural parameters λ = (b, a, η).
There is a finite probability that x = 0. The natural parameter η corresponding to the
sufficient statistic δ(x) is dual to the fraction of zero elements κ = Eδ(x) = p(x = 0). The
sparsity ρ = 1− κ = p(x 6= 0) is the fraction of non-zero elements.

A[a, b, η] = ln

[
eη +

∫
dxe−

1
2
ax2+bx

]
= η + ln(1 + eξ) with ξ = A[a, b]− η, (257)

r[a, b, η] =
b

a
σ(ξ), v[a, b, η] =

1

a
σ(ξ) +

b2

a2
σ(ξ)σ(−ξ), ρ[a, b, η] = σ(ξ), (258)

where σ is the sigmoid function and the parameter ξ is the sparsity log-odds:

ξ = A[a, b]− η = ln
σ(ξ)

σ(−ξ) = ln
ρ

1− ρ. (259)

The corresponding exponential family is the Gauss-Bernoulli:

p(x | a, b, η) = [1− ρ]δ(x) + ρN (x | r, v) with r =
b

a
, v =

1

a
, ρ = ρ[a, b, η]. (260)
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E.1.8 Interval Variable

For x ∈ X, sufficient statistics φ(x) = (x,−1
2x

2), natural parameters λ = (b, a), where
X = [xmin, xmax] ⊂ R is a real interval. The probability that x belongs to X is equal to:

pX [a, b] =

∫
X
dxN (x | r, v) = Φ(zmax)− Φ(zmin), (261)

zmin =
xmin − r√

v
=
axmin − b√

a
, zmax =

xmax − r√
v

=
axmax − b√

a
, (262)

where Φ is the cumulative Normal distribution and zmin and zmax are the z-scores of xmin

and xmax for the Normal of mean r = b
a and variance v = 1

a . Then:

AX [a, b] = ln

∫
X
dx e−

1
2
ax2+bx = A[a, b] + ln pX [a, b], (263)

rX [a, b] =
b

a
− 1√

a

N (zmax)−N (zmin)

Φ(zmax)− Φ(zmin)
, (264)

vX [a, b] =
1

a

{
1− zmaxN (zmax)− zminN (zmin)

Φ(zmax)− Φ(zmin)
−
[N (zmax)−N (zmin)

Φ(zmax)− Φ(zmin)

]2
}
. (265)

The corresponding exponential family is the truncated Normal distribution:

pX(x | a, b) =
1

pX [a, b]
N (x | r, v)1X(x) with r =

b

a
, v =

1

a
. (266)

E.1.9 Positive/Negative Variable

For x ∈ R±, sufficient statistics φ(x) = (x,−1
2x

2), natural parameters λ = (b, a). It’s a
particular case of the interval variable with X = R±.

p±[a, b] =

∫
R±

dxN (x | a, b) = Φ(z±) with z± = ± b√
a
, (267)

A±[a, b] = ln

∫
R±

dx e−
1
2
ax2+bx = A[a, b] + ln p±[a, b], (268)

r±[a, b] = ± 1√
a

{
z± +

N (z±)

Φ(z±)

}
, (269)

v±[a, b] =
1

a

{
1− z±N (z±)

Φ(z±)
− N (z±)2

Φ(z±)2

}
. (270)

The corresponding exponential family is the half Normal:

p±(x | a, b) =
1

p±[a, b]
N (x | r, v)1R±(x) with r =

b

a
, v =

1

a
. (271)

E.1.10 Phase (Circular) Variable

For x = eiθx ∈ S1, sufficient statistics φ(x) = x, natural parameter λ = b. Generally the
von Mises distribution on the circle is defined over the angle θx ∈ [0, 2π[ but we find it
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more convenient to define it over the phase x = eiθx ∈ S1. Then the natural parameter
b = |b|eiθb ∈ C and:

AS1 [b] = ln

∫
S1
dx eb

ᵀx = ln 2πI0(|b|) (272)

rS1 [b] =
b

|b|
I1(|b|)
I0(|b|) , vS1 [b] =

1

2

[
1− I1(|b|)2

I0(|b|)2

]
, (273)

where I0 is the modified Bessel function of the first kind. For the natural parameter b, its
modulus |b| is called the concentration parameter and is analogous to the precision for a
Gaussian, and its angle θb = θr is the circular mean. The corresponding exponential family
is the von Mises:

p(x | b) =
eκ cos(θx−µ)

2πI0(κ)
with κ = |b|, µ = θb. (274)

E.2 Linear Channels

E.2.1 Generic Linear Channel

z

RN

x

RM
W

The factor f(x, z) = p(x | z) = δ(x −Wz) is the deterministic channel x = Wz. Unless
explicitly specified, we will always consider isotropic Gaussian beliefs on both x and z. The
log-partition is given by:

Af [az→f , bz→f , ax→f , bx→f ] =
1

2
bᵀΣb+

1

2
ln det 2πΣ (275)

b = bz→f +W ᵀbx→f , a = az→f + ax→fW
ᵀW, Σ = a−1. (276)

The posterior means and variances are given by:

rfz = Σb, vfz = Eλ
1

az→f + ax→fλ
, (277)

rfx = Wrfz , αvfx = Eλ
λ

az→f + ax→fλ
, (278)

where λ = Spec W ᵀW denotes the spectrum of W ᵀW and α = M
N the aspect ratio of W .

There is actually no need to explicitly compute the matrix inverse Σ = a−1 at each update;
it is more numerically efficient to use the SVD decomposition (see Section E.2.10). The
variances satisfy:

az→fv
f
z + αax→fv

f
x = 1, (279)

αax→fv
f
x = 1− az→fvfz = neff, (280)

where neff = Eλ
ax→fλ

az→f+ax→fλ
is known as the effective number of parameters in Bayesian

linear regression (Bishop, 2006).
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E.2.2 Teacher Prior Second Moment

The log-partition for the teacher prior second moment is equal to:

A
(0)
f [τ̂

(0)
z→f , τ̂

(0)
x→f ] =

1

2
Eλ ln

2π

τ̂
(0)
λ

with τ̂
(0)
λ = τ̂

(0)
z→f + λτ̂

(0)
x→f (281)

which yields the dual mapping:

τ (0)
z = Eλτ

(0)
λ , ατ (0)

x = Eλλτ
(0)
λ with τ

(0)
λ =

1

τ̂
(0)
λ

. (282)

When the teacher factor graph is a Bayesian network (Section 3.2) we have

τ̂
(0)
z→f =

1

τ
(0)
z

, τ̂
(0)
x→f = 0, τ

(0)
λ = τ (0)

z , A
(0)
f =

1

2
ln 2πτ (0)

z . (283)

E.2.3 Replica Symmetric

The RS potential is given by:

Āf [m̂z→f , q̂z→f , τ̂z→f , m̂x→f , q̂x→f , τ̂x→f ] = EλĀλ[m̂λ, q̂λ, τ̂λ],

Āλ[m̂λ, q̂λ, τ̂λ] =
m̂2
λτ

(0)
λ + q̂λ
2aλ

+
1

2
ln

2π

aλ
,

with aλ = τ̂λ + q̂λ and m̂λ = m̂z→f + λm̂x→f (idem q̂, τ̂ , a, τ̂ (0)) (284)

We recognize Āλ as the variable RS potential Eq. (134) which yields the dual mapping:

mf
z = Eλmλ, αmf

x = Eλλmλ (idem q, τ, v)

with mλ =
m̂λτ

(0)
λ

aλ
, qλ =

m̂2
λτ

(0)
λ + q̂λ

a2
λ

, τλ = qλ + vλ, vλ =
1

aλ
. (285)

In particular we recover Eqs (277)-(278) for the variances.

E.2.4 Bayes-Optimal

The BO potential is given by:

Ā
(0)
f [m̂z→f , m̂x→f ] = EλĀλ[m̂λ], Ā

(0)
λ [m̂λ] =

m̂λτ
(0)
λ

2
+

1

2
ln

2π

aλ
,

with aλ = τ̂
(0)
λ + m̂λ and m̂λ = m̂z→f + λm̂x→f (idem a, τ̂ (0)) (286)

We recognize Ā
(0)
λ as the variable BO potential Eq. (152) which yields the dual mapping:

mf
z = Eλmλ, αmf

x = Eλλmλ (idem τ (0), v) with mλ = τ
(0)
λ − vλ, vλ =

1

aλ
. (287)
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In particular we recover Eqs (277)-(278) for the variances. The decomposition Eq. (160) for
the BO potential reads:

Ā
(0)
f [m̂z→f , m̂x→f ] =

m̂z→fτ
(0)
z + αm̂x→fτ

(0)
x

2
− If [m̂z→f , m̂x→f ] +A

(0)
f [τ̂

(0)
z→f , τ̂

(0)
z→f ] (288)

where A
(0)
f is given by Eq. (281) and the mutual information by:

If [m̂z→f , m̂x→f ] =
1

2
Eλ ln aλτ

(0)
λ . (289)

From these expressions, it is straightforward to check the dual mapping to the variances:

1
2v

f
z = ∂m̂z→f If ,

1
2αv

f
x = ∂m̂x→f If , (290)

as well as the dual mapping to the overlaps:

1
2m

f
z = ∂m̂z→f Ā

(0)
f , 1

2αm
f
x = ∂m̂x→f Ā

(0)
f . (291)

E.2.5 Random Matrix Theory Expressions

The posterior variances and the mutual information are closely related to the following
transforms in random matrix theory (Tulino and Verdú, 2004):

Shannon transform V(γ) = Eλ ln(1 + γλ) (292)

η transform η(γ) = Eλ
1

1 + γλ
(293)

Stieltjes transform S(z) = Eλ
1

λ− z (294)

R transform R(s) = S−1(−s)− 1

s
(295)

where S−1 denotes the functional inverse of S. Following Reeves (2017) let’s introduce the
integrated R-transform and its Legendre transform

J(t) =
1

2

∫ t

0
dzR(−z), J∗(u) = sup

t
J(t)− 1

2
ut. (296)

Using the identities (Tulino and Verdú, 2004)

γ
d

dγ
V(γ) = 1− η(γ) = −φR(φ) with φ = −γη(γ), (297)

it can be shown that:

az→fv
f
z = η(γ) with γ =

ax→f
az→f

, u =
αvfx

vfz
= R(φ), J∗(u) =

1

2
Eλ ln aλvz. (298)

The Legendre transforms of the BO potential and mutual information

Ā
(0∗
f [mz,mx] = sup

m̂z→f ,m̂x→f

m̂z→fmz + αm̂x→fmx

2
− Ā(0)

f [m̂z→f , m̂x→f ], (299)

I∗f [vz, vx] = sup
m̂z→f ,m̂x→f

If [m̂z→f , m̂x→f ]− m̂z→fvz + αm̂x→fvx
2

, (300)
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are equal to

Ā
(0)∗
f [mz,mx] = J∗(u)− 1

2
ln 2πevz +

τ̂
(0)
z→fvz + ατ̂

(0)
x→fvx

2
, (301)

I∗f [vz, vx] = Ā
(0)∗
f [mz,mx] +A

(0)
f [τ̂

(0)
z→f , τ̂

(0)
x→f ]. (302)

In particular when the teacher factor graph is a Bayesian network we recover (Reeves, 2017):

I∗f [vz, vx] = J∗(u) + I∗z [vz], I∗z [vz] =
1

2

(
ln
τ

(0)
z

vz
+

vz

τ
(0)
z

− 1

)
. (303)

When the matrix W belongs to an ensemble for which the limiting spectral density of W ᵀW
is known (for example Section E.2.7) the transforms above can be derived analytically,
leading to the S-AMP approach (Çakmak et al., 2014, 2016).

E.2.6 Gibbs Free Energy

The Gibbs free energy for the linear channel can be expressed as a function of the posterior
variances:

Gf [vz, vx] = Gz[vz] +NJ∗(u), u =
αvx
vz

, (304)

where Gz[vz] = −N
2 ln 2πevz is the variable negative entropy and J∗(u) the dual integrated

R-transform Eq. (296). Viewed as a function of the posterior variances, Gf gives the dual
mapping to the incoming precisions:

−N
2
az→f = ∂vzGf [vz, vx], −M

2
ax→f = ∂vxGf [vz, vx], (305)

Similarly the variable negative entropy Gz gives the dual mapping to the precision

−N
2
az = ∂vzGz[vz] =⇒ az =

1

vz
(idem x). (306)

Then the potential

G̃f [vx, vz] = Gx[vx] +Gz[vz]−Gf [vz, vx] = Gx[vx]−NJ∗(u) (307)

gives the dual mapping to the outgoing precisions:

−N
2
af→z = ∂vzG̃f [vz, vz], −M

2
af→x = ∂vxG̃f [vz, vx]. (308)

E.2.7 Matrix with iid Entries

Let W be a random matrix with iid entries of mean 0 and variance 1
N . Then the limiting

spectral density ρ(λ) of λ = Spec W ᵀW as N → ∞ with α = M
N = O(1) follows the

Marchenko-Pastur law:

ρ(λ) = max(0, 1− α)δ(λ) +
1

2πλ

√
(λ+ − λ)(λ− λ−)1[λ−,λ+](λ) λ± = (1±√α)2 (309)
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Then the dual integrated R-transform is (Reeves, 2017):

J∗(u) =
α

2

(
ln
α

u
+
u

α
− 1
)
. (310)

From Eq. (307) the potential G̃f is then equal to:

G̃f [vz, vx] = −M
2

(
ln 2πvz +

vx
vz

)
(311)

which gives the dual mapping Eq. (308) to the outgoing precisions:

af→z =
α

vz

(
1− vx

vz

)
, af→x =

1

vz
. (312)

The fact that the outgoing precision af→x towards x is equal to the precision az = 1
vz

of z
is only true for the iid entries case. For a generic linear channel af→x will depend on both
vx and vz.

E.2.8 Rotation Channel

If W = R is a rotation, then vfz = vfx = 1
a with a = az→f + ax→f . Besides the forward

f → x and backward f → z updates are simple rotations in parameter space:

anew
f→x = az→f , bnew

f→x = Rbz→f , (313)

anew
f→z = ax→f , bnew

f→z = Rᵀbx→f . (314)

E.2.9 Scaling Channel

When the weight matrix W = S is a diagonal M ×N matrix, the eigenvalue distribution is
equal to λ = SᵀS and the posterior mean and variances are given by:

rfz =
bz→f + Sᵀbx→f
az→f + ax→fλ

, vfz = Eλ
1

az→f + ax→fλ
, (315)

rfx = Srfz , αvfx = Eλ
λ

az→f + ax→fλ
. (316)

In particular, for out-of-rank components, the posterior mean rfz is set to the prior and the
posterior mean rfx is set to zero:

rf(n)
z =

b
(n)
z→f
az→f

for R < n ≤ N, rf(m)
x = 0 for R < m ≤M. (317)

E.2.10 SVD Decomposition

As proposed by Rangan et al. (2017) for VAMP, it is more efficient to precompute the SVD
decomposition:

W = UxSV
ᵀ
z , Ux ∈ O(M), Vz ∈ O(N), S ∈ RM×N diagonal. (318)
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The eigenvalue distribution of W ᵀW is equal to λ = SᵀS. Then the EP updates for W are
equivalent to the composition of a rotation V ᵀ

z in z-space, a scaling S that projects z into
the x space and a rotation Ux in x-space.

z

RN

z̃

RN

x̃

RM

x

RM
V ᵀ
z S Ux

These updates are only rotations or element-wise scaling and are thus considerably faster
than solving arfz = b or even worse computing the inverse Σ = a−1 at each update. It comes
at the expense of computing the SVD decomposition of W , but this only needs to be done
once.

E.2.11 Complex Linear Channel

The real linear channel can be easily extended to the complex linear channel x = Wz with
x ∈ CM , z ∈ CN and W ∈ CM×N and λ = Spec W †W .

E.2.12 Unitary Channel

When W = U is unitary, for instance when W = F is the discrete Fourier transform (DFT),

then vfz = vfx = 1
a with a = az→f + ax→f . Besides the forward f → x and backward f → z

updates are simple unitary transforms in parameter space:

anew
f→x = az→f , bnew

f→x = Ubz→f , (319)

anew
f→z = ax→f , bnew

f→z = U †bx→f . (320)

E.2.13 Convolution Channel (Complex)

z

CN

x

CN
∗w

The convolution channel x = w ∗ z with convolution weights w ∈ CN is a complex linear
channel x = Wz with M = N . It is equivalent to the composition of a discrete Fourier
transform (DFT) F for z, a multiplication by ŵ = Fw ∈ CN , and an inverse DFT F−1 for
x. The eigenvalue distribution of W †W is equal to λ = ŵ†ŵ = |ŵ|2.

z

CN

ẑ

CN

x̂

CN

x

CN
F ŵ F−1

E.2.14 Convolution Channel (Real)

z

RN

x

RN
∗w
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The convolution channel x = w ∗z with convolution weights w ∈ RN is a real linear channel
x = Wz with M = N . It is equivalent to the composition of a discrete Fourier transform
(DFT) F for z, a multiplication by ŵ = Fw ∈ CN , and an inverse DFT F−1 for x. The
eigenvalue distribution of W ᵀW is equal to λ = ŵ†ŵ = |ŵ|2.

z

RN

ẑ

CN

x̂

CN

x

RN
F ŵ F−1

E.2.15 Full Covariance Beliefs

In this subsection we will consider the linear channel x = Wz with full covariance beliefs
on x and z, meaning that the precisions az→f and ax→f are N ×N and M ×M matrices.
The log-partition is given by:

Af [az→f , bz→f , ax→f , bx→f ] =
1

2
bᵀΣb+

1

2
ln det 2πΣ (321)

b = bz→f +W ᵀbx→f , a = az→f +W ᵀax→fW, Σ = a−1. (322)

The posterior mean and covariance are given by:

rfz = Σb, Σf
z =Σ, (323)

rfx = Wrfz , Σf
x =WΣW ᵀ, (324)

We have afz = a and bfz = b so the backward f → z update is simply given by:

anew
f→z = W ᵀax→fW, bnew

f→z = W ᵀbx→f (325)

We have:

afx = (WΣW ᵀ)−1 = ax→f + (Wa−1
z→fW

ᵀ)−1 (326)

bfx = (WΣW ᵀ)−1WΣb = bx→f + (WΣW ᵀ)−1WΣbz→f (327)

We can obtain the RHS of Eq (326) by two applications of the Woodbury identity. The
RHS of Eq (327) follows directly from the definition of b. Using the mean and covariance
of the z → f and f → x messages:

Σz→f = a−1
z→f , rz→f = a−1

z→fbz→f (328)

Σf→x = a−1
f→x, rf→x = a−1

f→xbf→x (329)

we can write the forward f → x update as:

Σnew
f→x = WΣz→fW

ᵀ, rnew
f→x = Wrz→f . (330)

E.3 Separable Priors

E.3.1 Generic Separable Prior

x

RN
p0
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Let f(x) = p0(x) =
∏N
n=1 p0(x(n)) be a separable prior over x ∈ RN . The log-partition,

posterior mean and variance are given by:

Af [ax→f , bx→f ] =

N∑
n=1

Af [ax→f , b
(n)
x→f ], (331)

rfx [ax→f , bx→f ](n) = rfx [ax→f , b
(n)
x→f ], vfx [ax→f , bx→f ] =

1

N

N∑
n=1

vfx [ax→f , b
(n)
x→f ]. (332)

where on the RHS the same quantities are defined over scalar b
(n)
x→f in R:

Af [ax→f , bx→f ] = ln

∫
R
dx p0(x) e−

1
2
ax→fx

2+bx→fx, (333)

rfx [ax→f , bx→f ] = ∂bx→fAf [ax→f , bx→f ], vfx [ax→f , bx→f ] = ∂2
bx→f

Af [ax→f , bx→f ]. (334)

In the remainder we will only derive the scalar case, as it can be straightforwardly extended
to the high dimensional counterpart through Eqs (331)-(332). For a large class of priors
that we call natural priors we can derive closed-form expressions for the log-partition, mean
and variance as shown in Section E.3.5; familiar examples include the Gaussian, binary,
Gauss-Bernoulli, and positive priors.

E.3.2 Teacher Prior Second Moment

The approximate teacher marginal (Proposition 5) is:

p
(0)
f (x(0) | τ̂ (0)

x→f ) = p
(0)
0 (x(0)) e−

1
2
τ̂
(0)
x→fx

(0)2−A(0)
f [τ̂

(0)
x→f ], (335)

with log-partition:

A
(0)
f [τ̂

(0)
x→f ] = ln

∫
R
dx p

(0)
0 (x) e−

1
2
τ̂
(0)
x→fx

2

(336)

which yields the dual mapping:

τ (0)
x = −2∂

τ̂
(0)
x→f

A
(0)
f [τ̂

(0)
x→f ]. (337)

When the teacher factor graph is a Bayesian network (Section 3.2) we have

τ̂
(0)
x→f = 0, p

(0)
f (x(0) | τ̂ (0)

x→f ) = p
(0)
0 (x(0)). (338)
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E.3.3 Replica Symmetric

The RS potential and overlaps are given by a low-dimensional integration of the correspond-
ing scalar EP quantities Eqs (333)-(334):

Āf [m̂x→f , q̂x→f , τ̂x→f ] =

∫
R
dbx→f p

(0)
f (bx→f )Af [ax→f , bx→f ], (339)

mf
x[m̂x→f , q̂x→f , τ̂x→f ] =

∫
R2

dbx→fdx
(0) p

(0)
f (bx→f , x

(0))x(0)rfx [ax→f , bx→f ] (340)

qfx [m̂x→f , q̂x→f , τ̂x→f ] =

∫
R
dbx→f p

(0)
f (bx→f ) rfx [ax→f , bx→f ]2, (341)

vfx [m̂x→f , q̂x→f , τ̂x→f ] =

∫
R
dbx→f p

(0)
f (bx→f ) vfx [ax→f , bx→f ], (342)

τ fx [m̂x→f , q̂x→f , τ̂x→f ] = qfx [m̂x→f , q̂x→f , τ̂x→f ] + vfx [m̂x→f , q̂x→f , τ̂x→f ], (343)

where the ensemble average Eq. (123) is now over scalar bx→f and x(0) in R:

p
(0)
f (bx→f , x

(0)) = N (bx→f | m̂x→fx
(0), q̂x→f ) p

(0)
f (x(0) | τ̂ (0)

x→f ) (344)

with ax→f = τ̂x→f + q̂x→f and p
(0)
f (x(0) | τ̂ (0)

x→f ) given by Eq. (335). The dual mapping to
the overlaps now simply reads:

mf
x = ∂m̂x→f Āf , −1

2q
f
x = ∂q̂x→f Āf , −1

2τ
f
x = ∂τ̂x→f Āf . (345)

E.3.4 Bayes-Optimal

The BO potential and overlap are given by a low-dimensional integration of the correspond-
ing scalar EP quantities:

Ā
(0)
f [m̂x→f ] =

∫
R
dbx→f p

(0)
f (bx→f )A

(0)
f [ax→f , bx→f ], (346)

vfx [m̂x→f ] =

∫
R
dbx→f p

(0)
f (bx→f ) vfx [ax→f , bx→f ], (347)

mf
x[m̂x→f ] = τ (0)

x − vfx [m̂x→f ], (348)

where the ensemble average Eq. (145) is now over scalar bx→f and x(0) in R:

p
(0)
f (bx→f , x

(0)) = N (bx→f | m̂x→fx
(0), m̂x→f ) p

(0)
f (x(0) | τ̂ (0)

x→f ) (349)

with ax→f = τ̂
(0)
x→f + m̂x→f and p

(0)
f (x(0) | τ̂ (0)

x→f ) given by Eq. (335). The relationship
Eq. (160) between the mutual information and the BO potential now reads:

If [m̂x→f ] = 1
2m̂x→fτ

(0)
x − Ā(0)

f [m̂x→f ] +A
(0)
f [τ̂

(0)
x→f ]. (350)

The dual mapping to the variance and overlap simply reads:

1
2v

f
x = ∂m̂x→f If ,

1
2m

f
x = ∂m̂x→f Ā

(0)
f . (351)
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E.3.5 Natural Prior

Let z be a variable of base space Z, with sufficient statistics φ(z) and associated natural
parameters λz. Several examples of variable types are presented in Section E.1 such as
the real, binary, sparse and positive variable. A natural prior over the variable z is an
exponential family distribution p0(z) = p(z | λ0) = eλ

ᵀ
0φ(z)−Az [λ0] with a given natural

parameter λ0.

Variable z belief Let the factor f(z) = p0(z) = p(z | λ0) be a natural prior. Let us first
consider the corresponding module with variable z belief.

λ0 z

Z
p0

The log-partition and moment function are given by:

Af [λz→f ] = Az[λz→f + λ0]−Az[λ0], (352)

µfz [λz→f ] = µz[λz→f + λ0], (353)

where Az[λ] and µz[λ] denotes the log-partition and moment function of the variable z. The
f → z update is the constant message:

λnew
f→z = λ0. (354)

Variable x belief Let x be a variable of different type than z, with base space X and
sufficient statistics φ(x) and associated natural parameters λx. We still consider the same
factor f(x) = p0(x) = p(x | λ0) which is a natural prior in the z variable, but we derive the
corresponding module using a variable x belief.

λ0 x

X
p0

This is meaningful only if we can inject Z ↪→ X. We denote by φ(0), φ(1) and φ(2) the
set of sufficient statistics common to x and z, specific to z and specific to x respectively.
We will assume that the sufficient statistics φ(2) specific to x are constant on Z:

φ(2)(z) = µ
(2)
Z for all z ∈ Z. (355)

Then the log-partition and moment function are given by:

Af [λx→f ] = Az[λz→f + λ0]−Az[λ0] + λ
(2)T
x→fµ

(2)
Z , (356)

µf(0)
x [λx→f ] = µ(0)

z [λz→f + λ0], µf(2)
x [λx→f ] = µ

(2)
Z (357)

with λ
(0)
z→f = λ

(0)
x→f and λ

(1)
z→f = 0.
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Isotropic Gaussian belief To derive the isotropic Gaussian belief modules, we take x to
be a real variable that is X = R and φ(x) = (x,−1

2x
2) and associated natural parameters

λx = (bx, ax). When z is a real, binary, sparse, and interval variable we obtain respectively
the Gaussian, binary, Gauss-Bernoulli and truncated Normal prior as detailed in the next
subsections.

E.3.6 Gaussian Prior

x

R
N

The factor f(x) = p(x | a0, b0) = N (x | r0, v0) is the Normal prior with natural parameters
a0 = 1

v0
and b0 = r0

v0
. The Normal prior corresponds to the natural prior for the real variable

x ∈ R. According to Section E.3.5 the log-partition is given by:

Af [ax→f , bx→f ] = A[a, b]−A[a0, b0] with a = ax→f + a0, b = bx→f + b0, (358)

where A[a, b] is the log-partition of a real variable, see Section E.1.5. The posterior mean
and variance are given by:

rfx =
b

a
, vfx =

1

a
, (359)

leading to the constant f → x update:

anew
f→x = a0, bnew

f→x = b0. (360)

The ensemble average variance is directly given by vfx = 1
a .

E.3.7 Binary Prior

x

R
p±

The factor f(x) = p(x | b0) = p+δ+1(x) + p−δ−1(x) is the binary prior with natural
parameter b0 = 1

2 ln p+
p−

. The binary prior corresponds to the natural prior for the binary
variable z ∈ ±. According to Section E.3.5 the log-partition, posterior mean and variance
are given by:

Af [ax→f , bx→f ] = A[b]−A[b0]− ax→f
2

with b = b0 + bx→f , (361)

rfx = r[b], vfx = v[b], (362)

where A[b], r[b] and v[b] denote the log-partition, mean and variance of a binary variable,
see Section E.1.6.
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E.3.8 Sparse Prior

x

RNρ

The factor f(x) = p(x | a0, b0η0) = [1 − ρ0]δ0(x) + ρ0N (x | r0, v0) is the Gauss-Bernoulli
prior with natural parameters a0 = 1

v0
, b0 = r0

v0
and η0 = A[a0, b0]− ln ρ0

1−ρ0 where A[a, b] =
b2

2a + 1
2 ln 2π

a is the log-partition of a real variable. The Gauss-Bernoulli prior corresponds
to the natural prior for the sparse variable z ∈ R ∪ {0}. According to Section E.3.5 the
log-partition, posterior mean and variance are given by:

Af [ax→f , bx→f ] = A[a, b, η0]−A[a0, b0, η0] with a = a0 + ax→f , b = b0 + bx→f , (363)

rfx = r[a, b, η0], vfx = v[a, b, η0], (364)

where A[a, b, η], r[a, b, η] and v[a, b, η] denote the log-partition, mean and variance of a

sparse variable, see Section E.1.7. Also the sparsity of x is equal to ρfx = ρ[a, b, η0].

E.3.9 Interval Prior

Let X ⊂ R denotes any real interval, for example X = R+ for a positive prior.

x

R
pX

The factor f(x) = pX(x | a0, b0) = 1
pX [a0,b0]N (x | r0, v0)δX(x) is the truncated Normal

prior with natural parameters a0 = 1
v0

and b0 = r0
v0

. The truncated Normal corresponds
to the natural prior for the interval variable z ∈ X. According to Section E.3.5 the log-
partition, posterior mean and variance are given by:

Af [ax→f , bx→f ] = AX [a, b]−AX [a0, b0] with a = a0 + ax→f , b = b0 + bx→f , (365)

rfx = rX [a, b], vfx = vX [a, b] (366)

where AX [a, b], rX [a, b] and vX [a, b] denote the log-partition, mean and variance of a interval
X variable, see Section E.1.8.

E.4 Separable Likelihoods

E.4.1 Generic Separable Likelihood

z

RN

y

Y N
pout
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Let f(z) = pout(y | z) =
∏N
n=1 pout(y

(n) | z(n)) be a separable likelihood over z ∈ RN with
observed y ∈ Y N . The log-partition, posterior means and variances are given by:

Af [az→f , bz→f ; y] =

N∑
n=1

Af [az→f , b
(n)
z→f ; y(n)], (367)

rfz [az→f , bz→f ; y](n) = rfz [az→f , b
(n)
z→f ; y(n)], (368)

vfz [az→f , bz→f ; y] =
1

N

N∑
n=1

vfz [az→f , b
(n)
z→f ; y(n)]. (369)

where on the RHS the same quantities are defined over scalar b
(n)
z→f and y(n) in R:

Af [az→f , bz→f ; y] = ln

∫
R
dz pout(y | z) e−

1
2
az→f z

2+bz→f z, (370)

rfz [az→f , bz→f ; y] = ∂bz→fAf [az→f , bz→f ; y], (371)

vfz [az→f , bz→f ; y] = ∂2
bz→f

Af [az→f , bz→f ; y]. (372)

In the remainder we will only derive the scalar case, as it can be straightforwardly extended
to the high dimensional counterpart through Eqs (367)-(369).

E.4.2 Teacher Prior Second Moment

The approximate teacher marginal (Proposition 5) is:

p
(0)
f (y, z(0) | τ̂ (0)

z→f ) = p
(0)
out(y | z(0)) e−

1
2
τ̂
(0)
z→f z

(0)2−A(0)
z [τ̂

(0)
z→f ], (373)

with log-partition:

A
(0)
f [τ̂

(0)
z→f ] = ln

∫
R
dydz p

(0)
out(y | z) e−

1
2
τ̂
(0)
z→f z

2

=
1

2
ln

2π

τ̂
(0)
z→f

(374)

which yields the dual mapping:

τ (0)
z = −2∂

τ̂
(0)
z→f

A
(0)
f [τ̂

(0)
z→f ] =

1

τ̂
(0)
z→f

(375)

The approximate teacher marginal is therefore equal to:

p
(0)
f (y, z(0) | τ̂ (0)

z→f ) = p
(0)
out(y | z(0))N (z(0) | 0, τ (0)

z ). (376)
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E.4.3 Replica Symmetric

The RS potential and overlaps are given by a low-dimensional integration of the correspond-
ing scalar EP quantities Eqs (370)-(372):

Āf [m̂z→f , q̂z→f , τ̂z→f ] =

∫
R2

dbz→fdy p
(0)
f (bz→f , y)Af [az→f , bz→f ; y], (377)

mf
z [m̂z→f , q̂z→f , τ̂z→f ] =

∫
R3

dbz→fdydz
(0) p

(0)
f (bz→f , y, z

(0)) z(0)rfz [az→f , bz→f ; y] (378)

qfz [m̂z→f , q̂z→f , τ̂z→f ] =

∫
R2

dbz→fdy p
(0)
f (bz→f , y) rfz [az→f , bz→f ; y]2, (379)

vfz [m̂z→f , q̂z→f , τ̂z→f ] =

∫
R2

dbz→fdy p
(0)
f (bz→f , y) vfz [az→f , bz→f ; y], (380)

τ fz [m̂z→f , q̂z→f , τ̂z→f ] = qfz [m̂z→f , q̂z→f , τ̂z→f ] + vfz [m̂z→f , q̂z→f , τ̂z→f ], (381)

where the ensemble average Eq. (123) is now over scalar bz→f , y and z(0) in R:

p
(0)
f (bz→f , y, z

(0)) = N (bz→f | m̂z→fz
(0), q̂z→f ) p

(0)
f (y, z(0) | τ̂ (0)

z→f ) (382)

with az→f = τ̂z→f + q̂z→f and p
(0)
f (y, z(0) | τ̂ (0)

z→f ) given by Eq. (373). The dual mapping to
the overlaps now simply reads:

mf
z = ∂m̂z→f Āf , −1

2q
f
z = ∂q̂z→f Āf , −1

2τ
f
z = ∂τ̂z→f Āf . (383)

E.4.4 Bayes-Optimal

The BO potential and overlap are given by a low-dimensional integration of the correspond-
ing scalar EP quantities:

Ā
(0)
f [m̂z→f ] =

∫
R2

dbz→fdy p
(0)
f (bz→f , y)A

(0)
f [az→f , bz→f ; y], (384)

vfz [m̂z→f ] =

∫
R2

dbz→fdy p
(0)
f (bz→f , y) vfz [az→f , bz→f ; y], (385)

mf
z [m̂z→f ] = τ (0)

z − vfz [m̂z→f ], (386)

where the ensemble average Eq. (145) is now over scalar bz→f , y and z(0) in R:

p
(0)
f (bz→f , y, z

(0)) = N (bz→f | m̂z→fz
(0), m̂z→f ) p

(0)
f (y, z(0) | τ̂ (0)

z→f ) (387)

with az→f = τ̂
(0)
z→f + m̂z→f and p

(0)
f (z(0) | τ̂ (0)

z→f ) given by Eq. (373). The relationship
Eq. (160) between the mutual information and the BO potential now reads:

If [m̂z→f ] + Ef = 1
2m̂z→fτ

(0)
z − Ā(0)

f [m̂z→f ] +A
(0)
f [τ̂

(0)
z→f ]. (388)

The dual mapping to the variance and overlap simply reads:

1
2v

f
z = ∂m̂z→f If ,

1
2m

f
z = ∂m̂z→f Ā

(0)
f . (389)
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E.4.5 Gaussian Likelihood

z

R

y

R
∆

The factor f(z) = pout(y | z) = N (y | z,∆) is the Gaussian likelihood with noise variance
∆ and observed y. The log-partition is given by:

Af [az→f , bz→f ; y] = A[a, b]−A[ay, by], (390)

ay =
1

∆
, by =

y

∆
, a = az→f + ay, b = bz→f + by, (391)

where A[a, b] denotes the log-partition of a real variable, see Section E.1.5. The posterior
mean and variance are given by:

rfz =
b

a
, vfz =

1

a
, (392)

leading to the constant f → z update:

anew
f→z = ay, bnew

f→z = by. (393)

The ensemble average variance is directly given by vfz = 1
a .

E.4.6 Sgn Likelihood

z

R

y

±
sgn

The factor f(z) = pout(y | z) = δ(y− sgn(z)) is the deterministic likelihood y = sgn(z) ∈ ±.
The log-partition, posterior mean and variance are given by:

Af [az→f , bz→f ; y] = Ay[az→f , bz→f ], (394)

rfz = ry[az→f , bz→f ], vfz = vy[az→f , bz→f ], (395)

where A±[a, b], r±[a, b] and v±[a, b] denote the log-partition, mean and variance of a posi-
tive/negative variable, see Section E.1.9.

E.4.7 Abs Likelihood

z

R

y

R+

abs
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The factor f(z) = pout(y | z) = δ(y−abs(z)) is the deterministic likelihood y = abs(z) ∈ R+.
The log-partition, posterior mean and variance are given by:

Af [az→f , bz→f ; y] = −az→fy
2

2
+A[b] with b = ybz→f , (396)

rfz = y r[b], vfz = y2v[b], (397)

where A[b], r[b] and v[b] denote the log-partition, mean and variance of a binary variable,
see Section E.1.6.

E.4.8 Phase Likelihood

z

C

y

S1

eiθ(.)

The factor f(z) = pout(y | z) = δ(y − eiθ(z)) is the deterministic likelihood y = eiθ(z) ∈ S1.
The log-partition, posterior mean and variance are given by:

Af [az→f , bz→f ; y] = A+[az→f , b] with b = yᵀbz→f , (398)

rfz = y r+[az→f , b], vfz = 1
2v+[az→f , b], (399)

where A+[a, b], r+[a, b] and v+[a, b] denote the log-partition, mean and variance of a positive
variable, see Section E.1.9. The 1

2 factor in the variance comes from the average over the
real and imaginary parts.

E.4.9 Modulus Likelihood

z

C

y

R+| · |

The factor f(z) = pout(y | z) = δ(y − |z|) is the deterministic likelihood y = |z| ∈ R+. The
log-partition, posterior mean and variance are given by:

Af [az→f , bz→f ; y] = −az→fy
2

2
+ ln y +AS1 [b] with b = ybz→f , (400)

rfz = y rS1 [b], vfz = y2vS1 [b], (401)

where AS1 [b], rS1 [b] and vS1 [b] denote the log-partition, mean and variance of a phase vari-
able, see Section E.1.10.

E.5 Separable Channels

E.5.1 Generic Separable Channel

z

RN

x

RN
p

79



Baker, Aubin, Krzakala and Zdeborová

Let f(x, z) = p(x | z) =
∏N
n=1 p(x

(n) | z(n)) be a separable channel with input z ∈ RN and
output x ∈ RN . The log-partition, posterior means and variances are given by:

Af [af , bf ] =
N∑
n=1

Af [af , b
(n)
f ], (402)

rf(n)
x [af , bf ] = rfx [af , b

(n)
f ], vfx [af , bf ] =

1

N

N∑
n=1

vfx [af , b
(n)
f ], (403)

rf(n)
z [af , bf ] = rfz [af , b

(n)
f ], vfz [af , bf ] =

1

N

N∑
n=1

vfz [af , b
(n)
f ]. (404)

where on the RHS the same quantities are defined over scalar b
(n)
x→f and b

(n)
z→f in R:

Af [af , bf ] = ln

∫
R2

dxdz p(x | z) e− 1
2
ax→fx

2+bx→fx− 1
2
az→f z

2+bz→f z, (405)

rfx [af , bf ] = ∂bx→fAf [ax→f , bx→f ], vfx [af , bf ] = ∂2
bx→f

Af [af , bf ], (406)

rfz [af , bf ] = ∂bz→fAf [ax→f , bx→f ], vfz [af , bf ] = ∂2
bz→f

Af [af , bf ]. (407)

In the remainder we will only derive the scalar case, as it can be straightforwardly extended
to the high dimensional counterpart through Eqs (402)-(404).

E.5.2 Teacher Prior Second Moment

The approximate teacher marginal (Proposition 5) is:

p
(0)
f (x(0), z(0) | τ̂ (0)

f ) = p(0)(x(0) | z(0)) e−
1
2
τ̂
(0)
x→fx

(0)2− 1
2
τ̂
(0)
z→f z

(0)2−A(0)
f [τ̂

(0)
f ], (408)

with log-partition:

A
(0)
f [τ̂

(0)
f ] = ln

∫
R2

dxdz p(0)(x | z) e− 1
2
τ̂
(0)
x→fx

2− 1
2
τ̂
(0)
z→f z

2

(409)

which yields the dual mapping:

τ (0)
x = −2∂

τ̂
(0)
x→f

A
(0)
f [τ̂

(0)
f ], τ (0)

z = −2∂
τ̂
(0)
z→f

A
(0)
f [τ̂

(0)
f ], (410)

When the teacher factor graph is a Bayesian network (Section 3.2) we have

τ̂
(0)
x→f = 0, τ̂

(0)
z→f =

1

τ
(0)
z

, p
(0)
f (x(0), z(0) | τ̂ (0)

f ) = p(0)(x(0) | z(0))N (z(0) | 0, τ (0)
z ). (411)
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E.5.3 Replica Symmetric

The RS potential and overlaps are given by a low-dimensional integration of the correspond-
ing scalar EP quantities Eqs (405)-(407):

Āf [m̂f , q̂f , τ̂f ] =

∫
R2

dbx→fdbz→f p
(0)
f (bx→f , bz→f )Af [af , bf ], (412)

mf
x[m̂f , q̂f , τ̂f ] =

∫
R3

dbx→fdbz→fdx
(0) p

(0)
f (bx→f , bz→f , x

(0))x(0)rfx [af , bf ], (413)

qfx [m̂f , q̂f , τ̂f ] =

∫
R2

dbx→fdbz→f p
(0)
f (bx→f , bz→f ) rfx [af , bf ]2, (414)

vfx [m̂f , q̂f , τ̂f ] =

∫
R2

dbx→fdbz→f p
(0)
f (bx→f , bz→f ) vfx [af , bf ], (415)

τ fx [m̂f , q̂f , τ̂f ] = qfx [m̂f , q̂f , τ̂f ] + vfx [m̂f , q̂f , τ̂f ], (idem z) (416)

where the ensemble average Eq. (123) is now over scalar bx→f , bz→f , x(0) and z(0) in R:

p
(0)
f (bx→f , bz→f , x

(0), z(0)) =

N (bx→f | m̂x→fx
(0), q̂x→f )N (bz→f | m̂z→fx

(0), q̂z→f ) p
(0)
f (x(0), z(0) | τ̂ (0)

f ) (417)

with ax→f = τ̂x→f + q̂x→f , az→f = τ̂z→f + q̂z→f and p
(0)
f (x(0), z(0) | τ̂ (0)

f ) given by Eq. (408).
The dual mapping to the overlaps now simply reads:

mf
x = ∂m̂x→f Āf , −1

2q
f
x = ∂q̂x→f Āf , −1

2τ
f
x = ∂τ̂x→f Āf , (418)

mf
z = ∂m̂z→f Āf , −1

2q
f
z = ∂q̂z→f Āf , −1

2τ
f
z = ∂τ̂z→f Āf . (419)

E.5.4 Bayes-Optimal

The BO potential and overlap are given by a low-dimensional integration of the correspond-
ing scalar EP quantities:

Ā
(0)
f [m̂f ] =

∫
R2

dbx→fdbz→f p
(0)
f (bx→f , bz→f )A

(0)
f [af , bf ], (420)

vfx [m̂f ] =

∫
R2

dbx→fdbz→f p
(0)
f (bx→f , bz→f ) vfx [af , bf ], (421)

mf
x[m̂f ] = τ (0)

x − vfx [m̂f ], (idem z) (422)

where the ensemble average Eq. (145) is now over scalar bx→f , bz→f , x(0) and z(0) in R:

p
(0)
f (bx→f , bz→f , x

(0), z(0)) = (423)

N (bx→f | m̂x→fx
(0), m̂x→f )N (bz→f | m̂z→fx

(0), m̂z→f ) p
(0)
f (x(0), z(0) | τ̂ (0)

f ) (424)

with ax→f = τ̂
(0)
x→f+m̂x→f , az→f = τ̂

(0)
z→f+m̂z→f and p

(0)
f (x(0), z(0) | τ̂ (0)

f ) given by Eq. (408).
The relationship Eq. (160) between the mutual information and the BO potential now reads:

If [m̂f ] = 1
2m̂x→fτ

(0)
x + 1

2m̂z→fτ
(0)
z − Ā(0)

f [m̂f ] +A
(0)
f [τ̂

(0)
f ]. (425)
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The dual mapping to the variances and overlaps simply reads:

1
2v

f
x = ∂m̂x→f If ,

1
2m

f
x = ∂m̂x→f Ā

(0)
f , (426)

1
2v

f
z = ∂m̂z→f If ,

1
2m

f
z = ∂m̂z→f Ā

(0)
f . (427)

E.5.5 Gaussian Noise Channel

z

R

x

R
∆

The factor f(x, z) = p(x | z) = N (x | z,∆) is the additive Gaussian noise channel x =
z +
√

∆ξ with variance ∆ and precision a∆ = ∆−1. The log-partition is given by:

Af [af , bf ] =
1

2
bᵀΣb+

1

2
ln det 2πΣ− 1

2
ln 2π∆, (428)

b =

[
bz→f
bx→f

]
, A =

[
a∆ + az→f −a∆

−a∆ a∆ + ax→f

]
, Σ = A−1. (429)

The posterior mean and variance are given by:

vfz =
a∆ + ax→∆

a∆a
, rfz = vfz

[
bz→f +

a∆bx→f
a∆ + ax→f

]
, (430)

vfx =
a∆ + az→∆

a∆a
, rfx = vfx

[
bx→f +

a∆bz→f
a∆ + az→f

]
, (431)

with a = ax→f + az→f +
ax→faz→f

a∆
. (432)

We therefore have:

afz = az→f +
a∆ax→f
a∆ + ax→f

, bfz =

[
bz→f +

a∆bx→f
a∆ + ax→f

]
, (433)

afx = ax→f +
a∆az→f
a∆ + az→f

, bfx =

[
bx→f +

a∆bz→f
a∆ + az→f

]
. (434)

leading to the backward f → z and forward f → x updates:

anew
f→z =

a∆

a∆ + ax→f
ax→f , bnew

f→z =
a∆

a∆ + ax→f
bx→f , (435)

anew
f→x =

a∆

a∆ + az→f
az→f , bnew

f→x =
a∆

a∆ + az→f
bz→f . (436)

The ensemble average variances are still given by Eqs (430)-(431).

E.5.6 Piecewise Linear Activation

z

R

x

R
σ
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Factor f(x, z) = p(x | z) = δ(x − σ(z)) is the deterministic channel x = σ(z), where we
assume the activation to be piecewise linear7

σ(z) =
∑
i∈I

1Ri(z)[xi + γiz], R =
⊔
i∈I

Ri. (437)

As the real line R is the disjoint union of the regions Ri the factor partition function is
simply the sum of the region partition functions:

Zf [af , bf ] =
∑
i∈I

Zif [af , bf ], (438)

Zif [af , bf ] =

∫
Ri

dz e−
1
2
ax→f [xi+γiz]

2+bx→f [xi+γiz]− 1
2
az→f z

2+bz→f z. (439)

Thus at the factor level, the log-partition, posterior means and variances are given by:

Af [af , bf ] = ln
∑
i∈I

eA
i
f [af ,bf ], (440)

rfz =
∑
i∈I

pi r
i
z, vfz =

∑
i∈I

pi v
i
z +

∑
i<j∈I

pi pj [r
i
z − rjz]2, (441)

rfx =
∑
i∈I

pi r
i
x, vfx =

∑
i∈I

pi v
i
x +

∑
i<j∈I

pi pj [r
i
x − rjx]2. (442)

where the region probabilities are given by

pi =
exp(Aif )∑
j∈I exp(Ajf )

ie p = softmax [(Aif )i∈I ]. (443)

The corresponding quantities at the linear region level are given by:

Aif [af , bf ] = −ax→fx
2
i

2
+ bx→fxi +ARi [ai, bi]

with ai = az→f + γ2
i ax→f , bi = bz→f + γi[bx→f − ax→fxi], (444)

riz = rRi [ai, bi], rix = xi + γir
i
z, (445)

viz = vRi [ai, bi], vix = γ2
i v
i
z, (446)

where AR[a, b], rR[a, b] and vR[a, b] denote the log-partition, mean and variance of an interval
R variable, see Section E.1.8.

7. ReLU, leaky ReLU, hard tanh, hard sigmoid, sgn and abs are popular examples.
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borová. The committee machine: Computational to statistical gaps in learning a two-
layers neural network. Advances in Neural Information Processing Systems, 31, 2018.

Benjamin Aubin, Bruno Loureiro, Antoine Maillard, Florent Krzakala, and Lenka Zde-
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and Lenka Zdeborová. High-temperature expansions and message passing algorithms.
Journal of Statistical Mechanics: Theory and Experiment, 2019(11):113301, 2019.

86

https://keras.io/examples/variational_autoencoder/
https://keras.io/examples/variational_autoencoder/


Compositional Inference with Tree-AMP

Antoine Maillard, Florent Krzakala, Marc Mézard, and Lenka Zdeborová. Perturbative
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Marc Mézard and Andrea Montanari. Information, physics, and computation. Oxford
University Press, 2009.

Hidetoshi Nishimori. Statistical Physics of Spin Glasses and Information Processing. Oxford
University Press, 2001.

Manfred Opper and Ole Winther. Gaussian processes for classification: Mean-field algo-
rithms. Neural Computation, 12:2655–2684, 2000.

Manfred Opper and Ole Winther. Expectation consistent approximate inference. Journal
of Machine Learning Research, 6:2177–2206, 2005a.

Manfred Opper and Ole Winther. Expectation consistent free energies for approximate
inference. Advances in Neural Information Processing Systems, 17, 2005b.

Parthe Pandit, Mojtaba Sahraee Ardakan, Sundeep Rangan, Philip Schniter, and Alyson K
Fletcher. Matrix inference and estimation in multi-layer models. Advances in Neural
Information Processing Systems, 33, 2020.

87

http://dotnet.github.io/infer
https://tminka.github.io/papers/ep/minka-ep-energy.pdf
https://tminka.github.io/papers/ep/minka-ep-energy.pdf


Baker, Aubin, Krzakala and Zdeborová
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