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Abstract
Normalizing flows (NFs) are universal density estimators based on neural networks. However, this
universality is limited: the density’s support needs to be diffeomorphic to a Euclidean space. In
this paper, we propose a novel method to overcome this limitation without sacrificing universality.
The proposed method inflates the data manifold by adding noise in the normal space, trains an NF
on this inflated manifold, and, finally, deflates the learned density. Our main result provides suf-
ficient conditions on the manifold and the specific choice of noise under which the corresponding
estimator is exact. Our method has the same computational complexity as NFs and does not require
computing an inverse flow. We also demonstrate theoretically (under certain conditions) and em-
pirically (on a wide range of toy examples) that noise in the normal space can be well approximated
by Gaussian noise. This allows using our method for approximating arbitrary densities on unknown
manifolds provided that the manifold dimension is known.

Keywords: Normalizing flow, density estimation, low-dimensional manifolds, normal space,
noise, inflation, deflation, unsupervised learning

1. Introduction

Many modern problems involving high-dimensional data are formulated probabilistically. Key con-
cepts, such as Bayesian classification, denoising, or anomaly detection, rely on the data generating
density p∗(x). Therefore, a main research area and of crucial importance is learning this data gen-
erating density p∗(x) from samples.

For the case where the corresponding random variable X with values in RD takes values on
a manifold diffeomorphic to RD, a normalizing flow (NF) can be used to learn p∗(x) exactly
(Huang et al. (2018)). However, in practice, many real-world applications such as predicting pro-
tein structures in molecular biology (Hamelryck et al. (2006)), learning motions in robotics (Feiten
et al. (2013)), or predicting earthquake patterns in geology (Geller (1997)) are modeled on low-
dimensional manifolds, and therefore gave rise to the manifold hypothesis which states that high-
dimensional datasets, such as high-resolution images, live close to a low-dimensional manifold (see
Fefferman et al. (2016) and the references therein). As a consequence, few attempts have been
made to use NFs to learn densities on low-dimensional manifolds, overcoming their topological
constraint. To do so, these methods either need to know the manifold beforehand (that is the mani-
fold’s chart is given) (Gemici et al. (2016), Rezende et al. (2020), Mathieu and Nickel (2020), Lou
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Figure 1: Schematic overview of our method. 1. A density p∗(x) with support on a d-dimensional
manifold X (top left) is inflated by adding noise σ2 in the normal space (top right). 2. We have
an NF F−1

θ (x) learn this inflated density q(x̃) using a well-known reference measure pU (u). 3.
We deflate the learned density to obtain an estimate p̂(x) for p∗(x). 4. Our main result provides
sufficient conditions for the manifold X and the choice of noise such that p̂(x) = p∗(x).

et al. (2020)), or sacrifice the directness of the estimate (Beitler et al. (2018), Kim et al. (2020),
Cunningham et al. (2020), Brehmer and Cranmer (2020)).

Our goal in this paper is to overcome both the aforementioned limitations of using NFs for
density estimation on Riemannian manifolds. Given data points from a d−dimensional Riemannian
manifold denoted as X embedded in RD, d < D, we first inflate the manifold by adding a specific
noise in the normal space direction of the manifold, then train an NF on this inflated manifold, and,
finally, deflate the trained density by exploiting the choice of noise and the geometry of the manifold.
See figure 1 for a schematic overview of these points. It should be noted that adding Gaussian
noise to data is an old trick in machine learning serving various functions. For instance, Vincent
et al. (2008) showed that by adding Gaussian noise before training an autoencoder the learned
latent representations are more robust to corruption of the inputs. Similarly, dropout introduced
by Srivastava et al. (2014) prevents deep neural networks from overfitting by adding noise to their
hidden units. More recently, Kim et al. (2020) add noise to smoothen the density and prevent
degeneracy problems when training NFs on manifold valued data. However, different from existing
approaches, our motivation is to approximate noise restricted to the manifold’s normal space and
learn the true data generating density p∗(x).

Our main theorem states sufficient conditions on the manifold and the type of noise we use for
the inflation step such that the deflation becomes exact. To guarantee the exactness, we do need to
know the manifold as in, for example, Rezende et al. (2020) because we need to be able to sample
in the manifold’s normal space. However, we will show theoretically and empirically that the usual
isotropic Gaussian noise serves as a good approximation for a Gaussian restricted to the normal
space for a wide range of noise levels. This allows using our method for approximating arbitrary
densities on Riemannian manifolds provided that the manifold dimension is known. In addition,
our method is based on a single NF without the necessity to invert it. Hence, we don’t add any
additional complexity to the training procedure of NFs such that autoregressive flows (which are
typically D-times slower to invert) can be used. To the best of our knowledge, this is the first
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theoretical study that provides sufficient conditions for the learnability of a density with support on
a low-dimensional manifold using NFs.

Notations: We denote the Lebesgue measure in Rn as λn. Random variables will be denoted
with a capital letter, X , and their corresponding state spaces with the calligraphic version, X . Small
letters correspond to vectors with dimensionality given by context. The letters d,D, n, and N are
always natural numbers.

2. Background and problem statement

Let X be a random variable that takes values on a d−dimensional manifoldX embedded in RD, that
is X ⊂ RD, and let X be generated by an unobserved random variable U ∈ U ⊂ Rd with density
πu(u), where d < D. Therefore, from a generative perspective, a sample x from the random
variable X is obtained in the following way:

1. sampling from the prior: u ∼ πu(u),

2. mapping to the manifold: x = f(u).

If f : U → X is an embedding 1 (as it is the case in Gemici et al. (2016)) the density p∗(x) of X is
given by the change of variable formula

p∗(x) = |detGf (x)|−
1
2 πu(f

−1(x)),

where we denote the Gram matrix of f evaluated at f−1(x) as

Gf (x) := Jf (f
−1(x))TJf (f

−1(x))

with JTf denoting the transpose of the Jacobian of f . Hence, given an explicit chart f and sam-
ples from p∗(x), we can learn the unknown density πu(u) using a standard NF in Rd. However,
in general, the generating function f is either unknown or not an embedding creating numerical
instabilities for training inputs close to singularity points.

In Brehmer and Cranmer (2020), f and the unknown density πu are learned simultaneously.
Their main idea is to define f as a level set of a usual flow in RD and train it together with the flow
in Rd used to learn πu. To evaluate the density, one needs to calculate |detGf (x)|−

1
2 which com-

putational complexity is O(d2D) + O(d3). Thus this approach may be slow for high-dimensional
data (which we will confirm in section5.3). Besides, to guarantee that f learns the manifold they
proposed several ad hoc training strategies. We tie in with the idea to use an NF for learning p∗(x)
with unknown f and study the following problem.

Problem 1 Let X be a d−dimensional manifold embedded in RD. Let X be a random variable
with values in X . Given N samples from p∗(x) as described above, find an estimator p̂ of p∗ such
that in the limit of infinitely many samples we have that p̂(x) = p∗(x), PX -almost surely.

The universality of standard NFs: Formally, a standard NF is a diffeomorphism Fθ : Z ⊆ RD →
X ⊆ RD and induces a density on X through pθ(x) = |detGFθ

(x))|−
1
2 pZ(F

−1
θ (x)) where pZ

1. Thus, a regular continuously differentiable mapping (called immersion) which is, restricted to its image, a homeo-
morphism.
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is a known density. The parameters θ are updated such that the KL-divergence between p∗(x) and
pθ(x),

DKL(p
∗(x)||pθ(x)) = −Ex∼p∗(x)[log pθ(x)] + const.

is minimized. For certain flow architectures, Fθ is expressive enough such that in the limit of
infinitely hidden layers n, every p∗(x) with support on RD can be learned exactly, see Huang et al.
(2018, 2020) for a rigorous mathematical description. However, this universality depends on the
architecture and is not true for all flow types, see Zhang et al. (2020).

Remark 2

(i) Note that p∗(x) is uniquely determined by the pair (π, f). For another embedding f ′ = f ◦ ϕ
with ϕ being a diffeomorphism, the pair (π′, f ′) with π′ = π ◦ ϕ−1 induces the same density
p∗(x). Hence, p∗(x) does not depend on the specific embedding.

(ii) The density p∗(x) is with respect to the volume form dV (x) =
√
|detGf (x)|du, that is one

can calculate probabilities such as PX(A) for measurable A ⊂ X as follows: P(X ∈ A) =∫
f−1(A) πu(u)du =

∫
A p∗(x)dV (x). Viewing p∗(x)dV as a differential d−form, we may say

that the volume form dV is induced by the Euclidean metric in RD.

3. Methods

To solve problem 1, we want to exploit the universality of NFs. We want to inflate X such that the
inflated manifold X̃ becomes diffeomorphic to a set U on which a simple density exists. By doing
so, this allows us to learn the inflated density q(x̃), x̃ ∈ RD exactly using a single NF, see section2.
Then, given such an estimator for the modified density, we approximate p∗(x) and give sufficient
conditions when this approximation is exact.

3.1 The Inflation step

Given a sample x of X , if we add some noise E ∈ RD to it, the resulting new random variable
X̃ = X + E has the following density

q(x̃) =

∫
X
q(x̃|x)dPX(x), (1)

where q(x̃|x) is the noise density. Denote the tangent space in x as Tx and the normal space as Nx.
By definition, Nx is the orthogonal complement of Tx. Therefore, we can decompose the noise E
into its tangent and normal component, E = Et + En. In the following, we consider noise in the
normal space only, that is Et = 0, and denote the density of the resulting random variable as qn(x̃).
The corresponding noise density qn(x̃|x) has mean x and domain Nx. We denote the support of
qn(·|x) by Nqn(·|x). The random variable X̃ = X + En is now defined on X̃ =

⋃
x∈X Nqn(·|x). We

want X̃ to be diffeomorphic to a set U on which a known density can be defined.
From a generative perspective, a sample x̃ from the random variable X̃ is obtained in the fol-

lowing way:

1. sampling from the prior: u ∼ πu(u) and v ∼ πv(v),

2. mapping to the inflated manifold: x̃n = x+Auv,

4
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where πv is the noise generating latent density in RD−d, and Au ∈ RD × RD−d is the matrix with
columns consisting of normal vectors spanning the normal space in x = f(u). Without loss of
generality, we can choose an orthonormal basis for Nx such that detATuAu = 1.

Example 1

(a) Let X = S1 = {x ∈ R2 | ||x||2 = 1} be the unit circle where || · ||2 denotes the L2−norm. For
each x ∈ S1 there exists u ∈ [0, 2π) such that x = er(x) = (cos(u), sin(u))T . To sample a
point x̃ in Nx, which is spanned by er(x), we sample a scalar value v and set x̃ = x+ ver(x).
With V ∼ Uniform[−1, 1), we have that

X̃ =
⋃
x∈X
{x+ ver(x)|v ∈ [−1, 1)} = {x ∈ R2 | ||x||2 < 2}

which is the open disk with radius 2. The open disk is diffeomorphic to (0, 1) × (0, 1). Thus,
qn(x̃) can be learned by a single NF denoted as F−1 and pZ(u) = Uniform ((0, 1)× (0, 1)) as
reference.

(b) As in (a), we consider the unit circle. Now we set V to be a shifted χ2− distribution with support
[−1,∞). Then,

X̃ =
⋃
x∈X
{x+ ver(x)|v ∈ [−1,∞)} = R2.

Thus, qn(x̃) can be learned by a single NF denoted as F−1 and pZ(z) = N (z; 0, ID) as refer-
ence.

Both cases can be analogously extended to higher dimensions.

3.2 The Deflation step

Equation (1) defines the density of the random variable X̃ = X + E . However, if the noise E is
added in the normal space such that for each realization x̃ there exist only one x, we show that

qn(x) = qn(x|x)p∗(x). (2)

If the estimator q̂n(x̃) is exact, that is q̂n(x̃) = qn(x̃) for PX̃−almost all x̃ ∈ X̃ , we have for x̃ = x
that p∗(x) = q̂n(x)/qn(x|x) and therefore p∗(x) can be computed from an NF and a known scaling
factor.

For equation (2) to be true, we need to guarantee that almost every x̃ corresponds to only one
x ∈ X . This is certainly the case whenever all the normal spaces have no intersections at all (think
of a simple line in R2). We can relax this assumption by allowing null-set intersections. Moreover,
only those subsets of the normal spaces are of interest which are generated by the specific choice of
noise qn(x̃|x). Thus, only the support of qn(x̃|x), denoted by Nqn(·|x), matters. The key concept for
our main result is expressed in the following definition:

Definition 3 Let X be a d−dimensional manifold and Nx the normal space in x ∈ X . Let qn(·|x)
be a density defined on Nx with support denoted by Nqn(·|x) ⊆ Nx. Denote the collection of all
such densities as Q := {qn(·|x)}x∈X . For x̃ ∈ X̃ , we define the set of all possible generators of x̃
as A(x̃) = {x′ ∈ X |Nqn(·|x′) ∋ x̃}. We say X is Q−normally reachable if for all x ∈ X , it holds
that PX̃|X=x (x̃ ∈ Nx|#A(x̃) > 1) = 0 where #A(x̃) is the cardinality of the set A(x̃). In other
words, every x̃ ∈ Nx is PX̃|X=x-almost surely determined by x.
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To familiarize with this concept, consider figure 2 and the following example:

Example 2 For the circle in example 1, we chose En to be uniformly distributed on the half-open
interval [−1, 1). The point (0, 0)T is contained in Nqn(·|x) for all x ∈ X , and thus
Nqn(·|x′) ∩Nqn(·|x) = {(0, 0)T } for all x ̸= x′, see figure 2 (middle). Hence, for any given x̃ ∈ Nx

we have that A(x̃) = X if x̃ = (0, 0)T and A(x̃) = x otherwise. Therefore, #A(x̃) = ∞ if
x̃ = (0, 0)T and #A(x̃) = 1 else.
Thus, PX̃|X=x

[
x̃ ∈ X̃ |#A(x̃) > 1

]
= PX̃|X=x

[
x̃ = (0, 0)T

]
= 0 for all x ∈ X . What follows is

that X is Q−normally reachable.
If we were to choose En to be uniformly distributed on [−1.5, 1), see figure 2 (right), the normal

spaces would overlap and we would have that PX̃|X=x

[
x̃ ∈ X̃ |#A(x̃) > 1

]
> 0. In this case, X

would not be Q−normally reachable.

2 1 0 1 2
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Figure 2: Q-normal reachability for different noise distributions qn(x̃|x) used to inflate X = S1

(black line). Left: X is Q-normally reachable since every point in the inflated space X̃ (red shaded
area) has a unique generator. Middle: X is Q-normally reachable since PX̃−almost every point
in X̃ has a unique generator. Right: X is not Q-normally reachable since every point in the dark
shaded area has two generators. Note that the pink area denotes the inflated manifold and not the
density.

From a generative perspective, Q−normal reachability ensures that the mapping

f̃ : U × V 7→X̃
(u, v) 7→f(u) +Auv

is bijective (up to a set of measure 0). As f is an embedding by assumption, f̃ is even a diffeomor-
phism if ||v||2 is sufficiently small, as we will show in theorem 4. This, together with the assumption
that latent distribution is factorized, that is π(u, v) = πu(u)πv(v), implies that the density qn(x̃) is
given by

qn(x̃) =
∣∣∣detGf̃ (x̃)

∣∣∣− 1
2
πu(u)πv(v), (3)

where (u, v) = f̃−1(x̃). When setting v = 0, we have that x̃ = x and indeed equation (2) holds
as we will show that

∣∣∣detGf̃ (x)
∣∣∣ = |detGf (x)| and πv(0) = qn(x|x). Note that our flow of
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arguments do not require the manifold X to be generated by a single chart f . Hence, as long as the
manifold is Q−normal reachable, equation (3) holds locally for any chart f .

Theorem 4 Let X be a d−dimensional, C2 manifold. For each x ∈ X , let qn(·|x) denote a con-
tinuous distribution with support Nq(·|x) in the normal space of x, that is Nq(·|x) ⊆ Nx, such that
x ∈ Nq(·|x). Further, assume that the latent distribution of the inflated random variable X̃ = X+En
is factorized. If X is Q−normally reachable where Q := {qn(·|x)}x∈X , then for all x ∈ X it holds
that qn(x) = p∗(x)qn(x|x), thus

p∗(x) =
qn(x)

qn(x|x)
. (4)

The proof can be found in appendix A.1. As a consequence of theorem 4 , if the density qn(x̃)
can be learned exactly using a single NF (which is the case whenever the inflated space X̃ is dif-
feomorphic to RD and the NF is sufficiently expressive), the true density p∗(x) can be retrieved
exactly.

Proposition 5 With the assumptions from theorem 4 , if the inflation is such that X̃ is diffeomor-
phic to RD, then qn(x̃) can be learned exactly using a single NF denoted as F , that is qn(x̃) =

(detGF (F
−1(x̃)))−

1
2N (F−1(x̃); 0, 1). Then, using equation (4) the true density p∗(x) can be

calculated exactly.

Remark 6 It is important to note that the density qn is with respect to the Euclidean metric because
this ensures that we can learn it using an NF. If we consider the density with respect to the product
metric on X̃ denoted as q⊗n , we can’t use a standard NF to learn it. However, we prove in the
appendix A.4 that with the assumptions of theorem 4 , we have that q⊗n (x̃) = p∗(x)qn(x̃|x) which is
based on the fact that X̃ isomorphic to

⋃
x∈X

(
{x} ×Nqn(·|x)

)
up to set of measure 0.

3.3 Gaussian noise as normal noise and the choice of σ2

Our proposed method depends on some critical points. First, we need to be able to sample in the
normal space of X , and we need to determine the magnitude and type of noise. Second, we need to
make sure that the conditions of theorem 4 are fulfilled. We address (partially) those points.

1. The inflation must not garble the manifold too much. For instance, adding Gaussian noise
with magnitude σ ≥ r to S1 will blur the circle. Since the curvature of the circle is 1/r, intuitively,
we want σ to scale with the second derivative of the generating function f . Additionally, we do not
want to lose the information of p∗(x) by inflating the manifold. If the generating distribution π(z)
makes a sharp transition at z0, π(z0−∆zo)≪ π(z0 +∆zo) for |∆zo| ≪ 1, adding too much noise
in x0 = f(z0) will smooth out that transition. Hence, we want σ to inversely scale with π′′(z).
We formalize these intuitions in proposition 7 and prove it in appendix A.5. We denote the inflated
density with Gaussian noise by qσ(x̃) in the following.

Proposition 7 Let X ∈ RD be generated by U ∼ πu(u) through an embedding f : Rd → RD,
that is f(U) = X . Let πu ∈ C2(Rd). For qσ(x̃) to approximate well p∗(x), in the sense that2

2. Note that qn(x|x) also depends on σ.
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qσ(x)/qn(x|x) ≈ p∗(x) for x ∈ X , a necessary condition is that:

σ2 ≪ 2πu(u0)

||π′′
u(u0)⊙ (JTf (u0)Jf (u0))

−1||+
,

where ||A||+ =
∣∣∣∑d

i,j=1Aij

∣∣∣ for A ∈ Rd×d, and⊙ denotes the elementwise product, and (π′′(u0))ij =

∂2πu(u)
∂ui∂uj

|u=u0 is the Hessian of πu evaluated at u0 = f−1(x). Note that in the limit of small noise
variance, we have limσ2→0 qσ(x)/qn(x|x) = p∗(x).

Intuitively, a second necessary condition is that the noise magnitude should be much smaller than
the radius of the curvature of the manifold which directly depends on the second-order derivatives
of f . This can be illustrated in the following example:

Example 3 For the circle in R2 generated by f(u) = (cos(u), sin(u))T and a von Mises distri-
bution πu(u) ∝ exp(κ cos(u)), we get that σ2 ≪ min

(∣∣∣ 2
κ(κ sin2(u)−cos(u))

∣∣∣ , 1) where the first
condition comes from proposition 7 and the second one comes from the curvature argument. Note
that, if κ ≤

√
7
2 , we have that κ(κ sin2(u) − cos(u)) ≤ 2 for all u ∈ [−π, π] and thus σ2 ≪ 1

in that case. Otherwise, the minimum depends on u. However, we can calculate a uniform upper
bound by taking the minimum over all u. In that case, we have that σ2 ≪ 2

0.25+κ2
if κ >

√
7
2 .

Even though this bound may not be useful as such in practice when f and πu are unknown, it can
still be used if f and πu are estimated locally with nearest neighbor statistics. Also, proposition 7
together with theorem 4 tells us that for sufficiently small noise variance σ2, the standard Gaussian
noise can well be used to approximate a Gaussian restricted in the normal space.

From a numerical perspective, inflating a manifold using Gaussian noise circumvents degen-
eracy problems when training a vanilla NF on low-dimensional manifolds. More precisely, those
degeneracy problems occur when the condition number of the flow’s Jacobian is too high, see Bel-
sley et al. (2005). Since the condition number is simply the ratio of the largest singular value to the
lowest singular value, it is clear that in the limit of small normal noise, the smallest singular value
will tend to zero and therefore the condition number will tend to infinity. As a consequence, setting
up a maximal condition number will automatically provide a lower bound on the inflation noise. In
the appendix A.2, we approximate the condition number of the Jacobian from which we derive a
lower bound for the inflation noise.

2. Intuitively, if the curvature of the manifold is not too high and if the manifold is not too entangled,
Q−normal reachability is satisfied for a sufficiently small magnitude of noise. In the manifold
learning literature, the entanglement can be measured by the reach number. Informally, the reach
number provides a necessary condition on the manifold such that it is learnable through samples,
see chapter 2.3 in Berenfeld and Hoffmann (2019).

Formally, the reach number is the maximum distance τX such that for all x̃ in a τX−neighborhood
of X , its nearest point on X is unique. In appendix A.6 we prove theorem 8 which states that any
closed manifold X with τX > 0 is Q−normally reachable.

Theorem 8 Let X ⊂ RD be a closed d-dimensional manifold. If X has a positive reach num-
ber τX , then X is Q−normally reachable where Q := {qn(·|x)}x∈X is the collection of uni-
form distributions on a ball with radius τX , that is qn(x̃|x) = Uniform(B(x, τX ) ∩ Nx) where
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B(x, τX ) = {y ∈ RD, s.t. ||x − y||2 < τX } denotes the D−dimensional ball with radius τX and
center x.

To appreciate theorem 8, we refer to the tubular neighborhood theorem, which states that every
smooth and compact manifold has positive reach (see Lee (2019) for a proof).

4. Related work

Here, we give an overview of methods based on NFs for density estimation on low-dimensional
manifolds. One direction of research concentrates on densities defined on a given manifold, such
as spheres, tori or hyperboloids (Rezende and Mohamed, 2015,Rezende et al., 2020, Mathieu and
Nickel, 2020, Lou et al., 2020). Orthogonal to that direction, Brehmer and Cranmer, 2020, Beitler
et al., 2018, Kim et al., 2020, Cunningham et al., 2020 do not rely on an explicit chart while focusing
on improving the generative ability. From the latter works, only Brehmer and Cranmer (2020) learn,
in theory, the density on the manifold p∗(x) exactly.

Cunningham et al., 2020 assume that data live on a noisy, that is inflated manifold and propose
to learn a stochastic inverse q(z|x̃) of the generator q(x̃|z). To train the parameters of q(x̃|z), they
rely on variational inference making this approach a special case of a variational autoencoder. Their
injective noisy flow improves the sampling quality compared to a baseline NF and, in addition,
learns a latent representation. However, by construction, they only learn the inflated distribution
q(x̃).

Kim et al., 2020 follow our methodology closely by inflating the manifold so that a usual NF
can be used to learn the inflated density. For each sample x, they first draw a value c uniformly
on [0, 0.1], and then add a sample ν from N (0, c2ID) to x, that is x̃ = x + ν. They learn the
conditional distribution of the inflated manifold, q(x̃|c), allowing for sampling on the manifold by
setting c = 0. Their method does not require any knowledge of the manifold (neither the chart,
nor the dimensionality), and improve 3D point cloud generation. However, they don’t provide a
deflation of the inflated distribution, and thus don’t learn p∗(x) exactly.

Beitler et al., 2018 propose to use different reference measures for the flow to encode the relevant
manifold and irrelevant off-manifold directions. They propose to model the first d latent variables,
say u, of the flow as standard Gaussian and the remaining D − d variables, say v, as a diagonal
Gaussian with small variance. The hope is that maximum likelihood training is sufficient to encode
the manifold in the first d components, so that a sampling procedure where the remaining D − d
components are set to 0, that is v = 0, would produce samples on the manifold. The gist is very
similar to our idea expressed in equation (2). However, in general, this does not lead to the right
density on the manifold, as explained in a footnote on page 4 in Brehmer and Cranmer, 2020,
which justifies the name Pseudo-invertible encoder (PIE). Nevertheless, as noted by Brehmer and
Cranmer, 2020, it is surprising that ”somehow in practice learning dynamics and the inductive bias
of the model seem to couple in a way that favor an alignment of the level set v = 0 with the data
manifold. Understanding these dynamics better would be an interesting research goal.” Our work
gives a theoretical explanation of why the PIE-model favors that alignment: When adding noise with
small magnitude to the dataset (for instance, dequantization for images), the resulting density can
be well approximated by a product of p∗(x) and the noise distribution q(x̃|x), such that treating the
latent variables u and v differently, and thus having a product of two different measures as reference
measure, biases the flow to learn this product form. A further interesting future direction would be

9
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to make this bias more explicit by constructing a flow for which the Jacobian determinant is in such
a product form as well.

In Brehmer and Cranmer, 2020, the generating chart f : Rd → RD is learned simultaneously
with p∗(x). They first transform x using a usual flow on RD, and then project to the first d com-
ponents which is their proposal for f−1. They then use another flow to learn the latent density πu.
To avoid calculating the Gram determinant of f , which is computationally expensive, especially for
D ≫ d, they propose to train the parameters of f using the mean squared error while updating the
parameters of πu using maximum likelihood. They call the former manifold learning phase and the
latter density learning phase. Different learning schemes (alternating and sequential) are proposed
to ensure that f encodes the manifold and π captures the density. For the alternating scheme, they
alternate for every epoch between a manifold training phase (updating the parameters of f ), and the
density training phase (updating the parameters for learning πu). The experiments conducted by
Brehmer and Cranmer, 2020 seem to verify that, indeed, p∗(x) is learned exactly. Nevertheless, the
ad hoc training procedures without a unified maximum likelihood objective requires some further
experimental verification.3

State-of-the-art methods for image generation based on NF dequantize the training data as a pre-
processing step, see Kingma and Dhariwal, 2018. This dequantization is essentially an inflation of
the data-manifold and is typically based on uniform noise. For images, it is generally assumed that
D ≫ d, and thus a dequantization based on Gaussian noise allows us to interpret the dequantization
as a thickening of the data-manifold in the normal direction.

5. Results

We have three goals in this section: first, we numerically confirm the scaling factor in equation
(4) for different manifolds. Second, we verify that Gaussian noise can be used to approximate a
Gaussian noise restricted to the normal space. Third, we numerically test the bounds for σ2 derived
in section3.3. For training details, we refer to appendix B.2. The code for our experiments can be
found at https://github.com/chrvt/Inflation-Deflation.

The standard procedure for our experiments and for evaluating the learned density is the fol-
lowing:

0. Data generation: We sample latent variables u ∼ πu(u) for a given πu(u), and generate points
x on the manifold using a mapping f , that is x = f(u).

1. Inflation: We add noise ε to x, x̃ = x+ ε, either in the normal space Nx or in the full ambient
space. As an acronym for our inflation-deflation method, we use ID. In particular, when the
inflation is performed in the normal space, we call the method normal inflation-deflation (NID)
and when the inflation is isotropic, we call it isotropic inflation-deflation (IID).

2. Training: We learn the inflated distribution, that is qσ(x̃) in case of isotropic noise or qn(x̃) in
case of normal noise, using a block neural autoregressive flow (BNAF) introduced in De Cao
et al. (2020).

3. Deflation: Given an estimator q̂n(x̃), we use equation (4) to calculate p∗(x). For a d−dimensional
manifold embedded in RD, the scaling factor when using Gaussian noise is qn(x|x) = (2πσ2)

d−D
2 .

3. We further motivate this requirement in appendix B.4.
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4. Quantitative evaluation: To quantify the quality of the learned density beyond visual similarity,
we use the estimate of p∗(x) to approximate πu(u). These densities are related through the Gram
determinant of the generating mapping f , detGf , see section2 . For that, we calculate the KS
statistics between this estimate π̂ and the ground truth π. The KS statistic is defined as

KS = sup
u∈U
|F (u)−G(u)|,

where F and G are the cumulative distribution functions associated with the probability densities
πu(u) and π̂u(u), respectively. By definition, KS ∈ [0, 1] and KS = 0 if and only if πu(u) is
equal to π̂u(u) for almost every u ∈ U . Note that, if our estimate does not yield a density on the
manifold (that is it is not normalized to 1), the KS statistics still serves as a relative performance
measure as the KS value will be lower bounded by a strictly positive number in this case (1
minus the corresponding normalization constant).
In 2D, comparing two random variables based on P(X1 ≤ x1, X2 ≤ x2) or based on P(X1 ≤
x1, X2 ≥ x2) (or any of the other two combinations) may lead to different results. Hence, for
the KS value in 2D, we need to calculate the KS statistics based on all possible orderings and
then take the maximum.4

5. σ2−bounds: In proposition 7, we derived a necessary condition in form of an upper bound σ2
Prop

for σ2 such that NID can be well approximated by IID. In addtion, we argued that σ2 should not
exceed the curvature radius, see example 3. For d = 1, this curvature radius is straightforwardly
computed using the first and second derivatives of the generating mapping. For d = 2, we use
the inverse of the maximum principal curvature, that is the curvature in direction of the greatest
change of the normal space. This corresponds to the greatest eigenvalue κ1 of the Weingarten
map (or the shape operator), see Do Carmo (2016). Therefore, to estimate the upper bound
for σ2 uniformly for all points, we sample 104 points from the target distribution, calculate
min{σ2

Prop, 1/κ
2
1} for each point. and then take the 10th percentile of the distribution of those

minima in order to have a robust upper bound. As a lower bound σ2
LB, we proposed to choose σ

such that the flow’s average condition number (which depends on the maximum singular value
of Jf ) is upper bounded, see appendix A.2 for more details. We estimate the average of the
condition number using 104 samples from the target distribution.

6. Benchmarking: For a known manifold consisting of a single chart f , Gemici et al. (2016)
used f to encode the manifold into the corresponding latent space Rd, and then learn the latent
density using a standard NF. However, manifolds such as spheres or tori, cannot be described
using a single chart. In Brehmer and Cranmer (2020), such degeneracy problems were avoided
numerically by simply moving points that are close to singularities away from them. As a
consequence, the density close to these singularities cannot be learned exactly (we illustrate
this in the first experiment on S1). In Brehmer and Cranmer (2020), this method is named Flow
on manifolds (FOM) and we stick to this notation in the following. In our case, as we are
evaluating the qualitative performance using the KS-statistics on the latent densities, we simply

4. Note that we are using the KS statistics in a somewhat unusual way. Indeed, the standard KS statistics compares
an empirical distribution with an explicit distribution while we compare here the ground truth density πu with the
estimated density π̂u. The supremum is computed as a maximum over evenly spaced points over U .
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train a standard NF directly on the latent space for the remaining experiments (thus avoiding
potential degeneracy problems altogether). 5

Remark 9 For our qualitative evaluation using the KS-statistics, we rely on being able to relate the
density in the data-space p∗(x) with the latent distribution πu(u) via the Gram determinant of the
manifold generating mapping f . If f consists of singularities, the KS-statistics is still well-defined
if these singularities have 0 measure (as it is the case for spheres or tori). However, note that our
method does not rely on a specific embedding and thus avoids degeneracy problems during training.
The IID model does not even need any explicit knowledge of the manifold except its dimensionality
for the right scaling factor. We validate the generality of our method by learning a manifold that
cannot be described by a single chart covering all the points up to a set of measure 0. For that, we
glue a half sphere with the positive part of a hyperboloid (compactly denoted as (HS)2), see table
2 .

5.1 Proof of concept: S1

We start with a circle of radius 3, a 1−dimensional manifold embedded in R2, see table 1 .

feature U f(u) detGf (x)

closed [−π
2 ,

π
2 ] 3

(
cos(u)
sin(u)

)
3

Table 1: Characteristics of S1.

We let πu(u) ∝ exp(8 cos(u)) be a von Mises distribution.

Inflation and Deflation: We inflate X using 3 types of noise: Gaussian in the normal space
(NID), Gaussian in the full ambient space (IID), and χ2-noise in the normal space as described in
example 1(b) with scale parameter 3. Technically, Gaussian noise violates the Q−normal reacha-
bility assumption. However, if σ2 is small and the scale parameter for the von Mises distribution is
large enough, this is practically fulfilled. Given an estimator for qn(x̃), we use equation (4) to cal-
culate p∗(x). For the IID and NID methods, we have that qn(x|x) = 1/

√
2πσ2 and for the normal

χ2−noise is qn(x|x) =
√
3e−3/2/(

√
8Γ(32)).

5.1.1 FULL GAUSSIAN VS. NORMAL SPACE NOISE

In figure 3, we show the results for σ2 = 0.01 and σ2 = 1. In the respective plot, the first row shows
training samples from the inflated distributions qσ(x̃) (left), and qn(x̃) (middle), respectively. We
color code a sample x̃ = x + ε according to p∗(x) to illustrate the impact of noise on the inflated
density. Note that the FOM model (top right) does not need any inflation and therefore is trained on
samples from p∗(x) only. In the respective plot, the second row shows the learned density for the
different models and compares it to the ground truth von Mises distribution πu(u) depicted in black.

5. For the case where the latent dimension is 1, we use a Gaussian-Kernel density estimator to estimate the latent density.
Otherwise, we use BNAF.
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As we can see, for σ2 = 0.01 all models perform very well, although the FOM model slightly fails
to capture p(u) for u close to 0 which corresponds to the chosen singularity point (see point 5. in
the standard procedure description). For σ2 = 1, we see a significant drop in the performance of
the Gaussian model. Although the manifold is significantly disturbed, the normal noise model still
learns the density almost perfectly 6, so does the normal χ2−noise model, as predicted by theorem
4.

6. Note that our method still depends on how well an NF can learn the inflated distribution.
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Figure 3: Learned densities for σ2 = 0.01 (above) and σ2 = 1 (below), respectively. First row:
Samples used for training the respective model: IID (left), NID (middle), FOM/ χ2 (right). The
black line depicts the manifold X (a circle with radius 3) and the colors code the value of p∗(x).
Second row: Colored line: Learned density π̂u(u) according to equation (4) multiplied by 3. Black-
line: ground truth von Mises distribution.
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5.1.2 NOISE DEPENDENCE AND HIGHER EMBEDDING DIMENSIONS

To measure the dependence of our method on the magnitude of noise, we iterate this experiment
for various values of σ2 and estimate the Kolmogorov-Smirnov (KS) statistics. In figure 4, we
display the KS values depending on different levels of noise, for the NID (blue) and IID (orange)
methods compared with the ground truth von Mises distribution. Also, we embed the circle into
higher dimensions D = 5, 10, 15, 20 and repeat this experiment. The result for D = 2 and D = 20
are shown in the first row (left and right).7 We add the performance of the FOM model (which
is independent of σ2) horizontally. Besides, we depict the lower and upper bound for σ2 from
section3.3 with dashed vertical lines. In the lower-left image, we show the optimal KS values
obtained for both models depending on D. The lower-right image shows the corresponding σ2 for
those optimal KS. In bright, the optimal average σ2 is shown whereas the dark regions are the
minimum respectively maximum values for σ2 such that we outperformed the FOM benchmark.
We note that for both cases, the averaged optimal σ2 is within the predicted bounds for σ2 (depicted
as dashed black horizontal lines).
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Figure 4: KS values for the NID- (blue) and IID-noise method (orange) depending on σ2 ∈
[10−9, 10] and the embedding dimension D = 5, 10, 15, 20 in log-scale. For D = 2 (top left)
and D = 20 (top right), the two vertical lines represent the lower and upper bound for σ2 estimated
according to section 3.3 with 10K samples. We plot horizontally the KS value obtained from FOM.
Bottom left: Optimal KS values depending on D. Bottom right: Optimal averaged σ2 such that
optimal KS is obtained (bright). The maximum and minimum σ2 such that the FOM benchmark
is outperformed (dark). The dashed horizontal lines are again the theoretical bounds. We used 10
seeds for the error bars and plot in log-scale.

7. Note that the scaling factor depends on D, qn(x|x) = 1/(2πσ2)
D−d

2 .
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The optimal KS values do not change much depending on D, and the NID and IID models
approach each other, as predicted. For increasing σ2, X̃ resembles more and more a double cone
which is not diffeomorphic to R2 and thus the NF used to train the inflated distribution may not be
able to capture the density close to the circle’s center correctly. Also, the Q−normal reachability is
more and more violated with an increasing σ2.

5.2 Densities on surfaces

We show that we can learn different distributions on different manifolds, see table 2 for an overview
of those manifolds and their characteristics.

Manifold feature U f(u) detGf (x) Principal Curvature |κ1|

S2 closed [0, 2π]× [0, π]

cos(u1) sin(u2)
sin(u1) sin(u2)

cos(u2)

 sin(u2) 1

T2 closed [0, 2π]× [0, 2π]

(1 + 0.6 cos(u2)) cos(u1)
(1 + 0.6 cos(u2)) sin(u1)

0.6 sin(u2)

 0.6(1 + 0.6 cos(u2)) max
{

1
0.6 ,

∣∣∣ cos(u1)
1+0.6 cos(u1)

∣∣∣}

H2 diffeom. to R2 [0,+∞)× [0, 2π]

sinh(u1) cos(u2)
sinh(u1) sin(u2)

cosh(u1)

 (sinh2(u1) + cosh2(u1)) sinh
2(u1)

1

(sinh2(u1)+cosh2(u1))
1
2

thin spiral open (0,+∞) π
√
z

(
− cos(3π

√
u)

sin(3π
√
u)

)
π2 1+(3π

√
u)2

4u2
3 (3π)2u+2

((3π)2u+1)
3
2

swiss roll open (0, 1)× (0, 1)

(α+ 3πu2) cos(α+ 3πu2)
21u1

(α+ 3πu2) sin(α+ 3πu2)

 (63π)2(1 + (0.5 + 2u2)
2) u22+2

(u22+1)
3
2

(HS)2 chart 1 (−∞, 0]× [0, 2π)

− cosh(|u1|) cos(u2)
− cosh(|u1|) sin(u2)

sinh(|u1|)

 (sinh2(|u1|) + cosh2(|u1|)) cosh2(|u1|) 1

(sinh2(|u1|)+cosh2(|u1|)
1
2

chart 2 [0, π2 ]× [0, 2π)

cos(u2) cos(u1 + π)
sin(u2) cos(u1 + π)

sin(u1 + π)

 cos(u1 + π) 1

Table 2: Characteristics of various manifolds.

In figure 5, we show different target densities in data and latent space (columns A and B), along
with the learned latent distributions using our method (as described in point 4. of the standard
procedure) with the normal inflation-deflation method NID (column C). We take the model with σ2

corresponding to the best KS value. In the last column D, we show how the KS-statistics depends
on σ2 using IID, NID, and the FOM baseline. We refer to appendix B.2, B.2.1, and B.3.1 for the
training details, exact latent densities, and additional figures showing the learned latent densities
using IID and FOM.

Remarkable, our method performs well on a wide range of manifolds and different target dis-
tributions. Whether the manifold is closed (A 1-2, 3-4), open (A 5-6, 7-9), or consists of multi-
ple charts (A 10-11), whether the latent variables are idependent (B 1,3,6,8,10) or dependent (B
2,4,5,9,11), whether the distribution is supported on points for which the Gram determinant is 0
(A 1-2) or on points for which the Gram determinant is arbitrarily large (A 7), the induced latent
density (and therefore the data-density p∗(x)) is approximated well. This is not only reflected in the
visual similarity to the target distribution (columns B vs. C) but also in the KS statistics (column
D). Surprisingly, the best KS values for the IID and NID methods are of the same order as the FOM
baseline (tables in D). This is striking as the IID and NID methods are trained in data space, in con-
trast to the FOM which is trained in latent space directly (see point 4. in the standard procedure).
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In some cases, the NID even outperforms the FOM significantly (see tables in D 2-3). The optimal
KS value for IID is only slightly worse than the one for NID showing that indeed our method can
even be used without any explicit knowledge of the manifold (except its dimensionality for the right
scaling factor).
Note that the NID method always allows for a greater range of σ2 compared to IID, except for
the thin spiral for which both curves have almost the same course (D 7). As an extreme case, the
geometry of the hyperboloid H2 even allows for very large values of σ2 when using NID (D 5-6).
Notably, almost all the KS curves are U-shaped. However, for the torus (D 3-4) and swiss roll (D
8-9) the KS value for IID decreases approaching σ2 = 101 before increasing again. For increasing
σ2, the induced latent distribution π̂u is increasingly flat. Then, certain values of σ2 lead to the right
scaling such that

∫
U π̂u(u)du ≈ 1 which decreases the KS value.

The lower bound based on the condition number nicely predicts the magnitude of noise required
to approximate p∗(x) well using IID. Also the upper bound behaves as predicted and matches almost
the onset for which Gaussian noise leads to a bad KS value (except for the hyperboloid D 6). It is
necessary (though not sufficient, see D 6) for σ2 to be lower than this upper bound such that IID
approximates NID well and thus can be used to approximate p∗(x).
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Figure 5: Columns A and B: Target density in data (A ) and latent space (B ) for various mani-
folds and different latent distributions. Column C: Best learned density using our method with the
method NID. Column D: KS vs. σ2 plot for the IID and NID methods (we used 3 seeds for the error
bars) with the KS value of FOM as horizontal line. Table in D: Optimal KS values for the different
models (best, that is lowest, in bold). Vertical lines in D Lower and upper bound (see point 5. of
the standard procedure).
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figure 5 (continuation): Columns A and B: Target density in data (A ) and latent space (B ) for
various manifolds and different latent distributions. Column C: Best learned density using our
method with the method NID. Column D: KS vs. σ2 plot for the IID and NID methods (we used
3 seeds for the error bars) with the KS value of FOM as horizontal line. Table in D: Optimal KS
values for the different models (best, that is lowest, in bold). Vertical lines in C Lower and upper
bound (see point 5. of the standard procedure).
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5.3 Density estimation on MNIST

Finally, we end this sectionwith an application on the handwritten digit dataset MNIST, Lecun
et al. (1998). The manifold hypothesis states that real-world data, such as images, can be described
by a few key features only, thus populating a low-dimensional manifold in the high-dimensional
embedding space.

To estimate the density of digit 1 images, both the inflation-deflation method and theM−flow
need to know the manifold dimensionality d.8 Estimating this intrinsic dimensionality d is an active
research area, see Hein and Audibert (2005) and Facco et al. (2017). For instance, Hein and Audibert
(2005) estimate the intrinsic dimensionality of MNIST digit 1 to be roughly 8.

We test the utility of learned digit 1 likelihoods for out-of-distribution detection (OOD) using
IID (isotropic inflation-deflation) and theM−flow. In figure 7, we show the log-likelihood densities
(estimated using kernel density estimation) on the MNIST test set after training on digit 1 images
from the training set only. For the IID, we preprocess the training set by adding Gaussian noise
with σ2 = 0.1 to the 8-bit images.9 For theM−flow, we leave the training set unaltered. Though,
we did not find this preprocessing (or the absence of it) to have a significant impact on the log-
likelihoods for both methods. We refer to appendix B.3 for more training details and additional
plots for different preprocessing protocols.

In figure 7, we want to highlight two interesting observations. First, the log-likelihoods of digits
other than 1 are not significantly different using the IID orM−flow method for OOD. One can see
this by comparing the area of intersectionof the digit 1 density (orange) with the other digits (other
colors). The greater this area, the more out of distribution examples (in this case MNIST digits other
than 1) would be classified as digit 1 when using a naive classifier based on an ad hoc log-likelihood
threshold. This area is ≈ 0.07 for both methods. Our second observation is that the absolute log-
likelihood values differ substantially. As both methods try to estimate the density p∗(x) supported
on a low-dimensional manifold, we would have expected similar log-likelihood values. The fact
that these values are several magnitudes apart, together with the observation that an inflation is not
strictly necessary using an NF to learn the data-density (see figure 10 in sectionB.3.1), indicates
that the MNIST digit 1 images do not strictly lie on a low-dimensional manifold embedded in
RD, D = 784. In such a case, the M−flow would still try to fit the training set onto a manifold
which may lead to overfitting and unforeseeable log-likelihood values when evaluating on a test set.
In contrast, the IID method is by construction robust to overfitting as the addition of isotropic noise
leads to similar log-likelihood values in the vicinity of the data-manifold.

Finally, we want to revisit our remark on the computational complexity of the M−flow, see
section2 . To evaluate the density using theM−flow, one needs to calculate the Gram determinant
which has a computational complexity ofO(d2D)+O(d3).10 Indeed, to evaluate 1000 digits using
a batch size of 1, theM−flow needs about 17.5 hours. For the same amount, the inflation-deflation
method needs less than 10 seconds.

8. Note that the inflation-deflation method only needs to know the dimensionality d for the right scaling factor during
testing. The M−flow, however, needs to know d for training. In exchange, the M−flow learns a low-dimensional
representation which the inflation-deflation method does not.

9. Note that this is different from the usual uniform dequantization performed on images.
10. The necessary Jacobian is computed using differentiation.
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Figure 7: Log likelihoods on various MNIST test digits usingM−flow (left) and IID (right) trained
on digit 1 only.

6. Discussion

To overcome the limitations of NFs to learn a density p∗(x) defined on a low-dimensional mani-
fold, we proposed to embed the manifold into the ambient space such that it becomes diffeomorphic
to RD, learn this inflated density using an NF, and, finally, deflate the inflated density according to
theorem 4. There, we provided sufficient conditions on the choice of inflation such that we can com-
pute p∗(x) exactly. Our method depends on some critical points that we addressed in section3.3. So
far, the magnitude of noise σ2 when using NFs on real-world data is somewhat chosen arbitrarily.
As a step to overcome this arbitrariness, we derived an upper bound for σ2 in proposition 7 and
established an interesting connection to the manifold learning literature in theorem 8. However,
proposition 7 may not be very useful as such in real-world application and numerical methods need
to be considered which potentially suffer from the curse of dimensionality. On a more positive note,
our various experiments on different manifolds suggest that a great range for σ2 leads to good re-
sults, even when using full Gaussian noise. Thus, including σ2 into the standard hyperparameter
search will likely suffice.
Our theoretical results open new research avenues. Using full Gaussian noise to learn the inflated
distribution smears information on p∗(x), in particular, if p∗(x) has many local extrema. This loss
of information may be especially impactful in out-of-distribution (OOD) detection or when it comes
to adversarial robustness. Therefore, developing methods that allow generating noise in the mani-
fold’s normal space could improve the performance of NFs on such tasks.
Another interesting direction is to exploit the product form of equation (2) and learn low-dimensional
representations by forcing the NF to be noise insensitive in the first d-components and noise sen-
sitive in the remaining ones. Inverting the corresponding flow allows sampling directly on the
manifold.
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Appendix A. Appendix

A.1 Proof of theorem 4

Let x ∈ X . Since X is a d−dimensional C2 manifold, there exists an open neighborhood Bx of x
in X , an open set Ux in Rd, and an invertible map f : Ux 7→ Bx, Ux ⊂ Rd, such that f and f−1

are twice continuously differentiable. It follows that the Gram determinant of Jf is non-zero for all
x ∈ Bx, that is detGf (x) ̸= 0 ∀x ∈ Bx. We exploit this by constructing a local diffeomorphism f̃

on the inflated space X̃ =
⋃
x∈X Nqn(·|x) in the following.

For that, we denote by Au the matrix with columns consisting of normal vectors spanning the
normal space in x = f(u), u ∈ Ux. Without loss of generality, we can set detATuAu = 1. With
Vx ⊂ RD−d, we define f̃ : Ux × Vx ⊂ Rd × RD−d → B̃x for some B̃x ⊂ X̃ as follows:

f̃(u, v) = f(u) +Auv.

Note that, by assumption, 0 ∈ Vx. Thus, for v sufficiently small, that is ||v|| < ε for some ε > 0, f̃
is indeed a diffeomorphism which follows from the inverse function theorem.11 Our key observation
is that

detGf̃ (x) = detGf (x) (5)

which allows us to relate the density on X̃ to the density on X . For the sake of clarity, we prove
equation (5) in lemma 10 below.

Now let x̃ = x+ εn ∈ X̃ such that x̃ ∈ B̃x. Since X is Q−normally reachable, PX̃−almost all
x̃ are uniquely determined by some (u, v)T = f̃−1(x̃) ∈ Ux × Vx, and since u and v are sampled
independently by assumption, it must hold that

qn(x̃) = (detGf̃ (x̃))
− 1

2πu(u)πv(v)

where πv(v) is the noise generating latent distribution. Note that qn(x̃) is the density of dPX̃ with
respect to the volume form dVf̃ . For x̃ = x, we have that v = 0 and thus

qn(x) = (detGf̃ (x))
− 1

2πu(u)πv(0).

Now since detGf̃ (x) = detGf (x), we have that

qn(x) =(detGf̃ (x))
− 1

2πu(u)πv(0)

=(detGf (x))
− 1

2πu(u)πv(0)

=p∗(x)πv(0)

=p∗(x)qn(x|x)

where in the last step we have used that the Gram determinant of the normal space generating
mapping is 1 such that πv(0) = qn(x|x). As x was chosen arbitrarily on the manifold, this ends the
proof.

11. In fact, we need to show that det Jf̃ (u, 0) ̸= 0 for all (u, 0). Because this implies the existence of a local neigh-
borhood such that f̃ is diffeomorphic to the image of this local neighborhood. That det Jf̃ (u, 0) ̸= 0 follows
immediately from lemma 10 .
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Lemma 10 For f̃ , f and x as defined above, we have that detGf̃ (x) = detGf (x).

Proof The Jacobian of f̃ is given by

Jf̃ (u, v) =
[
Jf (u) +

∂
∂uAuv Au

]
where ∂

∂u denotes the Jacobian of a function depending on u, and the dashed line separates two
block matrices. Here we need that f ∈ C2 to ensure the Jacobian is real. For points on the manifold
is v = 0, and thus the Gram determinant reduces to

detGf̃ (x) = det
(
Jf̃ (u, 0)

TJf̃ (u, 0)
)

= det

[
Jf (u)

TJf (u) Jf (u)
T ·Au

ATu · Jf (u)T ATuAu

]
= det

[
Jf (u)

TJf (u) 0d×D−d
0D−d×d ATuAu

]
= det Jf (u)

TJf (u) · detATuAu
= det Jf (u)

TJf (u)

= detGf (x)

where for the third equality we have exploited the fact that the column vectors of Jf and Au are
orthogonal. This was to be shown.

A.2 Lower bound

With the same conditions on the manifold as in theorem 4, inflating the manifold in normal direction
can be locally described by the chart f̃ : Ux × Vx → B̃x with

f̃(u, v) = f(u) + σAuv

where σ is sufficiently small and Au denotes the matrix with columns consisting of normal vectors
spanning the normal space in x = f(u), u ∈ Ux, see sectionA.1 for more details. The condition
number of the Jacobian of f̃ is given by the ratio of the greatest and lowest singular value. The
singular values are given by the square roots of the eigenvalues of the Gram matrix of Jf̃ . Since

Jf̃ (u, v) =
(
Jf (u) +

∂
∂uAuv Au

)
we get

Gf̃ (x) =
(
Jf̃ (u, v)

TJf̃ (u, v)
)

=

(
Jf (u)

TJf (u) +O(σ2) 0

0 σ2ATuAu

)
=

(
Jf (u)

TJf (u) +O(σ2) 0

0 σ2I

)
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where in the first step we have exploited that Au is normal to the tangent space spanned by the
columns of Jf (u), and in the second step we set without loss of generality ATuAu = I . If σ2 is very
small, then the singular values of Gf̃ (x) are given by the eigenvalues of Jf (u)TJf (u) and σ2. We
denote the maximum singular value of Jf (u)TJf (u) by λmax. Thus, the ratio of the greatest and
lowest singular value, the condition number κc, is given by

κc =

√
λmax

σ
.

We choose σ such that κc ≤ 103 which leads to

σ ≥
√
λmax

103
. (6)

Therefore, as a lower bound, we calculate the mean value (with respect to the target distribution) of
the right hand side of equation (6).

A.3 Proof of proposition 5

This follows immediately from the universality of standard NFs, see section2, and theorem 4.

A.4 Proof of statement in remark 6

We denote the probability measure of the random variable X as PX and it is defined on (X ,B(X ))
where B(X ) is the set of Borel sets in RD intersected with X . For a realization of X , say x, we
denote the probability measure of the shifted random variable x+En as PX̃|X=x and it is defined on
(Nx,B(Nx)). We extend both measures to (RD,B(RD)) by setting the probabilities to 0 whenever
a set A ∈ B(RD) has no intersectionwith X or Nx, respectively. For instance, that means for
x̃ ∈ Nx that

P[x+ En ∈ (x̃, x̃+ dx̃)] =P[x+ En ∈ (x̃, x̃+ dx̃) ∩Nx] = PX̃|X=x[(x̃, x̃+ dx̃) ∩Nx]

where (x̃, x̃+ dx̃) denotes an infinitesimal volume element around x̃.
The mapping (x, εn) 7→ x + εn is B(RD) × B(RD)−measurable, and thus X̃ = X + En is a

random variable on (RD,B(RD)) and has the pushforward of P(X,En) with regard to the mapping
(x, εn)→ x+ εn as probability measure where P(X,En) is the joint measure of X and En. Thus, for
A ∈ B(X̃ ), we have that

PX̃(A) = P(X,En)
(
{(x, εn) ∈ RD × RD|x+ εn ∈ A}

)
. (7)

Now let x̃ ∈ Nx for an x ∈ X . Since X is Q−normally reachable, PX̃−almost all x̃ are uniquely
determined by (x, εn) such that x̃ = x+ εn. Therefore, we have for PX̃−almost all x̃ = x+ εn that

PX̃((x̃, x̃+ dx̃) ∩ X̃ ) = P(X,En)

(
{(x, εn) ∈ RD × RD|x+ εn ∈ (x̃, x̃+ dx̃) ∩ X̃}

)
= P

(
X + En ∈ (x̃, x̃+ dx̃) ∩ X̃

)
= P (X ∈ (x, x+ dx) ∩ X ) · P (x+ En ∈ (x̃, x̃+ dx̃) ∩Nx)

= PX ((x, x+ dx) ∩ X ) · PX̃|X=x ((x̃, x̃+ dx̃) ∩Nx)
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where for the first equality we used equation (7) and for the third the fact that (x, εn) is almost
surely uniquely determined by x̃.

Both probability measures on the right-hand side have a density. For PX with respect to dVf ,
see section2, this density is p∗(x). Similarly, since Nx is a linear subspace of RD, qn(x̃|x) is the
density of PX̃|X=x with respect to a volume form dVh where h is the mapping from RD−d to Nx.
Then, the corresponding density of PX̃ with respect to the product measure V⊗ := Vf ⊗Vh is given
by

q⊗n (x̃) = p∗(x)qn(x̃|x)

and it holds that ∫
X̃
q⊗n (x̃)dV⊗(x̃) =

∫
X

∫
Nx

p∗(x)qn(x̃|x)dVh(x̃)dVf (x)

=

∫
X
p∗(x)dVf (x)

=1,

as needed for a density on X̃ . This ends the proof.

A.5 Proof of proposition 7

The generating function f is an embedding for X and X = f(u) has the density p∗(x) for x ∈ X .
We may extend the domain of p∗(x) to include all points x ∈ RD using the Dirac-delta function.
We denote this density with p̄(x) at it is given by

p̄(x) =

∫
U
δ(x− f(u))πu(u)du,

see Au and Tam (1999). After inflating X , we have that

pΣ(x̃) =

∫
U
N (x̃; f(u),Σ)πu(u)du

with covariance matrix Σ ∈ RD×D where for Σ = σ2I we have that limσ→0 pΣ(x̃) = p̄(x̃).
Assume x̃ = x for some x ∈ X . We Taylor expand f(u) around u0 = f−1(x) up to first order,

f(u) ≈ f(u0) + Jf (u0)(u− u0),

and πu(u) up to second order,

πu(u) ≈ πu(u0) + πu(u0)
′(u− u0) +

1

2
(u− u0)

Tπ′′
u(u0)(u− u0).

where πu(u0)′ denotes the gradient and π′′
u(u0) the Hessian of π evaluated at u0, thus πu(u0)′ ∈ Rd

and π′′
u(u0) ∈ Rd×d. Then, we can approximate pΣ(x) as follows:

pΣ(x) ≈
1√

(2π)D det(Σ)

∫
U
exp

(
−1

2
(u− u0)

TJTf Σ
−1Jf (u− u0)

)
·

·
(
πu(u0) + π′

u(u0)
T (u− u0) +

1

2
(u− u0)

Tπ′′
u(u0)(u− u0)

)
du.
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Now define Σ̂−1 = JTf Σ
−1Jf . Then,

pΣ(x) ≈

√
det(Σ̂)√

(2π)D−d det(Σ)

∫
U

1√
(2π)d det(Σ̂)

exp

(
−1

2
(u− u0)

T Σ̂−1(u− u0)

)
·

· (πu(u0) + π′
u(u0)

T (u− u0) +
1

2
(u− u0)

Tπ′′
u(u0)(u− u0))du.

Thus, we can exploit the Gaussian in U-space and get

pΣ(x) ≈

√
det(Σ̂)√

(2π)D−d det(Σ)
(πu(u0) +

1

2
E
[
(u− u0)

Tπ′′
u(u0)(u− u0)

]
)

=

√
det(Σ̂)√

(2π)D−d det(Σ)
(πu(u0) +

1

2
||π′′

u(u0)⊙ Σ̂||+),

where ⊙ stands for the elementwise multiplication and ||A||+ =
∑d

i,j=1Aij for a Rd × Rd matrix
A.

For the special case where Σ = σ2ID, we can simplify this expression by exploiting that

√
det(Σ̂)√

(2π)D−d det(Σ)
=

1

(2π)
D−d

2

σ−D

σ−d
√

detGf

=
1

(2πσ2)
D−d

2

√
detGf

.

Thus, in total, we get for this special choice of Σ

pσ(x) ≈
1

(2πσ2)
D−d

2

√
detGf

(πu(u0) +
σ2

2
||π′′

u(u0)⊙ (JTf Jf )
−1||+)

=
1

(2πσ2)
D−d

2

√
detGf

πu(u0)(1 +
σ2

2πu(u0)
||π′′

u(u0)⊙ (JTf Jf )
−1||+) (8)

Now, if ∣∣∣∣ σ2

2πu(u0)
||π′′

u(u0)⊙ (JTf Jf )
−1||+

∣∣∣∣≪ 1,

then qn(x|x) ≈ 1/(2πσ2)
D−d

2 as 1/(2πσ2)
D−d

2 from equation (8) is exactly the normalization
constant obtained when inflating the manifold with Gaussian noise in the normal space, qn(x|x) =
1/(2πσ2)

D−d
2 . Therefore, multiplying equation (8) on both sides with qn(x|x) and letting σ tend to

zero, we have that

lim
σ2→0

qσ(x)

qn(x|x)
= p∗(x)

This ends the proof.
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A.6 Proof of theorem 8

The result follows directly from the definition of the reach number τX of X . It is defined as
the supremum of all r ≥ 0 such that the orthogonal projection prX on X is well-defined on the
r−neighbourhood X r of X ,

X r := {x̃ ∈ RD| dist(x̃,X ) ≤ r}

where dist(x̃,X ) denotes the distance of x̃ to X . Thus,

τX = sup
{
r ≥ 0 | ∀x̃ ∈ RD, dist(x̃,X ) ≤ r =⇒ ∃!x ∈ X s.t. dist(x̃,X ) = ||x̃− x||

}
,

see Definition 2.1. in Berenfeld and Hoffmann (2019). By assumption τX > 0. Thus for all
x̃ ∈ X τX we have that x := prX (x̃) is unique. Since X is a closed manifold, it must hold that
x̃ ∈ Nx where Nx denotes the normal space in x. Let the noise generating distributions be a
uniform distribution on the ball with radius τX , thus

qn(x̃|x) = Uniform(x̃;B(x, τX ) ∩Nx),

where B(x, τX ) denotes a D−dimensional ball with radius τX and center x. Then, we have for
X̃ =

⋃
x∈X Nqn(·|x) that

X̃ = X τX .
Thus, X is Q−normally reachable where Q := {qn(·|x)}x∈X .

Appendix B. Experiments

For all expriments, we use Adam optimizer with an initial learning rate 0.1, a learning rate decay of
0.5 after 2000 optimization steps without improvement (learning rate patience). We use a batch size
of 200. No hyperparameter fine-tuning was done.

B.1 Technical details for circle experiments

We use a BNAF (block neural autoregressive flow) to learn the inflated density, see table 3 for the
details. There, we report the number of hidden layers, hidden dimensions (which scale with the
dimensionality of the embedding space), total parameters of the model, and, finally, the number of
gradient steps (iterations).

For the FOM and χ2−noise models, we use the same architecture as for the D = 2 case.

Data dimension hidden layers hidden dimension total parameters iterations
2 3 100 31,204 70000
5 3 250 192,010 70000
10 3 500 764,000 70000
15 3 750 1,716,030 100000
20 3 1000 3,048,040 100000

Table 3: BNAF details for circle experiments.
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B.2 Technical details for density estimation tasks

We use a BNAF (block neural autoregressive flow) to learn the inflated density, see table 4 for the
details. There, we report the number of hidden layers, hidden dimensions, total parameters of the
model, and, finally, the number of gradient steps (iterations).

Data dimension hidden layers hidden dimension total parameters iterations
1 6 210 31,204 50000
2 6 210 268,384 50000
3 6 210 268,806 50000
4 6 200 244,408 50000

Table 4: BNAF details for density estimation experiments.

B.2.1 LATENT DENSITIES

In table 5 we show the latent densities used in the experiments in order of appearance.

Manifold πu(u) ∝ Parameters

S2
∑4

i=1 exp(6 cos(u1 − µi)) · exp(6 cos(2(u2 −mi))) table 6∑2
i=1 exp(6 cos(u1 − µi)) · exp(6 cos(2(u2 −mi))) +

1
2π · 2 exp(50 cos(2(u2 −m3))) table 7

T2
∑3

i=1 exp(2 cos(u1 − µi)) · exp(2 cos(u2 −mi)) table 8
1
2π exp(2 cos(u1 + u2 − 1.94))

H2 2 exp
(
−u1

2

)
1
2π

1
2 exp(6 cos(u2 − u1 − π))

thin spiral 1
0.3 exp(0.3z)

swiss roll
∑3

i=1 exp(κ cos(2πu1 − µi)) · exp(κ cos(2πu2 − µi)) table 9
1
2π · 2π exp(κ cos(2π(u2 − u1)))

(HS)2
∑3

i=1 exp(κ cos(u1 − µi)) · exp(κ cos(u2 − µi))
1
2 exp(0.3|u1|) exp(κ cos(u2 − u1 − π))

Table 5: Latent densities.

i µi mi

1 π
2

π
4

2 π
2

3π
4

3 3π
2

π
4

4 3π
2

3π
3

Table 6: Mixture parameters of von Mises on S2.
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i µi mi

1 0 π
2

2 π 3π
2

Table 7: Mixture parameters of von Mises on S2.

i µi mi

1 0.21 2.85
2 1.89 6.18
3 3.77 1.56

Table 8: Mixture parameters of von Mises on T2.

i µi mi

1 0.1 0.1
2 0.5 0.8
3 0.8 0.8

Table 9: Mixture parameters of von Mises on swiss roll.

B.3 Density estimation on MNIST digit 1

For fair comparison, we tried to use the same architectures for the IID andM−flow. As the latter
requires to invert the flow during training, we have used rational-quadratic splines12 for the flows
which can be efficiently inverted, see Durkan et al. (2019) and table 10. Note that the M−flow
learns the latent density using an additional flow fϕ after learning to reconstruct the data using fψ,
see Brehmer and Cranmer (2020).

flow fψ flow hϕ

model # couplings coupling type # couplings coupling type #paramters

IID 10 spline with B = 11,K = 10 - - 14M
M-flow 10 spline with B = 11,K = 10 10 spline with B = 11,K = 10 14.3M

Table 10: Architectures for standard IID andM−flow on MNIST digit 1.

We train on 100 epochs with a batch size of 100, and take the model yielding the best result
on the validation set (10% of the training set). We use AdamW optimizer (Loshchilov and Hutter
(2017)) and anneal the learning rate to 0 after 100 epochs using a cosine schedule (Loshchilov and
Hutter (2016)).

12. An interval [−B,B] is split into K equidistant bins, and on each subinterval, a rational-quadratic spline is defined
such that the derivatives are continuous at the boundary points. The parameters of the splines are again outcomes of
neural networks. We refer to B as the spline range and K as the bin size in the following. Outside of the interval
[−B,B], the transformation is set to the identity.
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We apply weight decay with a prefactor of 10−6 without dropout. Furthermore, a L2−regularization
on the latent variable with a prefactor of 0.01 was used to stabilize the training.

B.3.1 ADDITIONAL FIGURES

We show the performance of the IID, FOM together with the NID method on the density estimation
tasks from section5.2 in figure 8 and 9.
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Figure 8: Columns A and B: Target density in data (A ) and latent space (B ) for various manifolds
and different latent distributions. Column C: Best learned density using our method with NID.
Column D: Best learned density using our method with IID. Column D: Learned density using
FOM.
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Figure 9: Columns A and B: Target density in data (A ) and latent space (B ) for various manifolds
and different latent distributions. Column C: Best learned density using our method with NID.
Column D: Best learned density using our method with IID. Column D: Learned density using
FOM.
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Figure 10: Log likelihoods on various MNIST test digits using M−flow (left) and IID (right)
trained on digit 1 only.

B.4 Manifold Flow for the mixture of von Mises distributions on S2

In this subsection, we apply the manifold flow, see section4, on a mixture of von Mises distributions
on a sphere. We do not attempt to find the optimal hyperparameters and training settings (such as
batch- and training size, optimization method, or training scheduler) to maximize the performance.

The manifold flow (MF) proposed by Brehmer and Cranmer, 2020 uses two flows, one for
encoding the data manifold to the latent space, and another for learning the latent density. To avoid
calculating the Gram determinant of the encoding flow, they proposed different training procedures,
an alternating, and a sequential (see section4 for more details). In figure 11, we show that both
methods learn the density reasonable good (top left and right). However, if we add Gaussian noise
with magnitude 0.01 to the dataset, the two training schemes lead to very different results (bottom
left and right). This illustrates the drawback of not having a unified maximum likelihood objective.
We used the same model and training settings as for a similar dataset (a two-dimensional manifold
embedded in R3) studied in Brehmer and Cranmer, 2020.
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Figure 11: Performance of MF on the mixture of von Mises distributions on a sphere (top) and noisy
sphere (bottom), using different training schemes (alternating left, and sequential right).
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