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Abstract

Reinforcement learning (RL) has shown great promise in estimating dynamic treatment
regimes which take into account patient heterogeneity. However, health-outcome informa-
tion, used as the reward for RL methods, is often not well coded but rather embedded in
clinical notes. Extracting precise outcome information is a resource-intensive task, so most
of the available well-annotated cohorts are small. To address this issue, we propose a semi-
supervised learning (SSL) approach that efficiently leverages a small-sized labeled data set
with actual outcomes observed and a large unlabeled data set with outcome surrogates.
In particular, we propose a semi-supervised, efficient approach to @-learning and doubly
robust off-policy value estimation. Generalizing SSL to dynamic treatment regimes brings
interesting challenges: 1) Feature distribution for @-learning is unknown as it includes
previous outcomes. 2) The surrogate variables we leverage in the modified SSL framework
are predictive of the outcome but not informative of the optimal policy or value function.
We provide theoretical results for our @ function and value function estimators to under-
stand the degree of efficiency gained from SSL. Our method is at least as efficient as the
supervised approach, and robust to bias from mis-specification of the imputation models.

Keywords: semi-supervised learning, @Q-learning, reinforcement-learning, dynamical
treatment regime, doubly robust value function, off-policy learning
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1. Introduction

Finding optimal treatment strategies incorporating patient heterogeneity is a cornerstone of
personalized medicine. When treatment options change over time, optimal dynamic treat-
ment regimes (DTR) can be learned using longitudinal patient data. With the increasing
availability of large-scale longitudinal data such as electronic health records (EHR) data
in recent years, reinforcement learning (RL) has shown promise in estimating such optimal
DTR (Kosorok and Laber, 2019; Schulte et al., 2014; Sonabend-W et al., 2020b; Zhou et al.,
2023; Chakraborty and Moodie, 2013). Existing RL methods include G-estimation (Robins,
2004), Q-learning (Watkins, 1989; Murphy, 2005), A-learning (Murphy, 2003) and directly
maximizing the value function (Zhao et al., 2015). G-estimation and A-learning attempt
to model only the component of the outcome regression relevant to the treatment contrast,
while Q-learning posits complete models for the outcome regression. Although G-estimation
and A-learning models can be more efficient and robust to mis-specification, QQ-learning is
widely adopted due to its ease of implementation, flexibility, and interpretability (Watkins,
1989; Chakraborty and Moodie, 2013; Schulte et al., 2014).

However, learning DTR with EHR data often faces an additional challenge of whether
outcome information is readily available. Outcome information, such as the development
of a clinical event or whether a patient is considered to have responded, is often not well
coded but rather embedded in clinical notes. Proxy variables, such as diagnostic codes or
mentions of relevant clinical terms in clinical notes via natural language processing (NLP),
while predictive of the true outcome, are often not sufficiently accurate to be used directly
in place of the outcome (Hong et al., 2019; Zhang et al., 2019; Sonabend W. et al., 2020;
Cheng et al., 2020). On the other hand, extracting precise outcome information often
requires manual chart review, which is resource intensive, particularly when the outcome
needs to be annotated over time. This challenge indicates the need for a semi-supervised
learning (SSL) approach that can efficiently leverage a small-sized labeled data £ with
true outcome observed, and a large-sized unlabeled data U for predictive modeling. It is
worthwhile to note that the SSL setting differs from the standard missing data setting
in that the probability of missing tends to 1 asymptotically, which violates the positivity
assumption required by the classical missing data methods (Chakrabortty et al., 2018).

While SSL methods have been well developed for prediction, classification, and regres-
sion tasks (e.g. Chapelle et al., 2006; Zhu, 2008; Blitzer and Zhu, 2008; Zhixing and Shao-
hong, 2011; Qiao et al., 2018; Chakrabortty et al., 2018), there is a paucity of literature
on SSL methods for estimating optimal treatment rules. Recently, Cheng et al. (2020) and
Kallus and Mao (2020) proposed SSL methods for estimating an average causal treatment
effect. Finn et al. (2016) proposed a semi-supervised RL method that achieves impressive
empirical results and outperforms simple approaches such as direct imputation of the re-
ward. However, there are no theoretical guarantees, and the approach lacks causal validity
and interpretability within a domain context. Additionally, this method does not leverage
available surrogates. In this work, we fill this gap by proposing a theoretically justified SSL
approach to Q-learning using a large set of unlabeled data U, which contains sequential
observations on features O, treatment assignment A, and surrogates W that are imper-
fect proxies of Y, as well as a small set of labeled data £ which contains true outcome Y
at multiple stages along with O, A and W. We will also develop a robust and efficient
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SSL approach to estimating the value function of the derived optimal DTR, defined as the
expected counterfactual outcome under the derived DTR.

To describe the main contributions of our proposed SSL approach to RL, we first note
two crucial distinctions between the proposed framework and classical SSL methods. First,
existing SSL literature often assumes that I/ is large enough that the feature distribution
is known (Wasserman and Lafferty, 2008). However, under the RL setting, the outcome
of the stage t — 1, denoted by Y;_1, becomes a feature of stage t for predicting Y;. As
such, the feature distribution for predicting Y; can not be viewed as known in the Q-
learning procedure. Our methods for estimating an optimal DTR and its associated value
function carefully adapt to this sequentially missing data structure. We do not make a
Markov decision process (MDP) assumption or have a partially observed MDP framework
(Kaelbling et al., 1998), as biological mechanisms of the patient’s features or treatment
may take more than one time step to manifest in the outcome. Second, we modify the SSL
framework to handle the use of surrogate variables W, which are predictive of the outcome
through the joint law Py.0 4w, but are not part of the conditional distribution of interest
Py|0,4- To address these issues, we propose a two-step fitting procedure for finding an
optimal DTR and estimating its value function in the SSL setting. Our method consists
of using the outcome surrogates (W) and features (O, A) for non-parametric estimation of
the missing outcomes (Y'). We subsequently use these imputations to estimate @) functions,
learn the optimal treatment rule and estimate its associated value function. We provide
theoretical results to understand when and to what degree efficiency can be gained from W
and O, A.

We further show that our approach is robust to mis-specification of the imputation
models. To account for potential mis-specification in the models for the @) function, we
provide a double robust value function estimator for the derived DTR. If either the regression
models for the @) functions or the propensity score functions are correctly specified, our value
function estimators are consistent for the true value function.

We organize the rest of the paper as follows. In Section 2 we formalize the problem
mathematically and provide some notation to be used in developing and analyzing the
methods. In Section 3, we discuss traditional )-learning and propose an SSL estimation
procedure for the optimal DTR. Section 4 details an SSL doubly robust estimator of the
value function for the derived DTR. In Section 5, we provide theoretical guarantees for our
approach and discuss the implications of our assumptions and results. Section 6 is devoted
to numerical experiments and real data analysis with an inflammatory bowel disease (IBD)
data set. We end with a discussion of the methods and possible extensions in Section 7.
The proposed method has been implemented in R, and the code can be found at github.
com/asonabend/SSOPRL. A reference table with the main notation used can be found in
Appendix A. An extension of the SSL algorithms to a general time horizon and simulations
can be found in appendices B and C. Finally, all the technical proofs and supporting lemmas
are collected in Appendices D and E.

2. Problem Setup

We consider a longitudinal observational study with outcomes, confounders and treatment
indices potentially available over multiple stages. The proposed semi-supervised methods


github.com/asonabend/SSOPRL
github.com/asonabend/SSOPRL

SONABEND-W, LAHA, ANANTHAKRISHNAN, CAI AND MUKHERJEE

are valid for a general time horizon, we describe them in detail in Appendix B and show
empirical results in Section 6. However, for ease of presentation, in the main text we will
use two time points of (binary) treatment allocation as follows. For time point ¢ € {1,2},
let O; € R% denote the vector of covariates measured prior at stage t of dimension dy;
A; € {0,1} a treatment indicator variable; and Y;y; € R the outcome observed at stage
t 4+ 1, for which higher values of Y1 are considered beneficial. Additionally we observe
surrogates W; € R a dy-dimensional vector of post-treatment covariates potentially
predictive of Y;11. In the labeled data where Y = (Y3,Y3)" is annotated, we observe a
random sample of n independent and identically distributed (iid) random vectors, denoted
by

L£={L;= (U], Y))"},, where Uy = (O], Ay, WJ,)" and U; = (UL, UL)".
We additionally observe an unlabeled set consisting of NV iid random vectors,

U= {fj]}é\f:l

with N > n. We denote the entire data as S = (L UU). To operationalize our statistical
arguments we denote the joint distribution of the observation vector L; in £ as P. In order
to connect to the unlabeled set, we assume that any observation vector [_jj in U has the
distribution induced by P.

We are interested in finding the optimal DTR and estimating its value function to be
defined as expected counterfactual outcomes under the derived regime. To this end, let Yt(ﬂ
be the potential outcome for a patient at time ¢ + 1 had the patient been assigned at time
t to treatment a € {0,1}. A dynamic treatment regime is a set of functions D = (di, ds),
where d;(-) € {0,1} , t = 1,2 map from the patient’s history up to time ¢ to the treatment
choice {0 1}. We define the patient’s history as Hy = [Hj,, H{;|" with H;; = ¢,(01),

Hy; = [Hi,, H};]" with Ho, = ¢4,(01, A1, O2), where {¢,,(-),t = 1,2,k = 0,1} are pre-
specified basis functlonb We then define features derived from patient history for regression
modeling as X; = [H],, AiH],]" and X, = [H],, AoHJ,]". For ease of presentation, we also

use the check symbol (i.e. Hg) to denote vectors that contain outcome Y5 when applicable.
Hence, we let Hy = (YQ,HE)T, Xy = (Y3, XI)T, for consistency we also write H; = Hy,
X, = X4, and finally we define ¥; = E[th(ﬂ We collect this and the main notation used
throughout the paper in Table 8, Appendix A.

Let Ep be the expectation with respect to the measure that generated the data under
regime D. Then these sets of rules D have an associated value function which we can

write as V(D) = Ep [ v 4 Y(d2) } Thus, an optimal dynamic treatment regime is a rule

= (d1,ds) such that V =V (D) > V (D) for all D in a suitable class of admissible decisions
(Chakraborty and Moodie, 2013). To identify D and V from the observed data we will
require the following sets of standard assumptions (Robins, 1997; Schulte et al., 2014): (i)
consistency — Y341 = t(+% I(A;=0)+ Yt(ﬂI(At =1) for t = 1,2, (ii) sequential ignorability,
also known as no unmeasured confounding — for outcomes, intermediate covariates and
surrogates: Yt(ﬂ, Oﬁa),Wga)J_AﬂHt for a € {0,1}, t = 1,2 (iii) positivity — P(4;|H;) > v,
for t = 1,2, A; € {0, 1}, for some fixed v > 0.
We will develop SSL inference methods to derive optimal DTR D as well the associ-
ated value function V by leveraging the richness of the unlabeled data and the predictive
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power of surrogate variables which allows us to gain crucial statistical efficiency. Our main
contributions in this regard can be described as follows. First, we provide a systematic gen-
eralization of the Q-learning framework, with theoretical guarantees to the semi-supervised
setting with improved efficiency. Second, we provide a doubly robust estimator of the value
function in the semi-supervised setup. Third, our @-learning procedure and value function
estimator are flexible enough to allow for standard off-the-shelf machine learning tools and
are shown to perform well in finite-sample numerical examples.

3. Semi-Supervised ()-Learning

In this section we propose a semi-supervised @Q-learning approach to derive an optimal
DTR. To this end, we first recall the basic mechanism of traditional linear parametric Q-
learning (Chakraborty and Moodie, 2013) and then detail our proposed method. We defer
the theoretical guarantees to Section 5.

3.1 Traditional @-Learning

Q-learning is a backward recursive algorithm that identifies optimal DTR by optimizing two
stage @ functions. Under the consistency, sequential ignorability and positivity assumptions
(i)-(iii), the optimal treatment is identifiable and the @ functions can be expressed as:

Q2(Ho, A) = E[Y3|Ho, Ao], and Q(Hi, 41) = E[Ys + max Q2(H2, a2)|[Hy, A4]

(Sutton, 2018; Murphy, 2005). In order to perform inference one typically proceeds by
positing models for the @ functions. In its simplest form one assumes a (working) linear
model for some parameters 0; = (8/,~v;)", t = 1,2, as follows:

Q1(Hy, Ay;09) =X767 = H] ;8] + A1 (H[;~Y),

H,, A5 09) =X309 = Y259, + HY, 3%, + As(HI,~Y S
Q2(Hz, A2;05) =X50;5 = Y2351 + Hyo B899 + A2(Hy7v3).

Typical Q-learning consists of performing a least squares regression for the second stage to
estimate 62 followed by defining the stage 1 pseudo-outcome for i = 1,...,n as

Y5 = Yo + max Q2(Hai, as; 02) = Yai(1 + fa1) + HY; 809 + [HY Ao+,

where [x]4 = zI(z > 0). One then proceeds to estimate 0. using least squares again,
with 172* as the outcome variable. Indeed, valid inference on D using the method described
above crucially depends on the validity of the model assumed. However as we shall see,
even without validity of this model we will be able to provide valid inference on suitable
analogues of the @ function working model parameters, and on the value function using a
double robust type estimator. To that end it will be instructive to define the least square
projections of Y3 and Y5 onto X, and X respectively. The linear regression working models
given by (1) have 69, 89 as unknown regression parameters. To account for the potential
mis-specification of the working models in (1), we define the target population parameters
01,6, as the population solutions to the expected normal equations

E{X:1(Y; —X]6:)} =0, and E{X,(Y;—X38:)} =0,
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where }72* = Y5 +max Qs (FIQ, as; 92). As these are linear in the parameters, uniqueness and
a2

existence for 01, @, are well defined. In fact, Q(Hy, A1;0;) = X{él, Q2(Hy, A; 05) = X;ég
are the Ly projection of E(Yy|X;) € Lo (Px,) > E(Y3|X3) € Lo (Px,) onto the subspace of
all linear functions of X1, X, respectively. Therefore, ) functions in (1) are the best linear
predictors of }72* conditional on X; and Y3 conditional on X,.

Traditionally, one only has access to labeled data £, and hence proceeds to estimate
(61,02) in (1) by solving the following sample version set of normal equations:

" Xof{Ys — (Y2, X3)02} ’ (2)
Py, [X1{Ya(1 + B21) + Hyo B9 + [H31vo]+ — X761}] =0.

P, [Xo(Ys — X3605)] =P

(Chakraborty and Moodie, 2013), where P, denotes the empirical measure: i.e. for a
measurable function f : R? — R and random sample {L;}? |, P,f = 15" | f(L;). The
asymptotic distribution for the () function parameters in the fully-supervised setting has
been well studied (see Laber et al., 2014). It is worth recalling that we use the check symbol:
“77” to denote the entire set of features available, including outcomes when available (for
t = 2), this symbol is used for both the patient history Hy, and the linear features for
the Q—functions X;. We also use bar (i.e., 0) over the variables to denote population
parameters, and we use hat (i.e., @) over the variables to denote estimated parameters. For
more detail on notation see Table 8.

3.2 Semi-Supervised Q-Learning

We next detail our robust imputation-based semi-supervised @-learning approach that lever-
ages the unlabeled data U to replace the unobserved Y; in (2) with their properly imputed
values for subjects in U. Our SSL procedure includes three key steps: (i) imputation, (ii) re-
fitting, and (iii) projection to the unlabeled data. In step (i), we develop flexible imputation
models for the conditional mean functions {(-), uo: (), t = 2,3}, where p,(U) = E(Y;|U)
and fi9¢(U) = E(Y2Y;|U). The refitting in step (ii) will ensure the validity of the SSL esti-
mators under potential mis-specifications of the imputation models.

Step I: Imputation

Our first imputation step involves weakly parametric or non-parametric prediction mod-
eling to approximate the conditional mean functions {u(-), p2:(+),t = 2,3}. Commonly used
models such as non-parametric kernel smoothing, basis function expansion or kernel ma-
chine regression can be used. We denote the corresponding estimated mean functions as
{4 (-), Mge (), t = 2,3} under the corresponding imputation models {m;(U), mg(U), ¢ =
2,3}. Theoretical properties of our proposed SSL estimators on specific choices of the im-
putation models are provided in Section 5. We also provide additional simulation results

comparing different imputation models in Section 6.

Step II: Refitting
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To overcome the potential bias in the fitting from the imputation model, especially
under model mis-specification, we update the imputation model with an additional refitting
step by expanding it to include linear effects of {X;,¢ = 1,2} with cross-fitting to control
overfitting bias. Specifically, to ensure the validity of the SSL algorithm from the refitted
imputation model, we note that the final imputation models for {Y;, Y2Y;, ¢t = 2,3}, denoted
by {fi¢(U), fis, t = 2,3}, need to satisfy

E|X{Y: ()} =0,  E{¥2 - jina(0)} =0,
E {XQ{Y?, - ﬂg(ﬁ)}} =0, E {Y2Y3 - ﬂ23(ﬁ)} =0,

where X = (1, X7, X73)". We thus propose a refitting step that expands {m:(U), mg(U),t =
2,3} to additionally adjust for linear effects of X; and/or Xa to ensure the subsequent
projection step is unbiased. To this end, let {Z,k =1,..., K} denote K random equal sized
partitions of the labeled index set {1,...,n}, and let {’\< D(0), T’?L(ztk)(U) t = 2,3} be the
counterpart of {7 (U), Mg (U),t = 2,3} with labeled observations in {1,..,n} \ Zp. We
then obtain 75, 722, 73, 723 respectively as the solutions to

K
Z Z Xi {YQi — iz (U;) —nj z} =0, Z Z {Yzz — gy (Uy) — 7722} =0,
If:l i€y, k=11i€Ty, (3)
>3 X (¥ — (0 — niXal} ~0 Z S {Vaiss — gy (Gi) — s} =0.
k=1 lGIk k= ].’LEIk
Flnally, we 1mpute Y, Y3, YZ and YoY3 respectlvely as ug( 0) = K1 Zk L mSM(0 0) +
X, us(U) = K550 msP(0) + 05X, fe(U) = K130 1m;§>( ) + mz, and
fiz3(0) = 1Zk 17%(2:?)( ) + T2

Step 1II: Projection

In the last step, we proceed to estimate 0 by replacing {Y;, Y2Y;,t = 2,3} in (2) with their
the imputed values {fi;(U), 112:(U), t = 2,3} and project to the unlabeled data. Specifically,
we obtain the final SSL estimators for 8; and 05 via the following steps:

1. Stage 2 regression: we obtain the SSL estimator for 82 as

A AT AT\T . e solution to //j23( ) [ ( ) (U) ]02 =
62 = (B2,72)" : the solution t PN[ Xo{fi3(0) — [fi2(0), X1]0:} ]

2. We compute the imputed pseudo-outcome:

Yy = iz(U) + e, Q2 (H2,M2(U),a; 92) :

3. Stage 1 regression: we estimate /0\1 = (BI,’AVI)T as the solution to:

Py {Xl(Y XTal)}

7
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Based on the SSL estimator for the Q-learning model parameters, we can then obtain
an estimate for the optimal treatment protocol as:
d; = c/l\t(Ht) = dt(Ht;/G\t), where d;(Hy, 0;) = argmax Q¢(Hy, a;0;) = I (Hj;v, > 0),t =1,2.

ac{0,1}

Theorems 2 and 3 of Section 5 demonstrate the consistency and asymptotic normality
of the SSL estimators {6;,t = 1,2} for their respective population parameters {0;,t =
1,2}, even in the case where (1) is mis-specified. As we explain next, this in turn yields
desirable statistical results for evaluating the derived policy d; = d(H;) = dy(Hy, 0,) =
argmax,c o1y Qt(He, a;6;) for t = 1,2.

4. Semi-Supervised Off-Policy Policy Evaluation

To evaluate the performance of the optimal policy D = {d;(H;),t = 1,2}, derived under
the Q-learning framework, one may estimate the expected population outcome under the
policy D:

V=E [E{Yg + E{%’HQ,AQ = d_Q(HQ)}’Hl,Al = C{l(Hl)}] .

If models in (1) are correctly specified, then under standard causal assumptions (i)-(iii)
(consistency, sequential ignorability, and positivity), an asymptotically consistent super-
vised estimator for the value function can be obtained as

Vo = Pu |Q5(FL1;01)]

where Q?(I:It;et) = Q (I:It,dt(Ht; Bt);Ot). However, I7Q is likely to be biased when the
outcome models in (1) are mis-specified. This occurs frequently in practice since Q1(Hy, Ay)
is especially difficult to specify correctly.

To improve the robustness to model mis-specification, we augment 17Q via propensity
score weighting. This gives us an SSL doubly robust (SSLpg) estimator for V. To this end,
we define propensity scores:

TI't(I:It) = P{At = 1|I:It}7 t= ].,2
To estimate {m(-),t = 1,2}, we impose the following generalized linear models (GLMs):
m(Hy; €,) =0 (H{E,), with o(z)=1/(14+e*) for t=1,2. (4)

We use the logistic model with potentially non-linear basis functions H for simplicity of
presentation, but one may choose other GLMs or alternative basis expansions to incorporate
non-linear effects in the propensity score models. One can estimate & = (£7,£3)" based on

the standard maximum likelihood estimators using labeled data, denoted by E = (EI,EQ)T
We denote the limit of E as € = (£1,€5)7. Note that this is not necessarily equal to the
true model parameter under correct specification of (4), but corresponds to the population
solution of the fitted models.

Our framework is flexible to allow an SSL approach to estimate the propensity scores.
As these are nuisance parameters needed for estimation of the value function, and SSL for
GLMs has been widely explored (See Chakrabortty, 2016, Ch. 2), we proceed with the
usual GLM estimation to keep the discussion focused. However, SSL for propensity scores
can be beneficial in certain cases, as we show in Proposition 9.
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4.1 SUP; Value Function Estimation

To derive a supervised doubly robust (SUPpg) estimator for V overcoming confounding in
the observed data, we let @ = (07,£")" and define the inverse probability weights (IPW)
using the propensity scores as

di(Hy;01)A1 | {1 —di(Hy;01)H{1 - A4}

H,A,0) = L ) | .
rHn 4 ©) m1(H1;€1) 1 —m(Hy;6) o
enlFe, 42,0) =, ) (2R 4 LEQBRAL))
182 — 1€9

Then we augment Q$(H;; 51) based on the estimated propensity scores via
Vipog (L ©) = Q5 (Hy; 01)+wi (Hy, A1, ©) [YQ - {Q?(Hl,gl) - Qg(Hz;az)H
+wa(Ha, A2, ©) {Ys - Qg(ﬂz;az)}
and estimate V as
Vauwon, = P { Vourog (1:©) . (5)

Remark 1 Importance-sampling value function estimators employ similar augmentation
strategies. See, for example, the estimators shown in (10) in Jiang and Li (2016a) and
(8) in Thomas and Brunskill (2016b). However, these consider a fized policy, and we
account for the fact that we estimate the DTR with the same data set. The construction of
augmentation in ‘//\'SUPDR also differs from the usual augmented IPW estimators (Chakraborty
and Moodie, 2013). As we are interested in the value had the population been treated with
policy D and not a fized sequence (A1, As), we augment the weights for a fived treatment
(i.e., Ay = 1 fort =1,2) with the propensity score weights for the estimated regime I(Ay =
di), t = 1,2. Finally, we note that this estimator can easily be extended to incorporate
non-binary treatments.

The supervised value function estimator ‘7SUPDR is doubly robust in the sense that if

either the outcome, or the propensity score models are correctly specified, then ‘/}SUPDR By

in probability. Moreover, under certain reasonable assumptions, Vsyp,, is asymptotically
normal. Theoretical guarantees and proofs for this procedure are shown in Appendix F.1.

4.2 SSLpg Value Function Estimation

Analogous to semi-supervised Q-learning, we propose a procedure for adapting the aug-
mented value function estimator to leverage U/, by imputing suitable functions of the
unobserved outcome in (5). Note that since H, involves Y5, both w2<H2,A2;®) and
Qg(I:IQ; 02) = Ya521+Q5_(Ha; 62) are not available in the unlabeled set, where Q9_(Ha; 02) =

H3 B840 + [H)v2]+. By writing Veye, (L ©) as
Vitpps (L; ©) = QF(Hy; 81)+wi (F1, A1, ©) {(1 + Ba1)Yo — Q3(Hy,01) + ng(Hz;az)}

+wy(Hy, Ay, ©) {Yz«: — B Ya — Qg_(H%az)} ;
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we note that to impute Vsyp,,, (L; (:)) for subjects in U, we need to impute Y, wo(Hy, Ao; @),
and Yywy(Hg, Ay; ®) for t = 2,3. We define the conditional mean functions

p5(0) = E[V2|0], 118, (0) = Elwa(Hy, A5;©)[U],  pifl,, (U) = E[Yiws(Hs, Ay; ©)[U],

for t = 2,3, where ® = (8',£")". As in Section 3.2 we approximate these expectations using
a flexible imputation model followed by a refitting step for bias correction under possible
mis-specification of the imputation models.

Step I: Imputation

We fit flexible weakly parametmc or non-parametric models to the labeled data to ap-
proximate the functions {u3(U), e, (U),u}{m(ﬁ), t = 2,3} with unknown parameter ©,
estimated via the SSL @)-learning as in Section 3.2 and the propensity score modeling as dis-
cussed above. Denote the respective imputation models as {mg(U), mu, (U), my, (U), t =
2,3} and their fitted values as {#2(U), i, (U), Mg, (U), t = 2,3}

Step II: Refitting

To correct for potential biases arising from finite sample estimation and model mis-
specifications, we perform refitting to obtain final 1mputed models for {Yg,wg (Ho, Ag, 0),
Yiwp(Hp, A2; @), t = 2,3} as {f5(U 0) = ma(0) + n3, 1%, (0) = me, (0) + n,, fif,,, (0) =
Mty (U)—l—ntw2 ,t =2,3}. Asfor the estimation of 8 for -learning case, these refitted models
are not required to be correctly specified but need to satisfy the following constraints:

E [Wl(ﬂlaA1§ O) {YQ — i5(0 H =0
E [Qg_(ﬁ;%) {wz(H2jA2; ©) — ., (U H =

E [wz(Hg,Ag, @)Y, Mw(ﬁ)} —0,t=2,3.

)
)

To estimate n3 n,, and 7;,, under these constraints, we again employ cross-fitting and
obtain 7y 7, and 7, as the solution to the following estimating equations

K
33 wi(Hiy, A1 ©) {YQ — WM (0;) — } =0,

k=1i€T}

K
Z Z Q3_(U;;65) {WZ(H2i7A2i§ ©) — MG (U;) — w?} =0, (6)

k=14i€Ty

K
Z Z {WQ(I:IQi, Agi; @)thz mfif; (ﬁl) — ﬁfu&} = 0, t = 2, 3.

k=11i€Zy

The resulting imputation functlons for Yg,wz(ﬂg,Ag; ©) and thg(Hg,AQ, ®) are re-
spectively constructed as 73(U) = K~ S0 m$™ (U)+7, ,uWQ(U) = K8 M, (0)+

10



SEMI-SUPERVISED OFF-POLICY REINFORCEMENT LEARNING AND VALUE ESTIMATION FOR DTRS

%27 and ﬁ?zf)wg( ) 1Zk lml(f(ﬁ2)< )—"_;7\%)0.)27 fort:273'
Step III: Projection, Semi-Supervised Augmented Value Function Estimator

Finally, we proceed to estimate the value of the policy V, using the following semi-
supervised augmented estimator:

‘/}SSLDR =Py {VSSLDR (ﬁa éa /7)} ) (7)

where 17SSLDR(6) is the semi-supervised augmented estimator for observation U defined as:

Visig (03 ©,70) =Q7(FL1301) + wi (i, 41,0) | (1+ Ba)i5(0) — Q3 (FL1; 01) + Q5 (i 62)
1300, (U) — Barfize, (U) — Q5 (Ha; 82)fin, (0).

The above SSL estimator uses both labeled and unlabeled data along with outcome
surrogates to estimate the value function, which yields a gain in efficiency as we show in
Proposition 9. As its supervised counterpart, VSSLDR is doubly robust in the sense that if
either the @ functions or the propensity scores are correctly specified, the value function
will converge in probability to the true value V. Additionally, it does not assume that
the estimated treatment regime was derived from a different sample. These properties are
summarized in Theorem 7 and Proposition 8 of the following section.

5. Theoretical Results

In this section we discuss our assumptions and theoretical results for the semi-supervised
Q-learning and value function estimators. Throughout, we define the norm ||g(z)||,p) =

\/ [ 9(z)?dP(x) for any real valued function g(-). Additionally, let {U,}, and {V,} be two

sequences of random variables. We will use U,, = Op(V},,) to denote stochastic boundedness
of the sequence {U,,/V,,}, that is, for any € > 0, 3M,, n. € R such that P (|U,/V,| > M) <€

Vn > ne. We use U,, = op(V},) to denote that U, /V, Eo.

5.1 Theoretical Results for SSL ()-Learning

Assumption 1 (a) Sample size forU, and L, are such that n/N — 0 as N,n — oo, (b)
H, € H, X, € X, have finite second moments and compact support in Hy C R?, X, C RPt
t = 1,2 respectively (c) X1, Xo are nonsingular.

Assumption 2 Functions ms, s € {2,3,22,23} are such that (i) supg Ims(U)| < oo, and
(ii) the estimated functions 1 satisfy (ii) supg ms(U) — mg(U)| = op(1).

Assumption 3 Suppose ©1,02 are open bounded sets, and pi,p2 fixed under (1). We
define the following class of functions:

Qi ={Q: X1 > R|§; €O CR"}, t=1,2.

11
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Further suppose for t = 1,2, the solutions for E[S?(8;)] = 0, i.e., 01 and 0 satisfy

9

267 Y5 — Q1(X1;01)]]3.

0 .
55(62) = o7 l1Ys — Q2(X2;62)|3, 57(61) =
00,
 The target parameters satisfy 0; € Oy ,t = 1,2. We write 3,4, as the components of
0, according to (2).

Assumption 1 (a) distinguishes our setting from the standard missing data context. Theo-
retical results for the missing completely at random (MCAR) setting generally assume that
the missingness probability is bounded away from zero (Tsiatis, 2006), which enables the
use of standard semiparametric theory. However, in our setting one can intuitively consider
the probability of observing an outcome being % which converges to 0.

Assumption 2 usually follows when imputation functions are bounded— which is natural
to expect from the boundedness of the covariates. This is the case for many practical
settings, including clinical history variables. We also require uniform convergence of the
estimated functions to their limit. This allows for the normal equations targeting the
imputation residuals in (6) and Appendix (B) (for the 7' > 2 case) to be well defined.
Moreover, several off-the-shelf flexible imputation models for estimation can satisfy these
conditions. See for example, local polynomial estimators, basis expansion regression like
natural cubic splines or wavelets (Tsybakov, 2009). In particular, it is worth noting that
we do not require any specific rate of convergence. As a result, the required condition is
typically much easier to verify for many off-the-shelf algorithms. It is likely that other classes
of models such as random forests can satisfy Assumption 2. Recent work suggests that it
is plausible to use the existing point-wise convergence results to show uniform convergence.
(see Scornet et al., 2015; Biau et al., 2008). Using some L, -type guarantee might be possible
with extra care in the analysis, but that is out of the scope of the present paper.

Assumption 3 is fairly standard in the literature and ensures well-defined population
level solutions for Q-learning regressions 6 exist, and belong to that parameter space. In
this regard, we differentiate between population solutions 6 and true model parameters
0° shown in equation (1). If the working models are mis-specified, Theorems 2 and 3 still
guarantee that 0 is consistent and asymptotically normal centered at the population solution
0. However, when equation (1) is correct, 0 is asymptotically normal and consistent for
the true parameter 8°. Now we are ready to state the theoretical properties of the semi-
supervised Q-learning procedure described in Section 3.2.

Theorem 2 (Distribution of 52) Under Assumptions 1-5, 8 satisfies
~ 1 & _ d _
V(0 — 6y) = 3; 1% > 4y (Li; 02) +op (1) 5 N(O,VQSSL<92)),
i=1

where Bo = E[XyX7)] is defined in Section 2, the influence function v, is given by

(L) = | 28 jizs(0)} = Ba1{YZ — 12 (U)} — Q- (Ha, Az; 02){Y: — ia(U)}
2 Xo{Ys — fi3(0)} — Bar Xo{ V2 — fi2(0)} ’

and VQSSL(éQ) = Eg_lE [¢2(L§ 92)'¢'2(L; éQ)T] (22_1)T‘

12
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We hold off remarks until the end of the results for the Q-learning parameters. Since
the first stage regression depends on the second stage regression through a non-smooth
maximum function, we make the following standard assumption (Laber et al., 2014) in
order to provide valid statistical inference.

Assumption 4 Non-zero estimable population treatment effects v,, t = 1,2: i.e., the pop-
ulation solution to (2), is such that (a) H374 # 0 for all Hay # 0, and (b) 7, is such that
H7,7, # 0 for all Hi; # 0 almost everywhere.

Assumption 4 yields regular estimators for the stage one regression and the value func-
tion, which depend on non-smooth components of the form [z],. This property is needed
to achieve asymptotic normality of the @Q-learning parameters for the first stage regres-
sion. Note that the estimating equation for the stage one regression in Section 3.2 includes
[H375] - Thus, for the asymptotic normality of 61, we require \/nP, (H3,72), — HI7,],)
to be asymptotically normal.

We also note that this requirement is automatically guaranteed as long as Hj; contains
at least one continuous covariate, as this implies P (H3,;45, = 0) = 0 (analogous for 7;).
Several feature covariates in the DTR. context are continuous, e.g., blood pressure, blood
sugar level, blood cholesterol levels, body temperature, weight, etc. Violation of Assumption
4 will yield asymptotically biased and non-regular Q)-learning estimates, which translate into
poor coverage of the confidence intervals (see Laber et al. (2014) for a thorough discussion
on this topic). This is why Assumption 4 is fairly standard in @Q-learning, A-learning, etc.
(Chakraborty and Moodie, 2013; Schulte et al., 2014; Laber et al., 2014; Robins, 2004;
Tsiatis et al., 2019).

Theorem 3 (Distribution of 61) Under Assumptions 1-3, and 4 (a), 6, satisfies

. _ 1 & _ d _
\/15(01 — 01) = 21 1% Zwl(L“ 01) + 0]}1)(1) — N<O,V155L(01)>
i=1
where 7' = E[X1X]], the influence function v, is given by

1 (L;61) =X (1 + B ){Yz — 12(0)} + E [Xy (Yo, H)] 5, (L; 62)
+E [X Hy, [H3 52 > 0] P (HE; 75 > 0) 4., (L; 02),

Vi (01) :721_1E [41(L; 01)1, (L; 61)] (EII)T, and pg,, ., are the elements corre-
sponding to By, vo of the influence function vy defined in Theorem 2.

Remark 4 1 ) Theorems 2 and 3 establish the \/n-consistency and asymptotic normality
of 01,92 for any K > 2. Beyond asymptotic normality at \/n scale, these theorems also
provide an asymptotic linear expansion of the estimators with influence functions ¥, and
1y respectively. For extension and discussion of the method for T > 2 stages see Appendiz
B.

2) Viss(0), Vass (0) reflect an efficiency gain over the fully supervised approach due to
sample U and the surrogates contribution to prediction performance. This gain is formalized
in Proposition 5 which quantifies how correlation between surrogates and outcome increases

13
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efficiency.
3) Let v = [1p1,93]", we collect the vector of estimated Q-learning parameters @ = (671,03)7,
then under Assumptions 1-3, 4 (a), we have

n

1 _ d _
with Ves (0) = Z7'E [(L; 0)(L; 0)"] (271)".
4) Theorems 2 and 3 hold even when the Q functions are mis-specified, that is, 51,52 are
consistent and asymptotically normal for 01,05. Furthermore, if model (1) is correctly

specified then we can simply replace 0 with 0° in the above result.
5) We estimate Vg (0) via sample-splitting as

V(0 - 6) ==

~

~ N ~—1
VSSL(O) =X

K(G) (2 )T, where

AB) =1 33w (1:0) v (1:0)

k=11i€Zy
S =P, {X;X]}, t=1,2.

Note that we can decompose v into the influence function for each set of parameters,

for example, we have 1, = ('ng, I{?)T where

¥, (L:82) = Han Ay [{¥s — fi3(0)} = B (V2 — 2O} .

Thus, we can decompose the variance-covariance matrix into a component for each param-
eter, the variance-covariance for the treatment effect for stage 2 regression =y, is

E [, (L; 02)1),,(L; 02)'] = E [HQnglAg {Y?» — 13(0) — B (Y2 - ﬂ2(ﬁ)> }2] -

This gives us some insight into how the predictive power of U", which contains surrogates
W1, Wy, decreases uncertainty of parameter estimates, yielding smaller standard errors.
This is the case in general for the influence fun/c\tions of estimators for 81, 85. We formalize
this result with the following proposition. Let 6, be the estimator for the fully supervised
Q-learning procedure (i.e. only using labeled data), with influence function and asymptotic
variance denoted as g, and Vgyp respectively (see Appendix D.1 for the derivation and
exact form of g, and Vyp).

For the following proposition we need the imputation models i, s € {2,3,22,23} to

—

satisfy additional constraints of the form E {XgXE{Yng - /7,23(U)}} = 0. We list them in

Assumption 7, Appendix D.1. One can construct estimators which satisfy such conditions
by simply augmenting 14, 122, 13, 723 in (3) with additional terms in the refitting step.

Proposition 5 Under Assumptions 1-3, 4 (a), and 7 then

T

VSSL(é) = VSUP(é) -2 War [¢SUP(L; é) — s (L é)] (Zil)

14
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Remark 6 Proposition 5 illustrates how the estimates for the semi-supervised Q-learning
parameters are at least as efficient, if not more so, than the supervised ones. Intuitively,
the difference in efficiency is explained by how much information is gained by incorporating
the surrogates W1, Wy into the estimation procedure. If there is no new information in the
surrogate variables, then residuals found in 1 (L; 0) will be of similar magnitude to those in
YPeup(L; 0), and thus the difference in efficiency will be small: Var [1hgp(L; 0) — theg (L3 0)] ~
0. In this case both methods will yield equally efficient parameters. The gain in precision is
especially relevant for the treatment interaction coefficients ~v1, 7y, used to learn the dynamic
treatment rules. Finally, note that for Proposition 5, we do not need the correct specification
of Q functions or imputation models.

5.2 Theoretical Results for SSL Estimation of the Value Function

If model (1) is correct, one only needs to add Assumption 4 (b) for Py{Q?(H;;61)} to
be a consistent estimator of the value function V (Zhu et al., 2019). However, as we
discussed earlier, (1) is likely mis-specified. This motivates the use of our doubly robust
semi-supervised value function estimator. We also show our estimator is asymptotically
normal and achieves efficiency equal to or exceeding that of the corresponding supervised
estimator. To that end, define the following class of functions:

Wi ={m: He = R|E, € U}, t=1,2,
under propensity score models 71, 9 in (4).

Assumption 5 Let the score population equations IE [Sf(ﬁt;gt)] = 0,t = 1,2 have solu-

tions &€, &, where

SF(Hi &) =5 log |m(HLi €)1 —m(His )} 074 1 = 1.2

0&

(i) Q1,90 are open, bounded sets and the population solutions satisfy &, € Q,t = 1,2,

(ii) for €,t =1,2, inf m (H;; &) >0,
HieH,

(iii) Finite second moment: E {Sf(I:It; G)t)Q} < 00, and Fisher information matrix
E [%Sf(lzlt; @t)} exists and is non singular,

(iv) Second—order partial derivatives of S; (Ht, ©,) with respect to & exist and for every Hy,
and satisfy [0S (Ht, ©,)/0€,0€;| < Si(Hy) for some integrable measurable function Sy in
a neighborhood ofE

Assumption 6 Functions ma, My,, Miw, t = 2,3 are such that (i) supg Im(U)| < o0, and
(i1) the estimated functions 1 satisfy (ii) supg |75 (0) — ms(0)] = op(1),
s € {2,wsa, 2wy, 3wa }.

Assumption 5 is standard for Z-estimators (see Vaart, 1998, Ch. 5.6). Finally, we use Pt
and 1Y to denote the influence function for 5, and @ respectively. We are now ready to
state our theoretical results for the value function estimator in equation (7). The proof,
and the exact form of 1,b§ can be found in Appendix D.2.
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Theorem 7 (Asymptotic Normality for ‘//\;SLDR) Under Assumptions 1-6, YA/SSLDR defined
in (7) satisfies

Vvn {‘/}SSLDR —Es [VSSLDR (L; ©, 1) M } \F Z ¢SSLDR ©) +op (1),

where
d 2
\f Z?’/}SSLDR ) =N (07 JSSLDR> .
Here
w;}SLDR(L7®) VSSLDR(L 6) +1,b6 /VSUPDR L @)d]P)L ~
=0

)

0=0
Vs (13 ©) =1 (L1, A1; ©1) (14 Bar) {¥o = 5(0) } + wa(Fl, As, ©2)Y; — e, (0)

—Ba1 {w2(ﬂ2, A3, 09)Ys — ﬂ2w2(ﬁ)}

—Q5_(Hy; 65) {WQ(I:I% A2, 0,) — ﬂwQ(ﬁ)} ,

+'€b5 6£/VSUPDR ; ©)dPy,

UESLDR =K [wg’SLDR (L; @)2] , and Vsypy (L; ©) is as defined in (5).

Proposition 8 (Double robustness of ‘//\YSSLDR as an estimator of V) (a) If either
|Qe(Hy, Ar; 01) — Qu(He, At)|lpym) — 0, or [|me(He; &) — mi(He)|[2,) — 0
fort = 1,2, then under Assumptions 1-6, Vs, satisfies

A~ IPJ —
Vesipe — V-

(b) If |’Qt(I:It7At;5t) - Qt(Ht,At)HL2(P)HTFt(I:It;Et) - 7Tt(I:It)HL2(IED) = Oop (TF%) Jort =

1,2, then under Assumptions 1-6, ‘A/SSLDR satisfies
= -\ d
Vit (Vosign = V) =5 N (0,02, ) -

Note that our positivity assumptions guarantee overlap of the propensity scores. In
particular, the positivity assumption (iii) in Section 2 guarantees that m(Hy), ¢t = 1,2
are bounded away from zero almost everywhere; this translates into having distribution
overlap between both treatments. As for the models, if they are correctly specified, then
from assumption (iii), the logistic estimators 7 can not be too small. If, in the other case,
the propensity score models are mis-specified, Assumption 5(ii) guarantees that the target
parameters of 7’s are bounded away from zero, which translates into the limits of 7’s being
bounded as well.

Next we define the supervised influence function of estimator ‘/;;UPDR (see Theorem 19 and

corresponding proof in Appendix F.1). Let 1/J§UP, be the influence function of the supervised
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estimator §5UP for model (1). The influence function, and variance of the Value Function
Vor defined in (5) are

ngPDR (L5 (:)) :VSUPDR (L; (:)) — Eg [VSUPDR (L; (:))]

0
FOL(L)T 5 [ Ve (Ls @)

0
+ ﬁL T— VSUPDR L,@ dP s
U [ Vg (i O)Ey

O= 0=06

JSZUPDR =E { :UPDR (L; 6)2} .

The flexibility of our SSL value function estimator Vss . allows the use of either super-
vised or SSL approach for estimation of propensity score nuisance parameters . For SSL
estimation, we can use an approach similar to Section 3.2, (see Chakrabortty et al., 2018,
Ch. 2 for details). This allows us to quantify the efficiency gain of Vesigr V8- Veuppr DY
comparing the asymptotic variances. In light of this, we assume SSL is used for & when
estimating Vs -

Before stating the result we discuss an additional requirement for the imputation mod-
els. As for Proposition 5, models fi5(U), ﬂgz(ﬁ), ﬂfwg(ﬁ), t = 2,3 need to satisfy a few
additional constraints of the form

E w1 (F1, 41:©1)Q5(Ha:00){Y2 - 3(0)}| =0.

As there are several constraints, we list them in Appendix D.2, and condense them in
Assumption 8, Appendix D.2. Again, one can construct estimators which satisfy such
conditions by simply augmenting 73, 13, nf,,, t = 2,3 in (6) with additional terms in the
refitting step.

Proposition 9 Under Assumptions 1-6, and 8, asymptotic variances USQSLDR, USQUPDR satisfy
2 2 z 5
O = ooy, — VT Yoy (L3 ©) — vty (L ©)].

Remark 10 1) Proposition § illustrates how ‘/}SSLDR is asymptotically unbiased if either the
Q functions or the propensity scores are correctly specified.

2) An immediate consequence of Proposition 9 is that the semi-supervised estimator is at
least as efficient (or more) than its supervised counterpart, that is Var WSSLDR(L;@)] <
Var [wsupDR(L; C-))] As with Proposition 5, the difference in efficiency is explained by the
information gain from incorporating surrogates.

3) To estimate standard errors for VSSLDR(I_j;C:)), we will approximate the derivatives of
the expectation terms 8% stupDR(L; ©)dPy, using kernel smoothing to replace the indica-
tor functions. In particular, let Ky(x) = %o(a:/h), o defined as in (4), we approrimate
di(H¢, 02) = I(Hf;~v, > 0) with Kp(Hj;v,) t = 1,2, and define the smoothed propensity
score weights as

A Ky(Hvy) {1 — Ab {1l — Kp(H};v1) }

01(Hi, A1,0) = : - , and

WHL AL O) = i e 1— i (Fy;€))

. . Ao, (H 1— Ag)} {1 — K, (HJ,

52(Ha, Az, ©) = @1 (Hy, Ay, ©) 2 hv( 21’72) { 2}{ h h( 21’)’2)}
m2(Hg; &y) 1 — m2(Ha; &5)
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We simply replace the propensity score functions with these smooth versions in

v (L; @), detail is given in Appendiz D.2.1. To estimate the variance we use a sample-

SSLpRr
split estimator:

K
o, =1 YD s (Ui 0)%

k=11i€Zy,

5.3 Related Literature

There is a significant amount of work that uses surrogate variables for estimating treatment
effects. Applications range from economics and education to healthcare. Prentice (1989);
Begg and Leung (2000) propose to use surrogate endpoints for randomized trials. These
surrogates are proxies of the missing outcomes and usually require the outcomes to be
independent of treatment when conditioned on the surrogate. While helpful in establishing a
theoretical framework, this assumption is usually hard to validate in practice. For example,
unmeasured confounding between a long-term outcome and the chosen surrogate would
invalidate this assumption. Athey et al. (2019) provide a solution in this problem space
by combining several short-term outcomes into a surrogate index, their work provides an
introduction to using surrogates for treatment effect estimation and further development
of the surrogate index. This surrogate index assimilates to our approach because it is a
good proxy of the outcome. However, the short-term outcomes used in the index are not
only proxies but outcomes relevant as direct effects of the intervention. In our case, the
surrogates are only correlated with the outcome of interest through the joint probability
law Py 0,4,w but are not relevant to the conditional law of interest Py|o o used to find
the optimal policy.

In line with our approach, Pepe (1992) proposes using labeled and unlabeled data to esti-
mate regression parameters, a valuable framework for average treatment effect estimation.
More recently, Kallus and Mao (2020) proposed SSL methods for estimating an average
causal treatment effect and using semi-parametric efficiency to show efficiency bounds on
the ATE. However, both methods focus on a single time step. A key difference is that we
are interested in the conditional treatment effect, which is needed to learn an optimal policy
function. Also, the approach of Kallus and Mao (2020) assumes a missing at random set-
ting, whereas we have a missing completely at random setting by design, as we first sample
health records randomly and then label them. Alternatively, Chapter 4 of Van der Laan
and Rose (2018) gives an overview of DTR using targeted learning theory. Both frameworks
differ from our approach as we require that the probability of missingness goes to one as
both labeled and unlabeled samples increase in size.

Davidian et al. (2005) use a semi-parametric approach to propose a consistent estimator
for the average treatment effect under missing follow-up data. Chakrabortty et al. (2022)
provide a survey of semi-supervised causal inference for estimating average and quantile
treatment effects. To the best of our knowledge, this is the first work to propose estimating
the time-dependent conditional treatment effect for policy learning in the missing outcome
space. As previously discussed, Finn et al. (2016) proposed a semi-supervised RL method
that achieves good empirical results and outperforms simple approaches such as direct
imputation of the reward. However, the method does not leverage surrogates; there are no
theoretical guarantees, and the approach lacks causal validity.
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As to doubly robust estimation of DTRs, Dudik et al. (2011); Thomas and Brunskill
(2016a); Kallus and Uehara (2020b) consider doubly robust policy evaluation; see also
Murphy et al. (2001). A key difference between these approaches and our work is that the
policy they evaluate is a pre-existing fixed function.

Another line of research focuses on doubly robust policy learning. They optimize a
doubly robust value function estimator over a rich class of functions to estimate the optimal
policy. To the best of our knowledge, existing work in this direction either takes T' = 1
(Athey and Wager, 2021; Zhou et al., 2022a; Zhao et al., 2019; Bennett and Kallus, 2020),
or does not provide theoretical guarantees (Zhang et al., 2013; Sonabend-W et al., 2020a).
The associated optimization is generally complicated unless the search space for the policies
is sufficiently small (Zhou et al., 2022b). Their estimate is doubly robust in the sense that if
either the @) function or the propensity scores are correct, their value estimate is consistent
for the optimal value function. See also Tsiatis et al. (2019) Ch. 2 for a discussion of doubly
robust estimation of causal effects. Our work differs from these types of approaches because
we use the ) functions to estimate the optimal policy and then estimate the value function
of such policy using a doubly robust estimator. Therefore, our target policy is not the
underlying optimal policy but the best one attainable by linear approximations of our
functions. This target policy only matches the optimal treatment policy if the used models
are correctly specified. This characteristic is expected because ours is a purely model-based
approach not depending on complicated optimization, likely necessary for doubly robust
estimation of the true value function.

6. Simulations and Application to Electronic Health Record Data:

We perform extensive simulations to evaluate the finite sample performance of our methods
for T = 2,3,5,7. Additionally we apply our methods to an EHR study of treatment response
for patients with inflammatory bowel disease to identify the optimal treatment sequence for
each patient. These data have treatment response outcomes available for a small subset of
patients only.

6.1 Simulation Results

We compare our SSL @-learning methods to fully supervised @-learning using labeled data
sets of different sizes and settings. We focus on the efficiency gains of our approach. First
we discuss our simulation settings, then go on to show results for the ) function parameters
under correct and incorrect working models for (1). We then show value function summary
statistics under correct models, mis-specification for the @@ models in (1), and the propensity
score function 72 in (4). Finally we show the correct and mis-specified results for a general
T > 2 time horizon setting (see Appendix B for the extension of the methods to a general
time horizon).

Following a similar set-up as in Schulte et al. (2014), we first consider a simple sce-
nario with a single confounder variable at each stage with Hig = Hyp = (1,01)7, Hyy =
(Y2,1,01,A1,01A1,02)7, and Hy; = (1,A;,02)". Specifically, recalling that o(z) =
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1/(1 + e~ 1), we sequentially generate

Or~Bern(0.5), Ay ~ Bern(o {H[p&1}), Y ~ N (X169, 1),
Oy ~ N (H336°,2), Ay ~ Bern (0 {HJ(&5 +€5,03}), and Y3~ N(m3{Ha},2),

where m3{Ha} = HI B9 + As(HLAY) + 89,03V sin{[03(Yz + 1)]7}. Surrogates are
generated as Wy = |Yip1 + Zi), Zy ~ N(0,02;), t = 1,2 where [z] corresponds to the
integer part of x € R. Throughout we let €0 = (0.3,-0.5)7, 8% = (1,1)7, 49 = (1,-2)7
6° = (0,0.5,-0.75,0.25)", €9 = (0,0.5,0.1, 1, —0.1)T B9 = (.1,3,0,0.1, 0.5, —0.5)", 49 =
(1,0.25,0.5)".

We consider an additional case to mimic the structure of the EHR data set used for
the real-data application. Outcomes Y; are binary, we use a higher number of covariates
for the @ functions and multivariate count surrogates W, t = 1,2. Data is simulated with
H, = (1, Ol, ey Oﬁ)T, H; = (1, 02, C ,06)T, I:IQO = (3/2, 1, 01, C ,06,A1, Zo1, ZQQ)T,
and Hoy = (1,01,...,04, A1, Z21, Z22)", generated according to

O; ~ N(0, Ig), Ay ~ Bern(a{H],€%}), Ys ~ Bern(a{X]69}),
0O, = [I {Zl > 0},]{22 > O}]T Ay ~ Bern (mg{Hgo}) , and Y3~ Bern m3 {Hgo} ,

with 1y = o {H%Sg + 502}, g(Fy) = HYB3 + Ao (HE,¥9) + B, 022 sin{[|0s[3/(V2 +
1)} and Z; = Ouélo + €., €, ~ N(0,1) I = 1,2. The dimensions for the @ functions are
13 and 37 for the first and second stage respectively, which match with our IBD data
set discussed in Section 6.2. The surrogates are generated according to W, = [Z;],
with Z; ~ N (a'(1,0y, Ay, Y;), I). Parameters are set to £ = (—=0.1,1,-1,0.1)7, B9 =
(0.5,0.2,—1,-1,0.1,-0.1,0.1)7, 4% = (1, -2, -2, -0.1,0.1, - 1.5)T,

€9 =1(0,0.5,0.1,—1,1,-0.1)7, 89 = (1, 8%,0.25, -1, —0.5)",

~9 = (1,0.1,-0.1,0.1,-0.1,0.25, —1,—0.5)", and a = (1,0,1)".

Finally, we demonstrate how the method generalizes to T' > 2 stages. We extend our
continuous simulation set-up into a data generation process which depends recursively on
previous time steps at any given stage. The first stage has a single covariate: Hip = Hy; =
(1,01)7, then for t = 2,...,T we have Hyg = (Ya,...,Y;, 1,041, A;_1,0;_14;_1,0;)7, and
Hy = (1,A;-1,0;)". We generate the data for the first stage as

O1 ~ Bern(0.5), A; ~ Bern(o {H](&}}), Yo ~ N (X]69,1),

we then proceed sequentially for ¢t = 2,...,T 4+ 1 generating data according to the following
models:

Oy ~ N([1,04-1, Ai—1,01-1A11]"67,2),  Yip1 ~ N(my {Hy},2), and
Ay ~ Bern (0 {[17 Op-1,At—1,0¢-144-1, Oy, Yt—l]TEg + f?* sin O?}) .

Y + 1)1}

where m; {Hy} = HtO ¢ + Ad(H] YY) + BLOMY: Sln{[ 7(
= (1,-0.2)",

Throughout, we let €9 = (0.3, -0.5)", 89 = (0.1, 1)",
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89 = (0,0.5,-0.75,0.25,1)7, ¢Y = (0,0.5,0.1, -1, -0.1,1)", 3% = (0.1,0,0.1, —0.5, —0.5,0.1)7,
¢ = (1,0.25,0.5)T. Surrogates are generated as W; = |Yip1 + Z;], Z; ~ N(0,02,), where
|z] corresponds to the integer part of z € R.

For two-stage settings, we fit models Qq(Hy, A1) = H],8Y + A; (H];7Y), Q2(Ha, Ag) =
17,35 + A2(HL,~Y) for the Q functions, m1(Hy) = o (H]€;) and mo(Hs) = UV(I:I;()gQ)
for the propensity scores. We fit analogous models for T > 2-stage settings: Q(Hy, A¢) =
H],8) + A(HLAY), and m(H,) = o (Hgogt) fort =1,...,T. To index mis-specification in
the fitted Q-learning and the propensity score models, we use parameters £J¢ and (3, 52, 527
and &), B2, for T =2, and T > 2 stage settings respectively. A value of 0 for these parame-
ters corresponds to correct specification of their respective models. For mis-specification, we
set &5 =1, & = M(l, DT and B =1, By = m(l, ..., 1)T for the propen-
sity score o and Q1, Q2 functions respectively. Similarly &), = 1 and ), = 1 for the general
time horizon settings imply mis-specification of m;, and @); respectively fort =1...,T. Un-
der mis-specification of the outcome model or propensity score model, the term omitted
by the working models is highly non-linear, in which case the imputation model will be
mis-specified as well. We show how our method does not need correct specification of the
imputation model.

For the imputation models, we considered both random forest (RF) with 500 trees
and basis expansion (BE) with piecewise-cubic splines with 2 equally spaced knots on the
quantiles 33 and 67 (Hastie, 1992). We use 5-folds for our re-fitting bias correction step.
For the two stage settings, we consider two choices of (n, N): (135,1272) which are similar
to the sizes of our EHR study and larger sizes of (500,10000). For T' > 2 settings, we
use (n, N) = (1000, 15000), and T = 3,5 stages, and (n, N) = (1500,15000), and T = 7
stages. We report statistics of the interaction-effect coefficients from the ) functions, in
particular we show mean absolute bias & Z?Zl 741, and empirical standard error. For each
configuration, we summarize results based on 1000 replications.

We start discussing results under correct specification of the @) functions. In Table 1,
we present the results for the estimation of treatment interaction coefficients 44,75, under
the correct model specification, continuous outcome setting with 83, = &35 = 0. The
complete tables for all @ parameters for the continuous and EHR-like settings can be found
in Appendix C. We report bias, empirical standard error (ESE), average standard error
(ASE), 95% coverage probability (CovP) and relative efficiency (RE) defined as the ratio
of the supervised over the SSL estimate ESE.

Overall, compared to the supervised approach, the proposed semi-supervised Q-learning
approach has substantial gains in efficiency while maintaining comparable or even lower bias.
This is likely due to the refitting step which helps take care of the finite sample bias, both
from the missing outcome imputation and @ function parameter estimation. Imputation
with BE yields slightly better estimates than when using RF, both in terms of efficiency and
bias. Coverage probabilities are close to the nominal level thanks to the strong performance
of our sample-split standard error estimator shown in Section 5.2.

We next turn to @-learning parameters under mis-specification of (1). Figure 1 shows
the bias and root mean square error (RMSE) for the treatment interaction coefficients in
the 2-stage ) functions. We focus on the continuous setting, where we set B87 e {-1,0,1}.
Recall that 89, # 0 implies that both @ functions are mis-specified as the fitting of @Q;
depends on formulation of Q)2 as seen in (2). Semi-supervised @Q-learning is more efficient
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(a) n =135 and N = 1272

Supervised Semi-Supervised

Random Forests Basis Expansion
Parameter Bias ESE Bias ESE ASE CovP RE Bias ESE ASE CovP RE

y11=1.4 -0.03 0.41 0.00 0.26 024 093 1.57 0.00 0.24 023 093 1.68
Y12=-2.6 0.04 0.58 -0.01 036 034 094 161 -0.02 035 031 0.90 1.69
721=0.8 0.00 0.34 0.01 021 020 093 1.61 0.00 0.20 0.19 094 171
Y22=0.2 -0.02 0.45 -0.01 028 0.28 0.95 1.60 -0.01 027 026 094 1.70
Y23=0.5 0 0.18 0.01 0.11 0.11 0.94 1.59 0.00 0.11 0.11 0.94 1.68

(b) n =500 and N = 10,000

Supervised Semi-Supervised

Random Forests Basis Expansion
Parameter Bias ESE Bias ESE ASE CovP RE Bias ESE ASE CovP RE
y11=1.4 0.01 0.22 0.01 0.12 0.11 092 1.76 0.01 0.12 0.11 092 1.80

Y12=-2.6 0 0.29 0 0.17 016 093 1.73 -0.01 0.16 0.15 0.93 1.80
721=0.8 0.00 0.17 0.00 0.10 0.09 0.93 1.80 0.00 0.09 0.09 0.93 1.86
Y22=0.2 -0.01 0.23 0 0.13 0.12 0.93 1.81 0 0.13 0.12 094 1.83

Y23=0.5 0.00 0.09 0.00 0.05 0.05 094 1.78 0.00 0.05 0.05 095 1.81

Table 1: Bias, empirical standard error (ESE) of the supervised and the SSL estimators with
either random forest or basis expansion imputation strategies for 4,4, when (a)
n =135 and N = 1272 and (b) n = 500 and N = 10,000. For the SSL estimators,
we also obtain the average of the estimated standard errors (ASE) as well as the
empirical coverage probabilities (CovP) of the 95% confidence intervals.

for any degree of mis-specification for both small and large finite sample settings. As the
theory predicts, there is no real difference in efficiency gain of SSL across mis-specification of
the @ function models. This is because asymptotic distribution of 7 shown in Theorems
2 & 3 are centered on the target parameters 4. Thus, both SSL and SUP have negligible
bias regardless of the true value of 39,.

Next we analyze performance of the doubly robust value function estimators for both
continuous and EHR-like settings. Table 2 shows bias and RMSE across different sample
sizes, and comparing SSL vs. SUP estimators. Results are shown for the correct specification
of the ) functions and propensity scores, and when either is mis-specified. Bias across
simulation settings is relatively similar between ‘7SSLDR and ‘/}SUPDR7 and appears to be small
relative to RMSE. The low magnitude of bias suggests both estimators are robust to model
mis-specification. There is an exception on the EHR setting with small sample size, for which
the bias is non-negligible. This is likely due to the fact that the ) function parameters to
estimate are 13437, and the propensity score functions have 12 parameters which add up
to a large number relative to the labeled sample size: n = 135. The SSL bias is lower in
this case which could be due to the refitting step, which helped to reduce the finite sample
bias. Efficiency gains of ‘A/SSLDR are consistent across model specification.

Finally we discuss results for the 7" > 2 settings. Table 3 exhibits the interaction effect
estimates 7y, of the ) functions for t = 1,...,T, with 7" = 3,5,7. Results show that SSL
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Figure 1: Monte Carlo estimates of bias and RMSE ratios for estimation of =11, Y19,
Y21, Y22, Y23 under mis-specification of the @} functions through ﬁg7. Results
are shown for the large (N = 10,000, n = 500) and small (N = 1,272, n = 135)
data samples for the continuous setting over 1,000 simulated data sets.

estimates remain more efficient than the supervised counterpart even as the time horizon
increases. Although the SSL method requires imputation of O(7?) functions of the outcome,
it still has low bias, and is much more efficient than the supervised counterpart as shown
by the ~ 2 relative efficiency for comparing SSL vs. supervised learning across settings.
Similarly, Table 4, which displays the bias, standard error and the efficiency of the value
function estimates, shows that for all time horizons the SSL outperforms its supervised
counterpart in terms of efficiency. However as expected, both estimators loose efficiency
as time horizon T increases. This is due to the fundamental information-theoretic difficult
nature of the estimation problem for large T, in these contexts simplifying assumptions
such as MDP or others are usually made (see Uehara et al., 2022). The high variance
estimates for both approaches dominate the relative efficiency gain of SSL estimation as T’
grows. We also note that the relative efficiency is seemingly constant across correct and
mis-specified models as our theoretical results state. We next illustrate our approach using
an inflammatory bowl disease (IBD) data set.

6.2 Application to an EHR Study of Inflammatory Bowel Disease

Anti-tumor necrosis factor (anti-TNF) therapy has greatly changed the management and
improved the outcomes of patients with IBD (Peyrin-Biroulet, 2010). However, it remains
unclear whether a specific anti-TNF agent has any advantage in efficacy over other agents,
especially at the individual level. There have been few randomized clinical trials performed
to directly compare anti-TNF agents for treating IBD patients (Sands et al., 2019). Retro-
spective studies comparing infliximab and adalimumab for treating IBD have found limited
and sometimes conflicting evidence of their relative effectiveness (Inokuchi et al., 2019; Lee
et al., 2019; Osterman and Lichtenstein, 2017). There is even less evidence regarding optimal
DTR for choosing these treatments over time (Ananthakrishnan et al., 2016). To explore
this, we performed RL using data from a cohort of IBD patients previously identified via
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(a) n =135 and N = 1272

Supervised Semi-Supervised

Random Forests Basis Expansion
Setting Model Vv Bias ESE Bias ESE ASE CovP RE Bias ESE ASE CovP RE
Correct 6.08 0.02 0.27 0.04 021 024 097 1.27 0.02 0.23 025 097 1.18
Continuous Missp. @ 6.34 0.01 0.24 0.03 0.19 0.22 0.97 1.27 0.00 0.20 0.22 0.97 1.20
Missp. 7 6.08 0.01 0.28 0.02 0.22 024 097 1.24 0.01 0.25 025 097 1.12
Correct 1.38 0.09 0.15 0.05 0.12 0.12 094 1.24 0.04 0.13 0.12 0.95 1.12
EHR Missp. @ 1.43 0.09 0.14 0.04 0.12 0.12 096 1.12 0.03 0.14 0.12 0.95 1.02
Missp. m  1.38 0.09 0.15 0.05 0.14 0.13 096 1.13 0.04 0.14 0.13 096 1.05

(b) n =500 and N = 10,000

Supervised Semi-Supervised

Random Forests Basis Expansion

Setting  Model v Bias ESE Bias ESE ASE CovP RE Bias ESE ASE CovP RE

Correct 6.08 0.02 0.15 0.03 0.11 0.12 096 1.32 0.02 0.13 0.13 095 1.16

Continuous Missp. @ 6.34 0.01 0.13 0.03 0.10 0.10 0.96 1.31 0.01 0.11 0.11 0.96 1.16
Missp. 7 6.08 0.01 0.14 0.03 0.11 0.12 096 1.28 0.02 0.12 0.12 095 1.16

Correct 1.38 0.02 0.07 0.01 0.04 0.06 099 1.55 0.00 0.06 0.06 0.98 1.23

EHR Missp. @ 1.43 0.01 0.07 0.00 0.04 0.05 0.99 1.66 0.00 0.05 0.06 0.98 1.35
Missp. 7 1.38 0.02 0.08 0.01 0.06 0.07 099 1.22 0.00 0.07 0.07 0.97 1.03

Table 2: Bias, empirical standard error (ESE) of the supervised estimator ‘/}SUPDR and bias,

ESE, average standard error (ASE) and coverage probability (CovP) for VSSLDR
with either random forest or basis expansion imputation strategies when (a) n =
135 and N = 1272 and (b) n = 500 and N = 10,000. We show performance
and relative efficiency across both simulation settings for estimation under correct
models, and mis-specification of () function or propensity score function.

machine learning algorithms from the EHR systems of two tertiary referral academic centers
in the Greater Boston metropolitan area (Ananthakrishnan et al.; 2012). We focused on
the subset of N = 1,272 patients who initiated either Infliximab (A; = 0) or Adalimumab
(A1 = 1) and continued to be treated by either of these two therapies during the next 6
months. The observed treatment sequence distributions are shown in Table 5. The out-
comes of interest are the binary indicator of treatment response at 6 months (¢ = 2) and at
12 months (¢ = 3), both of which were only available on a subset of n = 135 patients whose
outcomes were manually annotated via chart review.

To derive the DTR, we included gender, age, Charlson co-morbidity index (Charlson
et al., 1987), prior exposure to anti-TNF agents, as well as mentions of clinical terms
associated with IBD such as bleeding complications extracted from the clinical notes via
natural language processing (NLP). These features and confounding variables are adjusted
for in the @ functions at both time points. To improve the imputation of Y;, we use 15
relevant NLP features such as mentions of rectal or bowel resection surgery as surrogates
at t = 1,2. We transformed all count variables using x — log(1 + x) to decrease skewness
in the distributions, and centered continuous features. We used RF with 500 trees to carry
out the imputation step, and 5-fold cross-validation (CV) to estimate the value function.
We only consider observations with estimated propensity scores within the [0.1,0.9] range
to address the lack of overlap in the covariate distributions between treatment groups. We
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T=3 T=5 T=7
Sup. SSL Sup. SSL Sup. SSL
Bias ESE Bias ESE RE Bias ESE Bias ESE RE Bias ESE Bias ESE RE
v, 0.02 0.18 0.09 0.09 2.14 0.00 0.18 0.13 0.08 2.32 0.01 0.19 0.14 0.08 2.32

v, 0.03 0.13 0.03 0.07 2.0 0.04 0.12 0.06 0.06 2.07 0.03 0.13 0.07 0.06 2.21
vz 0.01 0.11 0.1 0.06 2.08 0.01 0.12 0.06 0.06 2.09 0.05 0.12 0.06 0.06 2.09

Y4 0.03 0.11 0.08 0.05 2.01 0.08 0.12 0.09 0.06 212
Vs 0.01 0.1 0.07 0.04 1.87 0.04 0.11 0.08 0.06 1.95
Y6 0.03  0.08 0.1 0.05 1.89
Y7 0.02  0.03 0.08 0.04 1.97

Table 3: Mean absolute bias, and empirical standard error (ESE) of the supervised and the
SSL @ function interaction effect estimates =, for T' = 3,5,7 stages. Random
forest imputation is used for SSL estimation.

T=3 T=5 T="1
Sup. SSL Sup. SSL Sup. SSL
Model Bias ESE Bias ESE RE Bias ESE Bias ESE RE Bias ESE Bias ESE RE

Correct 0.0 0.11 0.01 0.08 1.47 0.0 0.25 0.0 019 1.34 0.05 0.68 0.05 0.61 1.12
Missp. @ 0.0 0.11 0.01 0.07 1.52 0.02 0.32 0.01 0.25 1.29 0.02 0.61 0.02 0.54 1.09
Missp. = 0.01 0.11 0.01 0.07 1.49 0.03  0.33 0.02 0.24 1.38 0.05 0.8 0.03 0.66 1.22

Table 4: Bias, and empirical standard error (ESE) of the value function estimators XA/SUPDR,

Vsipg for T = 3,5, 7 stages. Random forests imputation is used for semi-supervised
estimation. We show performance and relative efficiency for estimation under
correct models, and mis-specification of () function or propensity score functions.
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use this approximation to the optimal selection of observations proposed by Crump et al.
(2009). Additionally, we use ridge regularization for our natural cubic splines model of the
propensity scores.

The supervised and semi-supervised estimates are shown in Table 6 for the Q-learning
models and in Table 7 for the value functions associated with the estimated DTR. Similar
to those observed in the simulation studies, the semi-supervised ()-learning has more power
to detect significant predictors of treatment response. Relative efficiency for almost all @
function estimates is near or over 2. The supervised Q-learning does not have the power
to detect predictors such as prior use of anti-TNF agents, which are clearly relevant to
treatment response (Ananthakrishnan et al., 2016). Semi-supervised @Q-learning is able to
detect that the efficacy of Adalimumab wears off as patients get older, meaning younger
patients in the first stage experienced a higher rate of treatment response to Adalimumab,
a finding that cannot be detected with supervised @-learning. Additionally, supervised
Q-learning does not pick up that there is a higher rate of response to Adalimumab among
patients that are male or have experienced an abscess. This translates into a far from
optimal treatment rule as seen in the cross-validated value function estimates. Table 7
reflects that using our semi-supervised approach to find the regime and to estimate the value
function of such treatment policy yields a more efficient estimate, as the semi-supervised
value function estimate XA/SUPDR yielded a smaller standard error than that of the supervised
estimate XA/SUPDR. However, the standard errors are large relative to the point estimates. On
the upside, they both yield estimates very close in numerical value which is reassuring: both
should be unbiased as predicted by theory and simulations.

Aq
0 1
0 912 327
A2 o g3

Table 5: Distribution of treatment trajectories for an observed sample of size 1407.

7. Discussion

We have proposed an efficient and robust strategy for estimating optimal DTRs and their
value function in a setting where patient outcomes are scarce. In particular, we developed
a two step estimation procedure amenable to non-parametric imputation of the missing
outcomes. This helped us establish \/n-consistency and asymptotic normality for both
the () function parameters 0 and the doubly robust value function estimator YA/SSLDR. We
additionally provided theoretical results which illustrate if and when the outcome-surrogates
W contribute towards efficiency gain in estimation of 5SSL and ‘755LDR. These results let us
conclude that our procedure is always preferable to using the labeled data only: since
estimation is robust to mis-specification of the imputation models, our approach is safe to
use and will be at least as efficient as the supervised methods.

Regarding our theoretical results, we believe that no specific aspects of the proofs explic-
itly require the number stages to be T' = 2. Indeed, we hypothesize that we can generalize
the theory to any fixed T' > 2 using induction, as we have already proven the results for the
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Stage 1 Regression Stage 2 Regression
Supervised Semi-Supervised Supervised Semi-Supervised
Parameter Estimate ~ SE P-val Estimate SE P-val RE Parameter Estimate SE  P-val Estimate SE  P-val RE
Intercept 0.424 0.082 0.00 0.518 0.028 0.00 2.937 Y 0.37 0.11  0.00 0.55 0.05 0.00 2.08
Female -0.237 0.167 0.16 -0.184 0.067 0.007 2.514 Intercept 0.08 0.06  0.17 0.04 0.02 0.14 2.40
Age 0.155 0.088  0.081 0.18 0.034  0.00 2.588 Female -0.01 0.10  0.92 -0.00 0.05 0.98 2.21
Charlson Score 0.006 0.072  0.929 -0.047  0.026  0.075 2.776 Age 0.05 0.06  0.35 0.07 0.02  0.00 2.33
Prior anti-TNF -0.038 0.06 0.524 -0.085 0.019 0.00 3.177 Charlson Score 0.04 0.04 0.33 0.06 0.02 0.01 2.06
Perianal 0.138 0.06 0.022 0.179 0.022 0.00 2.688 Prior anti-TNF -0.05 0.05 0.29 -0.09 0.02 0.00 2.39
Bleeding 0.049 0.08 0.54 0.058 0.03 0.055 2.675 Perianal -0.01 0.04 0.80 -0.03 0.02 0.06 2.31
Al 0.163 0.488  0.739 0.148 0.206  0.473 2.374 Bleeding -0.04 0.05 0.49 -0.03 0.03  0.29 2.14
Femalex Ay 0.168 0.696 0.81 -0.042 0.287  0.886 2.424 Al 0.11 0.25  0.67 0.03 0.10 0.74 2.60
Agex Ay -0.177 0.264  0.503 -0.278 0.109 0.013 2418 Abscessy 0.06 0.04 0.16 0.05 0.01 0.00 2.68
Charlson Scorex Ay 0.136 0.391  0.728 0.195 0.178  0.276 2.194 Fistulay 0.02 0.05  0.67 0.01 0.02  0.62 2.33
Perianalx Ay -0.113  0.226  0.618 -0.019 0.08  0.808 2.838 Femalex Ay 0.13 0.38 0.7 0.17 0.16  0.30 2.37
Bleedingx Ay 0.262 0.364  0.474 0.127 0.161  0.431 2.267 Agex Ay -0.02 012  0.88 -0.09 0.06  0.17 1.94
Charlson Scorex Ay -0.02 0.16  0.89 0.04 0.07  0.55 2.19
Perianalx 4; -0.14 0.09 0.15 -0.17 0.04 0.00 2.34
Bleedingx A, 0.13 020 0.51 0.03 0.09 0.76 2.17
A2 0.07 0.17  0.69 0.22 0.07 0.00 2.55
Femalex Ay -0.39 0.28 0.16 -0.51 0.11  0.00 2.53
Agex Ay 0.09 0.10 0.40 0.15 0.04 0.00 2.27
Charlson Scorex Ay 0.01 0.07  0.84 -0.03 0.03 0.42 2.08
Perianal x Ay 0.20 0.09 0.04 0.23 0.04 0.00 2.23
Bleedingx As 0.03 0.08 0.77 0.02 0.04 049 2.34
Abscessy X A -0.13 0.07  0.06 -0.09 0.03 0.00 2.31
Fistulag x Ay -0.04 0.06  0.56 -0.03 0.03  0.36 2.17

Table 6: Results for the Inflammatory Bowel Disease data set, for first and second stage
regressions. Fully supervised @-learning is shown on the left and semi-supervised
is shown on the right. Last columns in the panels show relative efficiency (RE) de-
fined as the ratio of standard errors of the semi-supervised vs. supervised method,
RE greater than one favors semi-supervised. Statistically significant coefficients
at the 0.05 level are in bold.

Estimate SE

Vevepe  0.851 0.486
Vesip,  0.871 0.397

Table 7: Value function estimates for the Inflammatory Bowel Disease data set. The first
row shows the estimate for treatment rule learned using ¢ and its respective value
function, the second row shows the same for a rule estimated using £ and its
estimated value.

first couple of stages. We chose to leave this generalization for future work, as we believe
no new or particularly interesting theoretical methodology is required for this extension,
beyond the already cumbersome notation and book-keeping in this relatively simpler T = 2
setting.

Both the semi-supervised @ and value function estimation hold validity as long as the
time horizon 7T remains finite. However, it is crucial to acknowledge that practical im-
plementation may introduce instability to our estimators, particularly in cases involving
large values of T'. Instability in the presence of a large T scenario is a commonly observed
phenomenon even for supervised approaches in RL problems. This issue has gained much
attention in the context of policy evaluation, where it was shown that (supervised) dou-
bly robust estimators can exhibit instability due to their reliance on products of T" inverse
propensity weights (cf. Jiang and Li, 2016a; Thomas and Brunskill, 2016a; Kallus and Ue-

27



SONABEND-W, LAHA, ANANTHAKRISHNAN, CAI AND MUKHERJEE

hara, 2020b). Such terms tend to exhibit significant variability as T increases, primarily
because they often involve nested products of these weights (Levine et al., 2020).

In the offline RL literature, alternative policy evaluation methods have been proposed
to improve stability. For instance, methods such as the weighted doubly robust estimator,
MAGIC (Thomas and Brunskill, 2016a), and IH (Liu et al., 2018), have shown promise.
Detailed information can be found in Voloshin et al. (2019). However, theoretical properties
of these estimators are not as well-understood. Therefore, utilizing these ideas for our
problem is not feasible with currently available tools.

As the time horizon T increases in our semi-supervised method, the number of terms
requiring imputation for the ) and value function estimations is naturally higher. While
this leads to increased variance, our approach offers a key advantage: the complexity of the
conditional means to be imputed remains constant with respect to T'. Therefore, efficiency
is still gained as the primary source of variability arises from higher-order propensity scores,
similar to previously mentioned supervised methods.

In particular, Appendix B delves into the generalization of our SSL @Q-learning algo-
rithm and value function estimation. We provide a thorough illustration of the functions
requiring imputation. The analysis reveals that these functions exclusively consist of linear
or quadratic terms involving missing outcomes, analogous to the T' = 2 case. Existing im-
putation techniques readily extend to T" > 2 scenarios, but the number of terms requiring
imputation grows quadratically with time horizon (O(7?)). The normal equations for a
three-stage setting is presented to concretely illustrate the advantages and challenges of our
semi-supervised @-learning approach. Additionally, the doubly robust SSL value function
algorithm is extended for the general T" > 2 case. As expected, the value function also
requires O(T?) terms to be imputed, limited to linear or quadratic terms of missing out-
comes and propensity scores, again highlighting the manageability of complexity within our
framework.

Finally, we are interested in extending this framework to handle missing at random
(MAR) sampling mechanisms in the future. In the EHR setting, it is feasible to sample
a subset of the data completely at random in order to annotate the records. Hence, we
argue that our missingness assumption, which requires that the labeled sample has the
same distribution as the unlabeled sample, is satisfied by design as we choose a random
sample from the unlabeled data and then label it. However, the MAR context allows us
to leverage different data sources for £ and /. For example, we could use an annotated
EHR data cohort and a large unlabeled registry data repository for our inference, ultimately
making the policies and value estimation more efficient and robust. We believe this line of
work has the potential to leverage massive observational cohorts, which will help to improve
personalized clinical care for a wide range of diseases.
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Appendix A. Notation

We first summarize the main notation used throughout the paper in Table 8. Note that
we use a few conventions: 1) The check symbol: “~” denotes the entire set of features
available, including outcomes when available (for ¢ = 2), this symbol is used for both the
patient history Hy, and the linear features for the Q—functions Xj. 2) We use the bar
symbol: “~” to denote population parameters, for example V is the population value

function under the optimal treatment policy d;. 3) As usual, the hat symbo

denote estimated parameters.

1 wr»

is used to

Notation Definition

O; ¢ R% Vector of covariates measured prior to ¢

Ay €{0,1} A treatment indicator variable at ¢

Yir1 €R The outcome observed at ¢ + 1

W, € R% A df-dimensional vector of post-treatment covariates
U, = (0O, A, W])T All observed variables for labeled & unlabeled data at ¢
U = (UL, Uu))" All observed variables for t = 1,2

& () Pre-specified basis functions for @; function regressions

Hi, = ¢1,(01)

Hoj, = ¢9;,(01, A1, 02)

H, = [H], H, ]

H, =H;

H, = (Y2, Hj)"

)St = [Hjp, AtHj |

X: =X

Xy = (Y2, X])T

0, = (BL,v])"

= E[XtXtT]

Yo =Yo+ max Qo(Ha, az; 05)
- 2 ~ —_
Yy =Yy + max Q2(Ha, az; 0)

ja(0) = B(2;|0)

mai(U)

ot

/Zzt (Aﬁ) = % Dok f'z(th)(ﬁ) + 7t
Cét,dt(_I'It)a di(Hy; 0¢) B

dt EV dt(Ht) = dt(Htht)
m(Hy) = P{A; = 1[H,}
&jt(Ht,Au ©)

Vv

Vsuppr

Vssipr

Baseline (k = 0), or interaction (k = 1) features at ¢t = 1
Baseline (k = 0), or interaction (k = 1) features at t = 2
Patient’s concatenated history features at ¢

Patient’s history features at ¢t =1

Patient’s history including previous outcome at ¢t = 2
Linear regression features available for all data

Linear regression features for () function at ¢t = 1
Linear regression features for ) function at ¢t = 2

Q@ function working model parameters

Second moment for all features at stages t = 1,2
Labeled-data stage 1 estimated pseudo-outcome

Stage 1 population pseudo-outcome

Example of a conditional mean function

Weakly or non-parametric estimator for i (U)
Refitting-step linear parameter, ensures (3) is satisfied
Augmented cross-fitted model for g (U)

Estimated optimal treatment given history H;
Population-parameter optimal treatment given H,
Treatment propensity scores at stages t = 1, 2

Inverse probability weights at stages t = 1,2
Expected population outcome under optimal policy
Supervised doubly robust estimator for V/

Semi-Supervised doubly robust estimator for V

Table 8: Main notation.
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Appendix B. SSL @-Learning and Off-Policy Value Estimation for 7" > 2
Stages

In this section we explore generalizing our methods to an arbitrary finite time horizon T’
and discuss some advantages and challenges of our method in this context. We start by
showing the generalized SSL @) learning algorithm, and the functions that need imputation
by writing the missing outcomes explicitly. We demonstrate that the functions of the out-
come that need to be imputed consist of linear outcomes or products of at most two missing
outcomes. Next, we extend the doubly robust SSL value function algorithm for 7" > 2. The
value function, as expected, also has more terms to impute. However, these are all products
of at most two missing outcomes or an outcome and a single propensity score function.
We show that the terms in the individual products do not increase with T'. Naturally, the
number of conditional means needed to be imputed does increase. We end by highlighting
the benefits and challenges of both algorithms applied to a time horizon larger than two
stages.

SSL Q-Learning

Extending our @ function notation for a general time horizon fixed at T time steps we
define

Qt(I:ImAt) = E[YZH + mgx Qt+1(ﬁt+1,@)’ﬂt7 At] fort=1,...,T,

and QT+1(ﬁT+1, Apiq) =0 for all Hr, Arp.

The corresponding working linear models for the ) functions with parameters 6; =
(Bi,v:)", t=1,...,T are:

Q1(Hy, A1;69) =X760) = H 8] + A1 (H] 1Y),
Q2(Ha, A2;69) =X709 = Y289, + Hgoﬁgz + Ay (HT~9),

t—1
Qi(Hy, A3 09) =X767 =" Yoy By + Hip By, + Ai(H]Y).
=1

The pseudo-outcomes for stages 1 and ¢ = 2,...,T under the linear () function are
t—1

Y =Y+ ZYf-i-l,iB?K +H 8% + Hiv) t=2,...,T
=1

Defining the outcome vector as ?t;g = (Y, Yio1,...,Ys)", the n_ormal equations for T,
t=2,...,T—1and t =1 are E [Xyp(Yr11 — X}07)] =0, E [X (Y, — X]6;)] =0, and
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E [X:(Ys — X]61)] = 0, which can be respectively written out as :

_ T -
Yr{Yri1 - (Y_Y:_:r% X7)0r}
Yr_1{Yr41 — (Y10, X)07}
E : —0,
T

Yo{Yri1 — (Yoo, X1)07}
T
L X {Yr 1 — (Y70, X})0T}

-1 .
Yi{Yie1 + Z:l Yer1 8010+ B 08101 + Bl — (Yio, X7)6: )

t—1 o
}/2*1{}/"«4*1 + EZI Y€+1B19+1,2 + HI+1,0ﬁg+1,t+1 + [HI+1,1'Yg+1]+ - (Yt:Qa XtT)Ht}

E =0,
t—1 o
Y2{Yt+1 + éZl YZHﬁ?ﬂ,e + HI+1,0:3?+1¢+1 + [HtT+1,1'7g+1]+ - (Yt:27 XtT)at}
t—1

— T
Xi{Yi1 + e; Y£+15?+1,4 + HtT+1,0519+1,t+1 + [HI+1,1’719+1]+ — (Y40, X{)0:}

E [X1{Y2(1 + B21) + H3o B9 + [H3 vo]+ — X161} = 0.

With the above we can generalize our robust imputation-based semi-supervised Q-
learning with the same three steps: (i) imputation, (ii) refitting, and (iii) projection to
the unlabeled data for T stages as follows.

Step I: Imputation

We use the usual weakly parametric or non-parametric imputation models for the con-
ditional mean functions {u(-), ue(-),t',t = 2,...,T + 1}, where 11,(U) = E(Y;|U) and
pe(U) = E(YpY;|U) consist. Notice the products consist of at most two missing out-
comes. As in the case when T = 2, we denote the corresponding estimated mean func-
tions as {ﬁlt(-l,fﬁt/t(-),t’,t = 2,...,T + 1} under the corresponding imputation models
{m(U),mu(U), ¢, t =2,...,T + 1}.

Step 1I: Refitting

The refitting ensures the validity of the SSL estimators under potential mis-specifications
of the imputation models and helps to control for overfitting bias. We update the imputation
model by expanding it to include linear effects of {X;,t =1,...,T} with cross-fitting.

In this case, the final imputation models for {Y;, Yy Y;,t = 2,...,T + 1}, denoted by
{1¢(U), figs }, need to satisfy

E[Xﬂ{ﬁ—ﬂt(ﬁ)}} —0, t'=1,... T t=2,. . . t+1,
E{Yt,yt_gt,t(ﬁ)} —0, /=2, . Tt=2..T+1,

where feature vector X} has one intercept entry of 1, for ' =1,...,T.
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Next we expand {mt(ﬁ),mt/t(ﬁ)}. Using the same notation as in the main paper
for the K random equal sized partitions of the labeled index set {1,...,n}, and using
{my P(0), AE,:)( )} for the counterpart of {7 (U), My (U)} with labeled observations in
{1,..,n} \ Z we obtain 7},, and 74 respectively as the solutions to

k=1i€T,,
K
NCON S| I _ —
SN Vi - (O —mnf =0, ¥ =2, Tt=2,. T +1
k=1i€T,,
Fmally, we 1mpute Y;, and Y}/Y} respectively as 7i;(U) = K1 Sy M (0) + 71 X,
and fiyy(0) = K1 320, gy (0) + .

Step 1II: Projection

In the last step, we proceed to estimate 0 by replacing {Y},YpY;} in the @ func-
tion normal equations with their the imputed values {r:(U ) ty+(U)} and project to the
unlabeled data. For this we define vectors Ji;.,(U) = [fi(0), i—1(0), ..., 72(0)]", and

Ht/,t:Q(U) = [Nt’t(U)v Nt’,t—l(U)v e 7Mt’2(ﬁ)]T'

We obtain the final SSL estimators for 6;, t = T,...,1 with the following regressions
(We omit the dependency of the imputed models on U for notation brevity).

1. We get stage T regression parameters @ from:

Brr+1 — [MTT27NTX 167
AT—1,7+1 — [MT 1T27:UT 1X7 ]0

L2 T+1 — [N2T27H2X 107
X {firs1 — [figs, X307}

2. For finding stage t =T — 1, ..., 2 regression parameters, 8;, we use:
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t—1 N ~ i
Hit4+1 + éZ Bt e+ 181, + Be{HE 0810401 + [Hip 1Y)+ )
-1
t—1 . ~
Ht—1,041 + ZZ He—1,041 8410 + Be—1{H{ 11 0Bip10401 + i 1Y)+ )
=1
Py
t—1 R N R
H2,441 + ZE f2,0+1 81,0 + Bo{Hiy 0Byt 01 + Hipy 1Ve]+ )
-1
t—1 . ~
Xo{tte+1 + 621 Her1Bit1,e + H;gr+170/3t+1,t+1 + [HI+1,17t+1]+}

=T ~ -~

[Mt,t:Qv MtXHHt}
=T ~ na
[:U’tfl,t:Qu te—1X760:}
—PN = 0.

3. Finally the first stage parameters 6, are found using
Py |Xa{fiz(1 + Br) + HiBoy + [HL 7] — X[61}| = 0.

Next we go over a simpler 1" = 3 scenario to highlight how the conditional mean models
needed to be imputed are only functions of at most 2 missing outcomes. The three stage
SSL @-learning functions can be defined recursively as:

Qs(Hs, A3) = E[Y4|Hs, Aj]
Q2(Hs, As) = E[Y3 + max Q3(Hs, a3)|Hz, Ao
Q1(Hy, A) =E[Ya + max Q2(Ha, a2)|[Hy, A4]

The corresponding working linear models for the @ functions with parameters 6; = (8],~7)",
t=1,2,3 are:

Q1(Hy, Ay;09) =X767 = H] 87 + A (H[ 1Y),
Q2(Hy, Ay; 09) =X3605 = Yo 89, + H3 89, + Az2(Hyv3),
Q3(Hs, As; 09) =X1603 = Y385, + Yo 85, + Hi 8% + As(HE~8).

The pseudo-outcomes for stages 1 and 2 under the linear ) function are

Yo; =Yai(1 + B21) + Hyg;890 + [Hapvo)+

Yz =V3i(1 + B31) + Yaif32 + H3o; 833 + [H31,73)+
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We expand the normal equations so that the outcomes Y;, ¢t = 2, 3,4 and their products
are explicit:

. . Y3{Y4 - (}/37}/27X?3—)03}
E [X3(Ys — X303)] =E | Y2{Ys — (¥3,Y2,X5)63} | =0,
X3{Ys — (V3,Y2,X1)03}
Yo{Y3(1 + Bs1) + Yafis2 + HzoBs5 + [Hivsly — (Y2, X3)02) | _
Xo{Y3(1 + B31) + YofB32 + H3o B35 + [H3 vs)+ — (Y2, X5)02} ’
E [X1(Yy — XT61)] = E[X1{Y2(1 + B21) + HyBgo + [H3 7o)+ — X[61}] = 0.

E [Xo(Y5 — X160;)] =E

From the three-stage normal equations above, it is clear that all the imputations needed
will be similar to the two-stage case: linear, pairwise products and squares of the missing
outcomes. Next, we go over the generalization of our off-policy value function algorithm.

SSL Value Function Estimation

We further extend the notation of our inverse probability weights by using
wo(Hop, Ap; ®) = 1 for all Hy, Ag and defining for t = 1,...,T"
di(Hy; 04) Ay n {1 —dy(Hy; 0;) }{1 — At})
m(He; &) 1 —m(Hy; &)
The corresponding doubly-robust supervised value function estimator is
VSUPDR =P, {VSUPDR (L; 6)}, where

wi(Hy, Ay, ©) = wy 1 (Hy—1, Ay—1, ©) <

Vsupor (L; (:)) =Q7 (Hu; 51)

T
+Zwt<HtaAt7 0) [Yt—i—l - {Q?(Htagt) - Q?+1(Ht+179t+1)H :
t=1
As with two time steps, we define Qf_(Hy; 6;) = HjoBy + [H 7v,]+ for t =1,...,T. Next,
to simplify our next expression we let ﬁTH,g =0for ¢ =1,...,T. Then we can re-write
VSUPDR (L, @) as:

VSUPDR (L§ @) :Qﬁ(HN 51)+
T
+Zwt(HtaAt7®)
t=1
T o~ o~ o~
+ Zwt(Ht; Ay, ©) |:Qg+1—(Ht+1; 0:11) — Q7 (Hy; Ht)} .
=1

-1
(14 Big1,4)Yip1 + Z Y1 (Big1,e — 5t,£)]
=1

Note that as with the case when ¢t = 2 there are only three types of functions of the
outcome to impute, hence we define similar conditional mean functions:

15(0) = E[Y2|U],  pf, (U) = Elwe(Hy, A;; ©)[0),  ph, (U) = E[Yyw,(Hy, Ay; ©)|U).
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Next we give a summary of the algorithm for the semi-supervised doubly robust value
function estimation:

Step I: Imputation

As in the two-stage setting, we fit flexible, weakly parametric, or non-parametric models
to the labeled data to approximate the conditional mean functions defined above. We also
denote the respective imputation models as {ma(U), mey, (U), myw, (U)} and their fitted
values as {g(U), M, (U), My, (U)}.

Step 1I: Refitting

Analogous to the two time step case our mis-specification and finite sample bias-corrected
imputation models are {fi5 (U) = ma(U)+n5, i, (U) = me, (U)+n2,, g, (U) = my, (U)+
N, - The conditional mean functions terms are of the same 3 forms as the 7' = 2 case, so
we write similar constraints:

E [M(th‘h; O) {YQ - ﬂg(ﬁ)H =
E[{Q¢1- (Hi1:001) — Q7 (M5 00} {en (A, 450) — i, (O)}| =0, t =2, T.
E [wt(f{t,At; )Y, — ﬁ;wt(ﬁ)} —0,t,t' =2,..., T +1.

To estimate 75 71, , and ny,, under these constraints, we again employ cross-fitting using
the following estimating equations

K
Z Z w1 (Hyz, A1i; ©) {Y2 - m(éw(ﬁi) - 773} =0,
k=1 €T,

K

> {Q?+17(Ht+l§b\t+1) - Q- (Ht§5t)} {Wt(I:Iti’AtiQ ©) — mi(U;) - %t} =0,

k=11i€1y

K
Z Z {wt(H”’Ati; ©)Yy,; - M, (U;) - ﬁ“t/wt} =0,

k=11i€ly

from the above we obtain 73 77,, and 77;’,% and use these to construct our imputation func-
tions:

K K
(O)=K"">_ ms"(O) +75, #5,(0) =K' iy, (O) +75, for t=2,...,T,
k=1 k=1
and
it (0) = 12@,’“) ) 4 My for £, =2, T+ 1.
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Step II1: Semi-supervised augmented value function estimator.
Finally, our semi-supervised augmented estimator of the value of the policy V is
‘/}SSLDR =Py {VSSLDR (67 @7 /7)} )
where ﬁSSLDR(ﬁ) is defined as:

21)75(0) + Q5 (Ha; 02) — Q9(Hy; 01)

—Q
—~

Visig (U5 ©, 1) =Qf (Hi; 01) + wi (i, A1,0) [(1+

t—1

T
+ D (14 Brr1,) 41,0, (U) + Z 104100, (U) (Bet1,e — Broe)

+

M= 14
i
T
)

,(0) [ Q1 (i 8141) — Q7 (His8))]

H
||
N

Next, we discuss whether the proposed method would work well for an arbitrary finite
time horizon and where it might break down. Theoretically, the semi-supervised @) function
and value function estimation will work as long as T is finite. However, as it is well known,
we may face instability in our estimates during implementation. In the context of supervised
doubly robust estimators for policy evaluation methods from (Jiang and Li, 2016b; Thomas
and Brunskill, 2016a; Kallus and Uehara, 2020a) can be evaluated at the estimated optimal
DTR to obtain the optimal value function. However, for large T', even these supervised
estimators can be unstable as they depend on the products of the T inverse propensity
weights. These become highly variable as T increases because they usually have nested
products of such weights (Levine et al., 2020).

Regarding our theoretical results, as mentioned in the conclusion, there is nothing in the
proofs explicitly requiring the timeline to be limited to two stages. We hypothesize that we
can generalize the results to T' > 2 using induction, as we have already proven the results
for the first couple of stages. We chose to leave the theoretical results of this generalization
for future work, as we believe no new or particularly interesting theoretical methodology
is required for this extension, and the notation and results are already cumbersome in this
more simple setting.

In the context of our semi-supervised method, as T grows, our Q- and value function
estimators naturally require more terms to impute. We expect that imputing a higher
number of terms will increase the variance. However, an advantage of our approach is
that the conditional means to be imputed are, at most, products of two missing functions:
outcomes and propensity scores, so their complexity does not increase with 7. Most of
the variability would come from the higher-order propensity scores, as is the case with the
supervised methods previously mentioned.

Appendix C. Simulation Results for Alternative Settings

In this section we provide additional results for data generating scenarios described in
Section 6. Tables C.1 and C.1 contain results for estimation of ) function parameters for
the EHR simulation setting for small and large sample sizes respectively. Table C.3 contains
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the complete parameter results for the continuous data generating setting for both small
and large samples.

(a) n =135 and N = 1272

Supervised Semi-Supervised

Random Forests Basis Expansion
Parameter Bias ESE Bias ESE ASE CovP RE Bias ESE ASE CovP RE
B11=1.2 0.05 0.09 0.03 0.06 0.05 0.88 1.65 0.03 0.06 0.05 0.89 1.60

B12=0 0.00 0.06 0.00 0.04 0.04 090 1.57 0.00 0.04 0.04 091 1.62
P13=-0.4 0 0.07 -0.01 0.05 0.04 092 1.53 0 0.05 0.05 0.93 1.56
B14a=-0.3 0.00 0.07 -0.01 0.04 0.04 093 1.67 0 0.04 0.04 093 1064
B15=0 0.00 0.08 0.00 0.04 0.04 093 1.69 0.00 0.04 0.04 092 1.69
B16=0 0 0.07 0.00 0.04 0.04 093 1.67 0.00 0.04 0.04 093 174
B17=0 0.00 0.08 0.00 0.05 0.04 092 1.62 0.00 0.05 0.04 092 1.62
~711=0.1 -0.01 0.14 0.00 0.09 0.08 091 1.55 0 0.09 0.07 0.89 1.55
72=0 -0.01  0.09 -0.01 0.06 0.05 0.92 1.53 -0.01 0.06 0.06 093 1.51
73=0 0 0.08 0 0.05 0.05 0.93 1.58 0 0.05 0.05 094 1.58
714=0 0 0.08 0.00 0.056 0.05 0.93 1.58 0 0.05 0.05 0.93 1.58
Y15=0 0.00 0.09 0.00 0.056 0.05 0.92 1.59 0 0.05 0.05 0.95 1.65
716=-0.1 0 0.09 0 0.06 0.05 0.92 1.52 0 0.06 0.05 0.93 1.49
B21=0.1 0.00 0.10 -0.01 015 013 091 0.71 0 0.14 0.13 0.93 0.75
B22=0.6 0 0.13 0.01 0.11 0.10 091 1.16 0 0.11 011 094 1.18
B23=0 0.00 0.06 0.00 0.04 0.04 093 1.44 0.00 0.04 0.04 093 147
B24=-0.2 0.00 0.06 0 0.05 0.04 0.89 1.16 0 0.05 0.05 0.93 1.20
B25=-0.2 0.00 0.05 0 0.05 0.04 0.90 1.13 0 0.04 0.04 092 1.18
B26=0 0.00 0.04 0.00 0.02 0.02 094 1.50 0.00 0.02 0.02 094 1.50
B27=0 0.00 0.04 0.00 0.03 0.02 094 1.52 0.00 0.02 0.02 094 1.58
B2s=0 0.00 0.05 0.00 0.04 0.03 092 149 0.00 0.04 0.03 092 149
B29=0 0 0.12 0.00 0.08 0.07 091 1.49 0.00 0.08 0.08 0.93 1.52
B210=-0.2  0.00 0.11 0 0.07 0.07 094 154 0.00 0.07 0.07 0.94 1.57

B211=-0.1  0.01 0.11 0.00 0.07 0.07 094 1.54 0.00 0.07 0.07 0.93 1.56
721=0.1 0.01 0.16 0.01 0.11 0.10 0.92 147 0.01 011 0.10 094 1.51

Y22=0 0.00 0.08 0.00 0.06 0.05 094 1.47 0.00 0.06 0.06 0.93 1.50
Y23=0 0 0.08 0.00 0.06 0.06 094 145 0.00 0.05 0.05 094 148
Y24=0 0 0.07 0.00 0.05 0.05 0.93 1.43 0.00 0.05 0.05 0.94 1.46
Y25=0 0 0.07 0 0.05 0.05 094 148 0 0.05 0.05 094 148
Y26=0 0 0.18 0 0.12 011 0.92 1.45 0 0.12 0.11 0.94 1.52

Yar=-0.2 -0.01 0.16 -0.01 0.11 0.10 0.93 147 -0.01 0.11 0.10 0.94 1.48
~Y2s=-0.1 -0.01 0.15 -0.01 0.10 0.10 0.94 1.54 -0.01 0.10 0.10 0.94 1.57

Table C.1: Bias, empirical standard error (ESE) of the supervised and the SSL estimators
with either random forest imputation or basis expansion imputation strategies
for @ when (a) n = 135 and N = 1272 under the EHR simulation setting.
For the SSL estimators, we also obtain the average of the estimated standard
errors (ASE) as well as the empirical coverage probabilities (CovP) of the 95%
confidence intervals.
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(b) n = 500 and N = 10,000

Supervised Semi-Supervised

Random Forests Basis Expansion
Parameter Bias ESE Bias ESE ASE CovP RE Bias ESE ASE CovP RE
B11=1.2 0.01  0.05 0.00 0.02 0.02 091 2.09 0.00 0.02 0.02 092 2.00

B12=0 0.00 0.03 0.00 0.01 0.01 091 207 0.00 0.01 o0.01 092 207
B13=-0.4 0.00 0.04 0 0.02 0.02 0.92 2.05 0 0.02 0.02 092 205
B14=-0.3 0 0.04 0 0.02 0.01 0.92 2.06 0 0.02 0.02 092 2.06
B15=0 0.00 0.04 0 0.02 0.02 094 218 0 0.02 0.02 094 2.06
B16=0 0 0.04 0.00 0.02 0.02 094 218 0.00 0.02 0.02 094 218
B17=0 0.00 0.04 0.00 0.02 0.02 0.93 2.06 0.00 0.02 0.02 094 2.06
71=0.1 0 0.07 0 0.03 0.03 0.91 2.00 0 0.03 0.03 091 2.00
712=0 -0.01 0.05 0 0.02 0.02 0.90 2.00 0 0.02 0.02 089 2.00
v13=0 0.00 0.04 0.00 0.02 0.02 0.92 2.00 0.00 0.02 0.02 091 1.90
v14=0 0 0.04 0.00 0.02 0.02 0.94 2.00 0.00 0.02 0.02 094 1.90
75=0 0.00 0.04 0.00 0.02 0.02 094 2.16 0.00 0.02 0.02 094 205
76=-0.1 0 0.04 0 0.02 0.02 093 2.05 0 0.02 0.02 092 195
B21=0.1 0.00 0.05 0.00 0.04 0.04 095 1.16 0.00 0.04 0.05 096 1.13
B22=0.6 0 0.07 0 0.04 0.04 095 1.74 0 0.04 0.04 096 1.69
B23=0 0.00 0.03 0.00 0.01 0.01 094 1.87 0.00 0.01 0.01 094 187
B24=-0.2 0.00 0.03 0.00 0.02 0.02 094 171 0.00 0.02 0.02 095 171
Ba5=-0.2 0.00 0.02 0 0.01 0.01 094 1.60 0 0.01 0.01 095 1.60
B26=0 0.00 0.02 0.00 0.01 0.01 0.92 1.90 0.00 0.01 0.01 093 1.90
B27=0 0.00 0.02 0.00 0.01 0.01 094 1.89 0.00 0.01 0.01 094 189
B2s=0 0.00 0.03 0.00 0.01 0.01 094 1.92 0.00 0.01 0.01 094 1.92
B20=0 0.00 0.06 0.00 0.03 0.03 0.92 1.94 0.00 0.03 0.03 093 1.88
B210=-0.2 0 0.05 0 0.03 0.03 0.94 2.00 0.00 0.03 0.03 094 2.00
B211=-0.1  0.00 0.06 0.00 0.03 0.03 094 2.00 0.00 0.03 0.03 094 2.00
721=0.1 0 0.08 0.00 0.04 0.04 094 1.98 0.00 0.04 0.04 094 1.98
Y22=0 0.00 0.04 0.00 0.02 0.02 093 1.95 0.00 0.02 0.02 093 1.86
Y23=0 0 0.04 0 0.02 0.02 094 181 0 0.02 0.02 093 1.90
Y24=0 0 0.03 0.00 0.02 0.02 094 1.83 0.00 0.02 0.02 095 1.83
Y25=0 0 0.04 0 0.02 0.02 094 184 0 0.02 0.02 094 184
Y26=0 -0.01  0.09 0 0.04 0.04 0.93 2.00 0 0.04 0.04 0.93 2.00

Y2r=-0.2 0.01 0.08 0.00 0.04 0.04 094 1.98 0.00 0.04 0.04 094 1.98
Y28=-0.1 0.00 0.08 0.00 0.04 0.04 094 1.95 0.00 0.04 0.04 094 1.9

Table C.2: Bias, empirical standard error (ESE) of the supervised and the SSL estimators
with either random forest imputation or basis expansion imputation strategies
for @ when (b) n = 500 and N = 10,000 under the EHR simulation setting.
For the SSL estimators, we also obtain the average of the estimated standard
errors (ASE) as well as the empirical coverage probabilities (CovP) of the 95%
confidence intervals.

Appendix D. Proof of Main Results

D.1 Semi-Supervised ()-Learning Asymptotics

In this section we first show the proofs for the theoretical results on the generalized semi-
supervised ()-learning shown in Section 5.
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(a) n =135 and N = 1272

Supervised

Semi-Supervised

Random Forests

Basis Expansion

Parameter Bias ESE Bias ESE ASE CovP RE Bias ESE ASE CovP RE
B11=4.9 0.04 0.34 0.01 0.22 0.18 0.91 1.58 0.01 0.20 0.17 0.90 1.70
Br2=1.1 -0.03 0.42 0.00 026 024 094 1.61 0.01 0.25 0.23 0.92 1.68
Y11=1.4 -0.03  0.41 0.00 0.26 0.24 0.93 1.57 0.00 0.24 0.23 0.93 1.68
Y12=-2.6 0.04 0.58 -0.01 036 034 094 1.61 -0.02 035 031 090 1.69
B21=0.1 0.00 0.10 0.00 0.13 0.12 0.94 0.82 0.00 0.16 0.17 094 0.64
B22=3 0.00 0.33 0.00 0.24 0.23 0.93 1.39 0 0.26 0.25 0.93 1.30
B23=0 -0.01 0.34 -0.01 0.24 0.22 0.93 1.43 -0.01 0.24 024 094 1.39
B24=0.1 0 0.43 0 0.29 0.28 0.94 1.49 0 0.30 0.29 0.94 1.46
B25=-0.5 0.01 0.15 0 0.09 0.09 0.93 1.62 0.00 0.09 0.09 093 1.71
Ba6=-0.4 0.03 0.48 0.01 037 035 093 1.29 0.01 0.41 040 0.94 1.16
v21=0.8 0.00 0.34 0.01 0.21 0.20 093 1.61 0.00 0.20 0.19 094 171
Y22=0.2 -0.02 0.45 -0.01 0.28 0.28 0.95 1.60 -0.01 0.27 026 0.94 1.70
¥23=0.5 0 0.18 0.01 0.11 0.11 0.94 1.59 0.00 0.11 0.11 0.94 1.68
(b) n =500 and N = 10,000
Supervised Semi-Supervised
Random Forests Basis Expansion
Parameter Bias ESE Bias ESE ASE CovP RE Bias ESE ASE CovP RE
B11=4.9 0.00 0.17 0 0.10 0.09 0.91 1.72 0 0.10 0.08 0.92 1.79
Bra=1.1 0 0.22 0.00 0.12 0.11 0.93 1.80 0.00 0.12 0.11 0.93 1.86
y11=1.4 0.01 0.22 0.01 0.12 0.11 0.92 1.76 0.01 0.12 0.11 092 1.80
Y12=-2.6 0 0.29 0 0.17 0.16 0.93 1.73 -0.01 0.16 0.15 0.93 1.80
B21=0.1 -0.01 0.05 0 0.05 0.05 094 1.06 0 0.07 0.08 095 0.74
B22=3 0.00 0.17 0.00 0.11 0.10 0.93 1.60 0.00 0.12 0.11 0.94 1.45
Ba3=0 0.00 0.17 0.00 0.10 0.10 0.95 1.66 0.00 0.11 0.11 0.95 1.54
B24=0.1 0.02 0.23 0.01 0.13 0.12 0.94 1.77 0.01 0.14 0.13 0.94 1.68
Bo5=-0.5 0.00 0.07 0.00 0.04 004 093 1.74 0.00 0.04 0.04 094 1.78
Bas=-0.4 -0.01 0.25 -0.01 0.17 0.15 093 1.51 -0.01 0.19 0.18 094 1.31
v21=0.8 0.00 0.17 0.00 0.10 0.09 0.93 1.80 0.00 0.09 0.09 0.93 1.86
Y22=0.2 -0.01 0.23 0 0.13 0.12 0.93 1.81 0 0.13 0.12 094 1.83
Y23=0.5 0.00 0.09 0.00 0.05 0.05 0.94 1.78 0.00 0.05 0.05 0.95 1.81

Table C.3: Bias, empirical standard error (ESE) of the supervised and the SSL estimators
with either random forest imputation or basis expansion imputation strategies
for @ when (a) n = 135 and N = 1272 and (b) n = 500 and N = 10,000
under the continuous outcome simulation setting. For the SSL estimators, we
also obtain the average of the estimated standard errors (ASE) as well as the

empirical coverage probabilities (CovP) of the 95% confidence intervals.
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Figure C.1: Monte Carlo estimates for doubly-robust value function estimation: ‘/;;SLDR7

Vsuppe under continuous, and EHR settings. Columns show bias and RMSE
respectively, rows show different mis-specification scenarios. Results are shown
for the large (N = 10,000, n = 500) and small data samples (N = 1,272,
n = 135) for the continuous setting over 1,000 simulated data sets.

D.1.1 PROOFS OF THEORETICAL RESULTS FOR (-LEARNING IN SECTION 5

We first define 85— = (83,,43)7, and ALY (U) = m$™ (U) — ms(U), s € {2,3,22,23}, and
note that from Assumptions 1, 2 & 3 it follows that:

Next we remind that, to ensure the validity of the SSL algorithm from the refit-
ted imputation model, the final imputation models for {Y;,Ys,t = 2,3}, denoted by
{ft(U), fige, t = 2,3}, need to satisfy the constraints shown in Section 3.2:

E|X{Y; ()} =0,  E{¥3 - jina(0)} =0,
E[Xa{¥s — is(0)}] =0, E{¥2¥; — fing(0) } =0.

where X = (1, X7, X])".
Proof [Proof of Theorem 2|
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Recall the estimating equation for stage 2 regression in Section 3.2 is

M23( J) — ﬁ21M22(U) 7i2(0) X130,
Xo { 7i3(0) — Bo1fia(U) — XEEQ—}

Centering the above at 0, we get

—

Py fiz2(0), ia (U)X .
X {i5(0) = Barfiz(0) - X365 |

X, 7i2(0), X2XT] (62 — 65) = [N23(U) Ba1fiza(U )— m (U)Xgeg_] o

Define
T [f123(0) — Ba1finz(U) — fi2(U) X105
u =Pn X, {p () — Ba1fiz(U) — Xgézf} ]
R(K) _p _{/723(6) — f2 (ﬁ)} Ba1 {uzz(ﬁ) fio2(U } {ﬁ (U) — )}XTGQ_
" X { (0) - } Ba1 X2 {M2 (U) — ﬁ)} 7

_ [_j' — TRYT
R (s }){]
2

) _p, [ (0= (@ {72(0) - po(0) } X3

with these we can re-write equation (10) as (Fu + F(K)> (02 —0) = Ry + ﬁéK). We
next deal with each term.

(I) We first consider ﬁéK), let

S =Py [(7723 — 123) — P21 (22 — n22) — (Mg — ng)TXngéz_]
s XoX3 { (M3 —m3) — P21 (N — 1) }
ASH () = By ASP(T) — ASP(0)X10,-
A(K 23 2 2
S KZPN[ X, {A (0 )_521A(2k)(ﬁ)}
ASH(0) — B ASP(T) — ASP(0) X350,

=R X, {A(0) - A AS(0))

for ke {1,...,K}.

From (3) it follows that ﬁéK) = S’g + AéK). Next using (8), Assumption 2, and Lemma 15
it follows that SéK) = % >k Sk+Op (N_%>, which lets us write ﬁéK) = Sg + % >k Sk +

Op (N _%) .
Now consider Sg , note that by the central limit theorem (CLT) P,XsXs = EXoXy +
Op (nfé) Thus using this, Slutsky’s theorem and Assumption 1

(PnXZXQ)_I(PNXQXQ) =1+ 0p (n_%) ,
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then using (9), (3) and Assumption 2 we can write

Py {(ﬁ2 - 772)TX2X592—}

- T

K
1 . . -
= (]P)nXZX;) ! E Z Z Xgi {ngz — [LQ(Ul) + mg(Ul) — mék)(Uz)} PN(XQX;)OQ,

L k=11i€Zy
= | P X5 {2 - a(0) } + Z 3 XLAGY(0) | (PuX2X5) ™" Py (X2X5)2-
L k 1€y,
—P,X,0]_ {Y2 — [i2(0) } Z 3 X5,6.- A5V (T))
k 1i€Zy,
+Op <n_%) PnXQG%—_ {YQ — /LQ I_j } Z Z X 02 A( k) )
k? l'LEIk

—P, X6} {Y2 — jin(T } Z > X502 ASY(0) + O (n71) + Op ( %) op(1).

k) 1 ’LGIk

Analogous derivations for all terms in S'g gives us
Sg =T, — T(EK) + Op (n_l) + Op (n_%) Op(l),

where

From the above it follows that 7%(SK) = TL—T(ﬁK)—i—% >k Si+Op (nil) +Op (n_%> op(1).
Next by Assumption 2 and using Lemma 16 with C’n ~ = 1, and setting functions Zn(),
7n(+) to be the constant 1, and f(Xgy) = X3 to be the identity function, we have

K s 5(K ~3
Vi (T8 = %52, 8¢) = 02 (¢, ). Therefore RY =Tz + 0p (n” 3¢, ).

(IT) Now we consider Ry, from the CLT, assuming working model (1), as constraints

(9) are satisfied it follows that

fioz(U) — 521#22(U) fio(U) X730,

Ry =E _
“ Xo{j13(U) — Ba1fia(U) — X305}

+ O (N*%) —10p (N*%) .
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(III) Next we focus on f‘éK), we use a similar expansion to (I) and define

an [ o2 —m22 (T2 — 772)X5}
5= | ;

n2 — 12) Xo 0
K ACH (T 0 (G)YXT
(k) _ 1 2 (U) A7 (U)X3
— Py | - S ,
s K; NMIASP ()X, 0
. ALY (0)  AfP(0)X]
Fr =E 22 2 2 I vkell,...,K},
PR LAY (0)X, 0 { J

We argue as in (I), that from (3) it follows that f(SK) = ﬁg —I—]:"S(K). Using (8), Assumptions 2
and Lemma 15 £

S —% k"fk = Op (N_%>, therefore féK) = fg—i-% >k Fr+Op <N_%>.
Next we follow the same decomposition for fg as we did in (I) for S’g , it follows that

féK) _p, Y22 _ ﬂgi(ﬁ) {YQ — ﬂg(ﬁ)} X12—
{¥2 - m(0)} X, 0
K A — A —
1 A5 (U)  ASP(U)X] 1 - -1 _1
”;;ezz: 57 (0)X, 0 +sz:]:k+OP(n )+ 0r (w72 ox(1),
=12 k

The first term in the right hand side is Op <n_%) by he CLT, the next two terms together

are Op (n_%cn_> by Lemma 16, thus f’éK) = Op (n_%cn_> .
K K

(IV) Finally we consider I'yy. By central limit theorem and (9) it follows that

—

) ﬁ) p2(U)X5

f2z(
I'y=E| "%
,ug(U)Xg XQX;

+0p (N73) =E[XoX3] + 0p (N7H).

From (I)-(IV) we can write (10) as (52 —0;)=E [sz;] o T, + Op (n*%cn}_(), it follows
that

V(B —8:) = E [X,X3]
1 i {YQiYéz‘ — ﬂzs(ﬁi)} — B {Yz% - ﬁ22(ﬁi)} — X705 {Y2i — ﬂz(ﬁi)}
g ; Xoi {Y:si - ﬂ3(ﬁi)} — B Xy {Ym - ﬁz(ﬁz)}

|
Proof [Proof of Theorem 3| The solution to stage 1 estimating equation 8; in Section 3.2
satisfies

Py [Xl {ﬁz(ﬁ) + B fiz(0) + H By, + [HI, 7], — XI@lH =0
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We center the above at 6; and get
Py [XiX]] (81— 01) = P [Xi {j22(0) + Borjia(0) + HEoBo, + [HL ], — X101 }].
(11)
Next, with the following definitions
Sy =Py [X:XI], =P, [X;X]],
RO =Py Xy {12(0) + B jiz(0) + HyyBoy + [HE, 7], — X701} .
REN =Py X1 {72(0) - 2 D)}

we can write (11) as iu(b} —0,) = RO 4+ (1+ 521)7%(81[(). We now analyze both terms

R and (14 B21)R (IK).

F (1K)

1) First we consider (1 + s 1)Rg "/, define

S =53 ('?7 — 1),

S — Z Py [X1A< k>(ﬁ)} :
W =g [XlAg“(U)} ,

from (3) it follows that R(IK) = S(ln) + S(IK), next from Assumptions 1, 2, we get

Zszl sup || X;ASH (T U)|| = op(1), thus by Lemma 15 S(IK) S,g )+ (N*%). Using (3)
X,,0

again, and recalling jig(U) = may(U) + XIn, we have

K
(1) :zui;% >3 X {¥ai — i2(00) — Y (T) + ma(Ty) }
k=11i€Zy
— ZXM {Yzz MQ([_j } Z Z Xle( k) + O]P’ (n é> )

k 1€y,

where the last line follows by the CLT and Assumptions 1 and 2 as
Syt =1+ 0p (m%)
Now using Lemma 15 and Assumptions 1, 2 again, it follows that
S =8+ 0p (N73),
combining the above we can write

ﬁélK) =P, X {Yz — (U }

i S X AT~ E [Xlﬁg’“)(ﬁ)} +Op (n_

k=1 | i€Zy

N
N———

S\H
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Next by Assumption 2 and Lemma 16 we have

\/15 i Z XuA;k)(ﬁz) —E [XlA(zm(ﬁ)] =Op (C”R> ’

k=1 1€Ty
S(IK) = _1 . .
therefore Rg ' = P, X, {Yg - ug(U)} + Op (n 2cn;(). Finally using Theorem 2 we have
,321 — Bo1 = Op <n_%>, and by CLT P,X; {Yg - ﬂg(ﬂ')} = Op (n_%>, thus we can write

1

(1+ 521)7%1[() = (14 B21)PnXy {Yz - ﬂ?(ﬁ)} + Op (niﬁc 7) )

Ng
II) Next we consider R by writing
RO =Py [Xy {52(0) + B iz (0) + My By, + [H3,7,], — X101 |
+Py [Xl {/72(6)(321 — Bo1) + Hyy(Bag — Bag) + [H3, 7], — [H;ﬁzh}} )

note that under (9) using model (1) the first term in the right hand side is mean zero,
therefore from Assumption 1 and CLT

D=

Py {Xl <ﬂ2(ﬁ) + By fi2(U) + HYyBoy + [H3172], — X191>} =Op <N_
Hence, we have

VIR =\/nPy [X1 {ﬂQ(ﬁ)(Bm — Bo1) + Hiy(Bgy — Bay) + [H3 7], — [H51’72]+H
+0p < X,)
=Py [X1 (ﬁ2(ﬁ)a HEO)] Vvn (Bz - Bz) +vnPy [ X1 (H375) 4 — [Hy92],4) ]
+Op ( ;)
=E {Xl <ﬁ2(ﬁ)v Hgo)] n"2 anwm +VnPy [ X1 (H3¥2), — [Hy2],) ]
i—1

o (3)

where the last inequality follows from the CLT, where 1), 5 is the element corresponding to

B2 of the influence function 1,; defined in Theorem 2.
Next by Theorem 2 we know that

V(¥ = ¥2) = Op(1),

using Lemma 17 (a) we have
P |vnPy {X1 (H3190), — [Hu%)1) ) = PN{XIH&I(H&’YQ > 0) }\/ﬁﬁz - 72)] — L.
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Therefore, letting 1o, be the element corresponding to 7 of the influence function 1)y,
defined in Theorem 2,

VP { X1 ([H370) . — [H3 Y24 ) }
= Py {X;HL I(HL 7, > 0 (55 € A} Vi (3, — 75)
+ VP {Xa (HE 2]y — Huvl,) } 5,04

_ ~ _ ~ IR
= E[XiHE [HE, %, > 0.3, € AJF (HE 3, > 0)P (52 € A) 7= 3 Yarai + O (6 ) + 00 (1)
i=1

_ _ 1 O
= E [X1H3 [H3 5, > 0] P (Hy v, > 0) NG 21/12722' +op (1),
i=1

combining all terms
VIRW =E (X (72(0), Hg ) [ 75 S vy
i=1

_ _ 1 ¢
+E [X1Hy, [H3; ¥, > 0] P (H3, 55 > 0) n Z ¥ai(y)
i=1
+Op (Cnl—() .
Finally, from I), II), and since i]&l = E[X;XI]"! +op (1) by the LLN, we have
V(0 — 6y) =E X, X]] 7 5RO + B X X7 (1 + Ba)REX + 0p (1)

=E [X;XI]7' (1 + le)in Z{Ym — [i2(Uy)}

FEX XY E (X0 (2(0), HY, )| - E_:

_ _ _ 1 «
+E [X1X/] 'E [X1Hy [Hy v, > 0] P (H3, 5 > 0) n Z@bm‘v
i=1
+op (1),

using (9) we have E [Xl <ﬂ2([_j), Hg())] = E [X; (Y2, H],)] which yields our required results
]

Next we discuss some results and assumptions needed for Proposition 5. First we show the
asymptotic results for the supervised estimation of the @) function parameters. Recall 815yp,
/égsup are the estimators for the ) function parameters, when using the labeled data £ only.
From Laber et al. (2014) we have that the following results for @agyp:

~ _ 1 & _ _
Vn <023UP - 02) = Eg_lﬁ Z ¢2$UP(L; 92) - N (07 Vasue [02}) )
=1
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with

Yosyp(L; 02) = Xo{V3; — X5,62},
Vasue [92] = E;lE [¢25UP(L; 92)¢25UP(L; éz)T] (E;l)T ,

and fOl“ Blsup:

n

! Z"plsup(LS él) N (07V15UP [91}) )

\/ﬁ (aISUP - él) = 21_1% <

with
Wigup (Li; 02) =X {Ya; + Ya; P21 + Hip; Bas + [Hi:70)+ — X101}
+E [Xl (Y27 Hgo)] ¢2sup,(5)(Li>
+E [Xl 51|H51'72 > O] P( ;1’72 > 0) quSUP,(w)(Li)?
Visue [él] :EIIE [":Z’lsup(L; él)'ﬁblsup(L; él)T] (EII)T'

Next we discuss the assumption required for Proposition 5. We need the imputation models

—

is(U), s € {2,3,22,23} to satisfy several additional constraints. For example, for the stage
two @ function parameters, recall 03— = (33,,~45)", the imputation models should satisfy:

E (X7 (0){g:(Y) - is(0)}] =0 E [X'7ia(0) X3 {g.(Y) — i (0)}] =0,
for s,j € {2,3,22,23}, and
E [XX"7,(0){g5(Y) = s(0)}] = 0, E [XX"X30:{9,(Y) — is(D)}] = 0,

for Saj € {233}7 where X = (17X-{7X12—)T7 92(Y) = Yé) g3(Y) = Y37 922(Y) = }/22’ gQS(Y) -
Y2Ys.
To summarize all the assumptions needed, we define the following functions:
- - o T
&) ={&(0), &0},
= | 23(0) — [f122(0), fi2(0) XJ] 0
gQ(U) = _ — _ — 15 ;
X2 {n3(U) = [12(U), X362}
£1(0) =X {fi2(0)(1 + Ba1) + Q5 (Ha; 03) — X]0:}
+E [X; (Yz, H))] £24(0)
+E (X HY, [HE, ¥, > 0] P (HE, ¥, > 0) E2,(0),

where Egg(l_j), 827(6) are the elements corresponding to By, 75 of &(U). Now we can

—

succinctly summarize the constraints, by having fis(U), s € {2, 3,22, 23} satisfy

E [ {#20p(L:82) — £(0) } £(0)7| = 0.

This is condensed in the following assumption.
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Assumption 7 Let £9(U) be as defined in (12), and
"psup(Iﬁ é) = [d’lsup(L; él)Tv ¢2SUP(L? 92)T]T )

the imputation models [is(U), s € {2,3,22,23} satisfy
E [ {war(L:0) - £°(0) } £(0)] = 0

Proof [Proof of Proposition 5]
We first show the result is true for Vo [ég]. To simplify algebra, we denote the

influence function from Theorem 2 as 1)y (L; 02). Using the influence function of Basup
and Theorem 2 we have the following relationship:

Vose (s 02) = og (L 02) — £5(0).
Therefore
Vasst (02) =55 'E [1hgeq (L; 02)19es, (L; 02)"] (251"
=55 E ({2500 (L 82) — £2(0) } {absue (1:82) — £(0)} | (251)
=55 'E [9500 (L; 02)20500(L; 02)7] (2531)"
+37'E [£(0)80)7] (57)
~255 ' (350 (L 02)2(0)7| (237)"

Now, since our imputation models satisfy Assumption 7, it follows that

E [ {#20p(L:82) — £(0) } £2(0)7] =
Therefore we have
Vs, (62) =Vasor (02) — 5" Var [£(0)] (237)"
To show the result is true for Viss [61], We denote by 525(6) and 827(-[3—) the vectors

corresponding to By, 75 in 52(6') respectively, and further recall the definition of &; (ﬂ')

£1(U) =X {ji2(0) + ji2(U)Ba1 + HyoBoy + [HY V)4 — X]01}
+E [X; (Ya, HYy)] £25(0)
+E [X1Hj; [Hy 7, > 0] P (Hy 7, > 0) 527(ﬁ)-

From the form of the influence function of glsup, and Theorems 2 & 3 we have that:
Yise (L él) = P15 (L 91) - & (ﬂ_)
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Analogous steps for the proof of @5 can then be used to show

V155|_ (91) :VISUP (él) — EflVar [51 (ﬁ):| (Zl_l)T .

The required result is obtained by stacking the influence functions for 61, 8- for the
supervised and semi-supervised versions, noting that

'l.DSSL(L; é) = ’(/)SUP(L; é) - 60(["}).

and repeating the steps above. |

D.2 Value Function Results

In this section we prove the main results for our SSL value function estimator. Before
the proofs we go over some useful definitions, notation and lemmas. First recall that, in
order to correct for potential biases arising from finite sample estimation and model mis-
specifications, the final imputed models for {Yz,ws(Ha, A2; ©), Yiws(Ha, Az; ©), t = 2,3}
satisfy the following constraints:

E [Wl(I:Ila A1;0) {YQ - ﬂg(ﬁ)H
E [Q3_(T:02) {ws(F5, 4:0) — 2, (0) }]

E |wy(H, A2 ©)Y; — i, (0)] =0, t = 2.3,

0,
0,

Next, define the set
S(9) = {(975)’”5— 03 <0,1E—€l3<0,00€0,& € t=12
Ti(His€,) > 0, ma(Epi€y) > 0, VH € H}

We will be using the influence functions for our model parameters ©. In this regard
let 9" = (], %3)7. By Theorems 2 & 3 /(0 —0) = n~ "2 351, 4*(Uy) + op(1). Next,
from Assumption 5, it can be shown that E has the following expansion: \/ﬁ(g — E) =
nTHEY gt (Li; &) + op(1), where

¥ (Li€) = E{HH,0 (H]€,) [1 — o (H]€,)]}  H, {4, — 0 (H]E,)}, t=12,

¥ (L) = |9 (Li€)  wf (Li€)] and E[yf] = 0, E[(*)y*] < oo.
We now introduce a set of definitions used in this section to make the proofs easier to
read. Recall from (7) we have

—

XA/SSLDR =Py {VSSLDR(ﬁ; @, ﬂ)} , where Vsg . (U; ©, 1) is the semi-supervised augmented

;
estimator for observation U, we re-write VSSLDR(ﬁ; ©,7) as V@ﬁ(ﬁ) recall its definition,
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and define the following functions:

Vo 5(0) Q8 (HL1;81) +wi(F1, 41,0) |(1+ Ba)iis(0) -
i, () = By, (0) — Q3 (Ha: 02)7i2, (0),
Vo 7(0) =Qf (EL1; 01) +wi (i, 41,0) | (1 + B3 (U) -
+14,,(0) = Barfis,,, (U) — Q5_ (Hz; 02)t, (0)

QS (FL1; 01) + Q5_{Hy; 02}

Q5 (Hy;61) + Qé’_{H%éz}}

(14)

We next replace the estimated imputation functions with their limits i3, i3, , #3,, and
fig,,, and define:

Vo u(0) Q8 (HL1;81) +wi(F1, 41,0) | (1+ Ba)is(0) — Q3 (FLis 81) + Q5 (i 6)|
713, (0) = B, (0) = Q5. (Ha: 0272, (0),

Vo,u(0) =Qf(FLi: 01) +wi(EL1, 41, ©) |(1+ Ba1)35(U) — QF(FLis 1) + Q5 (Hly: 62)
715, (0) = B, (0) = Q3 (Ha; 0:)7i, ().

(15)

Finally we define the following functions which are weighted sums of the imputation function
erTors:

ch

£5(0) =wi(Hy, 415 © )(1+621){ﬁ (©) = 5(0) } + fis, (0) — i, (0)
~Bor {5,,(0) — 5, (0) } — Q3 (Hz,t‘b) {7, (0) - i, (O},
Eo(0) =wi(Hy, 4130) (1 + Bar) {715(0) — i5(0) } + 5, () — i, (0)

~Bor {8,,(0) = 5., (0) } — Q3 Hz;oQ) {7,(0) - 52,0}

These definitions will come in handy in the following proofs as we can use them to write
V@,M(U) Va H(U) + &6 (U), Vg 1(U) = Vg ;(U) + £g(U). Finally, recalling that Pg is
the underlymg dlstrlbutlon of the data, we define function g1 : ® — R as

= /v@,u(ﬁ)dm

With the above definitions we proceed by stating three lemmas that will be used to prove
Theorem 7. We defer the proofs of these lemmas for after proving the main Theorem in
this section.

R,_/

(16)

ch

Lemma 11 Under Assumptions 1-6, we have

1) Vn{Py Vel —91(0)} =op(1),
m) Vi {0(®) -5 (6)} - f;{(aegl 0)) w0+ (e (©)) (T}

1=

+ op(1).
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Lemma 12 Under Assumptions 1-6, the following holds:

Lemma 13 Under Assumptions 1-6, the following assertions hold:

I) VnPy{€g—Es} =op(l),
II) /nPyl[g] =Gy, {VSSLDR (L; é)}

1 o)
+ % ZZ; ¢9(Li)T870 / VssLpg (L;; ©)dPy,

0=0

0=06

+\/ﬁ§¢ (Li) %/VSSLDR(L“@)d]P)L

+ O]}D(l).

Proof [Proof of Theorem 7| We start by expanding the expression in (7) and using defini-
tions (14), (15), (16):
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Vi{Py Ve u| — Bs Vel }

=vn Py [Ve,] +Pn[€s]—91(0) — Es [Ep)]

(N (;} )

I (pN [V@,ﬁ] +Py [Eg] —91(@)> — Es [£g]

(I11)

which follows from Lemmas 11, 12 & 13 with the influence function w;)SLDR defined as

w;’SLDR (L; ©) =Vssipg (L3 o)+ Il,@(L)Taaa / {V@,ﬁ(L) + Vssipg (L3 @)} dPy,

0=06

#9507 [ {Vo(0) + vy (L:©)} By

I

0=06
Vessgn (L5 ©) =w1 (HL, A1 ©1)(1+ Bor) { Y2 = 5(0) | +wa(Hla, A2, ©2)Ys = fise (0)

B {wa (B, A2, ©2)2 — fi20n(0) | = Q5 (Hy: 82) {wa(Hla, A3, ©2) — (0}

Next note that

[ (Vou(0) + vy (L)) Py

~ == /VSUPDR(L7®)dPL
0=0

0=0
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where Vsyp,, (L; ©) is defined in (5). Finally, all random variables in the expression of
v (L;®) are bounded by Assumptions 1 and 5 we have E [¢§SLDR(L;@)Q] < 00, the

SSLpRr
central limit theorem yields that

~ 1 — v = d
Vi {Bx Vo] ~01(O)} = 3w, (Li©) +op (1) 5 N (0,08, )
i=1
|
Proof [Proof of Lemma 11] I) We start with y/n {IPN [V@’ﬁ] — gl((:))}. Note that V@’ﬂ(ﬁ)

is a deterministic function of random variable U as parameters and imputation functions
are fixed. We have that E [V(;l ﬁ(ﬁ)z] < 0o holds by Assumption 1 & 5. Thus the central

limit theorem yields Gy {V@ﬁ} N (0, Var [V@,ﬁ]) , therefore

Vi{Py Vo] —91(©)} = 1/ NGN (Vo) = O <\§> =op(1).
IT) We next consider /n { 91(0) — gl((:))}. Using a Taylor series expansion

1(8) = 1(0)+ (682 g:(6) + @ - effggl

8091 (@) + OIP (n_l) )

as both ||6 — 0]|3 =0Op (n™') and 1€ — &|l3 = Op (n™') by Theorems 2, 3 and Assumption
5, therefore

Vit {51(8) - 1(©)} V6~ )" 01(8) + Vil ~ 7 501(8) + (1)
We can write
N _ o 1 , 1 ,
Vnig1(©) = g1(©) b = —g1(0)— > "(Ui) + —261(0)—= > 4*(U,) + op(1).
{91 g1 } 8091 \/ﬁ; 3591 \/ﬁ; P

Proof [Proof of Lemma 12]
We consider /n { <IP’N [V@ ﬂ} - gl(C:))) - <IP’N [V@ﬂ] - gl((:))> }, recall that

di(H;,0;) =T (H};7v; > 0) t = 1,2, thus the inverse probability weight functions are defined
as

I(H{;v; > 0)A1 | {1 - I(H{;y; > 0)}{1 - A1}

H LA, ©) = 4 g ’ q
e e ™ (Hi3 &) 1—m(Hp;€y) o
w2(Hy, A3, ©) = wy (), 4, ©) (1(}71;1(,3220)) 2 I(?le;;l?s}{)l : A2}> -
182 - ;82
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Define the class
b={I(H{v,>0):Hy,yeR"} t=1,2

and the collection of half spaces C; = {H; € R% : H]~, > 0,y € R%,t € {1,2}}. By Dudley
(1979) Cy is a VC class of VC dimension ¢; + 1. Next by van der Vaart and Wellner (1996)
we have that as Cy is a VC-class ¢; is a class of the same index. Finally, by Theorem 2.6.7
we have that ¢; is a P-Donsker class. Next define the following function

fo(U) =Q%(Hy; 0;) +wi (Hy, Ay, ©) {(1 + B21)s(0) — Q9(Hy; 01) + QS_(Ha; 92)}
78, (0) = Ba1 i, (U) — Q3_(Fa; 02)fil, (0).

We define the associated class of functions C; = {f@ (U)|0,0 € 8(5)} .

i) By Assumptions 3, 5 and Theorem 19.5 in Vaart (1998), ¢, Wy, Qi t = 1,2 are
P-Donsker classes. Thus it follows that C; is a Donsker class.

ii) We estimate &, &, for (4) with their maximum likelihood estimators, El,%, solving
P, [S:(&;)] = 0,t = 1,2. By Assumption (5) and Theorem 5.9 in Vaart (1998) Et LS
€,,t = 1,2. Next, by Theorems 2, 3, under Assumptions 1, 2, /O\t 2, 0;,t = 1,2. Thus
P (c?) € 5(5)) 1, V6.

2
iii) We next show [ (VAJL Ve, ﬂ) dPg —> 0. By Assumptions 5 (i), 6, and bounded

covariates and there exists a constant ¢ € R such that we can write
2
/(VC:),,] — V@ﬂ) d]P’I—j

R B 2

S/ <QT(H1; 1) — Q7 (Hy; 91)) dPy
1 1 2

+c/ ( — — — ) dP-

1—m(H; &) 1 —m(Hy;6) v

2
1 1
+C/ (m(Hl;Zl) - Wl(Hl;&))

+c/ {Qg_(H2;§2) - Qg—(H2?é2)}2dPﬁ

+o [ (I > 0) - IH], > 0) dbg
. N
+ ([321 - 521)
_ ~ 2
‘1'0/ (Hgoﬁm + [HyoYol+ — HiB20 — [Hgo’>’2]+> dPg
where we use (a — b)2, (a +b)? < 2a% + 2b* Va,b € R, c?l,Al < 1forall He H, and
boundedness of 8;,t = 1,2 by Assumptions 1-3. Next note that all terms outside integrals

are bounded by Assumptions 1-3. Finally we consider terms within the integrals with the
following example
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> 2
[ (05 ma:8) - 5 01:9)) " i
3 ~ 2
:/ < 30892 + [H31 5]+ — HypBge — [H;1,72]+> iP5
~1lBzs ~ Bl [ ifoHundPg

TR / HJ, Hy dPg = Op(n "),

which follows from Theorem 2 and Lemma 17 (a). All similar terms can be handled
2
accordingly. We get the convergence in probability to 0: [ (V(:),g — V@7ﬂ> dPg — 0 as
all other terms within expectation are Op (n_l) by the dominating convergence theorem,
boundedness conditions as stated in Assumptions 2, 5, and the consistency of € and @ as
P (@ c 8(5)) 1, V8 > 0.
Finally, we have i) P ((:) € 8(5)> — 1, ii) C; is a Donsker class, and

2
iii) [ (V@,ﬂ — V@ﬂ) dPg — 0, then by Theorem 2.1 in Van Der Vaart and Wellner (2007),

i S = n
N\F{(PN [Vc:) M] 91(9)) - (IPN Vel — gl(®)>} = \/;qp(l),
Proof [Proof of Lemma 13| I) First note that from the empirical normal equations (6), we

have that the solution 73 satisfies 75 — 15 = Op (TF%) Therefore

sup |i3(0) — u3(0)| =
U

where we additionally use Assumption 6 for the difference of estimated and true imputation

models g, my. Similarly supg AL, (O) — it (ﬁ)‘ = op(1), supg |7z, (0) — a2, (0)| =
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op(1), t = 2,3. Next, using the triangle and Jensen’s inequalities, we have
Py [€5 — o)
w1 (Hp, A1 ©1)(1 + Ba1) — wi (Hy, A1; ©1)(1 + Far)

<Py

sup [25(0) - i3 (0)
U

+ 321 — Ba1 20, (ﬁ) - MZWZ(ﬁ)‘

sup
U

+Px|QS_ (Hy; 02) — Q5 (Hy; 02)

Up [ (0) = fies (0)
U

<Py |wi(Hy, A1;01) — w1 (Hy, Ag; ©1)|op(1)

Py |wi(Hy, Ay; ©1)fa1 — wi(Hy, A3 ©1)Ba1|0p(1)

+|Ba1 — B op(1).

op(1) + PN‘ <322 - /@22>TH20 + [2Ha]y — [75H2] 4+

By Theorem 2 we have 8 — 65 = Op (n_%), also from Lemma 17 (a) it follows that

Py ([H3,75), — [H372],) = Op (n_%), hence as covariates are bounded we have

321 - 521

o~ o~ T
op(1) + PN‘ (ﬂ22 - ﬁ22> Hyo + [Y3Hoa1]4 — [Y2Ha1]+

< {000 + 510 [ B 1Bz ~ Bl + sup [l 02 (1+) = 05 (7).

H20 H21
Next, we can write
Ay 1— A

w1(H1,A1;(:)1) = I{Al =d (H1;E1)} o (Hl;El) + I (Hl;gl)

By Lemma 17 (b) it follows that

Py [I {Al =d; (Hl;a)} —I{A; =dy (Hy;&) } = Op (n_%) ;
A A ] _1
] - )
1-A 1-A _1
[ ] o)

Using the above and Lemma 14 we get
Bor Py {w1(I:I17A1; (:31)} — BorPy {wi(Hy, A1;01)} = Op (717%) ;
Py {Wl(HlaAl; (:)1)} — Py {wi(H;,A1;01)} = Op (n_%) :
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From the above we get
Py {5@ — 5@} = Op (nfé) op(1).

IT) To show the relevant result, we first recall the definition of VssLpr from Theorem 7
and show that

fz SSLDR L;;© IZVSSLDR 27@)

15 (9%, o) WL
+\/ﬁi:1 (8015[ SSLDR(LZ,G))D ¥’ (L) (17)

We start expanding — 7n Sy Vss o (L5 C:)) as

1 <& ~
% Z Vssipr (Li; ©)
= Gn { Vssip (L @)} +Gn { Vssip (L 6) SSLDR(L 6) +f/ (L; G)dPLv

we next consider the limit of each term above.

1) Using a Taylor series expansion on f Vsstor

(L; ©)dPy, we get

+Op (nil) ,

~ _ ~ \NT O
/ Vesyp (I ©)dPy, = / Vs (Li ©)dPL+(© - ©) / Voo (L O)PL|

~  _\2
where the remaining terms are of order O { (@ - @) } which by Theorems 2 & 3 are

Op ( '). Next note that from (13) it follows that [vs (L; ©)dPL = 0, and thus letting
92(© fI/SSLDR L; ®)dPy, we have

Viig(8) = VB 0] GEm(®©) VA€~ 8 jm(®)| +or()
We can write
Viig(®) = fzw é?egg(@)] wa N >]@:é+o]p<1>.

2) We next show

~ —

G { Vesto (15 ©) = Vg, (L ©) } = o2(1),

define the class
b ={IH"~y,>0): Hp,y € R"}, t =1,2
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and the collection of half spaces C, = {H; € R% : H"™y, > 0,y € R%,t € {1,2}}, by Dudley
(1979) Cy is a VC class of VC dimension ¢; 4+ 1, next by van der Vaart and Wellner (1996)
we have that as Cy is a VC-class ¢; is a class of the same index. Finally, by Theorem 2.6.7
we have that ¢; is a Donsker class.

fo(L;) =w; (Hy;, A1;©1)(1 + B21) {Yzz - ﬂg(ﬁi)} + wa (Ha;, Agi; ©9)Y3; — fizw, (U;)
—B21 {wz(ﬁ% Azi; ©2)Yo; — ﬁ2w2(ﬁz‘)} — Q5_(Hy;;0) {wz(ﬁ% A2i; O2) — [, (ﬁz)} ,

we define the class of functions C2 = {fe(L)|® € S(J)}.

i) By Assumptions 3, 5 and Theorem 19.5 in Vaart (1998), W, Q;,t = 1,2 are a P-
Donsker class. Additionally, the terms in the wy(H;, Ay; ©;) functions of the form
H},~,I(H],7v; > 0) constitute a P-Donsker class, as Hjf;~, is linear in v, and I(HJ;~, > 0)
is P-Donsker. Thus it follows that Csy is a P-Donsker class.

ii) We estimate &;,&, for (4) with their maximum likelihood estimators, EI,EQ, solv-
ing P, [S:(&,)] = 0,t = 1,2, by Assumption 5 and Theorem 5.9 in Vaart (1998) Et L
€,,t = 1,2. Next, by Theorems 2, 3, under Assumptions 1, 2, /ét L5 0,,t =1,2. Thus
P ((:) € 5(6)> 2 1, V6. Therefore, we have N ¢ ©) € C, with high probability.

iii) We then show [ {1/ (L; (:)) — v, (L; (:))}2 dP;, — 0. Using simple algebra for

SSLpR DR
a large enough constant ¢ we have

Py N
Vssine (L3 ©®) — v (L;0©) ¢ dPy,
{ DR DR

<c sup {Yz - ﬂ%’(ﬁ)}Q

.

Y, 0

~ . ~ _ . _ 2
x sup { (14 BorJor (FIy, Av; ©1) = (1+ Bon ) (FIy, A1 01) |
Hi, A1

. - . _ 2
+csqu32 sup {wg(Hg,Ag;Gg) —wg(Hg,AQ;@Q)}
Y3 H», A

. 3 N _ 3 N2
+esup Yy sup {521w2(H2,A2;92) - 521w2(H27A2;@2)}
Y I:IQ,AQ

— e 2 A - 2
+csup fige,, (U) (521 - 521)
U

~ . ~ _ . _ 2
+c sup {QS_(H% 62)ws(Ha, A2; ©2) — Q5_ (Ha; 02)wa (Ha, As; @2)}
Hs, A

N ~ _ 2
esup fizu, (0)? sup { Q5 (Hy: 02) — Q3_(Has 62) }
U H»
250

where we use (a — b)?, (a + b)? < 2a® + 2b Va, b € R, boundedness of ® and covariates by
Assumptions 1, 2 to bound all supremum quantities.

65



SONABEND-W, LAHA, ANANTHAKRISHNAN, CAI AND MUKHERJEE

By Theorems 2 and 3 we have 52 — 0y = Op (rf%), 51 -0, = Op (n7%>, also from
Lemma 17 (a) it follows that

N N2
sup {Qg_(Hz; 02) — Q5_(Ha; 92)}
Hs
2173 22 212 _
< 2sup [[Hao||3(|B22 — Bazllz + 2sup [[Hat [|3]|722 — Ya2ll2
H20 H21

= Op (n_l) .

Next, we can write

wi(Hy, Ay; ©4) =1 {Al =d (Hl;a)} - (é;a) + T 7:1_(1;4;21)

Ao . 1— A,
o (H2352> 2—m (Hz;g2)

wo(Ha, Ag; ©1) =wy (Hy, Ay; (:)1)—7 {AQ =da <H2;gz>}

By Lemma 17 (b) it follows that

-~

sup |I(dy = Ay) — I(dy = Ay)| =op(1),
Hi,a;
Sup I(dy = A)I(As = dy) — I(dy = A1)I(dy = As)| =0p(1),
2,a2

sup
H;

1 1 )
- —| =0Op(n"2).
m(H; &) mHE) g <n )

Using the above and Lemma 14 we get

~ . ~ 2
sup { (14 Bo)ws (I, A1301) = (14 BorJon (Fy, A1;01) | =
Hy, Ay

sup { (14 Bor)wa (Flz, A2 ©3) = (14 By s (Flz, As;
Hs, A2

2

CHI
_ . . 2
sup {QS_(Hz;Oz)WQ(Hz,Az;@ﬂ — Q5 (Ha; 0)ws(Ha, Ay; ©3) } =
Hj, Az
}2

sup 4 Borwz(Ha, Ag; ©g) — Barwn(Hay, Ag; Og)
H, A

N _ 32
which gives us [ {I/SSLDR(L; o) - Vesi o (L; (-'))} dPr, 5 0.
Therefore we have i) P ((:) € 5(5)) — 1, V0, ii) Co is a P-Donsker class, and

N _\2
iii) [ (ySSLDR (L; ©) —vgg (L @)) dPr, — 0. By Theorem 2.1 in Van Der Vaart and Well-
ner (2007)

\/* Z { ( SSLDR (Li; @) - ES[VSSLDR (L; é)]) - <VSSLDR (Li; ©) — Es[v Vssior (L C:))]) } = op(1).
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by 1), 2) and noting that vey _ (Ls; ©) has mean zero we obtain the result in (17).

We next re-write /nPy [Eg] by expressing the estimated imputation functions in £g in
terms of the labeled sample £. Letting

(14 B21)Py {w1(Hy, A1;0)} 2 _ Pw {Q%_(Hy; 69)

(1 !
(1+ Bo1)P {w1H1,A1, }’ Y {QS_(H%%)}’

)
n,N

we can write:

N
%Zwl(ﬂlj,Alj»é)(l‘f‘BQl){ 5(0;) — NQ(ﬁj)}

K
ZM Hij, A1, 0)(1+ 1) {sz(z (T;) + —m2(ﬁj)—77§)}
k=1
| NoK

N
. . 1 . _ _
(-k) . ~v v\ T . .
=(1+ Ba1) BN JEZI kg_lm Hyj, Aij, ©)ASY(U;) + (75 772)N ;:1 wi(Hyj, A1y, ©)(1 + Ba1),

where the first step follows from constrains shown in (6) and we simply regroup terms in
the second step.
Next note that we can use Lemma 15 to replace

Py [(1 + Bo1)wr (Hy, Ag, G)Agk)(ﬁj)}

by

Eg {(1 + Bor)wi (Hy, Ay, @)A(g'k)(ﬁj)} + Op (N_%) ;
using Eg[] t to denote expectation with respect to L. Additionally, using (6) and the defini-
tion of 3(U) for the second term we get:

N
DS, A ©)(1 + ) { (D) - (T}

Jj=1

K
% Z(l + for)wi (Hy, A1, ®)ASY (0)

k=1

+ Op <N_%>
0 1 i . O
—C'SJ)VE Z Z(l + Bo1)wi (Hij, A1i; ©)ATH(U))
k=1i€T;,

A1 L1 & . N -
+C7(%])\7(1 + B21)ﬁ Z;QH(HM,AM; @) {}/21 - :UQ(Ui)}

= {1 + Op (717%)} (1+ 321)% im(ﬂu,fhi; ©) {Y% - ﬂ%(ﬁz‘)} + Op (nfécn;) ;
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where the last step follows from Assumption 6 and Lemma 16 choosing f to be the constant
function 1, setting Agx(U) = AS®(U), I(H;) = A I(H[,7; > 0), and #(Hy) = 71(Hy; &)
and with C’m N = 07(111)\7 -which satisfies CA’S])V =1+4+0p (n ;> by Lemma 17 (c).

Using similar arguments we have

N
3 @8 (o2 02) {71 (0) — e, ()}

1 & ~ (1 & . .
:NZQ8_<sz;02){KZ mé, (Uy) + mwz(Uj)—ng}

j=1 k=1
1 N K o . 1 N _
= o 2o D @8 (Haji 02) A, (U)) + (72, — ) w7 D @3- (Haj:02)
j=1 k=1 j=1
L5~ 9. A ) 1y 0 9, )A, (U
=Ec |4 D Q8- (Hy;602)A,,:(0)| — CaNyy D0 Q3 (Hyi;02) A,k (T)

k=11i€Zy,

k=
~(2) 1 - 0 .9 ] e = (17 -3
O D Q5 (Hyis ) {wn(Flys, A ©) — i, (T)} + 02 (N73)

=1
= {140 (n¥)} - Zl% (Flois 05) {wn(Flai, 453 ©) — fuy (T)} + 05 (e, ).
and for t = 2,3

J=1 j=1 k=1
| N K
= 2 2 Dawnk(T)) + (i, — 1iy)
7j=1 k=1
| XK
=Ec | 7 > Asun(0) Z > Aga(0
k=1 M= 1i€Ty
1 - _1
E H2’La A2’L7 6)}/152 Nth (UZ) + OIPJ (N 2)

o ~ — 1
wa(Ha;, A2i; ©)Yy; — fig,,, (Ui) + Op (”70@) ,

finally by Theorem 2, Bgl — Ba1 = Op (n*%)
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Therefore, recalling the definition of vsg , from Theorem 7, using the derivations above,
we can write

Using result (17) we know ﬁ Yo Vssi o (Us; é) = Op (1), therefore the second, third and

fourth terms in (18) are op(1). Using (17) again for the first term in (18) we get our required
result:

VnPN o)l = — Z Vssipr (L;; ©)

n P B T
+ ﬁ - (%E [VSSLDR (Li; @)]) "/)e(Li)

Recall the definition of Vsypy, (L; ©) in (5), using (13) we have E {VSSLDR(ﬁ;@,ﬂ) =
E [VSUPDR (L; C:))] , therefore

Bias {V, Vaupoe (L5 ©) } = Bias {7, Vesy,, (00, 1) }
Therefore, by Lemma 18 we have
Bias {V, Voo (U3 ©, p,)}
S\/S;IIP {1 = m(Hy; 51)}*1|\/H7T1(H1;€1) - 7T1(I:I1)||L2(IP’)\/HQ(1)(I:11§ 01) — Q5 (H1)||,(e)
.
+\/ng {771(};111;51) 1 7171_(Iji41l;él) } {1 —m(Hi; €))7 H1 - ma(Hy &)}
o (i €) = o (FLa) o)/ Q5 (L2 02) — Q3(EL) 1
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Next using Theorem 7

Jn {ﬁSLDR _ V} + /nBias {V, Visige (U ©, )} 4N (o, UESLDR) : (19)

if either (1) or (4) are correct then Bias {V,VSSLDR(ﬁ; C:),,B)} = op(1), multiplying (19) by
n"% we have .
Vesipr =V — 0
(a).

which is the required result for Proposition 8

Next, i \/[lm0(FLi: &) = () ooy Q5 (B3 B1) — Q2B Logey = O (™) for t =
1,2 then Bias {V,VSSLDR (ﬁ, (:),ﬂ)} = Op (n_l) and from (19) we get

\/ﬁ{VSSLDR - v} 4N (0, aSSLDR) ,
which is the required result for Proposition 8 (b). [ |
Before proving Proposition 9, we introduce a useful definition and state the necessary

assumption to prove the result. Let ngP(L;E) and ¢§SL(L;E) be the supervised and SSL
influence functions respectively for &, then we define

gv(-[_j) :VSSLDR(ﬁ; (:),[L) - ]ES [VSUPDR(L; (:))] + 59 /VSUPDR L @)d]P)L
0=0

§U
+ES(O) 5 / Vi (L5 O)Pr|
55([_j) :wSUP(L; £) - wSSL(L; 5)

We need to ensure that the imputation models 7i5(U), e, (0), ﬂfm(ﬁ), t = 2,3 used in
the SSL value function estimator Vg, are unbiased when multiplied by several functions.
For example, we need additional constraints of the type:

E [wi (F1, 413 ©1)Q5 (Ha: 02){Y2 - ia(0)} | =0,
E w1 (Hy, A1:©1)°(¥; — fi2(0)}] =0,
E [M(ﬂl, A1;01)*{Ys - ﬂ2(ﬁ)}} =0,

so the imputation models are unbiased in expectation when multiplied by every term and
cross-product of terms in 1g,  (L; ©), £"(U). These constraints can be summarized in the
following Assumption.

Assumption 8 Imputation models i3(U), ﬂ&(ﬁ), T (0), t = 2,3 satisfy
E [{£7(0) - ¢t (1;©) } £°(T)| = 0.
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Proof [Proof of Proposition 9] From Theorem 19 in Appendix F.1 we have that the influence
function for the fully-supervised value function estimator (5) is:

C e : : 0 :
¢SUPDR (L; ©) =Veuypy, (L; ©) — Es [VSUPDR (L; @)] =+ ¢§UP(L)T870 / Vsupyg (L; ©)dPy,
0=0

0 _
+¢§UP(L)T85/VSUPDR(L;Q)dPL

=0

Next, as we estimate € with a semi-supervised approach such that szSL(L; £) = ngP(L; £)—
E5(U), simple algebra can be used to show that

wgSLDR (L;0) = ngPDR(L; Q) - gv(ﬁ)‘

Using the above we can write

0525LDR =k [wSSLDR(L; @)2} =& [{ngPDR(L; ©)- 5”(6‘)}2}
—E 1, (L: ©)?] +E [£7(DY]

~2E (18,0, (L: ©)£7(0)|
By Assumption 8, we have E [{Ev(ﬁ) — Yuppe (L C:))} E”(ﬁ)} = 0, hence

2 2 o Var [5”(6)] .

Ossipr = 9supPpr

D.2.1 VARIANCE ESTIMATION FOR Vsyp,,

As discussed in Remark 10, to estimate standard errors for Vg, (I_j, ©), we will approxi-
mate the derivatives of the expectation terms % i Veuppg (L ©)dPy, using kernel smoothing
to replace the indicator functions. In particular, let Kp(z) = 3o (2/h), with o defined as
in (4), we approximate d¢(Hy, 0;) = I(H},~, > 0) with K;,(H};v,) t = 1,2, and define the
smoothed propensity score weights as

AlKh(H{l'-Yl) {1 _Al}{l _Kh(HIIFYl)}

01(Hy, A1,0) = . - , and

HHL AL O) = i e 1— i (Fy;€))

o . Ao, (H 1— Ag)} {1 — K, (HJ,

52(Ha, Az, ©) = @1 (Hy, Ay, ©) 2 hv( 21’72) { 2}{ h h( 21’)’2)}
m2(Hg; &y) 1 — m2(Ha; &5)
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For simplicity we’ll set h = 1, the derivatives are as follows:

0 0 0 . = .
g Vo (1) = S QI (F1: 00+ { (1, A1, ©) 12 — (G20, 61) - Q31 0}

o o o
+@1(Hy, A1, 9) [—(%Ql(Hh 0:) + %Qz(H% 07)
o .
+ {890@(sz Ay, @)} [V3 — Q3(Ha; 62)]
- 0
—w2(H2,A2>@)%Q2(H2;92),
where
0
%Ql(HHel) = [Hyy, H{, I (Hj;v; > 0),07]",

%Qg(ﬂ%%) = [0, H3o, H31 I (Hy v, > 0)]',
A 1— A
m(Hi &) 1 W1(ﬂ1;§1)}
x [07, Hi; Ky, (H{;v,){1 - Kn(H{;71)},0']"

0 . -
%Wl(HlaAla@) :{

o _ 0 Asdy(Hp;05) | {1 — Ao} {1 — da(Hp;62)}
%wz(Hz,Az, 0) = %wl(Hl,Al, Q) { 7r2(I:I2;§2) 1— 7r2(I:I2;€2) }
] A 1-A T
+@1(Hy, A1, ©) [OT, 21 Kn(H3172) (1 — Kp(H3v,)) {WZ(IV{;- &) 1-— WQ(H;’ 3y H '

Next we have

9 0 - :
7 Vovron (L ©) = {agwl(Hl, Ay, @)} Y2 = {Q7(Hy, 01) — Q5(Hy; 62) }]
+ {(,fga)z(m, As, @)} [¥5 — Q5(H2: 62)]
where
8 . -~ T
FEQI(Hl,Ah@) = [@1(H13€,)7,07]
385032(112,142, ®) = [0 (Hy, Ay, @)w2(H2;€2)T70T]T7
~ h I:I '
@i (Hy; &) = Hu {1 — dy(Hy, 0,) {1 - At}%

1—m(Hy &)

—Hud,(H,,0,)A a
t1l t( t t) t Wt(Ht;Et)

Appendix E. Technical Lemmas

We start with a simple Lemma that will save us some algebra:
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Lemma 14 For a fired (, let X € R be a random bounded vector and functions gy (X), g2(X)
be measurable functions of X. Let S, = {X}I'; be an i.i.d. sample, and §i1(-), §2(-)
be the estimators for functions g1, g2 € R respectively with supx |g1(X)|, supx |g2(X)|,

. . . _1

supx |g1(X)|, supx [§2(X)| < & for fized k € R. If Pp{gr — gx} = Op (n 2), fork=1,2,

.\ _1
then Pp{g192 — g192} = Op (n 2)-
Proof [Proof of Lemma 14| By definition, P,,{§192 — 9192} = Op (n_%) if and only if for a
given any € > 0, M, > 0 such that
P (|Pn{§1§2 — 192} > Men’%) < eVn. Let M, >0,

_1
P (IPn{glgz — 9192} > Men 2)
PO o ~ _1
=P (!Pn{ng — G192 + 9192 — 9192} > Men 2)

<P <\Pn{§l(§2 —92)H + Pn{g2(61 — 91) } > Men_%)

N N ~ _1
<P (s;p 91X Pa (32 — 923] + 520 oo [Pt — g1} > Mo )

which follows from bounded functions, the union bound, now since P, {gx(X) — gx(X)} =
Op (n_%), k = 1,2, there exists M, > 0 such that

. a1l R 11 €
IP’<|}P’n{g2—gg}|>M€n 2R>+}P’<|Pn{gl—gl}|>Men 25) §§+ =e.

N

Lemma 15 (Lemma (A.1) (a) in Chakrabortty et al. (2018))

Let X € Rf be any random vector and 9(X) € R’ be any measurable function of X, with
¢ and d fized. Let S, = {X}' ,,Sy = {X}é\[:1 be two random samples of n and N i.i.d
observations of X respectively, such that S, L Sy. Let g,(-) be any estimator of g(-) es-
timated with S, such that the random sequence: T = supyey |gn(-)| = Op(1), where

X € X CRY. Further define the following random sequences: G,N = % Zévzl n(X;), and
G, =Es, [én,N} = Ex [§n(X)], where Ex is the expectation with respect to X € Sy. We
assume all expectations involved are finite almost surely (a.s.) S, Vn. Then Gp n — G, =

Op (N—%>.

Proof [Proof of lemma 15]
The following proof follows similar arguments to Chakrabortty et al. (2018). Let G,, n,

Gn be the j¥ element of én,N and G,, respectively, with j € {1,...,¢}. We show that
On, N—Gn = Op (N 7%>, which implies Lemma 15 for any ¢ dimensional én ~, G,. Denote by
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Ps,, , Ps, sy denote the joint probability distributions of samples S,, and S,,, Sy respectively.
Further let Eg, [-] denote the expectation with respect to S,,. Since S,,_Il Sy using Hoeffding’s

inequality

gn,N - Qn > Nﬁ%t

2N2¢2
Sn> <2exp | — - a.s. Ps,,.
AN2T?

s

e

Also, as S, LSy we have

~ ~ 1
Ps,.sn Hgn,N —Gn > N2t

> N3] = Es, [PSN {(gnN -Gy

Next, we have that 7, = sup,cy ||dn(-)|| = Op(1) and is non-negative, thus Ve > 0

36(e) > 0 such that
Ps,, (Tn > 5(6)) < €/4, using the above we have that V n, N:

2N?t?
> N_%t) <Es, |2exp | — -
AN2T?

2 R N
2 exp <_2%%> (I{Tn >0(e)} + I{T, < 5(6)})

gn,N - gn

]P)STMSN (

[ ( t2>
=Eg, |2exp | ——=
2172
2

€
2

<2€
= ¢
- 2

where the last step follows from choosing ¢ large enough such that exp (_#2(5)) <e¢/4. N

For Assumption 9 and Lemma 16 we first define some notation and set up the problem. Let
X = (X1, X3) € R be any random vector and g(X1) € R be any measurable function of
X; € R% with 1,5 fixed. Suppose we're interested in estimating m(Xz) = E[g(X1)|Xg).
Let S, = {X}"; be a random sample of n ii.d. observations of X, and SE_; denote a

n

random partition of S, into K disjoint subsets of size ng = 7 with index sets {Zy }1;.
We will use cross-validation to estimate m(Xz), that is, we use subset Zy to train estimator
A and we estimate m(Xs) with: m(Xo) = K~ 30 3o mp(Xs), K > 2. Denote by
én, ~N € R an estimator which depends on both samples S,,,Sy. Additionally, let function
#n() : R = (0,1) be a random function with limit 7r(-), [,(Xz) : R2 — {0, 1}, be a random
function with limit {(X2), and finally function f : R — R?, d < /5 be any deterministic

function of Xs.

Assumption 9 Let X C RP for an arbitrary p € N i) function w : X — R and estimator
7n are such that supx, |ﬁ'n(X2)_1 - W(Xg)_1’ = Op (n7%>, it) function l : X — {0,1} and

~

estimator I, are such that supx,

R?, d < £y is such that supx, || f(X2)| < oco.
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ln(X2) — l(Xg)‘ =0Op (n7%>, and iii) function f: R —
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N

~

Lemma 16 Define G} (X5) = Cpx 202 £(X0) Ap(X5)—E [ 152 (22) Ax(X5)] for Ap(Xa) =
mg(Xa) — m(Xs), and CA'mN € R which satisfies C=1+0p (Tf%) Under Assumptions 6

and 9, there is Cpe = o(1) such that G, gk = ns ZkK:1 > ieT, G’Z(Xg) =0Op (cn;{>,

Proof [Proof of Lemma 16| First we define

for any sample subset Sx C L, let Ps,. denote the joint probability distribution of Sk, and
let Es, [-] denote expectation with respect to Ps,, and G, x = K3 Zle g,ﬁ”), Next by
Assumption 6 we have dj = supx, A(X3) = op(1). Finally let By = supx, [|.f(X2)[[2 < oo,

Bj < 0o be the upperbound to supx, |7(X32) ™|, supx, |1 (X2)| supx, |7{rz((§22)) |.

First note that

HGn,KH2
B K o (X)) . 1(Xs) )
" kzugzjk Cn’Nﬁn(XQi)f(XQi)A’f(X%) -E [W(XQi)f(X%)Ak(XZi)} 2
<||(Gan =1)n zgi;ﬂ 20) (X)) 2 25 2
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which follows from the triangle inequality, next as f(-), 7n(-)" L, w(), In(-) are bounded

VXq € X, and using uniform bounds of Op (n~ 2) for the difference terms we have

K K
HGTLKHQ <Op (n %) n2 BBy Zc/i\k + Op (n é)n?BlBQ ZAk
k=1 k=1
1 K 1 K
+0p (n78) 03 BuB2 | da| + || = D9
k=1 k=1 2

K
< |n32 > i(éz))f(ng)A (Xg) — E [Z(X%,) f(X%)Ak(X%)} 2+0P(1)'

where the last step follows from dj, = op(1). Next we want to bound the first term above
by Cpr in probability, note that Ve 3M > 0 such that

K
IP’( Zg,i”) >Mcn> <]P’< T2 >Mcn>
— ) K , K
<§:]P’<Hglgn) TILK> <ZZ]}D<‘ MCn;i>
= 2 k=1 j=1 (Kd)2

<x e e (o

( d)>

where the first 3 steps follow from applying Boole’s inequality and the triangle inequality,
Mec _

Cn}i
(Kd)2

the fourth step follows from iterated expectations for the the event {‘géﬁ)} >

Next, we have £, Il Ly, Vk € {1,..., K}, thus conditional on £, , n%g,i") is a sum of

iid centered random vectors { l((xm)) f (X21)Ak (le)} . which are bounded a.s. P, V&, n.
ASYAN

Thus we can apply Hoeffding’s inequality to gka].

( ) Mc — M2C2_
Pr, | (G > — 250 | < 2exp{ ———— 20
o ( ST (Ka)2 ’“) 2K dB2d? 20)

a.s. JP’EEVn; and for each k € {1,...,K},j € {1...,d}. Note that ;—f > 0 is stochastically
bounded away from zero as dj, = op(1), therefore Vk and given € > 0, 3d(e, k) > 0 such that

Pﬁk ( < d(e, k>> 1ica» let 6% (e, k) = ming {0 (¢, k) }, we have that
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C

Therefore using the bound in (20) and event { g;{ < 0% (e, k)}

k
P ( > Mcnl_{>
2
g

o (lom) oM
e [PecJ901]>

— "K|p-—
(Kd)* ’“)]
K [ M2Ci_ C C _
Dexp - " (I{gé &k }+I{ i 5o e k })
) T <5 (e, ) (. k)
]_W25*(6 ]{7)2 Cn Cn
<2K 1 P | K <5 IOKAP . [ =K *
< dexp{ SKdB? } o <Dk <9 (e,k)) +2Kd L <Dk >4 (e,k:))
M?25* (e, k)? ¢
——=— ¢ P (e, k
frec (3> em).
next note that choosing a large enough M such that exp{—w} < 1jq> since

2K dB?
3K dB?
P, (g‘: > 6% (e, k) < 1) we get P (HZE:I gl(cn)

Finally we have

g\

M=

B
Il

1

C —

™=
PQ&

<
Il
-

I/\
xl

||M&

< -
2Kd4 pi +2Kdexp{

€ € __
2>Mcn;<>§§+§—€

Gn,x = Op (%}) + op(1) = Op (%}) .

Lemma 17 Let ¥ € R? be a random variable such that \/n (3 —4) = Op(1), then for any
fized vector a € R? we have that (a) /n ([a™4], — [@™],) = vn (¥ — ) I(@"y > 0)+o0p(1),
(b) Functions dy t = 1,2, defined in Section 4 and propensity scores my in (4) satisfy

sup I((il = Al) (dl Al) =Op (nié ,

Hj,a;

)
sup [I(dy = A1) I(As = dy) — I(dy = Ay)I(d = A3)| =Op (n—%) ,
)

H3,az

1 B 1
771(H1,£1) 7Tl(Hl;El)

sup
H:

(¢) For 5, E estimated via our semi-supervised approach, and limits 0, &€ defined in Assump-

tions & and 5 respectively

~(1 21 )N (W1 1,411, 1 ~(2 N 2 25 412,02
)_(1—1—6 )P { (Hy, A @)} y P {Qo (Ho, A 0)}
n,N — » MmN T
(1+ B21)Py, {w1(H1,A1,@1)} P, {Qg (H2,A2,92)}
satisfy 5 :1+O]p(n*%), An?z)vzl—i-O]p(n %)
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Proof [Proof of Lemma 17|
Define set A, for any ¢ dimensional vector 4 as

Aq:{fyeRq

1 ~
§aT’y <a'y<2a'y, Vae Rq} .
Now consider 4 € A, :

e if sign(a™y) =1, then 0 < %aTﬁ/ < a'y = sign(a’™y) =1,
e if sign(a™y) = —1, then a™y < 2a™y < 0 = sign(a™y) = —1.

Assuming /n(y¥ —7) = Op(1), A4 exists and in fact it is such that P (5 € A,) 25,
(a) Using the above:

Wﬂh@h—hWhﬁ%ﬁﬁ—ﬁﬂ( >0) (€ A +vn([a"], —[a"3] ) T (7 ¢ Ag)
=vn (¥ —7)I(@'y > 0) + op(1).
(b) As Ay; € {0,1} , t = 1,2, we can write
I(dy = A)I(dy = Ag) =T {Ay = I(H], 7, > 0)} I {A; = [(H},7, > 0)}

=I{A, = I(Hj;7, > 0)}[ {42 = I(H37, > 0)}
=A1A2I(Hy;7, > 0)I(Hy 5, > 0)
+(1 = A1) (1 = A2)I(H{7; < 0)I(H37, < 0)
+A1(1 = A2)I(Hy17; > 0)I(H3 5, < 0)
+(1 = A1) A2 I(Hp 7, < 0)I(H35, > 0),

therefore

I(dy = A)I(dy = Ay) — I(dy = A1) I(dy = Ay)

=|A1 Az {I(H};7, > 0)I(Hy 75 > 0) — I(Hjy, > 0)I(Hy v, > 0)}

+(1 = Ap)(1 = A2) {I(H;7; < 0)I(H375 < 0) — I(H{yy; < 0)I(H3;%, < 0)}
+A1(1 — Ap) {I(H{7, > 0)I(H3 5, < 0) — I(H{;7;, > 0)I(H3; 7, < 0)}

(1 Av)As {I(H],F, < 0)I(HL, > 0) — I(H]y, < 0)I( 5ﬁ2>0>}]

<A1A;

I(H}17; > 0)I(Hy v, > 0) — I(Hj v, > 0)1(Hg v, > 0)’

+(1 = A1)(1 - Ag)

I(HL 7, < 0)I(HYF, < 0) — I(H]7; < 0)I(H} 7, < o>\

+A;1(1 - Ag)

I(HLF, > 0)(HY A, < 0) — I(H]7; > 0)I(H} 3, < o>)

—l—(l — Al)A2

I(H}5, < 0)I(Hy 59 > 0) — I(Hj;7; < 0)1(Hy vy > 0)‘
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where the first step follows from above, the second step from the triangle inequality, now
as 41, Yo have dimensions g2, g22 respectively, we use sets Ag,,, Ag,, and have

I(dy = A)I(dy = Ag) — I(dy = Ay)I(dy = Ay)

SAIA?I(:?I gé Aq12)I(:)72 ¢ Aq22) + (1 - Al)(l - A2)I<ﬁ1 ¢ Aqm)I(:?Q gé AQQ2)
+A1(1 - A2>I(:)71 ¢ Aqm)l(:)\’Q gé AQ22) + (1 - AI)A2I(’71 ¢ AQ12)I(32 §é A¢122)
:I(:)\'l gé *’4(]12)1(32 ¢ AQ22)

which follows from the fact that for any term within absolute value:

’f(Hh'Ah < O)I(Hy7, > 0) = I(Hy Yy <0)I(Hyy2 > 0)| = I(31 ¢ Agia) (V2 & Ages)

since for I(H{,7y; < 0)I(H3;7, > 0) # I(H{;7; < 0)I(H};74, > 0) both 4,4, have to
be outside sets Ayg,,, Ag,, respectively. Thus ‘I(c/l\l = Al)I(C/Z\Q = Ay) — I(dy = A)I(dy =

As)| = Op <n_%> , we can analogous show that I(c/l\l = A1) —I(dy = A1)| = Op (n_%) Vi.
1 1 _ -1
Next to see supyy, EE)  mEE)| Op (n 2 ), note that as H1, 21 are bounded sets
we have
sup ! ~ — ! ——| = sup e_HIél — ¢ HI&
H; |7 (Hy;&) w1 (Hi; €&4) HieH,
d . _
< sup —e T sup |Hj¢&, —H{E
HycHi 6,60 dr ‘J}—H-lrﬁl H,eH, 1681 1

d A _ 1
< sup —e | 4 ’ sup ||Hi|| H{l — £1H = Op (niﬁ) ,
HieH1,6,eM dx ‘I_Hlsl HicH, 2

where we use the definition of 7y in (4), Lipschitz and Hél — ElHQ = Op (717%) from As-
sumptions (5) and Theorem 5.21 in Vaart (1998) as we are using Z-estimation for &;.
(¢) By Theorem 2 we have Bgl — B91 = Op (n_%> Next, we can write

wi(Hy, A1;©1) = I{Al =d (H1;§1>} - (11141,21) + T 7:1_<§11,21)

By Lemma 17 (b) it follows that

Py [1{A1=dy (Hi€) ) — 1 {41 = (H1;€)}] = 00 (n7F),
A A | 1

o 7T1(H11;Z1) o (H;&l)_ - (n 2)’
1—A 1—4, | )

o [1—W1(H11;§1) Smmgy | -
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Using the above and Lemma 14 we get
~ -~ ~ = ~ — 1
(1+ B21)Py {w1(H1, Ay; @1)} = (1 + B21)Pp {w1(Hi, A1;01)} + Op (TL_?)
Also by CLT we have

(14 B21)Pp {w1(H1, A1;01)} = (1 + B21)E {w1(H1, A1;01)} + Op <n_%> ,

(1+ Bo1)Py {w1(Hy, A1;01)} = (1 + B21)E {wi(Hy, 41;01)} + Op <N7%> ;

finally by Slutsky’s theorem C’T(Llj)\, —1=0p (n_%> . With similar arguments, and using
Lemma 17 (a) to see P, ([H3;75], — [H3;75],) = Op (n_%>, we can show 6’7(12])\, -1 =

O (n?).

Lemma 18 Let Q;(Hy; 6;), m(Hy; &) t = 1,2 be estimator functions of (1) & (4) respec-
tively and define the bias as Bias (‘_/, Vsuppg (L @)) =V-E [VSUPDR (L; G))], then

Bias (‘_/, VSUPDR (L, @))

w L M)\ ey oot
= _{1 - mm;eo} 1QI(H) Ql(H“O”}]

- 1 =m D) e oo
+E _{1 1—71(H1;£1)}{Q1(H1) Ql(Hlvgl)}]

p— 14 ) ) et opEL
HE _{m<ﬁ1;gl>+1—m(ﬂ1;el>}{ ﬂ2(ﬂ2;€2)}{Q2(H2> Qz(HQ’OQ)}}

p— 1-4 _ 1 =me) Y ooy oo
= _{7r1(I:I1;§1)+1—7T1(I:I1;€1)}{1 1—Wz(ﬂ2;§2)}{Q2<H2) QQ(H?’GQ)}]

where V. = E[E[Ys + E[Y3|Hay, Y2, Ay = do(Hy)]|Hy, Ay = dy(Hy)]] is the mean population
value under the optimal treatment rule.

Proof [Proof of Lemma 18|

Bias (V, Vsey, (L ©)) =E[E[YV2 + E[Y3|Ha, Ya, Ay = do]|Hy, A1 = d1]] — E [Vsyey, (L; ©)]
=E [Q7(H1) — Q7(Hi;61)]
—E [wi(Hy, A1; 1) {Ya — Q7 (Hy;601) }]
—E [wy(Hy, Ay; ©1)Q9(Hy; 62)]
—E [wa(Ha, A2; ©2) {V3 — Q3(Ha; 02)}] .
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Addlng and subtracting E [wl (1:11, Al; @1)Q3(H2)] =E [wl (I:Il, Al; @1)E[Y3‘H2, d_2 (I:IQ; 02), YQH s

Bias ( ’VSUPDR L @)
E[Q7(Hy) — Q7 (Hy; 6,)]

[wl Hy, A1;0y) {Y2+E[Y3!H2d2(H2,92) 2] — Ql(H1,91)H
E|wi(Hy, A1;0y) {Qg(H2592) - Qg(H2)H
E [wa(Ha, Ag; ©3) { V3 — Q§(Ha; 02)}]

using iterated expectations in the second and fourth terms:

Bias (V, Vsuppr (L; 6))
= E [Qf(Hy) — Q(Hy; 6,)]
—E |E |wi(Hi, 415 01) {Ya + E[Y3|Hy, d2(Ha), Ya] — Q7(H;61)}

]
— E [wi(Hy, A1; ©1) {Q9(Hy; 02) — Q5(Ha) }]

~E[B o2 A2 ©0) (Y Q5(F1ui62)} o, A 13|

=E [Q7(H1) — QF(Hi;61)]

-E -wl(I:Ih A1;09) {IE {YQ + E[Y3|Ha, d2(Hy), Ya)

B [wr(F, Ay ©1) {Q5(Fx:0) — Q3(F))]
— E [wa(Ha, A2; ©2) {E [Y3|Ha, Az, V2] — Q5(Hz; 62) }] .

i, 4] - Q5000

using definitions of wt(flt, At;0) t = 1,2 we can write:

Bias (V,VSUPDR (L; @))
=E [QF(Hy) — QF(Hy; 61)]
E H J}Al (1- Czl)(} — Ay)
m(Hi3&)  1—m(Hi;6)
[ oy - oysen) ] - B [0 oy - oyuie)]
7 (Hy; &) ’ 1—7T1 H1,€1) ,
_EH di1 Ay +(1—d1 )(1— Ay) }{ daAs 1—d2)(1—A2)}
m(Hi; &) 1—m(H;E) m(Ha; &) 1 —ma(Hy; &)

< {QUL) — Qy(F1zs0.)} |

}{Q‘f(fi) - Q‘f(ﬂl;el)}}
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assuming A, | As|Ha, Ys, we use iterated expectations:
Bias (‘7, VSUPDR (L, @))
=E [Qf(H1) — Q7 (Hy; 01)]

_ di Ay (1 —dy)(1— . e
E[E [{Wl(I:I1§§1)+ 1—7T1(H1’£1) }{Q (FIy) —Q7(Hy;601)}

) [{m L Gl 0] G } {Qy@ Qz(H2792)}]

)l
(Hl_;fl) 1 —7r1(H1,£1)
B A (1—d)(1— Ay DAy (1—dy)(1— Ay)
E[E[{Wl(ﬂﬂgl) * 1—m(Hp: ¢)) } {WQ(Hz;EQ) " 1 — my(Ha; &) }
x {Q8(Ha) — Q4(Ha; 05)

o
=E [QF(Hy) — QF(Hy;61)]
B CZ17T1(I:I1) {1 —Czl}{l _7['1(1:11)}
E[{M(Hl;&) " 1—m(Hy; ) }{Q () - Ql(Hhol)}]
B d1 A (1 —dp)(1— Ay)
[{ e e S (@)~ Qi o)
- CilAl dl)(l - Al d27T2 H2 {1 — CZQ}{l - 7T2(I:I2)}
IE[{M(Hl;&)jL 1—m(Hy;€y) }{ HQ,EQ 1 — mo(Ha; &) }
x {Q8(Hy) — Q(Q)(H2;92)}}
finally, factorizing common terms:

Bias (V, Veuepg (L3 @))

_E :Jl {1 - Wf’(llflsl }{Q1 (F1) Q‘i(ﬂl;(’l)}]

+E :{1 —dl}{ 1_7;?15111{21} {Q3(y) Q‘f(ﬂl;(’l)}]

" :JZ {m(lil;so i —jn_(lil;sn} {1 B 7r27r(21({2 &) } Qe QQ(H?’G”}}

B[ - &) {mﬁ;sl) e Hi- 1—&%} (@3t - Q3100

S\/s}lle7T1(I:11;£1)}1|\/||7T1(I:11;£1)7T1(H1 ||L2(IP>)\/HQ1 Hi;61) — Q(HD) | L,
H;

A 1— A, R
+\/ng {Wl(Hl;&) * 1—7T1(I:I1;£1)}{1—7T1(H1a£1)} 1{1 7r2(H2,£2)} !

sy lma(Fla: €3) — 2 (FLo) | o)\ Q5 (Flz: 0) — Q9(FL2) | i)
which follows by Cauchy—Schwarz Inequality. [ |

82



SEMI-SUPERVISED OFF-POLICY REINFORCEMENT LEARNING AND VALUE ESTIMATION FOR DTRS

Appendix F. Additional Theoretical Results
F.1 Augmented Value Function Estimation

We first re-write Assumption 5 to account for only using sample £ in estimation of the @

functions and propensity scores.

Assumption 10 Define the following class of functions:

Q1 ={Q:1(H,A;60:1)|60, € ©1 CR"},

Q2 = {Q2(Ha, A2,Y2;02)[02 € O C R®}, (21)
Wi = {m(Hi;€)|§; € C R},

W = {7T2(H2§52)|€2 €y CRP?},

with p1,p2,q1,q2 fired under model definitions (1) € (4). Let the population equations
E [Sf({t)] =0,t = 1,2 have solutions &, &,, where

S5(61) =g~ o8 [m (B €)1 = m (B €)) 0 4]
55(62) =g 08 [maF1ai €)1 — ma(Fs )04

and the population equations for the Q functions E[S?(6;)] = 0,t = 1,2 have solutions
01,05, where

9 .
S9(62) IfTHYza — Q2(Ha, A2;05)|]3,

59(0,) = Vs + Qao(Ha; 02) — Q1(Hy, Ay;601)]3,

891— |
(i) &1,&2 are bounded sets. (ii) ©1,02 are open bounded sets and for some r > 0 and g;(-)

Qi(+6:) — Q1+ 0,)| < g:(-)]|0: — B3] V8,0, € O, Ef|gi(-)|"] < o0, t =1,2. (22)

(iii) The population minimizers satisfy 0, € 64,& € Ut = 1,2. (iv) For §,t = 1,2,
T1(Hy;€;) > 0,72(Ho; &) > 0VH € H.

Existence of solutions 0; € O, t = 1,2 is clear as ©1, Oy are open and bounded.

Theorem 19 (Asymptotic Normality for ‘/}SSLDR) Under Assumptions 1, 4, and 10,
Vsuppr @S defined in (5) is such that

NG {XZ,UPDR — Es [Vappgy (L ©)] } 7 Z Wy (Lis©) + 0 (1) -5 N (o, agupDR) .
where
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¢§UPDR (LS (:)) :VSUPDR(L; é) — Es [VSUPDR (L; (:))] + ¢sup /VSUPDR L @)dPL
=0

+¢SUP /VSUPDR L Q)dPL
=0

2 v .
Osuppr =E |:¢SUPDR (L; ©) ] .

Proof [proof of theorem 19|
Letting g(©) = [ Vsypy, (L; ©)dPy, we start by centering (5) and scaling by /n:

\/ﬁ {Pn <VSUPDR (L§ éSUP)) —E [VSUPDR (L; é)] }
=G {Vioron (1 ©)} + G {Veoror (L Osur) = Veur (1:©) } + v/ {9(Osie) — 9(©) }

I) Empirical Process Term

We first show that under Assumption 10, G, {VSUPDR(L; (:)SUP) — Veuppg (L (:))} = op(1),
let

fo(U) = Q7 (Hy; 01)+wi (Hy, A1, ©) {Vz — Q7 (F1; 01) + Q5(H; 05)}
+wz(Hy, Ap; ©) {Ys — Q3(Hy; 62) }

we define the class of functions Cs = {f@(ﬁ)ﬂj, O c 8(5)} , and
¢={1:{0,1}? — {0,1}}.

i) By Assumptions 10 and Theorem 19.5 in Vaart (1998), ¢, W;, Qi t = 1,2 are a
P-Donsker class, thus it follows that C3 is a Donsker class.

ii) We estimate &;,&, from (21) with their maximum likelihood estimator £1SUP,£25UP,
solvmg P, [S:(&,)] = 0,t = 1,2 and estimate functions wl(Hl,EISUP) 7T2(H2,€2SUP) with

élsup, EQSUP By Assumption 10 and weak law of large numbers £tSUP LN £,1=1,2.

_ Analogous, under regularity conditions, (2) have unique solutions OtSUP for which Otsup 2,
0.,t = 1,2 by Assumption 10 and weak law of large numbers. Both regardless of whether

models (1) & (4) are correct. Thus PP ((:)SUP € S(é)) — 1, V6.
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~ _ N2
iii) We next show [ {VSUPDR (L; Osup) — Vsuppe (L @)} dPy, — 0. Using (7), for a large

enough constant ¢ we can write

~ _ 2
/ {VSUPDR (L§ @sup) - VSUPDR (L§ @)} dPL,

_ ~ 2
<c Srlllp (HIOB1 + [H-{l’?l]‘l* - HIOBlSUP - [HIl'YlsUP]Jr)
1

S BN R 2
+csup (H;oﬁz + [Hy Y]+ — HioBasue — [Hgl’hsuph)
H-

—~ _ 2 n _ 2
+c§ug {wl(H1,A1; Orsup) —wi(Hy, Ay @1)} + </821$UP — 621)
1,41

— 0

where we use (a — b)2, (a + b)? < 2a% + 2b? Va,b € R, boundedness of © and covariates
by Assumptions 1, 2, and 10. Next,

from assumption (7) it can be shown that /égsup—éz = Op <n_%>, §1SUP—91 =Op <n_%>,
also from Lemma 17 (a) it follows that for ¢t = 1,2

_ ~ 2
sup <HtTO:8t + [HtTl:Yt]-&- - HIOﬂtSUP - [HtT17tSUP]+>

H;
< 2sup [[Hy|3]18; — Bell3 + 2sup [Ha [3117: — Yell2
H:o Hy
= Op (n_l) .
Next, we can write
~ ~ A 1-A4
wi(Hi, A1;O1s0p) =1 {Al =d (H1;€1sup)} : + :

™ <H1§glsup> I —m <H1§ElsuP>
By Lemma 17 (b) it follows that
1 1

T (Hyi €gp)  T(HLE)

sup
H;

=0p (n7%).

Using the above and Lemma 14 we get

3 . . _ 42
sup {Wl(HlaAU O1svp) — w1 (Hy, Ay; @1)} =op (1),
Hi, A1

. _ 2
Wthh giVeS us f {VSUPDR (L, @SUP) - VSUPDR (L, @)} d]P)L — O
Hence, we have i) P (C:)SUP € 8(5)) — 1, V9, ii) C; is a Donsker class, and

~ _ N2
i) [ {VSUPDR (L; Osup) — Vsuppe (L @)} dPy, — 0, then by Theorem 2.1 in Van Der Vaart
and Wellner (2007)

\/ﬁ [Pn {VSUPDR (L; @SUP) - g(@SUP)} -P, {VSUPDR (L; é) - g((:))}] = op(1).
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Centered Sample Average

Next we consider G,, {VSUPDR (L; @)} Note that Vsyp,, (L; ©) is a deterministic function

of random variable L as parameters are fixed. We have that E |:(VSUPDR (L; @)2} < 00 holds
by Assumption 1 & 10. Thus the central limit theorem yields

G {Vavpy (1;0)} =5 N (0, Var [Vsyeg, (L; ©)]) -

Bias Term R B
We finally analyze the bias: /n { 9(Osyp) — g(@)}. Using a Taylor series expansion

g(@sup) = g(@) + (b\sup - é)T 895upg(@) + (ESUP - E)Taga g(@) + Op (n_l) )
therefore
. _ 9 N I R
\/E{Q(G)SUP) - 9(@)} :\F(OSUP 6)" 805UP 9(©) + Vn(€syp — &) aﬁsup 9(©) + op(1).

Using the @ function and propensity score function influence functions we can write

0

Vit {s@ur) - 4(8)} = 57—9(©) fZ«psup + o

9(®) \/»Zd’sup )+ op(1)
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