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Abstract
A widely recognized difficulty in federated learning arises from the statistical heterogeneity
among clients: local datasets often originate from distinct yet not entirely unrelated probability
distributions, and personalization is, therefore, necessary to achieve optimal results from
each individual’s perspective. In this paper, we show how the excess risks of personalized
federated learning using a smooth, strongly convex loss depend on data heterogeneity from
a minimax point of view, with a focus on the FedAvg algorithm (McMahan et al., 2017)
and pure local training (i.e., clients solve empirical risk minimization problems on their local
datasets without any communication). Our main result reveals an approximate alternative
between these two baseline algorithms for federated learning: the former algorithm is
minimax rate optimal over a collection of instances when data heterogeneity is small,
whereas the latter is minimax rate optimal when data heterogeneity is large, and the
threshold is sharp up to a constant.

As an implication, our results show that from a worst-case point of view, a dichotomous
strategy that makes a choice between the two baseline algorithms is rate-optimal. Another
implication is that the popular FedAvg following by local fine tuning strategy is also
minimax optimal under additional regularity conditions. Our analysis relies on a new
notion of algorithmic stability that takes into account the nature of federated learning.
Keywords: Empirical Risk Minimization, Federated Learning, Personalization, Data
Heterogeneity, Minimax Rates, Algorithmic Stability

1. Introduction

As one of the most important ingredients driving the success of machine learning, data
are being generated and subsequently stored in an increasingly decentralized fashion in
many real-world applications. For example, mobile devices will in a single day collect
an unprecedented amount of data from users. These data commonly contain sensitive
information such as web search histories, online shopping records, and health information,
and thus are often not available to service providers (Poushter, 2016). This decentralized
nature of (sensitive) data poses substantial challenges to many machine learning tasks.

To address this issue, McMahan et al. (2017) proposed a new learning paradigm, which
they termed federated learning, for collaboratively training machine learning models on data
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that are locally possessed by multiple clients with the coordination of the central server (e.g.,
service provider), without having direct access to the local datasets. In its simplest form,
federated learning considers a pool of m clients, where the i-th client has a local dataset Si
of size ni, consisting of i.i.d. samples {z(i)

j : j ∈ [ni]} (denote [n] := {1, 2, . . . , n}) from some
unknown distribution Di. Letting `(w, z) be a loss function, where w denotes the model
parameter, the optimal local model for the i-th client is given by

w
(i)
? ∈ argmin

w
EZi∼Di`(w, Zi). (1)

From the client-wise perspective, any data-dependent estimator ŵ(i)(S), with S = {Si}mi=1

denoting the collection of all samples, can be evaluated based on its individualized excess
risk:

IERi := EZi∼Di [`(ŵ
(i), Zi)− `(w(i)

? , Zi)],

where the expectation is taken over a fresh sample Zi ∼ Di. At a high level, this learning
paradigm of federated learning aims to obtain possibly different trained models for each
client such that the individualized excess risks are low (see, e.g., Kairouz et al. 2019).

From a statistical viewpoint, perhaps the most crucial factor in determining the effectiveness
of federated learning is data heterogeneity. When the data distribution Di is (approximately)
homogeneous across different clients, presumably a single global model would lead to small
IERi for all i. In this regime, indeed, McMahan et al. (2017) proposed the federated
averaging algorithm (FedAvg, see Algorithm 1), which can be regarded as an instance
of local stochastic gradient descent (SGD) for solving (Mangasarian and Solodov, 1993;
Stich, 2019)

min
w

1

N

∑
i∈[m]

niLi(w, Si), (2)

where Li(w, Si) :=
∑

j∈[ni]
`(w, z

(i)
j )/ni is the empirical risk minimization (ERM) objective

of the i-th client and N = n1 + · · · + nm denotes the total number of training samples.
Translating Algorithm 1 into words, FedAvg in effect learns a shared global model using
gradients from each client and outputs a single model as an estimate of w(i)

? for all clients.
When the distributions {Di} coincide with each other, FedAvg with a strongly convex
loss achieves a weighted average excess risk of O(1/N), which is minimax optimal up to a
constant factor (Shalev-Shwartz et al., 2009; Agarwal et al., 2012), see the formal statement
in Theorem 6.

However, it is an entirely different story in the presence of data heterogeneity. FedAvg has
been recognized to give inferior performance when there is a significant departure from
complete homogeneity (see, e.g., Bonawitz et al. 2019). To better understand this point,
consider the extreme case where the data distributions {Di} are entirely unrelated. This
roughly amounts to saying that the model parameters {w(i)

? } can be arbitrarily different
from each other. In such a “completely heterogeneous” scenario, the objective function (2)
simply has no clear interpretation, and any single global model—for example, the output of
FedAvg—would lead to unbounded risks for most, if not all, clients. As a matter of fact, it
is not difficult to see that the optimal training strategy for federated learning in this regime
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Algorithm 1: FedAvg (McMahan et al., 2017)

Input: initialize w
(global)
0 , number of communication rounds T , step sizes {ηt}T−1

t=0

for t = 0, 1, . . . , T − 1 do
Randomly sample a batch of clients Ct ⊆ [m]
for client i ∈ Ct do

Obtain w
(i)
t+1 by running several steps of SGD on Si using w

(global)
t as the

initialization
w

(global)
t+1 ← w

(global)
t − mηt

N |Ct|
∑

i∈Ct ni(w
(global)
t −w

(i)
t+1)

Output: ŵ(i) = w
(global)
T , i ∈ [m]

is arguably PureLocalTraining, which lets each client separately run SGD to minimize
its own local ERM objective

min
w(i)

Li(w
(i), Si) (3)

without any communication. Indeed, PureLocalTraining is minimax rate optimal in the
completely heterogeneous regime, just as FedAvg in the completely homogeneous regime
(see Theorem 4).

The level of data heterogeneity in practical federated learning problems is apparently
neither complete homogeneity nor complete heterogeneity. Thus, the foregoing discussion
raises a pressing question of what would happen if we are in the wide middle ground of the
two extremes. This underlines the essence of personalized federated learning, which seeks to
develop algorithms that perform well over a wide spectrum of data heterogeneity. Despite a
venerable line of work on personalized federated learning (see, e.g., Kulkarni et al. 2020), the
literature remains relatively silent on how the fundamental limits of personalized federated
learning depend on data heterogeneity, as opposed to two extreme cases where both the
minimax optimal rates and algorithms are known.

1.1 Main Contributions

The present paper takes a step toward understanding the statistical limits of personalized
federated learning by establishing the minimax rates of convergence for both individualized
excess risks and their weighted average with smooth strongly convex losses. We briefly
summarize our main contributions below.

1. We prove that if the client-wise sample sizes are relatively balanced, then there exists
a problem instance on which the IERi’s of any algorithm are lower bounded by{

Ω(1/N +R2) if R2 = O(m/N)

Ω(m/N) if R2 = Ω(m/N),
(4)

where R is the minimum quantity satisfying minw∈W
∑

i∈[m] ni‖w
(i)
? − w‖2/N ≤

R2, i.e., it measures the maximum level of heterogeneity among clients (here ‖ · ‖
throughout the paper denotes the Euclidean distance). Meanwhile, we show that the
IERi’s of FedAvg are upper bounded by O(1/N + R2), whereas the guarantee for
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PureLocalTraining is O(m/N), regardless of the specific value of R. Moreover,
we also establish similar upper and lower bounds for a weighted average of the IERi’s
under a weaker condition.

2. A closer look at the above-mentioned bounds reveals a perhaps surprising phenomenon:
for a given collection of problem instances with a specified maximum level of heterogeneity,
exactly one of FedAvg or PureLocalTraining is minimax optimal.

3. The established minimax results suggest that the naïve dichotomous strategy of (1)
running FedAvg when R2 = O(m/N), and (2) running PureLocalTraining when
R2 = Ω(m/N), attains the lower bound (4). Moreover, for supervised problems,
this dichotomous strategy can be implemented without knowing R by (1) running
both FedAvg and PureLocalTraining, (2) evaluating the test errors of the two
algorithms in a distributed fashion, and (3) deploying the algorithm with a lower test
error. We emphasize that the notion of optimality under our consideration overlooks
constant factors. In practice, a better personalization result could be achieved by more
sophisticated algorithms.

4. As a side product, we provide a novel analysis of FedProx, a popular algorithm for
personalized federated learning that constrains the learned local models to be close
via `2 regularization (Li et al., 2018). In particular, we show that its IERi’s are of
order O

(
1

N/m ∧
R√
N/m

+
√
m
N

)
, and a weighted average of the IERi’s satisfies a tighter

O
(

1
N/m ∧

R√
N/m

+ 1
N

)
bound, where a ∧ b = min{a, b} for two real numbers a and b.

5. On the technical side, our upper bound analysis is based on a generalized notion of
algorithmic stability (Bousquet and Elisseeff, 2002), which we term federated stability and
can be of independent interest. Briefly speaking, an algorithm A(S) = {ŵ(i)(S)} has
federated stability {γi} if for any i ∈ [m], the loss function evaluated at ŵ(i)(S) can
only change by an additive term of O(γi), if we perturb Si a little bit, while keeping
the rest of datasets {Si′ : i′ 6= i} fixed. Similar ideas have appeared in Maurer (2005)
and have been recently applied to multi-task learning (Wang et al., 2018). However,
their notion of perturbation is based on the deletion of the whole client-wise dataset,
whereas our notion of federated stability operates at the “record-level” and is more
fine-grained. On the other hand, our construction of the lower bound is based on a
generalization of Assound’s lemma (Assouad, 1983) (see also Yu 1997), which enables
us to handle multiple heterogeneous datasets.

1.2 Related Work

Ever since the proposal of federated learning by McMahan et al. (2017), recent years
have witnessed a rapidly growing line of work that is concerned with various aspects of
FedAvg and its variants (see, e.g., Khaled et al. 2019; Haddadpour and Mahdavi 2019; Li
et al. 2020b; Bayoumi et al. 2020; Malinovsky et al. 2020; Li and Richtárik 2020; Woodworth
et al. 2020; Yuan and Ma 2020; Zheng et al. 2021).

In the context of personalized federated learning, there have been significant algorithmic
developments in recent years. While the idea of using `2 regularization to constrain the
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learned models to be similar has appeared in early works on multi-task learning (Evgeniou
and Pontil, 2004), its applicability to personalized federated learning was only recently
demonstrated by Li et al. (2018), where the FedProx algorithm was introduced. Similar
regularization-based methods have been proposed and analyzed from the scope of convex
optimization in Hanzely and Richtárik (2020); Dinh et al. (2020), and Hanzely et al. (2020).
In particular, Hanzely et al. (2020) showed that an accelerated variant of FedProx is
optimal in terms of communication complexity and the local oracle complexity. There
is also a line of work using model-agnostic meta learning (Finn et al., 2017) to achieve
personalization (Jiang et al., 2019; Fallah et al., 2020). Other strategies have been proposed
(see, e.g., Arivazhagan et al. 2019; Li and Wang 2019; Mansour et al. 2020; Yu et al. 2020),
and we refer readers to Kulkarni et al. (2020) for a comprehensive survey. We briefly
remark here that all the papers mentioned above only consider the optimization properties of
their proposed algorithms, while we focus on statistical properties of personalized federated
learning.

Compared to the optimization understanding, our statistical understanding (in terms of
sample complexity) of federated learning is still limited. Deng et al. (2020) proposed an
algorithm for personalized federated learning with learning-theoretic guarantees. However,
it is unclear how their bound scales with the heterogeneity among clients.

More generally, exploiting the information “shared among multiple learners” is a theme
that constantly appears in other fields of machine learning such as multi-task learning
(Caruana, 1997), meta learning (Baxter, 2000), and transfer learning (Pan and Yang, 2009),
from which we borrow a lot of intuitions (see, e.g., Ben-David et al. 2006; Ben-David and
Borbely 2008; Ben-David et al. 2010; Maurer et al. 2016; Cai and Wei 2019; Hanneke and
Kpotufe 2019, 2020; Du et al. 2020; Tripuraneni et al. 2020a,b; Kalan et al. 2020; Shui et al.
2020; Li et al. 2020a; Zhang et al. 2020; Jose and Simeone 2021).

More related to our work, a series work by Denevi et al. (2018, 2019); Balcan et al. (2019),
and Khodak et al. (2019) assumes the optimal local models lie in a small sub-parameter-
space, and establishes “heterogeneity-aware” bounds on a weighted average of individualized
excess risks. However, we would like to point out that they operate under the online learning
setup, where the datasets are assumed to come in streams, and this is in sharp contrast to the
federated learning setup, where the datasets are decentralized. Our notion of heterogeneity
is also related to the hierarchical Bayesian model considered in Bai et al. (2020); Lucas et al.
(2020); Konobeev et al. (2020), and Chen et al. (2020).

1.3 Paper Organization

The rest of this paper is organized as follows. In Section 2, we give an exposition of the
problem setup and main assumptions. Section 3 presents our main results with proof
sketches. We conclude this paper with a discussion of open problems in Section 4. For
brevity, detailed proofs are deferred to the appendix.

2. Problem Setup

In this section, we detail some preliminaries to prepare the readers for our main results.
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Notation. We introduce the notation we are going to use throughout this paper. For two
real numbers a, b, we let a ∨ b = max{a, b} and a ∧ b = min{a, b}. For two non-negative
sequences an, bn, we denote an . bn (resp. an & bn) if an ≤ Cbn (resp. an ≥ Cbn) for some
constant C > 0 when n is sufficiently large. We use an � bn to indicate that an & bn, ab . bn
hold simultaneously. We also use an = O(bn), whose meaning is the same as an . bn, and
an = Ω(bn), whose meaning is the same as an & bn. For two probability distributions
D1 and D2, we use D1 ⊗ D2 to denote their joint distribution under independence. We
use W to denote the parameter space and Z to denote the sample space. Finally, we let
PW(x) := argminy∈W ‖x − y‖ denote the operator that projects x onto W in Euclidean
distance.

Evaluation Metrics. The presentation of our main results relies on how to evaluate the
performance of a federated learning algorithm. To this end, we consider the following two
evaluation metrics.

Definition 1 (Individualized excess risk) Consider an algorithm A that outputs A(S) =

{ŵ(i)(S)}mi=1. For the i-the client, its individualized excess risk (IER) is defined as

IERi(A) := EZi∼Di [`(ŵ
(i)(S), Zi)− `(w(i)

? , Zi)], (5)

where Zi ∼ Di is a fresh data point independent of S.

Definition 2 (p-average excess risk) Consider an algorithm A that outputs A(S) =

{ŵ(i)(S)}. For a vector p = (p1, . . . , pm) lying in the m-dimensional probability simplex
(i.e., all pi’s are non-negative and they sum to one), we define the p-average excess risk
(AERp) of A to be

AERp(A) :=
∑
i∈[m]

pi · IERi(A). (6)

In words, IER measures the performance of the algorithm from the client-wise perspective,
whereas AER evaluates the performance of the algorithm from the system-wide perspective.

Intuitively speaking, the weight vector p in (6) can be regarded as the importance weight
on each client and controls “how many resources are allocated to each client”. For example,
setting pi = 1/m enforces “fair allocation”, so that each client is treated uniformly, regardless
of sample sizes. As another example, setting pi = ni/N (recall that N =

∑
i∈[m] ni is the

total sample size) means that the central server pays more attention to clients with larger
sample sizes, which, to a certain extend, incentivize the clients to contribute more data.

Notably, while a uniform upper bound on all IERi’s can be carried over to the same bound
on AERp, a bound on the AERp alone in general does not imply a tight bound on each IERi,
other than the trivial bound IERi ≤ AERp/pi. Such a subtlety is a distinguishing feature
of personalized federated learning in the following sense: under homogeneity, it suffices to
estimate a single shared global model, and thus AERp and all of IERis are mathematically
equivalent.

Regularity Conditions. In this paper, we restrict ourselves to bounded, smooth, and strongly
convex loss functions. Such assumptions are common in the federated learning literature (see,
e.g., Li et al. 2020b; Hanzely et al. 2020) and cover many unsupervised learning problems
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such as mean estimation in exponential families and supervised learning problems such as
generalized linear models.

Assumption A (Regularity conditions) Suppose the following conditions hold:

(a) Compact and convex domain. The parameter space W is a compact convex subset of
Rd with diameter D := supw,w′∈D ‖w −w′‖ <∞;

(b) Smoothness and strong convexity. For any i ∈ [m], the loss function `(·, z) is β-smooth
for almost every z in the support of Di, and the i-th ERM objective Li(·, S) is almost
surely µ-strongly convex on the convex domain W ⊆ Rd. We also assume that there
exists a universal constant ‖`‖∞ such that 0 ≤ `(·, z) ≤ ‖`‖∞ for almost every z in the
support of Di;

(c) Bounded gradient variance at optimum. There exists a positive constant σ such that
for any i ∈ [m], we have EZi∼Di‖∇`(w

(i)
? , Zi)‖2 ≤ σ2.

Heterogeneity Conditions. To quantify the level of heterogeneity among clients, we start by
introducing the notion of an average global model. Assuming a strongly convex loss, the
optimal local models (1) are uniquely defined. Thus, we can define the average global model
as

w
(global)
p =

∑
i∈[m]

piw
(i)
? . (7)

We remark that the average global model defined in (7) should not be interpreted as the
“optimal global model”. Rather, it is more suitable to think of w(global)

p as a point in the
parameter space, from which every local model is close to. Indeed, one can readily check
that the average global model is the minimizer of

∑
i∈[m] pi‖w

(i)
? −w‖2 over w ∈ Rd.

We are now ready to quantify the level of client-wise heterogeneity as follows.

Assumption B (Level of heterogeneity) There exists a positive constant R such that

(a) either
∑

i∈[m] pi‖w
(i)
? −w

(global)
p ‖2 ≤ R2,

(b) or ‖w(i)
? −w

(global)
p ‖2 ≤ R2 ∀i ∈ [m].

Our study of the AERp and IERis will be based on Part (a) and (b) of Assumption B,
respectively. Intuitively, the quantity R encodes one’s belief on “how heterogeneous” the
clients can be.

3. Main Results

3.1 Analyses of Two Baseline Algorithms

In this subsection, we characterize the performance of PureLocalTraining and FedAvg
under the heterogeneity conditions imposed by Assumption B.
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3.1.1 Warm Up: Uniform Stability and Analysis of PureLocalTraining

The analysis of PureLocalTraining is based on the classical notion of uniform stability,
proposed by Bousquet and Elisseeff (2002).

Definition 3 (Uniform stability) Consider an algorithm A that takes a single dataset
S = {zj}nj=1 of size n as input and outputs a single model: A(S) = ŵ(S). We say A is
γ-uniformly stable if for any dataset S, any j ∈ [n], and any z′j ∈ Z, we have

‖`(ŵ(S), ·)− `(ŵ(S\j), ·)‖∞ ≤ γ,

where S\j is the dataset formed by replacing zj with z′j:

S\j = {z1, . . . , zj−1, z
′
j , zj , . . . , zn}.

The main implication of uniformly stable algorithms is that “stable algorithms do not
overfit”: if A is γ-uniformly stable, then its generalization error is upper bounded by a
constant multiple of γ. Thus, one can dissect the analysis of A into two separate parts: (1)
bounding its optimization error; (2) bounding its stability term.

Under our working assumptions, SGD with properly chosen step sizes is guaranteed to
converge to the global minimum of (3) (see, e.g., Rakhlin et al. (2011)). Note that the
bounds for the approximate minimizers only involve an extra additive term representing the
optimization error, and this term will be negligible if we run SGD until convergence since
our focus is sample complexity. Thus, we conduct the analysis for the global minimizer of
(3). The performance of PureLocalTraining is given by the following theorem.

Theorem 4 (Performance of PureLocalTraining) Let Assumption A(b) hold and
assume ni ≥ 4β/µ ∀i ∈ [m]. Then the algorithm APLT which outputs the minimizer of (3)
satisfies

ES [IERi(APLT)] .
β‖`‖∞
µni

for all i = 1, . . . ,m.

Proof The proof is a direct consequence of standard results on uniform stability of strongly
convex ERM (see, e.g., Section 5 of Shalev-Shwartz et al. (2009) and Section 13 of Shalev-
Shwartz and Ben-David (2014)), which assert that under the current assumptions, the
minimizer of (3) is O

(β‖`‖∞
µni

)
-uniformly stable. We omit the details.

By definition, for any weight vector p, AERp of PureLocalTraining also admits the
same upper bound as (4).

3.1.2 Federated Stability and Analysis of FedAvg

We consider the following weighted version of (2):

min
w∈W

∑
i∈[m]

piLi(w, Si). (8)
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The FedAvg algorithm (Algorithm 1) also seamlessly generalizes. The above optimization
formulation is in fact covered by the general theory of Li et al. (2020b), where they showed
that FedAvg is guaranteed to converge to the global optimum under a suitable hyperparameter
choice, even in the presence of heterogeneity (but the convergence is slower). Thus, in the
following discussion, we again consider the global minimizer of (8).

It turns out that a tight analysis of FedAvg requires a more fine-grained notion of
uniform stability, which we present below.

Definition 5 (Federated stability) An algorithm A that outputs A(S) = {ŵ(i)(S)} has
federated stability {γi}mi=1 if for every S ∼

⊗
iD
⊗ni
i and for any i ∈ [m], ji ∈ [ni], z

′
i,ji
∈ Z,

we have
‖`(ŵ(i)(S), ·)− `(ŵ(i)(S\(i,ji)), ·)‖∞ ≤ γi.

Above, S\(i,ji) is the dataset formed by replacing z(i)
ji

in the i-the dataset with z′i,ji :

S\(i,ji) = {S1, . . . , Si−1, S
\ji
i , Si+1, . . . , Sm},

S
\ji
i = {z(i)

1 , . . . , z
(i)
ji−1, z

′
i,ji , z

(i)
ji+1, . . . , z

(i)
ni
}.

Compared to the conventional uniform stability in Definition 3, federated stability provides
a finer control by allowing distinct stability measures {γi} for different clients. Moreover,
the classical statement that “stable algorithms do not overfit” still holds, in the sense
that the average (resp. individualized) generalization error can be upper bounded by
O(
∑

i∈[m] niγi/N) (resp. O(γi)), plus a term scaling with the level of heterogeneity R.
And this again enables us to separate the analysis of A into two parts (namely bounding the
optimization error and bounding the stability), as is the case with the conventional uniform
stability.

The notion of federated stability has other implications when restricted to the FedProx
algorithm, and we refer the readers to Section 3.4 for details.

We are now ready to state the theorem that characterizes the performance of FedAvg.

Theorem 6 (Performance of FedAvg) Let Assumption A(b, c) hold and assume ni ≥
4βpi/µ ∀i ∈ [m]. Suppose the FedAvg algorithm AFA outputs the minimizer of (8). Then
under Assumption B(a), we have

ES [AERp(AFA)] .
β‖`‖∞
µ

∑
i∈[m]

p2
i

ni
+ βR2, (9)

and under Assumption B(b), we have

ES [IERi(AFA)] .
βσ2

µ2

∑
i′∈[m]

p2
i′

ni′
+
β3

µ2
R2. (10)

Proof The proof of (9) is, roughly speaking, based on the fact that the global minimizer
of (8) has federated stability γi .

β‖`‖∞pi
µni

, and thus the first term in the right-hand side
of (9) corresponds to the average federated stability

∑
i∈[m] piγi. The second term βR2

in the right-hand side of (9) reflects the presence of heterogeneity. For Equation (10), we
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were not able to obtain a federated stability based proof, and our current proof is based
on an adaptation of the arguments in Theorem 7 of Foster et al. (2019), which explains
why the dependence on (σ, β, µ) are different (and slightly worse) compared to Equation
(9). In particular, the bound (10) has inverse quadratic dependence on µ, wheres the bound
(9) only has 1/µ dependence. The 1/µ dependence comes from the fact that the federated
stability term has such dependence, and the 1/µ2 dependence comes from the fact that the
`2 estimation error has such dependence. We refer the readers to Appendix C.1 for details.

Note that both bounds in the above theorem are minimized by choosing pi = ni/N .
With this choice of p, the two bounds read

ES [AERp(AFA)] .
β‖`‖∞
µN

+ βR2, ES [IERi(AFA)] .
βσ2

µ2N
+
β3R2

µ2
. (11)

This makes sense, since this choice of weight corresponds to the ERM objective under
complete homogeneity. This observation also suggests that ensuring “fair resource allocation”
(i.e., setting pi = 1/m) can lead to statistical inefficiency, especially when the sample sizes
are imbalanced.

We conclude this subsection by noting that though the compactness assumption (Assumption
A(a)) is not needed in Theorem 6, it is usually needed in the analysis of the optimization error
of FedAvg and PureLocalTraining(see, e.g., Rakhlin et al. (2011); Li et al. (2020b)).

3.2 Lower Bounds

In this subsection, we present our construction of lower bounds, which characterize the
information-theoretic limit of personalized federated learning. Throughout this section, we
restrict out attention to the case where pi = ni/N for any i ∈ [m].

Our construction starts by considering a special class of problem instances: logistic
regression. In logistic regression, given the collection of regression coefficients {w(i)

? } ⊆ W
where W has a diameter D, the data distributions Di’s are supported on Rd × {±1} and
specified by a two-step procedure as follows:

1. Generate a feature vector x, whose coordinates are i.i.d. copies from some distribution
PX on R, which is assumed to have mean zero and is almost surely bounded by some
absolute constant cX ;

2. Generate the binary label y ∈ {±1}, which is a biased Rademacher random variable
with head probability

(
1 + exp{−x>w(i)

? }
)−1.

The loss function is naturally chosen to be the negative log-likelihood function, which takes
the following form:

`(w, z) = `(w,x, y) = log(1 + e−yx
>w).

The following lemma says that Assumption A holds for the aforementioned logistic
regression models.

Lemma 7 (Logistic regressions are valid problem instances) The logistic regression
problem described above is a class of problem instances that satisfies Assumption A with

10
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‖`‖∞ = cXD
√
d and σ2 = β = c2

Xd/4. Moreover, if m . (N/m)c for some c ≥ 0 and
N/m ≥ Cd for some C > 1, then there exists some event E which only depends on the
features {x(i)

j : i ∈ [m], j ∈ [ni]} and happens with probability at least 1 − e−O(
√
N/m), such

that on this event, the strongly convex constant in Assumption A satisfies

µ � µ0 =

(
exp{cXD

√
d/2}+ exp{−cXD

√
d}
)−2

. (12)

Proof The compactness of the domain and the boundedness of the loss function hold by
construction. To verify the rest parts of Assumption A, with some algebra one finds that

∇2`(w,x, y) =
xx> exp{yx>w}(
1 + exp{yx>w}

)2 � 1

4
xx>, (13)

where � is the Loewner order and the inequality holds because x/(1 + x)2 = 1/(x−1/2 +
x1/2)2 ≤ 1/4 for x > 0. Since the population gradient has mean zero at optimum, the
gradient variance at optimum can be upper bounded by the trace of the expected Hessian
matrix, which, by the above display, is further upper bounded by c2

Xd/4. Thus, we can
take σ2 = c2

Xd/4 in Part (c). Another message of the above display is that we can set the
smoothness constant in Part (b) to be β = c2

Xd/4.
The only subtlety that remains is to ensure each local loss function is µ-strongly convex.

Note that since x/(1 + x)2 is decreasing from (0, 1) and is increasing from (1,∞), the right-
hand side of (13) dominates µ0xx

> in Loewner order, where µ0 is the right-hand side of
(12). Thus, the local population losses E(x,y)∼Di

[`(·,x, y)] are all µ0-strongly convex.
Now, note that

∇2Li(w
(i), Si) =

1

ni

∑
j∈[ni]

x
(i)
j (x

(i)
j )> exp{y(i)

j 〈x
(i)
j ,w

(i)〉}(
1 + exp{y(i)

j 〈x
(i)
j ,w

(i)〉}
)2 � µ0 ·

1

ni

∑
j∈[ni]

x
(i)
j (x

(i)
j )>.

Invoking Theorem 5.39 of Vershynin (2010) along with a union bound over all clients, we
conclude that for any i ∈ [m], the minimum eigenvalue of

∑
j∈[ni]

x
(i)
j (x

(i)
j )> is lower bounded

by a constant multiple of ni − p & ni (this is the definition of the event E) with probability
at least 1−me−O(ni) ≥ 1− e−O(

√
N/m), and the proof is concluded.

Note that in the proof of the above lemma, we have established the µ0 � µ-strong
convexity of the client-wise population losses. Hence, lower bounding the excess risks reduces
to lower bounding the `2 estimation errors ‖ŵ(i) − w

(i)
? ‖2 of the estimators ŵ(i) for w

(i)
? .

Such a reduction allows us to use powerful tools from information theory.
To this end, we introduce two parameter spaces, corresponding to Part (a) and (b) of

Assumption B. Recalling w
(global)
p =

∑
i∈[m] piw

(i)
? , we define

P1 :=

{
{w(i)

? }mi=1 ⊆ W :
∑
i∈[m]

pi‖w(i)
? −w

(global)
p ‖2 ≤ R2

}
,

P2 :=

{
{w(i)

? }mi=1 ⊆ W : ‖w(i)
? −w

(global)
p ‖2 ≤ R2 ∀i ∈ [m]

}
.

11
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Note that P1 and P2 index all possible values of {w(i)
? } that can arise in the logistic regression

models under Assumption B (a) and (b), respectively.
With the notations introduced so far, we are ready to state the main result of this

subsection.

Theorem 8 (Minimax lower bounds for estimation errors) Consider the logistic regression
model described above. Suppose ni � ni′ for any i 6= i′ ∈ [m] and assume pi = ni/N for any
i ∈ [m]. Then we have

inf
{ŵ(i)}

sup
{w(i)

? }∈P1

1

N

∑
i∈[m]

niES‖ŵ(i) −w
(i)
? ‖2 &

d

N/m
∧R2 +

d

N
, (14)

inf
ŵ(i)

sup
{w(i)

? }∈P2

ES‖ŵ(i) −w
(i)
? ‖2 &

d

ni
∧R2 +

d

N
(15)

for all i ∈ [m], where the infimum is taken over all possible ŵ(i)s that are measurable
functions of the data S.

Proof See Appendix A.

Note that both lower bounds in Theorem 8 are a superposition of two terms, and they
correspond to two distinct steps in the proof.

The first step in our proof is to argue that the lower bound under complete homogeneity
is in fact a valid lower bound under our working assumptions, which gives the Ω(d/N) term.
This is reasonable, since estimation under complete homogeneity is, in many senses, an
“easier” problem. The proof of the Ω(d/N) term is based on the classical Assouad’s method
(Assouad, 1983).

The second step is to use a generalized version of Assouad’s method that allows us to deal
with multiple heterogeneous datasets. In particular, we need to carefully choose the prior
distributions over the parameter space based on the level of heterogeneity, which ultimately
leads to the Ω( d

N/m ∧ R
2) term. Recall that in the vanilla version of Assouad’s method

where there is only one parameter, say w?, one can lower bounds the minimax risk by the
Bayes risk, and the prior distribution is usually chosen to be w? = δv, where v follows
a uniform distribution over all d-dimensional binary vectors and δ is chosen so that the
resulting hypothesis testing problem has large type-I plus type-II error. In our case where
there are m parameters {w(i)

? }, we need to consider a different prior of the following form:

w
(i)
? = δiv

(i),

where v(i) are i.i.d. samples from the uniform distribution over all d-dimensional binary
vectors, and δi’s are scalers that need to be carefully chosen to make the resulting hypothesis
testing problem hard.

The following result is an immediate corollary of Theorem 8.

Corollary 9 (Minimax lower bounds for excess errors) Assume there exist constants
C,C ′ > 0, c ≥ 0 such that ni ≥ Cβ ∀i ∈ [m] and m ≤ C ′(N/m)c. Moreover, assume ni � ni′

12
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for any i 6= i′ ∈ [m] and pi = ni/N for any i ∈ [m]. Then there exists an absolute constant
c′ such that the following two statements hold:

1. There exists a problem instance such that Assumptions A and B(a) are satisfied with
probability at least 1−e−c′

√
N/m. Call this high probability event E. On this problem instance,

any randomized algorithm A must suffer

EA,S [AERp(A) · 1E] & µ ·
(

β

N/m
∧R2 +

β

N

)
; (16)

2. For any i ∈ [m], there exists a problem instance such that Assumptions A and B(b)
are satisfied with probability at least 1 − e−c′

√
N/m. Call this high probability event Ei. On

this problem instance, any randomized algorithm A must suffer

EA,S [IERi(A) · 1Ei
] & µ ·

(
β

ni
∧R2 +

β

N

)
. (17)

In the two displays above, the expectation is taken over the randomness in both the algorithm
A and the sample S.

Proof Along with Lemma 7 and Theorem 8, this corollary follows by the fact that the
smoothness constant β is of the same order as d and the population losses are all µ0 � µ-
strongly convex.

3.3 Implications of the Main Results

The upper bounds in Section 3.1 and the lower bounds in Section 3.2 together reveal several
intriguing phenomena regarding personalized FL, which we detail in this subsection.

Focusing on the dependence on the sample sizes and assuming the client-wise samples
sizes are balanced (i.e., ni � N/m), the heterogeneity measure R enters the lower and upper
bounds in a dichotomous fashion:

• If R2 . m/N , then both lower bounds become Ω(R2 + 1/N), and this lower bound
can be attained by FedAvg up to factors that do not depend on the sample sizes;

• If R2 & m/N , then both lower bounds become Ω(m/N). They agree with the
minimax rate as if we were under complete heterogeneity and can be achieved by
PureLocalTraining.

Now, let us consider the following naïve dichotomous strategy: if output R2 ≤ ‖`‖∞
µ ·

m/N , then output A = AFA; otherwise, output A = APLT. That is, we switch between
the two baseline algorithms at the threshold of R2 � m/N . Then under the assumptions
in Theorems 4 and 6, one can readily check that this dichotomous strategy satisfies the
following AER guarantee:

ES [AERp(A)] . β

(
‖`‖∞
µN/m

∧R2

)
+
β‖`‖∞
µ

∑
i∈[m]

p2
i

ni
. (18)

13
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If in addition, ni � ni′ for any i 6= i′ ∈ [m], then it also satisfies the following IER guarantee:

ES [IERi(A)] .
β3

µ2

(
‖`‖∞
µni

∧R2

)
+
βσ2

µ2

∑
i′∈[m]

p2
i′

ni′
. (19)

When pi = ni/N , the two displays above simplify to

ES [AER(A)] . β

(
‖`‖∞
µN/m

∧R2

)
+
β‖`‖∞
µN

, ES [IERi(A)] .
β3

µ2

(
‖`‖∞
µni

∧R2

)
+
βσ2

µ2N
,

which matches the lower bound in Corollary 9 up to constant factors, provided (β, µ, ‖`‖∞, σ)
are all of constant order. In other words, switching between the two algorithms at the
threshold of R2 � m/N gives an oracle algorithm that is minimax rate optimal.

Thus, we have shown an interesting property for personalized FL on the choice of the
two baseline algorithms. In particular, consider a collection of problem instances indexed by
(R, β, µ, ‖`‖, σ) using Assumptions A and B and assume (β, µ, ‖`‖∞, σ) are all of constant
order. Now, for a fixed value of R, exactly one of these two algorithms is minimax optimal,
where the optimality is defined over the specified collection of problem instances and with
respect to both AER and IER. Moreover, the oracle dichotomous strategy that switches
between the two baseline algorithms at the threshold of R2 � m/N is minimax optimal.

More implications of the theoretical results are described below.

Optimality of a dichotomous strategy. From the practical side, for supervised learning
problems, such a dichotomous strategy can be implemented without prior knowledge of
R if test errors can be evaluated in a distributed fashion. Indeed, we can first run both
FedAvg and PureLocalTraining separately, evaluate their test errors (in a distributed
fashion), and deploy the one with a lower test error. Due to the upper and lower bounds
proved in Sections 3.1 and 3.2, such a strategy is guaranteed to be minimax rate optimal. As
a caveat, however, one should refrain from interpreting our results as saying either of the two
baseline algorithms is sufficient for practical problems. From a practical viewpoint, constants
that are omitted in the minimax analysis are crucial. Even for supervised problems, a
better personalization result could be achieved by more sophisticated algorithms in practice.
Nevertheless, our results suggest that the two baseline algorithms can at least serve as a
good starting point in the search for efficient personalized algorithms.

For unsupervised problems where the quality of a model is hard to evaluate, implementing
the dichotomous strategy requires estimating an upper bound R of the level of heterogeneity.
This is an important open problem, which we leave for future work.

Optimality of FedAvg followed by local fine tuning. Another popular baseline algorithm
for personalized FL is to first run FedAvg until convergence, and then let each client run
PureLocalTraining to fine tune the model. In strongly convex problems, global optima
can be reached by gradient descent regardless the initialization with a suitable choice of
the learning rate (see, e.g., Theorem 2.1.15 of Nesterov 2018). Thus, if each client run
PureLocalTraining for long enough, the global optima for its local loss function will
finally be reached. This fact tells that along the whole fine tuning trajectory, there is a
point at which the model gives the worst-case optimal AER and IER, and for a fixed level
of heterogeneity, this point is either at the very beginning (which is FedAvg), or at the
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Figure 1: Average classification accuracy of FedAvg, PureLocalTraining and FedAvg followed
by fine tuning (left panel) as well as FedProx with different choice of λ (right panel).

very end (which is PureLocalTraining). Although this conclusion is almost trivial from
a technical point of view given our minimax results, it provides a reassuring theoretical
property (of being minimax optimal) for a popular method used by practitioners.

Illustrating the minimaxity in a simulated example. We conduct a simulation on federated
logistic regression to corroborate our theoretical results and the optimality of the FedAvg
following by local fine tuning strategy. In the simulation, we set m = 5, ni = 100, ∀i ∈ [m]
and we vary R from 0 to 20 (see Appendix D for details). In the left panel of Figure 1,
we plot the test accuracy (averaged over 100 rounds of simulations) of those three methods
against the value of R. One can see that the accuracy of the fine tuning strategy roughly
follows the maximum of the accuracies achieved by FedAvg and PureLocalTraining,
confirming our theoretical prediction that the fine tuning strategy can indeed perform as
well as the best between FedAvg and PureLocalTraining.

Beyond the current heterogeneity assumption. Our minimax results are established under
Assumption B, which states that all optimal local models are close to a certain “centroid”
(i.e., the average global model defined in (7)). If we draw a graph of clients and connect two
clients if their optimal local models are similar, then the current heterogeneity assumption
gives rise to a complete graph (or a star-shaped graph if we introduce another node to
represent the average global model). While such an idealized graph structure enables a
clean theoretical analysis, the real world proximity patterns among clients are clearly far
more sophisticated. In fact, counterexamples exist under which the minimax results does
not hold in a “global” sense.

Suppose all m clients exhibit a clustering structure as follows. We have
√
m clients

whose optimal global models serve as cluster centroids, and those centroids are very far
apart. In the neighborhood of each centroid, there are

√
m clients whose optimal local

models are Rc away from the centroid in the sense of Assumption B. Additionally, assume
each client has equal sample sizes, so that ni = n for some n. Under this setting, the
“global” heterogeneity parameter R in Assumption B is very large, so our theory would
suggest choosing PureLocalTraining, which gives a rate of O(1/n). However, this rate
is clearly suboptimal. If one can successfully cluster the m clients into

√
m clusters (which

15



Chen, Zheng, Long and Su

is hopeful as the centroids are assumed to be far apart), then one can apply our theory to
each cluster (i.e., run the dichotomous strategy for each cluster) and conclude that the rate
for each cluster is O( 1

n
√
m

+ 1
n ∧ R

2
c) � 1

n if m diverges to infinity and Rc � 1/
√
n. The

foregoing discussion reveals in such a clustered setting, our theoretical results only make
sense at the cluster level, but not at the global level.

The behaviors of the minimax rate for more general client proximity graphs can be even
more complicated, which we leave for future work.

3.4 More Implications of Federated Stability and Analysis of FedProx

In this subsection, we are concerned with the performance guarantees for FedProx. As
with our earlier analysis of FedAvg, we consider a p-weighted version of FedProx, whose
optimization formulation is given below:

min
w(global)∈W
{w(i)}mi=1⊆W

∑
i∈[m]

pi

(
Li(w

(i), Si) +
λ

2
‖w(global) −w(i)‖2

)
, (20)

where we recall that Li(w, Si) :=
∑

j∈[ni]
`(w, z

(i)
j )/ni is the ERM objective for the i-th

client. In this subsection, we let (w̃(global), {w̃(i)}) be the global minimizer of the above
problem. Compared to (8), which imposes a “hard” constraintw(i) = w(global), and compared
to (3), where there is no constraint at all, the above formulation imposes a “soft” constraint
that the norm of (w(global)−w(i)) should be small, with a hyperparameter λ controlling the
strength of this constraint.

The rationale behind the optimization formulation (20) of FedProx is clear: by setting
λ = 0, the optimization formulation of PureLocalTraining (3) is recovered, and as
λ → ∞, the optimization formulation of FedAvg (8) is recovered. The hope is that by
varying λ ∈ (0,∞), one can interpolate between the two extremes.

Applying the idea of local SGD to (20), one obtains the FedProx algorithm1, which we
detail in Algorithm 2. We separate the whole algorithm into two stages as they has distinct
interpretations: in Stage I, the central server aims to learn a good global model with the
help of local clients, whereas in Stage II, each local client takes advantage of the global
model to personalize. Alternatively, one can also interpret FedProx as an instance of the
general framework of model-agnostic meta learning (Finn et al., 2017), where Stage I learns
a good initialization, and Stage II trains the local models starting from this initialization.

In contrast to our analyses for FedAvg and PureLocalTraining in Section 3.1, where
we largely focused on global minimizers, the analysis for FedProx will be carried out
for the approximate minimizer output by Algorithm 2. The reason for this is rooted in
the tradeoff between the optimization error and the generalization error. Note that given
the results derived in Section 3.1, the analysis for the global minimizer (w̃(global), {w̃(i)})
becomes trivial: by setting λ = 0, we reduce the task to analyzing PureLocalTraining;
by sending λ→∞, we reduce the task to analyzing FedAvg. Based on Theorems 4 and 6,
one immediately concludes that there exists a choice of λ, such that the AER and IER of

1. In fact, Algorithm 2 is not exactly the same as the original FedProx algorithm introduced in Li et al.
(2018). But since both algorithms share the idea of imposing regularization, we still call Algorithm 2
FedProx for conceptual simplicity.
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Algorithm 2: FedProx, general version

Input: Initial global model w(global)
0 , initial local models {w(i)

0 }mi=1 ≡ {w
(i)
0,0}mi=1,

global rounds T , global batch size B(global), global step sizes {η(global)
t }T−1

t=0 ,
local rounds {Kt}Tt=0, local batch sizes {B(i)}mi=0 local step sizes
{η(i)
t,k : 0 ≤ t ≤ T, 0 ≤ k ≤ Kt − 1}.

Output: Local models {w(i)
T+1}mi=1.

# Stage I: joint training
for t = 0, 1, . . . , T − 1 do

Randomly sample a batch Ct ⊆ [m] of size B(global)

for i ∈ [m] do
if i ∈ Ct then w

(i)
t+1 ← w

(i)
t

else
Pull w(global)

t from the server
w

(i)
t+1 ← SoftLocalSGD(i,w

(i)
t ,w

(global)
t ,Kt, B

(i), {η(i)
t,k}

Kt−1
k=0 )

Push w
(i)
t+1 to the server

w
(global)
t+1 ← w

(global)
t − λmη

(global)
t

B(global)

∑
i∈Ct pi(w

(global)
t −w

(i)
t+1)

# Stage II: final training before deployment
for i ∈ [m] do

Pull w(global)
T from the server

w
(i)
T+1 ← SoftLocalSGD(i,w

(i)
T ,w

(global)
T ,KT , B

(i), {η(i)
T,k}

KT−1
k=0 )

return {w(i)
T+1}mi=1

# Local SGD subroutine
Function SoftLocalSGD(i,w(i),w(global),K,B, {ηk}K−1

k=0 )
for k = 0, 1, . . . ,K − 1 do

Randomly sample a batch I ⊆ [ni] of size |I| = B

w(i) ← PW
[
w(i) − ηk

B

∑
j∈I

(
∇`(w(i), z

(i)
j ) + λ(w(i) −w(global))

)]
return w(i)

{w̃(i)} satisfy the bounds in (18) and (19), respectively. However, the foregoing discussion
is purely restricted to generalization error. When we set λ = 0 or send λ → ∞, it is not
known a priori whether FedProx algorithm will converge to the global minima. Worse still,
the optimization error may depends on λ in a particular way so that it becomes unbounded
when λ approaches zero or infinity. To the best of our knowledge, prior work only proved the
optimization convergence of FedProx for the global model with a fixed value of λ, namely
the convergence of w(global)

T to w̃(global) as the number of global communication rounds T
tends to infinity (Li et al., 2018; Dinh et al., 2020). To have a theoretical understanding
of the performance of FedProx, it is crucial to (1) establish the optimization convergence
for both global and local models; (2) bound the generalization error; and (3) balance the
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optimization error and the generalization error, both of which are functions of λ. In the
following, we execute the those steps with the aid of federated stability.

Implications of federated stability for FedProx. We have briefly mentioned the main
implications of federated stability in Section 3.1.2: for an algorithm A = {ŵ(i)} with
federated stability {γi}, its average generalization error (resp. individualized generalization
error) can be upper bounded by O(

∑
i∈[m] piγi) (resp. O(γi)), plus a term scaling with the

level of heterogeneity R. We make such a statement precise here. Let us first define the
optimization error of a generic algorithm A = (ŵ(global), {ŵ(i)}) (which tries to solve (20))
as

EOPT :=
∑
i∈[m]

pi

(
Li(ŵ

(i), Si) +
λ

2
‖ŵ(global) − ŵ(i)‖2

)

−
∑
i∈[m]

pi

(
Li(w̃

(i), Si) +
λ

2
‖w̃(global) − w̃(i)‖2

)
.

The main implications of federated stability, when applied to the specifics of FedProx,
can then be summarized in the following proposition.

Proposition 10 (Implications of federated stability restricted to FedProx) Consider
an algorithm A = (ŵ(global), {ŵ(i)}) with federated uniform stability {γi}m1 . Then we have

EA,S [AERp(A)] ≤ EA,S [EOPT] + 2
∑
i∈[m]

piEA,S [γi] +
λ

2

∑
i∈[m]

pi‖w(global)
avg −w

(i)
? ‖2, (21)

EA,S [IERi(A)] ≤
EA,S [EOPT]

pi
+ 2EA,S [γi] +

λ

2
EA,S‖ŵ(global) −w

(i)
? ‖2 ∀i ∈ [m]. (22)

Proof The proof of (21) is based on the following basic inequality for the AER:∑
i∈[m]

pi

(
Li(w̃

(i), Si) +
λ

2
‖w̃(global)− w̃(i)‖2

)
≤
∑
i∈[m]

pi

(
Li(w

(i)
? , Si) +

λ

2
‖w(global)

avg −w
(i)
? ‖2

)
,

(23)
whereas the proof of (22) is based on the following basic inequality for the IER: for any
s ∈ [m], we have∑

i∈[m]

pi

(
Li(w̃

(i), Si) +
λ

2
‖w̃(global) − w̃(i)‖2

)

≤ psLs(w(s)
? , Ss) +

λ

2
‖ŵ(global) −w

(s)
? ‖2 +

∑
i 6=s

pi

(
Li(ŵ

(i), Si) +
λ

2
‖ŵ(global) − ŵ(i)‖2

)
.

(24)

We refer the readers to Appendix C.2 for details.

Note that both bounds in Proposition 10 involve a term that scales linearly with both
λ and the heterogeneity measure. In general, we expect the stability measures to scale
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inversely with λ, and thus opening the possibility of carefully choosing λ to balance the
stability term and the heterogeneity term.

Let us observe that the heterogeneity term of (22) is slightly different than that of (21),
in that it involves the estimated global model ŵ(global). This suggests that achieving the
IER guarantees might be intrinsically more difficult than achieving the AER guarantees.

In view of Proposition 10, we are left to bound the optimization error and the federated
stability of FedProx. As discussed above, achieving the AER and IER guarantees requires
somewhat different assumptions, as the latter involves characterizing the performance of the
global model. So we split our discussion into two parts below.

Bounding the average excess error. The following theorem characterize the performance of
FedProx in terms of the AER.

Theorem 11 (AER guarantees for FedProx) Let Assumptions A and B(a) hold, and
assume ni ≥ 4β/µ for all i ∈ [m]. Choose the weight vector p such that

pmax
∑

i∈[m] pi/ni∑
i∈[m] p

2
i /ni

≤ Cp (25)

for some constant Cp, where pmax = maxi pi. Consider the FedProx algorithm, AFP, with
the following hyperparameter configuration:

1. In the joint training stage (i.e., 0 ≤ t ≤ T − 1), set

η
(i)
t,k =

1

(µ+ λ)(k + 1)
, η

(global)
t =

2(µ+ λ)

λµ(t+ 1)
, Kt + 1 ≥ C1(λ2 ∨ 1)t, (26)

T ≥ C2λ(λ ∨ 1)m‖p‖2 ·
([∑

i∈[m]

pi/ni
]−1 ∨

[
λ(λ ∨ 1)n2

max

])
;

2. In the final training stage (i.e., t = T ), set

η
(i)
T,k =

1

(µ+ λ)(k + 1)
, (27)

KT ≥ C3(λ+ 1)2 ·
([∑

i∈[m]

pi/ni
]−1 ∨

[
λ2 max

i∈[m]
(pini)

2
])
,

where C1, C2, C3 are constants depending only on (µ, β, ‖`‖∞, D). Then, there exists a choice
of λ such that

EAFP,S [AERp(AFP)]

.

(
µ

1 ∧ Cp
+

(1 ∨ Cp)β‖`‖∞
µ

)[(
R

√∑
i∈[m]

pi
ni

)
∧
( ∑
i∈[m]

pi
ni

)
+
∑
i∈[m]

p2
i

ni

]
. (28)

Proof See Appendix C.3.
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A few remarks are in order. First, (25) essentially says that the weight p cannot be
too imbalanced, and too much imbalance in p can hurt the performance in view of the
multiplicative factor of Cp in our bound (28). If we set pi = 1/m, then Cp is naturally of
constant order; whereas if we set pi = ni/N , we have Cp � mnmax/N , where nmax = maxi ni,
which calls for relative balance of the sample sizes.

We then briefly comment on the hyperparameter choice in the above theorem. The step
sizes are of the form 1/(strongly convex constant× iteration counter), and such a choice is
common in strongly convex stochastic optimization problems (see, e.g., Rakhlin et al. 2011;
Shamir and Zhang 2013). Such a choice, along with the smoothness of the problem, is also
the key for us to by-pass the need of doing any time-averaging operation, as is done in, for
example, Dinh et al. (2020).

In Theorem 11, the choice of the communication rounds T and the final local training
round KT both scale polynomially with λ, which means that the optimization convergence
of FedProx is slower when the data are less heterogeneous. This phenomenon happens
more generally. For example, in Hanzely and Richtárik (2020), they proposed a variant of
SGD that optimizes (20) with pi = 1/m in O

(
L+λ
µ log 1/ε

)
-many iterations, where L is the

Lipschitz constant of the loss function and ε is the desired accuracy level.
The constants C1, C2, C3 in the statement of Theorem 11 can be explicitly traced in our

proof. We remark that the dependence on problem-specific constants (µ, β, ‖`‖∞, D) in our
hyperparameter choice and on λ may not be tight. A tight analysis of the optimization error
is interesting, but less relevant for our purpose of understanding the sample complexity. So
we defer such an analysis to future work2.

Bounding individualized excess errors. The following theorem gives the IER guarantees for
FedProx.

Theorem 12 (IER guarantees for FedProx) Let Assumptions A and B(b) hold. Moreover,
assume that ni � ni′ for any i 6= i′ ∈ [m] and ni ≥ 4β/µ ∀i ∈ [m]. Let the weight vector be
chosen as pi � 1/m ∀i ∈ [m]. Consider the FedProx algorithm, AFP, with the following
hyperparameter configuration:

1. In the joint training stage (i.e., 0 ≤ t ≤ T − 1), set η(i)
t,k, η

(global)
t ,Kt as in (26), and

set

T ≥ C ′2λ(λ ∨ 1) max
i∈[m]

ni ·
(
p−1
i ∨ [λ(λ ∨ 1)ni]

)
;

2. In the final training stage (i.e., t = T ), set η(i)
T,k as in (27), and set

KT ≥ C ′3(λ+ 1)2 max
i∈[m]

ni

(
p−1
i ∨ λ

2p2
ini

)
,

where C ′2, C
′
3 are constants only depending on (µ, β, ‖`‖∞, D). Then, there exists a choice

of λ such that for any i ∈ [m], we have

EAFP,S [IERi(AFP)] .

[
(µ+µ−1)

(
β‖`‖∞+

σ2β2 + β2 + σ2

µ2

)
+µD2

]
·
(

R
√
ni
∧ 1

ni
+

√
m

N

)
.

(29)

2. The theories developed by Hanzely et al. (2020) can be useful for such an analysis.
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Proof See Appendix C.4.

Compared to Theorem 11, the above theorem imposes extra assumptions that the sample
sizes are relative balanced and that pi � 1/m, both of which are due to the fact that we need
to additionally take care of the estimation error of the global model. The hyperparameter
choice slightly differs from that in Theorem 11 for the same reason. In practice, when
one is to use FedProx to optimize highly non-convex functions like the loss function of
deep neural networks, instead of sticking to the choices made in Theorems 11 and 12, the
hyperparameters are usually tuned by trial-and-error for best test performance.

Comparison with the lower bounds. In order to comment about the optimality/suboptimality
of FedProx, let us restrict to the case when pi = ni/N . In this case, the bound in Theorem
11 becomes

EAFP,S [AERp(AFP)] .

(
µ+

β‖`‖∞
µ

)
·
(

1

N/m
∧ R√

N/m
+

1

N

)
. (30)

Recall the lower bound in (16). Focusing on the dependence of sample sizes and heterogeneity
measure, we have the following three cases. If R2 & m/N , then (30) becomes O(m/N),
which matches the lower bound. Meanwhile, if 1/mN . R2 . m/N , then (30) becomes
O(m/N), whereas the lower bound reads Ω(R2 + 1/N), and thus (30) is suboptimal unless
R2 � m/N . Moreover, if R2 . 1/mN , then (30) becomes O(1/N), and is minimax optimal
again.

A similar trilogy holds for IER of FedProx. Comparing the upper bound in (29) and
the lower bound in (17), we still have three cases as follows. If R2 & m/N , then (29) is
O(1/ni), which agrees with the lower bound. Meanwhile, if 1/N . R2 . m/N , then (29) is
O(R/

√
ni), and is suboptimal compared to the Ω(R2 +1/N) lower bound unless R2 � m/N .

Moreover, if R2 . 1/N , then (29) is O(
√
m/N), and is off by a factor of order

√
m compared

to the Ω(1/N) lower bound.
While the bounds in Theorems 11 and 12 in general do not attain the lower bounds in

Corollary 9, they are still non-trivial in the sense that they scale with the heterogeneity
measure R. While there are some recent works establishing the AER guarantees for an
objective similar to (20) under the online learning setup (see, e.g., Denevi et al. 2019; Balcan
et al. 2019; Khodak et al. 2019), to the best of our knowledge, Theorems 11 and 12 are the
first to establish both the AER and IER guarantees for (20) under the federated learning
setup.

Curious readers may wonder if the suboptimality of the theoretical guarantees for FedProx
(with non-zero λ) is a characteristic of this algorithm or if it is due to the artifact of our
technical proof. To answer this question, we conduct a simulation where we apply FedProx
with different λs on datasets generated by federated logistic regression (see Appendix D for
details). The accuracies versus different values of R is shown in the right panel of Figure
1. As expected by our theory, the performance of FedProx with λ = 0 mimics that of
PureLocalTraining, whereas the performance with λ = 4 resembles that of FedAvg.
Interestingly, FedProx with λ = 0.44 bears a similar performance with the FedAvg
followed by fine tuning strategy, which we know is minimax optimal. This observation
supports the conjecture that optimally tuned FedProx is indeed minimax optimal, and
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the suboptimality of bounds from Theorems 11 and 12 are likely to be a consequence of the
artifact of our theoretical analysis.

4. Discussion

This paper studies the statistical properties of personalized federated learning. Focusing
on strongly-convex, smooth, and bounded empirical risk minimization problems, we have
uncovered an intriguing phenomenon that given a specific level of heterogeneity, exactly one
of FedAvg or PureLocalTraining is minimax optimal. In the course of proving this
result, we obtained a novel analysis of FedProx and introduced a new notion of algorithmic
stability termed federated stability, which is possibly of independent interest for analyzing
generalization properties in the context of federated learning.

We close this paper by mentioning several open problems.

• Dependence on problem-specific parameters. This paper focuses on the dependence on
the sample sizes, and in our bounds, the dependence on problem-specific parameters
(e.g., the smoothness and strong convexity constants) may not be optimal. This can
be problematic if those parameters are not of constant order, and it will be interesting
to give a refined analysis that gives optimal dependence on those parameters.

• A refined analysis of FedProx. The upper bounds we develop for FedProx, as we
have mentioned, do not match our minimax lower bounds. According to a simulated
example, we suspect that this is an artifact of our analysis and a refined analysis of
FedProx would be a welcome advance.

• Estimation of the level of heterogeneity and development of adaptive algorithms. For
unsupervised problems where evaluation of a model is difficult, implementation of
the oracle dichotomous strategy described in Section 3.3 would require estimating
the level of heterogeneity R. Even for supervised problems, estimation of R would
be interesting, as it allows one to decide which algorithm to choose without model
training. More generally, developing adaptive algorithms that attains the lower bound
without prior information of R is an important open problem.

• Beyond the current heterogeneity assumption. As discussed in Section 3.3, our theoretical
results may not hold globally when one moves from Assumption B to more general
heterogeneity assumptions. Establishing the minimax rates and designing provably
optimal algorithms under those assumptions are of both theoretical and practical
interest.

• Beyond convexity. Our analysis is heavily contingent upon the strong convexity of
the loss function, which, to the best of our knowledge, is not easily generalizable to
the non-convex case. Meanwhile, our notion of heterogeneity, which is based on the
distance of optimal local models to the convex combination of them, may not be
natural for non-convex problems. It is of interest, albeit difficult, to have a theoretical
investigation of personalized federated learning for non-convex problems.
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A. Proof of Theorem 8: Lower Bounds

We start by presenting a lower bound when all w(i)
? ’s are the same.

Lemma 13 (Lower bound under homogeneity) Consider the logistic regression model
with w

(i)
? = w

(global)
p for any i ∈ [m]. Then

inf
ŵ(global)

sup
w

(global)
p

ES‖ŵ(global) −w
(global)
p ‖2 &

d

N
.

Proof This is a classical result. See, e.g., Example 8.4 of Duchi (2019).

Proof [Proof of (14)] We first give a lower bound based on the observation that the
homogeneous case is in fact included in the parameter space P1. More explicitly, let us
define P0 = {{w(i)

? } ∈ P1 : w
(i)
? = w

(global)
p ∀i ∈ [m]}. By Lemma 13, we have

inf
{ŵ(i)}

sup
{w(i)

? }∈P1

∑
i∈[m]

piES‖ŵ(i) −w
(i)
? ‖2 ≥ inf

{ŵ(i)}
sup

{w(i)
? }∈P0

∑
i∈[m]

piES‖ŵ(i) −w
(i)
? ‖2

= inf
ŵ(global)

sup
w

(global)
p

ES‖ŵ(global) −w
(global)
p ‖2

&
d

N
. (31)
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We now use a variant of Assouad’s method (Assouad, 1983) that allows us to tackle
multiple datasets. Consider the following data generating process: nature generates V =

{v(i) : i ∈ [m]} i.i.d. from the uniform distribution on V = {±1}d and sets w(i)
? = δiv

(i) for
some δi such that the following constraint is satisfied:

∑
i∈[m]

pi‖w(i)
? −w

(global)
p ‖2 =

∑
i∈[m]

pi

∥∥∥∥δiv(i) −
∑
s∈[m]

psδsv
(s)

∥∥∥∥2

≤ R2. (32)

We will specify the choice of δi’s later. Denoting EX as the marginal expectation operator
with respect to all the features {x(i)

j } and EY |X as the conditional expectation operator

with respect to {y(i)
j }|{x

(i)
j }, we can lower bound the minimax risk by the Bayes risk as

follows:

inf
{ŵ(i)}

sup
{w(i)

? }∈P

∑
i∈[m]

piES‖ŵ(i) −w
(i)
? ‖2

≥ inf
{ŵ(i)}

E{v(i)}
∑
i∈[m]

piES‖ŵ(i) − δiv(i)‖2

= inf
{v̂(i)}⊆V

∑
i∈[m]

piEV ,S‖δiv̂(i) − δiv(i)‖2

≥ EX

∑
i∈[m]

piδ
2
i inf
v̂(i)∈V

EV ,Y |X‖v̂(i) − v(i)‖2

≥ EX

∑
i∈[m]

piδ
2
i

∑
k∈[d]

inf
v̂
(i)
k ∈{±1}

EV ,Y |X(v̂
(i)
k − v

(i)
k )2

& EX

∑
i∈[m]

piδ
2
i

∑
k∈[d]

inf
v̂
(i)
k ∈{±1}

PV ,Y |X(v̂
(i)
k 6= v

(i)
k )

=
1

2
EX

∑
i∈[m]

piδ
2
i

∑
k∈[d]

inf
v̂
(i)
k ∈{±1}

(
Pi,+k(v̂

(i)
k = −1) + Pi,−k(v̂

(i)
k = +1)

)
,

where in the last line, we have let Pi,±k(·) = PV ,Y |X(·|v(i)
k = ±1) to denote the probability

measure with respect to the randomness in (V ,S) conditional on the features {x(i)
j } as well

as the realization of v(i)
k = ±1. More explicitly, we can write

Pi,±k =

(⊗
s 6=i

Pv(s) ⊗ P{y(s)}ns
j=1|v(s),{x(s)

j }
ns
j=1

)
⊗
(
P
v(i)|v(i)

k =±1
⊗ P{y(i)j }

ni
j=1|v(i),v

(i)
k =±1,{x(i)

j }
ni
j=1

)
=

1

2(m−1)d+d−1

∑
V \{v(i)

k }

PV ,i,±k,

where the ⊗ symbol stands for taking the product of two measures and PV ,i,±k corresponds
to the law of all the labels Y conditional on a specific realization of {V : v

(i)
k = ±1} and

the features X. With the current notations and letting ‖P − Q‖TV be the total variation
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distance between two probability measures P and Q, we can invoke Neyman-Pearson lemma
to get

inf
{ŵ(i)}

sup
{w(i)

? }∈P

∑
i∈[m]

piES‖ŵ(i) −w
(i)
? ‖2 & EX

∑
i∈[m]

piδ
2
i

∑
k∈[d]

(
1− ‖Pi,+k − Pi,−k‖TV

)
= d

∑
i∈[m]

piδ
2
i − EX

∑
i∈[m]

piδ
2
i

∑
k∈[d]

‖Pi,+k − Pi,−k‖TV.

(33)

We then proceed by∑
i∈[m]

piδ
2
i

∑
k∈[d]

‖Pi,+k − Pi,−k‖TV

≤
∑
i∈[m]

piδ
2
i

√
d

( ∑
k∈[d]

‖Pi,+k − Pi,−k‖2TV

)1/2

=
∑
i∈[m]

piδ
2
i

√
d

( ∑
k∈[d]

∥∥∥∥ 1

2(m−1)d+d−1

∑
V \{v(i)

k }

PV ,i,+k − PV ,i,−k

∥∥∥∥2

TV

)1/2

=
∑
i∈[m]

piδ
2
i

√
d

( ∑
k∈[d]

1

2(m−1)d+d−1

∑
V \{v(i)

k }

‖PV ,i,+k − PV ,i,−k‖2TV

)1/2

,

where the last inequality is by convexity of the total variation distance. Note that PV ,i,±k
is the product of biased Rademacher random variables: if we let Rad(p) be the ±1-valued
random variable with positive probability p, we can write

PV ,i,±k =
⊗
s∈[m]

⊗
j∈[ns]

Rad
(

1

1 + exp{−δs〈v(s),x
(s)
j 〉}

)
, v

(i)
k = ±1.

Thus, by Pinsker’s inequality, we have

‖PV ,i,+k − PV ,i,−k‖2TV

≤ 1

2
DJS(PV ,i,+k‖PV ,i,−k)

=
1

2

∑
s 6=i

∑
j∈[ns]

0 +
1

2

∑
j∈[ni]

DJS

[
Rad

(
1

1 + exp{−δi〈v(i),x
(i)
j }

)∥∥∥∥Rad( 1

1 + exp{−δi〈ṽ(i),x
(i)
j }

)]
,

where DJS(P‖Q) = DKL(P‖Q)+DKL(Q‖P)
2 is the Jensen–Shannon divergence between P and

Q, and v(s), ṽ(s) are two V-valued vectors that only differs in the k-th coordinate. By a
standard calculation, one finds that

DJS

[
Rad

(
1

1 + exp{−δi〈v(i),x
(i)
j }

)∥∥∥∥Rad( 1

1 + exp{−δi〈ṽ(i),x
(i)
j }

)]
≤ δ2

i (v
(i)
k − ṽ

(i)
k )2(x

(i)
j,k)

2

= 4δ2
i (x

(i)
j,k)

2.
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This gives
‖PV ,i,+k − PV ,i,−k‖2TV ≤ 2δ2

i

∑
j∈[ni]

(x
(i)
j,k)

2 ≤ 2δ2
i c

2
Xni.

and hence ∑
i∈[m]

piδ
2
i

∑
k∈[d]

‖Pi,+k − Pi,−k‖TV ≤
√

2cX
∑
i∈[m]

piδ
3
i dn

1/2
i .

Plugging the above display to (33) gives

inf
{ŵ(i)}

sup
{w(i)

? }∈P

∑
i∈[m]

piES‖ŵ(i) −w
(i)
? ‖2 & d

( ∑
i∈[m]

piδ
2
i −
√

2cX
∑
i∈[m]

piδ
3
i

√
ni

)
. (34)

To this end, all that is left is to choose δi approriately so that (1) the above display is as
tight as possible; (2) (32) is satisfied. We consider the following two cases:

1. Assume R2 ≥ d
∑

i∈[m] pi/ni = dm/N . Note that we can re-write the requirement
(32) to be

d
∑
i∈[m]

piδ
2
i − ‖

∑
i∈[m]

piδiv
(i)‖2 ≤ R2.

Under the current assumption, this requirement will be satisfied if we choose δi =
c/
√
ni for any c ≤ 1. Under such a choice, the right-hand side of (34) becomes

c2dm
N (c−

√
2cX). Thus, by setting c = 2

√
2cX , we get the following lower bound:

inf
{ŵ(i)}

sup
{w(i)

? }∈P

∑
i∈[m]

piES‖ŵ(i) −w
(i)
? ‖2 &

d

N/m
.

2. Assume R2 ≤ d
∑

i∈[m] pi/ni = dm/N . Note that if we set δi ≡ δ = cR/
√
d where

c ≤ 1, (32) reads
c2R2 − ‖

∑
i∈[m]

piδiv
(i)‖2 ≤ R2,

which trivially holds. Now, the right-hand side of (34) becomes

c2R2(1−
√

2ccX
∑
i∈[m]

piR
√
ni/
√
d).

Since pi = ni/N and ni � N/m, our assumption on R gives

√
2ccX

∑
i∈[m]

piR
√
ni/
√
d .

∑
i

ni
N
·
√
mni
N

= 1.

This means that we can choose c to be a small constant such that the following lower
bound holds:

inf
{ŵ(i)}

sup
{w(i)

? }∈P

∑
i∈[m]

piES‖ŵ(i) −w
(i)
? ‖2 & R2.
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Summarizing the above two cases, we arrive at

inf
{ŵ(i)}

sup
{w(i)

? }∈P

∑
i∈[m]

piES‖ŵ(i) −w
(i)
? ‖2 &

d

N/m
∧R2.

Combining the above bound with (31), we get

inf
{ŵ(i)}

sup
{w(i)

? }∈P

∑
i∈[m]

piES‖ŵ(i) −w
(i)
? ‖2 &

d

N/m
∧R2 +

d

N
,

which is the desired result.

Proof [Proof of (15)] The proof is similar to the proof of (16), and we only provide a sketch
here. Without loss of generality we consider the first client. By the same arguments as in
the proof of (16), the left-hand side of (15) is lower bounded by a constant multiple of d/N .
Now, by considering the same prior distribution on P as in the proof of (16), we get

inf
w̄(1)

sup
{w(i)}∈P

ES‖w̄(1) −w
(1)
? ‖2 & dδ2

1(1− δ1
√
n1),

where the δi’s should obey the following inequality:

‖δiv(i) −
∑
s∈[m]

psδsv
(s)‖2 ≤ R2.

Choosing δi � 1/
√
ni when R ≥ dm/N and δi � R/

√
d otherwise, we arrive at

inf
w̄(1)

sup
{w(i)}∈P

ES‖w̄(1) −w
(1)
? ‖2 &

d

n1
∧R2,

and the proof is concluded.

B. Optimization Convergence of FedProx

This section concerns the optimization convergence of FedProx. We first introduce some
notations. Let w(i)

t,k be the output of k-th step of Algorithm 2 when the initial local model

is given by w
(i)
t ≡ w

(i)
t,0 ≡ w

(i)
t−1,K , let I(t)

t,k be the corresponding minibatch taken, and

denote the initial global model by w
(global)
t . Let Ft,k be the sigma algebra generated by the

randomness by Algorithm 2 up to w
(i)
t,k, namely the randomness in

{
Cτ , {I(i)

τ,l : i ∈ Cτ , 0 ≤

l ≤ Kτ − 1}
}t−1

τ=0

, Ct, and {I(i)
t,l : i ∈ Ct, 0 ≤ l ≤ k − 1}. For notational convenience we let

CT = [m] (i.e., all clients are involved in local training in Stage II of Algorithm 2). Then
the sequence {w(i)

t,k} is adapted to the following filtration:

F0,0 ⊆ F0,1 ⊆ · · · ⊆ F0,K ⊆ F1,0 ⊆ F1,1 ⊆ · · · ⊆ F1,K ⊆ · · · ⊆ FT,K .
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We write the optimization problem (20) as

min
w(global)∈W

∑
i∈[m]

piFi(w
(global), Si), (35)

where

Fi(w
(global), Si) = min

w(i)∈W

{
Li(w

(i), Si) +
λ

2
‖w(global) −w(i)‖2

}
. (36)

To simplify notations, we introduce the proximal opertor

ProxLi/λ(w(global)) = ProxLi/λ(w(global), Si) = argminw(i)∈W

{
Li(w

(i), Si)+
λ

2
‖w(global)−w(i)‖2

}
.

(37)
The high-level idea of this proof is to regard λ

∑
i∈Ct(w

(global)
t − w

(i)
t+1)/B(global) as a

biased stochastic gradient of 1
n

∑
i∈[m] Fi(w

(global)
t , Si). This idea has appeared in various

places (see, e.g., the proof of Proposition 5 in Denevi et al. (2019) and the proof of Theorem
1 in Dinh et al. (2020)). However, the implementation of this idea in our case is more
complicated than the above mentioned works in that (1) we are not in an online learning
setup (compared to Denevi et al. (2019)); (2) we don’t need to assume all clients are training
at every round (compared to Dinh et al. (2020)); and (3) we use local SGD for the inner loop
(instead of assuming the inner loop can be solved with arbitrary precision as assumed in
Dinh et al. (2020)), so the gradient norm depends on λ, and could in principle be arbitrarily
large, which causes extra complications.

Lemma 14 (Convergence of the inner loop) Let Assumption A(a, b) holds. Choose
η

(i)
t,k = 1

(µ+λ)(k+1) . Then for any k ≥ 0, we have

E
[
‖w(i)

t,k − ProxLi/λ(w
(global)
t )‖2

∣∣∣∣ Ft,0, i ∈ Ct] ≤ 8β2D2

µ2(k + 1)
.

Proof See Appendix B.1.

Lemma 15 (Convergence of the outer loop) Let the assumptions in Lemma 14 hold.
Choose η(global)

t = 2(µ+λ)
λµ(t+1) and assume

Kτ + 1 ≥ (4τ + 20)λ2β2D2

µ2(β2D2 ∧ 2λ‖`‖∞ ∧ λ2D2)
∀0 ≤ τ ≤ t− 1. (38)

Then for any t ≥ 0, we have

EAFP‖w
(global)
t − w̃(global)‖2 ≤ 12(λ+ µ)2m‖p‖2(β2D2 ∧ 2λ‖`‖∞ ∧ λ2D2)

λ2µ2(t+ 1)
, (39)

where the expectation is taken over the randomness in Algorithm 2.
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Proof See Appendix B.2.

Proposition 16 (Optimization error of AFP) Under the assumptions of Lemma 14 and
15, for any dataset S ∼

⊗
iD
⊗ni
i , we have

EAFP [EOPT] ≤ 4(β + λ)β2D2

µ2(KT + 1)
+

6(λ+ µ)2m‖p‖2(β2D2 ∧ 2λ‖`‖∞ ∧ λ2D2)

λµ2(t+ 1)

Proof By definition we have

EAFP [EOPT] := EAFP

[ ∑
i∈[m]

pi

(
Li(w

(i)
T+1, Si) +

λ

2
‖w(global)

T −w
(i)
T+1‖

2

)
−
∑
i∈[m]

piFi(w̃
(global), Si)

]
(a)
≤
∑
i∈[m]

pi(β + λ)

2
· EAFP‖w

(i)
T+1 − ProxLi/λ(w

(global)
T )‖2

+ EAFP

[ ∑
i∈[m]

piFi(w
(global)
T , Si)−

∑
i∈[m]

piFi(w̃
(global), Si)

]
(b)
≤ 4(β + λ)β2D2

µ2(KT + 1)
+
λ

2
EAFP‖w

(global)
T − w̃(global)‖2

(c)
≤ 4(β + λ)β2D2

µ2(KT + 1)
+

6(λ+ µ)2m‖p‖2(β2D2 ∧ 2λ‖`‖∞ ∧ λ2D2)

λµ2(t+ 1)
.

where (a) is by smoothness of Li, (b) is by Lemma 14 and λ-smoothness of
∑

i∈[m] piFi
(which holds by Lemma 17), and (c) is by Lemma 15.

B.1 Proof of Lemma 14: Convergence of the Inner Loop

The proof is an adaptation of the proof of Lemma 1 in Rakhlin et al. (2011). However,
we need to deal with the extra complication that the hyperparameter λ can in principle be
arbitrarily large. We start by noting that

‖w(i)
t,k+1 − ProxLi/λ(w

(global)
t )‖2

=

∥∥∥∥PW[w(i)
t,k −

η
(i)
t,k

B(i)

∑
j∈I(i)t,k

(
∇`(w(i)

t,k, z
(i)
j ) + λ(w

(i)
t,k −w

(global)
t )

)]
− ProxLi/λ(w

(global)
t )

∥∥∥∥2

≤
∥∥∥∥w(i)

t,k −
η

(i)
t,k

B(i)

∑
j∈I(i)t,k

(
∇`(w(i)

t,k, z
(i)
j ) + λ(w

(i)
t,k −w

(global)
t )

)
− ProxLi/λ(w

(global)
t )

∥∥∥∥2

= ‖w(i)
t,k − ProxLi/λ(w

(global)
t ))‖2 +

∥∥∥∥ η(i)
t,k

B(i)

∑
j∈I(i)t,k

(
∇`(w(i)

t,k, z
(i)
j ) + λ(w

(i)
t,k −w

(global)
t )

)∥∥∥∥2
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− 2

〈
w

(i)
t,k − ProxLi/λ(w

(global)
t ),

η
(i)
t,k

B(i)

∑
j∈I(i)t,k

(
∇`(w(i)

t,k, z
(i)
j ) + λ(w

(i)
t,k −w

(global)
t )

)〉
,

where the inequality is because ProxLi/λ(w
(global)
t ) ∈ W and PW is non-expansive. Now by

strong convexity and unbiasedness of the stochastic gradients, we have

E
[〈

w
(i)
t,k − ProxLi/λ(w

(global)
t ),

1

B(i)

∑
j∈I(i)t,k

(
∇`(w(i)

t,k, z
(i)
j ) + λ(w

(i)
t,k −w

(global)
t )

)〉 ∣∣∣∣ Ft,k, i ∈ Ct]

≥
(
Li(w

(i)
t,k, Si) +

λ

2
‖w(i)

t,k −w(global)‖2
)

−
(
Li(ProxLi/λ(w

(global)
t ), Si) +

λ

2
‖ProxLi/λ(w

(global)
t )−w

(global)
t ‖2

)
+

1

2

(
µi +

λn

mni

)
‖w(i)

t,k − ProxLi/λ(w
(global)
t )‖2

≥ (µ+ λ)‖w(i)
t,k − ProxLi/λ(w

(global)
t )‖2.

On the other hand, applying Lemma 19 gives

E
[∥∥∥∥ η(i)

t,k

B(i)

∑
j∈I(i)t,k

(
∇`(w(i)

t,k, z
(i)
j ) + λ(w

(i)
t,k −w

(global)
t )

)∥∥∥∥2 ∣∣∣∣ Ft,k, i ∈ Ct]

= (η
(i)
t,k)

2 ·
[
ni/B

(i) − 1

ni(ni − 1)

∑
j∈[ni]

∥∥∥∥∇`(w(i)
t,k, z

(i)
j )−∇`(w(i)

t,k, z
(i)
• )

∥∥∥∥2

+

∥∥∥∥ 1

ni

∑
j∈[ni]

∇`(w(i)
t,k, z

(i)
j ) + λ(w

(i)
t,k −w

(global)
t )

∥∥∥∥2]

≤ 2(η
(i)
t,k)

2β2D2 · ni/B
(i) − 1

(ni − 1)
+

(
β +

λn

mni

)2

‖w(i)
t,k − ProxLi/λ(w

(global)
t )‖2,

where in the second line we let ∇`(w(i)
t,k, z

(i)
• ) :=

∑
j∈[ni]

∇`(w(i)
t,k, z

(i)
j )/ni, and in the last

line is by the β-smoothness of `(·, z). Thus, we get

E
[
‖w(i)

t,k+1 − ProxLi/λ(w
(global)
t )‖2

∣∣∣∣ Ft,k, i ∈ Ct]
≤
[
1− 2η

(i)
t,k(µ+ λ) + (η

(i)
t,k)

2(β + λ)2

]
‖w(i)

t,k − ProxLi/λ(w
(global)
t )‖2

+ 2(η
(i)
t,k)

2β2D2 · ni/B
(i) − 1

(ni − 1)
. (40)

We then proceed by induction. Note that if k + 1 ≤ 8β2

µ2
, then we have the following trivial

bound:

E
[
‖w(i)

t,k − ProxLi/λ(w
(global)
t )‖2

∣∣∣∣ Ft,0, i ∈ Ct] ≤ D2 ≤ 8β2D2

µ2(k + 1)
, (41)
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where the first inequality is by w
(i)
t,k,ProxLi/λ(w

(global)
t ) ∈ W and the second inequality is

by our assumption on k. Thus, it suffices to show

E
[
‖w(i)

t,k+1 − ProxLi/λ(w
(global)
t )‖2

∣∣∣∣ Ft,0, i ∈ Ct] ≤ 8β2D2

µ2(k + 2)
(42)

based on the inductive hypothesis (41) and k + 1 ≥ 8β2/µ2. By the recursive relationship
(40) and taking expectation, we have

E
[
‖w(i)

t,k+1 − ProxLi/λ(w
(global)
t )‖2

∣∣∣∣ Ft,0, i ∈ Ct]
≤
[
1− 2η

(i)
t,k(µ+ λ) + (η

(i)
t,k)

2

(
β + λ

)2]8β2D2

k + 1
+ 2(η

(i)
t,k)

2β2D2 · ni/B
(i) − 1

(ni − 1)
.

Hence (42) is satisfied if

8β2D2 ·
[

1

k + 2
− 1

k + 1
+

2η
(i)
t,k

k + 1
(µ+ λ)−

(η
(i)
t,k)

2

k + 1
(β + λ)2

]
≥ 2(η

(i)
t,k)

2β2D2 · ni/B
(i) − 1

(ni − 1)
.

By our choice of η(i)
t,k, the above display is equivalent to

8β2D2 ·
[
− 1

(k + 1)(k + 2)
+

2

(k + 1)2
− 1

(k + 1)3

(
β + λ

µ+ λ

)2]
≥ 2β2D2

(µ+ λ)2(k + 1)2
· ni/B

(i) − 1

ni − 1
,

which is further equivalent to

8β2D2 ·
[
− k + 1

k + 2
+ 2− 1

k + 1

(
β + λ

µ+ λ

)2]
≥ 2β2D2

(µ+ λ)2
· ni/B

(i) − 1

ni − 1
.

We now claim that
1

k + 1

(
β + λ

µ+ λ

)2

≤ 1

2
.

Indeed, since k + 1 ≥ 8β2/µ2, (1) if λ ≤ β, then the left-hand side above is less than
4β2

µ2(k+1)
≤ 1

2 ; and (2) if λ ≥ β, the left-hand side above is less than 4
k+1 ≤

µ2

2β2 ≤ 1
2 . By the

above claim, (42) would hold if

4β2D2 ≥ 2β2D2

(µ+ λ)2
· ni/B

(i) − 1

ni − 1
.

We finish the proof by noting that the right-hand side above is bounded above by 2β2D2

µ2
.

B.2 Proof of Lemma 15: Convergence of the Outer Loop

By construction we have

‖w(global)
t − w̃(global)‖2
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=

∥∥∥∥λmη(global)
t

B(global)

∑
i∈Ct

pi(w
(global)
t −w

(i)
t+1)

∥∥∥∥2

= ‖w(global)
t − w̃(global)‖2 +

∥∥∥∥λmη(global)
t

B(global)

∑
i∈Ct

pi(w
(global)
t −w

(i)
t+1)

∥∥∥∥2

− 2

〈
w

(global)
t − w̃(global),

λmη
(global)
t

B(global)

∑
i∈Ct

pi(w
(global)
t −w

(i)
t+1)

〉

≤ ‖w(global)
t − w̃(global)‖2 − 2

〈
w

(global)
t − w̃(global),

λmη
(global)
t

B(global)

∑
i∈Ct

pi

(
w

(global)
t − ProxLi/λ(w

(global)
t )

)〉
︸ ︷︷ ︸

I

+ 2

∥∥∥∥λmη(global)
t

B(global)

∑
i∈Ct

pi

(
w

(global)
t − ProxLi/λ(w

(global)
t )

)∥∥∥∥2

︸ ︷︷ ︸
II

+ 2

∥∥∥∥λmη(global)
t

B(global)

∑
i∈Ct

pi

(
ProxLi/λ(w

(global)
t )−w

(i)
t+1

)∥∥∥∥2

︸ ︷︷ ︸
III

− 2

〈
w

(global)
t − w̃(global),

λmη
(global)
t

B(global)

∑
i∈Ct

pi

(
ProxLi/λ(w

(global)
t )

)
−w

(i)
t+1

〉
︸ ︷︷ ︸

IV

.

We first consider Term I. Note that λm
B(global)

∑
i∈Ct pi(w

(global)
t − ProxLi/λ(w

(global)
t )) is an

unbiased stochastic gradient of
∑

i piFi, which is µF = λµ/(λ + µ)-strongly convex. Thus,
we have

E[I | Ft−1,Kt−1 ] = 2η
(global)
t

〈
w

(global)
t − w̃(global),

∑
i∈[m]

pi∇Fi(w(global)
t , Si)

〉
≥ 2η

(global)
t µF ‖w(global)

t − w̃(global)‖2.

Now for Term II, we have

E[II | Ft−1,Kt−1 ]

≤ 2(η
(global)
t )2 · E

[(
1

B(global)

∑
i∈Ct

mpi

)2

| Ft−1,Kt−1

]
·max
i∈[m]

‖∇Fi(w(global)
t , Si)‖2

≤ 2(η
(global)
t )2 · E

[(
1

B(global)

∑
i∈Ct

mpi

)2

| Ft−1,Kt−1

]
·max
i∈[m]

·(β2D2 ∧ 2λ‖`‖∞ ∧ λ2D2)

≤ 2(η
(global)
t )2 ·

(
1

m

∑
i∈[m]

(mpi − 1)2 + 1

)
· (β2D2 ∧ 2λ‖`‖∞ ∧ λ2D2)

= 2(η
(global)
t )2m‖p‖2(β2D2 ∧ 2λ‖`‖∞ ∧ λ2D2),
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where the second line is by Lemma 18 and the third line is by Lemma 19. For Term III, we
invoke Lemma 14 to get

E[III | Ft−1,Kt−1 ] ≤ 2λ2(η
(global)
t )2 · 8β2D2

µ2(Kt + 1)
· E
[(

1

B(global)

∑
i∈Ct

mpi

)2

| Ft−1,Kt−1

]

≤ 16λ2(η
(global)
t )2β2D2m‖p‖2

µ2(Kt + 1)
,

where the last line is again by Lemma 19. For Term IV, we invoke Young’s inequality for
products to get

E[−IV | Ft−1,Kt−1 ]

≤ (η
(global)
t µF )‖w(global)

t − w̃(global)‖2 + (η
(global)
t µF )−1 · E

[
III
2

∣∣∣∣ Ft−1,Kt−1

]
≤ (η

(global)
t µF )‖w(global)

t − w̃(global)‖2 + (η
(global)
t µF )−1 · 8λ2(η

(global)
t )2β2D2m‖p‖2

µ2(Kt + 1)
.

Summarizing the above bounds on the four terms, we arrive at

E
[
‖w(global)

t+1 − w̃(global)‖2
∣∣∣∣ Ft−1,Kt−1

]
≤ (1− η(global)

t µF )‖w(global)
t − w̃(global)‖2 + 2 (η

(global)
t )2m‖p‖2(β2D2 ∧ 2λ‖`‖∞ ∧ λ2D2)︸ ︷︷ ︸

V

+
λ2(η

(global)
t )2β2D2m‖p‖2

µ2(Kt + 1)
·
(

16 +
8

δ
(global)
t µF

)
︸ ︷︷ ︸

VI

.

We claim that VI ≤ V. Indeed, with our choice of η(global)
t = 2

µF (t+1) , with some algebra,
one recognizes that this claim is equivalent to

20 + 4t

µ2(Kt + 1)
≤
(

1

λ2
∧ 2‖`‖∞
λβ2D2

∧ 1

β2

)
,

which is exactly (38). Thus, we have

E
[
‖w(global)

t+1 − w̃(global)‖2
∣∣∣∣ Ft−1,Kt−1

]
≤ (1− η(global)

t µF )‖w(global)
t − w̃(global)‖2 + 3 ·V

=

(
1− 2

t+ 1

)
‖w(global)

t − w̃(global)‖2 +
12m‖p‖2(β2D2 ∧ 2λ‖`‖∞ ∧ λ2D2)

µ2
F (t+ 1)2

. (43)

We then proceed by induction. For the base case, we invoke the strong convexity of
∑

i piFi
and Lemma 18 to get

µ2
F

4
‖w(global)

0 − w̃(global)‖2 ≤
∥∥∥∥ ∑
i∈[m]

pi∇Fi(w(global)
0 , Si)

∥∥∥∥2

≤ β2D2 ∧ 2λ‖`‖∞ ∧ λ2D2.
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Along with the fact that 1 = (
∑

i∈[m] pi)
2 ≤ m‖p‖2, we conclude that (15) is true for t = 0.

Now assume (39) hold for any 0 ≤ t ≤ τ . For t = τ + 1, using (43) and the inductive
hypothesis, we have

EAFP‖w
(global)
τ+1 − w̃(global)‖2 ≤

(
1− 2

τ + 1

)
12m‖p‖2(β2D2 ∧ 2λ‖`‖∞ ∧ λ2D2)

(τ + 1)µ2
F

+
12m‖p‖2(β2D2 ∧ 2λ‖`‖∞ ∧ λ2D2)

(τ + 1)2µ2
F

=

(
1

τ + 1
− 1

(τ + 1)2

)
· 12m‖p‖2(β2D2 ∧ 2λ‖`‖∞ ∧ λ2D2)

µ2
F

≤ 12m‖p‖2(β2D2 ∧ 2λ‖`‖∞ ∧ λ2D2)

(τ + 2)µ2
F

,

which is the desired result.

B.3 Auxiliary lemmas

Lemma 17 (Convexity and smoothness Fi) Under Assumption A(b), each Fi is λ-smooth
and µλ

µ+λ -strongly convex.

Proof The smoothness is a standard fact about the Moreau envelope. The strongly convex
constant of Fi follows from Theorem 2.2 of Lemaréchal and Sagastizábal (1997).

Lemma 18 (A priori gradient norm bound) Under Assumption A(a, b), for any w ∈
W and i ∈ [m], we have

‖∇Fi(w, Si)‖2 ≤ β2D2 ∧ 2λ‖`‖∞ ∧ λ2D2.

Proof Since ∇Fi(w, Si) = λ(w − ProxLi/λ(w)), its norm is trivially bounded by λD.
Now, since ProxLi/λ(w) achieves a lower objective value than w for the objective function
Li(·, Si) + λ

2‖w − ·‖
2, we have

λ

2
‖w − ProxLi/λ(w)‖2 ≤ Li(w, Si)− Li(ProxLi/λ(w), Si) ≤ ‖`‖∞,

and hence ‖∇Fi(w, Si)‖2 ≤ 2λ‖`‖∞. Finally, by the first-order condition, we have

∇Li(ProxLi/λ(w), Si) + λ(ProxLi/λ(w)− w) = 0.

Hence, we get ‖∇Fi(w, Si)‖ = ‖∇Li(ProxLi/λ(w), Si)‖ ≤ βD.

Lemma 19 (Variance of minibatch sampling) Let B ⊆ [n] be a randomly sampled batch
with batch size B and let {xi}ni=1 ⊆ Rd be an arbitrary set of vectors, then

EB‖
1

B

∑
i∈B

xi‖2 =
n/B − 1

n(n− 1)

∑
i∈[n]

‖xi − x̄‖2 + ‖x̄‖2 ≤ 1

n

∑
i∈[n]

‖xi − x̄‖2 + ‖x̄‖2,

where x̄ :=
∑

i∈[n] xi/n.

35



Chen, Zheng, Long and Su

Proof Since EB
∑

i∈B xi/B = x̄, we have

EB‖
1

B

∑
i∈B

xi‖2 = EB‖
1

B

∑
i∈B

xi − x̄‖2 + ‖x̄‖2

=
1

B2

(∑
i∈[n]

1{i ∈ B}‖xi − x̄‖2 + 2
∑
i<j

1{i, j ∈ B}〈xi − x̄, xj − x̄〉
)

+ ‖x̄‖2

=
1

B2

(
B

n

∑
i∈[n]

‖xi − x̄‖2 +
2B(B − 1)

n(n− 1)

∑
i<j

〈xi − x̄, xj − x̄〉
)

+ ‖x̄‖2,

where the last line is by PB(i ∈ B) = B/n and PB(i, j ∈ B) = B(B− 1)n−1(n− 1)−1 for any
i 6= j. Now, since

∑
i∈[n] ‖xi − x̄‖2 + 2

∑
i<j〈xi − x̄, xj − x̄〉 = 0, we arrive at

EB‖
1

B

∑
i∈B

xi‖2 =
1

B2

(
B

n
− B(B − 1)

n(n− 1)

)∑
i

‖xi − x̄‖2 + ‖x‖2

=
n/B − 1

n(n− 1)

∑
i∈[n]

‖xi − x̄‖2 + ‖x̄‖2,

which is the desired result.

C. Proofs of Upper Bounds

C.1 Proof of Theorem 6

In this proof, we let ŵ(global) be the global minimizer of (8) and we write w
(global,p)
avg ≡

w
(global)
p when there is no ambiguity.

Proof [Proof of (9)] We have

0 = −
∑
i∈[m]

piLi(ŵ
(global)(S), Si) +

∑
i∈[m]

piLi(ŵ
(global)(S), Si)

≤ −
∑
i∈[m]

piLi(ŵ
(global)(S), Si) +

∑
i∈[m]

piLi(w
(1)
? , Si)

= −
∑
i∈[m]

pi
ni

∑
j∈[ni]

(
`(ŵ(global)(S\(i,j)), z

(i)
j )− `(w(1)

? , z
(i)
j )

)

+
∑
i∈[m]

pi
ni

∑
j∈[ni]

(
`(ŵ(global)(S\(i,j)), z

(i)
j )− `(ŵ(global)(S), z

(i)
j )

)
,

where S\(i,j) stands for the dataset formed by replacing z(i)
j by another z′i,j ∼ Di, which is

independent of everything else. Taking expectation in both sides, we get

0 ≤ −
∑
i∈[m]

pi · ES,Zi∼Di [`(ŵ
(global)(S), Zi)− `(w(1)

? , Zi)]
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+
∑
i∈[m]

pi
ni

∑
j∈[ni]

ES,z′i,j
[`(ŵ(global)(S\(i,j)), z

(i)
j )− `(ŵ(global)(S), z

(i)
j )]

= −
∑
i∈[m]

pi · ES,Zi∼Di [`(ŵ
(global)(S), Zi)− `(w(i)

? , Zi)]

−
∑
i∈[m]

pi · EZi∼Di [`(w
(i)
? , Zi)− `(w(1)

? , Zi)]

+
∑
i∈[m]

pi
ni

∑
j∈[ni]

ES,z′i,j
[`(ŵ(global)(S\(i,j)), z

(i)
j )− `(ŵ(global)(S), z

(i)
j )].

Noting thatw(i)
? is the argmin of EZi∼Di [`(·, Zi)] and invoking the β-smoothness assumption,

we get

ES [AERp(ŵ(global))]

≤ β
∑
i∈[m]

pi‖w(1)
? −w

(i)
? ‖2 +

∑
i∈[m]

pi
ni

∑
j∈[ni]

ES,z′i,j
[`(ŵ(global)(S\(i,j)), z

(i)
j )− `(ŵ(global)(S), z

(i)
j )]

≤ 2β‖w(1)
? −w

(global)
p ‖2 + 2β

∑
i∈[m]

pi‖w(i)
? −w

(global)
p ‖

+
∑
i∈[m]

pi
ni

∑
j∈[ni]

ES,z′i,j
[`(ŵ(global)(S\(i,j)), z

(i)
j )− `(ŵ(global)(S), z

(i)
j )].

Taking a weighted average, we arrive at

ES [AERp(ŵ(global))]

≤ 4βR2 +
∑
i∈[m]

pi
ni

∑
j∈[ni]

ES,z′i,j
[`(ŵ(global)(S\(i,j)), z

(i)
j )− `(ŵ(global)(S), z

(i)
j )] (44)

To bound the second term in the right-hand side above, we bound the federated stability of
ŵ(global). Without loss of generality we consider the first client. By µ-strongly convexity of
L1, for any j1 ∈ [n1] we have

µ

2
‖ŵ(global)(S)− ŵ(global)(S\(1,j1))‖2

≤
∑
i∈[m]

pi

(
Li(ŵ

(global)(S\(1,j1)), Si)− Li(ŵ(global)(S), Si)

)

=

(∑
i 6=1

piLi(ŵ
(global)(S\(1,j1)), Si) + p1L1(ŵ(global)(S\(1,j1)), S

\j1
1 )

)

−
(∑
i 6=1

piLi(ŵ
(global)(S), Si) + p1L1(ŵ(global)(S), S

\j1
1 )

)

+ p1

(
L1(ŵ(global)(S\(1,j1)), S1)− L1(ŵ(global)(S\(1,j1)), S

\j1
1 )

)
+ p1

(
L1(ŵ(global)(S), S

\j1
1 )− L1(ŵ(global)(S), S1)

)
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≤ p1

(
L1(ŵ(global)(S\(1,j1)), S1)− L1(ŵ(global)(S\(1,j1)), S

\j1
1 )

)
+ p1

(
L1(ŵ(global)(S), S

\j1
1 )− L1(ŵ(global)(S), S1)

)
=
p1

n1

(
`(ŵ(global)(S\(1,j1)), z

(1)
j1

)− `(ŵ(global)(S), z
(1)
j1

)

)
+
p1

n1

(
`(ŵ(global)(S), z′1,j1)− `(ŵ(global)(S\(1,j1)), z′1,j1)

)
, (45)

where the second inequality is because ŵ(global)(S\(1,j1)) minimizes L1(·, S\j11 )+
∑

i 6=1 niLi(·, Si).
By an identical argument as in the proof of Lemma 26, we have

`(ŵ(global)(S\(1,j1)), z
(1)
j1

)− `(ŵ(global)(S), z
(1)
j1

)

≤
√

2β‖`‖∞ · ‖ŵ(global)(S)− ŵ(global)(S\(1,j1))‖+
β

2
‖ŵ(global)(S)− ŵ(global)(S\(1,j1))‖2

(46)

The same bound also holds for `(ŵ(global)(S), z′1,j1) − `(ŵ(global)(S\(1,j1)), z′1,j1). Plugging
these two bounds to (45) and rearranging terms, we get(

µ

2
− βp1

n1

)
‖ŵ(global)(S)− ŵ(global)(S\(1,j1))‖ ≤

2
√

2β‖`‖∞ · p1

n1
.

Since n1 ≥ 4βp1/µ, we in fact have

µ

4
‖ŵ(global)(S)− ŵ(global)(S\(1,j1))‖ ≤

2
√

2β‖`‖∞ · p1

n1
.

Plugging the above display back to (46), we arrive at

`(ŵ(global)(S\(1,j1)), z
(1)
j1

)− `(ŵ(global)(S), z
(1)
j1

) ≤ 16β‖`‖∞p1

µn1

(
1 +

4βp1

µn1

)
≤ 32β‖`‖∞p1

µn1
,

where the last inequality is again by n1 ≥ 4βp1/µ. The desired result follows by plugging
the above inequality back to (44).

Proof [Proof of (10)] Without loss of generality we consider the first client. Since w
(1)
? is

the minimizer of EZ1∼D1`(·, Z1), by β-smoothness we have

EZ1∼D1 [`(ŵ(global), Z1)− `(w(1)
? , Z1)] . β · EZ1∼D1‖ŵ

(global) −w
(1)
? ‖2

. β · EZ1∼D1‖ŵ
(global) −w

(global)
p ‖2 + βR2, (47)

where the last inequality is by Part (b) of Assumption B. By optimality of ŵ(global) and the
strong convexity of Li’s, we have〈 ∑

i∈[m]

pi∇Li(w(global)
p , Si), ŵ

(global) −w
(global)
p

〉
+
µ

2
‖ŵ(global) −w

(global)
p ‖2 ≤ 0.
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If ŵ(global) −w
(global)
p = 0 then we are done. Otherwise, the above display gives

‖ŵ(global) −w
(global)
p ‖

≤ 2

µ
‖
∑
i∈[m]

pi∇Li(w(global)
p , Si)‖

≤ 2

µ

(
‖
∑
i∈[m]

pi∇Li(w(i)
? , Si)‖+

∥∥ ∑
i∈[m]

pi
(
∇Li(w(global)

p , Si)−∇Li(w(i)
? , Si)

)∥∥)

≤ 2

µ

(
‖
∑
i∈[m]

pi∇Li(w(i)
? , Si)‖+ β

∑
i∈[m]

pi‖w(global)
p −w

(i)
? ‖
)

≤ 2

µ

(
‖
∑
i∈[m]

pi∇Li(w(i)
? , Si)‖+ βR

)
.

Thus, we get

‖ŵ(global) −w
(global)
p ‖2 ≤ 8

µ2

(
‖
∑
i∈[m]

pi∇Li(w(i)
? , Si)‖2 + β2R2

)
.

Taking expectation with respect to the sample S at both sides, we have

ES‖ŵ(global) −w
(global)
p ‖2 .

1

µ2
ES

∥∥∥∥ ∑
i∈[m]

pi
(
∇Li(w(i)

? , Si)− ES [∇Li(w(i)
? , Si)]

)∥∥∥∥2

+
β2R2

µ2

≤ 1

µ2
·
∑
i∈[m]

p2
iσ

2

ni
+
β2R2

µ2
.

Plugging the above inequality to (47) gives the desired result.

C.2 Proof of Proposition 10

Proof [Proof of (21)] By the definitions of the AER and EOPT, we have

AERp = EOPT +
λ

2

∑
i∈[m]

pi

(
‖w̃(global)(S)− w̃(i)(S)‖2 − ‖ŵ(global)(S)− ŵ(i)(S)‖2

)

+
∑
i∈[m]

pi

(
EZi∼Di [`(ŵ

(i)(S), Zi)]− Li(ŵ(i)(S), Si)

)

+
∑
i∈[m]

pi

(
Li(w̃

(i)(S), Si)− EZi∼Di [`(w
(i)
? , Zi)]

)
.

By the basic inequality (23), we can bound the AER by

AERp
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≤ EOPT +
λ

2

∑
i∈[m]

pi‖w(global)
p −w

(i)
? ‖2 +

∑
i∈[m]

pi

(
EZi∼Di [`(ŵ

(i)(S), Zi)]− Li(ŵ(i)(S), Si)

)

+
∑
i∈[m]

pi

(
Li(w

(i)
? , Si)− EZi∼Di [`(w

(i)
? , Zi)]

)
.

Now, invoking federated stability, we can further bound the AER by

AERp ≤ EOPT +
λ

2

∑
i∈[m]

pi‖w(global)
p −w

(i)
? ‖2 + 2

∑
i∈[m]

piγi

+
∑
i∈[m]

pi ·
1

ni

∑
j∈[ni]

Ez′i,j∼Di

[
EZi∼Di [`(ŵ

(i)(S\(i,j)), Zi)]− `(ŵ(i)(S\(i,j)), z
(i)
j )

]

+
∑
i∈[m]

pi

(
Li(w

(i)
? , Si)− EZi∼Di [`(w

(i)
? , Zi)]

)
,

where S\(i,j) is the dataset formed by replacing z(i)
j with a new sample z′i,j , and here we

are choosing z′i,j to be an independent sample from Di. Note that the last two terms of the
above display have mean zero under the randomness of the algorithm A, the dataset S, and
{z′i,j : i ∈ [m], j ∈ [ni]}. Thus, the desired result follows by taking expectation in both sides.

Proof [Proof of (22)] Without loss of generality we consider the first client. By definitions
of IER1 and EOPT, we have

p1 · IER1 = EOPT +
∑
i∈[m]

pi

(
Li(w̃

(i)(S), Si) +
λ

2
‖w̃(global)(S)− w̃(i)(S)‖2

)

−
∑
i∈[m]

pi

(
Li(ŵ

(i)(S), Si) +
λ

2
‖ŵ(global)(S)− ŵ(i)(S)‖2

)
+ p1EZ1∼D1 [`(ŵ(1)(S), Z1)− `(w(1)

? , Z1)].

Invoking the basic inequality (24), with some algebra, we arrive at

p1 · IER1

≤ EOPT +
p1λ

2
‖ŵ(global)(S)−w

(1)
? ‖2 + p1

(
EZ1∼D1 [`(ŵ(1)(S), Z1)]− L1(ŵ(1)(S), S1)

)
+ p1

(
L1(w

(1)
? , S1)− EZ1∼D1 [`(w

(1)
? , Z1)]

)
.

Now, invoking federated stability for the first client, we can bound its IER by

p1 · IER1 ≤ EOPT +
p1λ

2
‖ŵ(global)(S)−w

(1)
? ‖2 + 2p1γ1

+
p1

n1

∑
j∈[n1]

Ez′1,j∼D1

[
EZ1∼D1 [`(ŵ(1)(S\(1,j)), Z1)]− `(ŵ(1)(S\(1,j)), z

(1)
j )

]

40



Minimax Estimation for Personalized Federated Learning

+ p1

(
L1(w

(1)
? , S1)− EZ1∼D1 [`(w

(1)
? , Z1)]

)
,

where we recall that S\(1,j) is the dataset formed by replacing z(1)
j with a new sample z′1,j ,

and here we are choosing z′1,j to be an independent sample from D1. We finish the proof by
taking the expectation with respect to A,S, {z′1,j : j ∈ [n1]} at both sides.

C.3 Proof of Theorem 11

In this proof, we let A = (ŵ(global), {ŵ(i)} be a generic algorithm that tries to minimize (20).
For notiontional simplicity, we use an .β bn (resp. an &β bn) to denote that an ≤ Cβbn
(resp. an ≥ Cβbn) for large n, where Cβ has explicit dependence on a parameter β.

Recall that (w̃(global), {w̃(i)}) is the global minimizer of (20), and recall the notations in
(35)–(37). We start by bounding the federated stability of approximate minimizers of (20).
We need the following definition.

Definition 20 (Approximate minimizers) We say an algorithm A = (ŵ(global), {ŵ(i)}m1 )
produces an (ε(global), {ε(i)}m1 )-minimizer of the objective function (20) on the dataset S if
the following two conditions hold:

1. there exist a positive constant ε(global) such that ‖ŵ(global) − w̃(global)‖ ≤ ε(global);

2. for any i ∈ [m], there exist a positive constant ε(i) such that ‖ŵ(i)−ProxLi/λ(ŵ(global))‖ ≤
ε(i).

The stability bound is as follows.

Proposition 21 (Federated stability of approximate minimizers) Let Assumption A(b)
holds, and consider an algorithm A = (ŵ(global), {ŵ(i)}m1 ) that produces an (ε(global), {ε(i)}m1 )-
minimizer of the objective function (20) on the dataset S. Assume in addition that

ni ≥
4β

µ
, piλ ≤

µ

16
∀i ∈ [m]. (48)

Then A has federated stability

γi ≤
160β‖`‖∞
ni(µ+ λ)

+ Erri,

where

Erri := 2
√

2β‖`‖∞
[
4ε(global)

(
β + λ

µ+ λ
+

3λ

µ

)
+ ε(i)

(√
β + λ

µ+ λ
+

16piλ

µ

)]

+ 8β2

[
16(ε(global))2

(
β + λ

µ+ λ
+

3λ

µ

)2

+ (ε(i))2

(√
β + λ

µ+ λ
+

16piλ

µ

)2]
is the error term due to not exactly minimizing the soft weight sharing objective (20).
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Proof See Appendix C.3.1.

Taking the optimization error into account, we have the following result.

Proposition 22 (Federated stability of AFP) Let Assumption A(a, b) and (48) hold.
Run AFP with hyperparameters chosen as in Lemma 14 and 15. Then, as long as

T ≥ C1 · λ2(λ ∨ 1)2m‖p‖2n2
i , KT ≥ C2 · λ2(λ ∨ 1)2p2

in
2
i ∀i ∈ [m], (49)

the algorithm AFP have expected federated stability

EAFP [γi] ≤ C ·
β‖`‖∞
ni(µ+ λ)

,

where C1, C2 are two constants only depending on (µ, β, ‖`‖∞, D), and C is an absolute
constant.

Proof By Proposition 21, it suffices to upper bound the error term Erri by a constant
multiple of β‖`‖∞

ni(µ+λ) . Invoking Lemma 15, we have

(
EAFP [ε(global)]

)2 ≤ EAFP [(ε(global))2] ≤ 12(λ+ µ)2m‖p‖2(β2D2 ∧ 2λ‖`‖∞ ∧ λ2D2)

λ2µ2(T + 1)
.

This gives

EAFP [(ε(global))2] .(µ,β,‖µ‖∞,D)
(λ ∨ 1)2m‖p‖2(1 ∧ λ ∧ λ2)

λ2(T + 1)
.
m‖p‖2

T + 1
, (50)

where we recall that an .(µ,β,‖µ‖∞,D) bn means |an| ≤ Cbn for a constant C that only
depending on (µ, β, ‖µ‖∞, D), and the last inequality follows from (λ∨ 1)2(1∧ λ∧ λ2) ≤ λ2

regardless λ ≥ 1 or λ ≤ 1. Meanwhile, by Lemma 14, we have(
EAFP [ε(i))]

)2 ≤ EAFP [(ε(i))2] ≤ 8β2D2

µ2(KT + 1)
.(β,D)

1

KT + 1
.

Recalling the definition of Erri, we have

EAFP [Erri]

.(µ,β,‖µ‖∞,D) λEAFP [ε(global)] + λpiEAFP [ε(i)] + λ2EAFP [(ε(global))2] + p2
iλ

2EAFP [(ε(i))2]

.(µ,β,‖µ‖∞,D)
λ
√
m‖p‖√
T + 1

+
λpi√
KT + 1

+
λ2m‖p‖2

T + 1
+

p2
iλ

2

KT + 1
.

Thus, it suffices to require
√
T &(µ,β,‖µ‖∞,D) λ

√
m‖p‖ni(µ+ λ), T &(µ,β,‖µ‖∞,D) λ

2m‖p‖2ni(µ+ λ),√
KT &(µ,β,‖µ‖∞,D) λpini(µ+ λ), Kt &(µ,β,‖µ‖∞,D) p

2
iλ

2ni(µ+ λ),

which is equivalent to

T &(µ,β,‖µ‖∞,D) max{λ2m‖p‖2n2
i (λ ∨ 1)2, λ2m‖p‖2ni(λ ∨ 1)} = λ2m‖p‖2n2

i (λ ∨ 1)2
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KT &(µ,β,‖µ‖∞,D) max{λ2p2
in

2
i (µ ∨ 1)2, p2

iλ
2ni(µ ∨ 1)} = λ2p2

in
2
i (λ ∨ 1)2,

which is exactly (49).

Combining the above proposition with Proposition 10. we get the following result.

Proposition 23 (λ-dependent bound on the AER) Let Assumption A(a, b) and (48)
hold. Run AFP with hyperparameters chosen as in Lemma 14 and 15. Then, as long as

T ≥ C1 · λ(λ ∨ 1)m‖p‖2 ·
([∑

s∈[m]

ps/ns
]−1 ∨

[
λ(λ ∨ 1)n2

i

])
,

KT ≥ C2 · (λ+ 1)2 ·
([∑

s∈[m]

ps/ns
]−1 ∨

[
λ2p2

in
2
i

])
, (51)

for any i ∈ [m], the algorithm AFP satisfies

EAFP,S [AERp(AFP)] ≤ C · β‖`‖∞
µ+ λ

∑
i∈[m]

pi
ni

+
λ

2

∑
i∈[m]

pi‖w(global)
p −w

(i)
? ‖2,

where C1, C2 are two constants only depending on (µ, β, ‖`‖∞, D), and C is an absolute
constant.

Proof In view of Propositions 10 and 22, it suffices to set T,KT such that (1) (49) is
satisfied; and (2) EAFP [EOPT] is upper bounded by a constant multiple of β‖`‖∞

µ+λ

∑
i∈[m]

pi
ni
.

To achive the second goal, note that by Proposition 16, the optimization error is bounded
by

EAFP [EOPT] .(µ,β,‖µ‖∞,D)
λ ∨ 1

KT + 1
+
λm‖p‖2

T + 1
. (52)

Thus, it suffices to require T &(µ,β,‖µ‖∞,D)
λ(λ∨1)m‖p‖2∑

i∈[m] pi/ni
and KT &(µ,β,‖µ‖∞,D)

(λ∨1)2∑
i∈[m] pi/ni

.

This requirement, combined with (49), is exactly (51).

With the above proposition at hand, we are ready to give our proof of Theorem 11.
Proof [Proof of Theorem 11] We first define the following three events:

A :=

{
R ≥

√∑
i∈[m]

pi
ni

}
, B :=

{ ∑
i∈[m] p

2
i /ni√∑

i∈[m] pi/ni
≤ R ≤

√∑
i∈[m]

pi
ni

}
, C :=

{
R ≤

∑
i∈[m] p

2
i /ni√∑

i∈[m] pi/ni

}
.

We then choose λ to be

λ =
µ

16R2

∑
i∈[m]

pi
ni
· 1A +

µ

16CpR

√∑
i∈[m]

pi
ni
· 1B +

µ

16Cp
∑

i∈[m] p
2
i /ni

∑
i∈[m]

pi
ni
· 1C.

We now consider the three events separately.
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1. If A holds, then piλ = piµ
16R2

∑
i∈[m]

pi
µi
≤ piµ

16 ≤
µ
16 . Thus we can invoke Proposition 23

to get

EAFP,S [AERp] ≤
(
Cβ‖`‖∞

µ
+

µ

32

) ∑
i∈[m]

pi
ni

. right-hand side of (28).

2. If B holds, then piλ = piµ
16CpR

√∑
i∈[m]

pi
ni
≤ pmaxµN

16Cp
∑

i∈[m] p
2
i /ni

∑
i∈[m]

pi
ni
≤ µ

16 , where the
last inequality is by the definition of Cp. Hence, by Proposition 23, we have

EAFP,S [AERp] ≤
(

16CCpβ‖`‖∞
µ

+
µ

32Cp

)
R

√∑
i∈[m]

pi
ni

. right-hand side of (28).

3. If C holds, then piλ = piµ
16Cp

∑
i∈[m] p

2
i /ni

∑
i∈[m]

pi
ni
≤ µ

16 , and thus Proposition 23 gives

EAFP,S [AERp] ≤
(

16CCpβ‖`‖∞
µ

+
µ

32Cp

) ∑
i∈[m]

p2
i

ni
. right-hand side of (28).

The desired result follows by combining the above three cases together.

C.3.1 Proof of Proposition 21: Stability of Approximate Minimizers

We first present two lemmas, from which Proposition 21 will follow.

Lemma 24 (Federated stability of approximate minimizers, Part I) Let Assumption
A(b) holds, and consider an algorithm A = (ŵ(global), {ŵ(i)}m1 ) that satisfies the following
conditions:

1. there exist positive constants δ(global), ζ(global) such that∑
i∈[m]

piFi(ŵ
(global), Si) ≤ δ(global) +

∑
i∈[m]

piFi(w̃
(global), Si), (53)

‖
∑
i∈[m]

pi∇Fi(ŵ(global), Si)‖ ≤ ζ(global). (54)

2. for any i ∈ [m], there exist positive constants {δ(i), ζ(i), ε(i)}mi=1 such that

Li(ŵ
(i), Si) +

λ

2
‖ŵ(global) − ŵ(i)‖2 ≤ δ(i) + Fi(ŵ

(global), Si), (55)

‖∇Li(ŵ(i), Si) + λ(ŵ(i) − ŵ(global))‖ ≤ ζ(i), (56)

‖ŵ(i) − ProxLi/λ(ŵ(global))‖ ≤ ε(i). (57)
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Assume in addition that (48) holds. Then A has federated stability

γi ≤
160β‖`‖∞
ni(µ+ λ)

+
√

2β‖`‖∞ · Eλ,i + βE2
λ,i, (58)

where

Eλ,i :=
8ζ(i)

µ+ λ
+

√
8δ(i)

µ+ λ
+ 8µ−1

(
2ζ(global) + 4piλε

(i) +

√
2µλδ(global)

µ+ λ

)
(59)

is the error term due to not exactly minimizing (20).

Lemma 25 (Federated stability of approximate minimizers, Part II) Let Assumption
A(b) holds and consider an algorithm A = (ŵ(global), {ŵ(i)}m1 ) that produces an (ε(global), {ε(i)}m1 )-
minimizer in the sense of Definition 20. Then A also satisfies Equations (53)—(57) with

δ(global) =
λ

2
ε(global), ζ(global) = λε(global), δ(i) =

β + λ

2
ε(i), ζ(i) = (β + λ)ε(i).

Proof These correspondences are consequences of λ-smoothness of Fi and (β+λ)-smoothness
of Li(·, Si) + λ

2‖ŵ
(global) − ·‖2. We omit the details.

With the above two lemmas at hand, the proof of Proposition 21 is purely computational:
Proof [Proof of Proposition 21 given Lemma 24 and 25] Invoking 25, the error term Eλ,i
defined in Equation 59 can be bounded above by

Eλ,i ≤
8(β + λ)

µ+ λ
· ε(global) +

√
4(β + λ)

µ+ λ
· ε(i) +

8

µ

(
2λε(global) + 4piλε

(i) +

√
µλ2

µ+ λ

)

= 8ε(global)
(
β + λ

µ+ λ
+

2λ

µ
+

λ√
µ(µ+ λ)

)
+ 2ε(i)

(√
β + λ

µ+ λ
+

16piλ

µ

)

≤ 8ε(global)
(
β + λ

µ+ λ
+

3λ

µ

)
+ 2ε(i)

(√
β + λ

µ+ λ
+

16piλ

µ

)
.

This gives

E2
λ,i ≤ 128(ε(global))2

(
β + λ

µ+ λ
+

3λ

µ

)2

+ 8(ε(i))2

(√
β + λ

µ+ λ
+

16piλ

µ

)2

.

Plugging the above two displays to (58) gives the desired result.

We now present our proof of Lemma 24. We start by stating and proving several useful
lemmas.

Lemma 26 (From loss stability to parameter stability) Let Assumption A(b) holds.
Then the algorithm A = (ŵ(global), {ŵ(i)}) has federated stability

γi ≤
√

2β‖`‖∞ · ‖ŵ(i)(S)− ŵ(i)(S\(i,ji))‖+
β

2
‖ŵ(i)(S)− ŵ(i)(S\(i,ji))‖2.
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Proof This lemma has implicitly appeared in the proofs of many stability-based generalization
bounds (see, e.g., Section 13.3.2 of Shalev-Shwartz and Ben-David (2014)), and we provide
a proof for completeness. By β-smoothness, for an arbitrary z ∈ Z we have

`(ŵ(i)(S), z)− `(ŵ(i)(S\(i,ji)), z)

≤
〈
∇`(ŵ(i)(S\(i,ji)), z), ŵ(i)(S)− ŵ(i)(S\(i,ji))

〉
+
β

2
‖ŵ(i)(S)− ŵ(i)(S\(i,ji))‖2

≤ ‖∇`(ŵ(i)(S\(i,ji)), z)‖ · ‖ŵ(i)(S)− ŵ(i)(S\(i,ji))‖+
β

2
‖ŵ(i)(S)− ŵ(i)(S\(i,ji))‖2

≤

√
2β

(
`(ŵ(i)(S\(i,ji)), z)− min

w(i)∈W
`(w(i), z)

)
· ‖ŵ(i)(S)− ŵ(i)(S\(i,ji))‖

+
β

2
‖ŵ(i)(S)− ŵ(i)(S\(i,ji))‖2

≤
√

2β‖`‖∞ · ‖ŵ(i)(S)− ŵ(i)(S\(i,ji))‖+
β

2
‖ŵ(i)(S)− ŵ(i)(S\(i,ji))‖2,

where the last inequality follows from boundedness of `. By a nearly identical argument,
the above upper bound also holds for −`(ŵ(i)(S), z) + `(ŵ(i)(S\(i,ji)), z), and the desired
result follows.

Lemma 27 (Local stability implies global stability) Assume Assumption A(b) holds
and consider an algorithm A = (ŵ(global), {ŵ(i)}m1 ) that satisfies Equations (53), (54) and
(57). Then for any i ∈ [m], ji ∈ [ni], we have

‖ŵ(global)(S\(i,ji))− ŵ(global)(S)‖

≤ λ+ µ

λµ

(
2ζ(global) +

√
2λµδ(global)

λ+ µ
+ 4piλε

(i) + 2piλ‖ŵ(i)(S\(i,j1))− ŵ(i)(S)‖
)
. (60)

Proof Without loss of generality we consider the first client. Let µF be the strongly convex
constant of

∑
i piFi, which, by Lemma 17, is equal to

∑
i pi ·

µλ
µ+λ = λµ/(λ + µ). Now, by

strong convexity, we have

µF
2
‖ŵ(global)(S)− ŵ(global)(S\(1,j1))‖2

≤
∑
i∈[m]

pi

(
Fi(ŵ

(global)(S\(1,j1)), Si)− Fi(ŵ(global)(S), Si)

)

+

〈 ∑
i∈[m]

pi∇Fi(ŵ(global)(S), Si), ŵ
(global)(S\(1,j1) − ŵ(global)(S))

〉
(54)
≤

∑
i∈[m]

pi

(
Fi(ŵ

(global)(S\(1,j1)), Si)− Fi(ŵ(global)(S), Si)

)
+ ζ(global)‖ŵ(global)(S\(1,j1))− ŵ(global)(S)‖
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=

(
p1F1(ŵ(global)(S\(1,j1)), S

\j1
1 ) +

∑
i 6=1

piFi(ŵ
(global)(S\(1,j1)), Si)

)

−
(
p1F1(ŵ(global)(S, S

\j1
1 ) +

∑
i 6=1

piFi(ŵ
(global)(S, Si)

)

+ p1

(
F1(ŵ(global)(S\(1,j1)), S1)− F1(ŵ(global)(S\(1,j1)), S

\j1
1 )

+ F1(ŵ(global)(S), S
\j1
1 )− F1(ŵ(global)(S), S1)

)
+ ζ(global)‖ŵ(global)(S\(1,j1))− ŵ(global)(S)‖

(53)
≤ δ(global) + ζ(global)‖ŵ(global)(S\(1,j1))− ŵ(global)(S)‖

+ p1

(
F1(ŵ(global)(S\(1,j1)), S1)− F1(ŵ(global)(S), S1)

+ F1(ŵ(global)(S), S
\j1
1 )− F1(ŵ(global)(S\(1,j1)), S

\j1
1 )

)
.

Since F1 is λ-smooth by Lemma 17, we can proceed by

µF
2
‖ŵ(global)(S)− ŵ(global)(S\(1,j1))‖2

≤ δ(global) + ζ(global)‖ŵ(global)(S\(1,j1))− ŵ(global)(S)‖+ p1λ‖ŵ(global)(S\(1,j1))− ŵ(global)(S)‖2

+ p1

〈
∇F1(ŵ(global)(S), S1)−∇F1(ŵ(global)(S\(1,j1)), S

\j1
1 ), ŵ(global)(S\(1,j1))− ŵ(global)(S)

〉
.

Since ∇F1(w(global), S1) = λ

(
w(global) − ProxL1/λ(w(global), S1)

)
, with some algebra, the

right-hand side above is in fact equal to

δ(global) + ζ(global)‖ŵ(global)(S\(1,j1))− ŵ(global)(S)‖

+ p1λ

〈
ŵ(1)(S)− ProxL1/λ(ŵ(global)(S), S1), ŵ(global)(S\(1,j1))− ŵ(global)(S)

〉
+ p1λ

〈
ProxL1/λ(ŵ(global)(S\(1,j1)), S

\j1
1 )− ŵ(1)(S\(1,j1), ŵ(global)(S\(1,j1))− ŵ(global)(S)

〉
+ p1λ

〈
ŵ(1)(S\(1,j1))− ŵ(1)(S), ŵ(global)(S\(1,j1))− ŵ(global)(S)

〉
(57)
≤ δ(global) + (ζ(global) + 2p1λ)‖ŵ(global)(S\(1,j1))− ŵ(global)(S)‖

+ p1λ‖ŵ(i)(S\(1,j1))− ŵ(i)(S)‖‖ŵ(global)(S\(1,j1))− ŵ(global)(S)‖.

The above bound gives a quadratic inequality: if we let sG := ‖ŵ(global)(S\(1,j1))−ŵ(global)(S)‖
and s1 := ‖ŵ(i)(S\(1,j1))− ŵ(i)(S)‖, then the above bound can be written as

µF
2
· s2G − (ζ(global) + 2p1λε

(1) + p1λs1) · sG − δ(global) ≤ 0.
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Solving this inequality gives

sG ≤
1

µF
·
[
ζ(global) + 2p1λε

(1) + p1λs1 +
√

(ζ(global) + 2p1λε(1) + p1λs1)2 + 2µF δ(global)
]

≤ 1

µF

(
2ζ(global) + 4p1λε

(1) + 2p1λs1 +

√
2µF δ(global)

)
,

which is exactly (60).

Lemma 28 (Parameter stability) Under the same assumptions as Proposition 21, for
any i ∈ [m], ji ∈ [ni], we have

‖ŵ(i)(S\(i,ji))− ŵ(i)(S)‖ ≤
16
√

2β‖`‖∞
ni(µ+ λ)

+ Eλ,i.

Proof Without loss of generality we consider the first client. Since L1(·, S1)+λ
2‖ŵ

(global)(S)−
·‖2 is (µ+ λ)-strongly convex, we have

1

2
(µ+ λ)‖ŵ(1)(S)− ŵ(1)(S\(1,j1))‖2

≤
(
L1(ŵ(1)(S\(1,j1)), S1) +

λ

2
‖ŵ(global)(S)− ŵ(1)(S\(1,j1))‖2

)
−
(
L1(ŵ(1)(S), S1) +

λ

2
‖ŵ(global)(S)− ŵ(1)(S)‖2

)
+

〈
∇L1(ŵ(1)(S), S1) + λ(ŵ(1)(S)− ŵ(global)(S)), ŵ(1)(S\(1,j1))− ŵ(1)(S)

〉
(56)
≤
(
L1(ŵ(1)(S\(1,j1)), S

\j1
1 ) +

λ

2
‖ŵ(global)(S\(1,j1))− ŵ(1)(S\(1,j1))‖2

)
−
(
L1(ŵ(1)(S), S

\j1
1 ) +

λ

2
‖ŵ(global)(S\(1,j1))− ŵ(1)(S)‖2

)
− 1

n1
`(ŵ(1)(S\(1,j1)), z′1,j1) +

1

n1
`(ŵ(1)(S\(1,j1)), z

(1)
j1

) +
1

n
`(ŵ(1)(S), z′1,j1)− 1

n1
`(ŵ(S), z

(1)
j1

)

− λ

2
‖ŵ(global)(S\(1,j1))− ŵ(1)(S\(1,j1))‖2 +

λ

2
‖ŵ(global)(S)− ŵ(1)(S\(1,j1))‖2

+
λ

2
‖ŵ(global)(S\(1,j1))− ŵ(1)(S)‖2 − λ

2
‖ŵ(global)(S)− ŵ(1)(S)‖2

+ ζ(1)‖ŵ(1)(S\(1,j1))− ŵ(1)(S)‖
(55)
≤ δ(1) + ζ(1)‖ŵ(1)(S\(1,j1))− ŵ(1)(S)‖

+ λ

〈
ŵ(global)(S)− ŵ(global)(S\(1,j1)), ŵ(S) − ŵ(1)(S\(1,j1))

〉
+

1

n1

(
`(ŵ(1)(S), z′1,j1)− `(ŵ(1)(S\(1,j1)), z′1,j1) + `(ŵ(1)(S\(1,j1)), z

(1)
j1

)− `(ŵ(1)(S), z
(1)
j1

)

)
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≤δ(1) + ζ(1)‖ŵ(1)(S\(1,j1))− ŵ(1)(S)‖

+
2

n1

(√
2β‖`‖∞‖ŵ(1)(S)− ŵ(1)(S\(1,j1))‖+

β

2
‖ŵ(1)(S)− ŵ(1)(S\(1,j1))‖2

)

+
λ+ µ

µ

(
2ζ(global) +

√
2λµδ(global)

λ+ µ
+ 4piλε

(i) + 2piλ‖ŵ(i)(S\(i,j1))− ŵ(i)(S)‖
)

× ‖ŵ(1)(S)− ŵ(1)(S\(1,j1))‖,

where the last inequality is by Lemma 26 and Lemma 27. Denoting s1 := ‖ŵ(1)(S) −
ŵ(1)(S\(1,j1))‖, the above inequality can be written as

Cλ,1s
2
1 −

[
2
√

2β‖`‖∞
n1

+ ζ(1) +
λ+ µ

µ

(
2ζ(global) + 4p1λε

(1) +

√
2λµδ(global)

λ+ µ

)]
s1 − δ(1) ≤ 0,

(61)

where

Cλ,1 :=
1

2
(µ+ λ)− β

n1
− 2p1λ(λ+ µ)

µ
.

By (48), we have

Cλ,1 ≥
µ+ λ

2
− µ

4
− 2p1λ(λ+ µ)

µ
≥ λ+ µ

4
− 2p1λ(λ+ µ)

µ
=
λ+ µ

4
·
(

1− 8p1λ

µ

)
≥ λ+ µ

8
.

In particular, Cλ,1 > 0, and thus we can solve the quadratic inequality (61) (similar to the
proof of Lemma 27) to get

s1 ≤
2
√

2β‖`‖∞
Cλ,1n1

+

ζ(1) + λ+µ
µ

(
2ζ(global) + 4p1λε

(1) +
√

2λµδ(global)

λ+µ

)
Cλ,1

+

√
δ(1)

Cλ,1
.

Plugging in Cλ,1 ≥ (λ+ µ)/8 to the above inequality gives the desired result.

We are finally ready to present a proof of Lemma 24:
Proof [Proof of Lemma 24] Invoking Lemma 26, we have

γi ≤
√

2β‖`‖∞ ·
(

16
√

2β‖`‖∞
ni(µ+ λ)

+ Eλ,i
)

+
β

2

(
16
√

2β‖`‖∞
ni(µ+ λ)

+ Eλ,i
)2

≤ 32β‖`‖∞
ni(µ+ λ)

·
(

1 +
β

ni(µ+ λ)

)
+
√

2β‖`‖∞ · Eλ,i + βE2
λ,i,

where in the last line we have used (a+ b)2 ≤ 2a2 + 2b2. We finish the proof by noting that
β

ni(µ+λ) ≤
β
niµ
≤ 4, where the last inequality is by (48).
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C.4 Proof of Theorem 12

Compared to the proof of Theorem 11, we need to additionally control the estimation error
of the global model.

Proposition 29 (Estimation error of the global model) Let Assumptions A(b) and B(b)
hold. Then

ES‖w̃(global) −w
(global)
p ‖2 ≤ 48β2σ2

µ2λ2

( ∑
i∈[m]

pi√
ni

)2

+
48β2R2

µ2
+

12(µ+ λ)2σ2

µ2λ2

∑
i∈[m]

p2
i

ni
.

Proof See Appendix C.4.1

With the above proposition, the following result is a counterpart of Proposition 23.

Proposition 30 (λ-dependent bound on the IER) Let Assumptions A(a, b), B(b) and
Equation (48) hold. Run AFP with hyperparameters chosen as in Lemma 14 and 15. Then,
for any i ∈ [m], as long as

T ≥ C1λ(λ ∨ 1)m‖p‖2ni ·
(
p−1
i ∨ [λ(λ ∨ 1)ni]

)
,

KT ≥ C2(λ+ 1)2ni

(
p−1
i ∨ λ

2p2
ini

)
, (62)

the algorithm AFP satisfies both

EAFP,S [IERi(AFP)]

≤ C

λni

[
β‖`‖∞ +

σ2β2ni
µ2

( ∑
i∈[m]

pi√
ni

)2

+ σ2ni
∑
i∈[m]

p2
i

ni

]
+ Cλ

[(
1 +

β2

µ2

)
R2 +

σ2

µ2

∑
i∈[m]

p2
i

ni

)]
,

(63)

and

EAFP,S [IERi(AFP)] ≤ C
(
β‖`‖∞
µni

+ λD2

)
, (64)

where C1, C2 are two constants only depending on (µ, β, ‖`‖∞, D), and C is an absolute
constant.

Proof Without loss of generality we consider the first client. Our assumptions allow us to
invoke Propositions 10 and 22 to get

EAFP,S [IER1]

≤ EAFP,S

[
EOPT

p1
+

3λ

2
(ε(global))2 +

3λ

2
‖w̃(global) −w

(global)
p ‖2 +

3λ

2
R2 +

320β‖`‖∞
n1(µ+ λ)

]
.
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We first show that the expected value of EOPT/p1 and λ(ε(global))2 are both bounded above
by a constant multiple of β‖`‖∞

n1(µ+λ) . Indeed, by the estimates we have established in Equations
(50) and (52), it suffices to require

T &(µ,β,‖µ‖∞,D) λ(λ ∨ 1)m‖p‖2n1,

and

KT &(µ,β,‖µ‖∞,D)
(λ ∨ 1)2n1

p1
, T &(µ,β,‖µ‖∞,D)

λ(λ ∨ 1)m‖p‖2n1

p1
,

respectively. And the above two displays, combined with (49), is exactly (62). (64) then
follows from the compactness of W. To prove (63), we invoke Proposition 29 to get

EAFP,S [IER1] .
β‖`‖∞

n1(µ+ λ)
+ λ

(
1 +

β2

µ2

)
R2 +

β2σ2

µ2λ

( ∑
i∈[m]

pi√
ni

)2

+
(µ+ λ)2σ2

µ2λ

∑
i∈[m]

p2
i

ni

.
β‖`‖∞
n1λ

+ λ

(
1 +

β2

µ2

)
R2 +

β2σ2

µ2λ

( ∑
i∈[m]

pi√
ni

)2

+

(
σ2

λ
+
λσ2

µ2

) ∑
i∈[m]

p2
i

ni
,

and (64) follows by rearranging terms.

We now present our proof of Theorem 12.
Proof [Proof of Theorem 12] Without loss of generality we consider the first client. Since
all ni’s are of the same order, it suffices to show

E[IERi(AFP)] .

[
(µ+µ−1)

(
β‖`‖∞+

σ2β2 + β2 + σ2

µ2

)
+µD2

]
·
(

R√
N/m

∧ 1

N/m
+

√
m

N

)
.

(65)
We define the following two events:

A := {R ≥
√
m/N}, B := Ac = {R <

√
m/N},

and we set

λ =
cAm

D2N
· 1A + cB

√
m

R2N + 1
· 1B,

where cA, cB are two constants to be specified later. We consider two cases:

1. If A holds, then from (64) we have EAFP,S [IER1] .

(
β‖`‖∞
µ + cA

)
· 1
N/m , provided

λpmax ≤ µ/16. Note that λpmax � cA
D2N

≤ cA/D
2. So we can choose λ � µD2, which

gives

EAFP,S [IER1] .

(
β‖`‖∞
µ

+ µD2

)
· 1

N/m
≤ right-hand side of (65).

2. If B holds, and if λpmax ≤ µ/16 holds, then from (63) we have

EAFP,S [IER1]
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.
1

λN/m

(
β‖`‖∞ +

σ2β2

µ2
+ σ2

)
+ λ

[
(1 +

β2

µ2
)R2 +

σ2

µ2N

]
.

(
β‖`‖∞ +

σ2β2 + β2 + σ2

µ2

)
·
(

1

λN/m
+ λ(R2 +N−1)

)
=

(
β‖`‖∞ +

σ2β2 + β2 + σ2

µ2

)
·
(√

R2N + 1

cBN/
√
m

+
cB
N

√
m(R2N + 1)

)
≤
(
β‖`‖∞ +

σ2β2 + β2 + σ2

µ2

)
·
(

R

cB
√
N/m

+
1

cBN/
√
m

+
cB
√
mR√
N

+
cB
√
m

N

)
=

(
β‖`‖∞ +

σ2β2 + β2 + σ2

µ2

)
· (cB + c−1

B )

(
R√
N/m

+

√
m

N

)
.

Note that pmaxλ ≤ cBpmax
√
m � cB/

√
m ≤ cB. So to satisfy pmaxλ ≤ µ/16, we can

choose cB � µ. This gives

EAFP,S [IER1] .

(
β‖`‖∞ +

σ2β2 + β2 + σ2

µ2

)
(µ+ µ−1) ·

(
R√
N/m

+

√
m

N

)
≤ right-hand side of (65).

The desired result follows by combining the above two cases together.

C.4.1 Proof of Proposition 29: Estimation Error of the Global Model

We begin by proving a useful lemma.

Lemma 31 (Estimating w
(i)
? given the knowledge of w(global)

p ) Let Assumption A(b)
hold. Then for any i ∈ [m], we have

‖w(i)
? − ProxLi/λ(w

(global)
p )‖ ≤ 2

µ+ λ

∥∥∥∥∇Li(w(i)
? , Si) + λ(w

(i)
? −w

(global)
p )

∥∥∥∥.
Proof This follows from an adaptation of the arguments in Theorem 7 of Foster et al.
(2019). By strong convexity, we have〈

∇Li(w(i)
? , Si) + λ(w

(i)
? −w

(global)
p ),ProxLi/λ(w

(global)
p )−w

(i)
?

〉
+
µ+ λ

2
‖w(i)

? − ProxLi/λ(w
(global)
p )‖2

≤ Li(w(i)
? , Si) +

λ

2
‖w(global) −w

(i)
? ‖2 − Li(ProxLi/λ(w

(global)
p ), Si)

− λ

2
‖w(global)

p − ProxLi/λ(w
(global)
p )‖2

≤ 0.

If ‖w(i) − ProxLi/λ(w
(global)
p )‖ = 0 we are done. Otherwise, Cauchy-Schwartz inequality

applied to the above display gives the desired result.
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Now, since
∑

i∈[m] piFi is µF = µλ/(µ+ λ)-strongly convex, we have〈 ∑
i∈[m]

pi∇Fi(w(global)
p ), w̃(global) −w

(global)
p

〉
+
µF
2
‖w̃(global) −w

(global)
p ‖2

≤
∑
i∈[m]

piFi(w̃
(global))−

∑
i∈[m]

piFi(w
(global)
p )

≤ 0.

If ‖w̃(global)−w
(global)
p ‖ = 0 we are done. Otherwise, by Cauchy-Schwartz inequality, we get

‖w̃(global) −w
(global)
p ‖

≤ 2

µF

∥∥∥∥ ∑
i∈[m]

pi∇Fi(w(global)
p )

∥∥∥∥
=

2

µF

∥∥∥∥ ∑
i∈[m]

pi∇Li(ProxLi/λ(w
(global)
p ), Si)

∥∥∥∥
≤ 2

µF

∥∥∥∥ ∑
i∈[m]

pi

(
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where (∗) is by smoothness of Li and (∗∗) is by Lemma 31. Thus, we have

‖w̃(global) −w
(global)
p ‖2

≤ 48β2

µ2λ2

( ∑
i∈[m]
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(66)

Note that( ∑
i∈[m]

pi‖∇Li(w(i)
? , Si)‖

)2

=
∑
i∈[m]

p2
i ‖∇Li(w

(i)
? , Si)‖2 +

∑
i 6=s
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? , Ss)‖.

Taking expectation at both sides, we arrive at

ES

[( ∑
i∈[m]

pi‖∇Li(w(i)
? , Si)‖

)2]
≤
∑
i∈[m]

p2
iσ

2

ni
+
∑
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pipsσiσs√
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= σ2
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pi√
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)2

.
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Meanwhile, we have

ES

∥∥∥∥ ∑
i∈[m]

pi∇Li(w(i)
? , Si)

∥∥∥∥2

≤
∑
i∈[m]

p2
iσ

2

ni
.

The desired result follows by plugging the previous two displays to (66).

D. Details on Experiments

In each round (among 100 rounds) of simulation, we first generatew? ∈ R100 with i.i.d. standard
Gaussian entries, and we set each local model w(i)

? = w?+R·vi, where vi ∈ R100 is a random
unit vector that has negative correlation with w? and we vary R from 0 to 20. The dataset
for the i-th client is then generated by a logistic regression model. We apply FedAvg
(Algorithm 1), PureLocalTraining, and FedAvg followed by fine tuning, as well as
FedProx (Algorithm 2) to this collection of datasets.

For FedAvg, we assume full participation (i.e., Ct = [m]) and we set the number of
communication rounds T = 20 and global step size ηt = 0.8. In its local training stage,
we run SGD for 5 epochs with step size 0.2. For PureLocalTraining, we run SGD with
step size 0.2 for 20 · 5 = 100 epochs. For the fine tuning strategy, we first run FedAvg
(with the same hyperparameter as the previous case) and then for each client run SGD for
15 epochs with step size 0.2. For FedProx, we again assume full participation, and we set
the number of communication rounds T = 20, global step size ηglobal

t = 0.8, local rounds
Kt = 5, and local step size η(i)

t,k = 0.2. In all the experiments, the batch size is set to 16.
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