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Abstract

In images collected by astronomical surveys, stars and galaxies often overlap visually. De-
blending is the task of distinguishing and characterizing individual light sources in survey
images. We propose StarNet, a Bayesian method to deblend sources in astronomical images
of crowded star fields. StarNet leverages recent advances in variational inference, including
amortized variational distributions and an optimization objective targeting an expectation
of the forward KL divergence. In our experiments with SDSS images of the M2 globular
cluster, StarNet is substantially more accurate than two competing methods: Probabilistic
Cataloging (PCAT), a method that uses MCMC for inference, and DAOPHOT, a software
pipeline employed by SDSS for deblending. In addition, the amortized approach to infer-
ence gives StarNet the scaling characteristics necessary to perform Bayesian inference on
modern astronomical surveys.

Keywords: Bayesian methods, amortized inference, approximate inference, cataloging
astronomical surveys

1. Introduction

Astronomical images record the arrival of photons from distant light sources. Astronomical
catalogs are constructed from these images. Catalogs label light sources as stars, galaxies,
or other objects; they also list the physical characteristics of light sources such as flux, color,
and morphology. These catalogs are the starting point for many downstream analyses. For
example, Bayestar used a catalog of stellar fluxes and colors to infer the 3D distribution of
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interstellar dust (Green et al., 2019). Catalogs of galaxy morphologies have also been used
to validate theoretical models of dark matter and dark energy (Abbott et al., 2018).

A light source, be it a star or a galaxy, produces a peak brightness intensity at some
location in an image. When light sources are well separated, catalog construction is rela-
tively straightforward: characteristics of each light source, such as flux, can be estimated
by analyzing intensities at the peak and surrounding pixels. However, in images crowded
with many light sources, observed pixel intensities may result from the combined light of
multiple sources. Source separation, or deblending, is the task of differentiating and charac-
terizing individual light sources from a mixture of intensities in an image. A key challenge
in deblending is inferring whether an observed intensity is blended, that is, whether it is
composed of a single source or multiple (dimmer) sources.

Deblending is challenging for several reasons. First, it is an unsupervised problem
without ground truth labeled data. Second, it is a problem with a sample size of one:
there is only one night sky, which is imaged many times, and the collected survey images
capture overlapping regions of it. Third, for blended fields, the properties of light sources
are ambiguous; therefore, providing calibrated uncertainties for catalog construction is as
important as making accurate predictions. Finally, the scale of the data is immense. The
upcoming Rubin Observatory Legacy Survey of Space and Time (LSST), scheduled to begin
full operations by 2024, is expected to produce 60 petabytes of astronomical images over
its lifetime (LSST, 2023).

As more powerful telescopes are developed, and their ability to detect more distant light
sources improves, the density of the imaged light sources will increase. For instance, Bosch
et al. (2018) estimates that 58% of light sources are blended in images captured by the
Subaru Telescope’s Hyper Suprime-Cam, and that percentage is expected to increase for
LSST (Sanchez et al., 2021). Therefore, developing a method that reliably characterizes
light sources, even in cases of significant blending, advances astronomical research that
derives conclusions about the physical universe from estimated catalogs.

We focus on cataloging applications in which all light sources are well modeled as points
without spatial extent. Point-source-only models are applicable to surveys such as the Dark
Energy Camera (DECam) plane survey, which imaged the center of the Milky Way (Schlafly
et al., 2018), and the Wide-field Infrared Survey Explorer, which has a telescope resolution
that does not allow for differentiation between stars and galaxies (Wright et al., 2010). We
use images from the Sloan Digital Sky Survey (SDSS) of the globular cluster M2, which
is a region that is densely populated with stars, as a test bed for assessing the accuracy
of our approach. We also demonstrate the ability of our method to scale to large, modern
astronomical surveys by cataloging a subregion of the DECam survey.

1.1 From Software Pipelines to Probabilistic Cataloging

Traditionally, most cataloging has been performed using software pipelines. These pipelines
are algorithms that usually involve the following stages: locating the brightest peaks, esti-
mating fluxes, and subtracting the estimated light sources. These stages may be performed
iteratively. Pipelines do not normally produce statistically calibrated error estimates that
propagate the uncertainty accumulating in each of the steps. Failure to properly accumulate
error at each step results in unreliable point estimates for images in which ambiguity exists
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in identifying sources and estimating their characteristics. For example, PHOTO (Lupton
et al., 2001), the default cataloging pipeline used by SDSS, failed to produce a catalog of
the Messier 2 (M2), a globular cluster (Portillo et al., 2017).

In contrast, probabilistic cataloging posits a statistical model consisting of a likelihood for
the observed image given a catalog and a prior distribution over possible catalogs (Portillo
et al., 2017; Brewer et al., 2013; Feder et al., 2020). Instead of deriving a single catalog,
probabilistic cataloging produces a posterior distribution over the set of all possible catalogs.
Uncertainties are quantified by the posterior distribution. For example, in an image with an
ambiguously blended bright peak, some catalogs sampled from the posterior would contain
multiple dim light sources while others would contain one bright source. The relative
density that the posterior distribution places on one explanation relative to others another
represents the statistical confidence in that explanation. Moreover, a distribution over the
set of all catalogs induces a distribution on any estimate derived from a catalog. Therefore,
calibrated uncertainties can be propagated to downstream analyses.

Previous work on probabilistic cataloging employed Markov chain Monte Carlo (MCMC)
to sample from the posterior distribution. The MCMC procedure in Portillo et al. (2017) and
Feder et al. (2020) is called PCAT, short for “Probabilistic CATaloging.”1 A difficulty in any
probabilistic cataloging approach is that the number of sources in a catalog is unknown and
random, so the latent variable space is transdimensional. PCAT sampled transdimensional
catalogs with reversible jump MCMC (Green, 1995), in which auxiliary variables are added
to encode the “birth” and “death” of light sources in the Markov chain.

The computational cost of MCMC for this model is problematic for large-scale astro-
nomical surveys. Early implementations of PCAT required a day to process a 100×100-pixel
SDSS image of M2 (Portillo et al., 2017). More recent implementations running inexact
MCMC brought the runtime down to 30 minutes (Feder et al., 2020). However, a 100×100
pixel image covers only a 0.66 × 0.66 arcminute patch of the sky. For comparison, in one
night, SDSS scans a region on the order of 100 × 1000 arcminutes. Extrapolating the
30-minute runtime suggests that PCAT would take on the order of ten years to process
a nightly SDSS run. The LSST survey will be even larger, collecting five trillion pixels
nightly (LSST, 2023b), which would require 28, 000 years to catalog using PCAT.

As an alternative to MCMC, Regier et al. (2019) proposed to use variational inference
(VI) to approximate the posterior. VI considers a family of candidate approximate posteri-
ors and employs numerical optimization to find the distribution in the family closest in KL
divergence to the exact posterior (Jordan et al., 1999; Wainwright and Jordan, 2008; Blei
et al., 2017). With a sufficiently constrained family of distributions, the VI optimization
problem can be solved orders of magnitude faster than MCMC runs.

However, Regier et al. (2019) is limited in that the number of light sources in a given
image is treated as known and fixed—it had to be set using a preprocessing routine. The
authors avoided the transdimensional latent variable space induced by the unknown number
of sources in order to have a tractable objective for numerical optimization.

1. We use “probabilistic cataloging” to refer to any method that produces a posterior over possible catalogs,
whereas “PCAT” refers specifically to the MCMC procedure in Portillo et al. (2017) and Feder et al.
(2020).
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1.2 Our Contribution

We propose StarNet, an approach to deblending that employs several recent VI innova-
tions (Zhang et al., 2019; Le et al., 2020). Unlike Regier et al. (2019), our VI approach is
able to handle arbitrary probabilistic models, including a transdimensional model with an
unknown number of sources. Section 2 introduces the statistical model, which is similar to
the model used in PCAT.

Secondly, again unlike Regier et al. (2019), we employ amortization, which enables
StarNet to scale inference to large astronomical surveys. In amortized variational inference,
a neural network maps input images to an approximate posterior over catalogs. Following
a one-time cost to fit the neural network, inference on new images requires just a single
neural-network evaluation. Rapid inference is possible without the need to re-run MCMC
or numerically optimize VI for each new image. For StarNet, a network evaluation, or
“forward pass,” on a 100 × 100 pixel image takes less than a second (vs. 30 minutes for
inference using PCAT). Section 3 details the variational distribution and neural network
architecture in StarNet.

Finally, and critically, StarNet is fit using an expected “forward” Kullback–Leibler (KL)
divergence between the approximate posterior q and the exact posterior p, where the ex-
pectation is taken over the data distribution defined by the statistical model. In contrast,
traditional variational inference minimizes the “reverse” KL divergence (Bishop, 2006),
which uses an expectation with respect to the variational distribution. The forward KL
is minimized using stochastic gradient descent (SGD), which involves sampling complete
data—images and their corresponding catalogs—from their joint likelihood and fitting the
network in a supervised fashion. Section 4 details our inference procedure.

In this application, optimizing the forward KL produces more reliable approximate pos-
teriors than optimizing the traditional reverse KL (Section 5): taking advantage of complete
data allows the network to better avoid shallow local minima where the approximate pos-
terior is far from the exact posterior in terms of KL divergence.

The forward KL has been used in previous research to train deep generative models (Am-
brogioni et al., 2019; Le et al., 2020), and appears in the sleep phase of the wake-sleep algo-
rithm (Hinton et al., 1995; Bornschein and Bengio, 2014; Le et al., 2020). Variational infer-
ence using the forward KL is an example of simulation-based inference, where approximate
posteriors are constructed for likelihoods from which sampling is easy, but are unavailable
analytically (Papamakarios and Murray, 2016; Greenberg et al., 2019). Simulation-based
inference has found applications in physics where theory can provide realistic simulations
(Cranmer et al., 2020). For example, Baydin et al. (2019) use simulation-based inference
to model time-series data of particle paths at the Large Hadron Collider, and they use the
forward KL objective to fit a recurrent neural network, whose output are proposals to an
MCMC sampling scheme. To the best of our knowledge, our work is the first to combine
amortized inference with the forward KL divergence to perform Bayesian inference over a
transdimensional latent space, producing an approximate posterior distribution over sets.

We applied StarNet to an SDSS image of M2, a globular cluster (Section 6.1) and show
that StarNet was more accurate than the MCMC-based cataloger PCAT: though MCMC
is asymptotically exact, it often suffers from incomplete mixing on practical timescales.
StarNet was also more accurate that traditional deterministic cataloging approaches in
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several metrics. We then demonstrate the scalability of StarNet by cataloging a DECam
image of the Milky Way (Section 6.2). Our approximate Bayesian method can produce
scientifically relevant results on the order of minutes, while running PCAT would take on
the order of days.

Code to reproduce our results is publicly available in a GitHub repository (BLISS, 2023).

2. The Generative Model

In crowded starfields such as globular clusters and the galactic plane of the Milky Way,
the vast majority of light sources are stars. An astronomical image records the number of
photons that reached a telescope and arrived at each pixel. Typically, photons must pass
through one of several filters, each selecting photons from a specified band of wavelengths,
before being recorded.

For a given H ×W pixel image with B filter bands, our goal is to infer a catalog of
stars. The catalog specifies the number of stars in an image; for each such star, the catalog
records its location and its flux (brightness) in each band. The space of latent variables Z
is the collection of all possible catalogs of the form

z := {N, (`i, fi,1, ..., fi,B)Ni=1},

where the number of stars in the catalog is N ∈ N; the location of star i is `i ∈ R2; and the
flux of the star i in band b is fi,b ∈ R+.

A Bayesian approach requires specification of a prior over catalog space Z and a like-
lihood for the observed images. Our likelihood and prior, detailed below, are similar to
previous approaches (Brewer et al., 2013; Portillo et al., 2017; Feder et al., 2020), which
facilitates the comparisons of inference algorithms in isolation of model differences.

2.1 The Prior

The prior over Z is a marked spatial Poisson process. To sample the prior, first draw the
number of stars contained in the H ×W image as

N ∼ Poisson(µHW ), (1)

where µ is a hyperparameter specifying the average number of sources per pixel. Next,
draw locations

`1, ..., `N | N
iid∼ Uniform([0, H]× [0,W ]).

The fluxes in the first band are from a power law distribution with slope α:

f1,1, ..., fN,1 | N
iid∼ Pareto(fmin, α). (2)

Fluxes in other bands are described relative to the first band. Like Feder et al. (2020), we
define the log-ratio of flux relative to the first band as “color.” Colors are drawn from a
Gaussian distribution

c1,b, ..., cN,b | N
iid∼ N (µc, σ

2
c ), b = 2, ..., B.
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Given the flux in the first band fi,1 and color ci,b, the flux in band b is fi,b = fi,1× 10ci,b/2.5.

We set the power law slope α = 0.5 and use a standard Gaussian for the color prior
(µc = 0, σ2

c = 1), as in Feder et al. (2020).

Rather than having a hierarchical structure, the prior parameters are fixed in this model:
our goal is to produce a posterior on catalogs for a specific image, not to model the popu-
lation over many images. Appendix E evaluates the sensitivity of the resulting catalog to
choices of the prior parameters.

2.2 The Likelihood

Let xbhw denote the observed number of photoelectrons at pixel (h,w) in band b. For each
band, at every pixel, the expected number of photoelectron arrivals is λbhw(z), a deterministic
function of the catalog z. Motivated by the Poissonian nature of photon arrivals and the
large photon arrival rate in SDSS and LSST images, observed pixel intensities are drawn as

xbhw | z
ind∼ N (λbhw, λ

b
hw), b = 1, ..., B; h = 1, ...,H; w = 1, ...,W,

where λbhw = Ib +

N∑
i=1

fi,bPb
(
h− `i,1, w − `i,2

)
.

Here, Pb is the point spread function (PSF) for band b and Ib is the background intensity.
The PSF is a function Pb : R×R 7→ R+, describing the appearance of a stellar point source
at any 2D position of the image. Our PSF model is a weighted average between a Gaussian
“core” and a power-law “wing” as described in Xin et al. (2018). For each band, the PSF
has the form

P(u, v) =
exp(−(u2+v2)

2σ2
1

) + ζ exp(−(u2+v2)
2σ2

2
) + ρ(1 + v2+u2

γσ2
P

)−γ/2

1 + ζ + ρ
.

The PSF parameters are allowed to vary by band. In our applications to SDSS and DECam
data, we use estimates of the background and PSF obtained from a pre-processing pipeline
that are distributed by these surveys along with the images.

3. The Variational Distribution

The central quantity in Bayesian statistics is the posterior distribution p(z | x). However,
in many nontrivial probabilistic models, including our own, the posterior distribution is
intractable to calculate—it requires us to compute the marginal likelihood, p(x), which
involves integrating over the latent variable z. In our model, the latent variable space is
high dimensional: it is the set of all catalogs. Approximate methods such as MCMC and
variational inference are therefore required.

Variational inference (Jordan et al., 1999; Wainwright and Jordan, 2008; Blei et al.,
2017) posits a family of distributions Q and seeks the distribution q∗ ∈ Q that is “closest”
to the exact posterior in KL divergence. The defined divergence and the family Q are
chosen such that minimizer q∗ will not be too difficult to find via optimization. We index
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the distributions in Q using a real-valued vector η, in which case solving for the optimal
variational distribution qη∗ becomes a numerical optimization problem.

Most commonly, variational inference minimizes the “reverse” KL divergence between
q and p:

η∗ = arg min
η

KL
[
qη(z | x) ‖ p(z | x)

]
. (3)

Minimizing the KL divergence in (3) is equivalent to maximizing the evidence lower bound
(ELBO):

Lelbo(η) = Eqη(z|x)

[
log p(x, z)− log qη(z | x)

]
. (4)

This equality is shown in Blei et al. (2017). Computing the ELBO does not require com-
puting the marginal distribution p(x), which is intractable, or the posterior distribution
p(z | x), which would be circular. In Section 4, we consider an alternative objective to (3),
where we instead minimize an expectation of the KL divergence with its arguments q and p
reversed.

3.1 Amortized Variational Inference

We describe the construction of the family Q. Traditionally in variational inference, the
posterior approximation qη depends on the data x only implicitly, in that η∗ is chosen
according to (3). In this case, qη(z | x) is usually written qη(z), suppressing the dependence
on x. When a new data point xnew arrives, finding a variational approximation to the
posterior p(znew | xnew) requires solving (3) with x = xnew through an iterative optimization
procedure, which may be computationally expensive.

On the other hand, in amortized variational inference (Kingma and Welling, 2013;
Rezende et al., 2014), qη is an explicit function of the data. In our case, this means a
flexible, parameterized function maps input x, an observed image, to a real-valued vector
characterizing a distribution on the latent space Z. Typically, the function is a neural
network, in which case the variational parameters η are the neural network weights. After
the neural network is fitted using a collection of observed x’s, the approximate posterior
qη(z

new | xnew) for a new data point xnew can be evaluated with a single forward pass
through the neural network. No additional run of an optimization routine is needed for a
new data point xnew.

The following subsections detail the construction of our variational distribution, which
will be fitted in an amortized fashion.

3.2 The Factorization

To make optimization tractable, the family Q is normally restricted to probability distribu-
tions without conditional dependencies between some latent variables. In the most extreme
case, known as mean-field variational inference, the variational distribution completely fac-
torizes across all latent variables.

Our factorization has a spatial structure. First, we partition the full H×W -pixel image
into disjoint R×R-pixel tiles. R is chosen such that the probability of having three or more
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Figure 1: Tiling a 20× 20 pixel image into four 10× 10 tiles.

stars in one tile is small. In this way, the cataloging problem decomposes to inferring only
a few stars at a time (Section 3.4).

Let S = H/R and T = W/R and assume without loss of generality that H and W are
multiples of R. For s = 1, ..., S and t = 1, ..., T , the tile x̃st is composed of the pixels

x̃st = {xhw : Rs ≤ h < R(s+ 1) and Rt ≤ w < R(t+ 1)}.

Figure 1 gives an example with R = 2.
Let Ñ (s,t) be the number of stars in tile (s, t). Because Ñ (s,t) is random, the cardinality

of the set of locations and fluxes in each tile is also random. To handle the trans-dimensional
parameter space, we consider triangular arrays of latent variables for each tile:

˜̀(s,t) = (˜̀(s,t)
N,i : i = 1, ..., N ;N = 1, 2, ...),

and f̃ (s,t) = (f̃
(s,t)
N,i : i = 1, ..., N ;N = 1, 2, ...),

where ˜̀(s,t)
N,i and f̃

(s,t)
N,i are the elements of the triangular array corresponding to location and

fluxes, respectively. Tile locations ˜̀(s,t)
N,i ∈ [0, R] × [0, R] give the location of stars within a

tile. The fluxes f̃
(s,t)
N,i are vectors in RB+ (one flux for each band).

We refer to (Ñ (s,t), ˜̀(s,t), f̃ (s,t))S,Ts=1,t=1 as the tile latent variables. The distribution on
tile latent variables factorize over image tiles:

q̃η
((
Ñ (s,t), ˜̀(s,t), f̃ (s,t)

)S,T
s=1,t=1

| x
)

=

S∏
s=1

T∏
t=1

q̃η
(
Ñ (s,t), ˜̀(s,t), f̃ (s,t) | x

)
.

We denote tile latent variables as z̃. The ultimate latent variable of interest is z =
{N, (`i, fi,1, ..., fi,B)Ni=1}, the catalog for the full image. There is a mapping from z̃ to z.
First, the number of stars in the full catalog is given by the sum of the stars in each tile,
N =

∑
s,t Ñ

(s,t). Then, for every tile (s, t), we index into the Ñ (s,t)-th row of the triangular

array of tile latent variables f̃ (s,t) and ˜̀(s,t). The union of these fluxes and locations over
all tiles form the full catalog (tile locations are shifted by the position of the tile in the full
image to obtain locations in the full image). See Figure 2 for a schematic.

If τ is the mapping from z̃ to z, then the variational distribution on catalogs z is

qη(z | x) := q̃η(τ
−1(z) | x), (5)
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Figure 2: An example image with four tiles and four stars illustrating the relationship be-
tween the tile latent variables and the full-image catalog. To construct the full-
image catalog, we index into the appropriate row of the triangular array for each
tile.

where τ−1(z) is the pre-image of z under τ . See Appendix A for details on evaluating
qη(z | x) for any given catalog z, which by (5) requires finding the pre-image τ−1(z).

3.3 Variational Distributions on Image Tiles

We describe the variational distribution for each tile, q̃η
(
Ñ (s,t), ˜̀(s,t), f̃ (s,t) | x

)
. The latent

variables fully factorize within each tile. Dropping the index (s, t) in this subsection,

Ñ ∼ Categorical(ω; 0, ..., Nmax); (6)

˜̀
j,i/R ∼ LogitNormal(µ`j,i ,diag(ν`j,i)); (7)

f̃ bj,i ∼ LogNormal(µfbj,i
, σ2

fbj,i
), (8)

independently for i = 1, ..., j; j = 1, ..., Nmax. Here ω is a (Ñmax + 1)-dimensional vector
on the simplex. µ`j,i and ν`j, are two-dimensional vectors—the covariance on locations is

diagonal. Note that in the exact posterior, Ñ has support on the nonnegative integers,
whereas in the variational distribution Ñ is truncated at some large Nmax.

These distributions were taken to match the constraints of the latent variables: fluxes
are positive and right skewed, suggesting a log-normal; locations are between zero and R,
suggesting a scaled logit-normal.

3.4 Neural Network Architecture

In each tile, the distributional parameters in (6), (7), and (8) are the output of a neural
network. The input to the neural network is an R × R tile, padded with surrounding
pixels. Padding enables the neural network to produce better predictions inside the tile.
For example, a bright source outside but in the vicinity of the tile affects the pixel values
inside the tile. Padding the tiles allows the neural network access to this information. Thus,
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while the distribution on tile latent variables factorize over tiles, the neural network is able
to use information from neighboring tiles in producing the distributional parameters.

The appropriate amount of padding will depend on the PSF width in the analyzed
image. To catalog the crowded starfield M2 (Section 6.1), we set R = 2 and padded the tile
with a three-pixel-wide boundary. In cataloging a DECam image, we use larger tiles with
more padding because the width of the PSF is larger in these images. There, we set R = 10
and used a five-pixel-wide boundary.

In amortized inference, the variational parameters η are neural network weights. The
architecture consists of a convolutional layer followed by several residual network layers,
which themselves contain convolutions, before ending with several fully connected layers
(Figure 3). This architecture has been successful on image classification challenges such
as ImageNet (Russakovsky et al., 2015). We tuned the architecture using Optuna, an
automatic hyper-parameter optimization package (Akiba et al., 2019). Our search included
the number of convolution layers, the number of fully connected layers, the number of
channels in the convolution layers, and the size of the fully connected layers.

An input to the network is a padded tile, which consists of B color bands. We also
append an additional “band” to the input, which is a one-hot encoding with ones for pixels
inside the tile, and zeros outside. We do this because the network is only responsible for
inferring sources inside each tile, and this additional band gives the network access to a
feature which encodes the tile interior.

See Appendix G for further details concerning the parameters of our neural network
architecture.

Note that the output dimension of the neural network is quadratic in Nmax: the outputs
are parameters for a triangular array consisting of 1

2(N2
max+Nmax) sources. Factorizing the

variational distribution spatially keeps the output dimension manageable. While the full
image may contain many stars (on the images that we catalog, the number of stars is on
the order of thousands), we set Nmax = 3 for each tile. Thus, the network is responsible for
inferring only a few stars at once—a much easier task than inferring all stars simultaneously.

We emphasize that while the variational distribution factorizes over tiles, our method
does not break the inference problem for the full image into isolated subproblems. The
likelihood of the full image does not factorize over tiles. Light from a star within a tile spills
over into neighboring tiles, so the likelihood should not and does not decouple across image
tiles.

4. The Expected Forward Kullback-Leibler Divergence

Procedures such as black-box variational inference (BBVI) (Ranganath et al., 2014) and
automatic-differentiation variational inference (ADVI) (Kucukelbir et al., 2017) optimize
the ELBO without the need for deriving analytic expressions for the expectation over qη.
These approaches employ stochastic gradient descent (SGD); they sample latent variables
from qη and produce an unbiased estimate for the gradient of the ELBO by taking advantage
of modern automatic differentiation tools. ADVI is closely related to the reparameterization
trick (Spall, 2003; Kingma and Welling, 2013; Rezende et al., 2014), which is often used to
fit variational autoencoders and applies when the latent variables are continuous.
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Figure 3: The neural network architecture. The DECam input is a two-band 20×20 padded
tile, and the network returns distributional parameters corresponding to sources
located in the 10×10 tile outlined in white. In this example, there are two sources
located in the 10× 10 tile. The additional input band is a one-hot encoding with
ones for pixels inside the tile, and zeros outside. For further details concerning
the residual network blocks (in blue), see Appendix G.

In our model, the number of stars N is discrete. The REINFORCE estimator (Williams,
1992) is one way to produce an unbiased stochastic gradient for both continuous and dis-
crete latent variables. However, REINFORCE gradients often suffer from high variance in
practice, even with the introduction of control variates, resulting in slow convergence of
stochastic optimization. We find this to be true in our empirical study (Section 5).

The key difficulty in constructing stochastic gradients of the ELBO is that the integrat-
ing distribution depends on the optimization parameter η. We instead maximize a negated
expectation of the “forward” KL divergence:

Lfwd(η) := −Ex∼p(x)

[
KL(p(z | x)‖qη(z | x))

]
, (9)

an objective that appears in the “sleep phase” of the wake-sleep algorithm (Hinton et al.,
1995; Bornschein and Bengio, 2014; Le et al., 2020) and was re-introduced by Ambrogioni
et al. (2019), who called this approach “Forward Amortized Variational Inference.”

Section 4.1 details a simple gradient estimator for (9) that does not require reparame-
terization or REINFORCE.
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There are two key differences between the expected forward KL objective (9) and the
ELBO (4). First, recall that maximizing the ELBO is equivalent to minimizing KL(q‖p);
the KL in Lfwd transposes the arguments. Second, the outer expectation over p(x) in Lfwd
gives a different meaning to the objective. The ELBO objective seeks η to minimize the
KL between qη(z | x) and p(z | x) for fixed, observed data x, in this case the H × W
image. In contrast, minimizing Lfwd minimizes the KL on average over all possible data
x, as weighted by p(x). The target is no longer an approximate posterior for the observed
data, but rather an approximate posterior that is “good on average” over all possible data
under the model p(x).

4.1 Decomposing the Expected Forward KL

In this subsection, we decompose the expected forward KL objective Lfwd to obtain an
unbiased stochastic gradient for stochastic gradient descent.

First, observe that optimizing Lfwd does not require computing the intractable term
p(x):

arg max
η

Lfwd(η) = arg min
η

Ex∼p(x)

[
KL(p(z | x)‖qη(z | x)

]
= arg min

η
Ep(x)

[
Ep(z|x)

(
log p(z | x)− log qη(z | x)

)]
= arg min

η
Ep(x,z)

[
− log qη(z | x)

]
.

Notice the integrating distribution p(x, z) does not depend on the optimization parameter
η. Thus, unbiased stochastic gradients can be obtained as

g = −∇η log qη(z | x) for (x, z) ∼ p(x, z).

In other words, at each iteration of SGD, we simulate complete data (x, z) from the
generative model and evaluate the loss − log qη(z | x). Here, “complete data” refers to the
image along with its catalog. This loss encourages the neural network to map an image x
to a distribution qη(· | x) that places large density on the image’s catalog z.

We decompose the loss − log qη(z | x) further. Recall that qη fully factorizes over tile
latent variables, and thus − log qη(z | x) is a summation over all tile latent variables. To
evaluate − log qη(z | x) for some (x, z) ∼ p, first convert z to its tile parameterization

(Ñ (s,t), ˜̀(s,t), f̃ (s,t))
(S,T )
s=1,t=1, as detailed in Appendix A. For each tile (s, t), the variational

distribution on the number of stars Ñ (s,t) is categorical with probability vector ω(s,t) ∈
∆Nmax (recall Section 3.3). The loss function for the number of stars becomes

− log qη(Ñ
(s,t) | x) = −

Ñmax∑
n=0

1{Ñ (s,t) = n} logω(s,t)
n . (10)

The vector ω(s,t) is the output of the neural network, and (10) is the usual cross-entropy
loss for a multi-class classification problem.

Next, recall that in the variational distribution location coordinates are logit-normal
and fluxes are log-normal. Let y generically denote either the logit-location or log-flux for
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a star in the sampled catalog z; let (µ̂, σ̂2) be the Gaussian mean and variance returned by
the neural network. Then the loss for these latent variables is,

− log qη(y | x) =
1

2σ̂2
(y − µ̂)2 +

1

2
log(2πσ̂2). (11)

The first term encourages network predictions µ̂ to be close to the sampled latent variable
y, while σ̂2 encodes the uncertainty of the network: the second term encourages small
uncertainties, but is balanced by the scaling of the error (y − µ̂)2 in the first term.

The losses in (10) and (11) show that the expected forward KL objective results in
a supervised learning problem on complete data sampled from our generative model: the
objective function for the number of stars is the usual cross-entropy loss for classification,
while the objective function for log-fluxes and logit-locations are L2 losses in the mean
parameters.

5. Empirical Comparison of KL Objectives

A simple example demonstrates that there exist shallow local optima in the ELBO where
the fitted approximate posterior is far in KL divergence from the exact posterior. These
local optima result in unreliable catalogs. The expected forward KL, by taking advantage
of complete data, appears to have a more favorable optimization landscape. The simulated
20× 20 single-band image xtest is shown in Figure 4(d).

We compare three approaches to deblending. The first two approaches directly optimize
the ELBO,

Lelbo(η;x) = Eqη(z|x)

[
log p(x, z)− log qη(z | x)

]
, (12)

evaluated at x = xtest. The third approach minimizes the expected forward KL (9). In each
case, qη is the inference network from Section 3.4. The input to the network is a 10 × 10
tile with no padding.

Note that the expected forward KL does not depend on xtest. Optimizing Lfwd only
requires sampling catalogs from the prior and simulating images conditional on each catalog.
The prior on the number of stars per image was set to be Poisson with mean µ = 4.

Figure 4 (top row) charts the test ELBO (12) as optimization proceeds in our three
approaches. The first approach optimizes the ELBO with SGD and a REINFORCE plus
control-variate gradient estimator (Ranganath et al., 2014). The path of the ELBO objec-
tive in this first approach is irregular, likely due to the high variance of the REINFORCE
gradient estimator, and the optimization does not appear to converge (Figure 4a). For
a lower-variance gradient estimator, the second approach employed the reparameterized
gradient. To employ this gradient estimator, we analytically integrated the ELBO with
respect to the number of stars N to remove the discrete random variable. See Appendix B
for details about the gradient estimators. Using reparameterized gradients instead of RE-
INFORCE gradients enabled the optimization to converge to stationary points (Figure 4b).
However, for two randomly initialized restarts, the optimization found local optima where
the negative ELBO is notably higher than other restarts.

These shallow local optima in the ELBO result in unreliable catalogs. The bottom row
of Figure 4 displays the estimated locations, defined as the mode of the fitted variational

13



Liu, McAuliffe, Regier, and LSST

distribution. Figure 4(e) shows these locations after converging to a shallow local optimum.
Here, the upper left tile was correctly estimated to have two stars, but both estimated stars
were incorrectly placed at the same location. (One of the locations should be placed on the
second star.) To move one of the estimated locations to the second star, the optimization
path must traverse a region where the log-likelihood is lower than the current configuration
(Figure 5). The displayed configuration is a local optimum where the gradient with respect
to its locations is approximately zero.

On the other hand, using the expected forward KL does not directly optimize the test
ELBO. However, the test ELBO increases nonetheless, because the variational posterior
better approximates the exact posterior as the optimization proceeds. Optimizing Lfwd
consistently converged to a similar ELBO across all restarts and avoided shallow local
optima (Figure 4c). At each iteration of SGD, the evaluated loss is quadratic in the logit-
location estimate µ` (11), and the gradient does not vanish. By avoiding shallow local
optima, the variational distribution fit with the forward KL always placed its mode on the
four true stars in our trials. An example of successful detection by fitting with Lfwd is
shown in Figure 4(f).
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Figure 4: (Top row) The negative ELBO as the optimization progresses for six random
restarts. (Bottom row) In red, modal locations from ELBO-optimized and Lfwd-
optimized variational posteriors, for one of the six restarts. In blue, the true
locations.

Finally, note that low-variance gradients of the ELBO for this simple example were
constructed by analytically integrating out N , and this was only possible because the image
consisted of only four tiles. For each tile, the variational distribution has support over only
0, 1, or 2 stars. Since the variational distribution factorizes over the four tiles, integrating N
is a summation of 34 = 81 terms. On larger images with more tiles, analytically integrating
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Figure 5: An illustration of local optima in the ELBO objective. To move an estimated
location to a correct location, the optimization path must traverse a region where
the negative ELBO is flat, with near-zero gradients. In contrast, when optimizing
the expected forward KL with SGD, each iteration evaluates a quadratic loss
between a true and estimated location, and the gradient does not vanish.

N would be computationally infeasible, and the standard reparameterization trick would
not apply as it does in this small illustrative example.

6. Results on Astronomical Surveys

We evaluate StarNet on two distinct surveys. First, we catalog an SDSS image of the
Messier 2 (M2) globular cluster. We evaluate the catalog quality by validating against data
collected from the Hubble Space telescope, which we use as a ground truth.

Then, we run StarNet on a high-resolution DECam image of the galactic plane of the
Milky Way. We demonstrate the ability of StarNet to scale to larger astronomical surveys.

6.1 Results on the M2 Globular Cluster

The M2 globular cluster is a crowded starfield found in field 136 of camera column 2 in run
2583 of the SDSS survey. M2 was also imaged in the ACS Globular Cluster Survey (Sara-
jedini et al., 2007) using the Hubble Space Telescope (HST), which has greater resolution
than the SDSS telescope. The resolution of the HST wide-field channel is 0.05 arcseconds
per pixel versus 0.40 arcseconds per pixel in SDSS (ESAHubble, 2021; SDSS, 2020). For this
image, the catalog from the HST survey (henceforth the “HST catalog”) serves as ground
truth for validating our results.

We first analyze the 100×100 pixel subimage of M2 that Portillo et al. (2017) and Feder
et al. (2020) analyzed with their MCMC-based approach, PCAT. This subimage shows a
region located outside the heavily saturated core of the cluster (Figure 6). Nonetheless,
in this subimage the HST catalog contains 1114 stars with F606W-band magnitudes less
than 22. We include two bands in our model, the SDSS r-band and i-band. The SDSS
r-band and the Hubble F606W band are centered at roughly the same wavelength, while
the wavelength range of the Hubble F606W band is slightly broader.
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Figure 6: The M2 globular cluster as imaged by SDSS. In white is the 100× 100 subregion
cataloged by PCAT in Feder et al. (2020).

We compare the cataloging accuracy of StarNet against PCAT, the aforementioned
MCMC-based approach that uses the same generative model as StarNet; and DAOPHOT,
an algorithmic routine for detecting stars in crowded starfields which does not use a prob-
abilistic model (Stetson, 1987). DAOPHOT convolves the observed image with a Gaussian
kernel and scans for peaks above a given threshold. The DAOPHOT catalog of M2 was
reported in An et al. (2008).

To evaluate the three methods, we filtered the ground truth HST catalog to stars with
magnitudes smaller than 22.5 in the Hubble F606W band (note that smaller magnitude
corresponds to brighter stars), because none of the three methods were able to detect stars
with lower apparent brightness in the SDSS image.

Estimated catalogs are evaluated on three metrics: the true positive rate (TPR), or
recall; the positive predictive value (PPV), or precision; and the F1 score. The TPR is the
proportion of true stars in the HST catalog matched with a predicted star in the estimated
catalog. The PPV is the proportion of predicted stars in the estimated catalog matched
with a true star in the HST catalog. The F1 score summarizes the two metrics as the
harmonic mean of the PPV and the TPR.

Like Portillo et al. (2017) and Feder et al. (2020), we define a “match” between an
estimated star and an HST star as follows: (1) the estimated location and the HST location
are within 0.5 SDSS pixels, and (2) the estimated SDSS r-band flux and the HST F606W
band flux are within half a magnitude.

In probabilistic cataloging (PCAT and StarNet), the posterior defines a distribution
over catalogs. For StarNet, the TPR, PPV, and F1 score were computed for the catalog
corresponding to the mode of the variational distribution (henceforth, the StarNet catalog).
For PCAT, 300 catalogs were sampled using MCMC; the metrics were computed for each
sampled catalog and averaged.
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Figure 7: Estimated catalogs on four 10×10 subimages from M2. Blue dots are stars from
the HST catalog used as ground truth. StarNet, PCAT, and DAOPHOT esti-
mated stars are shown as red, cyan, and orange crosses, respectively.

StarNet produced a catalog that outperforms DAOPHOT and PCAT in F1 score (Ta-
ble 1). Figure 7 compares the StarNet catalog to the PCAT, DAOPHOT, and HST catalogs.
DAOPHOT estimated less than half the number of stars when compared to the other meth-
ods. It therefore had a large PPV but a small TPR. The StarNet catalog had similar TPR
as PCAT while having an 11% higher PPV.

The improvement of StarNet over PCAT in PPV was most pronounced for the brightest
stars (Figure 8), suggesting that some of the brightest stars in the PCAT catalog may have
in truth been collections of blended stars. The TPR for StarNet was uniformly better than
DAOPHOT across all magnitudes. Of all methods, StarNet best approximated the HST
flux distribution (Figure 9).

Table 1 also shows the number of stars inferred by each method. There are 1114 stars
in the HST catalog. For probabilistic methods (StarNet and PCAT), we display the mean
number of stars under the approximate posterior, along with the 5th and 95th percentiles.
We compute the StarNet posterior mean and quantiles by sampling from the variational
posterior. Recall that on each tile, the variational posterior on the number of stars is a
categorical random variable; to construct a distribution for the number of stars on the
whole image, we first sample from the per-tile categorical distribution, then sum over all
tiles. StarNet posterior intervals were three times wider than the PCAT intervals. The small
PCAT intervals may indicate that the MCMC sampler failed to mix well. While neither
the StarNet intervals nor the PCAT intervals cover the ground truth, though the StarNet
intervals come closer to doing so. For StarNet, we attribute the over-estimated number of
stars by StarNet to the tiling structure of the approximate posterior (Appendix C.2).

In a subsequent experiment, we go beyond the 100× 100 subimage cataloged by Feder
et al. (2020) and catalog the entire M2 globular cluster contained in a 1000 × 1000-pixel
image (Figure 6). We produce a color-magnitude diagram on this entire region (Figure 10).
On the entire region, a second distinct cluster, shifted to the right in color, appears in
addition to the main sequence of stars. The second cluster becomes more apparent after
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#Stars
Method TPR PPV F1 score mean (q-5%, q-95%)

DAOPHOT 0.20 0.65 0.31 357 –
PCAT 0.55 0.37 0.44 1672 (1664, 1680)
StarNet (our) 0.53 0.48 0.50 1462 (1430, 1497)

Table 1: Performance metrics on M2. For probabilistic methods (StarNet and PCAT) the
“#stars” columns provide the posterior mean along with the 5th and 95th posterior
percentiles for the number of stars. The number of stars in the ground-truth
Hubble catalog is 1114.
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Figure 8: True positive rate (left) and positive predicted value (right) of various cataloging
procedures on M2, plotted against r-band magnitude. Smaller magnitudes cor-
respond to brighter stars.

we filter to high-confidence stars in the StarNet catalog, defined as stars with flux posterior
standard deviation less than one. This second cluster, corresponding to a collection of red
giants, is undetectable without the ability of StarNet to scale to larger images.

However, the patterns are less definite in the StarNet color-magnitude diagram than in
the Hubble color magnitude diagram. There is more spread in the StarNet color estimates,
particularly at faint magnitudes. This is due to the superior resolution of the Hubble
telescope; near the heavily saturated core of the M2 cluster, stars are near impossible to
deblend in the SDSS image, and our performance suffers (Appendix F).

6.2 Results on the DECam Survey

We next demostrate StarNet on a larger region of the sky. The DECam survey imaged
stars in our own Milky Way, and we chose a 4000 × 2000 frame centered at coordinates
RA = 266.044◦ and DEC = −28.88111◦. See Figure 11 for an example image.
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Figure 9: Flux distributions for the r-band observations of M2. The flux distribution of the
HST catalog is in grey. Estimated distributions from DAOPHOT, PCAT, and
StarNet catalogs are overlaid. For PCAT, the flux distribution is from a single
catalog sample.

Figure 10: Color-magnitude diagrams from StarNet and Hubble. From left to right, color-
magnitude diagrams constructed from: the same 100 × 100 subimage as was
cataloged in Feder et al. (2020); the StarNet catalog derived from the entire
1000 × 1000 image of M2; that StarNet catalog, filtered to stars with posterior
SD(flux) < 1; the Hubble catalog.

The DECam image is somewhat sparser than M2. Thus, we set the Poisson mean
parameter of the star density lower smaller than on M2 to fifty stars per 100 × 100-pixel
image. This allowed us to use larger 10× 10-pixel tiles with 20× 20-pixel padded tiles. We
produced a catalog for the full 4000 × 1000 frame, consisting of 9, 000 stars. The color-
magnitude diagram shows a sequence of blue stars that are reddened at fainter magnitudes.
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Figure 11: (Left) A 1000 x 1000 pixel subregion of the DECam survey. (Right) Color mag-
nitude diagram for the DECam image. Red dashed line highlights the inferred
blue main-sequence stars

6.3 Runtime

We ran SGD to minimize the expected forward KL for 400 epochs; at each epoch, 200
images of size 100 × 100 pixels were sampled from the generative model. We performed
optimization with Adam (Kingma and Ba, 2014). On a single NVIDIA GeForce RTX 2080
Ti GPU, this fitting procedure took one hour.

After fitting the variational posterior, computing the approximate posterior (that is,
producing the distributional parameters of the variational approximation) given either the
1000 × 1000 M2 image or the 4000 × 2000 DECam image takes less than a second. By
comparison, the reported runtime of PCAT, which uses MCMC, is 30 minutes on a 100×100
pixel image (Feder et al., 2020).

The speed at inference time (which excludes training time) gives StarNet the scaling
characteristics necessary for processing large astronomical surveys. A single SDSS image is
1489×2048 pixels. Based on the reported 30-minute runtime of PCAT for a 100×100 pixel
subimage, we project that the runtime to process the full image would be 30 min×14×20 =
8400 minutes, or almost six days. The SDSS survey consists of nearly one million images,
and thus scaling PCAT to the entire SDSS survey would be infeasible. The upcoming LSST
survey will be 300 times larger than SDSS.

On the other hand, StarNet incurs a one-time cost to fit the variational distribution
with synthetic data; this cost is then amortized over a potentially large region of the sky.
Re-fitting StarNet may nonetheless be necessary when the model parameters such as the
background or PSF change—which is the case for large ground-based astronomical surveys,
where data is collected over many nights. The SDSS data processing pipeline, for instance,
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estimates a new PSF and background for each new frame. Even assuming a new StarNet
refit for each SDSS frame, StarNet is still 100× faster than PCAT.

We can further push the scalability of StarNet by amortizing over a range of model
parameters such as the background and PSF. With appropriate priors on these model
parameters, fitting StarNet using the expected forward KL enables it to generalize across a
diverse set of images and further reduce the need for retraining.

7. Conclusion

StarNet employs forward variational inference and is more accurate than both a recently
published MCMC-based probabilistic cataloger and a widely used non-model-based proce-
dure. In the framework of probabilistic modeling, StarNet produces catalog uncertainties
captured by a posterior over the set of all catalogs. Importantly, unlike current MCMC
approaches, StarNet also has the capacity to scale probabilistic cataloging to process large
astronomical surveys.

The quality of StarNet detections is the result of optimizing the forward KL, a different
objective than the one traditionally used in variational inference. Optimizing the forward
KL allows the variational posterior to be fit on large amounts of complete data (i.e., images
along with their latent catalogs) generated from StarNet’s statistical model.

While this work focuses on stars, our methodology can be extended to include more
general light sources, such as galaxies. One promising direction is to incorporate a highly
accurate deep generative model of galaxies (Regier et al., 2015; Reiman and Göhre, 2019;
Lanusse et al., 2021; Arcelin et al., 2021) into the StarNet model. The statistical framework
in this research lays the foundation for building flexible models to incorporate the cataloging
of other celestial objects.

Future astronomical surveys will produce far more data than past surveys. As telescopes
peer deeper into space, fields will reveal more sources and images will become more crowded.
The uncertainties in crowded fields necessitate a probabilistic approach. Our method holds
the promise of providing a scalable inference tool that can meet the challenges of future
surveys.
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Appendix A. Evaluating the Variational Distribution

Optimizing the expected forward KL requires evaluating qη(z | x) for a given catalog

z = {N, (`i, fi,1, ..., fi,B)Ni=1}.

By (5), it suffices to evaluate q̃η(τ
−1(z) | x), where τ is the mapping from tile latent

variables z̃ to the catalog z as described in Section 3.2, and q̃η is the distribution on tile
latent variables.

Here, τ−1(z) is a set of tile latent variables because the mapping from tile latent variables
z̃ to catalogs z is not injective, as we now explain.

Locations in the catalog {`i}Ni=1 determine the number of stars on tile (s, t). The number
of stars Ñ (s,t) is simply the count of the locations that reside within that tile:

Ñ (s,t) =

N∑
i=1

1
{
`i ∈ [Rs,R(s+ 1)]× [Rt,R(t+ 1)]

}
,

where 1{·} is the indicator function, equal to one its predicate is true if true and zero
otherwise.

Now, consider ˜̀(s,t) and f̃ (s,t), the triangular array of locations and fluxes on tile (s, t).
For each (s, t), the Ñ (s,t)-th row of the triangular array of fluxes and locations is determined
by the locations and fluxes of stars imaged in tile (s, t); they are determined by the catalog
z. However, the other rows of the triangular arrays are not determined by the catalog z;
they are free to take any value in their domain. Therefore, the mapping τ is not injective.

Thus, evaluating the probability of τ−1(z) under q̃η requires marginalizing over the rows
of the triangular arrays `(s,t) and f̃ (s,t) that are not determined by z. However, because q̃η
fully factorizes, the terms where n 6= Ñ (s,t) do not enter the product after marginalization.
On each tile (s, t),

q̃η
(
Ñ (s,t), ˜̀(s,t), f̃ (s,t) | x

)
= q̃η(Ñ

(s,t) | x)

Nmax∏
n=1

q̃η
(
(˜̀(s,t)
n,i , f̃

(s,t)
n,i )ni=1 | x

)
= q̃η(Ñ

(s,t) | x)q̃η
(
(˜̀(s,t)
n,i , f̃

(s,t)
n,i )ni=1 | x

)∣∣∣∣∣
n=Ñ(s,t)

.

In words, given a catalog z, first convert z to tile latent variables; then on each tile, it
suffices to evaluate q̃η only at the rows of triangular arrays determined by the number of
stars falling in each tile.

The last technical detail is computing the probability for a given row of a triangular
array. Let (˜̀

i, f̃i)
n
i=1 generically denote the tile latent variables in the n-th row of a triangular

array, on some tile (s, t). Because catalogs are sets, each entry (˜̀
i, f̃i) in the catalog must be

matched with corresponding variational parameters, and the probability of the set (˜̀
i, f̃i)

n
i=1

under q is given by the sum over the permutations of the possible matches:

q((˜̀
i, f̃i)

n
i=1|x) =

∑
π

{ n∏
i=1

LogitNormal(˜̀
π(i);µ`i , ν`i)× LogNormal(f̃π(i);µfi , σ

2
fi

)
}

where the sum is taken over all permutations on {1, ..., n}. This is feasible because on each
tile Nmax = 3, so we only need to enumerate 3! = 6 possibilities.
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Appendix B. Reparameterized and REINFORCE Gradients

The ELBO objective (4) is of the form

L(η) = Eqη(z)[fη(z)]. (13)

The parameter η is to be optimized, and z is the latent variable. The integrating distribution
q and the function f depend on η.

The REINFORCE estimator (Williams, 1992) is a general-purpose unbiased estimate
for the gradient of (13). It is given by

grf(z) = ∇ηfη(z) + fη(z)∇η log qη(z) for z ∼ qη(z).

The REINFORCE estimate is unbiased for the true gradient:

Eqη(z)[grf(z)] =

∫
qη(z)∇ηfη(z) dz +

∫
qη(z)fη(z)∇η log qη(z) dz

=

∫
qη(z)∇ηfη(z) dz +

∫
fη(z)∇ηqη(z) dz

=

∫
∇η[qη(z)fη(z)] dz

= ∇η
∫
qη(z)fη(z) dz = ∇ηEqη(z)[fη(z)],

assuming that f is well-behaved so that integration and differentiation can be interchanged.

In many applications, the REINFORCE estimator has too high variance to be useful.
One way to lower the variance is to introduce a control variate C (Ranganath et al., 2014),
and estimate the gradient as

gcv(z) = ∇ηfη(z) + (fη(z)− C)∇η log qη(z) for z ∼ qη(z).

This estimate remains unbiased because the score function ∇η log qη(z) is zero mean under
q.

A simple but often effective choice of control variate is to let C be a second evaluation
of fη at an independently drawn z′ ∼ q:

gcv(z) = ∇ηfη(z) + (fη(z)− fη(z′)∇η log qη(z) for z, z′
iid∼ qη. (14)

This estimate is unbiased conditional on z′ and hence unconditionally unbiased as well.
We use this control variate for our experiments involving the REINFORCE estimator in
Section 5.

Alternatively, the reparameterized gradient (Rezende et al., 2014; Kingma and Welling,
2013) can be used when there exists some distribution F not involving η and a differentiable
mapping hη such that

w ∼ F =⇒ hη(w) ∼ qη.
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For example, if qη(z) = N (z; 0, η) that is, a Gaussian with zero mean and variance η, one
possibility is to let F be the standard Gaussian and hη(w) = w

√
η. The gradient of L(η)

can then be written as

∇ηEqη(z)[fη(z)] = ∇ηEw∼F [fη(hη(w)] = Ew∼F [∇ηfη(hη(w)],

again assuming the interchangability of integrals and derivatives. Unbiased gradients arise
from the chain rule:

grp = ∇ηfη(hη(w)) = ∇zfη(z)
∣∣∣
z=hη(w)

∇ηhη(w) for w ∼ F.

The reparameterized gradient includes gradient information ∇zfη(z), while the REIN-
FORCE gradient does not. Taking into account the structure of f through its gradient
lowers the variance of reparameterized gradient in comparison to the REINFORCE gradi-
ent. However, if z contains discrete components, there cannot be a differentiable mapping
hη, and the reparameterization trick will not apply.

B.1 Gradients for the Empirical Comparison of KL Objectives

In experiments of Section 5, we used a combination of reparameterized and REINFORCE
plus control variate gradients. Let Ñ be the vector of per-tile number of stars (a discrete
component) and y be the locations and fluxes (continuous components) Our variational
distribution factorizes, so we write the expectation as

L(η) = Eqη(Ñ)Eqη(y)[fη(Ñ , y)]. (15)

We use the REINFORCE estimator with control variate (14) for the outer expectation and
the reparameterization trick for the inner expectation. We first apply REINFORCE to the
outer expectation:

∇ηEqη(Ñ)Eqη(y)

[
fη(Ñ , y)

]
= Eqη(Ñ)

[
∇η log qη(Ñ)Eqη(y)

[
fη(Ñ , y)− Eqη(Ñ)[fη(Ñ , y)]

]
+∇ηEqη(y)[fη(Ñ , y)]

]
≈ ∇η log qη(Ñ)Eqη(y)[fη(Ñ , y)− fη(M̃, y)] +∇ηEqη(y)[fη(Ñ , y)] (16)

for Ñ , M̃
iid∼ qη. Then we use the reparameterization trick for y, so

Eqη(y)[fη(Ñ , y)− fη(M̃, y)] ≈ fη(Ñ , hη(w))− fη(M̃, hη(w))

∇ηEqη(y)[fη(Ñ , y)] ≈ ∇yfη(Ñ , y)
∣∣∣
y=hη(w)

∇ηhη(w) (17)

for w ∼ F , where hη and F are chosen appropriately. Combining (16) and (17), our gradient
estimator is

g(z) = ∇η log qη(Ñ)[fη(Ñ , hη(w))− fη(M̃, hη(w))] +∇yfη(Ñ , y)
∣∣∣
y=hη(w)

∇ηhη(w). (18)

Equation (18) is what our main text called the “REINFORCE gradient.” These gradients
produced the optimization path in Figure 4(a).
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The “reparameterized” gradient in Section 5 requires integrating out Ñ . Here, we write
the outer expectation in (15) as a summation of 4Nmax+1 terms (recall our experiments have
four tiles, and at most Nmax stars per tile), with each term representing a different possible
assignment of the number of stars to each tile:

L(η) =
∑
ñ

Eqη(y)[fη(ñ, y)].

Then, the reparameterization trick is applied to each term of the summation. Stochastic
gradients are computed as,

g(z) =
∑
ñ=1

∇yfη(ñ, y)
∣∣∣
y=hη(w)

∇ηhη(w) for w ∼ F.

Gradients of this form produced the optimization path in Figure 4(b). No REINFORCE
estimates were required.

Notice that to compute these re-parameterized gradients we require a summation of
(S × T )Nmax+1 terms (recall from the main text that S × T is the total number of tiles in
an image). For large images, i.e. those requiring many tiles, computing re-parameterized
gradients would be infeasible.

Appendix C. Experiments on Synthetic Data

We present results on a set of synthetic data experiments. We first demonstrate the ability
of StarNet to deblend two simulated stars. Next, we revisit the coverage of StarNet credible
intervals. Finally, we empirically demonstrate the effect of padded tiles in our architecture.

C.1 Deblending Two Stars

We set up an experiment to study the ability of StarNet to deblend two simulated stars.
On a 20 × 20 pixel image, we simulate two stars of equal flux at distance δ pixels apart,
and examine the approximate posterior produced by StarNet (Figure A.1). We generate
the stars with the DECam PSF, which has a full width at half maximum (defined as the
diameter at which the PSF is half its peak brightness) of 4.2 pixels. The threshold of near-
perfect deblending is a distance of δ = 1.5 pixels, which is less than half the PSF full width
at half maximum.

C.2 Coverage of Credible Intervals

We have seen that on M2, the StarNet 95% posterior interval did not contain the ground
truth number of stars (Section 6.1). On M2, we attribute this to model mis-specification,
specifically due to an imperfectly estimated background.

We check the coverage of StarNet posterior intervals on synthetic data to reveal any
issues other than model mis-specification that may explain these results. We sample a
single 100 × 100 pixel image from the generative model. On this sampled image, the true
number of stars, N = 1195, is still considerably smaller than the 0.01-th percentile of the
approximate posterior distribution (Figure A.2).
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Figure A.1: (Top row) Simulated images with two stars separated by distance δ in pixels.
True locations are in blue. StarNet MAP locations in red. In these exam-
ples, the StarNet MAP catalog correctly contains two stars when separated by
δ ≥ 1.2, but only estimated one star when δ ≤ 1. (Bottom left) The probability
that N , the number of sources in the image, equals two under the variational
posterior, as δ varies. (Bottom right) The expectation of N under the varia-
tional posterior as δ varies.

Figure A.2: Distribution of 5000 samples of the number of sources from the StarNet ap-
proximate posterior. The true number of sources demarcated in red.

We attribute this over-estimation to the spatial independence of the approximate pos-
terior. Specifically, StarNet overestimates the number of sources close to tile boundaries.
Heuristically, for a a source located in the interior of the tile within ε of a boundary (but
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Figure A.3: The expected number of sources under the StarNet approximate posterior as a
function of distance from the tile edge (in pixels). On the left, we place a star
on the left-most edge, and move its location δ pixels to the right. On the right,
we place a star on the top-left corner, and move its location δ pixels towards
the bottom-right corner.

still far from a corner), StarNet should assign a probability of 1
2 for having one source, and

a probability 1
2 for having none, as ε → 0. Should this be the case, then over the entire

image, which consist of many tiles, a source on a tile boundary is correctly accounted for:
it has a 50-50 chance of being assigned to one tile or another in the approximate posterior,
and this source contributes a count of one to the posterior expectation on the number of
stars.

However, we observe empirically that as a source approaches the edge of a tile, the
posterior probability that N = 1 approaches a number slightly larger than 1

2 (Figure A.3).
Therefore, the approximate posterior overestimates the expected number of sources in the
full image.

To illustrate the effect of tiles, we simulate images with the constraint that all sources are
at least 0.1-pixels from all tile edges. In this case, then the StarNet approximate posterior
has much closer to correct coverage (Figure A.4)

C.3 Effects of Tile Padding

We study the effect of padding the input tiles to the StarNet neural network architecture.
We re-visit the investigation of tile boundary effects described in the subsection above,
where we simulate a source closer and closer to the tile boundary. The experiments above
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Figure A.4: Coverage test in simulated 100×100 images where all true stars are constrained
to be 0.1-pixels away from any tile boundary. We simulate 1000 images from
the generative model, and for each image, we compute a (1−α)-level posterior
interval for the number of stars by taking the α

2 and (1 − α
2 )-th percentiles of

5000 StarNet posterior samples. For each α, we plot the observed coverage
against the target (1− α)-level coverage.

TPR PPV F1

0 0.53 0.48 0.50
1 0.52 0.52 0.52
2 0.53 0.57 0.55
3 0.53 0.49 0.51
4 0.53 0.52 0.52
5 0.53 0.53 0.53
6 0.55 0.54 0.55
7 0.51 0.54 0.52
8 0.53 0.52 0.53
9 0.51 0.55 0.53

Table A.1: Performance metrics on M2 for ten random refits of StarNet.

used the M2 network, which uses 2 × 2 tiles and three pixels of padding. With only one
pixel of padding, sources become even more over-estimated on tile edges (Figure A.5).

Appendix D. Sensitivity to Refits

Our optimization procedure uses stochastic optimization. We evaluate the sensitivity of our
StarNet M2 performance metrics to ten random refits (Table A.1). The F1 score over the
refits range between 50% and 55%. Our comparisons to the performance of other methods,
PCAT and DAOPHOT, are unaffected by random reruns.
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Figure A.5: The same experimental setup as Figure A.3, but we study the effect of padding
the neural network input tiles. In dashed blue, the posterior when StarNet uses
three pixels of padding. In solid orange, the posterior when only one pixel of
padding is used.

Appendix E. Sensitivity to Prior Parameters

We examine the sensitivity of StarNet to prior parameters µ and α on the image M2. Recall
µ is the prior mean number of stars per pixel (1); α is the power law slope on the r-band
fluxes (2). In the results of Section 6.1, µ = 0.12 and α = 0.5.

The model is robust to these prior choices. In fact, the variation in performance metrics
due to prior choices is about the same as the variation due to random refits. Thus, for these
prior sensitivity experiments, we initialize the neural network weights using the network fit
at the original prior.

Over a range of µ between 0.08 (corresponding to an prior average of 800 stars on
a 100 × 100 image) and 0.20 (corresponding to 2000 stars) the F1-score remains steady
between 0.49 and 0.51 (Table A.2). Similar robustness in F1 hold when α varies between
0.25 and 1.0 (Table A.3).

Appendix F. Other M2 Subregions

The initial 100 × 100 subregion of M2 considered in our main paper was located at pixel
coordinates (630, 310) in SDSS run 2583, field 136, camera column 6. We evaluate StarNet
on two other subregions of M2. The first is another 100 × 100 pixel subregion of similar
density as the original; the second is in the center of globular cluster (Figure A.6).
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µ TPR PPV F1 score

0.08 0.47 0.53 0.50
0.10 0.49 0.53 0.51
0.12 0.53 0.48 0.50
0.14 0.50 0.46 0.48
0.16 0.51 0.48 0.50
0.20 0.51 0.48 0.49

Table A.2: Performance metrics on M2 as a function of the prior parameter µ. The smallest
µ, µ = 0.08 corresponds to an prior average of 800 stars on a 100× 100 image,
while the largest, µ = 0.2, corresponds to 2000 stars.

α TPR PPV F1 score

0.25 0.47 0.54 0.51
0.50 0.53 0.48 0.50
0.75 0.56 0.45 0.50
1.00 0.55 0.47 0.51

Table A.3: Performance metrics on M2 as a function of the prior parameter α.

The performance metrics on the center of the globular cluster suggest that deblending
in this region is nearly impossible — there are 15, 000 stars in this 100 × 100 subregion,
averaging to more than one star per pixel and is ten times as dense as the region considered
in the main text.

In all the considered regions, our comparison with DAOPHOT is unchanged, and we
continue to outperform DAOPHOT in F1 score (Table A.4).

Region Method TPR PPV F1 score #stars (q-5%, q-95%) True #stars

(A) DAOPHOT 0.20 0.65 0.31 357 – 1114
(A) StarNet 0.53 0.48 0.50 1462 (1430, 1497) 1114

(B) DAOPHOT 0.21 0.65 0.32 310 – 941
(B) StarNet 0.56 0.44 0.49 1384 (1352, 1416) 941

(C) DAOPHOT 0.003 0.19 0.007 293 – 15094
(C) StarNet 0.08 0.31 0.13 3306 (3258, 3355) 15094

Table A.4: Performance metrics of StarNet and DAOPHOT on the three regions labeled
“A”, “B”, and “C” in Figure A.6.
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Figure A.6: Subregions of M2 for the performance metrics in Table A.4. The subregion
labeled ”A” was cataloged in the main text.

Figure A.7: Details of the residual network blocks from Figure 3.

Appendix G. Neural Network Architecture Details

We detail the neural network architecture. Figure 3 shows a schematic of the architecture,
and Figure A.7 depicts specifically the residual network blocks.

31



Liu, McAuliffe, Regier, and LSST

The first convolutional layer (green block, Figure 3) has 17 output-channels, a kernel
size of three, a stride of one, and one pixel of padding. All convolutional layers inside
residual block 1, as well as the convolutional layers on the top row of residual block 2
(Figure A.7) also have the same parameters. Only the convolutional layers on the bottom
row of residual block 2 are different: they still have output channels of dimension 17, but
down-sample using a kernel size of one, and a stride of 2. Inside the residual blocks, the
dropout layers have dropout probability of 0.11399.

The final fully connected block (red block, Figure 3) has latent dimension 185, and a
dropout probability of 0.013123.
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