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Abstract

There is a rich literature on Bayesian methods for density estimation, which characterize
the unknown density as a mixture of kernels. Such methods have advantages in terms of
providing uncertainty quantification in estimation, while being adaptive to a rich variety
of densities. However, relative to frequentist locally adaptive kernel methods, Bayesian
approaches can be slow and unstable to implement in relying on Markov chain Monte
Carlo algorithms. To maintain most of the strengths of Bayesian approaches without the
computational disadvantages, we propose a class of nearest neighbor-Dirichlet mixtures.
The approach starts by grouping the data into neighborhoods based on standard algorithms.
Within each neighborhood, the density is characterized via a Bayesian parametric model,
such as a Gaussian with unknown parameters. Assigning a Dirichlet prior to the weights on
these local kernels, we obtain a pseudo-posterior for the weights and kernel parameters. A
simple and embarrassingly parallel Monte Carlo algorithm is proposed to sample from the
resulting pseudo-posterior for the unknown density. Desirable asymptotic properties are
shown, and the methods are evaluated in simulation studies and applied to a motivating
data set in the context of classification.

Keywords: Bayesian, Density estimation, Distributed computing, Embarrassingly par-
allel, Kernel density estimation, Mixture model, Quasi-posterior, Scalable

1. Introduction

Bayesian nonparametric methods provide a useful alternative to black box machine learn-
ing algorithms, having potential advantages in terms of characterizing uncertainty in in-
ferences and predictions. However, computation can be slow and unwieldy to implement.
Hence, it is important to develop simpler and faster Bayesian nonparametric approaches,
and hybrid methods that borrow the best of both worlds. For example, if one could use
the Bayesian machinery for uncertainty quantification and reduction of mean square errors
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through shrinkage, while incorporating algorithmic aspects of machine learning approaches,
one may be able to engineer a highly effective hybrid. The focus of this article is on propos-
ing such an approach for density estimation, motivated by the successes and limitations of
nearest neighbor algorithms and Bayesian mixture models.

Nearest neighbor algorithms are popular due to a combination of simplicity and per-
formance. Given a set of n observations X (n) = (X1, . . . , Xn) in Rp, the density at x
is estimated as f̂knn(x) = k/(nVpR

p
k), where k is the number of neighbors of x in X (n),

Rk = Rk(x) is the distance of x from its kth nearest neighbor in X (n), and Vp is the volume
of the p-dimensional unit ball (Loftsgaarden and Quesenberry, 1965; Mack and Rosenblatt,
1979). Refer to Biau and Devroye (2015) for an overview of related estimators and corre-
sponding theory.

Nearest neighbor density estimators are a type of locally adaptive kernel density esti-
mators. The literature on such methods identifies two broad classes: balloon estimators
and sample smoothing estimators; see Scott (2015); Terrell and Scott (1992) for an
overview. Balloon estimators characterize the density at a query point x using a band-
width function h(x); classical examples include the naive k-nearest neighbor density esti-
mator (Loftsgaarden and Quesenberry, 1965) and its modification in Mack and Rosenblatt
(1979). More elaborate balloon estimators face challenges in terms of choice of h(x) and
obtaining density estimators that do not integrate to 1. Sample smoothing estimators
use n different bandwidths h(Xi), one for each sample point Xi, to estimate the density at a
query point x globally. By construction, sample smoothing estimators are bona fide density
functions integrating to 1. To fit either the balloon or the sample smoothing estimator, one
may compute an initial pilot density estimator employing a constant bandwidth and then
use this pilot to estimate the bandwidth function (Breiman et al., 1977; Abramson, 1982).
Another example of a locally adaptive density estimator is the local likelihood density es-
timator (Loader, 1996, 2006; Hjort and Jones, 1996), which fits a polynomial model in the
neighborhood of a query point x to estimate the density at x, estimating the parameters
of the local polynomial by maximizing a penalized local log-likelihood function. The above
methods produce a point estimate of the density without uncertainty quantification (UQ).

Alternatively, there is a Bayesian literature on locally adaptive kernel methods, which
express the unknown density as:

f(x) =

m∑
h=1

πhK(x; θh), θh ∼ P0, (πh)mh=1 ∼ Q0, (1)

which is a mixture of m components, with the hth having probability weight πh and kernel
parameters θh; by allowing the location and bandwidth to vary across components, local
adaptivity is obtained. A Bayesian specification is completed with prior P0 for the kernel
parameters and Q0 for the weights. In practice, it is common to rely on an over-fitted
mixture model (Rousseau and Mengersen, 2011), which chooses m as a pre-specified finite
upper bound on the number of components, and lets

π = (π1, . . . , πm)T ∼ Dirichlet(α, . . . , α). (2)

Augmenting component indices ci ∈ {1, . . . ,m} for i = 1, . . . , n, a simple Gibbs sampler can
be used for posterior computation, alternating between sampling (i) ci from a multinomial
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conditional posterior, for i = 1, . . . , n; (ii) θh | − ∼ P0(θh)
∏
i:ci=h

K(Xi; θh); and (iii)
π | − ∼ Dirichlet(α+ n1, . . . , α+ nm), with nh =

∑n
i=1 I(ci = h) for h = 1, . . . ,m.

Relative to frequentist locally adaptive methods, Bayesian approaches are appealing in
automatically providing a characterization of uncertainty in estimation, while having excel-
lent practical performance for a broad variety of density shapes and dimensions. However,
implementation typically relies on Markov chain Monte Carlo (MCMC), with the Gibbs
sampler sketched above providing an example of a common algorithm used in practice. Un-
fortunately, current MCMC algorithms for posterior sampling in mixture models tend to
face issues with slow mixing, meaning the sampler can take a very large number of iterations
to adequately explore different posterior modes and obtain sufficiently accurate posterior
summaries.

MCMC inefficiency has motivated a literature on faster approaches, including sequential
approximations (Wang and Dunson, 2011; Zhang et al., 2014) and variational Bayes (Blei
and Jordan, 2006). These methods are order dependent, tend to converge to local modes,
and/or lack theory support. Newton and Zhang (1999); Newton (2002) instead rely on
predictive recursion. Such estimators are fast to compute and have theory support, but are
also order dependent and do not provide a characterization of uncertainty. Alternatively, one
can use a Polya tree as a conjugate prior (Lavine, 1992, 1994), and there is a rich literature
on related multiscale and recursive partitioning approaches, such as the optional Polya tree
(Wong and Ma, 2010). However, Polya trees have disadvantages in terms of sensitivity to
a base partition and a tendency to favor spiky/erratic densities. These disadvantages are
inherited by most of the computationally fast modifications.

This article develops an alternative to current locally adaptive density estimators, ob-
taining the practical advantages of Bayesian approaches in terms of uncertainty quantifica-
tion and a tendency to have relatively good performance for a wide variety of true densities,
but without the computational disadvantage due to the use of MCMC. This is accomplished
with a Nearest Neighbor-Dirichlet Mixture (NN-DM) model. The basic idea is to rely on
fast nearest neighbor search algorithms to group the data into local neighborhoods, and
then use these neighborhoods in defining a Bayesian mixture model-based approach. Sec-
tion 2 outlines the NN-DM approach and describes implementation details for Gaussian
kernels. Section 3 provides some theory support for NN-DM. Section 4 contains simulation
experiments comparing NN-DM with a rich variety of competitors in univariate and mul-
tivariate examples, including an assessment of UQ performance. Section 5 contains a real
data application, and Section 6 a discussion.

2. Methodology

2.1 Nearest Neighbor Dirichlet Mixture Framework

Let d(x1, x2) denote a distance metric between data points x1, x2 ∈ X . For X = Rp,
the Euclidean distance is typically chosen. For each i ∈ {1, 2, . . . , n}, let Xi[j] denote

the jth nearest neighbor to Xi in the data X (n) = (X1, . . . , Xn) such that d(Xi, Xi[1]) ≤
. . . ≤ d(Xi, Xi[n]), with ties broken by increasing order of indices. By convention, we
define Xi[1] = Xi. The indices on the k nearest neighbors to Xi are denoted as Ni =
{j : d(Xi, Xj) ≤ d(Xi, Xi[k])}. Denote the set of data points in the ith neighborhood by

3



Chattopadhyay, Chakraborty and Dunson

Si = {Xj : j ∈ Ni}. In implementing the proposed method, we typically let the number of
neighbors k vary as a function of n. When necessary, we use the notation kn to express this
dependence. However, we routinely drop the n subscript for notational simplicity.

Fixing x ∈ X , we model the density of the data within the ith neighborhood using

fi(x) = K(x; θi), θi ∼ P0, (3)

where θi are parameters specific to neighborhood i that are given a global prior distribution
P0. To combine the fi(x)s into a single global f(x), similarly to equations (1)-(2), we let

f(x) =

n∑
i=1

πifi(x), π = (πi)
n
i=1 ∼ Dirichlet(α, . . . , α), θi ∼ P0. (4)

The key difference relative to standard Bayesian mixture model (1) is that in (4) we include
one component for each data sample and assume that only the data in the k-nearest neigh-
borhood of sample i will inform about θi. In contrast, (1) lacks any sample dependence,
and we infer allocation of samples to mixture components in a posterior inference phase.

Given the restriction that only data in the ith neighborhood Si inform about θi, the
pseudo-posterior density Π̃1(θi;Si, P0) of θi with data Si and prior P0 is

Π̃1(θi;Si, P0) ∝ P0(θi)
∏
j∈Ni

K(Xj ; θi), (5)

where the right-hand side of (5) is motivated from Bayes’ theorem. This pseudo-posterior
is in a simple analytic form if P0 is conjugate to K(x; θ). The prior P0 can involve unknown
parameters and borrows information across neighborhoods; this reduces the large variance
problem common to nearest neighbor estimators.

Since the neighborhoods are overlapping, proposing a pseudo-posterior update for π
under (4) is not straightforward. However, one can define the number of effective members
in the ith neighborhood Si similar in spirit to the number of points in the hth cluster in
mixture models of the form (1). By convention, we define the point Xi that generated its
neighborhood Si to be an effective member of that neighborhood. For any other data point
Xj to be a effective member of the neighborhood generated by Xi for j 6= i, we require
Xj ∈ Si but Xj /∈ Su for all u = 1, . . . , n such that u /∈ {i, j}. That is, Xj lies in the
neighborhood generated by Xi but does not lie in the neighborhood of any other Xu for
u /∈ {i, j}. In Section 3.2, we show that the number of effective member points defined
as above approaches 1 as n → ∞. This motivates the following Dirichlet pseudo-posterior
density Π̃2(π;X (n)) for the neighborhood weights π:

Π̃2(π;X (n)) = Dirichlet(π | α+ 1, . . . , α+ 1), (6)

where Dirichlet(p | q1, . . . , qd) denotes the density of the Dirichlet distribution evaluated at
p with parameters (q1, . . . , qd). We provide a justification for the pseudo-posterior update
(6) in Section 3.2. This distribution is inspired from the conditional posterior on the kernel
weights in the Dirichlet mixture of equations (1)-(2), but we use n components and fix the
effective number of samples allocated to each component at one.
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Based on equations (3)-(6), our nearest neighbor-Dirichlet mixture produces a pseudo-
posterior distribution for the unknown density f(x) through simple distributions for the
parameters characterizing the density within each neighborhood and for the weights. To
generate independent Monte Carlo samples from the pseudo-posterior for f , one can simply
draw independent samples of (θi)

n
i=1 and π from (5) and (6) respectively, and plug these

samples into the expression for f(x) in (4). The resulting mechanism can be described as

θi
ind∼ Π̃1(· ;Si, P0) for i = 1, . . . , n,

π ∼ Π̃2(· ;X (n))

f(x) =

n∑
i=1

πiK(x; θi).

(7)

In (7), we denote the induced pseudo-posterior distribution on f by f ∼ Π̃. Although this is
not exactly a coherent fully Bayesian posterior distribution, we claim that it can be used as
a practical alternative to such a posterior in practice. This claim is backed up by theoretical
arguments, simulation studies, and a real data application in the sequel.

2.2 Illustration with Gaussian Kernels

Suppose we have independent and identically distributed (iid) observations X (n) from the
density f , where Xi ∈ Rp for i = 1, . . . , n and f is an unknown density function with respect
to the Lebesgue measure on Rp for p ≥ 1. Let Rp×p+ denote the set of all real-valued p× p
positive definite matrices. Fix x ∈ Rp. We proceed by setting K(x; θ) to be the multivariate
Gaussian density φp(x; η,Σ), given by

φp(x; η,Σ) = (2π)−p/2|Σ|−1/2 exp {−(x− η)TΣ−1(x− η)/2},

where θ = (η,Σ), η ∈ Rp and Σ ∈ Rp×p+ . We first compute the neighborhoods Ni cor-
responding to Xi as in Section 2.1 and place a normal-inverse Wishart (NIW) prior on
θi = (ηi,Σi), given by (ηi,Σi) ∼ NIWp(µ0, ν0, γ0,Ψ0) independently for i = 1, . . . , n. That
is, we let

ηi | Σi ∼ N

(
µ0,

Σi

ν0

)
, Σi ∼ IWp(γ0,Ψ0),

with µ0 ∈ Rp, ν0 > 0, γ0 > p − 1 and Ψ0 ∈ Rp×p+ ; for details about parametrization see
Section I of the Appendix.

Monte Carlo samples from the pseudo-posterior of f(x) can be obtained using Algorithm
1. The corresponding steps for the univariate case are provided in Section H of the Ap-
pendix. Although the pseudo-posterior distribution of f(x) lacks an analytic form, we can
obtain a simple form for its pseudo-posterior mean by integrating over the pseudo-posterior
distribution of (θi)

n
i=1 and π. Recall the definitions of µi and Ψi from Step 2 of Algorithm

1 and define Λi = {νn(γn − p+ 1)}−1(νn + 1) Ψi. Then the pseudo-posterior mean of f(x)
is given by

f̂n(x) =
1

n

n∑
i=1

tγn−p+1(x;µi,Λi), (8)
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• Step 1: For i = 1, . . . , n, compute the neighborhood Ni for data point Xi ∈ Rp
according to distance d(·, ·) with (k − 1) nearest neighbors in X−i = X (n) \ {Xi}.

• Step 2: Update the parameters for neighborhood Ni to (µi, νn, γn,Ψi), where
νn = ν0 + k, γn = γ0 + k,

µi =
1

νn

(
ν0µ0 + kX̄i

)
, X̄i =

1

k

∑
j∈Ni

Xj , and

Ψi = Ψ0 +
∑
j∈Ni

(Xj − X̄i)(Xj − X̄i)
T +

kν0

νn
(X̄i − µ0)(X̄i − µ0)T.

• Step 3: To compute the t-th Monte Carlo sample f (t)(x) of f(x), sample

π(t) ∼ Dirichlet(α+ 1, . . . , α+ 1) and (η
(t)
i ,Σ

(t)
i ) ∼ NIWp(µi, νn, γn,Ψi)

independently for i = 1, . . . , n, and set

f (t)(x) =
n∑
i=1

π
(t)
i φp

(
x; η

(t)
i ,Σ

(t)
i

)
.

Algorithm 1: Nearest neighbor-Dirichlet mixture algorithm to obtain Monte Carlo
samples from the pseudo-posterior of f(x) with Gaussian kernel and normal-inverse
Wishart prior.

where tγ(x;µ,Λ) for x ∈ Rp is the p-dimensional Student’s t-density with degrees of freedom
γ > 0, location µ ∈ Rp and scale matrix Λ ∈ Rp×p+ . We proceed with using Gaussian kernels
and NIW conjugate priors when implementing the NN-DM for the remainder of the paper.

2.3 Hyperparameter Choice

The hyperparameters in the prior for the neighborhood-specific parameters need to be
chosen carefully — we found results to be sensitive to γ0 and Ψ0. If non-informative
values are chosen for these key hyperparameters, we tend to inherit typical problems of
nearest neighbor estimators including lack of smoothness and high variance. Suppose Σ ∼
IWp(γ0,Ψ0) and for i, j = 1, . . . , p, let Σij and Ψ0, ij denote the i, jth entry of Σ and Ψ0,
respectively. Then Σjj ∼ IG(γ∗/2,Ψ0, jj/2) where γ∗ = γ0−p+1. For p = 1, the IWp(γ0,Ψ0)
density simplifies to an IG(γ0/2, γ0δ

2
0/2) density with δ2

0 = Ψ0/γ0. Thus borrowing from
the univariate case, we set Ψ0, jj = γ∗δ

2
0 and Ψ0, ij = 0 for all i 6= j, which implies that

Ψ0 = (γ∗δ
2
0) Ip and we use leave-one-out cross-validation to select the optimum δ2

0 . With p
dimensional data, we recommend fixing γ0 = p which implies a multivariate Cauchy prior
predictive density. We choose the leave-one-out log-likelihood as the criterion function
for cross-validation, which is closely related to minimizing the Kullback-Leibler divergence
between the true and estimated density (Hall, 1987; Bowman, 1984). The explicit expression
for the pseudo-posterior mean in (8) makes cross-validation computationally efficient. The
description of a fast implementation is provided in Section G of the Appendix.
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The proposed method has substantially faster runtime if one uses a default choice of
hyperparameters. In particular, we found the default values µ0 = 0p, ν0 = 0.001, γ0 = p, and
Ψ0 = Ip to work well across a number of simulation cases, especially when the true density is
smooth. Although using cross-validation to estimate Ψ0 can lead to improved performance
when the underlying density is spiky, cross-validation provides little to no gains for smooth
true densities. Furthermore, with low sample size and increasing number of dimensions,
we found this improvement to diminish rapidly. In order to obtain desirable uncertainty
quantification in simulations and applications, we found small values of α to work well. As
a default value, we recommend using α = 0.001 for small samples and moderate dimensions.

The other key tuning parameter for NN-DM is the number of nearest neighbors k = kn.
The pseudo-posterior mean in (8) reduces to a single tγn−p+1 kernel if kn = n. In contrast,
kn = 1 provides a sample smoothing kernel density estimate with a specific bandwidth
function (Terrell and Scott, 1992). Therefore, the choice of k can impact the smoothness
of the density estimate. To assess the sensitivity of the NN-DM estimate to the choice of
k, we investigate how the out-of-sample log-likelihood of a test set changes with respect to
k in Section 4.7. These simulations suggest that the proposed method is quite robust to
the exact choice of k. In practice with finite samples and small dimensions, we recommend
a default choice of kn = bn1/3c + 1 and kn = 10 for univariate and multivariate cases,
respectively. These values led to good performance across a wide variety of simulation cases
as described in Section 4.

3. Theory

3.1 Asymptotic Properties

There is a rich literature on asymptotic properties of the posterior measure for an unknown
density under Bayesian models, providing a frequentist justification for Bayesian density
estimation; refer, for example to Ghosal et al. (1999), Ghosal and van der Vaart (2007).
Unfortunately, the tools developed in this literature rely critically on the mathematical
properties of fully Bayes posteriors, providing theoretical guarantees for a computationally
intractable exact posterior distribution under a Bayesian model. Our focus is instead on
providing frequentist asymptotic guarantees for our computationally efficient NN-DM ap-
proach, with this task made much more complex by the dependence across neighborhoods
induced by the use of a nearest neighbor procedure.

We first focus on proving pointwise consistency of the pseudo-posterior of f(x) induced
by (7) for each x ∈ [0, 1]p, using Gaussian kernels as in Section 2.2. We separately study
the mean and variance of the NN-DM pseudo-posterior distribution, first showing that
the pseudo-posterior mean in (8) is pointwise consistent and then that the pseudo-posterior
variance vanishes asymptotically. The key idea behind our proof is to show that the pseudo-
posterior mean is asymptotically close to a kernel density estimator with suitably chosen
bandwidth for fixed p and kn → ∞ at a desired rate. The proof then follows from stan-
dard arguments leading to consistency of kernel density estimators. The NN-DM pseudo-
posterior mean mimics a kernel density estimator only in the asymptotic regime; in finite
sample simulation studies (refer to Section 4), NN-DM has much better performance. The
detailed proofs of all results in this section are in the Appendix.
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Consider independent and identically distributed data X (n) from a fixed unknown den-
sity f0 with respect to the Lebesgue measure on Rp equipped with the Euclidean metric,
inducing the measure Pf0 on B(Rp). We use Ẽ{f(x)}, ṽar{f(x)}, and p̃r{f(x) ∈ B} to
denote the mean of f(x), variance of f(x), and probability of the event {f(x) ∈ B} for
B ∈ B(Rp), respectively, under the pseudo-posterior distribution of f(x) implied by (7).
We make the following regularity assumptions on f0:

Assumption 1 (Compact support) f0 is supported on [0, 1]p.

Assumption 2 (Bounded gradient) f0 is continuous on [0, 1]p with ||∇f0(x)||2 ≤ L for
all x ∈ [0, 1]p and some finite L > 0.

Assumption 3 (Bounded sup-norm) || log(f0)||∞ <∞.

Our asymptotic analysis relies on analyzing the behaviour of the pseudo-posterior updates
within each nearest neighborhood. We leverage on key results from Biau and Devroye
(2015); Evans et al. (2002) which are based on the assumption that the true density has
compact support as in Assumption 1. Assumption 2 ensures that the kernel density esti-
mator has finite expectation. Versions of this assumption are common in the kernel density
literature; for example, refer to Tsybakov (2009). Assumptions 1 and 3 imply the existence
of 0 < a1, a2 <∞ such that 0 < a1 < f0(x) < a2 <∞ for all x ∈ [0, 1]p, which is referred to
as a positive density condition by Evans (2008); Evans et al. (2002). This is used to establish
consistency of the proposed method and justify the choice of the pseudo-posterior distribu-
tion of the weights. These assumptions are standard in the literature studying frequentist
asymptotic properties of nearest neighbor and Bayesian density estimators.

For i = 1, . . . , n, recall the definitions of µi and Λi from (8):

µi =
ν0

νn
µ0 +

kn
νn
X̄i, Λi =

νn + 1

νn(γn − p+ 1)
Ψi,

where νn = ν0 + kn, γn = γ0 + kn, and X̄i,Ψi are as in Algorithm 1. Define the bandwidth
matrix

Hn = h2
nIp, where h2

n =
(νn + 1)(γ0 − p+ 1)

νn(γn − p+ 1)
δ2

0 . (9)

We have suppressed the dependence of µi and Λi on n for notational convenience. It is
immediate that h2

n → 0 if kn →∞ as n →∞. Fix x ∈ [0, 1]p. To prove consistency of the
pseudo-posterior mean, we first show that f̂n(x) and fK(x) = (1/n)

∑n
i=1 tγn−p+1(x;Xi, Hn)

are asymptotically close, that is we show that EPf0 ( |f̂n(x) − fK(x)| ) → 0 as n → ∞. To
obtain this result, we approximate µi by Xi and Λi by Hn using successive applications of
the mean value theorem. Finally, we exploit the convergence of fK(x) to the true value
f0(x) to obtain the consistency of f̂n(x). The proof of convergence of fK(x) to f0(x) is
provided in Section F of the Appendix. The precise statement regarding the consistency of
the pseudo-posterior mean is given in the following theorem. Let a∧ b denote the minimum
of a and b.

Theorem 4 Fix x ∈ [0, 1]p. Let kn = o(ni0) with i0 = {2/(p2 + p+ 2)} ∧ {4/(p+ 2)2} such

that kn →∞ as n→∞, and ν0 = o{n−2/pk
(2/p)+1
n }. Then, f̂n(x)→ f0(x) in Pf0-probability

as n→∞.
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We now look at the pseudo-posterior variance of f(x). We let

Rn =
Γ{(γn − p+ 2)/2}
Γ{(γn − p+ 1)/2}

[
νn + 2

4πνn(γn − p+ 2)

]p/2
and Dn =

(γn − p+ 1)(νn + 2)

2(γn − p+ 2)(νn + 1)
. (10)

For i = 1, . . . , n, let Bi = DnΛi and define

f̂var(x) =
1

n

n∑
i=1

tγn−p+2(x;µi, Bi). (11)

As n→∞, we have Dn → 1/2. Analogous steps to the ones used in the proof of Theorem 4

can be used to imply that f̂var(x)→ f0(x) in Pf0-probability. Also, as n→∞, k
(p−1)/2
n Rn =

O(1) using Stirling’s approximation. We now provide an upper bound on the pseudo-
posterior variance of f(x) which shows convergence of the pseudo-posterior variance to 0.

Theorem 5 Let Hn be the bandwidth matrix defined in (9). Let Rn, Dn be as in (10) and
f̂var be as in (11). Under Assumptions 1-3 with x, kn, and ν0 as in Theorem 4, we have

ṽar{f(x)} ≤ RnD
−p/2
n f̂var(x)

|Hn|1/2

{
1

n(α+ 1) + 1
+

1

n

}
. (12)

This implies ṽar{f(x)} → 0 in Pf0-probability as n→∞.

Refer to Sections B and C in the Appendix for proofs of Theorems 4 and 5, respectively.
Pointwise pseudo-posterior consistency follows from Theorems 4 and 5, as shown below.

Theorem 6 Let f0 satisfy Assumptions 1-3 with x, kn and ν0 as in Theorem 4. Fix ε > 0
and define the ε-ball around f0(x) by Uε = {y∗ : |y∗−f0(x)| ≤ ε}. Let p̃r{f(x) ∈ U cε } denote
the probability of the set U cε under the pseudo-posterior distribution of f(x) as induced by
(7). Then p̃r{f(x) ∈ U cε } → 0 in Pf0-probability as n→∞.

Proof Fix ε > 0 and consider the ε-ball Uε = {y∗ : |y∗ − f0(x)| ≤ ε}. Then by Cheby-
chev’s inequality, we have p̃r{f(x) ∈ U cε } ≤ [{f̂n(x) − f0(x)}2 + ṽar{f(x)}]/ε2 −→ 0 in
Pf0-probability as n→∞, using Theorems 4 and 5.

We next focus on the limiting distribution of f(x) for the univariate case. From Section
H of the Appendix, the pseudo-posterior distribution of (ηi, σ

2
i ) for i = 1, . . . , n is given by

NIG(µi, νn, γn/2, γnδ
2
i /2), where µi, νn, γn are as before and

γnδ
2
i = γ0δ

2
0 +

∑
j∈Ni

(Xj − X̄i)
2 +

knν0

νn
(X̄i − µ0)2.

We establish in Theorem 7 that the limiting distribution of f(x) is a Gaussian distribution
with appropriate centering and scaling. This allows interpretation of 100(1− β)% pseudo-
credible intervals as 100(1− β)% frequentist confidence intervals on average for large n.
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Theorem 7 Fix x ∈ [0, 1]. Suppose f0 satisfies Assumptions 1-3 and also satisfies |f (4)
0 (x)| ≤

C0 for all x ∈ [0, 1] for some finite C0 > 0. Let kn satisfy kn = o(n2/7) such that
n−2/9kn → ∞, hn be as in (9) satisfying hn → 0, and α = αn → ∞, as n → ∞. For
t ∈ R, define

Gn(t) = p̃r

[
(nhn)1/2

{
f(x)−

(
f0(x) +

h2
nf

(2)
0 (x)

2

)}
≤ t

]
.

Then, we have

lim
n→∞

EPf0{Gn(t)} = Φ

(
t ; 0,

f0(x)

2π1/2

)
,

where Φ(t ; 0, σ2) denotes the cumulative distribution function of the N(0, σ2) density.

For a proof of Theorem 7, we refer the reader to Section D of the Appendix.

3.2 Pseudo-Posterior Distribution of Weights

We investigate the rationale behind the pseudo-posterior update (6) of the weight π, which
has a symmetric prior distribution π ∼ Dirichlet(α, . . . , α) as motivated in Section 1. As
discussed in Section 1, the conditional update for the weights π in a finite Bayesian mixture
model with m components given the cluster allocation indices {c1, . . . , cn} is obtained by
Dirichlet(α + n1, . . . , α + nm), where α is the prior concentration parameter and nh =∑n

i=1 I(ci = h) is the number of data points allocated to the hth cluster. This is not true in
our case as the kn-nearest neighborhoods have considerable overlap between them. Instead,
we consider the number of effective member data points in each of these neighborhoods.

Define the kn-nearest neighborhood of Xi to be the set Si = {Xj : d(Xi, Xj) ≤
d(Xi, Xi[kn])} where Xi[kn] is the kn-th nearest neighbor of Xi in the data X (n), follow-
ing the notation in Section 2.1. We assume d(·, ·) is the Euclidean metric from here on, and
let Ri = d(Xi, Xi[kn]) = ||Xi − Xi[kn]||2 denote the distance of Xi from its kn-th nearest

neighbor in X (n).
Let Ni denote the number of effective members in Si as defined in Section 2.1. Then,

we can express Ni as

Ni = 1 +
∑
j 6=i

I

Xj ∈ Si ,
⋂

u/∈{i,j}

{Xj /∈ Su}

 , (13)

where I(A) is the indicator function of the set A. Under X1, . . . , Xn
iid∼ f0, we have

EPf0 (N1) = 1 + (n− 1)Pf0

[
X2 ∈ S1 ,

n⋂
u=3

{X2 /∈ Su}

]
, (14)

by symmetry. Furthermore, Ni are identically distributed for i = 1, . . . , n. We now state a
result which provides a motivation for our choice of the pseudo-posterior update of π. For
two sequences of real numbers (an) and (bn), we write an ∼ bn if |an/bn| → c0 as n → ∞
for some constant c0 > 0.

10
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Theorem 8 Suppose X1, . . . , Xn
iid∼ f0 with f0 satisfying Assumptions 1-3. Furthermore,

suppose that kn ∼ ni0−ε for some ε ∈ (0, i0), where i0 is as defined in Theorem 4. Then,

lim
n→∞

nPf0

[
X2 ∈ S1,

n⋂
u=3

{X2 /∈ Su}

]
= 0. (15)

Proof of Theorem 8 is in Section E of the Appendix. The above theorem suggests we
asymptotically have only one effective member per neighborhood Si, namely the point Xi

that itself generated this neighborhood. This result motivates our choice of the pseudo-
posterior update of the weight vector π. We illustrate uncertainty quantification of the
proposed method in finite samples in Section 4.4 with this choice of pseudo-posterior update
of the weight vector π.

4. Simulation Experiments

4.1 Preliminaries

In this section, we compare the performance of the proposed density estimator with several
other standard density estimators through several numerical experiments. We evaluate
estimation performance based on the expected L1 distance (Devroye and Gyorfi, 1985). For
the pair (f0, f̂), where f0 is the true data generating density and f̂ is an estimator, the
expected L1 distance is defined as L1(f0, f̂) = EPf0{

∫
|f0(x) − f̂(x)| dx}. We compute an

estimate L̂1(f0, f̂) of L1(f0, f̂) in two steps. First, we sample n training points X1, . . . , Xn ∼
f0 and obtain f̂ based on this sample, and then further sample nt independent test points
Xn+1, . . . , Xn+nt ∼ f0 and compute

L̂ =
1

nt

nt∑
i=1

∣∣∣∣∣ f̂(Xn+i)

f0(Xn+i)
− 1

∣∣∣∣∣ .
In the second step, to approximate the expectation with respect to Pf0 , the first step is

repeated R times. Letting L̂r denote the estimate for the rth replicate, we compute the
final estimate as L̂1(f0, f̂) = (1/R)

∑R
r=1 L̂r. Then, it follows that L̂1(f0, f̂)→ L1(f0, f̂) as

nt, R −→∞, by the law of large numbers. In our experiments, we set nt = 500 and R = 20.
We let 0p and 1p denote the vector with all entries equal to 0 and the vector with all entries
equal to 1 in Rp, respectively, for p ≥ 1.

All simulations were carried out using the R programming language (R Core Team,
2018). For Dirichlet process mixture models, we collect 2, 000 Markov chain Monte Carlo
(MCMC) samples after discarding a burn-in of 3, 000 samples using the dirichletprocess

package (J. Ross and Markwick, 2019). The default implementation of the Dirichlet process
mixture model in p dimensions in the dirichletprocess package uses multivariate Gaus-
sian kernels and has the base measure as NIWp(0p, p, p, Ip) with the Dirichlet concentration
parameter having the Gamma(2, 4) prior (West, 1992). For the nearest neighbor-Dirichlet
mixture, 1, 000 Monte Carlo samples are taken. For the kernel density estimator, we select
the bandwidth by the default plug-in method hpi for univariate cases and Hpi for mul-
tivariate cases (Sheather and Jones, 1991; Wand and Jones, 1994) using the package ks

(Duong, 2020). We additionally consider the k-nearest neighbor estimator studied in Mack
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and Rosenblatt (1979), setting the number of neighbors k = n1/2, and the variational Bayes
(VB) approximation to Dirichlet process mixture models (Blei and Jordan, 2006). We also
compare with the optional Polya tree (OPT) (Wong and Ma, 2010) using the package PTT.
For univariate cases, we consider the recursive predictive density estimator (RD) from Hahn
et al. (2018), Polya tree mixtures (PTM) using the package DPpackage (Jara et al., 2011),
and the sample smoothing kernel density estimator (A-KDE) using the package quantreg.
Lastly, we also compare with the local likelihood density estimator (LLDE) using the pack-
age locfit for both univariate and multivariate cases. Dirichlet process mixture model
hyperparameter values are kept the same in both the MCMC and variational Bayes im-
plementations, with the number of components of the variational family set to 10 for all
cases. We denote the nearest neighbor-Dirichlet mixture, Dirichlet process mixture (DPM)
implemented with MCMC, kernel density estimator, variational Bayes approximation to
the DPM, and k-nearest neighbor density estimator by NN-DM, DP-MC, KDE, DP-VB,
and KNN, respectively, in tables and figures.

4.2 Univariate Cases

We set n = 200, 500 with kn = bn1/3c + 1. We consider 10 choices of f0 from the R

package benchden (Mildenberger and Weinert, 2012); the specific choices are Cauchy (CA),
claw (CW), double exponential (DE), Gaussian (GS), inverse exponential (IE), lognormal
(LN), logistic (LO), skewed bimodal (SB), symmetric Pareto (SP), and sawtooth (ST) with
default choices of the corresponding parameters. The prior hyperparameter choices for
the proposed method are µ0 = 0, ν0 = 0.001, γ0 = 1; δ2

0 is chosen via the cross-validation
method of Section 2.3. Detailed numerical results are deferred to Table 5 in the Appendix.
Instead, in Figure 1, we provide a visual summary of the performance of each method under
consideration by forming a box plot of the estimated L1 errors of the methods across all
the data generating densities. Methods with lower median as indicated by the solid line of
the box plot, and smaller overall spread are preferable as they provide higher accuracy and
also maintain such accuracy across a collection of true density cases. Results of KNN are
omitted in Figure 1 due to much higher values compared to other methods. For the KDE
and RD estimator, the plot and the table exclude the results for the heavy-tailed densities
CA, IE, and SP due to very high L1 errors.

Overall, a major advantage of the proposed method is its versatility among the consid-
ered methods. The Bayesian nonparametric methods DP-MC, DP-VB, PTM, OPT, and
RD are often close to NN-DM in terms of their performance when the true densities are
smooth and do not display locally spiky behavior. However, the NN-DM performs better
than other methods in densities where such local behavior is present and performs very close
to the best estimator for either the smooth heavy-tailed or thin-tailed densities. The KDE
and RD perform well when data are generated from a smooth underlying density. However,
there are some cases where the error for KDE and RD is very high. For instance, when
n = 500 and f0 is the standard Cauchy (CA) density, the estimated L1 error for the KDE
is 38501.85 and the algorithm for the RD estimate did not converge. Both the KDE and
RD also perform poorly in very spiky multi-modal densities such as the ST. Compared to
the LLDE and the A-KDE, the NN-DM displays similar performance in heavy-tailed and
smooth densities when n = 200, with the NN-DM performing better for the spiky densities.
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Figure 1: Box plots of L̂1(f0, f̂) for the 10 different choices of the true density f0 and
different estimators f̂ for univariate data. The box plots for KDE and RD exclude
the heavy-tailed cases CA, IE, and SP.

However, when n = 500, the NN-DM shows significant improvements over the LLDE and
the A-KDE for spiky densities such as the CW and the ST.

In Figure 2, we show the performance of the NN-DM estimator f̂n (with hyperparameters
chosen as described earlier) relative to the posterior mean under a DP-MC with default or
hand-tuned hyperparameters, when 500 data points are generated from the sawtooth (ST)
density. The Dirichlet process mixture with default hyperparameters is unable to detect the
multiple spikes, merging adjacent modes to form larger clusters, perhaps due to inadequate
mixing of the Markov chain Monte Carlo sampler or to the Gaussian kernels used in the
mixture. As a result, we had to hand-tune the hyperparameters for the Dirichlet process
mixture to obtain comparable performance with the NN-DM (without hand-tuning). We
obtained the best results when changing the hyperparameters of the base measure of the DP-
MC to NIG(0, 0.01, 1, 1) while keeping the prior on α the same as before. This illustrates
the deficiency of the DP-MC in estimating densities with spiky local behavior unless we
hand-tune the hyperparameters, which requires knowledge of the true density. We also
compare the performance of the two methods with a smoother test density in Figure 3,
where the data are generated from a skewed bimodal (SB) distribution. Both the estimates
are comparable, but the nearest neighbor-Dirichlet mixture provides better uncertainty
quantification. Similar results are obtained for n = 1000, and hence are omitted.

4.3 Multivariate Cases

For the multivariate cases, we consider n = 200 and 1000. The number of neighbors is set
to k = 10 and the dimension p is chosen from {2, 3, 4, 6}. Recall the definition of φp(x;µ,Σ)
from Section 2.2 and let Φ(x) be the cumulative distribution function of the standard Gaus-
sian density. Let S0 = ρ1p1

T
p + (1− ρ) Ip with ρ = 0.8. Let x = (x1, . . . , xp)

T. We consider
the following cases.
(1) Mixture of Gaussians (MG): f0(x) = 0.4φp(x;m1, S0) + 0.6φp(x;m2, S0), where m1 =
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Figure 2: Plot comparing density estimates for the NN-DM and DP-MC for n = 500 sam-
ples generated from the sawtooth (ST) density. Shaded regions correspond to
95% (pseudo) posterior credible intervals. The true density is displayed using
dotted lines. The top panel shows the performance of DP-MC with default hy-
perparameters on the left and with hand-tuned hyperparameters on the right.
The bottom panel shows the performance of the NN-DM.
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Figure 3: Similar to Figure 2, with data of sample size n = 500 generated from the skewed
bimodal (SB) density. Left panel shows the DP-MC fit and the right panel shows
the NN-DM fit.

−2× 1p,m2 = 2× 1p.
(2) Skew normal (SN): f0(x) = 2φp(x;m0, S0)Φ{sT0W−1(x −m0)} (Azzalini, 2005), where
W is the diagonal matrix with diagonal entries W 2

ii = S0, ii for i = 1, . . . , p. We choose
m0 = 0p and the skewness parameter vector s0 = 0.5× 1p.
(3) Multivariate t-distribution (T): f0(x) = td0(x;m∗, S0) is the density of the p-dimensional
multivariate Student’s t-distribution. We set d0 = 10 and m∗ = 1p.
(4) Mixture of multivariate skew t-distributions (MST): f0(x) = 0.25 td0(x;m1, S0, s0) +
0.75 td0(x;m2, S0, s0). Here, td(· ;µ, S, s) is the skew t-density (Azzalini, 2005) with param-
eters d, µ, S, s, with d0, s0 defined as before and m1,m2 the same as in the first case.
(5) Multivariate Cauchy (MVC): f0(x) ∝ {1 + (x− µ∗)TS−1

0 (x− µ∗)} where µ∗ = 0p.
(6) Multivariate Gamma (MVG): f0(x) ∝ cΦ(F1(x1), . . . , Fp(xp) | S0)

∏p
j=1 fj(xj ; γj1, γj2)

where fj and Fj denote the density and distribution function of the univariate gamma dis-
tribution with shape parameter γj1 and rate parameter γj2, respectively, for j = 1, . . . , p
and cΦ(· | Γ) is as described in Song (2000). This is a Gaussian copula based construction
of the multivariate gamma distribution. We set γj1 = γj2 = 1 for j = 1, . . . , p.

The hyperparameters for the nearest neighbor-Dirichlet mixture are chosen as µ0 =
0p, ν0 = 0.001, γ0 = p, and Ψ0 = {(γ0 − p+ 1)δ2

0}Ip = δ2
0 Ip, where the optimal δ2

0 is chosen
via cross-validation as described in Section 2.3. Default hyperparameters as described in
Section 4.1 are chosen for the MCMC and VB implementations of the DPM.

Similar to the univariate case, we defer the numerical results to Table 6 in the Appendix
and in Figure 4 display a visual summary consisting of box plot of estimated L1 errors over
the densities considered. The proposed method is very robust against a wide selection of
true distributions, with its L1 error scaling nicely with the dimension. The KDE shows
a noticeably sharp decline in performance - when the dimension is changed from 2 to 6,
the average increase in L1 error is by factors of about 5 and 7 for sample sizes 200 and
1000, respectively. This is possibly due to lack of adaptive density estimation in higher
dimensions using a single bandwidth matrix, since data in Rp become increasingly sparse
with increasing p. As in the univariate case, we had to exclude the MVC density for the
KDE due to the algorithm not converging. The performances of NN-DM, DP-MC, and
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Figure 4: Box plots of L̂1(f0, f̂) for the 6 different choices of the true density f0 and different
estimators f̂ for multivariate data. The box plots for KDE and LLDE exclude
the MVC density. The box plots for p = 6 exclude results from OPT.
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DP-VB are quite competitive across densities, with NN-DM faring better than the DP-VB
when estimating densities such as the MVC and the MVG. Furthermore, the NN-DM is hit
the least significantly by the curse of dimensionality out of the three. This is particularly
prominent for the DP-MC when the true density is either MG or MST with n = 200 and
p = 6, and for the DP-VB when the true density is MVC. It is also important to keep
in mind that the NN-DM provides similar results compared to the DP-MC while being
at least an order of magnitude faster, as illustrated in Section 4.6. The performance of
the OPT is hit quite significantly as the number of dimensions increases, along with the
algorithm not converging for p = 6. The LLDE provides competitive results with the NN-
DM in lower dimensions. However, in higher dimensions, the LLDE often does not converge,
indicating lack of stability of the algorithm. We reported the average of the replicates for
which the algorithm did converge. The results suggest that the performance of the LLDE is
also affected quite drastically with increasing dimensions. When compared across all data
generating cases considering the variation in densities, dimensions and sample sizes, the
proposed method is seen to be more versatile than its competitors.

4.4 Accuracy of Uncertainty Quantification

In this section, we assess frequentist coverage of 95% pseudo-posterior credible intervals
for the NN-DM and compare with coverage based on the 95% posterior credible intervals
obtained from DP-MC and DP-VB. Ghosal and van der Vaart (2017) recommend investi-
gating the frequentist coverage of Bayesian credible intervals. We do not include frequentist
coverage for Polya tree mixtures (PTMs) and the optional Polya tree (OPT) due to the
lack of available code. We consider the cases p ∈ {1, 2} in our experiments with sample size
n = 500. For each choice of density f0, we fix nt = 200 test points Xt = {Xt1, . . . , Xtnt}
generated from the density f0. With these fixed test points, we generate n = 500 data points
in our sample for Rcov = 200 times and check the coverage of posterior/pseudo-posterior
credible intervals obtained from the three methods. We implement the DP-MC with base
measure NIWp(0p, 0.01, p, Ip) and a Gamma(2, 4) prior on the concentration parameter as
in West (1992). These choices of hyperparameters were seen to give better frequentist cov-
erage results than using the default values used in Sections 4.2 and 4.3. Same choices of
hyperparameters are maintained for DP-VB. For the NN-DM, we take k = 8 in the uni-
variate case and k = 5 in the bivariate case, α = 0.001, and other hyperparameters chosen
as before. We report the average coverage probability and average length of the (pseudo)
credible intervals across all the points in the test data Xt in Tables 1 and 2 for the univariate
and bivariate cases, respectively.

For univariate densities, both the DP-MC and DP-VB display severe under-coverage. In
most of the cases, the DP-VB and NN-DM have similar width of (pseudo) credible intervals
but the DP-VB displays dramatically lower coverage than the NN-DM. The under-coverage
displayed by the DP-MC may be due to MCMC mixing issues. The NN-DM shows near
nominal coverage in the smooth Gaussian (GS) and lognormal (LN) densities, while also
attaining near nominal coverage in the skewed bimodal (SB), claw (CW), and sawtooth (ST)
densities which are multi-modal. The shortcomings of DP-MC and DP-VB are especially
noticeable when dealing with spiky densities such as the claw or sawtooth. For bivariate
cases considered in Table 2 we see a similar trend; the NN-DM method provides uniformly
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Method CA CW DE GS IE

NN-DM 0.75 (0.05) 0.89 (0.21) 0.75 (0.06) 0.92 (0.08) 0.81 (0.11)
DP-MC 0.48 (0.02) 0.06 (0.01) 0.35 (0.02) 0.37 (0.01) 0.39 (0.04)
DP-VB 0.33 (0.05) 0.18 (0.07) 0.28 (0.07) 0.79 (0.05) 0.14 (0.04)

Method LN LO SB SP ST

NN-DM 0.92 (0.17) 0.81 (0.03) 0.88 (0.10) 0.72 (0.01) 0.91 (0.05)
DP-MC 0.31 (0.05) 0.55 (0.03) 0.46 (0.03) 0.46 (0.01) 0.64 (0.03)
DP-VB 0.19 (0.15) 0.10 (0.03) 0.40 (0.10) 0.20 (0.01) 0.07 (0.01)

Table 1: Comparison of the frequentist coverage of 95% (pseudo) posterior credible intervals
of the nearest neighbor-Dirichlet mixture and the MCMC and variational imple-
mentations of the Dirichlet process mixture for univariate data. Average length
of the intervals are also provided for each case within parentheses. Number of
replications and sample size are Rcov = 200 and ncov = 500, respectively.

Method MG MST MVC MVG SN T

NN-DM 0.92 (0.04) 0.88 (0.03) 0.69 (0.03) 0.80 (0.31) 0.92 (0.06) 0.88 (0.03)
DP-MC 0.53 (0.01) 0.56 (0.01) 0.47 (0.01) 0.41 (0.16) 0.39 (0.02) 0.55 (0.01)
DP-VB 0.56 (0.03) 0.58 (0.03) 0.18 (0.02) 0.55 (0.26) 0.49 (0.05) 0.57 (0.02)

Table 2: Comparison of the frequentist coverage of 95% (pseudo) posterior credible intervals
of the nearest neighbor-Dirichlet mixture and the MCMC and variational imple-
mentations of the Dirichlet process mixture for bivariate data. Average length
of the intervals are also provided for each case within parentheses. Number of
replications and sample size are Rcov = 200 and ncov = 500, respectively.

better uncertainty quantification across all the densities considered. It is clear that in terms
of frequentist uncertainty quantification, the NN-DM displays vastly superior coverage to
the DP-MC and the DP-VB without inflating the interval width.

4.5 Comparison for High Dimensional Data

In addition to the above experiments, we performed a simulation experiment for high-
dimensional data. Specifically, we set n = 1000, p = 50, and consider the same set of true
densities in Section 4.3. We compared results from the proposed NN-DM method and the
DP-VB. Due to severe computational time, we did not consider the DP-MC in this scenario.
We also tried optional Polya trees (Wong and Ma, 2010) using the PTT package; however,
the current implementation of the method breaks down in this high-dimensional setup.
Due to numerical instability in estimating the L1 error in higher dimensions, we evaluate
the methods in terms of their out-of-sample log-likelihood (OOSLL) instead (Gneiting and
Raftery, 2007), on a test set of 500 data points. We report the average OOSLL over 30
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Method MG SN T MST MVC MVG

NN-DM −1.75 −1.74 −1.84 −1.84 −1.31 −1.36
DP-VB −1.75 −1.74 −1.86 −1.84 −1.34 −1.36

Table 3: Out-of-sample log-likelihood (×104) of NN-DM and DP-VB on a test set of 500
points for 6 different multivariate densities considered in Section 4.3, for n = 1000
and p = 50. Greater out-of-sample log-likelihood is better.

replications in Table 3. The results indicate that both methods perform very similarly in
terms of out-of-sample fit to the data, with the NN-DM outperforming the DP-VB when
the true density is MVC. We also observed that for this experiment, the NN-DM methods
with default choice of hyperparameters and with cross-validated choice of Ψ0 have almost
identical performance. For the NN-DM, we set k = 12 after carrying out a sensitivity
analysis on k by considering k = 5, 7, 10, 15, and 20. The best results for the NN-DM
were obtained for k ∈ {7, 10, 12} with negligible difference in out-of-sample log-likelihoods
between these three choices, with k = 12 performing the best.

4.6 Runtime Comparison

With n data points in p dimensions, the initial nearest neighbor allocation into n neighbor-
hoods can be carried out in O(n log n) steps (Vaidya, 1986; Ma and Li, 2019). Once the
neighborhoods are determined with kn points in each neighborhood, obtaining the neigh-
borhood specific empirical means and covariance matrices has O(nknp+nknp

2) = O(nknp
2)

complexity. Obtaining the pseudo-posterior mean (8) then requires inversion of n such p×p
matrices to evaluate the multivariate t-density, with a runtime of O(np3). Therefore, the
total runtime to obtain the pseudo-posterior mean is of the order O(nknp

2 + np3). When
we are interested in uncertainty quantification, we require Monte Carlo samples of the NN-
DM, which are independently drawn from its pseudo-posterior. This involves sampling the
Dirichlet weights, the neighborhood specific unknown mean and covariance matrix param-
eters of the Gaussian kernel, and evaluating a Gaussian density for each neighborhood,
as outlined in Algorithm 1. To obtain M Monte Carlo samples, the combined complex-
ity of this step is thus O(Mn + Mnp3) = O(Mnp3). Overall the runtime complexity to
obtain NN-DM samples is therefore O(Mnp3 + nknp

2 + np3). For high dimensional sce-
narios, this runtime can be greatly improved by using a low rank matrix factorization of
both the neighborhood specific empirical covariance matrices and the sampled covariance
matrix parameters to make matrix inversion more efficient (Golub and van Loan, 1996).
We now provide a detailed simulation study of runtimes of the proposed method, with all
the simulations carried out on an M1 MacBook Pro with 16 GB of RAM.

We first focus on some runtime experiments comparing NN-DM and DP-MC. In our
experiments, we focus on p = 1 and p = 4. The runtime for NN-DM consists of the time to
estimate δ2

0 by cross-validation as in Section 2.3 and then drawing samples from its pseudo-
posterior. For both dimensions, the sample size is varied from n = 200 to n = 1500 in
increments of 100. Data are generated from the standard Gaussian density (GS) for p = 1
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and from a mixture of skew t-distributions with the parameters as described for the case
MST in Section 4.3 for p = 4. For p = 1, we evaluate the two methods at 500 test points,
while for p = 4 we evaluate the methods at 200 test points. The hyperparameters are kept
the same as in Sections 4.2 and 4.3. We took 1000 Monte Carlo samples for the NN-DM and
2500 MCMC samples for the DP-MC with a burn-in of 1500 samples. We provide a figure
summarising the results in Figure 5. In the top panel of Figure 5, we plot the average of
the logarithm (base 10) of the run times of each approach for 10 independent replications.
Corresponding L1 errors of the two methods is included in the bottom panel of Figure 5.

In Figure 5, the NN-DM is at least an order of magnitude faster than DP-MC. The time
saved becomes more pronounced in the multivariate case, where for sample size 1500 the
NN-DM is ∼ 50 times faster. The gain in computing time does not come at the cost of ac-
curacy as can be seen from the right panel; the proposed method maintains the same order
of L1 error as the DP-MC in the univariate case and often outperforms the DP-MC in the
multivariate case. We did not implement the Monte Carlo sampler for the proposed algo-
rithm in parallel, but such a modification would substantially improve runtime. Bypassing
cross-validation and choosing default hyperparameters instead as outlined in Section 2.3,
NN-DM took 3.3 seconds and 16.4 seconds when p = 1 and p = 4, respectively, with sample
size n = 1500. In the same scenario, DP-MC took 99.4 seconds and 1618.1 seconds for p = 1
and p = 4, respectively. Thus the NN-DM with default hyperparameters is about 30 times
faster when p = 1 and almost 100 times faster when p = 4.

We also compare the runtime of the proposed method with three recent implementations
of the DPM, namely the packages bnpy (Hughes and Sudderth, 2014), DPMMSubClusters
(Dinari et al., 2019), and vdpgm (Kurihara et al., 2006) available for download at https://
kenichikurihara.com/variational-dirichlet-process-gaussian-mixture-model/.
These three packages implement variational approximations of the DPM posterior with dif-
ferent modifications. We also include the DP-MC and OPT for comparison. All the runtime
results are comparable only up to machine and coding language differences. Amongst the
competitor package implementations, the NNDM and dirichletprocess packages are the
only ones providing (pseudo) posterior samples of the density estimate at a test point. We
consider the average runtime of R = 10 replicates to fit a training data set of iid N(0, 1)
entries with n = 1500 and p = 4. For the NN-DM, DP-MC, and OPT, we consider 1000
(pseudo) posterior samples. Table 4 provides the runtimes for the different packages consid-
ered. Overall, the fastest implementation is observed for the PTT package. The next fastest
implementations are the NNDM without cross-validation (CV), DPMMSubClusters, and bnpy.
The runtime for NNDM with CV closely follows the previous implementations, with both
NNDM with and without CV providing (pseudo) posterior samples. The major improvement
in runtime for NN-DM is mainly due to the fact that neighborhood allocations are fixed
here which is not the case for DP-MC.

4.7 Sensitivity to the Choice of k

In this subsection, we investigate the role of kn = k in finite samples for the proposed
method. We consider n = 200 samples from the SP density in the univariate case and the
MG density in the bivariate case. In each case, we fix a test set of nt = 500 points, and
evaluate the out-of-sample log-likelihood (OOSLL) of the test points for 20 different integer
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Figure 5: Runtime comparison of DP-MC and NN-DM in univariate case and for 4-
dimensional data. Top panel shows runtimes in log10 scale whereas bottom panel
shows corresponding L1 error. Sample size n is varied from 200 to 1500 in incre-
ments of 100.

Package (Language) Average Runtime (s) Provides Samples?

bnpy (Python) 5.79 No

DPMMSubClusters (Julia) 4.33 No

vdpgm (MATLAB) 58.38 No

NNDM (RCpp and R, with CV) 18.96 Yes

NNDM (Rcpp and R, without CV) 3.52 Yes

dirichletprocess (R) 1068.48 Yes

PTT (Rcpp and R) 0.59 No

Table 4: Table comparing the average runtimes of different packages for n = 1500, p = 4.
NN-DM runtimes are provided both with and without cross-validation (CV), using
the package NNDM developed by the authors.

values of k ranging from 2 to 50. Finally, we report results averaged from 10 independent
replicates of this setup. We note that for each considered value of k, the parameter δ2

0 was
estimated using leave-one-out cross-validation. Figure 6 shows how the OOSLL averaged
over replicates changes as a function of k for each density considered. The original OOSLL
values of the test data points were scaled by the number of test points nt = 500 for better
representability.
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Figure 6: Average out-of-sample log-likelihood of 500 test points for the NN-DM as a func-
tion of k for one-dimensional and two-dimensional data. Number of samples and
number of replications are n = 200 and R = 10, respectively.

For the univariate SP density, the optimal value of k which maximizes the average
OOSLL is k̂ = 9. This is close to the choice of k = 6 as taken in Section 4.2. For the
bivariate MG density, we observe that the choice of k maximizing the OOSLL is k̂ = 12,
which is also close to the choice of k = 10 as taken in Section 4.3. For both the univariate
and the bivariate case, the out-of-sample log-likelihood of the test set shows little variation
with changing k. This indicates that the estimates obtained from the proposed method are
quite robust to the particular choice of k.

5. Application

We apply the proposed density estimator to binary classification. Consider data D =
{(Xi, Yi) : i = 1, . . . , n}, where Xi ∈ Rp are p-dimensional feature vectors and Yi ∈ {0, 1}
are binary class labels. To predict the probability that y0 = 1 for a test point x0, we use
Bayes rule:

pr(y0 = 1 | x0) =
f̃1(x0) pr(y0 = 1)

f̃0(x0) pr(y0 = 0) + f̃1(x0) pr(y0 = 1)
, (16)

where f̃j(x0) is the feature density at x0 in class j and pr(y0 = j) is the marginal probability
of class j, for j = 0, 1. Based on nt test data, we let p̂r(y0 = 1) = (1/nt)

∑nt
i=1 Yi, with

p̂r(y0 = 0) = 1 − p̂r(y0 = 1). We use either the NN-DM pseudo-posterior mean f̂n(·),
the DP-MC posterior mean f̂DP(·), or the DP-VB posterior mean f̂VB(·) for estimating the
within class densities, and compare their classification performances in terms of sensitivity,
specificity, and probabilistic calibration. We omit the KDE as to the best of our knowledge,
no routine R implementation is available for data having more than 6 dimensions.

The high time resolution universe survey data (Keith et al., 2010) contain information on
sampled pulsar stars. Pulsar stars are a type of neutron stars and their radio emissions are
detectable from the Earth. These stars have gained considerable interest from the scientific
community due to their several applications (Lorimer and Kramer, 2012). The data are
publicly available from the University of California at Irvine machine learning repository.
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Figure 7: Sensitivity and specificity of the NN-DM, DP-MC, and DP-VB for the high time
resolution universe survey data.

Stars are classified into pulsar and non-pulsar groups according to 8 attributes (Lyon, 2016).
There are a total of 17898 instances of stars, among which 1639 are classified as pulsar stars.

We create a test data set of 200 stars, among which 23 are pulsar stars. The training
size is then varied from 300 to 1800 in increments of 300, each time adding 300 training
points by randomly sampling from the entire data leaving out the initial test set. In Figure
7, we plot the sensitivity and specificity of the three methods in consideration. All the
methods exhibit similar sensitivity across various training sizes; the DP-MC has marginally
better specificity for training sizes 1200 and 1500, while the NN-DM has better specificity
for training sizes 300 and 600. Both the NN-DM and the DP-MC exhibit higher specificity
and sensitivity than the DP-VB across all training sample sizes considered.

We also compare the methods using the Brier score, a proper scoring rule (Gneiting
and Raftery, 2007) for probabilistic classification. Suppose for nt test points and the ith
Monte Carlo sample, pi denotes the sampled nt×1 probability vector for a generic method.
We compute the normalized Brier score for the ith sample as (1/nt) ||pi − Yt||22, where Yt
is the vector of class labels in the test set. Then with T samples of pi, i = 1, . . . , T , we
compute the mean Brier score for the three methods considered. The mean Brier score for
each training size is shown in the right panel of Figure 8, which naturally shows a declining
trend with increasing training size. There is little to choose between the three classifiers in
terms of mean Brier score; the proposed method fairs equally well in terms of calibration of
estimated test set probabilities with the MCMC implementation of the Dirichlet process.
In the left panel of Figure 8, the receiver operating characteristic curve of the methods is
shown for 1800 training samples. The area under the curve (AUC) for the NN-DM, the
DP-MC and the DP-VB are 0.96, 0.95 and 0.96, respectively. For 1800 training samples,
the computation time for the proposed method is about 13 minutes while for the DP-MC
it is approximately 5 hours.

Hence, the proposed method is much faster, even without exploiting parallel compu-
tation. We also fitted the proposed method using the training set of all 17698 points;
DP-MC was too slow in this case. The sensitivity and specificity of the proposed method
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Figure 8: Left plot shows the receiver operating characteristic curve of the NN-DM, DP-
MC, and DP-VB with 1800 training samples. Area under the curve is abbreviated
as AUC. Right plot shows normalized Brier scores for the methods with varying
training sample size.
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Figure 9: Left and right plots show the out-of-sample log-likelihoods of NN-DM, DP-MC,
and DP-VB for the two different star types.

increased to 0.99 and 0.91, respectively. We additionally evaluated the methods in terms of
the out-of-sample log-likelihood. The results are displayed in Figure 9. While the methods
perform comparably in terms of their classification performance, NN-DM achieves a better
fit overall, especially for the significantly less prevalent pulsar star type.

6. Discussion

The proposed nearest neighbor-Dirichlet mixture provides a useful alternative to Bayesian
density estimation based on Dirichlet mixtures with much faster computational speed and
stability in avoiding MCMC. MCMC can have very poor performance in mixture models
and other multimodal cases, due to difficulty in mixing, and hence can lead to posterior
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inferences that are unreliable. There is a recent literature attempting to scale up MCMC-
based analyses in model-based clustering contexts including for Dirichlet process mixtures;
refer, for example to Song et al. (2020) and Ni et al. (2020). However, these approaches are
complex to implement and are primarily focused on the problem of clustering, while we are
instead focused on flexible modeling of unknown densities.

The main conceptual disadvantage of the proposed approach is the lack of a coherent
Bayesian posterior updating rule. However, we have shown that nonetheless the resulting
pseudo-posterior can have appealing behavior in terms of frequentist asymptotic properties,
finite sample performance, and accuracy in uncertainty quantification. In addition, it is
important to keep in mind that Bayesian kernel mixtures have key disadvantages that are
difficult to remove within a fully coherent Bayesian modeling framework. These include a
strong sensitivity to the choice of kernel and prior on the weights on these kernels; refer,
for example to Miller and Dunson (2019).

There are several important next steps. The first is to develop fast and robust algorithms
for using the nearest neighbor-Dirichlet mixture not just for density estimation but also as a
component of more complex hierarchical models. For example, one may want to model the
residual density in regression nonparametrically or treat a random effects distribution as
unknown. In such settings, one can potentially update other parameters within a Bayesian
model using Markov chain Monte Carlo, while using algorithms related to those proposed
in this article to update the nonparametric part conditionally on these other parameters.
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Appendix

Appendix A. Prerequisites

We first introduce some notation with accompanying technical details which will be used
hereafter. We denote the Frobenius norm and determinant of A ∈ Rp×p by ||A||F =
{tr(ATA)}1/2 and |A|, respectively. For v ∈ Rp, one has ||vvT||F = ||v||22 where ||a||2 =
(aTa)1/2 is the Euclidean norm of a. For two symmetric matrices A,B ∈ Rp×p, we say that
A ≥ B if A − B is positive semi-definite, that is xT(A − B)x ≥ 0 for all x ∈ Rp, x 6= 0p
where 0p = (0, . . . , 0)T. For a real symmetric matrix A∗, let the eigenvalues of A∗ be
e1(A∗), . . . , ep(A∗), arranged such that e1(A∗) ≥ . . . ≥ ep(A∗). If A ≥ B, then it follows by
the min-max theorem (Teschl, 2009) that for each j = 1, . . . , p, we have ej(A) ≥ ej(B). In
particular, we have |A| ≥ |B| and ||A||F ≥ ||B||F .

Now consider a true data generating density X1, . . . , Xn
iid∼ f0 satisfying Assumptions

1-3 as in Section 3.1. Let X (n) = (X1, . . . , Xn) and suppose f0 induces the measure Pf0 on
the Borel σ-field on Rp, denoted by B(Rp). We form the k-nearest neighborhood of Xi using
the Euclidean norm for i = 1, . . . , n. We also let k depend on n and express this dependence
as kn when required. However, we routinely drop this dependence for notational simplicity.
For Xi, let Qi be its kth nearest neighbor in X (n) (for k = 1, Qi = Xi) and let Ri be the
distance between Xi and Qi, given by Ri = ||Xi −Qi||2. Define the ball

Bi = {y ∈ [0, 1]p : 0 < ||y −Xi||2 < Ri}

and the probability

G(Xi, Ri) =

∫
Bi

f0(u) du

of the ball Bi under Pf0 . Let Y
(i)

1 = Xi and Y
(i)

2 , . . . , Y
(i)
k−1 denote the rest of the interior

points in Bi. Let the mean X̄i and covariance matrix Si of the ith neighborhood be

X̄i =
1

kn


k−1∑
j=1

Y
(i)
j +Qi

 ,

Si =
1

kn


k−1∑
j=1

(Y
(i)
j − X̄i)(Y

(i)
j − X̄i)

T + (Qi − X̄i)(Qi − X̄i)
T

 .

We observe that (Y
(i)

2 , . . . , Y
(i)
k−1, Qi) is identically distributed for i = 1, . . . , n sinceX1, . . . , Xn

are independent and identically distributed. Thus we only consider the case i = 1 from here

on. For sake of brevity, denote Y
(1)
u by Yu for u = 2, . . . , k − 1 and Q1 by Q.

Conditional on X1 = x1 ∈ [0, 1]p and R1 = r1 > 0, following Mack and Rosenblatt
(1979), the conditional joint density of Y2, . . . , Yk−1 and Q is

p(y2, . . . , yk−1, q | x1, r1) =


k−1∏
j=2

f0(yj)

G(x1, r1)
I (yj ∈ B1)

 f0(q)

G′(x1, r1)
I (||q − x1|| = r1) ,

26



Nearest Neighbor Dirichlet Mixtures

where G
′
(x1, r1) = ∂G(x1, r1)/∂r1 and I(A) denotes the indicator function of the event A ∈

B(Rp). Thus conditional on X1 and R1, the random variables Y2, . . . , Yk−1 are independent
and identically distributed, and independent of Q.

Let the function ρ(x1, r1) = rκ11 where κ1 is a non-negative integer. This function can
be identified with φ(·) in equation (11) of Mack and Rosenblatt (1979). In the results that
follow, we will require the expectation of ρ(x1, r1) under Pf0 for different choices of κ1. To
that end, we shall repeatedly make use of the equation (12) from Mack and Rosenblatt
(1979) adapted to our setting:

EPf0{R
κ1
1 | X1 = x1} =

(n− 1)!

(k − 2)!(n− k)!

∫ 1

0

{(
t

Cpf0(x1)

)κ1/p
+ o(tκ1/p)

}
tk−2(1− t)n−kdt. (17)

Finally, we let Ẽ and ṽar denote the expectation and variance, respectively, of the NN-
DM estimator f(x) under the pseudo-posterior density Π̃, described in (7). Conditioning
notation under Π̃ is as usual; for example, the conditional expectation

Ẽ{f(x) | π1, . . . , πn} =

n∑
i=1

πiẼ{φp(x; ηi,Σi)},

where the expectation Ẽ{φp(x; ηi,Σi)} is with respect to the pseudo-posterior density of
(ηi,Σi) as described in Section 2.2.

Appendix B. Proof of Theorem 4

Suppose X1, . . . , Xn are independent and identically distributed random variables generated
from the density f0 supported on [0, 1]p satisfying Assumptions 1-3. For i = 1, . . . , n, recall
the definitions of µi and Λi from (8):

µi =
ν0

νn
µ0 +

k

νn
X̄i, Λi =

νn + 1

νn(γn − p+ 1)
Ψi.

We want to show that f̂n(x) = (1/n)
∑n

i=1 tγn−p+1(x;µi,Λi) → f0(x) in Pf0-probability

as n → ∞ for any x ∈ [0, 1]p, where f̂n(x) is as described in (8). We first prove two
propositions involving successive mean value theorem type approximations to f̂n(x), which
will imply the final result. We now state the two propositions, with accompanying proofs,
before stating the final theorem.

Proposition 9 Fix x ∈ [0, 1]p. Let fA(x) = (1/n)
∑n

i=1 tγn−p+1(x;Xi,Λi). Also, let k =

o(ni1) with i1 = 2/(p2 + p + 2) and ν0 = o(n−1/pk(1/p)+1). Then, we have EPf0 ( |f̂n(x) −
fA(x)| )→ 0 as n→∞.

Proof Since the (Λi)
n
i=1 are identically distributed and (µi)

n
i=1 are identically distributed,

we have EPf0 ( |f̂n(x) − fA(x)| ) ≤ EPf0{ |tγn−p+1(x;µ1,Λ1) − tγn−p+1(x;X1,Λ1)| }. The
multivariate mean value theorem now implies that

EPf0 ( |f̂n(x)−fA(x)| ) ≤ EPf0
{
|Λ1|−1/2 ||∇tγn−p+1(ξ; 0p, Ip)||2 ||Λ−1/2

1 (X1 − µ1)||2
}
, (18)
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where∇tγn−p+1(ξ; 0p, Ip) = [∂tγn−p+1(x; 0p, Ip)/∂x]ξ for some ξ in the convex hull of Λ
−1/2
1 (x−

X1) and Λ
−1/2
1 (x− µ1).

Using standard results and the min-max theorem, we have

||Λ−1/2
1 (X1 − µ1)||2 ≤ ||Λ−1/2

1 ||F ||X1 − µ1||2.

If we let Hn = H = {νn(γn − p + 1)}−1(νn + 1)Ψ0 = h2Ip where h2 = h2
n = {νn(γn − p +

1)}−1{(νn+1)(γ0−p+1)} δ2
0 following the choice of Ψ0 from Section 2.3, then it is clear that

Λ1 ≥ H. Therefore, we have ||Λ−1/2
1 (X1−µ1)||2 ≤ ||H−1/2||F ||X1−µ1||2. Straightforward

calculations show that ||H−1/2 ||F = h−1p1/2 and ||X1 − µ1||2 ≤ R1 + {ν−1
n (1 + ||µ0||2 )ν0}

where R1 = ||X1 − X1[k]||2. Using Theorem 2.4 from Biau and Devroye (2015) for p ≥ 2
and (17) for p = 1, one gets

EPf0 (R2
1) ≤ d2

p

(
k

n

)2/p

, (19)

for an appropriate constant dp > 0. Thus, we have EPf0 (R1) ≤ {EPf0 (R2
1)}1/2 ≤ dp(k/n)1/p

for sufficiently large n. This implies that

E(||X1 − µ1||2) ≤ dp
(
k

n

)1/p

+ o

(
k

n

)1/p

. (20)

We also have |Λ1|−1/2 ≤ |H|−1/2 = h−p. Finally, simple calculations yield that

||∇tγn−p+1(ξ; 0p, Ip)||2 ≤ L1,n,p

where L1,n,p > 0 satisfies L1,n,p → (2π)−p/2e−1/2 as n → ∞. Plugging all these back in
(18), we obtain a finite constant L2,n,p > 0 such that

EPf0 ( |f̂n(x)− fA(x)| ) ≤ L2,n,p(n
−i1k)(p2+p+2)/(2p) + o{(n−i1k)(p2+p+2)/(2p)}, (21)

which goes to 0 as n→∞, completing the proof.

We now provide the second mean value theorem type approximation which approximates
the random bandwidth matrix Λi in fA(x) by H = Hn for each i = 1, . . . , n.

Proposition 10 Fix x ∈ [0, 1]p. Let fK(x) = (1/n)
∑n

i=1 tγn−p+1(x;Xi, H). Also, let
k = o(ni2) with i2 = 4/(p + 2)2 and ν0 = o{n−2/pk(2/p)+1}. Then, we have EPf0 ( |fA(x) −
fK(x)| )→ 0 as n→∞.

Proof Using the identically distributed properties of (Λi)
n
i=1 and (Xi)

n
i=1, we obtain

EPf0 ( |fA(x)− fK(x)| ) ≤ EPf0 ( |tγn−p+1(x;X1,Λ1)− tγn−p+1(x;X1, H)| ). Using the multi-
variate mean value theorem, we obtain that

EPf0 ( |tγn−p+1(x;X1,Λ1)− tγn−p+1(x;X1, H)| ) ≤ EPf0 ( ||M1||F ||Λ1 −H||F ), (22)

where M1 = [∂{tγn−p+1(x;X1,Σ)}/∂Σ]Σ0 for some Σ0, with Σ0 in the convex hull of Λ1

and H. Since Λ1 ≥ H, we immediately have Σ0 ≥ H as well. Using the definitions of Λ1

and H, we have

||Λ1 −H||F ≤
(νn + 1)

νn(γn − p+ 1)


∣∣∣∣∣∣
∣∣∣∣∣∣
∑
j∈N1

(Xj − X̄1)(Xj − X̄1)T

∣∣∣∣∣∣
∣∣∣∣∣∣
F

+
kν0

νn

∣∣∣∣X̄1X̄
T
1

∣∣∣∣
F

 .
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Since ||
∑

j∈N1
(Xj − X̄1)(Xj − X̄1)T||F ≤

∑
j∈N1

||(Xj − X̄1)(Xj − X̄1)T||F =
∑

j∈N1
||Xj −

X̄1||22 ≤
∑

j∈N1
R2

1 = kR2
1, we get for sufficiently large n the following:

EPf0 ( ||Λ1 −H||F ) ≤ EPf0 (R2
1) + o

(
k

n

)2/p

, (23)

≤ d2
p

(
k

n

)2/p

+ o

(
k

n

)2/p

, (24)

using (19) and ν0 = o
{
n−2/pk(2/p)+1

}
. Taking partial derivatives of log{tγn−p+1(x;X1,Σ)}

with respect to Σ evaluated at Σ0 and taking Frobenius norm of both sides, we obtain

||t−1
γn−p+1(x;X1,Σ0)M1||F ≤ h−2(γn + 1)

for sufficiently large n. We now observe that

tγn−p+1(x;X1,Σ0) ≤ cp,γn−p+1|Σ0|−1/2 ≤ cp,γn−p+1|H|−1/2 = h−pcp,γn−p+1,

where cp,β = (πβ)−p/2{Γ(β/2)}−1Γ{(β + p)/2} for p ≥ 1, β > 0. Note that cp,β → (2π)−p/2

as β →∞ for any p ≥ 1. This immediately implies that ||M1||F ≤ h−(p+2)cp,γn−p+1(γn+ 1)
for sufficiently large n. Plugging all these back in equation (22), we obtain for sufficiently
large n, a finite L3,n,p > 0 such that

EPf0 ( |fA(x)− fK(x)| ) ≤ L3,n,p(n
−i2k)(p+2)2/(2p) + o{(n−i2k)(p+2)2/(2p)}, (25)

which goes to 0 as n→∞, proving the proposition.

We now prove Theorem 4.

Proof [Theorem 4] EPf0 ( |f̂n(x)−fK(x)| ) ≤ EPf0 ( |f̂n(x)−fA(x)| )+EPf0 ( |fA(x)−fK(x)| )
by the triangle inequality. Using Propositions 9 and 10, we obtain that EPf0 ( |f̂n(x) −
fK(x)| ) → 0 as n → ∞. From Section F of the Appendix, we obtain fK(x) → f0(x) in
Pf0-probability. This immediately implies that given the conditions on k, ν0, and for any

x ∈ [0, 1]p, we have f̂n(x)→ f0(x) in Pf0-probability.

Appendix C. Proof of Theorem 5

Proof Fix x ∈ [0, 1]p. For i = 1, . . . , n, let zi = φp(x ; ηi,Σi) and suppose z(n) =
(z1, . . . , zn)T. Then, we have f(x) =

∑n
i=1 πizi = z(n)Tπ(n) where π(n) = (π1, . . . , πn)T.

We begin with the identity

ṽar{f(x)} = ṽar[Ẽ{f(x) | z(n)}] + Ẽ[ṽar{f(x) | z(n)}]. (26)
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We start with the first term on the right hand side of (26). Observe that z1, . . . , zn are
independent under Π̃ and Ẽ(πi) = 1/n for i = 1, . . . , n. Thus, we have

ṽar[Ẽ{f(x) | z(n)}] = ṽar

(
1

n

n∑
i=1

zi

)

=
1

n2

n∑
i=1

ṽar(zi)

≤ 1

n2

n∑
i=1

Ẽ(z2
i )

=
1

n2

n∑
i=1

Rn|Bi|−1/2tγn−p+2(x;µi, Bi),

since for i = 1, . . . , n, we have

Ẽ(z2
i ) = Rn|Bi|−1/2tγn−p+2(x;µi, Bi), (27)

where

Rn =
Γ{(γn − p+ 2)/2}
Γ{(γn − p+ 1)/2}

[
νn + 2

4πνn(γn − p+ 2)

]p/2
, Bi = DnΛi,

and Dn = {2(γn−p+2)(νn+1)}−1(γn−p+1)(νn+2). To obtain (27), we integrate over the
pseudo-posterior distribution of (ηi,Σi)

n
i=1, namely NIW(µi, νn, γn,Ψi). For i = 1, . . . , n,

since |Λi| ≥ |Hn|, we have |Bi| ≥ Dp
n|Hn|. Letting f̂var(x) = (1/n)

∑n
i=1 tγn−p+2(x;µi, Bi),

we have

ṽar[Ẽ{f(x) | z(n)}] ≤ RnD
−p/2
n f̂var(x)

n|Hn|1/2
. (28)

We now analyze the second term on the right hand side of (26). Recall that π(n) is
independent of z(n) under Π̃. Let Σπ denote the pseudo-posterior covariance matrix of π(n).
Standard results yield Σπ = Vn{(1−Cn)In+Cn1n1

T
n}, where Vn = (n−1)/[n2{n(α+1)+1}],

and Cn = −1/(n− 1). Then, we have

Ẽ[ṽar{f(x) | z(n)}] = Ẽ[z(n)T Σπ z
(n)]. (29)

Using the expression for Σπ along with (29), we obtain,

Ẽ[ṽar{f(x) | z(n)}] =
1

n(α+ 1) + 1
Ẽ

{
1

n

n∑
i=1

(zi − z̄)2

}
, (30)

where z̄ = (1/n)
∑n

i=1 zi. We now have

Ẽ[ṽar{f(x) | z(n)}] =
1

n{n(α+ 1) + 1}

{
n∑
i=1

Ẽ(z2
i )− nẼ(z̄2)

}

≤ 1

n{n(α+ 1) + 1}

n∑
i=1

Ẽ(z2
i )

=
1

n{n(α+ 1) + 1}

n∑
i=1

Rn|Bi|−1/2tγn−p+2(x;µi, Bi),
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using (27). Using |Bi| ≥ Dp
n|H| for i = 1, . . . , n as before, we have

Ẽ[ṽar{f(x) | z(n)}] ≤ RnD
−p/2
n f̂var(x)

{n(α+ 1) + 1}|Hn|1/2
. (31)

Combining (28) and (31) and putting the results back in (26), we have the desired result.
If we let n→∞, we immediately obtain that ṽar{f(x)} → 0 in Pf0-probability.

Appendix D. Proof of Theorem 7

Proof We have iid data X (n) = (X1, . . . , Xn) such that X1, . . . , Xn
iid∼ f0, with f0 satisfying

Assumptions 1-3 for p = 1. Given the NN-DM estimator f(x) =
∑n

i=1 πiφ(x; ηi, σ
2
i ), we

define the simplified NN-DM density estimator to be

g(x) =
1

n

n∑
i=1

φ(x; ηi, σ
2
i ),

The simplified estimator g(x) can be interpreted as a version of f(x) with the Dirich-
let weights being replaced by their pseudo-posterior mean. That is, g(x) = Ẽ{f(x) |
(η1, σ

2
1), . . . , (ηn, σ

2
n)}. The pseudo-posterior distribution of g(x) is induced through the

pseudo-posterior distributions of {(ηi, σ2
i )}ni=1. The pseudo-posterior mean is of the form

f̂n(x) =
1

n

n∑
i=1

1

λi
tγn

(
x− µi
λi

)
,

where λi = {(νn + 1)/νn}1/2δi. Let hn = (νnγn)−1/2(νn + 1)1/2(γ0δ
2
0)1/2. Then

(nhn)1/2EPf0 |f̂n(x)− fK(x)| → 0, (32)

for kn = o(n2/7) and kn →∞ as n→∞ from Section B of the Appendix, where

fK(x) =
1

nhn

n∑
i=1

tγn

(
x−Xi

hn

)
.

We want to investigate the asymptotic distribution of f(x) as n → ∞. For that, we first
investigate the asymptotic distribution of the simplified NN-DM estimator g(x), and then
show that f(x) and g(x) are asymptotically close in Pf0-probability.

To derive the asymptotic distribution of g(x), we begin with the asymptotic distribution
of fK(x), which can be expressed as fK(x) = n−1

∑n
i=1 uin, where uin = h−1

n tγn{(x −
Xi)/hn}. Using Lyapunov’s central limit theorem and denoting convergence in distribution
under f0 by d0, we have

fK(x)− EPf0{fK(x)}
[varPf0{fK(x)}]1/2

d0→ N(0, 1)

if
(
∑n

i=1 ρin)1/r

(
∑n

i=1 τ
2
in)1/2

→ 0, as n→∞, (33)
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for some r > 2, where ρin = E|uin − E(uin)|r and τ2
in = E{uin − E(uin)}2 for i = 1, . . . , n.

By standard calculations, we have

τ2
in =

f0(x)

hn

∫
t2γn(u)du+ o

(
1

hn

)
.

For r = 3,

ρin ≤
8f0(x)

h2
n

∫
t3γn(u)du+ o

(
1

h2
n

)
.

It is straightforward to see that
∫
trγn(u)du/

∫
tγn(u)du = O(1) for any r ≥ 1. So, Lya-

punov’s condition is satisfied as the ratio in this case satisfies O{(nhn)−1/6} and nhn →∞.
Additionally, |τ2

in−{f0(x)/hn}
∫
φ2(u) du| → 0. So by a combination of Lyapunov’s central

limit theorem and Slutsky’s theorem, we have

(nhn)1/2
[
fK(x)− EPf0{fK(x)}

]
d0→ N

(
0,
f0(x)

2π1/2

)
, (34)

since
∫
φ2(u) du = (2π1/2)−1. From the calculations in Section F of the Appendix, we can

expand the Taylor series to two more terms to obtain

EPf0

{
fK(x)− f0(x)− h2

nf
′′
0 (x)

2

}
= O(h4

n),

since |f (4)
0 (x)| ≤ C0 for all x ∈ [0, 1]. Thus,

(nhn)1/2

[
fK(x)−

{
f0(x) +

h2
nf

(2)
0 (x)

2

}]
d0→ N

(
0,
f0(x)

2π1/2

)
, (35)

provided n−2/9kn →∞ as n→∞, implying (nhn)1/2h4
n → 0.

We now argue that (nhn)1/2|g(x)− f̂n(x)| → 0 in Pf0-probability. For this, we first look
at

EPf0

[
nhn{g(x)− f̂n(x)}2

]
= nhnEPf0

[
Ẽ
{

(g(x)− f̂n(x))2
}]

= nhnEPf0 [ṽar{g(x)}] ,

since Ẽ{g(x)} = f̂n(x). The pseudo-posterior variance of g(x) is given by

ṽar{g(x)} =
1

n2

n∑
i=1

ṽar{Zi(x)},

where Zi(x) = φ(x; ηi, σ
2
i ) for i = 1, . . . , n. It is straightforward to show that

ṽar{Zi(x)} ∼ |∆n|
1

λ̃2
i

t2γn+1

(
x− µi
λ̃i

)
, (36)
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as n→∞, where λ̃2
i = λ2

i /2 for i = 1, . . . , n and

∆n =
u2
γn

u2γn+1
− 1

(2π)1/2
,

with ud = Γ{(d + 1)/2}/{(dπ)1/2Γ(d/2)} being the normalizing constant of the Student’s
t-density with degrees of freedom d > 0. Using Stirling’s approximation, ∆n → 0 as n→∞.
This immediately implies

nhn ṽar{g(x)} ≤ |∆n| vg(x),

where

vg(x) =
1

n

n∑
i=1

1

λ̃i
t2γn+1

(
x− µi
λ̃i

)
.

Using the techniques of Section B of the Appendix, it can be shown that EPf0{vg(x)} →
f0(x) as n→∞. Therefore, we have

EPf0

[
nhn{g(x)− f̂n(x)}2

]
= nhnEPf0

[
Ẽ
{

(g(x)− f̂n(x))2
}]

= nhnEPf0 [ṽar {g(x)}]
≤ EPf0{|∆n|vg(x)}
→ 0,

as n→∞. A simple application of Chebychev’s inequality implies (nhn)1/2|g(x)− f̂n(x)| →
0 in Pf0-probability as n → ∞. Combining this with (32) and (35) and using Slutsky’s
theorem, we obtain the desired result for g(x).

We now demonstrate that f(x) and g(x) are asymptotically close to derive the same
result for f(x). We start out with

varPf0

[
(nhn)1/2{f(x)− g(x)}

]
= nhnEPf0 [ṽar {f(x)− g(x)}]

= nhnEPf0

[
ṽar

{
n∑
i=1

(
πi −

1

n

)
Zi(x)

}]
(37)

We now focus on the term inside EPf0 in (37) and further decompose it as

ṽar

{
n∑
i=1

(
πi −

1

n

)
Zi(x)

}
= Ẽ

[
ṽar

{
n∑
i=1

(
πi −

1

n

)
Zi(x) | π(n)

}]

+ ṽar

[
Ẽ

{
n∑
i=1

(
πi −

1

n

)
Zi(x) | π(n)

}]
,

(38)

where π(n) = (π1, . . . , πn)T. In (38), let Ξ1n and Ξ2n be as follows:

Ξ1n = Ẽ

[
ṽar

{
n∑
i=1

(
πi −

1

n

)
Zi(x) | π(n)

}]
,
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Ξ2n = ṽar

[
Ẽ

{
n∑
i=1

(
πi −

1

n

)
Zi(x) | π(n)

}]
.

Thus, we can write (37) as

varPf0

[
(nhn)1/2{f(x)− g(x)}

]
= nhnEPf0 (Ξ1n) + nhnEPf0 (Ξ2n). (39)

It is straightforward to see that Ξ1n =
∑n

i=1 ṽar(πi) ṽar{Zi(x)}. As n→∞, we use the fact

that πi ∼ Beta(αn + 1, (n− 1)(αn + 1)) under Π̃ and (36), to get

nhnEPf0 (Ξ1n) ∼ n∆n

n(αn + 1) + 1
Ξ̃1n, (40)

for some Ξ̃1n satisfying Ξ̃1n → f0(x) and ∆n → 0 as n→∞. Therefore, nhnEPf0 (Ξ1n)→ 0
as n → ∞. For the second part, let di(x) = (1/λi) tγn{(x − µi)/λi} so that the pseudo-

posterior mean f̂n(x) = (1/n)
∑n

i=1 di(x). We first observe that

Ξ2n = ṽar

[
n∑
i=1

(
πi −

1

n

)
1

λi
tγn

(
x− µi
λi

)]

= ṽar

[
n∑
i=1

πidi(x)

]

=
1

n(αn + 1) + 1

[
1

n

n∑
i=1

{di(x)− f̂n(x)}2
]

≤ 1

n(αn + 1) + 1

[
1

n

n∑
i=1

d2
i (x)

]
.

It now follows from some algebra that

1

n

n∑
i=1

d2
i (x) ≤ d0(n)γn

2γn + 1

(
2γn + 1

γn

)1/2 1

hn

[
1

n

n∑
i=1

1

λ̃i
t2γn+1

(
x− µi
λ̃i

)]
,

where d0(n)→ (2π)−1/2 as n→∞. Therefore, we have

nhnEPf0 (Ξ2n) ≤ O
{

1

2π1/2

n

n(αn + 1) + 1
Ξ̃2n

}
, (41)

for some Ξ̃2n satisfying Ξ̃2n → f0(x) as n → ∞. By the conditions of the theorem, we
have nhnEPf0 (Ξ2n) → 0 as n → ∞. This, along with (40) substituted in (39) provides

(nhn)1/2 |f(x)− g(x)| → 0 in Pf0-probability. This implies the desired result for f(x) using
Slutsky’s theorem. As a result, we can interpret pseudo-credible intervals to be frequentist
confidence intervals, on average, asymptotically.
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Appendix E. Proof of Theorem 8

E.1 A Property of the kn-Nearest Neighbor Distance

Suppose X1, . . . , Xn
iid∼ f0 with f0 a density on Rp satisfying Assumptions 1-3. We denote

the induced probability measure Pf0 by P0 in this section for the sake of convenience. We
define the smoothed k-nearest neighborhood of Xi as Bi = {y ∈ Rp : ||Xi − y||2 ≤ Ri},
where Ri = ||Xi−Xi[kn]||2 is the Euclidean distance between Xi and the kn-nearest neighbor
of Xi for i = 1, . . . , n. By symmetry, R1, . . . , Rn are identically distributed. Suppose
rn = (kn/n)1/p and define the quasi-neighborhood B̃i(r) = {y ∈ Rp : ||Xi− y||2 ≤ r}, where
the random variables Ri have been replaced by r ≥ 0. Let

ωx(r) =

∫
{y : ||y−x||2≤ r}

f0(y) dy.

The positive density condition on f0 obtained from Assumptions 1 and 3 (Evans et al.,
2002; Evans, 2008) ensures the existence of A > 1 and ρ > 0 such that for all 0 ≤ r ≤ ρ
and for all x ∈ [0, 1]p,

rp

A
≤ ωx(r) ≤ Arp. (42)

We first state a Lemma proving some important properties of R1. We next use this Lemma
to prove Theorem 8. Recall that two non-negative sequences (an) and (bn) are said to be
asymptotically equivalent if |an/bn| → c0 for some c0 > 0, denoted by an ∼ bn.

Lemma 11 Define i0 = {2/(p2+p+2)}∧{4/(p+2)2} as in Theorem 4. Assume kn ∼ ni0−ε
for some ε ∈ (0, i0). Suppose δ > 0 satisfies

δ < (1− i0 + ε)−1 − 1.

Define

rn =

(
kn
n

)1/p

, cn =
1

(Ae)1/p
r1+δ
n , and n0 =

{ 1− i0−ε
2

δ(1− i0 + ε)
+ 1

} 1
i0−ε

+ 1.

Then, the following results hold:

(i) pn = P0(R1 ≤ cn) = O

[
k
−1/2
n

(
kn
n

)(kn−1)δ
]

as n→∞.

(ii)

∞∑
n=n0+1

pn <∞. That is, {pn}∞n=1 is summable.

(iii) P

[
limsup
n→∞

{R1 ≤ cn}
]

= 0.

(iv) ncpn →∞ as n→∞.
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Proof

(i) Note that cn ≤ ρ for sufficiently large n. From Lemma 4.1 of Evans et al. (2002) we
have

P0(R1 ≤ cn | Xi = x) =

ωx(cn)∫
0

(kn − 1)

(
n− 1

kn − 1

)
ykn−2(1− y)n−kndy

≤
(
n− 1

kn − 1

)
ωx(cn)kn−1

∼ k−1/2
n

(
kn
n

)(kn−1)δ

,

for any x ∈ [0, 1]p, using (42). This immediately implies

P0(R1 ≤ cn) =

∫
[0,1]p

P0(Ri ≤ cn | Xi = x) f0(x) dx ≤ O

[
k−1/2
n

(
kn
n

)(kn−1)δ
]
.

(ii) For n > n0, we have pn = O{n−(1+Θn)} for a sequence Θn → ∞, Θn > 0. This
ensures that

∑∞
n=n0+1 pn <∞.

(iii) Since
∑∞

n=1 pn <∞, a direct application of the first Borel-Cantelli lemma proves the
statement.

(iv) We have, using the condition on δ,

ncpn =
n

Ae

(
kn
n

)1+δ

=
1

Ae

k1+δ
n

nδ

→∞, as n→∞.

We now use the above Lemma to prove Theorem 8. The key idea is to leverage the fact
that Ri > cn for all i = 1, . . . , n with probability 1 for all but finite n.

E.2 Number of Effective Member Points in Each Neighborhood

We now prove Theorem 8.

Proof Using (iii) from Lemma 11, for i = 1, . . . , n, we have an integer Ñi such that
for all n ≥ Ñi, P0(Ri > cn) = 1. However, since R1, . . . , Rn are identically distributed,
Ñ1 = . . . = Ñn = Ñ , say. Thus, for all i = 1, . . . , n, we have P0(Ri > cn) = 1 for all
n ≥ Ñ . This immediately implies that P0 [

⋂n
i=1{Ri > cn}] = 1 − P0 [

⋃n
i=1{Ri ≤ cn}] ≥

1 −
∑n

i=1 P0[Ri ≤ cn] = 1 for all n ≥ Ñ , which shows P0 [
⋂n
i=1{Ri > cn}] = 1. Therefore,
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we have

nQn = nP0

[
X2 ∈ B1,

n⋂
i=3

{X2 /∈ Bi},
n⋂
i=1

{Ri > cn}

]

≤ nP0

[
n⋂
i=3

{X2 /∈ B̃i(cn)}

]

= nP0

[
n⋂
i=3

{||X2 −Xi|| > cn}

]

= n

∫
θn−2
n (x) f0(x) dx,

where θn(x) = 1− ωx(cn), since X1, . . . , Xn
iid∼ f0. Using (42), we have θn(x) ≤ 1− (cpn/A)

for all x ∈ [0, 1]p. Given the conditions on k, it follows that as n→∞,

log n+ n log

(
1− cpn

A

)
∼ log n− nξ

A2e
→ −∞,

for all x ∈ [0, 1]p, where ξ = 1− (1 + ε− i0)(1 + δ) > 0. Therefore, we have

nQn = n

∫
θn−2
n (x)f0(x) dx

≤ n
[
1− cpn

A

]n−2 ∫
f0(x) dx

= O
[
exp

{
log n+ n log

(
1− cpn

A

)}]
→ 0,

as n→∞. This proves the result.

Appendix F. Proof of Consistency of Kernel Estimator

Define the standard multivariate t-density with d > 0 degrees of freedom to be gd(x) =
td(x; 0p, Ip). Since H = Hn = h2

n Ip as defined in Section 3.1 is diagonal, it immediately
follows that tγn−p+1(x;µ,H) = h−pn gγn−p+1{h−1

n (x− µ)}. The following lemma proves the
consistency of any such generic kernel density estimator with t kernel depending on n, say

fK(x) =
1

nwp

n∑
i=1

gγn−p+1

(
x−Xi

w

)
,

where the bandwidth w = wn satisfies wn → 0 and nwpn →∞ as n→∞, with independent
and identically distributed data X1, . . . , Xn ∼ f0 satisfying Assumptions 1-3.

Lemma 12 Suppose wn is a sequence satisfying wn −→ 0 and nwpn −→ ∞ as n −→ ∞. Let
fK(x) = (nwpn)−1

∑n
i=1 gγn−p+1{w−1

n (x−Xi)}. Then fK(x) → f0(x) in Pf0-probability for
each x ∈ [0, 1]p.
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Proof It is enough to show that EPf0{fK(x)} −→ f0(x) and varPf0{fK(x)} −→ 0 as n −→∞.
Let us start first with EPf0{fK(x)}. We have

EPf0{fK(x)} = EPf0

{
1

wpn
gγn−p+1

(
x−X1

wn

)}
=

∫
[0,1]p

1

wpn
gγn−p+1

(
y − x
wn

)
f0(y) dy

=

∫
[
− x
wn

, 1−x
wn

]p gγn−p+1(u) f0(x+ wnu) du,

=

∫
[
− x
wn

, 1−x
wn

]p gγn−p+1(u) {f0(x) + wnu
T∇f0(ξ)} du

= f0(x)

∫
[
− x
wn

, 1−x
wn

]p gγn−p+1(u) du+ wn

∫
[
− x
wn

, 1−x
wn

]p gγn−p+1(u)uT∇f0(ξ) du,

= f0(x){1− on(1)}+ wnOn(1),

using the mean value theorem and Polya’s theorem (Pólya, 1920) along with Assumption
2 to bound ∇f0(·). As n → ∞, this implies that EPf0{fK(x)} → f0(x) since wn → 0 as
n→∞.

The variance may be dealt with in a similar manner. Following the same steps as before
we get

varPf0{fK(x)} =
1

n
varPf0

{
1

wpn
gγn−p+1

(
x−X1

wn

)}
≤ 1

n
EPf0

{
1

w2p
n

g2
γn−p+1

(
x−X1

wn

)}
≤ 1

nw2p
n

∫
[0,1]p

g2
γn−p+1

(
y − x
wn

)
f0(y) dy

≤ 1

nwpn

∫
[
− x
wn

, 1−x
wn

]p g2
γn−p+1(u){f0(x) + wnu

T∇f0(ξ)} du,

≤ f0(x)On(1)

nwpn
,

which shows that the variance goes to 0 as n→∞, since nwpn →∞ as n→∞.

For the nearest neighbor-Dirichlet mixture, recall fK(x) = (1/n)
∑n

i=1 tγn−p+1(x;Xi, Hn)
from Section 3.1 of the main document, where Hn = h2

nIp and h2
n = {νn(γn−p+1)}−1{(νn+

1)(γ0−p+1)}δ2
0 . Here, the bandwidth hn satisfies hn → 0 and nhpn →∞ as n→∞. Lemma

12 then shows that fK(x) converges to f0(x) in Pf0-probability as n→∞.

Appendix G. Cross-validation

G.1 Algorithm for Leave-one-out Cross-validation

Consider independent and identically distributed data X1, . . . , Xn ∈ Rp ∼ f with f hav-
ing the nearest neighbor-Dirichlet mixture formulation. The prior of the neighborhood
parameters (ηi,Σi) following Sections 2.2 and 2.3 is (ηi,Σi) ∼ NIWp(µ0, ν0, γ0,Ψ0) where
Ψ0 = (γ∗δ

2
0) Ip with γ∗ = γ0 − p+ 1. We use the pseudo-posterior mean in (8) to compute

38



Nearest Neighbor Dirichlet Mixtures

leave-one-out log-likelihoods L(δ2
0) for different choices of the hyperparameter δ2

0 , choosing
δ2

0,CV = arg supδ20L(δ2
0) to maximize this criteria. The details of the computation of L(δ2

0)

for a fixed δ2
0 are provided in Algorithm 2.

• Step 1: Consider data X (n) = (X1, . . . , Xn) where Xi ∈ Rp, p ≥ 1.

Fix the number of neighbors k and other hyperparameters µ0, ν0, γ0.

• Step 2: For i ∈ {1, . . . , n}, consider the data set leaving out the ith data point,
given by X−i = (X1, . . . , Xi−1, Xi+1, . . . , Xn).

Compute the pseudo-posterior mean density estimate at Xi, namely f̂−i(Xi),
using X−i and (8); let Li(δ

2
0) = f̂−i(Xi).

• Step 3: Compute the leave-one-out log-likelihood given by

L(δ2
0) =

1

n

n∑
i=1

log{Li(δ2
0)}.

• Step 4: For δ2
0 > 0, obtain δ2

0,CV = arg sup
δ20

L(δ2
0).

Algorithm 2: Leave-one-out cross-validation for choosing the hyperparameter δ2
0 in

nearest neighbor-Dirichlet mixture method.

G.2 Fast Implementation of Cross-validation

In Algorithm 2, the nearest neighborhood specification for each X−i is different for i =
1, . . . , n. However, we bypass this computation by initially forming a neighborhood of
size (k + 1) for each data point using the entire data and storing the respective neighbor-
hood means and covariance matrices. Suppose for Xi, the indices of the (k + 1)-nearest
neighbors are given by Ñi = {j ∈ {1, . . . , n} : ||Xi − Xj ||2 ≤ ||Xi − Xi[k+1]||2}, ar-
ranged in increasing order according to their distance from Xi with Xi[1] = Xi. Define
the neighborhood mean mi = {1/(k + 1)}

∑
j∈Ñi Xj and the neighborhood covariance ma-

trix Si = (k+ 1)−1{
∑

j∈Ñi(Xj −mi)(Xj −mi)
T}. Then, to form a k-nearest neighborhood

for the new data X−i, a single pass over the initial neighborhoods Ñi is sufficient to update
the new neighborhood means and covariance matrices. Below, we describe the update for

the neighborhood means m
(−i)
j and covariance matrices S

(−i)
j for j = 1, . . . , n and j 6= i,

considering the data X−i. For j = 1, . . . , n and j 6= i, we have,

m
(−i)
j =

{
(1/k){(k + 1)mj −Xj[k+1]} if i /∈ Ñj ,
(1/k){(k + 1)mj −Xi} if i ∈ Ñj .

S
(−i)
j =

{
Sj − {(k + 1)/k}(mj −Xj[k+1])(mj −Xj[k+1])

T if i /∈ Ñj ,
Sj − {(k + 1)/k}(mj −Xi)(mj −Xi)

T if i ∈ Ñj .
(43)
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Appendix H. Algorithm with Gaussian Kernels for Univariate Data

For p = 1, we have a univariate Gaussian density φ(x; ηi, σ
2
i ) in neighborhood i and normal-

inverse gamma priors (ηi, σ
2
i ) ∼ NIG(µ0, ν0, γ0/2, γ0δ

2
0/2) independently for i = 1, . . . , n,

with µ0 ∈ R and ν0, γ0, δ
2
0 > 0. That is,

ηi | σ2
i ∼ N

(
µ0,

σ2
i

ν0

)
, σ2

i ∼ IG

(
γ0

2
,
γ0δ

2
0

2

)
.

Monte Carlo samples from the pseudo-posterior of the unknown density f at any point x
can be generated following the steps of Algorithm 3.

• Step 1: Compute the k-nearest neighborhood Ni for Xi with Xi[1] = Xi, using
the distance d(·, ·).

• Step 2: Update the parameters for neighborhood Ni to (µi, νn, γn/2, γnδ
2
i /2),

where νn = ν0 + k, γn = γ0 + k,

µi =
ν0µ0 + kX̄i

νn
, X̄i =

1

k

∑
j∈Ni

Xj ,

and γnδ
2
i = γ0δ

2
0 +

∑
j∈Ni

(
Xj − X̄i

)2
+ kν0ν

−1
n

(
µ0 − X̄i

)2
.

• Step 3: To compute the t-th Monte Carlo sample of f(x), sample

π(t) ∼ Dirichlet(α+ 1, . . . , α+ 1) and (η
(t)
i , σ

(t)2
i ) ∼ NIG

(
µi, νn, γn/2, γnδ

2
i /2
)

independently for i = 1, . . . , n, and set

f (t)(x) =
n∑
i=1

π
(t)
i φ(x; η

(t)
i , σ

(t)2
i ).

Algorithm 3: Nearest neighbor-Dirichlet mixture algorithm to obtain Monte Carlo
samples from the pseudo-posterior of f(x) with Gaussian kernel and normal-inverse
gamma prior.

Appendix I. Inverse Wishart Parametrization

The parametrization of the inverse Wishart density defined on the set of all p× p matrices
with real entries used in this article is given as follows. Suppose γ > p− 1 and Ψ is a p× p
positive definite matrix. If Σ ∼ IWp(γ,Ψ), then Σ has the following density function:

g(Σ) =


|Ψ|γ/2

2γp/2Γp

(γ
2

) |Σ|−(γ+p+1)/2 etr

(
−1

2
ΨΣ−1

)
if Σ is positive definite,

0 otherwise,
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where Γp(·) is the multivariate gamma function given by

Γp(a) = πp(p−1)/4
p∏
j=1

Γ

(
a+

1− j
2

)
,

for a ≥ (p − 1)/2 and the function etr (A) = exp {tr(A)} for a square matrix A. When
p = 1, the IWp(γ,Ψ) density is the same as the IG(γ/2, γδ2/2) density, where δ2 = Ψ/γ.
The IWp(γ,Ψ) distribution has mean Ψ/(ν − p− 1) for ν > p+ 1 and mode Ψ/(ν + p+ 1).

Appendix J. L1 Error Tables in Sections 4.2 and 4.3

Sample size Estimator CA CW DE GS IE LN LO SB SP ST

200
NN-DM 0.20 0.31 0.19 0.12 0.36 0.20 0.13 0.16 0.30 0.31

NN-DM (default) 0.21 0.37 0.17 0.12 0.34 0.20 0.14 0.17 0.31 0.32
DP-MC 0.17 0.37 0.14 0.10 0.36 0.22 0.13 0.23 0.27 0.55
KDE - 0.37 0.16 0.12 - 0.18 0.11 0.18 - 0.52
KNN 5.99 0.58 0.59 0.28 3.46 0.54 0.48 0.39 6.02 0.46
DP-VB 0.20 0.35 0.15 0.08 0.53 0.25 0.11 0.11 0.44 0.57
RD - 0.35 0.13 0.12 - 0.16 0.11 0.16 - 0.53
PTM 0.29 0.27 0.18 0.13 0.38 0.22 0.13 0.20 0.40 0.39
LLDE 0.19 0.36 0.14 0.10 - 0.15 0.10 0.18 - 0.55
OPT 0.32 0.36 0.28 0.17 0.55 0.21 0.02 0.18 0.75 0.52

A-KDE 0.22 0.35 0.15 0.14 0.46 0.16 0.11 0.17 0.38 0.53

500
NN-DM 0.16 0.17 0.13 0.08 0.30 0.16 0.10 0.10 0.24 0.20

NN-DM (default) 0.16 0.36 0.12 0.09 0.30 0.17 0.10 0.12 0.25 0.22
DP-MC 0.11 0.35 0.10 0.08 0.27 0.18 0.09 0.13 0.22 0.53
KDE - 0.32 0.11 0.08 - 0.15 0.08 0.11 - 0.51
KNN 3.62 0.47 0.48 0.27 3.39 0.40 0.30 0.31 5.64 0.35
DP-VB 0.14 0.33 0.11 0.05 0.48 0.19 0.08 0.08 0.45 0.55
RD - 0.32 0.10 0.09 - 0.13 0.09 0.10 - 0.50
PTM 0.24 0.19 0.14 0.10 0.32 0.19 0.11 0.14 0.32 0.30
LLDE 0.17 0.35 0.11 0.08 - 0.15 0.08 0.14 - 0.53
OPT 0.27 0.31 0.16 0.12 0.51 0.16 0.01 0.14 0.72 0.46

A-KDE 0.16 0.32 0.10 0.10 0.40 0.13 0.10 0.10 0.27 0.52

Table 5: Comparison of the methods in terms of L1 error in the univariate case. Number
of test points and replications considered are nt = 500 and R = 20, respectively.
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