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Abstract

In recent literature, a general two step procedure has been formulated for solving the
problem of phase retrieval. First, a spectral technique is used to obtain a constant-error
initial estimate, following which, the estimate is refined to arbitrary precision by first-
order optimization of a non-convex loss function. Numerical experiments, however, seem
to suggest that simply running the iterative schemes from a random initialization may
also lead to convergence, albeit at the cost of slightly higher sample complexity. In this
paper, we prove that, in fact, constant step size online stochastic gradient descent (SGD)
converges from arbitrary initializations for the non-smooth, non-convex amplitude squared
loss objective. In this setting, online SGD is also equivalent to the randomized Kaczmarz
algorithm from numerical analysis. Our analysis can easily be generalized to other single
index models. It also makes use of new ideas from stochastic process theory, including the
notion of a summary state space, which we believe will be of use for the broader field of
non-convex optimization.

Keywords: Phase retrieval, SGD, non-convex, random initialization, optimization

1. Introduction

The mathematical phase retrieval problem is that of recovering a d-dimensional signal vector
x∗ ∈ Rd (or Cd) from the magnitudes b(k) = |〈a(k),x∗〉| (k = 1, 2 . . . , N) of its projections
onto a collection of known sampling vectors a(1),a(2), . . . ,a(N) ∈ Rd (or Cd). Clearly, one
can only hope to recover x∗ up to global phase shift (i.e. up to multiplication by eiφ for
φ ∈ [0, 2π)), but mild regularity assumptions on the sampling vectors and N large enough
ensures that this is the only ambiguity.

This problem is well motivated by practical concerns, having applications to Coherent
Diffraction Imaging (CDI), Electron Microscopy, and X-ray Crystallography, and as such has
been a topic of study from at least the early 1980s. We refer the reader to the survey papers
Fienup (1982); Shechtman et al. (2015); Bendory et al. (2017) for a comprehensive account
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of the contexts in which the problem arises, as well as the techniques that practitioners
employ to solve it.

Over the last decade, the phase retrieval problem has also garnered substantial attention
from the optimization and machine learning communities, the reason being that it can be
formulated as a relatively benign non-convex optimization problem. In other words, it can
be solved by minimizing the least squares objective:

f(x) =
1

2N

N∑
k=1

(
|〈a(k),x〉|2 − (b(k))2

)2
. (1)

Many papers have attempted to study how to optimize this objective given distributional
assumptions on the sampling vectors. One popular approach is to use a two-step procedure:
First, a spectral technique is used to obtain an initial estimate x(0) so that its distance from
a global minimum, ‖x(0)−x∗‖2, is bounded above by a small constant. Next, the estimate is
refined to arbitrary precision using an iterative method such as gradient descent or stochastic
gradient descent (SGD). This procedure is well-supported by theoretical guarantees for both
real and complex signals. Here we note that one can also construct loss functions for phase
retrieval which are different from (2). Running variations of gradient descent or SGD on
these functions also leads to provable guarantees (see for instance Candès et al. (2015);
Zhang et al. (2016); Wang et al. (2017); Wei (2015); Jeong and Güntürk (2017); Tan and
Vershynin (2018)).

Nonetheless, this state of affairs is not entirely satisfactory from an optimization theory
perspective, since the use of a spectral initialization diminishes the novelty of being able
to provably minimize a non-convex objective using first-order methods. The spectral ini-
tialization essentially allows the first-order method to begin within a “basin of convexity”,
thus artificially escaping the difficulties of non-convexity. Such a deus ex machina may not
be available when trying to optimize other non-convex functions.

Consequently, it is important to investigate whether first order methods converge to
x∗ from a random or even arbitrary initialization. From here on, we work with only real
signals and sampling vectors, i.e. x∗,a(k) ∈ Rd. Sun et al. (2018) performed numerical
experiments to show that this was indeed the case. They also analyzed the landscape of the
loss function (1) in the real setting, and showed that it enjoyed favorable qualities: given
N = Ω(d · polylog(d)) measurements, there are no spurious minima and all saddle points
are proper. Therefore, saddle-point escaping methods like perturbed gradient descent enjoy
polynomial time convergence.

More recently, Chen et al. (2018) showed that vanilla gradient descent converges in
O(log d) iterations, again given N = Ω(d ·polylog(d)) measurements. Up to log factors, this
matches the running time guarantees for the original two-stage method. While an important
step, their analysis still requires full gradient updates and does not apply to SGD. In the
high-dimensional setting, SGD is particularly advantageous because it can be applied in an
online, streaming fashion. This lowers the space complexity of the algorithm from O(Nd)
to O(d), and allows progress toward the solution to be made even before the analyst gains
access to the full data sample.
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Moreover, with respect to the non-smooth amplitude least squares objective

f(x) =
1

2N

N∑
k=1

(
|〈a(k),x〉| − b(k)

)2
, (2)

the question of even gradient descent convergence remains open. This objective is es-
pecially interesting because numerical simulations have shown gradient descent and SGD
with respect to it to succeed with fewer measurements than are necessary for the alternative
objective (1) (Wei, 2015; Wang et al., 2017).

1.1 Main results

In this paper, we prove that for a real signal vector and real sampling vectors, online
stochastic gradient descent for the non-smooth objective (2) converges to a global minimum
from arbitrary initializations given Ω(d log d) Gaussian measurements. We believe our work
to be among the first in establishing convergence of SGD in the non-smooth, non-convex
regime. Furthermore, it will be readily apparent that our analysis framework generalizes
easily to other single index models, and we conjecture that similar techniques will also work
low-rank matrix sensing models in general.

We perform SGD with respect to (2), using a single data point per iteration. More
formally, we form a sequence of signal estimates x(0),x(1),x(2), . . . with the update rule:

x(k+1) := x(k) + η
(

sign(〈a(k),x(k)〉)b(k) − 〈a(k),x(k)〉
)
a(k). (3)

We typically choose η = 1
d . This is the same as in previous work that analyzed SGD as

part of the two-step approach (Tan and Vershynin, 2018), and allows for a clear geometric
interpretation. At each step k, we receive the datum

(
a(k), b(k)

)
; the solution set to the

corresponding equation |〈a(k),x〉| = b(k) is then the union of two parallel hyperplanes.
Taking an SGD step projects the current iterate x(k−1) onto the closer of these hyperplanes.
This iterative projection is strongly reminiscent of the randomized Kaczmarz algorithm for
solving linear systems. For a more in-depth discussion of this connection, we again refer
the reader to Tan and Vershynin (2018).

We make the following assumptions for the rest of the paper.

Assumption 1 Assume the following for each positive integer k:

(A) (Real signal and sampling vectors) We have x∗,a(k) ∈ Rd.

(B) (Fresh independent measurements) At step k of the algorithm, we use a sampling
vector a(k) that is fully independent of the previous measurements a(1), . . . ,a(k−1).

(C) (“Gaussian”1 measurements) We have a(k) ∼
√
dSd−1, where Sd−1 is the unit sphere

in Rd.

(D) (No noise) We have bk = |〈a(k),x∗〉|.
1. Because of concentration of norm, this is almost equivalent to requiring that each ak has a standard

Gaussian distribution in Rd.
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These assumptions are all somewhat common in the literature. We note that they are
relatively strong, and each can probably be relaxed with some effort. Our paper makes a
conceptual first step, and does not aim for the widest generality and weakest assumptions.
We leave these extensions to future work, and discuss them in more detail in Section 8.

The following is the main result of the paper.

Theorem 2 (Main result) Suppose we run the iterative update (3) in Rd under the as-
sumptions above, and with constant step size η = η0

d where η0 is a small enough univer-
sal constant. Then with probability at least 0.8 − 1/d − C/ log d, there is a stopping time

T . d ·
(

log d+ log
(
‖x(0)‖
‖x∗‖ ∨ 1

))
, such that for all k ≥ T , we have

‖x(k) − σx∗‖2 ≤
(

1− 1

2d

)k−T
‖x∗‖2, (4)

where σ = sign(〈x(k),x∗〉). Furthermore, there is some constant D, such that if d ≥ D, we
may choose η0 = 1.

This theorem tells us that in T steps, SGD brings us to a point in the “basin of convexity”
around a global minimum, within which we get linear convergence. As a consequence of this
theorem, it is easy to see that we can get an ε-relative-error estimate using O(d log(d/ε))
measurements (and the same number of steps). In fact, the analysis in Tan and Vershynin
(2018) tells us that within the “basin of convexity”, linear convergence still holds if we
resample from amongst O(d) measurements, and we no longer need Assumption A to hold
for this stage of this of the process. By doing this resampling, our final sample complexity
is O(d log d) even for exact recovery.

The novelty of this result is not simply the convergence of the algorithm, but rather its
convergence with near optimal sample and time complexity. Indeed, it is well known that as
we let the step size decrease to zero, SGD under our assumptions approximates gradient flow
for the population loss function. It is easy to show that gradient flow converges to a global
minimum. With smaller steps, however, the algorithm takes a longer time to converge.

In addition, our chosen step size 1
d is the smoothness parameter for SGD if we were

optimizing a least squares system objective under the same assumptions on a(k). It is
interesting that although our objective is no longer smooth, 1

d nonetheless remains the right
scaling.

The proof of the result is somewhat complicated and makes use of several new ideas.
The first idea is to think of the sequence of SGD iterates as a Markov chain on a two-
dimensional summary state space Y. The two coordinates are the squared Euclidean norm
of the iterate, r2 = ‖x‖2, and the correlation with the signal, s = 〈x, x∗

‖x∗‖〉. Just as
how in thermodynamics state variables such as temperature, pressure, and volume suffice
to determine the evolution of a thermodynamic system, so too in our case do the state
variables r2 and s suffice to determine the progress of the SGD algorithm.

The state space is obviously independent of the dimension d. In fact, one can show that
the distribution of the update in the state space is effectively independent of the dimension
up to overall scaling (see Theorem 3). As such, as d tends to infinity, the stochastic dynamics
of the Markov chain when initialized at a fixed y ∈ Y approximates the solution of an ODE
system whose corresponding vector field is given by the rescaled drift of the process.
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Unfortunately, we are hit with the curse of dimensionality: if we take a random initial-
ization x(0) ∼ N (0, I), then it is well-known that with high probability,

s0 =
|〈x(0),x∗〉|
‖x(0)‖‖x∗‖

.
1√
d
. (5)

This implies that the initial correlation with the signal decays as the dimension increases,
and in fact, at the corresponding point (r2

0, s0) in the state space, the drift and the fluc-
tuations have the same magnitude, and it is no longer appropriate to approximate the
stochastic dynamics with a deterministic process.

Overcoming this is the most difficult part of the proof. To do so, we use a small-ball
probability argument. In other words, we show that the distribution of sK = s(x(K))
is anti-concentrated away from 0 when K is large enough. This involves comparing the
process s0, s1, . . . with a more well-understood process ŝ0, ŝ1, . . . via stochastic dominance.
The distribution of this new sequence can in turn be controlled via recursive inequalities
bounding 4th moments from above and 2nd moments from below. We conclude by applying
the Paley-Zygmund inequality.

1.2 Related work

1.2.1 Phase retrieval

There is already a large body of work on phase retrieval, and it is impossible to give a full
account of the literature. We have already mentioned survey papers for how phase retrieval
arises in various engineering problems. On the theoretical side, we have already discussed
the two-step non-convex optimization approach, and will further mention here the convex
relaxation approaches pioneered in the papers Candès et al. (2013); Goldstein and Studer
(2018); Bahmani and Romberg (2017); Hand and Voroninski (2016).

1.2.2 SGD as a Markov chain

It has long be observed that constant step-size SGD can be thought of as a Markov chain,
and there seems to be a resurgence of interest in this view of SGD. For instance, Dieuleveut
et al. (2017) used this approach to analyze the limiting distribution of SGD iterates for
strongly convex functions. Furthermore, Mandt et al. (2017) used this interpretation to see
how SGD can be used as a sampling algorithm. Both these works have drawn inspiration
from the recent body of work on Langevin algorithms for sampling from log-concave distri-
butions. The idea of analyzing SGD through diffusion approximation is also present in Li
et al. (2016).

1.2.3 Non-convex optimization and first-order methods

The Kaczmarz method is a classical method in numerical analysis for solving large scale
overdetermined linear systems. A randomized version of it was first analyzed by Strohmer
and Vershynin (2009). In our earlier work (Tan and Vershynin, 2018), we proposed adapting
the method to the setting of phase retrieval, where it coincides with SGD under the Gaussian
measurement setting,
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Stochastic first-order methods have emerged as the optimization method of choice for
modern machine learning. In particular, deep neural networks are trained almost exclusively
using SGD and variants like ADAM. The loss functions for these models, however, are non-
convex functions, for which there has traditionally been little theory on how first-order
methods behave.

Unsurprisingly, there has been a concerted push over the last few years to address this
issue. One line of work studies how gradient descent or SGD can be made to escape saddle
points quickly (Ge et al., 2015; Jin et al., 2017, 2019). Another line of work has focused
on identifying regimes for shallow and deep neural networks for which gradient descent or
SGD can be shown to converge (see for instance Mei et al. (2018); Allen-Zhu et al. (2018)).

1.3 Notation

Scalars are denoted in normal font, whereas vectors and matrices are denoted in bold.
Subscripts (usually) denote components of a vector, while superscripts denote the index of
a quantity when it is part of a sequence. Sets and events are denoted using calligraphic
font. The indicator of a set A is denoted by 1A. The Euclidean norm is denoted with
subscript omitted: ‖−‖. No other norms are used in this paper, so there is no risk of
confusion. When X is a subexponential random variable, ‖X‖ψ1 denotes its subexponential
norm (for a definition, see Appendix B). We use B(Rd) to denote the Borel σ-algebra for
Rd. Sequences of the form x0, x1, x2, . . . are denoted by {xk}k. Throughout the paper, C,
c, C1, C2 and C3 denote positive constants that may change from line to line.

2. Outline of proof

We start by making some simplifying assumptions. First, note that the algorithm and our
guarantee (4) are both invariant with respect to scaling and rotation. As such, we may
assume without loss of generality that x∗ = e1, the first coordinate basis vector. We also
only analyze the case where d is large enough so that η0 = 1 and the step size is set to be
η = 1

d . The extension to smaller d will be obvious.

2.1 State space Markov chain

The state space is the set Y :=
{
y = (r2, s) ∈ R2 : s2 ≤ r2

}
, where r is the Euclidean norm

of the SGD iterate and s is its projection onto the signal direction. In other words, the
natural projection map π : Rd → Y is defined by

r2(x) := ‖x‖2 and s(x) := 〈x,x∗〉.

The reason we choose to use r2 instead of r is for the convenience of obtaining formulas for
the stochastic update, as will be evident later. We further define θ = θ(x) := arccos(s/r).
This is the smaller angle between x and x∗.
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Note that we can track the progress of SGD purely in terms of the state variables.
Indeed, we have

‖x− sign(〈x,x∗〉)x∗‖2 = ‖x‖2 − 2|〈x,x∗〉|+ ‖x∗‖2

= r2 − 2|s|+ 1

=: Ψ(r2, s), (6)

so that the error of the k-th step estimate x(k) is equal to Ψ(π(x(k))). Note that −x∗ and
x∗ are mapped onto (1,−1) and (1, 1), so that Ψ is uniquely minimized at these values.
We hence wish to show that r2 and s coordinates of our iterates converge to 1 and ±1
respectively.

It is clear that the SGD sequence x(0),x(1),x(2), . . . is a Markov chain on (Rd,B(Rd)),
with the update rule (3) giving a random mapping representation for the transition kernel.
Now, consider the sequence y(0),y(1),y(2), . . . where we define y(k) := π(x(k)) for each index
k. We are now ready to state the first key insight:

Theorem 3 The sequence y(0),y(1),y(2), . . . is a Markov chain on (Y,B(Y)) whose transi-
tion kernel has the random mapping representation

y(k+1) = y(k) +
1

d

(
α(y(k)), β(y(k))

)
, (7)

where

α(r2, s) := (1− r2 cos2 θ) · u2 − r2 sin2 θ · v2 + r2 sin θ cos θ · uv, (8)

β(r2, s) := (1− r cos θ − 21A) · u2 − r sin θ · uv. (9)

Here, the randomness is supplied by (u, v), which is a 2-dimensional marginal of the uniform
distribution on

√
dSd−1, while A = A(θ) is the event that sign(cos θu+ sin θv) 6= sign(u).

Proof Deferred to Appendix A.

This theorem tells us that the state space sequence y(0),y(1),y(2), . . . suffices not just
to track our progress, as discussed earlier in the section, but also to determine its own
dynamics. We hence no longer need to concern ourselves with the original SGD sequence,
and instead work with this object for the rest of the paper. Henceforth, we let {Fk}k denote
the filtration defined by this sequence.

2.2 Doob decomposition and continuous time limit as d→∞

Let us try to understand the random mappings (8) and (9) better. It is well-known that
(u, v) converges in distribution to a standard 2-dimensional Gaussian N (0, I2) as the am-
bient dimension d tends to infinity. Therefore, the only essential dependence of the update
formula (7) on d is through the overall 1

d scaling. If we think of the indices k = 1, 2, . . . as a
time variable, rescale time by a factor of 1

d , we can think of the sequence as being generated
by an Euler discretization of a continuous-time process.
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While we do not actually take this approach in our rigorous analysis, is it instructive
to see what intuition this gives us. To do this, we do a Doob decomposition of the process{
y(k)

}∞
k=0

, separating it into a drift term and a fluctuation term. Denote the drift terms
using

ᾱ(y) := E{α(y)} and β̄ := E{β(y)}.

Letting (αj , βj) denote the random mapping used in the j-th step of the Markov chain, we
have

y(k)−y(0) =
1

d

k∑
j=1

(
ᾱ(y(j−1)), β̄(y(j−1))

)
︸ ︷︷ ︸

drift

+
1

d

k∑
j=1

(
αj(y

(j−1))− ᾱ(y(j−1)), βj(y
(j−1))− β̄(y(j−1))

)
︸ ︷︷ ︸

fluctuation

.

(10)
We now try to do a heuristic comparison of the relative magnitudes of the two terms.

Suppose k is small enough so that we have y(j) ≈ y(0) for j = 1, . . . , k. Then the drift can
be approximated by

1

d

k∑
j=1

(
ᾱ(y(j−1)), β̄(y(j−1))

)
≈ k

d

(
ᾱ(y(0)), β̄(y(0))

)
.

Meanwhile, denoting α̃j := αj − ᾱj , and β̃j := βj − β̄j for j = 1, . . . , k, we also have

1

d

k∑
j=1

(
α̃j(y

(j−1)), β̃j(y
(j−1))

)
≈ 1

d

k∑
j=1

(
α̃j(y

(0)), β̃j(y
(0))
)
,

so that the fluctuation term has components whose standard deviations are approximately
equal to √

k

d
Var{α(y(0))}1/2, and

√
k

d
Var{β(y(0))}1/2.

Therefore, for any fixed y(0), we see that the drift dominates the fluctuations as k and d
tend to infinity. This means that the continuous time limit of the process trajectory should
be an integral curve associated to the vector field on the state space Y defined by

(
ᾱ, β̄

)
.

While this picture is incomplete, it offers a good first approximation, and the next step we
take is to analyze the solutions to this first order ODE system.

2.3 Drift in continuous time limit

Miraculously, it is actually possible to derive a closed form formula for the vector field. We
state it in the following lemma.

Lemma 4 (Formula for drift) With the notation ᾱ(y) := E{α(y)} and β̄ := E{β(y)},
we have

ᾱ(r2, s) = 1− r2, (11)

β̄(r2, s) = 1− s− 1

π
(2θ − sin(2θ)). (12)
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Proof Deferred to Appendix A.

Studying the vector field plot in Figure 1, it is obvious that y∗ := (1, 1) and −y∗ =
(−1, 1) are the only attracting fixed points, with basins of attraction the sets Y+ := Y∩{s >
0} and Y− := Y ∩ {s < 0} respectively. While this assures us that the system has the right
qualitative long-term behavior, the visualization alone is not sufficient to give quantitative
bounds on convergence rates. This analysis turns out to be somewhat tricky. Given an
integral curve ȳ(t) = (r̄2

t , s̄t) starting from an arbitrary initialization ȳ(0), we will analyze
its convergence rate by breaking it into three separate phases, as depicted in the figure.

Figure 1: Vector field defined by
(
ᾱ, β̄

)
. For the purposes of symmetry, we have chosen to

plot r2 along the vertical axis and s along the horizontal axis. An integral curve
from an initialization y(0) is plotted. Our analysis for the convergence rate will
be broken into three phases. Phase 1 concerns the portion of the curve colored
in green, Phase 2 concerns that colored in red, and Phase 3 concerns the last
portion colored in magenta.

To demarcate the phases, we define two stopping times as follows. We let τ̄1 be the
earliest time t for which

∣∣r̄2
t − 1

∣∣ ≤ 0.1, and we let τ̄2 be the earliest time t for which the

Lyapunov function Ψ defined in (6) satisfies Ψ(ȳ(t)) ≤ 0.2. Phase 1 is then the portion of
the curve traversed between time 0 and time τ̄1, Phase 2 the portion traversed between time
τ̄1 and time τ̄2, with Phase 3 the remainder of the curve traversed after τ̄2.

Let us compute the duration of Phase 1, which is the same as bounding τ̄1. To do this,
we solve (11) to get r̄2

t − 1 = e−t(r̄2
0 − 1), so that τ̄1 . log(r̄2

0) ∨ 1. The second phase is

9
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trickier due to the unwieldiness of (12). As such, we compute more amenable lower and
upper bounds for the expression as follows.

Lemma 5 (Bounds for horizontal drift) There is a constant b̄max such that we have

sup
r≥1/2

β̄(r2, s)

s
≤ b̄max.

Furthermore, for any ε > 0 small enough, there is some η = η(ε) > 0 and some constant
b̄min = b̄min(ε) > 0 such that

inf
(r2,s)∈D

β̄(r2, s)

s
≥ b̄min,

where D := {(r2, s) ∈ Y : |s| ≤ 1− ε, |r2 − 1| ≤ η}.

Proof Deferred to Appendix C.

One can show that η(0.1) ≥ 0.1, and therefore, we have the bound ds̄t
dt ≥ b̄mins̄ for

τ̄1 ≤ t ≤ τ̄2. Solving this gives s̄t ≥ s̄τ̄1e
b̄min(t−τ̄1), and we have the estimate τ̄2 − τ̄1 .

log(1/|s̄τ̄1 |) ∨ 1.
Finally, Phase 3 corresponds to portion of the integral curve that lies within the “basin

of convexity” around y∗. Indeed we compute:

d

dt
Ψ(ȳ(t)) = ∂r2Ψ · ᾱ+ ∂sΨ · β̄

= 1− r̄2
t − 2

(
1− s̄t −

1

π

(
2θ̄t − sin(2θ̄t)

))
. −

(
r̄2
t − 2s̄t + 1

)
= −Ψ(ȳ(t)).

Here, the inequality in the third line comes from a relative bound on the error term
1
π

(
2θ̄t − sin(2θ̄t)

)
provided by the geometry of the basin region. As such, we also get linear

convergence Ψ(ȳ(t)) ≤ Ψ(ȳ(τ̄2))e−c(t−τ̄2).
Putting everything together, we see that for any ε > 0, if we would like Ψ(ȳt) ≤ ε, it

suffices for

t & log(r̄2
0) ∨ 1 + log(1/|s̄τ̄1 |) ∨ 1 + log(1/ε). (13)

2.4 Discretizing the drift

We now examine what this means for the Markov chain (r2
k, sk) = y(k) = y(k,d), where for

clarity, we have made the dependence on d in (7) explicit as a component of the indexing.
We have argued that the integral curve ȳ(t) is the limit of the trajectories {t 7→ y(bt/dc,d)}
as d tends to infinity. The number of iterations k needed for convergence of y(k) to ±y∗ is
thus the quantity (13) scaled by a factor of d.
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There may also be some additional dependence on d implicit in the definitions of r̄2
0 and

s̄τ̄1 . The first has to do with the conditioning of the problem, and it is reasonable to assume
that r̄2

0 . 1. On the other hand, if we take a random initialization, measure concentration
inflicts us with the curse of dimensionality shown in (5), so that log(1/|s̄τ̄1 |) & log d. The
final time complexity estimate is therefore O(d log(d/ε)).

2.5 Accounting for fluctuations

Comparing the time complexity estimate for the drift process given in the last section with
the guarantee given by Theorem 2 suggests to us that the fluctuations do not ultimately
affect the rate of convergence for the random process y(k). This is true, and indeed, we
may make our heuristic arguments rigorous and show that the fluctuation “error term” is
dominated by the drift over the discretized versions of Phase 1 and Phase 3.

The situation is more complicated for Phase 2. While the length of the phase for the
random process remains the same, the underlying dynamics of the random process is very
different from that of the deterministic drift process. This is because when |sk| . 1/

√
d, as

would be the case under random initialization, the magnitude of the fluctuations are of the
same order as the drift, thereby invalidating the approximation argument.

There is no hope of upper bounding the fluctuations of y(k) around iteration k ≈ dτ̄1, so
we change course and instead aim at bounding the cumulative variance of the fluctuations
from below. We seek a small ball probability bound for the horizontal marginal sdτ̄1+k′ for
k′ � d log d. More precisely, we would like

lim
d→∞

P{|sdτ̄1+cd log d| ≥ η} ≥ δ (14)

for some universal constants c, η and δ. Once sk is of a constant distance away from zero,
we may return to using the approximation argument and treat the fluctuations as an error
term.

2.6 Small ball probability bound through diffusion approximation

In order to obtain a small ball probability bound, we will need a better understanding of
the distribution of the fluctuation term in (10), rather than merely control over its tail
probabilities. Fortunately, this term constitutes a martingale difference process, and the
martingale Central Limit Theorem tells us that it converges to Brownian motion. In other
words, we should expect the random process y(bt/dc,d) to be well-approximated by a diffusion
process ỹ(t) satisfying the stochastic differential equation

dỹ(t) =
(
ᾱ(ỹ(t)), β̄(ỹ(t))

)
dt+

Σ(ỹ(t))√
d

dB(t).

Here, dB(t) is standard, two-dimensional Brownian motion, while for each y, Σ(y) is a
positive semidefinite matrix reflecting the fluctuation covariance at state y.

It is not easy to compute a closed form solution to this SDE. To perform an heuristic
analysis, we instead solve a simplified form of the equation for the s-marginal:

ds̃t = bs̃tdt+
σ√
d
dBt.

11
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This is a good approximation if we assume |r̃2
t − 1|, |s̃t| � 1, so that Σ(y) is approximately

constant in y, while β̄(r2, s) is close to its linear approximation in s. Solving this equation
gives

s̃t = s̃0e
bt +

ebt√
d

∫ t

0
e−bτdBτ ∼ N

(
s̃0e

bt,
e2bt − 1

bd

)
.

As such, no matter the value of s̃0, we have that s̃c log d is a Gaussian with variance bounded
below by a constant, which implies the desired estimate (14).

2.7 Outline for rest of paper

In this section so far, we have sketched a heuristic proof for SGD convergence, where the
main idea was to consider the continuous time limit of the state space Markov chain, and
solve the resulting differential equation or stochastic differential equation. In our rigorous
analysis, we will not adopt this approach, and instead solve finite difference equations
coming from the Markov chain while obtaining non-asymptotic control over the fluctuation
process.

For the rest of this paper, we work with a fixed initialization y(0), and let y(1),y(1),y(2), . . .
be the sequence of iterates generated by repeated applying the Markov kernel (7). For each
k, we will use r2

k and sk to denote the coordinates of y(k). We will continue to do a multi-
phase analysis of convergence and, as such, define analogues of the stopping times τ̄1 and
τ̄2. We set

τ1 := min{k : |r2
k − 1| ≤ log d/

√
d} (15)

τ2a := min{k ≥ τ1 : |sk| ≥ γ1} (16)

τ2b := min{k ≥ τ2a : Ψ(y(k))} ≤ γ2. (17)

Here, γ1 and γ2 are constants to be determined later.
We shall set T = τ2b in Theorem 2. As such, we wish to prove that with high probability,

τ2b . d log
(
d‖x(0)‖ ∨ 1

)
, and that linear convergence in expectation occurs after τ2b. The

second statement follows easily from the theory we established in Tan and Vershynin (2018),
while the first is, as mentioned before, the main result of this paper. Our strategy is to
bound τ2b by bounding τ1, τ2a − τ1, and τ2b − τ2a separately.

In Section 3, we bound τ1, and also establish uniform control over |r2
k − 1|, which is

needed for the rest of the proof. In Sections 4 and 5, we bound τ2a − τ1. This is the most
difficult part of the proof, and relies on developing a nuanced notion of stochastic dominance
with which we compare the sequence {sk}k with a carefully constructed sequence {ŝk}k. We
then apply a small ball probability argument to the latter. In Section 6, we bound τ2b− τ2a

by approximating the sequence with that obtained by removing the fluctuations. Finally,
we will complete the proof of Theorem 2 in Section 7, before concluding and discussing the
broader implications of the result in Section 8.

3. Uniform control over rk

In this section, we will show that the sequence of squared norms, {r2
k}k, quickly converges

to a small interval of width O(log d/
√
d) around the value 1, and thereafter remains within

12



SGD for phase retrieval, arbitrary initialization

this interval for at least Cd log d iterations. In subsequent sections, we will show that this
is sufficient time for the {sk}k sequence also to converge. The reason why such uniform
control is necessary is because the formula for the horizontal update (9) taken from a
point y depends on r(y). By showing that {r2

k}k concentrates uniformly, we thereby also
obtain control over the drift and fluctuations of {sk}k, which enables us to do an essentially
univariate analysis of this latter sequence.

Lemma 6 (Bound for duration of Phase 1) There exists universal constants C1 and
C2 such that τ1 ≤ C2d · (log d+ log|r2

0 − 1|) with probability at least 1− C2/ log d.

Proof We first compute E{r2
k − 1}. Using (7) and (11), we have

E{r2
k+1 − 1 Fk} = r2

k − 1 +
1

d
E{αk+1(y(k)) Fk}

=

(
1− 1

d

)(
r2
k − 1

)
.

Iterating this gives

E{r2
k − 1} =

(
1− 1

d

)k(
r2

0 − 1
)
. (18)

Hence, whenever

k &
log d+ log(|r2

0 − 1|)
log(1− 1/d)

≈ d
(
log d+ log|r2

0 − 1|
)

(19)

we have |E{r2
k − 1}| ≤ 1√

d
.

Next, we may obtain a recursive bound for the variance of the iterates using the law of
total variance. We have

Var
{
r2
k+1 − 1

}
= E{Var{r2

k+1 − 1 Fk}}+ Var
{
E{r2

k+1 − 1 Fk}
}

= E{Var{αk+1(y(k)) Fk}}+ Var
{

(1− 1/d)
(
r2
k − 1

)}
≤
CE{r4

k}
d2

+

(
1− 1

d

)2

Var
{
r2
k − 1

}
. (20)

We may expand
E{r4

k} = Var{r2
k − 1}+ E{r2

k}2,

and apply (18) to get

E{r2
k}2 =

(
E{r2

k − 1}+ 1
)2

.

(
1− 1

d

)2k

(r2
0 − 1)2 + 1.

Plugging these back into (20), we get

Var
{
r2
k+1 − 1

}
≤
(

1− 1

2d

)
Var
{
r2
k − 1

}
+
C

d2

(
1− 1

d

)2k

(r2
0 − 1)2 +

C

d2
,

13
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and solving this recursion gives

Var
{
r2
k − 1

}
≤ C

d2
·
(
k · (1− 1/2d)k(r2

0 − 1)2 +
1− (1− 1/2d)2k+2

1− (1− 1/2d)2

)
.

It easy to check that this quantity is bounded by C/d whenever (19) holds. In this case,
we may apply Chebyshev’s inequality to conclude that

r2
k − 1 ≤ E{r2

k − 1}+
Var{r2

k − 1}1/2

δ
≤ 1√

d
+

C

δ
√
d

with probability at least 1− δ. We may also similarly bound r2
k − 1 from below. Choosing

δ = C/ log d gives us the probability bound we want.

After rk has contracted to a value close to 1, we need to show that it remains close to 1
throughout the time scale needed for the algorithm to converge. Although it is clear from
the formula (8) that the increments are subexponential, a naive union bound is not tight
enough for our purposes. To overcome this, we make use of a maximal Bernstein inequality.

Lemma 7 (Maximal Bernstein for subexponential martingale differences) Let
X1, X2, . . . , XM be a martingale difference sequence that is adapted to a filtration {Gt}.
Suppose there is a constant K > 0 such that the following pointwise inequality holds almost
surely for any time t and 0 < λ ≤ 1/2K:

E{eλXt+1 Gt} ≤ eλ
2K2

.

Denote St =
∑t

i=1Xi, for t = 1, 2 . . .. Then for all ε > 0, we have the uniform tail bound

P{∃t ≤M : |St| ≥ ε} ≤ 2 exp

(
−1

4

{
ε2

MK2
∧ ε

K

})
. (21)

Proof This result is an easy consequence of combining two classical arguments: the su-
permartingale inequality and an exponential martingale inequality. This argument also
appears with more sophistication in the exponential line-crossing method recently devel-
oped by Howard et al. (2018). The proof details are deferred to Appendix F.

Remark 8 The tail bound on the right hand side of (21) is exactly the Bernstein tail at
time M . See Vershynin (2018).

Lemma 9 (Maximal Bernstein for process with contracting drift) Let
W1,W2, . . . ,WM be a real-valued stochastic process adapted to a filtration {Gt}. Suppose
that there is some 0 < ρ < 1 such that for each time t, we have

E{Wt+1 Gt} = ρWt. (22)

14
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Furthermore, assume that there is a constant K > 0 such that the following pointwise
inequality holds almost surely for any time t and 0 < λ ≤ 1/2K:

E{exp(λ(Wt+1 − ρWt)) Gt} ≤ eλ
2K2

. (23)

Then for all ε > 0, we have the uniform tail bound

P{∃t ≤M : |Wt| ≥ |W0|+ ε} ≤ 2 exp

(
−1

4

{
ε2

MK2
∧ ε

K

})
. (24)

Proof For any t, we set Xt = Wt − E{Wt Gt} to obtain the recursive formula:

Wt+1 = ρWt +Xt+1.

Since X1, X2, . . . form a martingale difference sequence satisfying the assumptions of Lemma
7, its partial sums are bounded, and we may apply an easy combinatorial result (Lemma
33) to bound the tails of Wt.

We are now ready to state the guarantee that the radius remains uniformly close to 1.

Lemma 10 (Uniform bounds for rk) For any constant C1, M ≤ C1d log d, we have

sup
0≤k≤M

|r2
τ1+k − 1| ≤ C2 log d√

d
(25)

with probability at least 1 − 1
d , where C2 is a universal constant depending only on C1.

Furthermore, for M ≤ d2/ log d, there is a constant C3 such that

sup
0≤k≤M

rτ1+k ≤ C3 (26)

with probability at least 1− 1/d.

Proof For ease of notation, assume τ1 = 0. Set Wk := r2
k − 1 for k = 0, 1, 2, . . .. Recall

also that {Fk}k is the filtration generated by the stochastic updates. We want to show that
these satisfy the assumptions of Lemma 9. By Lemma 4, we see that (22) is satisfied with
ρ = 1− 1

d , and we would like to use Lemma 25 to verify (23). However, Lemma 25 is only
valid when y lies in a bounded subset of Y, and we don’t assume this a priori.

In order to overcome this, we use a coupling argument. Define an auxiliary seqeuence
{r̃k}k with the same initialization r̃0 = r0, and coupled with rk until the first time τ such
that |rτ − 1| ≥ 1/2. Thereafter, we evolve r̃k deterministically via the formula

r̃2
k+1 − 1 :=

(
1− 1

d

)(
r̃2
k − 1

)
.

In other words, we enforce (22) and (23) by fiat for the sequence {r̃2
k − 1}k≥0. This allows

us to invoke Lemma 9 for this sequence with K = c
d for some universal constant c > 0.

Plugging our choice of M and K into (24), and choosing ε = C log d√
d

, we that for C large

enough, the right hand side in (24) is bounded above by 1
d .
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As such we have proved that

sup
0≤k≤M

|r̃2
k − 1| ≤ C log d√

d

with probability at least 1 − 1
d . Meanwhile, on the same event, we have τ > M , so that

the bound also holds for the original sequence, thereby giving us (25). The proof of (26) is
similar and is hence omitted.

Let us denote τr := min{k : |r2
τ1+k − 1| ≥ C2 log d/

√
d}. The previous lemma tells us

that τr ≥ C1d log d with probability at least 1 − 1/d. In order to obtain the control over
{sk}k promised at the start of this section, we would ideally like to condition on this event,
but doing so would destroy the Markov nature of the process y(k) and invalidate the update
formula (9).

Instead, we will define a sequence {ỹ(k)}k that we evolve according to

ỹ(k+1) =

{
y(k) if k ≤ τ1,

Π
(
ỹ(k) + 1

d

(
α(ỹ(k)), β(ỹ(k))

))
if k > τ1.

(27)

Here, Π: Y → Y leaves the s component fixed, but projects the r2 component to the interval
[1 − C2 log d/

√
d, 1 + C2 log d/

√
d]. We also continue to couple ỹ(k) and y(k) for k > τ1 by

using the same random seeds for their updates.

To summarize, we have y(k) = ỹ(k) for k ≤ τr. Furthermore, the projection step means
that the regularity of the horizontal updates for ỹ(k) is enforced by fiat. For the rest of this
paper, we will work with this sequence instead, even going so far as to drop the tildes and
use the same notation for both sequences, since the reason for the creation of this alternate
sequence is purely technical and has no intuitive value.

4. Phase 2a: Stochastic dominance argument

We have broken up the analysis of “Phase 2” of the SGD process into two sub-phases. The
first sub-phase concerns the portion of the process in which |sk| = o(1), so that the drift
and fluctuations are of comparable magnitudes. The goal of this section and the next is to
bound the length of this phase by proving the following theorem.

Theorem 11 (Bound for duration of Phase 2a) There is some 0 < γ1 < 1/2 and
success probability p > 0, such if we use this value of γ1 in (16), for d large enough,
τ2a − τ1 ≤ Cd log d with probability at least p.

For ease of notation and making use of the strong Markov property, we may assume
again that τ1 = 0. Our strategy for proving the theorem is to show that for iterations
satisfying τ1 ≤ k ≤ τ2a, a subsequence of the horizontal marginals of the process, {sBk}k,
stochastically dominate another process {ŝk}k in magnitude. The second process will be
constructed so that we will have precise control over its second and fourth moments, which
will allow us to apply the Paley-Zygmund inequality to get a small ball probability argument.
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In this section, we will focus on constructing the comparison process and fleshing out the
stochastic dominance argument.

In order to get control over moments, the process {ŝk}k will be constructed to have
approximately Gaussian increments. The comparison will thus be based on normal approx-
imation using the Berry-Essen theory. It may be possible to obtain appropriate Berry-Essen
bounds for martingale sequences, but the theory on this topic seems to be incomplete at the
time of writing. We shall bypass this by showing that over epochs of an appropriate length
B, the update sk → sk+B is well-approximated by the update we would get had we done
a batch update, summing up B independent steps taken from y(k). Since this is a sum of
i.i.d. random variables, the classical Berry-Eseen bound can then be applied to this latter
update.

More precisely, Let P denote the random mapping defined by (3). It will be helpful
to use this notation in this section, as we will have to deal with a few different stochastic
sequences. Fix the epoch length to be B = d2/3 log d. We define a Markov kernel on the
state space via the random mapping Q:

Q(y) := y +
1

d

B∑
k=1

(αk(y), βk(y)), (28)

where αk(y) and βk(y) for k = 1, 2, . . . , B are independent realizations of the random
variables defined in (8) and (9). Denoting σ(y)2 := Var{β(y)}, we note here that the drift
and variance of this batch update satisfy the formulas

E{s(Q(y))} = s(y) +
Bβ̄(y)

d
, Var{s(Q(y))} =

Bσ(y)2

d2
.

Lemma 12 (Distance moved in one epoch) Fix y(m) for τ1 ≤ m ≤ τ1 + τr. With
probability at least 1− 1/d2, we have

|sm+t − sm| ≤
CB

d

(
|sm|+

√
log d

B

)

for 0 ≤ t ≤ B.

Proof For ease of notation, re-index so that m = 0. First, observe that we have the
decomposition

st − s0 =

t−1∑
k=0

sk+1 − sk

=
1

d

t−1∑
k=0

β(y(k))

=
1

d

t−1∑
k=0

β̄(y(k)) +
1

d

t−1∑
k=0

(
βk(y

(k))− β̄(y(k))
)
. (29)
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Applying the maximal Bernstein bound for martingale sequences (Lemma 7) with M =
B and ε =

√
B log d, we get

sup
0≤t≤B

∣∣∣∣∣
t−1∑
k=0

(
βk(y

(k))− β̄(y(k))
)∣∣∣∣∣ ≤ C√B log d. (30)

with probability at least 1− 1/d2.

By Lemma 5, we have

|β̄(y(t))| ≤ b̄max|st|.

Plugging (29) into the above equation, and using the bound (30), we get

|β̄(y(t))| ≤ b̄max

(
|s0|+

1

d

t−1∑
k=0

∣∣∣β̄(y(k))
∣∣∣+

1

d

∣∣∣∣∣
t−1∑
k=0

(
βk(y

(k))− β̄(y(k))
)∣∣∣∣∣
)

≤ b̄max

(
|s0|+

1

d

t−1∑
k=0

∣∣∣β̄(y(k))
∣∣∣+

C
√
B log d

d

)
.

We can simplify this recursive bound using some combinatorics. Applying Lemma 34 with
ρ = b̄max/d, xt = |β̄(y(t))|, and ξ = |s0|+ (C

√
B log d)/d, we get

1

d

B−1∑
t=0

|β̄(y(t))| ≤
(
|s0|+

C
√
B log d

d

)((
1 +

b̄max
d

)B
− 1

)

≤ 1.1b̄maxB

d

(
|s0|+

C
√
B log d

d

)
.

Plugging this back into (29), for any t ≤ B, we get

|st − s0| ≤
1.1b̄maxB

d

(
|s0|+

C
√
B log d

d

)
+
C
√
B log d

d

≤ CB

d

(
|s0|+

√
log d

B

)

as we wanted.

Lemma 13 (Approximation error per epoch for Q kernel) Fix y(m) for τ1 ≤ m ≤
τ1 + τr. For d large enough, with probability at least 1− 1/d2, there is a coupling such that
we have ∣∣∣s(Q(y(m))

)
− s
(
PB(y(m))

)∣∣∣ ≤ CB2 log d

d2

(
|sm|+

√
log d

B

)
.

Proof For ease of notation, we again re-index so that m = 0. Couple the random map-
pings Q and PB by using the same draws for u(t), v(t), t = 1, 2 . . .. First condition on the
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probability 1− 1/d2 event promised by Lemma 12. Now write

s
(
Q(y(0))

)
− s
(
PB(y(0))

)
=

1

d

B∑
t=1

(
βt(y)− βt(y(t−1))

)
=

1

d

B∑
t=1

(rt cos θt − r0 cos θ0)(u(t))2 +
1

d

B∑
t=1

(rt sin θt − r0 sin θ0)u(t)v(t)

− 2

d

B∑
t=1

1At · (u(t))2,

where for each t, At is the event that

sign(cos θtu
(t) + sin θtv

(t)) 6= sign(cos θ0u
(t) + sin θ0v

(t)).

We further condition on the probability 1− 1/d2 events in which we have

sup
1≤t≤B

|u(t)|, sup
1≤t≤B

|v(t)| ≤ C
√

log d.

By Lemma 12, we see that the first term is bounded as follows:∣∣∣∣∣1d
B∑
t=1

(rt cos θt − r0 cos θ0)(u(t))2

∣∣∣∣∣ ≤ B

d
sup

0≤t≤B−1
|st − s0| · sup

1≤t≤B
(u(t))2

≤ CB2 log d

d2

(
|s0|+

√
log d

B

)
.

The second term may be bounded similarly. To bound the third term, we use Lemma
35. Observe that {1At} is a sequence of Bernoulli variables. If we condition on the high
probability event promised by Lemma 12, we also have

E{1At | Fk−1} ≤ C|θt − θ0| ≤
CB

d

(
|s0|+

√
log d

B

)
. (31)

In Lemma 35, set M = B, ε = 1/2, and θ to be the right hand side of (31). This gives

B∑
t=1

1At ≤
CB2

d

(
|s0|+

√
log d

B

)
with probability at least

1− exp
(
−CB2/d ·

√
log d/B

)
≥ 1− exp

(
−C log2 d

)
≥ 1− 1/d2

for d large enough. On this event, the third term is therefore also bounded by

CB2 log d
d2

(
|s0|+

√
log d
B

)
.

By adjusting constants if necessary, we can make sure that the total error probability is
bounded by 1/d2.

In order to compare {sBk}k with our (as yet undefined) reference sequence {ŝk}k, we
will use a more nuanced version of the usual notion of stochastic dominance.
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Definition 14 (Stochastic dominance with error) Given two real-valued random vari-
ables X and Y defined on the same probability space, we say that X dominates Y in place
up to error δ, denoted X ≥δ Y , if X ≥ Y with probability at least 1− δ. In addition, given
any two real-valued random variables X and Y , we say that X stochastically dominates Y
up to error δ, if there is a coupling of X and Y for which X ≥δ Y . Denote this relation
by X �δ Y . Note that the usual notion of stochastic dominance is equivalent to X �0 Y ,
which we will also denote using X � Y .

We first establish stochastic dominance for the conditional distribution of |sk+B| given
y(k) over that obtained from an approximately Gaussian increment. Following this, we will
argue that stochastic dominance of individual steps also implies stochastic dominance for
the entire process.

Lemma 15 (One step stochastic dominance) Define the region

D :=

{
(r2, s) ∈ Y : |r2 − 1| ≤ C log d√

d
, |s| < γ1

}
, (32)

and let y be any point in D. Define the approximation error term

ε(s) :=
CB2 log d

d2

(
|s| ∨

√
log d

B

)
. (33)

For any a > 0, we also denote the soft-thresholding operator ρa : R→ R via

ρa[x] = sign(x)(|x| − a)+.

Then with δ = 1/d2 + C/
√
B, we have

s(PB(y))2 �δ ρε(s(y))

[
s(y) +

Bβ̄(y)

d
+

√
Bσ(y)g

d

]2

. (34)

Proof Fix y, and set WB := 1
σ(y)
√
B

∑B
k=1

(
βk(y)− β̄(y)

)
, where σ(y)2 := Var{β(y)}. The

subexponential bound on β(y) implies bounds on the 3rd moments, so by Berry-Esseen, its
distribution function FW satisfies the bound

‖FW − Φ‖∞ ≤
C√
B

where Φ is the distribution function of a standard normal random variable, and C is an
absolute constant. Recall that

s(Q(y)) = s(y) +
Bβ̄(y)

d
+

√
Bσ(y)

d
·WB.

Using Lemma 27, we obtain the bound

‖Fs(Q(y))2 −G‖∞ ≤
2C√
B
,
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where G is the CDF of (
s(y) +

Bβ̄(y)

d
+

√
Bσ(y)

d
· g

)2

.

We next apply Lemma 28 and 30 with δ = 2C/
√
B to get

ρε(s(y))[s(Q(y))]2 �δ ρε(s(y))

[
s(y) +B

β̄(y)

d
+

√
Bσ(y)

d
· g

]2

. (35)

By Lemma 13, we also have

s(PB(y))2 �δ′ ρε(s(y))[s(Q(y))]2

for δ′ = 1/d2. We may combine this with (35) using the transitivity of stochastic dominance
(Lemma 29), to get the bound we want in (34).

We are now ready to formally define the process {ŝk}k. Let L : R×Y → R be a transition
kernel defined by

L(s,y) := ρε(s)

[
b(s) +

√
Bσ(y)g

d

]
,

where
b(s) := (1 + κB/d)s, (36)

and 0 < κ < 1 a small constant to be determined later, while σ(y)2 := Var{β(y)} as before.
Again setting τ1 = 0 for notational convenience, we define

ŝk+1 := L(ŝk,y
(kB∧τ2a)). (37)

Lemma 16 (Process-wise stochastic dominance) Let ŝ0, ŝ1, ŝ2, . . . be the Markov pro-
cess defined by the update rule (37). Then for any positive integer k, we have

s2
kB∧τ2a �kδ ŝ

2
k∧bτ2a/Bc,

where δ = 1/d2 + C/
√
B.

Proof For convenience of notation, we define the auxiliary transitional kernel

K(s,y) := ρε(s(y))

[
s(y) +

Bβ̄(y)

d
+

√
Bσ(y)g

d

]
.

Consider a fixed y ∈ D. In Lemma 15, we showed that s(PB(y))2 �δ K(s(y),y)2. If we
choose κ small enough in (36), then by the drift lower bound in Lemma 5, replacing the
kernel K with L simply reduces the magnitude of the drift while preserving the variance
of the Gaussian increment and the magnitude of the soft-thresholding. Using the first
part of Lemma 32 thus gives the bound K(s(y),y)2 � L(s(y),y)2. This implies through
transitivity (Lemma 29) that

s(PB(y))2 �δ L(s(y),y)2. (38)
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Treating each epoch of updates as a single step, what we have showed is the stochastic
dominance of a single step over a Gaussian increment, conditioned on a fixed starting value
for y. It is not so easy, however, to conclude that stochastic dominance is preserved when
composing multiple steps together. This is because we are working with transition kernels,
and not sums of independent random variables. To overcome this, we need to use the second
part of Lemma 32, which tells us that

L(s′,y)2 � L(s,y)2. (39)

whenever s2 ≤ (s′)2.
Let us now prove the claim by induction. The case k = 0 is clear since ŝ0 = s0.

Now assume that the statement holds for some k. Let Gk be the σ-algebra generated by
y(0), . . .y(k), ŝ2

0, . . . ŝ
2
k. Condition on Gk as well as the 1− kδ probability event for which

s2
kB∧τ2a ≥ ŝ

2
k∧bτ2a/Bc.

If τ2a ≤ kB, then s(k+1)B∧τ2a = skB∧τ2a and ŝ(k+1)∧bτ2a/Bc = ŝk∧bτ2a/Bc, so that

s2
(k+1)B∧τ2a ≥ ŝ

2
(k+1)∧bτ2a/Bc (40)

on the same event. Otherwise, since y(kB) ∈ D, we have

ŝ2
k+1 = L(ŝk,y

(kB))2 � L(skB,y
(kB))2 �δ s

(
PB(y(kB))

)2
= s2

(k+1)B.

Here, the first dominance bound follows from (39), while the second follows from (38). This
means that we can construct a coupling of the update kernels such that ŝ2

k+1 ≤ s2
(k+1)B

with conditional probability at least 1− δ.
If τ2a ≥ (k + 1)B, then this immediately implies that (40) holds. On the other hand, if

kB < τ2a < (k + 1)B, we have bτ2a/Bc = k and s2
kB < γ2

1 , so that

ŝ2
(k+1)∧bτ2a/Bc = ŝ2

k ≤ s2
kB < γ2

1 ≤ s2
τ2a = s2

(k+1)B∧τ2a .

As such, the statement also holds for k + 1.

5. Phase 2a: Small ball probability argument via Paley-Zygmund

Recall that our goal is to obtain a small ball probability bound for s2
k, for k & d log d,

thereby proving Theorem 11. By the stochastic dominance argument in the last section,
it suffices to obtain such a bound for ŝ2

k, with the appropriate time rescaling. This is the
plan for this section, and we start by observing the following general recursive bounds for
moments of adapted sequences.

Lemma 17 (Recursive moment bounds for adapted sequences) Let S1, S2, . . . be a
process adapted to the filtration {Gt}. Then we have

E{S2
t+1} = E{E{St+1 Gt})2}+ E{(St+1 − E{St+1 Gt})2}. (41)

E{S4
t+1}1/2 ≤ E{E{St+1 Gt}4}1/2 + 4E{(St+1 − E{St+1 Gt})4}1/2. (42)
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Proof The first equation is standard. To prove the second, we expand and use martingale
orthogonality to write

E{S4
t+1} = E{(St+1 − E{St+1 Gt})4}+ E{E{St+1 Gt}4} (43)

+ 6E{(St+1 − E{St+1 Gt})2E{St+1 Gt}2}
+ 4E{(St+1 − E{St+1 Gt})3E{St+1 Gt}}. (44)

By Cauchy-Schwarz, we have

E{(St+1−E{St+1 Gt})2E{St+1 Gt}2} ≤ E{(St+1−E{St+1 Gt})4}1/2 ·E{E{St+1 Gt}4}1/2.

Furthermore, the third term can be bounded as follows:

E{(St+1 − E{St+1 Gt})3E{St+1 Gt}} = E{(St+1 − E{St+1 Gt})2

· ((St+1 − E{St+1 Gt})E{St+1 Gt})}

≤ 1

2
E{(St+1 − E{St+1 | Gt})4}

+
1

2
E
{

(St+1 − E{St+1 | Gt})2E{St+1 | Gt}2
}
.

Plugging these into the original equation, we get

E{S4
t+1} ≤

(
E{E{St+1 | Gt})4}1/2 + 4E{(St+1 − E{Xt+1 | Gt})4}1/2

)2

as we wanted.

In order to apply these bounds to our sequence {ŝk}k, we will need estimates of the
moments of each increment.

Lemma 18 (Moment bounds for ŝk increments) We have the following:

E
{

(ŝk+1 − E{ŝk+1 FkB})2 FkB
}
≥ C1B

d2
, (45)

E
{

(ŝk+1 − E{ŝk+1 FkB})4 FkB
}1/2

≤ C2B

d2
. (46)

Proof In this proof, we shall for convenience denote X := b(ŝk) +
√
Bσ(y(kB))g/d and

ε := ε(ŝk). Writing out the definition (37), we then have ŝk+1 = ρε[X]. Using the definition
of X and the fact that y(kB) ∈ D, we compute

Var{X FkB} = Var
{√

Bσ(y(kB))g/d
}
≥ CB

d2
. (47)

We need to show that soft-thresholding X does not decrease its variance by too much, and
will consider two cases depending on the value of ŝk. We shall suppose WLOG that ŝk > 0.
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First, suppose ŝk ≤ 1
log3 d

. Then

Var{ρε[X] FkB}1/2 ≥ E{|ρε[X]− Eρε[X]| FkB}
≥ E{|X − EX| − |X − ρε[X]| − |EX − Eρε[X]| FkB}
≥ E{|X − EX| FkB} − 2ε

=

√
2

π
Var{X FkB}1/2 − 2ε.

Plugging our assumption on ŝk into (33), we get

ε ≤ B2 log d

d2

1

log3 d
=

1

d2/3
� log1/2 d

d2/3
=

√
B

d
.

By (47), the quantity on the right hand side is a lower bound for Var{X FkB}, giving us
what we want.

Now assume instead that ŝk ≥ 1
log3 d

. Let X ′ be an independent copy of X. Using a

well-known formula for variance, we have

Var{ρε[X] FkB} =
1

2
E
{(
ρε[X]− ρε[X ′]

)2 FkB}
≥ 1

2
E
{(
ρε[X]− ρε[X ′]

)2 · 1{X,X ′ ≥ ε} FkB}
=

1

2
E
{(
X −X ′

)2 · 1{X,X ′ ≥ ε} FkB}
=
Bσ(y(kB))2

2d2
· E
{

(g − g′)2 · 1
{
g, g′ ≥ (−b(ŝk) + ε(ŝk))d√

Bσ(y(kB))

}}
, (48)

where g and g′ are independent standard normal random variables.
Observe that

(−b(ŝk) + ε(ŝk))d√
Bσ(y(kB))

=

(
−(1 + κB/d) +B2 log d/d2

)
dŝk√

Bσ(y(kB))

≤ − ŝkd√
Bσ(y(kB))

. − d√
B log3 d

,

which tends to −∞, so the expectation on the right hand side of (48) tends to E{(g−g′)2} =
2. As such, the entire quantity on the right hand side is bounded from below by CB/d2.

Next, to obtain (46), we simply apply Lemma 36 to remove the soft-thresholding:

E
{

(ŝk+1 − E{ŝk+1 FkB})4 FkB
}

≤ 8E
{(

b(ŝk) +
√
Bσ(y(kB))g/d− E{b(ŝk) +

√
Bσ(y(kB))/d FkB}

)4
FkB

}
=

8B2σ(y(kB))4E{g4}
d4

.
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Lemma 19 (Recursive moment bounds for ŝk process) We have the recursive for-
mulas

E{ŝ2
k+1} ≥

(
1 +

κB

d

(
1− C1

log2 d

))2

E{ŝ2
k}+

C2B

d2
(49)

E{ŝ4
k+1}1/2 ≤

(
1 +

κB

d

)2

E{ŝ4
k}1/2 +

C3B

d2
. (50)

Proof The second inequality is easier to prove, so we shall start with this. We may use
Lemma 36 to get

|E{ŝk+1 FkB}| =
∣∣∣E{ρε(ŝk)[b(ŝk) +

√
Bσ(y(kB))g] FkB

}∣∣∣
≤ |b(ŝk)|

=

(
1 +

κB

d

)
|ŝk|.

Plugging this bound together with (46) into (42) gives us (50).
Next, denoting X := b(ŝk) +

√
Bσ(y(kB))g and ε := ε(ŝk) as in the previous lemma,

observe that

|E{ŝk+1 FkB}| = |E{ρε[X] FkB}|
≥ (|E{X FkB}| − |E{ρε[X]−X FkB}|)+

≥
((

1 +
κB

d

)
|ŝk| − ε(ŝk)

)
+

. (51)

It remains to compare the relative magnitudes of the two terms. For convenience, we
reproduce the definition of ε(ŝk) here:

ε(ŝk) :=
CB2 log d

d2

(
|ŝk| ∨

√
log d

B

)
.

We will divide the proof into three cases, depending on the magnitude of ŝk. WLOG,
assume that ŝk ≥ 0.

When ŝk ≥ 1
d1/3

, then

ε(ŝk) =
CB2 log d

d2
ŝk ≤

1

log2 d
· κB
d
ŝk

for d large enough, and when log4 d
d2/3

≤ ŝk ≤ 1
d1/3

, one may check that

ε(ŝk) =
CB2 log d

d2

√
log d

B
≤ C

log2 d
· κB
d
ŝk.
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In either case, we may plug the bound for ε(ŝk) into (51) to get

(E{ŝk+1 | FkB})2 ≥
(

1 +
κB

d

(
1− C

log2 d

))2

ŝ2
k.

Next, when 0 ≤ ŝk ≤ log4 d
d2/3

, we have

CB2 log d

d2

(
ŝk ∨

√
log d

B

)
≤ C log3 d

d
,

so that we have((
1 +

κB

d

)
ŝk −

CB2 log d

d2

(
ŝk ∨

log d√
B

))2

+

≥
(

1 +
κB

d

)2

ŝ2
k −

C log3 d

d
ŝk.

Furthermore, we can bound the second term on the right hand side via

log3 d

d
ŝk ≤

log7 d

d5/3
.

B

d2 log d
.

As such, we may write

E{ŝk+1 | FkB}2 ≥
(

1 +
κB

d

)2

ŝ2
k −

cB

d2

(
1

log d

)
.

We may thus take expectations to get

E{E{ŝk+1 | FkB})2} ≥
(

1 +
κB

d

(
1− 1

log2 d

))2

E
{
ŝ2
k

}
− cB

d2

(
1

log d

)
.

Combining this with (41) and (45) gives (49).

Proof (of Theorem 11) For convenience, denote A = 1− 1/ log2 d. We solve the recursion
in (49) to get

E{ŝ2
k} ≥

(1 + κAB/d)2k+2 − 1

(1 + κAB/d)2 − 1
· C2B

d2
+

(
1 +

κAB

d

)2k

ŝ2
0. (52)

Note that
1

(1 + κAB/d)2 − 1
· C2B

d2
� d

κAB
· B
d2
� 1

κd
,

so that we can simplify (52) to

E{ŝ2
k} &

((
1 +

κAB

d

)2k+2

− 1

)
C

κd
+

(
1 +

κAB

d

)2k

ŝ2
0. (53)

Meanwhile, for any T � Cd
B log d � log d

log(1+κAB/d) , we have(
1 +

κAB

d

)2T+2

= exp(C log d). (54)
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Putting these together, we see that regardless of the value of ŝ0, there is an absolute constant
γ such that E{ŝ2

T } ≥ γ if we choose the constant C in the definition of T to be large enough.

On the other hand, we may solve the second recursion (50) and apply a similar compu-
tation as before to get

E{ŝ4
k}1/2 .

((
1 +

κB

d

)2k+2

− 1

)
C

κd
+

(
1 +

κB

d

)2k

ŝ2
0. (55)

Taking the ratio of (53) and (55), plugging in the time point k = T , we get

E{ŝ2
T }

E{ŝ4
T }1/2

&

(
(1 + κAB/d)2T+2 − 1

)
/κd+ (1 + κAB/d)2T ŝ2

0(
(1 + κB/d)2T+2 − 1

)
/κd+ (1 + κB/d)2T ŝ2

0

=
(1 + κAB/d)2T

(1 + κB/d)2T
· (1 + κAB/d)2 + κdŝ2

0 − (1 + κAB/d)−2T

(1 + κB/d)2 + κdŝ2
0 − (1 + κB/d)−2T

�
(

1 + κAB/d

1 + κB/d

)2T

.

Note that in the last equation, we used the definition of A and (54).

Since
1 + κAB/d

1 + κB/d
=
d+ κB − κB/ log2 d

d+ κB
= 1− κB

(d+ κB) log2 d
,

we may take logs and observe

log

(
1 + κAB/d

1 + κB/d

)2T

� d

B
log d · log

(
1− κB

(d+ κB) log2 d

)
� − d

B
log d · B

d log2 d

= − 1

log d
.

Putting everything together, we have
E{ŝ2T }

E{ŝ4T }1/2
& 1. As such, for d large enough, we may

apply the Paley-Zygmund inequality to see that we may pick some 0 < γ1 < γ such that
|ŝT | ≥ γ1, with probability at least some constant p′ > 0. Let us now condition on the
intersection of this event and that promised to us by Lemma 16 when we choose k = T .
The probability of the intersection is at least

p′ − T ·
(

1

d2
+

C√
B

)
= p′ − C log d

Bd
− Cd log d

B3/2
≥ p− C√

log d
=: p

where the inequality holds for d large enough. On this event, we have τ2a ≤ TB ≤ Cd log d
as we wanted.
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6. Phase 2b: Approximation by drift process

In the previous two sections, we have bounded the duration of Phase 2a of the SGD process,
that is, the time it takes for |sk| to increase to a constant value. The goal of this section is to
bound the duration of Phase 2b in which the iterates converge to the “basin of convexity”
around y∗ or −y∗. We will prove the following theorem.

Theorem 20 (Bound for duration of Phase 2b) We have τ2b − τ2a ≤ Cd with proba-
bility at least 1− 1/d.

As mentioned in the overall proof outline, the idea is to understand the trajectory of
the drift process, and then show that the fluctuations do not affect the trajectory by too
much. For convenience, we condition on the event τ2a <∞, and then use the strong Markov
property to re-index, setting τ2a = 0.

The drift process {ȳ(k)}k is defined via the deterministic update

ȳ(k+1) := ȳ(k) +
1

d
(ᾱ(ȳ(k)), β̄(ȳ(k))),

with the initialization ȳ(0) = y(0). For simplicity, we denote r̄k := r(ȳ(k)) and s̄k := s(ȳ(k)).

Lemma 21 (Behavior of drift sequence) Let τ = min{k : s̄k ≥ 1− (γ2 − ε)/2} for some
small ε > 0. Then for d large enough, we have τ ≤ Cd, where C is a universal constant
depending only on γ1, γ2, and ε.

Proof First, choose ε in Lemma 5 to be equal to γ2/4. Let d be large enough so that
|r2

0 − 1| ≤ C log d√
d
≤ η, where η = η(ε) is the required value in Lemma 5. By Lemma 4, we

see that |r̄2
k − 1| ≤ η for all k ≤ τ . This allows us to use Lemma 4 to observe that the

recursive inequality s̄k+1 ≥ (1 + c/d)s̄k applies whenever k ≤ τ , where c is a constant only
depending on γ2. By the definition of τ , we have

(1 + c/d)τ−1γ1 < 1− (γ2 − ε)/2,

which we can solve to get

τ ≤ log((2− γ2 + ε)/2γ1)

log(1 + c/d)
+ 1 ≤ Cd.

Lemma 22 (Approximation error) We have

|sτ − s̄τ | ≤
C log d√

d
(56)

with probability at least 1− 2/d.
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Proof Recall that by the discussion at the end of Section 3, we have

sup
0≤k≤τ

|r2
k − 1| ≤ C log d√

d
. (57)

Using Lemma 7, there is also a probability 1− 1/d event over which we have

sup
0≤t≤τ

∣∣∣∣∣
t−1∑
k=0

(
βk(y

(k))− β̄(y(k))
)∣∣∣∣∣ ≤ C√d log d. (58)

We will show that (56) holds when conditioned on both of these events. First, for any
t ≤ τ , we may write

s̄t − s̄0 =
t−1∑
k=0

(s̄k+1 − s̄k) =
1

d

t−1∑
k=0

β̄(ȳ(k)),

and similarly we have (29), which we reproduce here:

st − s0 =
1

d

t−1∑
k=0

β̄(y(k)) +
1

d

t−1∑
k=0

(
βk(y

(k))− β̄(y(k))
)
.

Subtracting these two equations, and recalling that s̄0 = s0, we get

|st − s̄t| ≤
1

d

∣∣∣∣∣
t−1∑
k=0

(
βk(y

(k))− β̄(y(k))
)∣∣∣∣∣+

1

d

∣∣∣∣∣
t−1∑
k=0

(
β̄(y(k))− β̄(ȳ(k))

)∣∣∣∣∣
≤ C log d√

d
+

1

d

t−1∑
k=0

∣∣∣β̄(y(k))− β̄(ȳ(k))
∣∣∣. (59)

where the bound for the first term on the right hand side comes from (58)
Meanwhile, by Lemma 26, we also have∣∣∣β̄(y(t))− β̄(ȳ(t))

∣∣∣ ≤ L(|rt − r̄t|+ |st − s̄t|) (60)

and plugging in (59) and (57) gives

∣∣∣β̄(y(t))− β̄(ȳ(t))
∣∣∣ ≤ L(C log d√

d
+

1

d

t−1∑
k=0

∣∣∣β̄(y(k))− β̄(ȳ(k))
∣∣∣).

We are now in a position to apply Lemma 34 with xt = 1
d

∣∣β̄(y(t))− β̄(ȳ(t))
∣∣, ρ = L/d,

and ξ = C log d/
√
d. Doing so, we get

1

d

τ−1∑
k=0

∣∣∣β̄(y(k))− β̄(ȳ(k))
∣∣∣ ≤ C log d√

d
· ((1 + L/d)τ − 1)

≤ C log d√
d
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as we wanted.

Proof (of Theorem 20) Set ε = γ2/2. Combining the previous two lemmas, we have

|sτ | ≥ |s̄τ | − |sτ − s̄τ |

≥ 1− γ2 − ε
2
− C log d√

d
,

and combined with (57) gives

Ψ(y(τ)) = r2
τ − 2|sτ |+ 1

= r2
τ − 1 + 2(1− |sτ |)

≤ C log d√
d

+ γ2 − ε

≤ γ2,

where the last inequality holds for d large enough. As such, we have τ2b ≤ τ ≤ Cd.

7. Linear convergence in Phase 3 and proof of Theorem 2

Proof (of Theorem 2) To summarize, we have showed that τ1 ≤ Cd · (log d + log|r2
0 − 1|)

with probability at least 1 − C/ log d (Lemma 6), τ2a − τ1 ≤ Cd log d with probability at
least p (Theorem 11), and τ2b − τ2a ≤ Cd with probability at least 1 − 1/d (Lemma 20).
Putting all of these together gives

τ2b ≤ Cd log
(
d · ‖x(0)‖ ∨ 1

)
with probability at least p − C/ log d − C/d, which is larger than p/2 for d large enough.
Unfortunately, this is not good enough for our purposes and we need to do a bit more work
to bring down the error probability.

Let us condition on the 1− 1/d probability event for which (26) holds so that we have
uniform control over {r2

k} over an appropriate timescale (more precisely, we use the coupling
argument explained in the discussion after Lemma 10). Define A := Cd log(d · C3), where
C3 is the same constant used in (26). Then by the strong Markov property, for any k0 > 0,
we have

P{τ2b − τ1 ≥ A+ k0} = P
{

inf
0≤k<k0+A

Ψ(y(τ1+k)) > γ2

}
= E

{
P
{

inf
k0≤k<k0+A

Ψ(y(τ1+k)) > γ2 Fτ1+k0

}
1

{
inf

0≤k<k0
Ψ(y(τ1+k)) > γ2

}}
≤ (1− p/2) · P{τ2b − τ1 ≥ k0},

which implies that

P{τ2b − τ1 ≥ A+ k0 τ2b − τ1 ≥ k0} ≤ 1− p/2.
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As such, we have

P{τ2b − τ1 ≥ tA} =

t−1∏
k=0

P{τ2b − τ1 ≥ (k + 1)A τ2b − τ1 ≥ kA}

≤ (1− p/2)t.

If we set t = log(10)
log(1−p/2) , we see that with probability at least 0.9− C/ log d− 1/d,

τ2b ≤ tA+ τ1

. d log d+ d log
(
d · ‖x(0)‖ ∨ 1

)
≤ d ·

(
log d+ log

(
‖x(0)‖ ∨ 1

))
.

As mentioned earlier, we will take T = τ2b.

It remains to establish linear convergence of the process to ±y∗ during the iterations
following T . To do this, we will follow the ideas of Section 3 in Tan and Vershynin
(2018). First, we choose γ2 in (17) to be equal to π2/320, and define a stopping time
τ := min{k ≥ τ2b : Ψ(y(k)) ≥ π2/16}. The stopping time argument in Tan and Ver-
shynin (2018) then implies that P{τ =∞} ≥ 0.95. Also, we may use Lemma 2.2 therein to
guarantee conditional contraction in each step. Namely, if Ψ(y(k)) ≤ π2/16 for any k, then

E
{

Ψ(y(k+1)) Fk
}
≤
(

1− 1

2d

)
Ψ(y(k)).

If we write Yk := (1 − 1/2d)−kΨ(y(T+k)) · 1τ>T+k, then the above bound allows us to
compute

E{Yk+1 FT+k} =

(
1− 1

2d

)−k−1

E
{

Ψ(y(T+k+1)) FT+k

}
1τ>T+k

≤
(

1− 1

2d

)−k−1(
1− c

d

)
Ψ(y(T+k))1τ>T+k

≤
(

1− 1

2d

)−k
Ψ(y(T+k))1τ>T+k−1

= Yk,

and we see that {Yk}k is a supermartingale with respect to the filtration {FT+k}k.
By the supermartingale inequality, there is a probability 0.95 event over which

sup
k≥0

Yk ≤ 20Ψ(y(τ2b)) ≤ 20γ2.

On the intersection of this event, and that on which τ =∞, we have that

Ψ(y(T+k)) ≤ 20γ2

(
1− 1

2d

)k
≤
(

1− 1

2d

)k
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for all k ≥ 0 as we wanted. If we total the measure of the excluded bad events, the final
success probability is at least 0.8− C/ log d− 1/d as promised.

We now discuss some straightforward extensions of this result. First, the lack of a
high probability guarantee is a little unfortunate, and results from having to apply the
supermartingale inequality. We are unsure whether this can be overcome theoretically, but
we can easily modify the algorithm so that convergence holds with high probability. To do
this, we use the “majority vote” procedure described in Tan and Vershynin (2018). The
price we have to pay is an additional log(1/δ) factor on the number of iterations, where δ
is the total error probability we can tolerate.

Second, in the algorithm we presented, we required fresh samples to be used in every
update step. Once we are in the linear convergence regime, however, samples can actually
be reused so long as we choose uniformly from Ω(d) of them (Tan and Vershynin, 2018).

8. Conclusion and discussion

In this paper, we have analyzed the convergence of constant step-size stochastic gradient
descent for the non-convex, non-smooth phase retrieval objective (1), for which we assume
Gaussian sampling vectors, and use an arbitrary initialization. The main idea was to view
the SGD sequence as a Markov chain on a summary state space, and then use the natural
1/d step size scaling to argue that as d tends to infinity, the process trajectory converges
to something we understand. We believe that our proof framework and techniques will
have applications beyond the vanilla phase retrieval model, and indeed inform the theory
of non-convex optimization in general.

8.1 Extensions of the analysis

Noisy measurements. We have analyzed phase retrieval in the noiseless setting, as is
customary in the literature. It is easy to see that the arguments still go through for an
additive noise model, except that we may now need to either use batch updates, or reduce
the step size further, in order to get convergence. On the other hand, just like in noisy
linear regression, we can no longer hope for exact recovery.

Complex measurements. While optimization theory traditionally works with real-valued
objects, the physical experiments that inspired the mathematical phase retrieval problem
deal with complex measurements. Extending our analysis to this setting is thus important
for practical relevance. To do this, we would first need to define gradient descent for func-
tions of complex variables. This can be done naively by decomposing a vector in Cd into
real and imaginary parts, thereby viewing it as a vector in R2d. However, Candès et al.
(2015) has argued that it is more convenient to make use of Wirtinger derivatives, which
rewrite the objective function F to be a function F̃ on Cd × Cd, with F (z) = F̃ (z, z̄). F̃ is
now holomorphic as a function of z, and so we can directly take complex derivatives, with
many of the original formulas from real phase retrieval carrying over formally.2 The natural

2. Candès et al. (2015) work with the alternate loss function (1), but the arguments also apply to our loss
function (2) which is differentiable almost everywhere.
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extension of our sampling scheme to the complex setting is to assume independent complex
Gaussian sampling vectors. Under this setting, we believe that it is still possible to show
that we have a two-dimensional real state space, again comprising r2, the squared norm of
the iterate, and s, the absolute value of its projection onto the signal direction. We expect
most of the old calculations going through, but leave this to future work.

Non-Gaussian sampling vectors. Our state space argument relies on the rotational
symmetry of the sampling vectors, and this clearly will not hold in the non-Gaussian set-
ting. Nonetheless, we conjecture that the phenomenon of SGD convergence from a ran-
dom initialization should hold more generally for sub-Gaussian sampling vectors, which are
straightforward generalizations of the Gaussian distribution. A reasonable approach would
be to consider central limits for projections of sub-Gaussian distributions, which may add
an additional benign approximation to our argument.

Other single index models. Phase retrieval is an example of a single index model with
the link function f(t) = |t|. One can easily check that the state space argument generalizes
to models with other link functions. Less clear is how to generalize the other arguments in
the paper. Nonetheless, we expect this to be not too difficult, so long as we assume some
natural regularity conditions on the link function. Finally, we conjecture that similar ideas
can work for analyzing SGD for low-rank matrix sensing, since heuristically what makes
everything work is the underlying low-dimensional structure in the problem.

8.2 Implications for non-convex optimization

In the introduction to this paper, we have already talked about the growing interest in a
theoretical understanding of first-order methods applied to non-convex problems. Here, we
reiterate that the main contribution of our paper should be seen as not simply providing a
convergence guarantee for SGD, but also one that has close to optimal sample and compu-
tational complexity. We are able to achieve this through a careful analysis of the “essential
dynamics” of the SGD process, as represented by the summary state space.

Standard proofs of convergence for first order methods applied to convex problems
proceed by tracking one of the following three quantities: ‖xk − x∗‖2, f(xk) − f(x∗), or
‖∇f(x∗)‖. Under our framework, this can be seen as implicitly using a one-dimensional
state space. In non-convex optimization, however, it makes sense to use a multi-dimensional
state space, whereby we measure “progress” in terms of multiple quantities. The number of
such quantities one needs to track for a given problem can then perhaps be used to define
a notion of “complexity” for that problem.
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Lemma 23 The sequence x(0),x(1),x(2), . . . is a Markov chain whose transition kernel has
the random mapping representation

x(k+1) = x(k) +
1

d
∆(x(k)), (61)

where
∆(x) = (〈a,x∗ − x〉 − 21A · 〈a,x∗〉)a, (62)

a ∼ Unif(
√
dSd−1), and A is the event that sign(〈a,x〉) 6= sign(〈a,x∗〉).

Proof The fact that the sequence is a Markov chain is clear. After dropping indices, we
may write the update step (3) as

∆(x) := (sign(〈a,x〉)|〈a,x∗〉| − 〈a,x〉)a
= (sign(〈a,x〉)sign(〈a,x∗〉)〈a,x∗〉 − 〈a,x〉)a
= (〈a,x∗ − x〉 − 21{〈a,x〉〈a,x∗〉 < 0}〈a,x∗〉)a

Proof (of Theorem 3) Abusing notation slightly, let us define the state space updates

α(x) := d ·
(
r2(x +

1

d
∆(x))− r2(x)

)

β(x) := d ·
(
s(x +

1

d
∆(x))− s(x)

)
.

Our goal is to compute formulas for the distributions for α(x) and β(x), in particular
showing that they depend on x only through y. To this end, we simplify notation, denoting

r = r(x), s = s(x), and θ = θ(x). Furthermore, define x⊥ :=
P⊥x∗x

‖P⊥x∗x‖
.

We can decompose x into its components parallel and perpendicular to x∗, writing

x = r cos θx∗ + r sin θx⊥. (63)

Let a ∼ Unif(
√
dSd−1) be the random vector used to generate ∆(x). We also have the

orthogonal decomposition
a = a1x

∗ + a2x
⊥ + r (64)

where a1, a2 are the marginals of a along x∗ and x⊥ respectively, and r is defined as the
remainder in the decomposition above.

Combining these formulas, we immediately get

〈a,x〉 = r cos θa1 + r sin θa2. (65)

To compute the formula for α(x), we first expand

α(x) = d ·
(
r2(x + ∆(x)/d)− r2(x)

)
= d ·

(
‖x + ∆(x)/d‖2 − ‖x‖2

)
= 2〈x,∆(x)〉+ ‖∆(x)‖2/d. (66)
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Now use equations (62), (64) and (65) to write

〈∆(x),x〉 = (〈a,x∗ − x〉 − 21A · 〈a,x∗〉)〈a,x〉,

and

‖∆(x)‖2

d
=
‖a‖2

d
·
(
〈a,x∗ − x〉2 + 4〈a,x∗〉21A − 4〈a,x∗ − x〉〈a,x∗〉1A

)
= 〈a,x∗ − x〉2 + 4〈a,x〉〈a,x∗〉1A (67)

Plugging these into (66), we have

α(x) = 2〈a,x∗ − x〉〈a,x〉+ 〈a,x∗ − x〉2

= 〈a,x∗〉2 − 〈a,x〉2

= a2
1 − (r cos θa1 + r sin θa2)2

= (1− r2 cos2 θ)a2
1 − r2 sin2 θa2

2 + r2 sin θ cos θa1a2

For the second formula, we note that β(x) = 〈∆(x),x∗〉, and write

β(x) = (〈a,x∗ − x〉 − 21A · 〈a,x∗〉)〈a,x∗〉
= (a1(1− r cos θ)− a2r sin θ − 21Aa1)a1

= (1− r cos θ)a2
1 − r sin θa1a2 − 21Aa

2
1.

Here, the second equality follows from a combination of (64), (63) and (65).

Lemma 24 (Expectations involving A) The distribution of the event A = A(θ) de-
pends only on the angle θ between x and x∗. Furthermore, using the formula (64), we have
the following identities.

P{A(θ)} =
θ

π
(68)

E{a2
11A(θ)} =

1

2π
(2θ − sin(2θ)) (69)

E{a1a21A(θ)} =
1

2π
(cos(2θ)− 1) (70)

Proof For the first identity, let ã := (a1, a2). We may write a1 = ‖ã‖ cos t and a2 =
‖ã‖ sin t. Event A occurs precisely when π

2 ≤ t ≤
π
2 + t.
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To prove (69), observe that t is independent of ‖ã‖. This allows us to compute:

E{a2
11A} = E{(a2

1 + a2
2)}E{cos2(t)1A}

= 2 · 1

π

∫ π
2

+θ

π
2

cos2(t)dt

=
2

π

∫ θ

0
sin2(t)dt

=
1

π

∫ θ

0
1− cos(2t)dt

=
1

π

[
t− sin(2t)

2

]θ
0

=
1

π

(
θ − sin(2θ)

2

)
.

A similar calculation yields (70).

Proof (of Lemma 4) It is easy to compute Eu2 = 1, and Euv = 0. Applying this and (69)
in the previous lemma to (8) and (9) yields (11) and (12).

Appendix B. Properties of subexponential random variables

Subexponential random variables are defined in terms of tail bounds, and can also be
equivalently defined as elements of an Orlicz space with Orlicz norm

‖X‖ψ1
:= inf{C : E exp(X/C) ≤ 2}.

One may easily check that this is a norm, which allows for easy tail bounds for random
variables that are sums of subexponential random variables. We will only state the pro-
preties of subexponential variables needed in our paper, and refer the interested reader to
the textbook by Vershynin (2018).

Lemma 25 (ψ1-norm for α(y) and β(y)) Let D ⊂ Y be a compact domain. Then the
subexponential norms of α(y) and β(y) are uniformly bounded for y ∈ Y.

Proof Suppose we have r(y) ≤ R for all y ∈ Y. Then

‖α(y)‖ψ1 = ‖(1− r2 cos2 θ) · u2 − r2 sin2 θ · v2 + r2 sin θ cos θ · uv‖ψ1

≤ |1− r2 cos2 θ| · ‖u2‖ψ1 + r2 sin2 θ · ‖v2‖ψ1 + |r2 sin θ cos θ| · ‖uv‖ψ1

≤ (R2 + 1) ·
(
‖u2‖ψ1 + ‖v2‖ψ1 + ·‖uv‖ψ1

)
≤ (R2 + 1) ·

(
‖u‖2ψ2

+ ‖v‖2ψ2
+ ·‖u‖ψ2‖v‖ψ2

)
. R2 + 1.
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The first inequality is an application of the triangle inequality, the third follows from the
following basic property for subexponential random variables: ‖XY ‖ψ1 ≤ ‖X‖ψ2‖Y ‖ψ2 .
Finally, it is easy to check that ‖u‖ψ2 . 1.

Appendix C. Lemmas for drift

Proof (of Lemma 5) For each fixed r, β̄ is an odd function with respect to s, so it suffices
to prove the statement for s > 0. Let us now compute its derivative with respect to s.
Differentiating (12) first with respect to θ, we get

d

dθ
β̄(r2, s) = r sin θ − 1

π
(2− 2 cos(2θ))

= r sin θ − 4

π
sin2 θ.

Next, note that since s = r cos θ, we have

dθ

ds
=

(
ds

dθ

)−1

= − 1

r sin θ

Using the chain rule and then simplifying, we thereby get

d

ds
β̄(r2, s) =

(
r sin θ − 4

π
sin2 θ

)
·
(
− 1

r sin θ

)
=

4

π

√
r2 − s2

r2
− 1.

From this expression, we can see that for any fixed r > 0, the function s 7→ β̄(r2, s) is
concave downwards on [0, r], with β̄(r2, 0) = 0, and ∂sβ̄(r2, s)s=0 > 0. This implies that
the graph of β̄(r2, s) as a function of s lies beneath the line passing through the origin with
slope ∂sβ̄(r2, s)s=0. When r ≥ 1

2 , we have

∂sβ̄(r2, s)s=0 =
4

πr
− 1 <

8

π
− 1

thereby giving the upper bound.

For the lower bound, first note that concavity also implies that β̄(r2, s) ≥ s
s′ β̄(r2, s′) for

any 0 < s < s′ < r. Now, one may easily check that β̄(1, 1) = 0, so that β̄(1, 1− ε) > 0 for
ε small enough. By continuity, there is some η > 0 for which

inf
|r2−1|≤η

β̄(r2, 1− ε) ≥ β̄(1, 1− ε)
2

.

Indeed, since ∂rβ̄(r2, s) = − cos θ, one may even provide a precise formula if one wishes.

Set b := β̄(1,1−ε)
2(1−ε) . This is the universal constant we want.
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Lemma 26 (Lipschitz continuity) Fix ε > 0 in the previous lemma, and by making ε
and η smaller if necessary, assume that |s| < r − ε/2 for all (r2, s) ∈ D, where D :=
{(r2, s) ∈ Y : |s| ≤ 1− ε, |r2−1| ≤ η}. Then β̄ is Lipschitz continuous on D with Lipschitz
constant bounded by a universal constant L depending only on ε.

Proof We have∣∣β̄(y)− β̄(y′)
∣∣ ≤ ∣∣s− s′∣∣+

2

π
|θ − θ′|+ 1

π

∣∣sin(2θ)− sin(2θ′)
∣∣

≤
∣∣s− s′∣∣+

4

π
|θ − θ′|.

The first term is trivially bounded by ‖y − y′‖. Next, observe that θ = arccos(s/
√
r2),

which is jointly differentiable in r2 and s, and so is Lipschitz continuous with respect to
these coordinates on a compact set bounded away from r = s. By assumption, D is such a
compact set.

Appendix D. Facts about Kolmogorov distance and stochastic dominance

Lemma 27 (Properties of Kolmogorov distance) For any real-valued random vari-
ables X and Y , we have

‖FX2 − FY 2‖∞ ≤ 2‖FX − FY ‖∞. (71)

In addition, for any constant c ∈ R, we have

‖FX+c − FY+c‖∞ = ‖FX − FY ‖∞ (72)

Proof For any t ≥ 0, we have

|FX2(t)− FY 2(t)| = P{X2 ≤ t} − P{Y 2 ≤ t}
= P{−t ≤ X ≤ t} − P{−t ≤ Y ≤ t}
= FX(t)− FX(−t) + FY (t)− FY (−t)
≤ |FX(t)− FY (t)|+ |FX(−t)− FY (−t)|
≤ 2‖FX − FY ‖∞

as we wanted. The second identity can be obtained similarly.

Lemma 28 (Characterization of stochastic dominance in terms of CDFs) Let X
and Y be real-valued random variables. Then for any 0 < δ < 1, X stochastically dominates
Y up to error δ if and only if their CDFs satisfy FX ≤ FY + δ.

Proof The forward implication is trivial, so we only need to show the backward implication.
Let qX and qY denote the quantile functions for X and Y respectively. We claim that
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for any 0 ≤ t ≤ 1 − δ, we have qX(t + δ) ≥ qY (t). To see this, first recall the definition
qY (t) = inf{a : FY (a) ≥ t}. By definition, we thus have a decreasing sequence xn ↓ qX(t+δ)
such that FX(xn) ≥ t + δ for each n. Then by assumption, FX(a) ≤ FY (a) + δ for any
a ∈ R, so

FY (xn) ≥ FX(xn)− δ ≥ (t+ δ)− δ = t,

which implies that
qY (t) ≤ lim inf

n→∞
xn = qX(t+ δ)

as claimed.
Let U be uniformly distributed on [0, 1], and on the same probability space, define

U ′(ω) = U(ω) + δ mod 1. Then U ′ is also uniformly distributed on [0, 1]. Next, it easy to
check that qX(U ′) ∼ FX and qY (U) ∼ FY (this is a standard construction in probability
theory). With probability 1 − δ, we have δ ≤ U ′ = U + δ ≤ 1. Conditioning on the event
in which this occurs, we have

qX(U ′) = qX(U + δ) ≥ qY (U),

which gives us the coupling we want.

Lemma 29 (Transitivity of stochastic dominance) Let X, Y , and Z be random vari-
ables, δ, δ′ > 0 such that X �δ Y and Y �δ′ Z. Then X �δ+δ′ Z.

Proof This follows from the characterization in the previous lemma.

Lemma 30 (Stochastic dominance preserved under monotone transformations)
Let X and Y , and Z be random variables, δ > 0 such that X �δ Y . Suppose X and Y have
range R ⊂ R, and τ : R→ R is a non-decreasing transformation. Then τ(X) �δ τ(Y ).

Proof This is obvious.

Corollary 31 (Kolmogorov distance and coupling) Let X and Y be real-valued ran-
dom variables such that their CDFs satisfy ‖FX − FY ‖∞ ≤ δ for some 0 < δ < 1. Then X
stochastically dominates Y up to error δ.

Lemma 32 (Stochastic dominance ordering for truncated Gaussians) The follow-
ing hold:

1. Fix σ2, ε > 0. For any b > 0, define the random variable Xb := ρε[b + σg]2. Then
whenever b′ > b, we have Xb′ � Xb.

2. Fix σ2
0, set σ2 =

Bσ2
0

d2
. Let ε(s) and b(s) be defined as in (33) and (36) respectively .

Consider the collection of random variables Ys := ρε(s)[b(s)+σg]2 for −1/2 < s < 1/2.
For d large enough, whenever 1/2 > s′ > s > 0, we have Ys′ � Ys.
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Proof Throughout, we let g denote a standard normal random variable. We start by
proving the first statement. Let Fb denote the CDFs of Xb and Xb′ respectively. For any
given a > 0, we wish to show that Fb(a) ≥ Fb′(a), and it suffices to show that d

dbFb(a) ≤ 0
for b > 0. In order to do this, we write out Fs in terms of the Gaussian CDF. We have

Fb(a) = P{Xs ≤ a}
= P{−

√
a− ε ≤ σg + b ≤

√
a+ ε}

= P
{
g ≤
√
a+ ε− b(s)

σ

}
− P

{
g ≤ −

√
a− ε− b
σ

}
= Φ

(√
a+ ε− b
σ

)
− Φ

(
−
√
a− ε− b
σ

)
.

Hence, we have

d

db
Fb(a) =

1

σ

(
φ

(
−
√
a− ε− b
σ

)
− φ

(√
a+ ε− b
σ

))
.

Since φ is even, and decreases away from 0, and |−
√
a− ε− b| > |

√
a+ ε− b| for b > 0, the

quantity on the right hand side is negative as we wanted.
The second statement is proved similarly. We let Fs denote the CDF of Ys and will

show that d
dsFs(a) ≤ 0. As before we compute

Fs(a) = Φ

(√
a+ ε(s)− b(s)

σ

)
− Φ

(
−
√
a− ε(s)− b(s)

σ

)
.

Hence, we have

d

ds
Fs(a) =

ε′(s)− b′(s)
σ

φ

(√
a+ ε(s)− b(s)

σ

)
− −ε

′(s)− b′(s)
σ

φ

(
−
√
a− ε(s)− b(s)

σ

)
.

For 0 < s <
√

log d
B , we have ε′(s) = 0, and it is clear that this quantity is nonpositive.

For s >
√

log d
B , first observe that for any x, y, we have e−(x−y)2/e−(x+y)2 = e4xy. As such,

we compute

φ

(√
a+ ε(s)− b(s)

σ

)/
φ

(
−
√
a− ε(s)− b(s)

σ

)
= exp

(
2(
√
a+ ε(s))b(s)

σ2

)
≥ exp

(
d2

Bσ2
0

· CB
2 log d

d2
· s2

)
≥ exp

(
d2

Bσ2
0

· CB
2 log d

d2
· log d

B

)
= exp

(
C log2 d

σ2
0

)
.

For d large enough, this ratio is greater than

b′(s) + ε′(s)

b′(s)− ε′(s)
=

1 + κB/d+ CB2 log d/d2

1 + κB/d− CB2 log d/d2
,

which converges to 1 as d tends to infinity. This concludes the proof of the claim.
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Appendix E. Combinatorial lemmas

Lemma 33 Let x1, x2, . . . be a sequence of real numbers. Denote the partial sums by st =∑t
i=1 xi. For any 0 < ρ < 1, define the sequence w1, w2, . . . via the recursive formula

wt+1 := ρwt + xt+1.

If there is some positive integer M and some C > 0 such that |st| ≤ C for all t ≤M , then
we also have |wt| ≤ 2C + |w0| for all t ≤M .

Proof We first prove by induction that the following representation for wt holds:

wt = st − (1− ρ)
t−1∑
i=1

ρt−i−1si + ρtw0. (73)

First assume that the formula holds for some t. Then starting from the definition, we use
the inductive hypothesis to write

wt+1 = ρwt + xt+1

= ρ ·

(
st − (1− ρ)

t−1∑
i=1

ρt−1−isi + ρtw0

)
+ xt+1

= ρst − (1− ρ)
t−1∑
i=1

ρt−isi + ρt+1w0 + (st+1 − st)

= st+1 − (1− ρ)
t∑
i=1

ρt−isi + ρt+1w0.

Applying the triangle inequality to (73), we get

|wt| ≤ |st|+ (1− ρ)

t∑
i=1

ρi−1|st−i|+ ρt|w0|

≤ C + (1− ρ)

∞∑
i=1

ρi−1C + |w0|

≤ 2C + |w0|

as we wanted.

Lemma 34 Let x1, x2, . . . be a sequence of non-negative real numbers. Denote the partial
sums by st =

∑t
i=1 xi. Let ρ > 0 and ξ > 0 be such that we have the recursive inequality

xt ≤ ρ(ξ + st−1).

Then for all t, we have
st ≤ ξ ·

(
(1 + ρ)t+1 − 1

)
.
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Proof We have

st = st−1 + xt

≤ st−1 + ρ(ξ + st−1)

≤ (1 + ρ)st−1 + ρξ.

Solving this recursion, we get

st ≤ ρξ ·
t−1∑
i=0

(1 + ρ)i = ξ ·
(
(1 + ρ)t+1 − 1

)
.

Appendix F. Concentration inequalities

Proof (of Lemma 7) This essentially follows from Theorem 1 in Howard et al. (2018).
For completeness and clarity, however, we give a direct proof of this here using the same
technique.

First fix ε > 0. Let λ ≤ 1
2K , and for each positive integer t, we write

Lt(λ) := exp(λSt − λ2K2t).

Observe that

E{Lt+1(λ) Gt} = E{eλXt+1−λ2K2 Gt}Lt(λ) ≤ Lt(λ),

so that the sequence Lt(λ) forms a supermartingale, and remains so if we extend this to
time 0 by setting L0(λ) = 1. We may now apply the supermartingale inequality. We have

P{∃t ≤M : St ≥ λK2M + ε/2} ≤ P{∃t ≤M : St ≥ λK2t+ ε/2}
= P{∃t ≤M : Lt(λ) ≥ eλε/2}
≤ E{L0(λ)} · e−λε/2

≤ e−λε/2. (74)

It remains to choose λ appropriately in order to get the tail bound we want. If ε ≤MK,
then we set λ = ε/2K2M , observing that for this choice of λ,

λ ≤ MK

2K2M
≤ 1

2K
,

and Lt(λ) is indeed a supermartingale, and (74) holds. Plugging our choice of λ into the
left hand and right hand sides, this yields the bound

P{∃t ≤M : St ≥ ε} ≤ e−ε
2/4mK2

.
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On the other hand, if ε > MK, then we pick λ = 1/2K. Once again plugging this into
(74), we get

P{∃t ≤M : St ≥ ε} ≤ e−ε/4K .

Putting these two bounds together gives the upper tail in (21), and considering the negative
of the sequence gives the lower tail.

Lemma 35 (Chernoff for non-independent Bernoullis) Let X1, X2, . . . , XM be a se-
quence of Bernoulli random variables adapted to a filtration {Gt}, and let θ be such that for
1 ≤ t ≤M , we have

E{Xt Gt−1} ≤ θ

Then for any 0 < ε < 1, we have

P

{
M∑
i=1

Xi ≥ (1 + ε)Mθ

}
≤ e−Mθε2/3

Proof Denote St :=
∑t

i=1Xi, observe that for any λ > 0,

E{eλSt} = E{E{eλXt Gt−1}eλSt−1}

≤ E
{

exp
(

(eλ − 1)E{Xt Gt−1}
)
eλSt−1

}
≤ exp

(
θ(eλ − 1)

)
E{eλSt−1},

so that
E{eλSM } ≤ exp

(
Mθ(eλ − 1)

)
.

The rest of the proof is exactly the same as that of the regular Chernoff’s inequality (Ver-
shynin, 2018).

Lemma 36 (Moment bounds for contractions of random variables) Let X be a ran-
dom variable, ρ : R → R a contraction (i.e. a map such that |ρ(x)− ρ(y)| ≤ |x− y| for all
x, y.) Then E{(ρ(X)− Eρ(X))4} ≤ 8E{(X − EX)4}. If in addition, ρ is an odd function
and X is symmetric, then for any b ∈ R, we also have |E{ρ(X + b)}| ≤ |b|.

Proof Let X ′ be an independent copy of X. By Jensen’s inequality, followed by applying
the contraction inequality pointwise, we have

E{(ρ(X)− Eρ(X))4} ≤ E{
(
ρ(X)− ρ(X ′)

)4} ≤ E
{(
X −X ′

)4}
.

Writing X −X ′ = X − EX + EX ′ −X ′ and expanding, we can bound the right hand side
via

E
{(
X −X ′

)4}
= E

{
(X − EX)4

}
+ 6E{(X − EX)2(X ′ − EX ′

)2}+ E
{(
X ′ − EX ′

)4}
≤ 8E{(X − EX)4}.
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Here, the inequality follows from Cauchy-Schwarz.
For the second claim, assume b > 0 and write

E{ρ(X + b)} = E{ρ(X + b)− ρ(X)}
≤ E{|ρ(X + b)− ρ(X)|}
≤ E{|(X + b)−X|}
= b.

The first equality follows from the oddness of ρ and the symmetry of X, while the second
follows from contraction. If b < 0, the statement may be proved similarly.
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