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Abstract

Dynamic multilayer networks frequently represent the structure of multiple co-evolving
relations; however, statistical models are not well-developed for this prevalent network
type. Here, we propose a new latent space model for dynamic multilayer networks. The
key feature of our model is its ability to identify common time-varying structures shared
by all layers while also accounting for layer-wise variation and degree heterogeneity. We
establish the identifiability of the model’s parameters and develop a structured mean-field
variational inference approach to estimate the model’s posterior, which scales to networks
previously intractable to dynamic latent space models. We demonstrate the estimation
procedure’s accuracy and scalability on simulated networks. We apply the model to two
real-world problems: discerning regional conflicts in a data set of international relations
and quantifying infectious disease spread throughout a school based on the student’s daily
contact patterns.

Keywords: dynamic multilayer network, epidemics on networks, latent space model,
statistical network analysis, variational inference

1. Introduction

Dynamic multilayer networks are a prevalent form of relational data with applications in
epidemiology, sociology, biology, and other fields (Boccaletti et al., 2014). Unlike static
single-layer networks, which are limited to recording one dyadic relation among a set of ac-
tors at a single point in time, dynamic multilayer networks contain several types of dyadic
relations, called layers, observed over a sequence of times. For instance, social networks
contain several types of social relationships jointly evolving over time: friendship, vicinity,
coworker-ship, partnership, and others. Also, international relations unfold through daily
political events involving two countries, e.g., offering aid, verbally condemning, or partici-
pating in military conflict (Hoff, 2015). Lastly, the spread of information on social media
occurs on a dynamic multilayer network, e.g., hourly interactions among Twitter users such
as liking, replying to, and re-tweeting each other’s content (Domenico et al., 2013). Proper

c©2023 Joshua Daniel Loyal and Yuguo Chen.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v24/21-0270.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v24/21-0270.html


Loyal and Chen

2009 2011 2013 2015 2017
Month

C
ou

nt
ry

Verbal Cooperation with Iraq

2009 2011 2013 2015 2017
Month

Material Cooperation with Iraq

2009 2011 2013 2015 2017
Month

Verbal Conflict with Iraq

2009 2011 2013 2015 2017
Month

Material Conflict with Iraq

Figure 1: Monthly cooperation and conflict relations between Iraq and other countries from
2009 to 2017. A blue (gray) square indicates a relation occurred (did not occur)
between Iraq and that nation during that month.

statistical modeling of dynamic multilayer networks is essential for an accurate understand-
ing of these complex systems.

The statistical challenge in modeling multiple co-evolving networks is maintaining a
concise representation while also adequately describing important network characteristics.
These characteristics include the dyadic dependencies in each individual static relation,
such as degree heterogeneity and transitivity, the autocorrelation of the individual dyadic
time series, and the common structures shared among the various relations. We provide an
example of such network characteristics in Figure 1, which displays the monthly time series
of four dyadic relations between Iraq and other countries from 2009 to 2017. A complete
description of the data can be found in Section 5. Within a layer (e.g., verbal cooperation),
the individual time series (rows) are correlated with each other while also exhibiting strong
autocorrelation. Furthermore, the four relations share a clear homogeneous structure, which
is made especially evident after the abrupt change in all dyadic time series in late 2014 due
to an American-led intervention in Iraq. We explore this event in more detail in Section 5.
A statistical network model should decompose these dependencies in an interpretable way.

To date, the statistics literature contains an expansive collection of network models de-
signed to capture specific network properties. See Goldenberg et al. (2010) and Loyal and
Chen (2020) for a comprehensive review. An important class of network models is latent
space models (LSMs) proposed in Hoff et al. (2002). The key idea behind LSMs is that each
actor is assigned a vector in some low-dimensional latent space whose pairwise distances
under a specified similarity measure determine the network’s dyad-wise connection proba-
bilities. The LSM interprets these latent features as an actor’s unmeasured characteristics
such that actors that are close in the latent space are more likely to form a connection.
This interpretation naturally explains the high levels of homophily (assortativity) and tran-
sitivity in real-world networks. A series of works expanded the network characteristics
captured by LSMs (Handcock et al., 2007; Hoff, 2008; Krivitsky et al., 2009; Hoff, 2005;
Ma et al., 2020), such as community structure, degree heterogeneity, heterophily (disas-
sortativity), etc. Furthermore, researchers have adopted the LSM formulation to model
both dynamic networks (Sarkar and Moore, 2005; Durante and Dunson, 2014; Sewell and
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Chen, 2015; He and Hoff, 2019) and static multilayer networks (Gollini and Murphy, 2016;
Salter-Townshend and McCormick, 2017; D’Angelo et al., 2019; Wang et al., 2019; Zhang
et al., 2020).

Currently, the statistical methodology for modeling dynamic multilayer networks is lim-
ited. Snijders et al. (2013) introduced a stochastic actor-oriented model which represents
the networks as co-evolving continuous-time Markov processes. In addition, Hoff (2015)
introduced a multilinear tensor regression framework where real-valued dynamic multilayer
networks are modeled through tensor autoregression. To our knowledge, the only existing
LSM for dynamic multilayer networks is the Bayesian nonparametric model proposed in Du-
rante et al. (2017). Although highly flexible, this model lacks interpretability due to strong
non-identifiable issues. Furthermore, this model’s applications are limited to small net-
works with only a few dozen nodes and time points due to the model’s high computational
complexity. Currently, the LSM literature lacks models that decompose the complexity of
dynamic multilayer networks into interpretable components and scale to the large networks
commonly analyzed in practice.

To address these needs, we develop a new Bayesian dynamic bilinear latent space model
that is flexible, interpretable, and computationally efficient. Our approach identifies a com-
mon time-varying structure shared by all layers while also accounting for layer-wise varia-
tion. Intuitively, our model posits that actors have intrinsic traits that influence how they
connect in each layer. Specifically, we identify a common structure in which we represent
each node by a single latent vector shared across layers. Also, we introduce node-specific ad-
ditive random effects (or socialities) to adjust for heavy-tailed degree distributions (Rastelli
et al., 2016). The model accounts for layer-wise heterogeneity in two ways. First, the layers
assign different amounts of homophily (heterophily) to each latent trait. Second, to capture
the dependence of an actor’s degree on relation type, we allow the additive random effects to
vary by layer. Lastly, we propagate the latent variables through time via a discrete Markov
process (Sarkar and Moore, 2005; Sewell and Chen, 2015). These correlated changes capture
the network’s structural evolution and temporal autocorrelation.

To estimate our model, we derive a variational inference algorithm (Wainwright and
Jordan, 2008; Blei et al., 2017) that scales to networks much larger than those analyzed
by previous approaches. We base our inference on a structured mean-field approximation
to the posterior. Our approximation improves upon previous variational approximations
found in the dynamic latent space literature (Sewell and Chen, 2017; Liu and Chen, 2022) by
retaining the latent variable’s temporal dependencies. Furthermore, we derive a coordinate
ascent variational inference algorithm that consists of closed-form updates. Our work leads
to a novel approach to fitting dynamic latent space models using techniques from the linear
Gaussian state space model (GSSM) literature.

The structure of our paper is as follows. In Section 2, we present our Bayesian paramet-
ric model for dynamic multilayer networks, discuss identifiability issues, and connect it to
existing models for static multilayer and single-layer dynamic networks. Section 3 outlines
our structured mean-field approximation and the coordinate ascent variational inference
algorithm used for estimation. Section 4 demonstrates the accuracy of our inference algo-
rithm and compares it to other estimation methods on simulated networks. In Section 5, we
apply our model to two real-world networks taken from international relations and epidemi-
ology. Finally, Section 6 concludes with a discussion of various model extensions and future
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research directions. The Appendices contain proofs, in-depth derivations of the variational
inference algorithm, implementation details, and additional results and figures.

Notation. We write [N ] = {1, . . . , N}. We use the notation B1:L to refer to the sequence
(B1, B2, . . . , BL) where B` is any indexed object. Also, for objects with a double index, we
use the notation C1:M,1:N to refer to the collection (Cmn)(m,n)∈[M ]×[N ]. We use 1{x=a} to
denote the Boolean indicator function, which evaluates to 1 when x = a and 0 otherwise.
We denote an n-dimensional vector of ones by 1n, an n-dimension vector of zeros by 0n,
and the n × n identity matrix by In. Furthermore, given a vector v ∈ Rd, we use diag(v)
to indicate a d× d diagonal matrix with the elements of v on the diagonal. We use Ip,q =
diag(1, . . . , 1,−1, . . . ,−1) to denote a diagonal matrix with p ones followed by q negative
ones on the diagonal. Lastly, we use BlockDiagonal(A,B) to denote a block diagonal matrix
with matrices A and B on the diagonal.

2. An Eigenmodel for Dynamic Multilayer Networks

In this section, we develop our Bayesian model for dynamic multilayer networks. To begin,
we formally introduce dynamic multilayer network data. Dynamic multilayer networks
consist of K relations measured over T time points between the same set of n nodes (or
actors). We collect these relations in binary adjacency matrices Yk

t ∈ {0, 1}n×n for 1 ≤ k ≤
K and 1 ≤ t ≤ T . The entries Y k

ijt indicate the presence (Y k
ijt = 1) or absence (Y k

ijt = 0) of
an edge between actors i and j in layer k at time t. This article only considers undirected
networks without self-loops so that Yk

t is a symmetric matrix. We discuss extensions of our
model to weighted and directed networks in Section 6.

2.1 The Model

Here, we propose our new eigenmodel for dynamic multilayer networks with the goal of cap-
turing the correlations between different dyads within a network, the dyads’ autocorrelation
over time, and the dependence between layers. Specifically, we assume that the dyads are
independent Bernoulli random variables conditioned on the latent parameters:

P (Y1
1:T , . . . ,Y

K
1:T | δ1:K,1:T ,Λ1:K ,X1:T ) =

K∏
k=1

T∏
t=1

∏
j<i

P (Y k
ijt | δik,t, δ

j
k,t,Λk,X

i
t,X

j
t ),

where

logit
[
P (Y k

ijt = 1 | δik,t, δ
j
k,t,Λk,X

i
t,X

j
t )
]

= Θk
ijt = δik,t + δjk,t + XiT

t ΛkX
j
t . (1)

In Equation (1), layer k’s log-odds matrix at time t, Θk
t ∈ Rn×n with elements Θk

ijt,
contains two latent random effects that induce essential unconditional dependencies in the
dynamic multilayer network’s dyads. We defer specification of their distributions until
the next section. First, the sociality effects δk,t = (δ1

k,t, . . . , δ
n
k,t)

T ∈ Rn model degree
heterogeneity and node-level autocorrelation. Second, the time-varying latent positions
Xt = (X1

t , . . . ,X
n
t )T ∈ Rn×d, where d is the latent space’s dimension, induce clusterabil-

ity (Hoff, 2008) in the networks and dyadic autocorrelation. Finally, the homophily coef-
ficients Λk = diag(λk) ∈ Rd×d are diagonal matrices that quantify each relation’s level of
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homophily along a latent dimension. For each λkh (1 ≤ h ≤ d), positive values (λkh > 0)
indicate homophily along the hth latent dimension in layer k, negative values (λkh < 0)
indicate heterophily along the hth latent dimension in layer k, and a zero value (λkh = 0)
indicates the hth latent dimension does not contribute to the connection probability in
layer k. Furthermore, the model captures common structures among the layers by sharing
a common set of latent trajectories.

In matrix form, the log-odds matrices are

Θk
t = δk,t1

T
n + 1nδ

T
k,t + XtΛkXT

t . (2)

To ensure identifiability of the model parameters, we require both a centered latent space,
that is JnXt = Xt where Jn = In − (1/n)1n1

T
n , and Λr = Ip,q, where p + q = d, for some

reference layer r ∈ {1, . . . ,K}. In an applied setting, one could take a particular interesting
layer as the reference layer. Without loss of generality, we set r = 1 as the reference. As
we elaborate in Section 2.5, we use these conditions to identify the socialities δk,t, and to
identify Xt up to a signed-permutation of its columns, where the permutation is common
to all time points but the sign-flips can vary over time. At the same time, we show that the
bilinear term, XtΛkXT

t , is directly identifiable.
Overall, our proposed eigenmodel for dynamic networks’s parameterization reduces the

dimensionality of dynamic multi-relational data. The model contains nTK + nTd + Kd
parameters, which, for typical values of d, is much less than the KTn(n− 1)/2 dyads that
originally summarized the dynamic multilayer network. Next, we further elaborate on the
interpretation of the model’s parameters and our inclusion of temporal correlation in the
random effects.

2.2 Layer-Specific Social Trajectories

An actor’s sociality, δik,t, represents their global popularity in layer k at time t. In particular,

holding all other parameters fixed, the larger an actor’s sociality δik,t, the more likely they
are to connect with other nodes in the kth layer at time t regardless of their position in the
latent space. Formally, δik,t is the conditional log-odds ratio of actor i forming a connection
with another actor in layer k at time t compared to an actor with the same latent position
as actor i but with δik,t = 0. Hub nodes are an example of nodes with a high sociality,
while isolated nodes have a low sociality. An actor’s sociality can differ between layers.
We find this flexibility necessary to model real-world multilayer relations. For example, in
the international relations network presented in the introduction, a peaceful nation might
participate in many cooperative relations while rarely engaging in conflict relations.

The ith actor’s social trajectory in layer k, δik,1:T , measures their time-varying sociality in
the kth layer. For example, a nation’s propensity to engage in militaristic relations might
increase after a regime change. We assume that the social trajectories are independent
across layers k and individuals i and propagate them through time via a shared Markov
process:

δik,1
iid∼ N(0, τ2

δ ), δik,t ∼ N(δik,t−1, σ
2
δ ), t = 2, . . . , T, k = 1, . . . ,K,

where iid stands for independent and identically distributed. In the previous expression,
τ2
δ measures the sociality effects’ initial variation over all layers. Similarly, σ2

δ measures the
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sociality effects’ variation over time. In particular, a small value of σ2
δ indicates that most

social trajectories are flat with little dynamic variability. We place the following conjugate
priors on the variance parameters: τ2

δ ∼ Γ−1(aτ2δ
/2, bτ2δ

/2) and σ2
δ ∼ Γ−1(cσ2

δ
/2, dσ2

δ
/2).

2.3 Dynamic Latent Features Shared Between Layers

Like other latent space models, we assume that the probability of two actors forming a
connection depends on their latent representations in an unobserved latent space. Specif-
ically, we assign every actor a latent feature Xi

t ∈ Rd at each time point. Relations in
dynamic networks typically have strong autocorrelations wherein the dyadic relations and
latent features slowly vary over time. These autocorrelations are captured by a distribution
that assumes the latent positions propagate through time via a shared Markov process:

Xi
1

iid∼ N(0d,Ψ0), Xi
t ∼ N(Xi

t−1, σ
2Id), t = 2, . . . , T.

Sewell and Chen (2015) first proposed this Gaussian random-walk process for the latent po-
sitions in the context of single-layer (K = 1) dynamic networks. Intuitively, these dynamics
assume that changes in the network’s connectivity patterns are partly due to changes in
the actor’s latent features. Unlike Sewell and Chen (2015), we do not restrict the initial
covariance matrix Ψ0 ∈ Rd×d to be spherical, that is, a constant multiple of the identity
matrix. There are two reasons for this choice. First, recall that the homophily coefficients
take on values ±1 for the reference layer. Therefore, the different variances (or scales)
assigned to each latent dimension by the non-spherical covariance matrix reflect their in-
fluence on the reference layer’s bilinear term. Second, Hoff et al. (2002) recommended a
spherical covariance matrix because of the latent positions’ rotational invariance. This ar-
gument is inappropriate in our context because the latent positions are identified up to
a signed-permutation. Lastly, σ2 measures the step size of each latent position’s Gaus-
sian random-walk. We place the following conjugate priors on the variance parameters:
Ψ0 ∼Wishart−1(ν, V ) and σ2 ∼ Γ−1(cσ2/2, dσ2/2).

2.4 Layer-Specific Homophily Levels

The proposed model posits that the multilayer networks are correlated because they share
a single set of latent positions Xt among all layers. Mathematically, this restriction allows
the model to capture common structures across layers. The homophily coefficients Λk =
diag(λk) for λk ∈ Rd allow for variability between the layers. Intuitively, the model assumes
that two relations differ because they put distinct weights on the latent features. For
example, homophilic features in a friendship relation may be heterophilic in a combative
relation. For interpretability, we restrict Λk to a diagonal matrix. We place independent
multivariate Gaussian priors on the diagonal elements

λk
iid∼ N(0d, σ

2
λId), k = 2, . . . ,K.

For identifiability reasons, the homophily coefficients take values of ±1 in the first layer.
We enforce this reference layer constraint by re-parameterizing the reference layer’s diagonal
elements in terms of Bernoulli random variables

λ1h = 2uh − 1, uh
iid∼ Bernoulli(ρ), h = 1, . . . , d,
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where ρ is the prior probability of an assortative relationship along a latent dimension.
Under this constraint, we interpret the other layer’s homophily coefficients in comparison
to the reference. For example, if λ11 = −1 and λ21 = 2, then the second layer weights
dimension one twice as heavily as the reference layer while exhibiting homophily instead of
heterophily.

2.5 Identifiability

Here, we present sufficient conditions for identifiability and their implications on inference.
For bilinear latent space models with sociality effects, it is natural to require the matrix of
latent positions to be centered and full rank (Zhang et al., 2020; Macdonald et al., 2022).
In addition to the previous conditions, Theorem 1 shows that restricting the reference
layer’s homophily coefficients to take values ±1 and placing a mild distinctness condition
on the remaining homophily coefficients is sufficient to identify our model up to a signed-
permutation of the latent space, where the permutation is common to all time points and
the sign-flips can change between time-points. We provide the proof in Appendix B.

Theorem 1 (Identifiability Conditions) Suppose that two sets of parameters {δ1:K,1:T ,
X1:T ,Λ1:K} and {δ̃1:K,1:T , X̃1:T , Λ̃1:K} satisfy the following conditions:

A1. JnXt = Xt and JnX̃t = X̃t for t = 1, . . . , T where Jn = In − 1
n1n1

T
n .

A2. rank(Xt) = rank(X̃t) = d for t = 1, . . . , T .

A3. For one r ∈ {1, . . . ,K}, Λr = Ip,q and Λ̃r = Ip′,q′.

A4. For at least one layer ` 6= r, rank(Λ`) = rank(Λ̃`) = d and both Λ`Λr and Λ̃`Λ̃r have
distinct diagonal elements, i.e., (Λ` Ip,q)gg 6= (Λ` Ip,q)hh and (Λ̃`Ip′,q′)gg 6= (Λ̃` Ip′,q′)hh
for 1 ≤ g 6= h ≤ d.

Then the model is identifiable up to a signed-permutation of the latent space, that is, if for
all 1 ≤ k ≤ K and 1 ≤ t ≤ T we have that

δk,t1
T
n + 1nδ

T
k,t + XtΛkXT

t = δ̃k,t1
T
n + 1nδ̃

T
k,t + X̃tΛ̃kX̃T

t ,

then Ip,q = Ip′,q′ and for all 1 ≤ k ≤ K and 1 ≤ t ≤ T we have that

δ̃k,t = δk,t, X̃t = XtP diag(st), Λ̃k = PTΛkP,

where st ∈ {±1}d, P = BlockDiagonal(P1, P2) is a d×d block-diagonal permutation matrix,
and P1 and P2 are permutation matrices on p and q elements, respectively.

Assumption A1 alone, which centers the latent space, is sufficient to remove any con-
founding between the social trajectories and the latent positions. This issue arises because
the likelihood is invariant to translations in the latent space. Indeed,

δik,t + δjk,t + XiT
t ΛkX

j
t = δik,t + δjk,t + (Xi

t − c + c)TΛk(X
j
t − c + c),

= δ̃ik,t + δ̃jk,t + X̃iT
t ΛkX̃

j
t ,
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where X̃i
t = Xi

t − c and δ̃ik,t = δik,t + X̃iT
t Λkc + cTΛkc/2. Such confounding is present in

previous bilinear latent space models that treat the latent positions as random effects (Hoff
et al., 2002; Krivitsky et al., 2009). Our prior specification does not directly enforce the
centering constraint. Instead, we let all the parameters float because including this redun-
dancy can speed up the variational algorithm proposed in the next section (Liu and Wu,
1999; van Dyk and Meng, 2001; Qi and Jaakkola, 2006). However, when summarizing the
model, we want to identify the social and latent trajectories so that the sociality effects
are no longer confounded with the bilinear term. Therefore, after estimation, we perform
posterior inference on X̃i

t and δ̃ik,t with c = (1/n)
∑n

i=1 Xi
t. See Section 3.5 for details.

Assumptions A1—A4 are strong enough to identify each Xt up to sign-flips and permu-
tations of its columns and the homophily coefficients Λk = diag(λk) up to the same set of
permutations applied to the rows of λk. Furthermore, the same permutation P applies to all
time points. Standard results for the generalized random dot product graph model (Rubin-
Delanchy et al., 2022) suggest that Assumptions A1—A3 are sufficient to identify the latent
space up to an indefinite orthogonal transformation, which differs across time points. The-
orem 1 states that the mild distinctness condition in Assumption A4 is sufficient to fix
the orientation of these indefinite orthogonal transformations up to a signed-permutation,
where the permutation is common to all time points but the sign-flips still vary over time.

Intuitively, Assumption A4 asserts that at least one layer should measure a homophily
pattern distinct from the reference layer. For example, Assumption A4 is not satisfied
for layers whose homophily coefficients satisfy Λk = αIp,q for any scalar α. While mildly
restrictive, we expect Assumption A4 to hold when the layers measure different phenomena.
For example, we expect the cooperation and conflict layers that make up the international
relations network studied in the real data analysis of Section 5 to have distinct homophily
patterns. Most importantly, Assumption A4 holds with probability one under our choice
of priors. As such, we will assume the model satisfies Assumptions A1—A4 going forward.
For an analysis of parameter identifiability without Assumption A4, see Appendix A.

Lastly, although Assumption A3 is always theoretically satisfied, one does not know
a priori that the reference layer chosen in applications has full rank. Incorrect selection
of a reference layer that is not full rank can result in under-performance due to model
misspecification. As a heuristic, we check that the maximum rank of the reference layer’s
adjacency matrices over all time points, i.e., max1≤t≤T rank(Yr

t ), is the largest among all
the layers. One may also check the sensitivity of the results to the choice of reference layer.

2.6 Connections to Existing Work in Special Cases (T = 1 or K = 1)

Dynamic multilayer networks encompass static multilayer networks (T = 1) and single-layer
dynamic networks (K = 1). As such, our proposed model naturally generalizes or connects
to existing models in these cases. When we observe a static multilayer network (T = 1), the
decomposition in Equation (2) resembles the one proposed by Zhang et al. (2020). Unlike
our decomposition, Zhang et al. (2020) allowed Λk to be an unconstrained d × d matrix
but constrained X1 to be a scaled semi-orthogonal matrix, i.e., n−1XT

1 X1 = Id. A temporal
extension of this orthogonality constraint is unwieldy for the development of a computa-
tionally efficient Bayesian model. For example, existing priors on dynamic processes for
semi-orthogonal matrices (Chikuse, 2006) lead to impractical doubly-intractable posterior
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distributions that often require computationally inefficient estimation methods (Murray
et al., 2006; Møller et al., 2006). As such, we avoid such complexities by introducing an
alternative decomposition in Equation (2) that remains meaningfully identifiable and allows
for efficient inference through a novel structured mean-field variational inference algorithm.

For single-layer dynamic networks (K = 1), the model reduces to a latent space model for
dynamic networks under a bilinear similarity measure (Durante and Dunson, 2014; Sewell
and Chen, 2017); however, unlike these models, we include time-varying sociality effects.
Although single-layer dynamic networks are not the focus of this work, a significant con-
tribution we make to the field of Bayesian dynamic latent space models is the introduction
of a structured mean-field variational inference algorithm. As we elaborate on in the next
section, this approach provides a higher fidelity approximation to the parameter’s posterior
distribution compared to existing approaches while matching their time complexity. Re-
gardless, our primary contribution is a Bayesian model for dynamic multilayer network data,
a data type that none of these existing methods can handle, along with a computationally
efficient estimation method, which is lacking in the existing literature.

3. Variational Inference

Now, we turn to the problem of parameter estimation and inference. We take a Bayesian
approach to inference with the goal of providing both posterior mean and credible intervals
for the model’s parameters. However, the large amount of dyadic relations that comprise
multilayer dynamic networks makes Markov chain Monte Carlo inference impractical for
all but small networks. For this reason, we employ a variational approach (Wainwright
and Jordan, 2008). For notational convenience, we collect the latent variables in θ =
{δ1:K,1:T ,Λ1:K ,X1:T } and the state space parameters in φ = {Ψ0, σ

2, τ2
δ , σ

2
δ}.

We aim to approximate the intractable posterior distribution p(θ,φ | Y1
1:T , . . . ,Y

K
1:T )

with a tractable variational distribution q(θ,φ) that minimizes the KL divergence between
q(θ,φ) and p(θ,φ | Y1

1:T , . . . ,Y
K
1:T ). It can be shown that minimizing this divergence is

equivalent to maximizing the evidence lower bound (ELBO), a lower bound on the data’s
marginal log-likelihood

L(q) = Eq(θ,φ)

[
log p(Y1

1:T , . . . ,Y
K
1:T ,θ,φ)− log q(θ,φ)

]
≤ log p(Y1

1:T , . . . ,Y
K
1:T ).

In general, the ELBO is not concave; however, optimization procedures often converge to
a reasonable optimum. One still has the flexibility to specify the variational distribution’s
form, although the need to evaluate and sample from it often guides this choice. A conve-
nient form is the structured mean-field approximation, which factors q(θ,φ) into a product
over groups of dependent latent variables. Furthermore, when the model consists of con-
jugate exponential family distributions, this form lends itself to a simple coordinate ascent
optimization algorithm with optimal closed-form coordinate updates. For an introduction
to variational inference, see Blei et al. (2017).

In what follows, we present a structured mean-field variational inference algorithm that
preserves the eignmodel’s essential statistical dependencies and maintains closed-form co-
ordinate updates. Normally, the absence of conditional conjugacy in latent space models
poses a challenge for closed-form variational inference. Indeed, popular solutions require
additional approximations of the expected log-likelihood (Salter-Townshend and Murphy,
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2013; Gollini and Murphy, 2016; Liu and Chen, 2022), which may bias parameter estimates.
Another challenge is that existing mean-field variational approximations are inadequate for
our model due to the latent variable’s temporal dependencies. Our solution employs Pólya-
gamma augmentation (Polson et al., 2013) and variational Kalman smoothing (Beal, 2003)
to produce a new and widely applicable variational inference algorithm for bilinear latent
space models for dynamic networks. As we elaborate in Section 3.3.5, an additional benefit
of using Kalman smoothing is that the proposed structured mean-field algorithm has the
same time complexity as existing variational algorithms for dynamic latent space models.

3.1 Pólya-gamma Augmentation

As previously mentioned, we use Pólya-gamma augmentation to render the model condi-
tionally conjugate. For each dyad in the dynamic multilayer network, we introduce auxiliary

Pólya-gamma latent variables ωkijt
iid∼ PG(1, 0), where PG(b, c) denotes a Pólya-gamma dis-

tribution with parameters b > 0 and c ∈ R. For convenience, we use ω to denote the
collection of all Pólya-gamma auxiliary variables. As shown in Polson et al. (2013), the
joint distribution is now proportional to

p(Y1
1:T , . . . ,Y

k
1:T ,θ,φ,ω) ∝ p(θ | φ)p(φ)p(ω)

K∏
k=1

T∏
t=1

∏
j<i

exp
{
zkijtψ

k
ijt − ωkijt(ψkijt)2/2

}
,

where zkijt = Y k
ijt − 1/2 and ψkijt = δik,t + δjk,t + XiT

t ΛkX
j
t . This joint distribution results

in each latent variable’s full conditional distribution lying within the exponential family, a
property sufficient for closed-form variational inference.

3.2 The Structured Mean-Field Approximation

We use the following structured mean-field (SMF) approximation to the augmented model’s
posterior

q(θ,φ,ω) =

[
d∏

h=1

q(λ1h)

][
K∏
k=2

q(λk)

][
K∏
k=1

n∏
i=1

q(δik,1:T )

][
n∏
i=1

q(Xi
1:T )

] K∏
k=1

T∏
t=1

∏
j<i

q(ωkijt)


× q(Ψ0)q(σ2)q(τ2

δ )q(σ2
δ ). (3)

This factorization is attractive because it maintains the essential temporal dependencies
in the posterior distribution. Since we use optimal variational factors, preserving these
dependencies increases the approximate posterior distribution’s accuracy.

In contrast, existing variational approximations (Sewell and Chen, 2017; Liu and Chen,
2022) for dynamic latent space models use the following mean-field (MF) variational family
for the latent positions:

n∏
i=1

q(Xi
1:T ) =

n∏
i=1

T∏
t=1

q(Xi
t).

Unlike the proposed SMF approximation, the MF approximation assumes that all nodes’
latent positions are independent across all time points. Despite its adoption in the liter-
ature, the MF approximation has known statistical and computational deficiencies. Most
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importantly, Wang and Titterington (2004) showed that enforcing temporal independence
in the variational approximation can lead to inconsistent estimation in dynamic state-space
models when there is dependence between the latent states over time. Furthermore, re-
moving strong posterior dependencies in the variational family decreases the fidelity of the
approximate posterior, which can result in less accurate (often too narrow) approximate
credible intervals. Lastly, mean-field approximations have more local optima than their
structured mean-field counterparts (Wainwright and Jordan, 2008; Hoffman et al., 2013),
which makes optimization more challenging under the MF approximation.

3.3 Coordinate Ascent Variational Inference Algorithm

To maximize the ELBO, we employ coordinate ascent variational inference (CAVI). CAVI
performs coordinate ascent on one variational factor at a time, holding the rest fixed.
The optimal coordinate updates take a simple form: set each variational factor to the
corresponding latent variable’s expected full conditional probability under the remaining
factors. For example, the update for q(Xi

1:T ) is given by

log q(Xi
1:T ) = E−q(Xi

1:T )

[
log p(Xi

1:T | ·)
]

+ c,

where E−q(Xi
1:T ) [·] indicates an expectation taken with respect to all variational factors ex-

cept q(Xi
1:T ), p(Xi

1:T | ·) is the full conditional distribution of Xi
1:T , and c is a normalizing

constant. When the full conditionals are members of the exponential family, a coordi-
nate update involves calculating the natural parameter’s expectations under the remaining
variational factors.

The CAVI algorithm alternates between optimizing q(ω), q(δ1:K,1:T ), q(X1:T ), q(Λ1:K),
and q(φ). Algorithm 1 outlines the full CAVI algorithm and defines some notation used
throughout the rest of the article. We summarize each variational factor’s coordinate up-
date in the following sections. Appendix C and Appendix D provide the full details and
derivations of the coordinate updates and the variational Kalman smoothers, respectively.

3.3.1 Updating q(ωkijt)

By the exponential tilting property of the Pólya-gamma distribution, we have

log q(ωkijt) = E−q(ωkijt)
[
pPG(ωkijt | 1, ψkijt)

]
+ c,

where pPG(ω | b, c) is the density of PG(b, c) random variable. This density is a member of
the exponential family with natural parameter −(ψkijt)

2/2. We provide the full coordinate

update, which involves taking the expectation of (ψkijt)
2, in Algorithm 2 of Appendix C.

3.3.2 Updating q(δik,1:T ), q(τ2
δ ), q(σ2

δ )

Under the Pólya-gamma augmentation scheme, the conditional distributions of the social
trajectories take the form of linear Gaussian state space models. In particular,

log q(δik,1:T ) = log h(δik,1) +
T∑
t=2

log h(δik,t | δik,t−1) +
T∑
t=1

log h(zik,t | δik,t) + c, (4)

11
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Define the following expectations taken with respect to the full variational posterior:

E [Xi
t] = µit, Var(Xi

t) = Σi
t, Cov(Xi

t,X
i
t+1) = Σi

t,t+1,

E [δik,t] = µδik,t
, Var(δik,t) = σ2

δik,t
, Cov(δik,t, δ

i
k,t+1) = σ2

δik,t,t+1
,

E [λk] = µλk , Var(λk) = Σλk , E [ωkijt] = µωkijt
.

Iterate the following steps until convergence:

1. Update each q(ωkijt) = PG(1, ckijt) as in Algorithm 2.

2. Update

q(δik,1:T ) : a Gaussian state space model for i ∈ {1, . . . , n} and k ∈ {1, . . . ,K},

q(τ2
δ ) = Γ−1(āτ2δ

/2, b̄τ2δ
/2),

q(σ2
δ ) = Γ−1(c̄σ2

δ
/2, d̄σ2

δ
/2),

using a variational Kalman smoother as in Algorithm 3.

3. Update

q(Xi
1:T ) : a Gaussian state space model for i ∈ {1, . . . , n},

q(Ψ0) = Wishart−1(ν̄, V̄ ),

q(σ2) = Γ−1(c̄σ2/2, d̄σ2/2),

using a variational Kalman smoother as in Algorithm 4.

4. Update q(λ1h) = p
1{λ1h=1}
λ1h

(1 − pλ1h)1{λ1h=−1} for h ∈ {1, . . . , d} as in Algorithm
5.

5. Update q(λk) = N(µλk ,Σλk) for k ∈ {2, . . . ,K} as in Algorithm 5.

Algorithm 1: Coordinate ascent variational inference for the eigenmodel for dynamic mul-
tilayer networks. Appendix C contains the details of Algorithms 2—5. Itera-
tions are performed until successive differences of the expected log-likelihood,
Equation (6), drop below a tolerance threshold.

12
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where

log h(δik,1) = Eq(τ2δ )

[
logN(δik,1 | 0, τ2

δ )
]
,

log h(δik,t | δik,t−1) = Eq(σ2
δ )

[
logN(δik,t | δik,t−1, σ

2
δ )
]
,

log h(zik,t | δik,t) = E−q(δik,1:T )

∑
j 6=i

logN(zkijt | ωkijt δik,t + ωkijt(δ
j
k,t + XiT

t ΛkX
j
t ), ω

k
ijt)

 .
In the previous expressions, zik,t ∈ Rn−1 is a vector that consists of stacking zkijt for j 6= i and
N(x | µ,Σ) is the density of a N(µ,Σ) random variable. Because all densities involved are
Gaussian, the expectations yield Gaussian densities with natural parameters that depend on
the remaining variational factors. Thus, we recognize the optimal variational distribution
as a GSSM. The expected sufficient statistics needed to update the remaining variational
factors can be computed with either the variational Kalman smoother (Beal, 2003) or a
standard Kalman smoother under an augmented state space model (Barber and Chiappa,
2007). We use the variational Kalman smoother. Furthermore, the inverse-gamma priors
on the state space parameters result in fully conjugate coordinate updates for τ2

δ and σ2
δ .

The update for the social trajectories is presented in Algorithm 3 of Appendix C.

3.3.3 Updating q(Xi
1:T ), q(Ψ0), q(σ2)

Similar to the social trajectories, the conditional distributions of the latent trajectories are
also GSSMs. Specifically,

log q(Xi
1:T ) = log h(Xi

1) +
T∑
t=2

log h(Xi
t | Xi

t−1) +
T∑
t=1

log h(zit | Xi
t) + c, (5)

where

log h(Xi
1) = Eq(Ψ0)

[
logN(Xi

1 | 0d,Ψ0)
]
,

log h(Xi
t | Xi

t−1) = Eq(σ2)

[
logN(Xi

t | Xi
t−1, σ

2Id)
]
,

log h(zit | Xi
t) = E−q(Xi

1:T )

 K∑
k=1

∑
j 6=i

logN(zkijt | ωkijt(δik,t + δjk,t) + ωkijtX
j T
t ΛkX

i
t, ω

k
ijt)

 .
In the previous expressions, zit ∈ RK(n−1) is a vector formed by stacking zkijt for j 6= i and

k = 1, . . . ,K. Again, we recognize that q(Xi
1:T ) is a GSSM; therefore, we can calculate

the expected sufficient statistics with the variational Kalman smoother. Also, the inverse-
Wishart and inverse-gamma priors on Ψ0 and σ2 result in closed form coordinate updates.
The updates for the latent trajectories are presented in Algorithm 4 of Appendix C.

3.3.4 Updating q(Λk)

Given the augmented model’s conjugacy, the homophily coefficients will be Bernoulli for the
reference layer and Gaussian for the other layers. The corresponding coordinate updates,
which involve calculating the Bernoulli probabilities and performing standard Bayesian
linear regression, are presented in Algorithm 5 of Appendix C.
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3.3.5 Time Complexity

The closed-form Kalman smoothing updates lead to an efficient SMF algorithm with the
same time complexity as the MF algorithm. Note that the MF and SMF algorithms only
significantly differ in the updates for q(X1:T ) and q(δ1:K,1:T ). For each social trajectory,
the time complexity for Kalman smoothing is O(T ), and the time complexity to calculate
the sufficient statistics is O(nT ). As such, the time complexity to update all nK social
trajectories under the SMF algorithm is O(nKT + n2KT ) = O(n2KT ). Similarly, for
each latent trajectory, the time complexity for Kalman smoothing is O(T ), and the time
complexity to calculate the sufficient statistics is O(nKT ). As such, the time complexity to
update all n latent trajectories under the SMF algorithm is O(nT + n2KT ) = O(n2KT ).
We present the CAVI updating scheme for the MF variational family in Appendix F, which
also has a time complexity of O(n2KT ). As such, the two algorithms only differ by a
constant factor, which we empirically quantify in Section 4. These results show that the
SMF algorithm is 3.5 to 2.5 times slower than the MF algorithm for most network sizes.

3.4 Convergence Criteria

Although it is possible to calculate the ELBO to determine convergence, evaluating the state
space terms is computationally expensive. Instead, we monitor the expected log-likelihood

F(q) =
K∑
k=1

T∑
t=1

∑
j<i

(Y k
ijt − 1/2)Eq(θ)

[
ψkijt

]
− 1

2
Eq(ωkijt)

[
ωkijt

]
Eq(θ)

[
(ψkijt)

2
]
, (6)

which upper bounds the ELBO. We say the algorithm converged when the difference in
the expected log-likelihood is less than 10−2 between iterations or the number of iterations
exceeded 1,000. Due to the ELBO’s non-convexity, we run the algorithm with four different
initializations (one non-random and three random) and choose the model with the highest
AUC (area under the receiver operating characteristic curve) for predicting in-sample edges.
For details on our initialization procedure and hyper-parameter settings, see Appendix E.

3.5 Inference of Identifiable Parameters

Recall that a centered latent space is a sufficient condition for parameter identifiability. As
such, we make inference on the following parameters based on the approximate posterior:

X̃i
t = Xi

t −
1

n

n∑
j=1

Xj
t ,

δ̃ik,t = δik,t + X̃iT
t Λkc +

1

2
cTΛkc,
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where c = (1/n)
∑n

j=1 Xj
t . Under our approximation, the marginal posterior distributions

of the X̃i
t’s are Gaussian with moments

Eq(θ,φ,ω)

[
X̃i
t

]
= µ̃it = µit −

1

n

n∑
j=1

µjt ,

Var(X̃i
t) = Σ̃i

t =

(
1− 1

n

)2

Σi
t +

(
1

n

)2∑
j 6=i

Σj
t ,

(7)

where the variance is with respect to q(θ,φ,ω) as well. We calculate each δ̃ik,t’s poste-
rior mean and 95% credible interval using 2,500 samples from the approximate posterior
distribution because their approximate posterior distributions lack an analytic form.

3.6 Choice of Latent Space Dimension

Similar to other latent space models, selection of the latent space dimension d depends on
the purpose of the analysis. If the goal is exploratory or descriptive, then setting d = 2
allows for easy visualization of the latent space. However, when the goal is predictive, the
choice of dimension can significantly influence the model’s performance. In this case, we
recommend using information criteria to estimate d. We found that the Akaike information
criterion (AIC) outperformed competing criteria on simulated data, see Appendix H for
details. We used this method to select the dimension d for the real data examples in
Section 5.

4. Simulation Studies

We perform multiple simulation studies to evaluate the performance of the proposed struc-
tured variational inference algorithm for inferring the eigenmodel for dynamic multilayer
network’s parameters. In each simulation study, we generated parameter settings as follows:

1. Generate the reference homophily coefficients: λ1h = 2uh − 1 for 1 ≤ h ≤ d, where

uh
iid∼ Bernoulli(0.5).

2. Generate the remaining homophily coefficients from a Gaussian mixture:

λkh
iid∼ 0.5N(−1, 0.25) + 0.5N(1, 0.25) for 2 ≤ k ≤ K and 1 ≤ h ≤ d.

3. Generate initial sociality effects: δik,1
iid∼ U [−4, 1] for 1 ≤ i ≤ n and 1 ≤ k ≤ K.

4. Generate the social trajectories: For t = 2, . . . , T , 1 ≤ i ≤ n, and 1 ≤ k ≤ K, set
δik,t = δik,t−1 + εik,t. We independently drew (εik,2, . . . , ε

i
k,T )T ∼ N(0T−1, σ

2R), where

R is a correlation matrix with elements Rtt′ = ρ|t−t
′| for 1 ≤ t, t′ ≤ T − 1.

5. Generate initial latent positions from a Gaussian mixture: For 1 ≤ i ≤ n, sample

Xi
1

iid∼ 0.5N(µ,Σ) + 0.5N(−µ,Σ), where µ = (0.75, 0.75)T and Σ = ( 1 0.5
0.5 1 ).

6. Generate the latent trajectories: For t = 2, . . . , T and 1 ≤ i ≤ n, set Xi
t = Xi

t−1 + εit.
We independently drew (εi2g, . . . ε

i
Tg)

T ∼ N(0T−1, σ
2R) for 1 ≤ g ≤ d, where R is the

same correlation matrix defined in step 4.
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7. Center the latent space: For t = 1, . . . , T , set X̃i
t = Xi

t− (1/n)
∑n

j=1 Xj
t for 1 ≤ i ≤ n.

The dimension of the latent space d = 2 in the simulated data. The parameters σ and ρ
control the simulation’s temporal smoothness. Specifically, σ controls the magnitude of both
the latent positions’ and the sociality parameters’ transitions, and ρ controls the transitions’
temporal correlation. For a given set of model parameters, we sampled a single undirected
adjacency matrix using the dyad-wise probabilities in Equation (1). In all simulations in the
main text, we assumed the dimension d is known and did not perform dimension selection.

4.1 Parameter Recovery for Varying Network Sizes (n,K, T )

First, we present a simulation study that assessed how the proposed algorithm’s estimation
error scaled with network size. We considered three scenarios: Scenario 1. an increase in
the number of nodes with (n,K, T ) ∈ {50, 100, 200, 500, 1000} × {5} × {10}, Scenario 2. an
increase in the number of layers with (n,K, T ) ∈ {100}×{5, 10, 20}×{10}, and Scenario 3.
an increase in the number of time points with (n,K, T ) ∈ {100} × {5} × {10, 50, 100}. For
each scenario, we fixed σ = 0.05 and ρ = 0.4 and sampled 50 independent networks. For an
additional scenario that decreased σ as the number of time steps increased, see Appendix I.

To evaluate the estimates’ accuracy, we computed relative errors between the param-
eters’ posterior means and their true values according to the Frobenius norm. Because
the true homophily coefficients are distinct, Theorem 1 states that the latent positions are
identifiable up to shared column permutations and time-varying sign-flips. To account for
this invariance, we calculated the latent position’s time-averaged relative error as

min
P∈Πd

1

T

T∑
t=1

min
st∈{−1,1}d

‖X̃t − ˆ̃XtP diag(st)‖2F
‖X̃t‖2F

,

where Πd is the set of permutation matrices on d elements, ‖·‖F is the Frobenius norm,

X̃t = (X̃1
t , . . . , X̃

i
t)

T, and ˆ̃Xt = (µ̃1
t , . . . , µ̃

n
t )T where µ̃it is defined in Equation (7). Similarly,

we computed the relative error of the homophily coefficients accounting for invariance under
simultaneous permutations of their rows and columns:

min
P∈Πd

∑K
k=1‖Λk − PT diag(µλk)P‖2F∑K

k=1‖Λk‖2F
.

Lastly, we calculated the relative errors for the centered social trajectories and the dyad-wise
probabilities, both of which do not have identifiability issues. For computational expediency,
we calculated the dyad-wise probabilities by plugging-in the posterior means into Equation
(1), e.g.,

P̂(Y k
ijt = 1 | µδik,t , µδjk,t ,µλk ,µ

i
t,µ

j
t ) = logit−1

[
µδik,t

+ µ
δjk,t

+ µiTt diag(µλk)µjt

]
,

which is an upper-bound on the approximate posterior mean of the dyad-wise probability.
We can use Monte Carlo to estimate the dyad-wise probabilities’ approximate posterior
mean by sampling from the approximate posterior if desired.

The estimation errors for varying n, K, T are displayed in the boxplots in Figure 2a,
Figure 2b, and Figure 2c, respectively. Overall, the CAVI algorithm accurately recovers the
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model’s parameters. The starkest improvement in estimation accuracy occurs as the number
of nodes increases. This improvement is partially due to the more accurate estimation of
the homophily coefficients. Due to the model’s ability to pool information across layers,
the latent positions’ relative error decreases as K increases. Such an improvement is not
observed for the social trajectories because the number of social trajectories grows with
the number of layers. Surprisingly, the homophily coefficients’ estimation error does not
improve as T increases, although the estimation error is already low at roughly 10−2 to
10−3. Furthermore, the latent positions’ estimation error slightly degrades as the number
of time steps increases. Such deterioration is typical in smoothing problems.
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Figure 2: Relative estimation errors of the model’s parameters as (a) the number of nodes
n increases, (b) the number of layers K increases, and (c) the number time steps
T increases. The boxplots show the distribution over 50 simulations.
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4.2 The Effect of Temporal Smoothness (σ2, ρ) on Predictive Accuracy

Next, we evaluated how the parameters’ smoothness over time affects the estimates’ predic-
tive accuracy. In particular, we expected the proposed methodology’s predictive accuracy
to improve as the parameters’ temporal smoothness increases compared with methods that
do not take advantage of such temporal smoothness.

4.2.1 Comparison of Joint and Separate Estimation

Here, we compare the eigenmodel for dynamic multilayer networks with a static multilayer
version of the model that does not pool information over time. In particular, the alternative
approach fits the following model for static multilayer networks separately at each time step
t = 1, . . . , T :

Y k
ijt

ind.∼ Bernoulli
[
logit−1

(
δik,t + δjk,t + XiT

t ΛktX
j
t

)]
, 1 ≤ j < i ≤ n, 1 ≤ k ≤ K,

λ1t,h = 2uh − 1, uh
iid∼ Bernoulli(ρ), 1 ≤ h ≤ d,

λkt
iid∼ N(0d, σ

2
λId), 2 ≤ k ≤ K,

δik,t
iid∼ N(0, τ2

δ,t), 1 ≤ i ≤ n, 1 ≤ k ≤ K,

Xi
t

iid∼ N(0d,Ψt), 1 ≤ i ≤ n,
Ψt ∼Wishart−1(ν, V ), τ2

δ,t ∼ Γ−1(cδ, dδ),

where ind. stands for independently distributed. This model is similar to the latent space
model for static multilayer networks proposed by Zhang et al. (2020). The difference is
that they allow Λkt to be any d × d real matrix, treat the parameters as fixed effects, and
estimate them by maximizing the likelihood. Despite these similarities, we chose the above
model as a comparison because it isolates the impact that the latent positions’ temporal
smoothness and the pooling of the shared homophily parameters across time have on esti-
mation accuracy by only differing in this aspect. We fit the above model using a modified
mean-field variational inference algorithm similar to the one proposed in Section 3, which
we outline in Appendix G.

We generated 50 networks from the data-generating process outlined in the beginning of
Section 4 with n = 100, K = 5, and T = 10 while varying both σ and ρ. Figure 3 contains
the results for σ ∈ {0.01, 0.05, 0.1, 0.2, 0.3}, and ρ ∈ {0.0, 0.4, 0.8}. We refer to the proposed
eigenmodel for dynamic multilayer networks as the “joint” model and the static multilayer
version as the “separate” model. To evaluate each model’s predictive performance, we
calculated the AUC for edge predictions and the sample Pearson correlation coefficient
(PCC) between the true and estimated dyad-wise probabilities. Each metric was calculated
on held-out data. Specifically, we randomly labeled 20% of the dyads as held-out data and
removed them during estimation. The same set of dyads were removed from the network
at each layer and time step. Note that AUC ranges from 0.5 to 1, and PCC ranges from
−1 to 1, with larger values being better.

According to Figure 3, the proposed joint estimation procedure outperforms the separate
estimation procedure for all values of σ and ρ. Specifically, the median metrics for the joint
estimator are higher than the separate estimator. We see that the difference in performance
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Figure 3: Comparison of joint and separate estimation for different values of σ and ρ. The
first row contains boxplots of the PCC between the true and estimated link prob-
abilities on held-out data. The second row contains boxplots of the AUC for
predicting held-out edges.

decreases as the transition variance σ increases because there is less temporal similarity
between the latent variables. Also, the performance gap between the two estimators appears
unaffected by ρ. Lastly, we note that for networks measured over many time points (large
T ), the separate estimation scheme is practically more challenging because one has to solve
multiple non-convex optimization problems accurately. Based on these results and practical
considerations, we recommend the joint estimation scheme.

4.2.2 Comparison of the SMF and MF Variational Inference Algorithms

Here, we compare the performance of the SMF algorithm to the MF algorithm described in
Section 3.2. We generated 50 networks from the process outlined at the beginning of Sec-
tion 4 with n = 100, K = 5, and T = 30 while varying both σ and ρ. We assigned 20% of the
dyads to a held-out set according to the same procedure described in the previous section.
Unlike in the previous sections, we initialized both algorithms once with the non-random
singular value thresholding scheme (Appendix E), so that both algorithms started from
the same initial values. Each algorithm was run for a maximum of 100 iterations, and the
PCC between the true and estimated link probabilities was calculated after each iteration.
Figure 4 contains the results for σ ∈ {0.01, 0.05, 0.1, 0.2, 0.3}, and ρ ∈ {0.0, 0.4, 0.8}.

From Figure 4, it is clear that the SMF algorithm finds a better or equivalent solution
to the solution found by the MF algorithm. For small values of σ ∈ {0.01, 0.05, 0.1}, the
SMF algorithm often finds a better solution in fewer iterations than the corresponding MF
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Figure 4: Performance comparison between the SMF and MF algorithms. The lines indicate
the median PCC at a given iteration for the SMF (solid green) and MF (dashed
red) algorithms.
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algorithm. The overall gap in performance decreases as σ increases, and the curves mostly
overlap for larger values of σ ∈ {0.2, 0.3}. These conclusions are the same for all values of ρ.
Overall, the SMF algorithm outperforms the MF algorithm when the temporal dependence
is strong (i.e., σ is small), which is often the case in real-world dynamic networks.

The previous results are only meaningful if the time per iteration between the SMF and
MF algorithms are comparable. As outlined in Section 3, both algorithms’ per iteration
time complexity is O(n2KT ), so their run times only differ by a constant factor regardless
of network size. Figure 5 compares the per iteration run times of the two algorithms for
K = 5, and various values of T and n. We recorded the median per iteration run time over
100 iterations for each network and repeated this 10 times to produce the plots in Figure 5.
The machine used for these benchmarks was a 2021 MacBook Pro with an Apple M1 Pro
processor and a memory of 32 GB. We observe that both algorithms are linear in T . In
addition, the ratio of the per iteration run time of the SMF algorithm is roughly 3.5 to
2.5 times slower than the MF algorithm, with the gap decreasing as n increases. Once we
factor in the per iteration run times, we conclude that the SMF algorithm tends to find
more accurate solutions faster than the MF algorithm for temporally smooth (σ is small)
latent positions. However, the two solutions are similar when the latent positions are highly
variable (σ is large), with the MF algorithm finding the solution faster. Overall, the SMF
algorithm is computationally efficient, with the time to perform one iteration taking less
than a second for most of the network sizes in this simulation study.

5. Real Data Applications

In this section, we demonstrate how to use the proposed model to analyze real-world data
sets. We consider networks from political science and epidemiology. The first example
studies a time series of different international relations between 100 countries over eight
years. The second example applies the model to a contact network of 242 individuals at
a primary school measured over two days to quantify heterogeneities in infectious disease
spread throughout the school day.

5.1 International Relations

This application explores the temporal evolution of different relations between socio-political
actors. The raw data consists of (source actor, target actor, event type, time-stamp) tuples
collected by the Integrated Crisis Early Warning System (ICEWS) project (Boschee et al.,
2015), which automatically identifies and extracts international events from news articles.
The event types are labeled according to the CAMEO taxonomy (Gerner et al., 2008). The
CAMEO scheme includes twenty labels ranging from the most neutral “1 — make public
statement” to the most negative “20 — engage in unconventional mass violence.”

Our sample consists of monthly event data between countries during the eight years of
the Obama administration (2009 - 2017). We grouped the event types into four categories
known as “QuadClass” (Duval and Thompson, 1980). These classes split events along four
dimensions: (1) verbal cooperation (labels 2 to 5), (2) material cooperation (labels 6 to 7),
(3) verbal conflict (labels 8 to 16), and (4) material conflict (labels 17 to 20). At a high-
level, the first two classes represent friendly relations such as “5 — engage in diplomatic
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cooperation” and “7 — provide aid”, while the last two classes reflect hostile relations such
as “13 — threaten” and “19 — assault”.

5.1.1 Statistical Network Analysis of the ICEWS Data

We structured the ICEWS data as a dynamic multilayer network recording which four event
types occurred between nations each month from 2009 until the end of 2016. We chose a
monthly time-window to match previous statistical analyses of these networks (Minhas et al.,
2017; He and Hoff, 2019). Each event type is a layer in the multilayer networks. We chose
verbal cooperation as the reference layer because its associated adjacency matrices have the
largest maximum rank across all time points. We limited the actors to the 100 most active
countries during this period. This preprocessing resulted in a dynamic multilayer network
with K = 4 layers, T = 96 time steps, and n = 100 actors. An edge (Y k

ijt = 1) means that
country i and country j had at least one event of type k during the tth month, where t = 1
corresponds to January 2009.

We fit six models with dimensions ranging from 1 to 6 using the SMF algorithm and
determined that a latent space dimension of d = 3 fit the data best based on the AIC, see
Figure 15 in Appendix J. The chosen model’s in-sample AUC was 0.91, which indicates a
good fit to the data. Since the model’s latent positions are only identifiable up to a signed-
permutation, the latent positions at time t (for t ≥ 2) are matched to the positions closest
to their previous positions at time t− 1 through a signed-permutation.

5.1.2 Detection of Historical Events During the Obama Administration

We validate the model by demonstrating that the inferred social trajectories and latent space
dynamics reflect major international events. We focus on three events: the Arab Spring,
the American-led intervention in Iraq, and the Crimea Crisis. Specifically, we concentrate
on interpreting the latent parameters for Libya, Syria, Iraq, the United States, Russia, and
Ukraine since they played a large role in these events.

Because these events involve conflict, we start by analyzing each country’s material
conflict social trajectory, i.e., δi4,1:T for 1 ≤ i ≤ n. Figure 6 plots these social trajectories’
posterior means with a few select countries highlighted. Appendix J contains the same
plot for the remaining three layers. Most social trajectories are relatively flat. Indeed,
the 95% credible interval for the step size standard deviation σδ is (0.0437, 0.0443), which
is much smaller than that of the initial standard deviation τδ, which equals (3.20, 3.68).
However, the social trajectories of Iraq, Syria, and Libya demonstrate dramatic changes.
Specifically, Libya and Syria both increase their material conflict sociality at the start of
the Arab Spring in 2011. In particular, Libya’s sociality spikes during the Libyan Civil War
in 2011 that saw Muammar Gaddafi’s regime overthrown. Iraq’s sociality increases leading
up to and throughout the United States’ escalated military presence in 2014. Note that the
Crimea Crisis, which began with Russia annexing the Crimea Peninsula in February 2014, is
not reflected in Russia’s social trajectory and only moderately reflected in Ukraine’s social
trajectory. This conflict is hard to detect based on the socialites because an actor’s social
trajectory reflects their global standing in the network while the Crimea Crisis is primarily
a regional conflict. In contrast, the latent space, which captures local transitive effects,
should better reflect this more localized conflict.
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Figure 6: Posterior means of the material conflict social trajectories. Select countries are
highlighted in color with bands that represent 95% credible intervals. The re-
maining countries’ social trajectories are displayed with gray curves.
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Figure 7: Heatmap of the homophily coefficients’ posterior means for the ICEWS network.
Each cell contains the coefficient’s posterior mean and 95% credible interval.
Red/blue cells indicate values greater/less than the reference layer (verbal coop-
eration).

We begin analyzing the latent space by interpreting the estimated homophily coefficients,
Λk (Figure 7). All layers exhibit assortativity along all latent dimensions. Interestingly,
we notice similarities in how the cooperation and the conflict layers use the second and
third dimensions of the latent space. For these dimensions, the conflict layers have larger
homophily coefficients than the cooperation layers, which can be seen by comparing the
first and second rows to the third and fourth rows of the heatmap. To interpret this result,
we visualize the latent space’s layout.
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Figure 8: Estimated latent space for the ICEWS networks on February 2012 (left) and
February 2014 (right). The first row plots the second dimension (vertical) against
the first dimension (horizontal), and the second row plots the third dimension
(vertical) against the first dimension (horizontal). The x and y axes are denoted
by the dashed horizontal and vertical lines, respectively. The names of each nation
are annotated. The ellipses are two standard deviation (∼ 95%) credible ellipses
for each actor’s latent position. Ukraine and Russia are highlighted in blue and
red, respectively.
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Figure 8 displays the estimated latent space during February 2012 and February 2014.
The latent space encodes the geographic locations of the countries. Due to the positive
homophily of the relations, actors are more likely to connect when their latent positions
share a common angle. Figure 8’s first row plots the second latent dimension (vertical axis)
against the first latent dimension (horizontal axis). In these plots, Middle Eastern nations
are in the top left quadrant, Eastern African nations are in the top right quadrant, Latin
American nations are in the bottom right quadrant, and Eastern European countries are
in the bottom left quadrant. Furthermore, the second latent dimension mainly separates
Middle Eastern and African nations from nations in Eastern Europe and Latin America.
Figure 8’s second row plots the third latent dimension against the first latent dimension.
In these plots, the third dimension (the vertical axis) is used to separate Eastern European
nations into northern countries near Russia’s border and Southeast European countries, and
to separate Asian nations from African nations. Furthermore, highly sociable nations, such
as the United States, are near the center of the latent space in both plots because their high
sociality explains most of their interactions. Overall, we conclude that the higher values of
the conflict homophily coefficients indicate that the regional (geographic) effects encoded
by the second and third latent dimensions play a more prominent role in predicting conflict
than cooperation.

Finally, we demonstrate how the latent space reflects the regional Crimea Crisis between
Russia and Ukraine in early 2014. Figure 9 displays the latent trajectories for the two
nations by plotting the magnitudes of their latent positions as well as the angle between
them. Recall that the relation’s positive homophily means that actors are more likely to
connect when their latent positions have a large magnitude and a small angle between them.
Unlike the actor’s social trajectories, their latent trajectories are highly variable during the
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Figure 9: Posterior means and 95% credible intervals of Ukraine and Russia’s latent tra-
jectories. The top and bottom plots give estimates for each position’s magnitude
and the angle between Russia and Ukraine’s positions, respectively. Estimates
are calculated using 5,000 samples from the approximate posterior.
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Figure 10: Observed values of the adjacency matrices where a dot indicates that Ukraine
and Russia had a particular relation during that month (top). The posterior
means and 95% credible intervals for the monthly link probability between the
two nations across the four international relations (bottom). Estimates are cal-
culated using 5,000 samples from the approximate posterior. The horizontal
dashed black line indicates a probability of 0.5.

Crimea Crisis. Around the second half of 2013, the magnitude of Ukraine’s latent position
increases significantly, reaching a maximum in early 2014. During this time, the magnitude
of Russia’s latent position also increases slightly. In addition, the angle between the two
countries decreases during that time. Comparing Ukraine and Russia’s latent positions in
February 2012 to those in February 2014 in Figure 8, we see that they align themselves while
moving toward the periphery of the latent space. Furthermore, these dynamics mostly result
from changes in the second and third dimensions of their latent positions. These dynamics
result in an increased connection probability between the two nations in all layers during
the crisis, see Figure 10. Overall, we conclude that the latent trajectories reflect regional
events in the ICEWS data.

5.2 Epidemiological Face-to-Face Contact Networks

This case study uses our proposed model to analyze longitudinal face-to-face contact net-
works drawn from an epidemiological survey of students at a primary school (grades 1 to
5) in Lyon, France. Such contact networks influence mathematical models of infectious
disease spread in varying populations (Wallinga et al., 2006; Zagheni et al., 2008). Also,
the analysis of these contact patterns allows school administrators to mitigate infectious
disease spread in classrooms by determining the times during the day when spread is most
prevalent. In the exploratory phase, these analyses often have difficulty visualizing the
complicated dynamic networks. Furthermore, they often do not formally quantify the un-
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certainty in network statistics. In this section, we demonstrate how our model provides a
meaningful network visualization and quantification of uncertainty.

The contact networks were collected by the SocioPatterns collaboration (http://www.
sociopatterns.org) and initially analyzed in Stehlé et al. (2011). Contact data is available
for 242 individuals (232 children and 10 teachers) belonging to grades 1 through 5. Each
grade is split into two sections (A and B) so that there are ten classes overall. Each class
has its own classroom and teacher. The school day runs from 8:30 am to 4:30 pm, with a
lunch break from 12:00 pm to 2:00 pm and two breaks of 20 to 25 minutes around 10:30 am
and 3:30 pm.

The face-to-face contacts occurred over two days: Thursday, October 1st, 2009, and
Friday, October 2nd, 2009. Data was collected from 8:45 am to 5:20 pm on the first day
and from 8:30 am to 5:05 pm on the second day. Radio-frequency identification (RFID)
devices measured the contacts between individuals. The RFID sensor registered a contact
when two individuals were within 1 to 1.5 meters during a 20-second interval. This distance
range was chosen to correspond to the range over which a communicable infectious disease
could spread. For more details on the data collection technology, see Cattuto et al. (2010).

5.2.1 Statistical Network Analysis of the School Contact Network

We structured the face-to-face contact data as a dynamic multilayer network recording face-
to-face interactions each day. We treated each day as a layer so that the layers correspond to
Thursday and Friday. We set Friday as the reference layer because the associated adjacency
matrices have the largest maximum rank across all time points. We divided the daily
contact networks into 20-minute time intervals between 9:00 am and 5:00 pm and extended
the first and last time intervals to accommodate the different starting and ending times
of the experiment on the two days. We chose this bin size to match Stehlé et al. (2011),
who found that a 20-minute time window appropriately filtered out the noisy fluctuations
of the dynamic contact networks and adequately retained the slowly-varying information
about the contact network’s evolution. This preprocessing resulted in a dynamic multilayer
network with K = 2 layers, T = 24 time steps, and n = 242 actors. Specifically, an edge
(Y k
ijt = 1) means that actor i and actor j had at least one registered interaction during the

tth 20-minute interval on day k.

We fit six models with dimensions ranging from 1 to 6 using the SMF algorithm and
determined that a latent space dimension of d = 2 fit the data best based on the AIC, see
Figure 19 in Appendix J. The chosen model’s in-sample AUC was 0.97, which indicates a
good fit to the data. Since the model’s latent positions are only identifiable up to a signed-
permutation, the latent positions at time t (for t ≥ 2) are matched to the positions closest
to their previous positions at time t− 1 through a signed-permutation.

5.2.2 Dynamics of the Epidemic Branching Factor

Here, we demonstrate how to use our model to (1) determine periods in the school day most
susceptible to the spread of infectious disease and (2) identify differences in the contact
patterns between the two days. To quantify a network’s contribution to the spread of
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Figure 11: Epidemic branching factors for the face-to-face contact networks on Thursday
(left) and Friday (right) at different times throughout the school day. The dashed
black curves depict the observed network’s branching factor. Boxplots show the
range of the branch factor’s posterior distribution.

infectious disease, we use the epidemic branching factor (Andersson, 1998), defined as

κ =

∑n
i=1 d

2
i /n∑n

i=1 di/n
,

where di is the ith node’s degree. The epidemic branching factor is related to the basic
reproduction number, R0, which is (loosely) equal to the number of secondary infections
caused by a typical infectious individual during an epidemic’s early stages (Anderson and
May, 1991). In network-based susceptible-infected-recovered (SIR) models, R0 equals τ(κ−
1)/(τ + γ), where τ and γ are infection and recovery rates, respectively (Andersson, 1997).
This relation implies that larger branching factors lead to more massive epidemics.

Figure 11 depicts the posterior distribution of the epidemic branching factor. The
boxplots contain 500 networks, each sampled from a different set of latent variables drawn
from the model’s approximate posterior. The model matches the observed branching factor
for most time steps, which include some of the most dramatic changes at 12:00 pm to 12:20
pm, 1:00 pm to 1:20 pm, and 4:00 pm to 4:20 pm. However, the model underestimates
the change at 10:40 am to 11:00 am on Thursday. Regardless, the model still captures
these four spikes in branching factor. Intuitively, the timings of these spikes occur during
lunchtime (12:00 pm to 2:00 pm) and the two short breaks (around 10:30 am and 3:30 pm).
More surprisingly, the branching factor’s dynamics differ between the two days. The most
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Figure 12: Estimated latent space for the primary school face-to-face contact networks from
10:40 am to 11:00 am. The gray lines indicate observed edges on Thursday (left)
and Friday (right). The x and y axes are denoted by the dashed horizontal and
vertical lines, respectively. The students are colored by their classroom and
section, while teachers are displayed with a yellow star. The ellipses are two
standard deviation (∼ 95%) credible ellipses for each actor’s latent position.

apparent difference is the spike from 10:40 am to 11:00 am on Thursday that is not present
on Friday. To understand what caused this difference, we analyzed the shared latent space.
We defer a discussion of the actor’s social trajectories to Appendix J.

Figure 12 depicts the latent positions’ posterior means and the observed edges on Thurs-
day and Friday during the first short break from 10:40 am to 11:00 am. The inferred ho-
mophily coefficients are all positive and significantly different between layers (see Figure 22
in Appendix J). The latent space accurately clusters the students into their ten classrooms.
The two layers share the same classroom structure, which affirms our choice of a shared
latent space. The difference in branching factors is due to the varying mixing patterns
between the classrooms on the two days. Specifically, the classrooms that interact on the
two days are different. On Thursday, there are many contacts between students in classes
1A, 1B, 2A, 3A, 3B, and 4B. In contrast, on Friday, classes 1A, 2A, 2B, 4B, and 5B inter-
act. Furthermore, the number of edges between classrooms is much lower on Friday than
on Thursday. This observation implies a simple intervention to mitigate disease spread:
stagger each classroom’s break time in order to limit contacts between students of different
classes, which will lower the epidemic branching factor.
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6. Discussion

This article proposed a flexible, interpretable, and computationally efficient latent space
model for dynamic multilayer networks. Our eigenmodel for dynamic multilayer networks
decomposes the dyadic data into a common time-varying latent space used differently by
the layers through layer-specific homophily levels and additive node-specific social trajec-
tories that account for further degree heterogeneity. Also, we determined and corrected
for various identifiability issues. This accomplishment allows for an intuitive interpretation
of the latent space, unlike previous nonparametric models (Durante et al., 2017). Next,
we developed an efficient variational inference algorithm for parameter estimation. Unlike
previous variational approaches, we maintain the essential temporal dependencies in the
posterior approximation. Furthermore, our variational algorithm is widely applicable to
general dynamic bilinear latent space models. A simulation study established the effective-
ness of our estimation procedure to scale to various network sizes. Finally, we demonstrated
how to use our model to analyze international relations from 2009 to 2016 and understand
the spread of an infectious disease in a primary school contact network.

Many real-world networks contain non-binary relations. One can adopt the proposed
model to networks with non-binary edges with minor changes. For example, replacing
the Bernoulli likelihood in Equation (1) with a Gaussian likelihood can model real-valued
networks with minimal changes to the variational algorithm. However, extending the vari-
ational algorithm to general exponential family likelihoods, such as Poisson or negative
binomial, is a direction for future research.

Relations are often directed in nature; therefore, it is natural to generalize the model
to directed networks. Such a model needs to allow for varying levels of reciprocity in the
directed relations. A simple extension of our model to directed networks is

Y k
ijt

ind.∼ Bernoulli
(

logit−1
[
Θk
ijt

])
, with Θk

ijt = δik,t + γjk,t + XiT
t ΛkZ

j
t ,

where Y k
ijt = 1 (Y k

ijt = 0) denotes the presence (absence) of a directed edge from i to j in
layer k at time t. The latent variables’ distributions are

γik,1
iid∼ N(0, τ2

γ ), γik,t ∼ N(γik,t−1, σ
2
γ), Zi1

iid∼ N(0d,Ψ0,z), Zit ∼ N(Zit−1, σ
2
zId),

and the priors on the remaining parameters are left unchanged from the undirected case.
In this case, δik,t, γ

i
k,t ∈ R model degree heterogeneity in outgoing and incoming edges,

respectively. The asymmetric latent positions Xi
t,Z

i
t ∈ Rd allow an actor’s features to

differ depending on whether they are receiving or initiating the relation. The variational
inference algorithm for this model remains mostly unchanged. However, a model that does
not drastically increase the number of parameters compared to the undirected case, such
as the one in Sewell and Chen (2015), is an area of research interest.

Further research directions include increasing the algorithm’s scalability through stochas-
tic variational inference (Hoffman et al., 2013; Aliverti and Russo, 2022) and exploring the
variational estimates’ statistical properties. Overall, our proposed eigenmodel for dynamic
multilayer networks is an interpretable statistical network model with applications to var-
ious real-world scientific problems. A repository for the replication code is available on
Github (Loyal, 2023).
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Appendix A. Parameter Identifiability Without Assumption A4

In this section, we analyze the identifiability of the proposed eigenmodel for dynamic mul-
tilayer networks when Assumption A4 does not hold. First, Proposition 2 shows that
Assumptions A1—A3 are sufficient to identify the model up to a restricted linear transfor-
mation of the latent space that varies by time.

Proposition 2 Suppose that two sets of parameters {δ1:K,1:T ,X1:T ,Λ1:K} and {δ̃1:K,1:T ,
X̃1:T , Λ̃1:K} satisfy Assumptions A1—A3 from Theorem 1, then the model is identifiable
up to a linear transformation of the latent space at each time point. That is, if for all
1 ≤ k ≤ K and 1 ≤ t ≤ T we have that

δk,t1
T
n + 1nδ

T
k,t + XtΛkXT

t = δ̃k,t1
T
n + 1nδ̃

T
k,t + X̃tΛ̃kX̃T

t ,

then for all 1 ≤ k ≤ K and 1 ≤ t ≤ T we have that

δ̃k,t = δk,t, X̃t = XtMt, Λ̃k = MT
t ΛkMt,

where each Mt ∈ Rd×d satisfies MtIp′,q′M
T
t = Ip,q for 1 ≤ t ≤ T .

Under Proposition 2, the latent space is identifiable up to a restricted set of linear
transformations, Mt, that are difficult to interpret. For this reason, we provide the following
proposition, which reduces the set of linear transformations to a well-studied group of
transformations when the latent space dimension d ≤ 3, which is often the case in practice.

Proposition 3 Consider the same setup as in Proposition 2. If 1 ≤ d ≤ 3, then Ip,q = Ip′,q′

so that each Mt is in the indefinite orthogonal group, i.e., MtIp,qM
T
t = Ip,q for 1 ≤ t ≤ T .

Invariance under the indefinite orthogonal group is common in LSMs that allow a dis-
assortative latent space (Rubin-Delanchy et al., 2022). Furthermore, this group reduces
to the orthogonal group, another source of non-identifiability in many LSMs, when p or q
equals d. The most notable property of the indefinite orthogonal group is that it does not
preserve Euclidean distances. This implies that any inference based on Euclidean distances
in the latent space is not well-defined. For a detailed discussion, we refer the reader to
Rubin-Delanchy et al. (2022), who studied inference under such a non-identifiability in the
context of a generalized random dot product graph (RDPG) model. In particular, they
showed that any post hoc clustering of the latent positions should use a Gaussian mixture
model with elliptical covariance matrices since the clustering results are invariant to in-
definite orthogonal transformations. This observation is essential if one intends to use the
latent positions for community detection without Assumption A4.
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Appendix B. Proofs of Proposition 2, Proposition 3, and Theorem 1

This section demonstrates the identifiability of our model under the assumptions proposed
in Proposition 2, Proposition 3, and Theorem 1. Before stating the proofs, we need the
following lemma.

Lemma 4 For any v = (v1, . . . , vn)T ∈ Rn, if v1T
n1n + 1nv

T1n = 0, then v = 0.

Proof The condition can be written as

n

v1
...
vn

+


∑n

i=1 vi
...∑n
i=1 vi

 =

0
...
0

 ,

which implies v1 = · · · = vn = −(1/n)
∑n

i=1 vi. Thus, we have v = 0.

Proof [Proof of Proposition 2]. We begin by showing that under Assumption A1, the social
trajectories δk,t are identifiable. Under Assumption A1, JnXt = Xt and JnX̃t = X̃t, which
implies that XtΛkXT

t 1n = X̃tΛkX̃T
t 1n = 0. Now assume two sets of parameters satisfy

δk,t1
T
n + 1nδ

T
k,t + XtΛkXT

t = δ̃k,t1
T
n + 1nδ̃

T
k,t + X̃tΛ̃kX̃T

t (8)

for k = 1, . . . ,K and t = 1, . . . , T . Right multiplying 1n on both sides of the above equation
gives

δk,t1
T
n1n + 1nδ

T
k,t1n = δ̃k,t1

T
n1n + 1nδ̃

T
k,t1n,

or

(δk,t − δ̃k,t)1T
n1n + 1n(δk,t − δ̃k,t)T1n = 0.

Applying Lemma 4, we conclude that

δk,t = δ̃k,t (9)

for all k and t.

Now, we focus on the identifiability of the latent space and the homophily coefficients.
By Assumption A3, for the reference layer r, Equation (8) and Equation (9) imply

XtIp,qXT
t = X̃tIp′,q′X̃T

t . (10)

By Assumption A2, Xt and X̃t are full rank so have left inverses B and B̃, respectively. In
other words, BXt = B̃X̃t = Id. Multiplying Equation (10) on the right by B̃TIp′,q′ , we have
that

X̃t = XtIp,qXT
t B̃

TIp′,q′ = XtMt, (11)

where Mt = Ip,qXT
t B̃

T Ip′,q′ ∈ Rd×d. More generally, for all layers k ∈ {1, . . .K}, we have

XtΛkXT
t = X̃tΛ̃kX̃T

t = XtMtΛ̃kM
T
t XT

t ,
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where the last equality used the identity in Equation (11). Multiplying each side of the
previous identity on the left by B and on the right by BT, we conclude that

Λk = MtΛ̃kM
T
t . (12)

However, we want a transformation that takes Λk to Λ̃k. To proceed, we note that Mt

is invertable. Indeed, since Equation (12) holds for the reference layer, we conclude that
MtIp′,q′M

T
t = Ip,q. It is then easy to check that M−1

t = Ip′,q′M
T
t Ip,q. Therefore, (MT

t )−1 =
(M−1

t )T = Ip,qMtIp′,q′ . Multiplying Equation (12) on the left by M−1
t and on the right by

(MT
t )−1, we find that

Λ̃k =
[
Ip′,q′M

T
t Ip,q

]
Λk
[
Ip,qMtIp′,q′

]
.

Lastly, multiplying on the left and the right by Ip′,q′ and noting that Ip′,q′Λ̃kIp′,q′ = Λ̃k and
Ip,qΛkIp,q = Λk, we find that

Λ̃k = MT
t ΛkMt,

which completes the proof.

Proof [Proof of Proposition 3]. From Proposition 2, we have that each matrix Mt satisfies
MtIp′,q′M

T
t = Ip,q for 1 ≤ t ≤ T . Consider a single matrix M ∈ {Mt}Tt=1. Taking the

determinant of both sides of MIp′,q′M
T = Ip,q, we conclude that det(M)2(−1)q

′
= (−1)q,

so that q−q′ is an even number. Without loss of generality, assume that q ≥ q′. We proceed
case by case:

(i) d = 1. Since q − q′ can only equal zero, the result is immediate.

(ii) d = 2. In this case, the only non-trivial case is q − q′ = 2, which corresponds to
q = 2, q′ = 0. Now, we show that this combination leads to a contradiction. In
this case, M satisfies MMT = −I2, which is a contradiction because MMT is a
positive-definite matrix while −I2 is not. Thus, q = q′.

(iii) d = 3. Once again, the only non-trivial case is q − q′ = 2, where we are have the
following two cases: q = 3, q′ = 1 and q = 2, q′ = 0. We proceed by showing that both
scenarios lead to a contradiction.

For the case q = 3, q′ = 1, we have MI2,1M
T = −I3 which implies −MTM = I2,1,

where we used the fact that MTIp,qM = Ip′,q′ shown during the proof of Proposition
2. Letting mj be the jth column of M , we have that

−‖m1‖22 = 1,

which cannot be satisfied by a real vector.

Similarly for q = 2, q′ = 0, we have MMT = I1,2. Letting m̃j be the jth row vector
of M , we have that

‖m̃2‖22 = −1.

which is impossible for a real vector.
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Therefore, Ip,q = Ip′,q′ when 1 ≤ d ≤ 3, which completes the proof.

Proof [Proof of Theorem 1]. Without loss of generality, consider a single matrix M ∈
{Mt}Tt=1. Further let Λ` = diag(λ`) and Λ̃` = diag(λ̃`), so that by Proposition 2 we have
that

diag(λ̃`) = MT diag(λ`)M. (13)

Now, left multiplying MIp′,q′ on both sides of Equation (13) and applying the identity
MIp′,q′M

T = Ip,q, we have that

M diag(λ̃`)Ip′,q′ = diag(λ`)Ip,qM, (14)

Denoting the jth columns of M by mj ∈ Rd, we can re-express the linear system in Equation
(14) as (

λ̃`,j(Ip′,q′)jj Id − diag(λ`)Ip,q

)
mj = 0d for j = 1, . . . , d, (15)

where 0d is a d-dimensional vector of zeros.

Now, we determine what relationship Equation (15) imposes on diag(λ`) and diag(λ̃`).
Let Aj = λ̃j,`(Ip′,q′)jj Id − diag(λ`)Ip,q for j = 1, . . . , d. Since M is full rank, Aj must be
a singular matrix for j = 1, . . . , d. Combining the facts that diag(λ̃`)Ip′,q′ and diag(λ`)Ip,q
are both full rank with d distinct elements and that there are d singular diagonal matrices
Aj , it is easy to see that diag(λ`)Ip,q = P diag(λ̃`)Ip′,q′P

T for some permutation matrix P .
In other words, diag(λ`)Ip,q equals diag(λ̃`)Ip′,q′ with permuted diagonal entries.

Now we focus on the consequences for M . As a result of the argument in the previous
paragraph, each Aj is a rank d− 1 diagonal matrix. This means that each Aj is a diagonal
matrix with d − 1 non-zero entries and a single zero entry on the diagonal. Therefore,
Equation (15) holds if and only if {mj}dj=1 are d-dimensional vectors with a single non-zero
entry where Aj is zero on the diagonal. Also, since M is full rank, {m1, . . . ,md} are linearly
independent. This implies that M is a generalized permutation matrix: M = P diag(s)
where diag(s) is a full-rank diagonal matrix and P is a permutation matrix.

To complete the proof, we focus on the diagonal entries of MIp′,q′M
T = Ip,q. From

the previous paragraph, we have that MIp′,q′M
T = P diag(s)Ip′,q′ diag(s)PT. Let σ :

{1, . . . , d} → {1, . . . , d}, denote the permutation encoded by P , so that

P =

eT
σ(1)
...

eT
σ(d)

 ,

where e1, . . . , ed are the standard basis vectors. Thus, the diagonal entries must satisfy

(Ip′,q′)σ(j)σ(j) s
2
σ(j) = (Ip,q)jj for j = 1, . . . , d,

which holds if and only if s = {±1}d, Ip,q = Ip′,q′ , and σ only permutes the first p and last
q diagonal elements of Ip,q. In other words, for 1 ≤ t ≤ T , Mt = BlockDiagonal(P1,t, P2,t)
diag(st), where P1,t and P2,t are permutation matrices on p and q elements, respectively.
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It remains to show that Pt = Ps, where Pt = BlockDiagonal(P1,t, P2,t), for all 1 ≤ s 6=
t ≤ T . For any s, t, we have from Proposition 2 that

MT
s Λ`Ms = MT

t Λ`Mt,

which simplifies to

PtP
T
s Λ`PsP

T
t = Λ`,

using the fact that P−1 = PT for any permutation matrix P . Let Πs,t = PsP
T
t =

BlockDiagonal(P1,sP
T
1,t, P2,sP

T
2,t), which is also a permutation matrix. Since Λ`Ip,q has dis-

tinct diagonal elements, we also have that the first p elements of Λ` must be distinct from
one another and the last q elements must be distinct from one another. Using the same
argument as in the previous paragraph, it is follows that Πs,t is the identity permutation.
Therefore, PsP

T
t = Id or Ps = Pt for all 1 ≤ s 6= t ≤ T , which completes the proof.

Appendix C. Derivation of Variational Updates

This section contains detailed derivations of the variational updates presented in Section 3
of the main text. For notational simplicity, we use the shorthand Eq(θ,φ,ω) [·] = 〈·〉, where
q(θ,φ,ω) is defined in Equation (3) of the main text, to denote expectations with respect
to the full variational posterior throughout this section. For a definition of the notation
used in this section, see Algorithm 1.

Throughout this section, we encounter the following Gaussian state space model

x1 ∼ N(0d,Ψ0), (16)

xt = xt−1 + wt, wt ∼ N(0d, σ
2Id), (17)

yt = Atxt + bt + vt, vt ∼ N(0n, Ct), (18)

where xt ∈ Rd, yt ∈ Rn, At ∈ Rn×d, bt ∈ Rn, Ct ∈ Rn×n. In this context, d is not necessarily
the dimension of the latent space and n is not necessarily the number of nodes in the network.
Specifically, the full conditional distributions of the social and latent trajectories are of this
form. Before proceeding, we state a lemma used throughout Appendix C and Appendix D.

Lemma 5 For the Gaussian state space model specified by Equations (16)—(18), the con-
ditional distribution p(x1:T | y1:T ) is in the exponential family with natural parameters

ψ = (−Ψ−1
0 /2,−1/2σ2,Γ1

1:T ,−Γ2
1:T /2), (19)

where Γ1
t = AT

t C
−1
t yt −AtC−1

t bt and Γ2
t = AT

t C
−1
t At for 1 ≤ t ≤ T .
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Proof We have

log p(x1:T | y1:T ) ∝ −1

2
xT

1 Ψ−1
0 x1 −

1

2σ2

T∑
t=2

‖xt − xt−1‖22−

1

2

T∑
t=1

(yt −Atxt − bt)
TC−1

t (yt −Atxt − bt),

∝ −1

2
tr(Ψ−1

0 x1x
T
1 )− 1

2σ2

T∑
t=2

‖xt − xt−1‖22+

(AT
t C
−1
t yt −AtC−1

t bt)
Txt −

1

2

T∑
t=1

tr(AT
t C
−1
t Atxtx

T
t ),

which is in exponential family form with natural parameters given in Equation (19).

The variational distributions of the social and latent trajectories—Equation (4) and
Equation (5) in the main text—are GSSMs that are in the form assumed by Lemma 5.
This observation implies that the expected natural parameters, E−q(x1:T ) [ψ], are sufficient

for calculating the variational distribution’s moments, i.e., Eq(x1:T ) [xt], Eq(x1:T )

[
xtx

T
t

]
, and

Eq(x1:T )

[
xtx

T
t+1

]
. In Appendix D, we derive a variational Kalman smoother that calculates

these moments recursively.

C.1 Derivation of Algorithm 2

The coordinate updates for q(ωkijt) are given in Algorithm 2, which we formally derive in
the remainder of this section.

Proposition 6 Under the eigenmodel for dynamic multilayer networks with the same prior
distributions and variational factorization defined in the main text, q(ωkijt) = PG(1, ckijt)

where ckijt is given in Equation (20). Furthermore, the mean of this distribution is given by
Equation (21).

Proof From the exponential tilting property of the Pólya-gamma distribution, we have
that

ωkijt | · ∼ PG(1, ψkijt), (22)

where ψkijt = δik,t + δjk,t + XiT
t ΛkX

j
t . This distribution is in the exponential family with

natural parameter −(ψkijt)
2/2. The variational distribution is then a PG(1, ckijt) where

(ckijt)
2 = E−q(ωkijt)

[
(ψkijt)

2
]
.
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Update q(ωkijt) = PG(1, ckijt):

For each k ∈ {1, . . . ,K}, t ∈ {1, . . . T}, and (i, j) ∈ {(i, j) : 1 ≤ i ≤ n, j < i}:

ckijt = (σ2
δik,t

+ µ2
δik,t

+ σ2
δjk,t

+ µ2
δjk,t

+ 2µδik,t
µ
δjk,t

+ 2(µδik,t
+ µ

δjk,t
)µiTt diag(µλk)µjt +

‖(Σλk + µλkµ
T
λk

)� (Σi
t + µitµ

iT
t )� (Σj

t + µjtµ
j T
t )‖)1/2, (20)

µωkijt
=

1

2ckijt

(
ec
k
ijt − 1

1 + ec
k
ijt

)
. (21)

Algorithm 2: Coordinate ascent updates for the auxiliary Pólya-gamma variables. Here, �
is the Hadamard product between two matrices, i.e., (A�B)ij = AijBij , and
‖A‖ =

∑
i

∑
j Aij .

It remains to calculate the natural parameter ckijt. We have that

(ckijt)
2 = E−q(ωkijt)

[
(ψkijt)

2
]

= 〈(δik,t + δjk,t + XiT
t ΛkX

j
t )

2〉,

= 〈(δik,t + δjk,t)
2〉+ 2〈δik,t + δjk,t〉〈X

i
t〉T〈Λk〉〈X

j
t 〉+ 〈(XiT

t ΛkX
j
t )

2〉,

= σ2
δik,t

+ µ2
δik,t

+ σ2
δjk,t

+ µ2
δjk,t

+ 2µδik,t
µ
δjk,t

+

2(µδik,t
+ µ

δjk,t
)µiTt diag(µλk)µjt + E−q(ωkijt)

[
(XiT

t ΛkX
j
t )

2
]
.

Note that the last term is equal to

E−q(ωkijt)
[
(XiT

t ΛkX
j
t )

2
]

= E−q(ωkijt)

 d∑
g=1

d∑
h=1

λkgλ
k
hX

i
tgX

i
thX

j
tgX

j
th

 ,
=

d∑
g=1

d∑
h=1

Eq(λk)

[
λkgλ

k
h

]
Eq(Xi

t)

[
Xi
tgX

i
th

]
E
q(Xj

t )

[
Xj
tgX

j
th

]
,

= ‖Eq(λk)

[
λkλ

T
k

]
� Eq(Xi

t)

[
Xi
tX

iT
t

]
� E

q(Xj
t )

[
Xj
tX

j T
t

]
‖,

= ‖(Σλk + µλkµ
T
λk

)� (Σi
t + µitµ

iT
t )� (Σj

t + µjtµ
j T
t )‖,

where � is the Hadamard product, i.e, (A�B)ij = AijBij , and ‖A‖ =
∑

i

∑
j Aij .

Lastly, the moments of the Pólya-gamma distribution are available in closed form. In
particular, we have that

µωkijt
= Eq(ωkijt)

[
ωkijt

]
=

1

2ckijt

(
ec
k
ijt − 1

1 + ec
k
ijt

)
.
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C.2 Derivation of Algorithm 3

The coordinate updates for q(δi1:T ), q(τ2
δ ), and q(σ2

δ ) are given in Algorithm 3, which we
formally derive in the remainder of this section.

Proposition 7 Under the eigenmodel for dynamic multilayer networks with the same prior
distributions and variational factorization defined in the main text, q(τ2

δ ) = Γ−1(āτ2δ
/2, b̄τ2δ

/2)

where āτ2δ
and b̄τ2δ

are defined in Equation (27) and Equation (28), respectively.

Proof Standard calculations show that

p(τ2
δ | ·) ∝

(
1

τ2
δ

)(a
τ2
δ

+nK)/2

exp

(
− 1

2τ2
δ

K∑
k=1

n∑
i=1

(δik,1)2 −
bτ2δ
2τ2
δ

)
,

∝ Γ−1

(
aτ2δ

+ nK

2
,
1

2

{
K∑
k=1

n∑
i=1

(δik,1)2 + bτ2δ

})
.

Note that Γ−1(a/2, b/2) is in the exponential family with natural parameters a and b. Thus,
the variational distribution is also an inverse-gamma distribution with natural parameters

āτ2δ
= aτ2δ

+ nK,

b̄τ2δ
= bτ2δ

+

K∑
k=1

n∑
i=1

Eq(δik,1:T )

[
(δik,1)2

]
,

= bτ2δ
+

K∑
k=1

n∑
i=1

(
σ2
δik,1

+ µ2
δik,1

)
.

Proposition 8 Under the eigenmodel for dynamic multilayer networks with the same prior
distributions and variational factorization defined in the main text, q(σ2

δ ) = Γ−1(c̄τ2δ
/2, d̄τ2δ

/2)

where c̄τ2δ
and d̄τ2δ

are defined in Equation (29) and Equation (30), respectively.

Proof Standard calculations show that

p(σ2
δ | ·) ∝

(
1

σ2
δ

)(c
σ2
δ

+nK(T−1))/2

exp

(
− 1

2σ2
δ

K∑
k=1

T∑
t=2

n∑
i=1

(δik,t − δik,t−1)2 −
dσ2

δ

2σ2
δ

)
,

∝ Γ−1

(
cσ2
δ

+ nK(T − 1)

2
,
1

2

{
K∑
k=1

T∑
t=2

n∑
i=1

(δik,t − δik,t−1)2 + dσ2
δ

})
.
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1. Update q(δik,1:T ), a linear Gaussian state space model (GSSM):

For each k ∈ {1, . . .K} and i ∈ {1, . . . , n}:

(a) For t ∈ {1, . . . T}, update the natural parameters of the GSSM:

Γ1
t =

∑
j 6=i

[Y k
ijt − 1/2− µωkijt(µδjk,t + µiTt diag(µλk)µjt )], (23)

Γ2
t =

∑
j 6=i

µωkijt
, (24)

〈
1/τ2

δ

〉
= āτ2δ

/b̄τ2δ
, (25)〈

1/σ2
δ

〉
= c̄σ2

δ
/d̄σ2

δ
. (26)

(b) Update marginal distributions and cross-covariances as in Algorithm 7:

µδik,1:T
, σ2

δik,1:T
, {σ2

δik,t,t+1
}T−1
t=1 = KalmanSmoother(Γ1

1:T ,Γ
2
1:T , āτ2δ

/b̄τ2δ
, c̄σ2

δ
/d̄σ2

δ
).

2. Update q(τ2
δ ) = Γ−1(āτ2δ

/2, b̄τ2δ
/2):

āτ2δ
= aτ2δ

+ nK, (27)

b̄τ2δ
= bτ2δ

+

K∑
k=1

n∑
i=1

(
σ2
δik,1

+ µ2
δik,1

)
. (28)

3. Update q(σ2
δ ) = Γ−1(c̄σ2

δ
/2, d̄σ2

δ
/2):

c̄σ2
δ

= cσ2δ + nK(T − 1), (29)

d̄σ2
δ

= dσ2
δ

+
K∑
k=1

T∑
t=2

n∑
i=1

{
σ2
δik,t

+ µ2
δik,t

+ σ2
δik,t−1

+ µ2
δik,t−1

− 2(σ2
δik,t−1,t

+ µδik,t−1
µδik,t

)
}
.

(30)

Algorithm 3: Coordinate ascent updates for the social trajectories. KalmanSmoother is the
variational Kalman smoother defined in Algorithm 7 of Appendix D.
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Note that Γ−1(a/2, b/2) is in the exponential family with natural parameters a and b. Thus,
the variational distribution is also an inverse-gamma distribution with natural parameters

c̄σ2
δ

= cσ2
δ

+ nK(T − 1),

d̄σ2
δ

= dσ2
δ

+
K∑
k=1

T∑
t=2

n∑
i=1

Eq(δik,1:T )

[
(δik,t − δik,t−1)2

]
,

= dσ2
δ

+

K∑
k=1

T∑
t=2

n∑
i=1

{
σ2
δik,t

+ µ2
δik,t

+ σ2
δik,t−1

+ µ2
δik,t−1

− 2(σ2
δk,t−1,t

+ µδik,t
µδik,t−1

)
}
.

Proposition 9 Under the eigenmodel for dynamic multilayer networks with the same prior
distributions and variational factorization defined in the main text, q(δik,1:T ) is a Gaussian
state space model with natural parameters given by Equations (23)—(26).

Proof From Equation (4), we associate p(δik,1:T | ·) with a GSSM parameterized by

xt = δik,t ∈ R,
yt = zik,t ∈ Rn−1,

At = (ωki1t, . . . , ω
k
i(i−1)t, ω

k
i(i+1)t, . . . , ω

k
int) ∈ Rn−1, (31)

(bt)j = ωkijt(δ
j
k,t + Xj T

t ΛkX
i
t), for j 6= i,

Ct = diag(ωki1t, . . . , ω
k
i(i−1)t, ω

k
i(i+1)t, . . . , ω

k
int).

We then apply Lemma 5 in Appendix C to identify the natural parameters. Note that
AT
t C
−1
t = 1n−1, so that expected natural parameters are

Γ1
t = 〈1T

n−1(yt − bt)〉 =
∑
j 6=i

(Y k
ijt − 1/2− µωkijt(µδjk,t + µj T

t diag(µλk)µit)), (32)

Γ2
t = 〈1T

n−1At〉 =
∑
j 6=i

µωkijt
. (33)

Furthermore, from Proposition 7 and Proposition 8, we have that 1/τ2
δ and 1/σ2

δ are gamma
distributed with means āτ2δ

/b̄τ2δ
and c̄σ2

δ
/d̄σ2

δ
, respectively. Finally, we can apply the vari-

ational Kalman smoothing equations derived in Appendix D to calculate the moments of
q(δik,1:T ).

C.3 Derivation of Algorithm 4

The coordinate updates for q(Xi
1:T ), q(Ψ0), and q(σ2) are given in Algorithm 4, which we

formally derive in the remainder of this section.
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1. Update q(Xi
1:T ), a linear Gaussian state space model (GSSM):

For i ∈ {1, . . . , n}:

(a) For t ∈ {1, . . . , T}, update the natural parameters of the GSSM:

Γ1
t =


∑K

k=1

∑
j 6=i µλk1µ

j
t1[Y k

ijt − 1/2− µωkijt(µδik,t + µ
δjk,t

)]

...∑K
k=1

∑
j 6=i µλkdµ

j
td[Y

k
ijt − 1/2− µωkijt(µδik,t + µ

δjk,t
)]

 , (34)

Γ2
t =

K∑
k=1

∑
j 6=i

µωkijt

(
Σλk + µλkµ

T
λk

)
�
(

Σj
t + µjtµ

j T
t

)
, (35)

〈
Ψ−1

0

〉
= ν̄ V̄ −1, (36)〈

1/σ2
〉

= c̄τ2/d̄τ2 . (37)

(b) Update marginal distributions and cross-covariances as in Algorithm 7:

µi1:T ,Σ
i
1:T , {Σi

t,t+1}T−1
t=1 = KalmanSmoother(Γ1

1:T ,Γ
2
1:T , ν̄ V̄

−1, c̄σ2/d̄σ2).

2. Update q(Ψ0) = Wishart−1(ν̄, V̄ ):

ν̄ = ν + n, (38)

V̄ = V +
n∑
i=1

(
Σi

1 + µi1µ
iT
1

)
. (39)

3. Update q(σ2) = Γ−1(c̄σ2/2, d̄σ2/2):

c̄σ2 = cσ2 + nd(T − 1), (40)

d̄σ2 = dσ2 +
T∑
t=2

n∑
i=1

{
tr(Σi

t) + µiTt µ
i
t + tr(Σi

t−1) + µiTt−1µ
i
t−1

− 2(tr(Σi
t−1,t) + µiTt−1µ

i
t)
}
. (41)

Algorithm 4: Coordinate ascent updates for the latent trajectories. KalmanSmoother is the
variational Kalman smoother defined in Algorithm 7 of Appendix D.
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Proposition 10 Under the eigenmodel for dynamic multilayer networks with the same
prior distributions and variational factorization defined in the main text, q(Ψ0) = Wishart−1

(ν̄, V̄ ) where ν̄ and V̄ are defined in Equation (38) and Equation (39), respectively.

Proof Standard calculations show that

p(Ψ0 | ·) ∝ |Ψ0|−(ν+n+d+1)/2 exp

(
−1

2
tr(VΨ−1

0 )− 1

2

n∑
i=1

tr(Xi
1X

iT
1 Ψ−1

0 )

)

∝Wishart−1

(
ν + n, V +

n∑
i=1

Xi
1X

iT
1

)
.

Note that Wishart−1(ν, V ) is in the exponential family with natural parameters ν and
V . Thus, the variational distribution is also an inverse-Wishart distribution with natural
parameters

ν̄ = ν + n,

V̄ = V +
n∑
i=1

Eq(Xi
1:T )

[
Xi

1X
iT
1

]
= V +

n∑
i=1

(
Σi

1 + µi1µ
iT
1

)
.

Proposition 11 Under the eigenmodel for dynamic multilayer networks with the same
prior distributions and variational factorization defined in the main text, q(σ2) = Γ−1(c̄σ2/2,
d̄σ2/2) where c̄σ2 and d̄σ2 are defined in Equation (40) and Equation (41), respectively.

Proof Standard calculations show that

p(σ2 | ·) ∝
(

1

σ2

)(cσ2+nd(T−1))/2

exp

(
− 1

2σ2

T∑
t=2

n∑
i=1

‖Xi
t −Xi

t−1‖22 −
dσ2

2σ2

)
,

∝ Γ−1

(
cσ2 + nd(T − 1)

2
,
1

2

{
T∑
t=2

n∑
i=1

‖Xi
t −Xi

t−1‖22 + dσ2

})
.

Note that Γ−1(a/2, b/2) is in the exponential family with natural parameters a and b. Thus,
the variational distribution is also an inverse-gamma distribution with natural parameters

c̄σ2 = cσ2 + nd(T − 1),

d̄σ2 = dσ2 +
T∑
t=2

n∑
i=1

Eq(Xi
1:T )

[
‖Xi

t −Xi
t−1‖22

]
,

= dσ2 +
T∑
t=2

n∑
i=1

{
tr(Σi

t) + µiTt µ
i
t + tr(Σi

t−1) + µiTt−1µ
i
t−1

− 2(tr(Σi
t−1,t) + µiTt−1µ

i
t)
}
.
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Proposition 12 Under the eigenmodel for dynamic multilayer networks with the same
prior distributions and variational factorization defined in the main text, q(Xi

1:T ) is a Gaus-
sian state space model with natural parameters given in Equations (34)—(37).

Proof First we lay out some notation. Let

θik,t = δik,t1n−1 + (δ1
k,t, . . . , δ

i−1
k,t , δ

i+1
k,t , . . . , δ

n
k,t)

T ∈ Rn−1,

ωkit = (ωki1t, . . . , ω
k
i(i−1)t, ω

k
i(i+1)t, . . . , ω

k
int)

T ∈ Rn−1,

Xi
k,t = (X1

tΛk, . . . ,X
i−1
t Λk,X

i+1
t Λk, . . . ,X

n
t Λk)

T ∈ R(n−1)×d.

We then define the concatenated version of these quantities:

Ωi
t = diag(ω1 T

it , . . . ,ω
K T
it ) ∈ RK(n−1)×K(n−1),

θit = (δiT1,t , . . . , δ
iT
K,t)

T ∈ RK(n−1),

and Xi
t ∈ RK(n−1)×d formed by stacking the matrices Xi

k,t row-wise for k = 1, . . . ,K.

From Equation (5), we associate p(Xi
1:T | ·) with a GSSM parameterized by

xt = Xi
t,

yt = zit,

At = Ωi
tX

i
t , (42)

bt = Ωi
t θ

i
t,

Ct = Ωi
t.

We then apply Lemma 5 in Appendix C to identify the natural parameters. Note that
AT
t C
−1
t = Xi

t . Taking into account the independence assumptions contained in the approx-
imate posterior, we have

Γ1
t = 〈Xi

t〉T
(
zit −

〈
Ωi
t

〉〈
θit
〉)
,

=


∑K

k=1

∑
j 6=i µλk1µ

j
t1[Y k

ijt − 1/2− µωkijt(µδik,t + µ
δjk,t

)]

...∑K
k=1

∑
j 6=i µλkdµ

j
td[Y

k
ijt − 1/2− µωkijt(µδik,t + µ

δjk,t
)]

 . (43)

Next, the individual elements of Γ2
t ∈ Rd×d are

(Γ2
t )gh =

〈
XiT
t Ωi

tX
i
t

〉
gh

=
K∑
k=1

∑
j 6=i

〈
ωkijt

〉〈
λkgλ

k
h

〉〈
Xj
tgX

j
th

〉
,
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or

Γ2
t =

∑
k=1

∑
j 6=i
µωkijt

Eq(λk)

[
λkλ

T
k

]
� E

q(Xj
1:T )

[
Xj
tX

j T
t

]
,

=
K∑
k=1

∑
j 6=i

µωkijt
(Σλk + µλkµ

T
λk

)� (Σj
t + µjtµ

j T
t ). (44)

Furthermore, from Proposition 10 and Proposition 11 we have that Ψ−1
0 is Wishart dis-

tributed with mean ν̄ V̄ −1 and 1/σ2 is gamma distributed with mean c̄σ2/d̄σ2 , respectively.
Finally, we can apply the variational Kalman smoothing equations derived in Appendix D
to calculate the moments of q(Xi

1:T ).

C.4 Derivation of Algorithm 5

The coordinate updates for q(λk) are given in Algorithm 5, which we formally derive in the
remainder of this section.

Proposition 13 Consider the eigenmodel for dynamic multilayer networks with the same
prior distributions and variational factorization defined in the main text. For k ∈ {2, . . . ,K}
(non-reference layers), q(λk) = N(µλk ,Σλk) with parameters given in Equation (47) and
Equation (48).

Proof First we define some notation. Let D = {(i, j) : j < i, 1 ≤ i ≤ n} denote the set
of dyads. Define Xi�j

t = Xi
t � Xj

t and θijk,t = δik,t + δjk,t. Let ωkt = (ωkijt)((i,j)∈D) ∈ R|D|

be a vector formed by stacking the ωkijt by dyads. Also, let Ωk = diag(ωk1 , . . . ,ω
k
T ) ∈

R|D|T×|D|T . Finally, let zk ∈ R|D|T , X ∈ R|D|T×d and θk ∈ R|D|T be formed by stacking
zkijt = Y k

ijt − 1/2, Xi�j
t and θijk,t first by dyads and then the result by time, respectively.

Standard manipulations show that

p(λk | ·) ∝ p(λk)N(zk | ΩkXλk + Ωkθk,Ωk).

Since p(λk) = N(0, σ2
λId), the full conditional distribution is Gaussian with the following

natural parameters:

Λ =

[
XTΩkX +

1

σ2
λ

Id

]
,

η = XT(zk − Ωkθk).

Taking expectations with respect to the approximate posterior and converting back to the
mean and covariance parameters, we have

Σλ =

[〈
XTΩkX

〉
+

1

σ2
λ

Id

]−1

,

µλk = Σλk〈X〉
T(z− 〈Ωk〉〈θk〉),

which is equivalent to the parameters in Equation (47) and Equation (48).
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1. Update q(λ1h) = p
1{λ1h=1}
λ1h

(1− pλ1h)1{λ1h=−1} :

For h ∈ {1, . . . , d}:

ηλ1h = log

[
ρ

1− ρ

]
+ 2

T∑
t=1

∑
j<i

{
(Y 1
ijt − 1/2− µωiijt(µδi1,t + µ

δj1,t
)µithµ

j
th−

µω1
ijt

∑
g 6=h

µλ1g((Σ
i
t)gh + µitgµ

i
th)((Σi

t)gh + µjtgµ
j
th)

}
, (45)

pλ1h = eηλ1h/(1 + eηλ1h ), µλ1h = 2pλ1h − 1, σ2
λ1h

= 1− (2pλ1h − 1)2. (46)

2. Update q(λk) = N(µλk ,Σλk):

For k ∈ {2, . . . ,K}:

Σλk =

 T∑
t=1

∑
j<i

µωkijt
(Σi

t + µitµ
iT
t )� (Σj

t + µjtµ
j T
t ) +

1

σ2
λ

Ip

−1

, (47)

µλk = Σλk


∑T

t=1

∑
j<i[Y

k
ijt − 1/2− µωkijt(µδik,t + µ

δjk,t
)]µit1µ

j
t1

...∑T
t=1

∑
j<i[Y

k
ijt − 1/2− µωkijt(µδik,t + µ

δjk,t
)]µitdµ

j
td

 . (48)

Algorithm 5: Coordinate ascent updates for the homophily coefficients.
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Proposition 14 Consider the eigenmodel for dynamic multilayer networks with the same
prior distributions and variational factorization defined in the main text. For h ∈ {1, . . . , d},
q(λ1h) = p

1{λ1h=1}
λ1h

(1− pλ1h)1{λ1h=−1} where pλ1h is given in Equation (46).

Proof The full conditional distributions are

p(λ1h | ·) ∝ p(λ1h) exp

{ T∑
t=1

∑
j<i

[
(Y 1
ijt − 1/2− ωkijt(δi1,t + δj1,t))λ1hX

i
thX

j
th−

1

2
ω1
ijtλ

2
1q(X

i
th)2(Xj

th)2 − ω1
ijt

∑
g 6=h

λ1gλ1hX
i
tgX

i
thX

j
thX

j
tg

]}
. (49)

The natural parameter is then

ηλ1h = E−q(λ1h) [log p(λ1h = 1 | ·)]− E−q(λ1h) [log p(λ1h = −1 | ·)]

= log

[
ρ

1− ρ

]
+

2
T∑
t=1

∑
j<i

{
(Y 1
ijt − 1/2µω1

ijt
(µδi1,t

+ µ
δj1,t

))µithµ
j
th−

µω1
ijt

∑
g 6=h

µλ1g((Σ
i
t)gh + µitgµ

i
th)((Σj

t )gh + µjtgµ
i
th)

}
.

Converting back to the standard parameterization, we have

pλ1h = eηλ1h/(1 + eηλ1h ),

µλ1h = 2pλ1h − 1,

σ2
λ1h

= 1− (2pλ1h − 1)2.

Appendix D. Derivation of the Variational Kalman Smoother

In this section, we derive the variational Kalman smoother used for inference in our model.
Many of our results are based on the work in Beal (2003). The major difference between
the two formulations is that we incorporate time-varying state space parameters and non-
identity covariance matrices.

Consider the Gaussian state space model specified by Equations (16)—(18). Our goal
is to perform variational inference based on the factorization q(x1:T )q(θ) where θ contains
the parameters of the GSSM. Crucially, the variational distributions of the hidden states
are also GSSMs. Indeed,

q(x1:T ) = c exp(〈log p(x1:T ,y1:T )〉) , h(x1:T ,y1:T )

= h(x1)h(y1 | x1)
T∏
t=2

h(xt | xt−1)h(yt | xt),
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Given the natural parameters
〈
Γ1

1:T

〉
=
〈
AT

1:TC
−1
1:T

〉
y1:T −

〈
AT

1:TC
−1
1:Tb1:T

〉
,
〈
Γ2

1:T

〉
=〈

AT
1:TC

−1
1:TA1:T

〉
,
〈
Ψ−1

0

〉
, and

〈
1/σ2

〉
, calculate the filtering distribution’s moments as

follows:

1. For t = 1:

Σ1 =
[〈

Ψ−1
0

〉
+
〈
AT

1 C
−1
1 A1

〉]−1
,

µ1 = Σ1

[〈
AT

1 C
−1
1

〉
y1 −

〈
AT

1 C
−1
1 b1

〉]
.

2. For t = 2, . . . , T :

Σ∗t−1 =

[〈
1

σ2

〉
Id + Σ−1

t−1

]−1

,

Σt =

[〈
1

σ2

〉
Id +

〈
AT
t C
−1
t At

〉
−
〈

1

σ2

〉2

Σ∗t−1

]−1

,

µt = Σt

[〈
AT
t C
−1
t

〉
yt −

〈
AT
t C
−1
t bt

〉
+

〈
1

σ2

〉
Σ∗t−1Σ−1

t−1µt−1

]
.

Output {µ1:T ,Σ1:T ,Σ
∗
1:(T−1)}.

Algorithm 6: Variational Kalman filter.

where

h(x1) = c1 exp(〈logN(x1 | 0,Ψ0)〉),
h(xt | xt−1) = c2 exp(〈logN(xt | xt−1, σ

2Id)〉),
h(yt | xt) = c3 exp(〈logN(yt | Atxt + bt, Ct)〉),

are Gaussian distributions and 〈·〉 denotes an expectation with respect to q(θ). When cal-
culating the distributions in q(x1:T ), we use the Gaussian distribution’s natural parameter
form so that the expectations have an analytical form. The trade-off in using this parame-
terization is that when calculating the moments of these variational GSSMs, the standard
Kalman smoothing equations are no longer applicable because we only have access to the
natural parameters. Therefore, we derive Kalman smoothing equations that are expressed
in terms of the variational distribution’s natural parameters.

D.1 Variational Kalman Filter

Property 15 For the Gaussian state space model specified in Equations (16)—(18), the
variational filtering distributions h(xt | y1:t) = N(xt | µt,Σt) with parameters that can be
calculated recursively via Algorithm 6.
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Proof Define the forwards message variables as αt(xt) = h(xt | y1:t). The filter proceeds
recursively starting at t = 1:

α1(x1) ∝ h(x1)h(y1 | x1),

∝ exp

(
−1

2

〈
xT

1 Ψ−1
0 x1 + (y1 −A1x1 − b1)TC−1

1 (y1 −A1x1 − b1)
〉)

,

∝ exp

(
− 1

2
xT

1 (
〈
Ψ−1

0

〉
+
〈
AT

1 C
−1
1 A1

〉
)x1+

(
〈
AT

1 C
−1
1

〉
y1 −

〈
AT

1 C
−1
1 b1

〉
)Tx1

)
,

∝ N(x1 | µ1,Σ1),

where

Σ1 =
[〈

Ψ−1
0

〉
+
〈
AT

1 C
−1
1 A1

〉]−1
,

µ1 = Σ1

[〈
AT

1 C
−1
1

〉
y1 −

〈
AT

1 C
−1
1 b1

〉]
.

The last line follows from matching the natural parameters of a Gaussian density. This
shows that α1(x1) is Gaussian; therefore, we can proceed by induction. For t > 1, we have

αt(xt) ∝
∫
dxt−1 h(xt,y1:t,xt−1)

=

∫
dxt−1 h(xt−1 | y1:t−1)h(xt | xt−1)h(yt | xt)

∝
∫
dxt−1 αt−1(xt−1)×

exp

(
− 1

2

[
xT
t−1

〈
1

σ2

〉
Idxt−1 − 2xT

t−1

〈
1

σ2

〉
Idxt+

xT
t

(〈
1

σ2

〉
Id +

〈
AT
t C
−1
t At

〉)
xt − 2

(〈
AT
t C
−1
t

〉
yt −

〈
AT
t C
−1
t bt

〉)T
xt

])
.

Inside the integral is a N(xt−1 | µ∗t−1,Σ
∗
t−1) with

Σ∗t−1 =

[〈
1

σ2

〉
Id + Σ−1

t−1

]−1

,

µ∗t−1 = Σ∗t−1

[〈
1

σ2

〉
xt + Σ−1

t−1µt−1

]
.
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Marginalizing over this distribution leaves the following terms

αt(xt) ∝ exp

(
− 1

2
xT
t

(〈 1

σ2

〉
Id +

〈
AT
t C
−1
t At

〉
−
〈

1

σ2

〉
Σ∗t−1

〈
1

σ2

〉)
xt+(〈

AT
t C
−1
t

〉
yt −

〈
AT
t C
−1
t bt

〉)T

xt +
1

2
µ∗T
t−1Σ∗−1

t−1 µ
∗
t−1

)

∝ exp

(
− 1

2
xT
t

(〈 1

σ2

〉
Id +

〈
AT
t C
−1
t At

〉
−
〈

1

σ2

〉
Σ∗t−1

〈
1

σ2

〉)
xt+(〈

AT
t C
−1
t

〉
yt −

〈
AT
t C
−1
t bt

〉
+

〈
1

σ2

〉
Σ∗t−1Σ−1

t−1µt−1

)T

xt

)
∝ N(xt | µt,Σt),

where

Σt =

[〈
1

σ2

〉
Id +

〈
AT
t C
−1
t At

〉
−
〈

1

σ2

〉2

Σ∗t−1

]−1

,

µt = Σt

[〈
AT
t C
−1
t

〉
yt −

〈
AT
t C
−1
t bt

〉
+

〈
1

σ2

〉
Σ∗t−1Σ−1

t−1µt−1

]
.

D.2 Variational Kalman Smoother

Property 16 For the Gaussian state space model specified in Equations (16)—(18), the
backwards message variables h(y(t+1):T | xt) = N(xt | ηt,Ψt) with parameters that can be
calculated recursively via Algorithm 7.

Proof Define the backwards message variables βt(xt) = h(y(t+1):T | xt) and set βT (xT ) = 1.
Note that

βt−1(xt−1) =

∫
dxt h(yt:T ,xt | xt−1)

=

∫
dxt h(y(t+1):T | xt)h(yt | xt)h(xt | xt−1)

=

∫
dxt βt(xt)h(yt | xt)h(xt | xt−1).
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Given the natural parameters
〈
Γ1

1:T

〉
=
〈
AT

1:TC
−1
1:T

〉
y1:T −

〈
AT

1:TC
−1
1:Tb1:T

〉
,
〈
Γ2

1:T

〉
=〈

AT
1:TC

−1
1:TA1:T

〉
,
〈
Ψ−1

0

〉
, and

〈
1/σ2

〉
, calculate the smoothing distribution’s moments

and cross-covariances as follows:

1. Calculate {µ1:T ,Σ1:T ,Σ
∗
1:(T−1)} as in Algorithm 6.

2. Set νT = µT and ΥT = ΣT .

3. Initialize Ψ−1
T = 0 to satisfy βT (xT ) = 1.

4. For t = T, . . . , 2.

B Calculate backwards message variables

Ψ∗t =

[〈
1

σ2

〉
Id +

〈
AT
t C
−1
t At

〉
+ Ψ−1

t

]−1

,

Ψt−1 =

[〈
1

σ2

〉
Id −

〈
1

σ2

〉2

Ψ∗t

]−1

,

ηt−1 = Ψt−1

[〈
1

σ2

〉
Ψ∗t
(〈
AT
t C
−1
t

〉
yt −

〈
AT
t C
−1
t bt

〉
+ Ψ−1

t ηt
)]
.

B Calculate smoothing distributions and cross-covariances

Υt−1 =
[
Σ−1
t−1 + Ψ−1

t−1

]−1
,

Υt−1,t =

〈
1

σ2

〉
Σ∗t−1

[
Ψ∗−1
t −

〈
1

σ2

〉2

Σ∗t−1

]−1

,

νt−1 = Υt−1

[
Σ−1
t−1µt−1 + Ψ−1

t−1ηt−1

]
.

Output smoothing distributions {ν1:T ,Υ1:T } and cross-covariances {Υt,t+1}T−1
t=1 .

Algorithm 7: Variational Kalman smoother. Throughout the text, we refer to this algorithm
as KalmanSmoother(

〈
Γ1

1:T

〉
,
〈
Γ2

1:T

〉
,
〈
Ψ−1

0

〉
,
〈
1/σ2

〉
).
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The derivation proceeds sequentially backwards in time. For t = T − 1, we have

βT−1(xT−1) ∝
∫
dxT ×

exp

(
− 1

2

〈
(yT −ATxT − bT )TC−1

T (yT −ATxT − bT )+

(xT − xT−1)T 1

σ2
Id(xT − xT−1)

〉)
∝
∫
dxT exp

(
− 1

2

[
xT−1

〈
1

σ2

〉
IdxT−1 + xT

T (

〈
1

σ2

〉
Id +

〈
AT
TC
−1
T AT

〉
)xT−

2(
〈
AT
TC
−1
T

〉
yT −

〈
AT
TC
−1
T bT

〉
+

〈
1

σ2

〉
xT−1)TxT

])
.

Inside the integral is a N(xT | η∗T ,Ψ∗T ) with

Ψ∗T =

[〈
1

σ2

〉
Id +

〈
AT
TC
−1
T AT

〉]−1

,

η∗T = Ψ∗T

[〈
AT
TC
−1
T

〉
yT −

〈
AT
TC
−1
T bT

〉
+

〈
1

σ2

〉
xT−1

]
.

Marginalizing over this density, we are left with

βT−1(xT−1) ∝ exp

(
− 1

2
xT
T−1

〈
1

σ2

〉
xT−1 +

1

2
η∗T
T Ψ∗−1

T η∗T

)
∝ exp

(
− 1

2
xT
T−1(

〈
1

σ2

〉
Id −

〈
1

σ2

〉2

Ψ∗T )xT−1+

(
〈
AT
TC
−1
T

〉
yT −

〈
AT
TC
−1
T bT

〉
)T

〈
1

σ2

〉
Ψ∗TxT − 1

)
∝ N(xT−1 | ηT−1,ΨT−1),

where

ΨT−1 =

[〈
1

σ2

〉
Id −

〈
1

σ2

〉2

Ψ∗T

]−1

,

ηT−1 = ΨT−1

[〈
1

σ2

〉
Ψ∗T
(〈
AT
TC
−1
T

〉
yT −

〈
AT
TC
−1
T bT

〉)]
.

Now we proceed inductively. For 2 < t < T − 1, we have

βt−1(xt−1) ∝
∫
dxtN(xt | ηt,Ψt)×

exp

(
− 1

2

〈
(yt −Atxt − bt)

TC−1
t (yt −Atxt − bt)+

(xt − xt−1)T 1

σ2
Id(xt − xt−1)

〉)
.
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In fact, the remaining derivation is exactly the same as before, except

Ψ∗t =

[〈
1

σ2

〉
Id +

〈
AT
t C
−1
t At

〉
+ Ψ−1

t

]−1

,

η∗t = Ψ∗t

[〈
AT
t C
−1
t

〉
yt −

〈
At
tC
−1
t bt

〉
+ Ψ−1

t ηt +

〈
1

σ2

〉
xt−1

]
,

so that βt−1(xt−1) = N(xt−1 | ηt−1,Ψt−1) with

Ψt−1 =

[〈
1

σ2

〉
Id −

〈
1

σ2

〉2

Ψ∗T

]−1

,

ηt−1 = Ψt−1

[〈
1

σ2

〉
Ψ∗t
(〈
AT
t C
−1
t

〉
yt −

〈
AT
t C
−1
t bt

〉
+ Ψ−1

t ηt
)]
.

Property 17 For the Gaussian state space model specified in Equations (16)—(18), the
variational smoothing distributions h(xt | y1:T ) = N(xt | νt,Υt) with parameters that can
be calculated recursively via Algorithm 7.

Proof We define forwards and backwards message variables, αt(xt) and βt(xt), as in the
previous proofs. For t = T , h(xT | y1:T ) = αT (xT ) = N(xT | µT ,ΣT ). For t < T − 1, we
have

h(xt | y1:T ) ∝ αt(xt)βt(xt)
∝ N(xt | µt,Σt)N(xt | ηt,Ψt)

∝ N(xt | νt,Υt),

where

Υt =
[
Σ−1
t + Ψ−1

t

]−1
,

νt = Υt

[
Σ−1
t µt + Ψ−1

t ηt
]
.

D.3 Cross-Covariance Matrices

Property 18 For the Gaussian state space model specified in Equations (16)—(18), the
variational joint distributions h(xt,xt+1 | y1:T ) are Gaussian with cross-covariance matrices
Υt,t+1 that can be calculated recursively via Algorithm 7.

Proof We have that

h(xt,xt+1 | y1:T ) ∝ h(xt | x1:t)h(xt+1 | xt)h(yt+1 | xt+1)h(y(t+2):T | xt+1),

∝ αt(xt)h(xt+1 | xt)h(yt+1 | xt+1)βt+1(xt+1).
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To determine Υt,t+1, we identify the cross-terms in the above product. This product is
proportional to

αt(xt) ×

exp

(
− 1

2

(
− xT

t

〈
1

σ2

〉
Idxt+1 + xT

t

〈
1

σ2

〉
Idxt + xT

t+1

〈
1

σ2

〉
Idxt+1

xT
t+1

〈
AT
t+1C

−1
t+1At+1

〉
xt+1−

2
(〈
AT
t+1C

−1
t+1

〉
yt+1 +

〈
AT
t+1C

−1
t+1bt+1

〉)T
xt+1

))
×

βt+1(xt+1),

∝ exp

{
−1

2

(
xt

xt+1

)T(
Γt Γt,t+1

ΓT
t,t+1 Γt+1

)(
xt

xt+1

)}
,

with

Γt =

〈
1

σ2

〉
Id + Σ−1

t = Σ∗−1
t ,

Γt+1 =

〈
1

σ2

〉
Id +

〈
AT
t+1C

−1
t+1At+1

〉
+ Ψ−1

t+1 = Ψ∗−1
t+1 ,

Γt,t+1 = −
〈

1

σ2

〉
Id,

where in the last line we only kept terms quadratic in xt and xt+1. Applying Schur’s
compliment, we obtain the cross-covariance matrix

Υt,t+1 = Σ∗t

〈
1

σ2

〉[
Ψ∗−1
t+1 −

〈
1

σ2

〉2

Σ∗t

]−1

.

Appendix E. Parameter Initialization and Prior Settings

Due to variational inference algorithm’s non-convex objective, appropriate initial values of
the approximate posterior’s parameters can greatly improve convergence. In this section,
we outline the initialization scheme and prior settings that we used in all experiments and
real data applications. Our initialization method is based on first estimating the probability
matrices P tk = logit−1(Θk

t ) using universal singular value thresholding (USVT) proposed by
Chatterjee (2015) and then computing the initial estimates of δ1:K,1:T ,Λ1:K ,X1:T heuris-
tically by inverting the logit transform. A similar procedure was proposed by Ma et al.
(2020) to initialize a bilinear latent space model for a single-layer static network. A step
specific to our model involves estimating the shared latent positions by finding the shared
column space of the layer specific residual matrices at each time point using a singular value
decomposition. Our proposed initialization procedure is summarized in Algorithm 8.
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Given numeric precision ε, latent space dimension d, and reference layer r, perform the
following steps:

1. For each k ∈ {1, . . . ,K} and t ∈ {1, . . . , T}:

(a) (USVT). Define the threshold τ =
√
np̂, where p̂ =

(
n
2

)−1∑
j<i Y

k
ijt, i.e., the

density of Yk
t . Let P̃ kt =

∑
si≥τ siuiv

T
i where

∑n
i=1 siuiv

>
i is the singular

value decomposition of Yk
t . Project P̃ kt elementwise to the interval [ε, 1− ε]

to obtain P̂ kt . Let Θ̂k
t = logit((P̂ kt + P̂ kT

t )/2).

(b) (Sociality parameters). Let δ̂k,t = arg minδk,t‖Θ̂
k
t − δk,t1T

n − 1nδ
T
k,t‖2F . Cal-

culate the residual matrix Ek
t = Θ̂k

t − δ̂k,t1T
n − 1nδ̂

T
k,t.

2. (Find a common subspace). For t ∈ {1, . . . , T}, set X̂t as the matrix containing
the d leading left singular vectors of (E1

t | · · · | EK
t ) ∈ Rn×Kn.

3. (Align X̂1, . . . , X̂T ). Moving sequentially forward in time starting at t = 2, project
X̂t to the locations that are closest to its previous location X̂t−1 through a Pro-
crustes rotation (Hoff et al., 2002).

4. (Homophily matrices). For 1 ≤ k ≤ K, set Λ̂k = arg minΛk

∑T
t=1‖Ek

t −
X̂tΛkX̂

T
t ‖2F .

5. (Set layer r as the reference layer). For 1 ≤ k 6= r ≤ K, set Λ̂k = Λ̂k|Λ̂r|−1 and
X̂t = X̂t|Λ̂r|1/2.

6. Output initial estimates µit = X̂i
t, µδik,t

= δ̂ik,t, µλk = diag(Λ̂k), where diag(·)
extracts the diagonal of a matrix.

Algorithm 8: Initialization by universal singular value thresholding.
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It remains to initialize the variances of the variational distributions and set the param-
eters of the priors. For the social trajectories, we initialized the variational distribution’s
variances and cross-covariances to σ2

δik,t
= 1 and σ2

δik,t,t+1
= 1, respectively. Furthermore,

we placed broad priors on the state space parameters. To make the prior on τ2
δ flat, one

can set the shape and scale parameters of the inverse-gamma priors to aτ2δ
= 2(2 + ε) and

bτ2δ
= 2(1 + ε)E [τ2

δ ] for some small ε > 0, respectively. We set ε = 0.05 and E [τ2
δ ] = 10.

For σ2
δ , we set cσ2

δ
= 2 and dσ2

δ
= 2. For the latent position’s variational distributions, we

set the variances and cross-covariances to the identity matrix Id. We chose uninformative
priors for the inverse-Wishart distribution by setting ν = 2 + d and V = Id. For σ2, we
set cσ2 = 2 and dσ2 = 2. Lastly, for the reference layer, we set ρ = 1/2 and Σλk = 10Id.
In addition, we set the prior variance to σ2

λ = 4. Lastly, we initialized the mean of the
Pólya-gamma random variables, µωkijt

, to zero.

Appendix F. The Mean-Field Algorithm

In this section, we derive the updating equations for the mean-field (MF) approximation

q(θ,φ,ω) =

[
d∏

h=1

q(λ1h)

][
K∏
k=2

q(λk)

][
K∏
k=1

n∏
i=1

T∏
t=1

q(δik,t)

][
n∏
i=1

T∏
t=1

q(Xi
t)

] K∏
k=1

T∏
t=1

∏
j<i

q(ωkijt)


× q(Ψ0)q(σ2)q(τ2

δ )q(σ2
δ ). (50)

This equation differs from structured mean-field approximation in Equation (3) used through-
out the main text in that the variational posterior restricts the latent positions and sociality
parameters to be independent across time points. In the remaining sections, we outline the
updates for q(Xi

t) and q(δik,t) under this mean-field approximation. The updates for the
remaining variational distributions can be obtained from the previous updates outlined in
Appendix C by setting the cross-covariances equal to zero, i.e., Σi

t,t+1 = 0 and σ2
δik,t,t+1

= 0.

Note that when fitting this model, we used the same hyperparameter settings and initial-
ization method as the dynamic multilayer eigenmodel described in Appendix E.

F.1 Updates for q(Xi
t)

Throughout this section let At,bt, and Ct be defined as in Equation (42) of Proposition 12.
Standard manipulations similar to the ones employed in Proposition 12 show that

• For t = 1,

q(Xi
t) ∝ exp

{
E−q(Xi

t)

[
− 1

2
(yt −AtXi

t − bt)
TC−1

t (yt −AtXi
t − bt)

− 1

2
XiT
t Ψ−1

0 Xi
t +
‖Xi

t −Xi
t+1‖22

2σ2

]}
∝ exp

{(
〈AT

t C
−1
t (yt − bt)〉+

〈
1

σ2

〉
µit+1

)T

Xi
t

− 1

2
tr

([
〈ATt C−1

t At〉+ 〈Ψ−1
0 〉+

〈
1

σ2

〉]
Xi
tX

iT
t

)}
,
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which we recognize as a Gaussian distribution with parameters

Σi
t =

(
〈ATt C−1

t At〉+ 〈Ψ−1
0 〉+

〈
1

σ2

〉)−1

=

(
Γ2
t + 〈Ψ−1

0 〉+

〈
1

σ2

〉)−1

,

µit = Σi
t

[
〈AT

t C
−1
t (yt − bt)〉+

〈
1

σ2

〉
µit+1

]
= Σi

t

[
Γ1
t +

〈
1

σ2

〉
µit+1

]
,

where Γ1
t and Γ2

t are defined in Equation (43) and Equation (44), respectively.

• For 1 < t < T ,

q(Xi
t) ∝ exp

{
E−q(Xi

t)

[
− 1

2
(yt −AtXi

t − bt)
TC−1

t (yt −AtXi
t − bt)

−
‖Xi

t −Xi
t−1‖22

2σ2
−
‖Xi

t −Xi
t+1‖22

2σ2

]}
∝ exp

{(
〈AT

t C
−1
t (yt − bt)〉+

〈
1

σ2

〉
µit−1 +

〈
1

σ2

〉
µit+1

)T

Xi
t

− 1

2
tr

([
〈ATt C−1

t At〉+

〈
2

σ2

〉]
Xi
tX

iT
t

)}
,

which we recognize as a Gaussian distribution with parameters

Σi
t =

(
〈ATt C−1

t At〉+

〈
2

σ2

〉)−1

=

(
Γ2
t +

〈
2

σ2

〉)−1

,

µit = Σi
t

[
〈AT

t C
−1
t (yt − bt)〉+

〈
1

σ2

〉
µit−1 +

〈
1

σ2

〉
µit+1

]
= Σi

t

[
Γ1
t +

〈
1

σ2

〉
µit−1 +

〈
1

σ2

〉
µit+1

]
,

where Γ1
t and Γ2

t are defined in Equation (43) and Equation (44), respectively.

• For t = T :

q(Xi
t) ∝ exp

{
E−q(Xi

t)

[
− 1

2
(yt −AtXi

t − bt)
TC−1

t (yt −AtXi
t − bt)

−
‖Xi

t −Xi
t−1‖22

2σ2

]}
∝ exp

{(
〈AT

t C
−1
t (yt − bt)〉+

〈
1

σ2

〉
µit−1

)T

Xi
t

− 1

2
tr

([
〈ATt C−1

t At〉+

〈
1

σ2

〉]
Xi
tX

iT
t

)}
,

which we recognize as a Gaussian distribution with parameters

Σi
t =

(
〈ATt C−1

t At〉+

〈
1

σ2

〉)−1

=

(
Γ2
t +

〈
1

σ2

〉)−1

,

µit = Σi
t

[
〈AT

t C
−1
t (yt − bt)〉+

〈
1

σ2

〉
µit−1

]
= Σi

t

[
Γ1
t +

〈
1

σ2

〉
µit−1

]
,

where Γ1
t and Γ2

t are defined in Equation (43) and Equation (44), respectively.
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F.2 Updates for q(δik,t)

Throughout this section let At,bt, and Ct be defined as in Equation (31) of Proposition 9.
Standard manipulations similar to the ones outlined in Proposition 9 show that

• For t = 1,

q(δik,t) ∝ exp

{
E−q(δik,t)

[
(yt −Atδik,t − bt)

TC−1
t (yt −Atδik,t − bt)−

(δik,t)
2

2τ2
δ

−
(δik,t − δik,t+1)2

2σδ

]}
∝ exp

{(
〈AT

t C
−1
t (yt − bt)〉+

〈
1

σ2
δ

〉
µδik,t+1

)
δik,t

− 1

2

[
〈ATt C−1

t At〉+

〈
1

τ2
δ

〉
+

〈
1

σ2
δ

〉]
(δik,t)

2

}
,

which we recognize as a Gaussian distribution with parameters

σ2
δik,t

=

(
〈ATt C−1

t At〉+

〈
1

τ2
δ

〉
+

〈
1

σ2
δ

〉)−1

=

(
Γ2
t +

〈
1

τ2
δ

〉
+

〈
1

σ2
δ

〉)−1

,

µδik,t
= σ2

δik,t

[
〈AT

t C
−1
t (yt − bt)〉+

〈
1

σ2
δ

〉
µδik,t+1

]
= σ2

δik,t

[
Γ1
t +

〈
1

σ2
δ

〉
µδik,t+1

]
,

where Γ1
t and Γ2

t are defined in Equation (32) and Equation (33), respectively.

• For 1 < t < T ,

q(δik,t) ∝ exp

{
E−q(δik,t)

[
(yt −Atδik,t − bt)

TC−1
t (yt −Atδik,t − bt)

−
(δik,t − δik,t−1)2

2σ2
δ

−
(δik,t − δik,t+1)2

2σδ

]}
∝ exp

{(
〈AT

t C
−1
t (yt − bt)〉+

〈
1

σ2
δ

〉
µδik,t−1

+

〈
1

σ2
δ

〉
µδik,t+1

)
δik,t

− 1

2

[
〈ATt C−1

t At〉+

〈
2

σ2
δ

〉]
(δik,t)

2

}
,

which we recognize as a Gaussian distribution with parameters

σ2
δik,t

=

(
〈ATt C−1

t At〉+

〈
2

σ2
δ

〉)−1

=

(
Γ2
t +

〈
2

σ2
δ

〉)−1

,

µδik,t
= σ2

δik,t

[
〈AT

t C
−1
t (yt − bt)〉+

〈
1

σ2
δ

〉
µδik,t−1

+

〈
1

σ2
δ

〉
µδik,t+1

]
= σ2

δik,t

[
Γ1
t +

〈
1

σ2
δ

〉
µδik,t−1

+

〈
1

σ2
δ

〉
µδik,t+1

]
,

where Γ1
t and Γ2

t are defined in Equation (32) and Equation (33), respectively.
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• For t = T ,

q(δik,t) ∝ exp

{
E−q(δik,t)

[
(yt −Atδik,t − bt)

TC−1
t (yt −Atδik,t − bt)−

(δik,t − δik,t−1)2

2σ2
δ

]}
∝ exp

{(
〈AT

t C
−1
t (yt − bt)〉+

〈
1

σ2
δ

〉
µδik,t−1

)
δik,t

− 1

2

[
〈ATt C−1

t At〉+

〈
1

σ2
δ

〉]
(δik,t)

2

}
,

which we recognize as a Gaussian distribution with parameters

σ2
δik,t

=

(
〈ATt C−1

t At〉+

〈
1

σ2
δ

〉)−1

=

(
Γ2
t +

〈
1

σ2
δ

〉)−1

,

µδik,t
= σ2

δik,t

[
〈AT

t C
−1
t (yt − bt)〉+

〈
1

σ2
δ

〉
µδik,t−1

]
= σ2

δik,t

[
Γ1
t +

〈
1

σ2
δ

〉
µδik,t−1

]
,

where Γ1
t and Γ2

t are defined in Equation (32) and Equation (33), respectively.

Appendix G. Variational Inference for Static Multilayer Networks

For the special case that T = 1, the eigenmodel for dynamic multilayer networks serves as
a model for static multilayer networks. In particular, for T = 1, the full Bayesian model
becomes

Y k
ij1

ind.∼ Bernoulli
[
logit−1

(
δik,1 + δjk,1 + XiT

1 Λk1X
j
1

)]
, 1 ≤ j < i ≤ n, 1 ≤ k ≤ K,

λ11,h = 2uh − 1, uh
iid∼ Bernoulli(ρ), 1 ≤ h ≤ d,

λk1
iid∼ N(0d, σ

2
λId), 2 ≤ k ≤ K,

δik,1
iid∼ N(0, τ2

δ ), 1 ≤ i ≤ n, 1 ≤ k ≤ K,

Xi
1

iid∼ N(0d,Ψ0), 1 ≤ i ≤ n,
Ψ0 ∼Wishart−1(ν, V ), τ2

δ ∼ Γ−1(cδ, dδ),

where we have kept the subscripts indicating that t = 1 to make the connection with the
dynamic model introduced in the main text explicit. In this case, the proposed variational
posterior becomes

q(θ,φ,ω) =

[
d∏

h=1

q(λ1h)

][
K∏
k=2

q(λk)

][
K∏
k=1

n∏
i=1

q(δik,1)

][
n∏
i=1

q(Xi
1)

] K∏
k=1

∏
j<i

q(ωkij1)


× q(Ψ0)q(τ2

δ ).

In the remaining sections, we outline the updates for q(Xi
1) and q(δik,1) under this variatonal

posterior. The updates for the remaining parameters can be obtained from the previous
updates outlined in Appendix C by setting T = 1, and so are omitted. Note that when
fitting this model, we used the same hyperparameter settings for σ2

λ, cδ, dδ, ν, and V
and initialization method (with T = 1) as the dynamic multilayer eigenmodel described in
Appendix E.
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G.1 Updates for q(Xi
1)

Throughout this section let At,bt, and Ct be defined as in Equation (42) of Proposition 12.
Standard manipulations similar to the ones employed in Proposition 12 show that

q(Xi
1) ∝ exp

{
E−q(Xi

t)

[
−1

2
(y1 −A1X

i
1 − b1)TC−1

1 (y1 −A1X
i
1 − b1)− 1

2
XiT

1 Ψ−1
0 Xi

1

]}
∝ exp

{(
〈AT

1 C
−1
1 (y1 − b1)〉

)T

Xi
1 −

1

2
tr

([
〈AT1 C−1

1 A1〉+ 〈Ψ−1
0 〉
]
Xi

1X
iT
1

)}
,

which we recognize as a Gaussian distribution with parameters

Σi
1 =

(
〈AT1 C−1

1 A1〉+ 〈Ψ−1
0 〉
)−1

=
(
Γ2

1 +
〈
Ψ−1

0

〉)−1
,

µi1 = Σi
1

(
〈AT

1 C
−1
1 (y1 − b1)〉

)
= Σi

1Γ1
1,

where Γ1
1 and Γ2

1 are defined in Equation (43) and Equation (44), respectively.

G.2 Updates for q(δik,1)

Throughout this section let At,bt, and Ct be defined as in Equation (31) of Proposition 9.
Standard manipulations similar to the ones outlined in Proposition 9 show that

q(δik,1) ∝ exp

{
E−q(δik,1)

[
−1

2
(y1 −A1δ

i
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2τ2
δ

]}
∝ exp

{
〈AT

1 C
−1
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1

2
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}
,

which we recognize as a Gaussian distribution with parameters

σ2
δik,1

=

(
〈AT1 C−1

1 A1〉+

〈
1

τ2
δ

〉)−1

=

(
Γ2
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1
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,

µδik,1
= σ2

δik,1
〈AT

1 C
−1
1 (y1 − b1)〉 = σ2

δik,1
Γ1

1,

where Γ1
1 and Γ2

1 are defined in Equation (32) and Equation (33), respectively.

Appendix H. Evaluation of Information Criteria for Dimension Selection

In this simulation, we evaluated different information criterion’s ability to select the dimen-
sion of the latent space. We compared the Akaike information criterion (AIC), the Bayesian
information criterion (BIC), the deviance information criterion (DIC) (Spiegelhalter et al.,
2002), and the Watanabe-Akaike information criterion (Watanabe, 2010).

We generated 50 networks from the data-generating process outlined in Section 4 with
n = 100, K = 5, and T = 10. We varied the magnitude of the latent variable’s transitions
from σ ∈ {0.01, 0.05, 0.1, 0.2, 0.3} and used a moderate amount of transition dependence
with ρ = 0.4. Note that the true latent space dimension is d = 2 in all simulations. For
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Figure 13: Fraction of the 50 simulations in which d̂ equaled a particular value for AIC,
BIC, DIC, and WAIC. The green bar corresponds to the true value of d = 2.

each network, we fit five models with d ranging from 1 to 5 using the SMF algorithm
and calculated the value of each information criterion. The value of d that minimized the
criterion was selected as the estimated dimension. Figure 13 displays the results for the
four information criteria under consideration.

From these results, we conclude that all four information criteria selected the true latent
space dimension the majority of the time. However, both DIC and WAIC overestimated the
dimension more often than AIC and BIC. Furthermore, the performance of the AIC estima-
tor is relatively insensitive to σ; however, the BIC estimator occasionally underestimated
the dimension for small values of σ. As a result of this simulation study, we recommend
using AIC to select the dimension of the latent space.

Appendix I. Additional Simulation: Decreasing σ as T Increases

In this simulation, we studied the SMF algorithm’s estimation error as we simultaneously
increased the number of time steps T and decreased the transition variance σ under the data
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Figure 14: Comparison of the parameter recovery performance of the SMF algorithm for a
simulation scenario with a fixed σ = 0.05 (green) and a decreasing σ = 0.5/T
(red). The boxplots show the distribution over 50 simulated networks with
n = 100, K = 5, T ∈ {10, 50, 100}.

generating process outlined in Section 4. This simulation reflects the scenario of collecting
a denser set of network snapshots over a fixed time interval. We varied the network sizes
(n,K, T ) ∈ {100} × {5} × {10, 50, 100}. We set σ = 0.5/T , so that σ decreased as T
increased. We fixed ρ = 0.4 and sampled 50 independent networks for each network size.

Figure 14 displays the model parameters’ estimation errors for each network size. The
results are similar to the original scenario that fixed σ = 0.05. There is a noticeable
improvement in the recovery of the sociality parameters under the new scenario; however,
the recovery of the latent positions is relatively unchanged. In contrast, for a fixed network
size (n,K, T ), the simulations in Section 4.2 showed that parameter recovery improved as
σ decreased. Overall, the estimation errors remain low under this scenario.

Appendix J. Additional Figures

In this section, we include the remaining figures for the data analyzed in the main text’s real
data applications (Section 5). These figures include the AIC selection plots, the remaining
social trajectories, and the homophily coefficients for the primary school networks.

We start with the remaining figures from the analysis of the ICEWS data set. The
results of the AIC selection are displayed in Figure 15. The model with d = 3 minimizes
the AIC value. Figure 16 contains the social trajectories for the verbal cooperation networks,
Figure 17 contains the social trajectories for the material cooperation networks, and Figure
18 contains the social trajectories for the verbal conflict networks. The shapes of the
social trajectories are similar to the material conflict relation. A notable difference is that
Ukraine increases its verbal cooperation, material cooperation, and verbal conflict sociality
dramatically leading up to the Crimea Crisis.

Next, we present the remaining figures for the primary school face-to-face contact net-
works. Figure 19 displays the AIC values for models with different latent space dimensions.
The model with d = 2 minimizes the AIC. Figure 20 and Figure 21 contain the actors’
social trajectories on Thursday and Friday, respectively. We highlighted the trajectories
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Figure 15: AIC values for the six models fit to the ICEWS data set with latent space
dimensions ranging from 1 to 6.
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Figure 16: Posterior means of the verbal cooperation social trajectories for the ICEWS
network. Select countries are highlighted in color with bands that represent 95%
credible intervals. The remaining countries’ social trajectories are displayed with
gray curves.

of three actors. Actor 148 is a teacher, actor 195 is a student in class 3A, and actor 5 is
a student in class 5B. Their social trajectories demonstrate three interesting longitudinal
patterns. Actor 148, the teacher, is most socially active during class and least active during
lunch. Conversely, actor 195 is most sociable during lunch and less sociable during class.
Lastly, actor 5’s social trajectory differs between the two days because he/she is absent on
Friday. Next, Figure 22 contains the primary school network’s homophily coefficients. All
homophily coefficients are positive. Also, the magnitude of the homophily coefficients is
smaller on Thursday than on Friday.
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Figure 17: Posterior means of the material cooperation social trajectories for the ICEWS
network. Select countries are highlighted in color with bands that represent 95%
credible intervals. The remaining countries’ social trajectories are displayed with
gray curves.
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Figure 18: Posterior means of the verbal conflict social trajectories for the ICEWS network.
Select countries are highlighted in color with bands that represent 95% credible
intervals. The remaining countries’ social trajectories are displayed with gray
curves.
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Figure 19: AIC values for the six models fit to the school contact networks data set with
latent space dimensions ranging from 1 to 6.

Figure 20: Posterior means of the social trajectories on Thursday for the primary school
network. Select actors are highlighted in color with bands that represent 95%
credible intervals. The remaining actors’ social trajectories are displayed with
gray curves.
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Figure 21: Posterior means of the social trajectories on Friday for the primary school net-
work. Select actors are highlighted in color with bands that represent 95%
credible intervals. The remaining actors’ social trajectories are displayed with
gray curves.
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Figure 22: Heatmap of the homophily coefficients’ posterior means for the primary school
face-to-face contact networks. Each cell contains the coefficient’s posterior mean
and 95% credible interval. Blue cells indicate values less than the reference layer
(Friday).
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