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Abstract

This paper shows that dropout training in generalized linear models is the minimax solu-
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nature’s least favorable distribution is dropout noise, where nature independently deletes
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that arise from multiplicative perturbations of in-sample data. The paper makes a concrete
recommendation on how to select the tuning parameter δ. The paper also provides a novel,
parallelizable, unbiased multi-level Monte Carlo algorithm to speed-up the implementation
of dropout training. Our algorithm has a much smaller computational cost compared to
the naive implementation of dropout, provided the number of data points is much smaller
than the dimension of the covariate vector.
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1. Introduction

Dropout training is an increasingly popular estimation method in machine learning.1 The

general idea consists in ignoring some dimensions of the covariate vector at random while

estimating the parameters of a statistical model. A common motivation for dropout train-

ing is that the random feature selection implicitly performs model averaging, potentially

improving prediction error.2

This paper contributes to the growing literature explaining how dropout training can

improve a predictor’s generalization error, e.g., Wager et al. (2013), Helmbold and Long

(2015), Wei et al. (2020). Broadly speaking, a predictor’s generalization error refers to

its ability to “perform well on new, previously unseen inputs—not just those on which our

model was trained.” (Goodfellow et al., 2016, Section 5.2). As we explain below, our main

result shows that dropout training improves generalization error over distributions that

arise from multiplicative perturbations of in-sample covariates.

To make this point, this paper studies dropout training in the context of generalized

linear models. A generalized linear model for the scalar outcome variable Y ∈ Y ⊆ R, given

a d-dimensional vector of covariates X = (X1, . . . , Xd)
> ∈ Rd, is defined by the conditional

density

f(Y |X, θ) ≡ h(Y, φ) exp
((
Y β>X −Ψ(β>X)

)
/a(φ)

)
, (1)

where the model’s parameters are θ ≡ (β>, φ)>; see McCullagh and Nelder (1989, Equa-

tion 2.4). In our notation, h(·, φ) is a real-valued function parameterized by φ and defined

on the domain Y, a(·) is a positive function of φ, and Ψ(·) is the log-partition function

which we assume to be defined on all the real line. Normal, logistic, and Poisson regression

all have conditional densities of the form in Equation (1).

Prediction in generalized linear models is typically based on the conditional expectation

of Y , given X, implied by the likelihood in (1), evaluated at an estimated parameter vector

θ̂ (for example, one common choice for θ̂ is the vector containing the maximum likelihood

estimators for β and φ based on the available data).3 We define the generalization error of

a predictor for Y as:

EQ

[
− ln f(Y |X, θ̂ )

]
, where (X,Y ) ∼ Q. (2)

1. Section 7.12 of Goodfellow et al. (2016) provides a textbook treatment on dropout training. Bishop
(1995) and Srivastava et al. (2014) are seminal references on this topic.

2. See Hinton et al. (2012) for a discussion about this point in the context of neural networks. See also
Draper (1994) and Raftery et al. (1997) for classical results on the optimality of model averaging for
prediction purposes.

3. Throughout the paper, we will typically use θ̂, β̂, φ̂ to denote the estimators of parameters θ, β, φ,
without necessarily making explicit reference to the data or the sample size.
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The above expectation is computed by fixing the estimated parameter vector, θ̂, and then

drawing new covariates and outcomes according to the joint distribution Q. When Q dif-

fers from the data’s empirical distribution, we interpret (2) as a measure of out-of-sample

performance (as the draws from Q can be thought of as new, and previously unseen, inputs).

Our main result (Theorem 1) shows that, when Q corresponds to multiplicative perturba-

tion of the covariates’ empirical distribution (in a sense we make precise), the generalization

error of dropout training is no larger than the in-sample loss of dropout training averaged

over dropout noise (Corollary 1). Therefore, our main result implies that dropout training

generalizes well to previously unseen data distributions arising from in-sample covariates’

multiplicative perturbations.

We establish our main result by showing that dropping out input features when training

generalized linear models can be viewed as a Distributionally Robust Optimization (DRO)

problem (Shapiro et al., 2014). A DRO problem is a two-player, zero-sum game between

a decision maker (a statistician) and an adversary (nature). The statistician wishes to

choose an action to minimize a given expected loss (e.g., squared loss in a typical linear

regression setting or, more generally, the negative of the log-likelihood function). At the

same time, nature intends this loss to be maximal. We consider a framework in which

nature can harm the statistician by corrupting the available covariates using a multiplicative

nonparametric errors-in-variables model, as in the classic work of Hwang (1986).4 Under

mild assumptions, nature’s least favorable distribution in this game turns out to be dropout

noise, where nature independently deletes entries of the covariate vector with some fixed

probability δ. Because dropout noise is least favorable, we can use the in-sample loss of

dropout training—averaged over the dropout noise—to upper bound the generalization

error of predictors computed via dropout training, under any probability distribution that

arises via multiplicative perturbation of the covariates in the sample.

One might argue that the significance and usefulness of Theorem 1 is limited, as the

distributions over which dropout training generalizes well only cover perturbations around

the data’s empirical distribution. Indeed, in the quintessential definition of generalization

error, the new examples are typically drawn from the true data-generating process, which we

denote as P ∗. Do our results have anything to say about the case in which the generalization

error in (2) is evaluated at P ∗? We answer this question in the positive, provided that

the dropout probability, δ, is chosen to be c/
√
n where n denotes the number of training

examples. In particular, we show that the generalization error of dropout training based

on examples drawn from the true data-generating process will be bounded above by the

loss of dropout in the training sample (averaged over the dropout noise) with a probability

4. As far as we know, this simple action space for nature is a novel model for conceptually and quantitatively
understanding dropout training.
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that depends on c (Theorem 2). Consequently, by choosing a target probability, say 95%,

it is possible to provide a concrete recommendation for selecting c and, therefore, for δ. As

we will explain later, our concrete recommendation for choosing the dropout probability

in generalized linear models stands in contrast to ad hoc suggestions available for neural

networks, in which an input unit is usually included with probability 0.8, and a hidden unit

is included with probability 0.5 (Goodfellow et al., 2016, Chapter 7, p. 257).

Finally, and to analyze the implications of our results numerically, we make an additional

contribution by suggesting a new stochastic optimization implementation of dropout train-

ing. The generalization error of the standard stochastic gradient descent implementation

of dropout training here profits from the implicit regularization imposed by the stochastic

gradient descent routine (Wei et al., 2020). Since our theoretical analysis makes no use of

this implicit regularization, it is important to have an algorithm that does not introduce

any further bias to the solution of dropout training. We borrow ideas from the multi-level

Monte Carlo literature—in particular from the work of Blanchet et al. (2019a)—to suggest

an unbiased (in a sense we will make precise) dropout training routine. Our algorithm is

easily parallelizable and has a much smaller computational cost than naive dropout training

methods when the number of features is large (Theorem 3). Our algorithm thus comple-

ments the recent literature suggesting approaches to speed-up dropout training by either

using a parallelized implementation of stochastic gradient descent (Zinkevich et al., 2010)

or a fast dropout training based on Gaussian approximations (Wang and Manning, 2013).

The rest of the paper is organized as follows. Section 2 explains dropout training in the

context of generalized linear models. Section 3 presents a general description of the DRO

framework used in this paper. Section 4 zeros in on the DRO problem by using the negative

log-likelihood of generalized linear models to define a loss function for the statistician, and

by allowing nature to harm the statistician via a multiplicative errors-in-variables model

for the covariates. This section also presents our main theorem. Section 5 presents our

approach to select the dropout probability, δ. Section 6 discusses different computational

methods available for implementing dropout training (full integration, stochastic gradient

descent, näıve Monte Carlo integration) and suggests our unbiased multi-level Monte Carlo

algorithm. Section 7 presents some simulations comparing our recommended selection of

δ to cross-validation and our preferred implementation of dropout training over stochastic

gradient descent. Finally, Section 8 discusses extensions of our results to a particular class

of feed-forward neural networks with a single hidden layer. We show that dropout training

of the hidden units in the hidden layer is distributionally robust and optimal. All of the

proofs are collected in the Appendix.
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2. Dropout Training in Generalized Linear Models

This section describes dropout training in the context of generalized linear models. As

with some other recent papers in the literature, we view generalized linear models as a

convenient, transparent, and relevant framework to better understand the theoretical and

algorithmic properties of dropout training.

For a given covariate vector xi, and a user-selected constant, δ ∈ [0, 1), define the

d-dimensional random vector

ξi = (ξi,1, . . . , ξi,d)
> ∈ {0, 1/(1− δ)}d,

where each of the d entries of ξi is an independent draw from a scaled Bernoulli distribution

with parameter 1− δ. This is, for j = 1, . . . , d:

ξi,j =

0 with probability δ,

(1− δ)−1 with probability (1− δ).
(3)

The distribution of ξi,j collapses to ξi,j = 1 with probability 1 when δ = 0.

Let � denote the binary operator defining element-wise multiplication between two

vectors of the same dimension. Consider the covariate vector

xi � ξi ≡ (xi,1ξi,1, . . . , xi,dξi,d)
>. (4)

Some entries of the new covariate vector are 0 (those for which ξi,j = 0), and the rest are

equal to xi,j/(1− δ).

In a slight abuse of notation, let Eδ denote the distribution of the random vector ξi,

whose distribution is parameterized by δ. The estimators of (β, φ) obtained by dropout

training correspond to any parameters (β̂(δ), φ̂(δ)) that solve the problem

inf
β,φ

1

n

n∑
i=1

Eδ [− ln f(yi|xi � ξi, β, φ)] . (5)

Note that the maximum likelihood estimator of (β, φ), denoted as (β̂ML, φ̂ML), equals

(β̂(0), φ̂(0)).

There is some empirical evidence that using intentionally corrupted features for training

has the potential to improve the performance of machine learning algorithms (Maaten et al.,

2013). Even if one is willing to accept that feature corruption is desirable for estimation,

the choice of dropout noise in (3) seems arbitrary.
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To explain the empirical success of the use of dropout noise. Wager et al. (2013) and

Helmbold and Long (2015) theoretically analyzed the dropout training criterion (5) as the

composition of the original loss (e.g., Equation 5 with δ = 0) and a penalty term that

they view as a regularizer. They then analyzed this dropout regularizer and compared its

regularization effect with other regularizers (such as L1 and L2 penalties). Specifically, Wa-

ger et al. (2013) proposed a convex quadratic approximation for the regularization penalty

using first-order Taylor approximation in generalized linear models. While Helmbold and

Long (2015) conducted a more explicit analysis in the context of logistic regression and

suggested several non-standard properties of the dropout regularizer.

Relative to these papers, our work focuses on providing a novel decision-theoretic inter-

pretation of dropout training (in the population and the sample). We will argue there is

a natural two-player, zero-sum game between a decision maker (statistician) and an adver-

sary (nature) in which dropout training emerges naturally as a minimax solution. In this

game, dropout noise is nature’s least favorable distribution, and dropout training becomes

the statistician’s optimal action. The framework we use, from the stochastic optimization

literature, is distributionally robust optimization.

3. Distributionally Robust Optimization

Consider a general prediction problem where there is a multivariate predictor X ∈ Rd and

a scalar outcome variable Y ∈ R. A distributionally robust optimization (DRO) problem

is a simultaneous two-player zero-sum game between a decision maker (in our context, the

statistician) and an adversary (nature).5 In this section, we describe the action space for

each player, their strategies, and the payoff function.

3.1 Actions and Payoff

The statistician’s action space consists of vectors θ ∈ Θ. The ranking of the statistician’s

actions is contingent on the realization of (X,Y ), and this is captured by a real-valued loss

function `(X,Y, θ). If the statistician knew the distribution of (X,Y )—which we denote by

Q—the statistician’s preferred choice of θ would be the solution to

inf
θ∈Θ

EQ [`(X,Y, θ)] . (6)

5. A seminal reference is the robust inventory control problem of Scarf (1958). Recent references describ-
ing the use of distributionally robust stochastic programs (like those considered in this paper) include
Delage and Ye (2010) and Shapiro (2017). Christensen and Connault (2019) used distributionally ro-
bust optimization to characterize the sensitivity of counterfactual analysis with respect to distributional
assumptions in a class of structural econometric models.
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Instead of assuming that the distribution Q is determined exogenously, we think of the

distribution Q as being chosen by nature. Thus, nature’s action space consists of a set of

probability distributions denoted as U . We refer to this set as the distributional uncertainty

set. If nature knew the action selected by the statistician, nature’s preferred action would

be

sup
Q∈U

EQ[`(X,Y, θ)]. (7)

3.2 Strategies and Solution

The choices of θ and Q are assumed to happen simultaneously. A statistician’s strategy for

this game consists of a choice of θ; nature’s strategy for this game consists of a choice of Q.

A Nash equilibrium for this game is a pair (θF,QF) such that: a) given QF, the pa-

rameter θF solves (6) and b) given θF, the distribution QF solves (7).

The minimax solution for this game is a pair (θ,Q) that solves

inf
θ∈Θ

sup
Q∈U

EQ[`(X,Y, θ)], (8a)

while the maximin solution is based on the mathematical program

sup
Q∈U

inf
θ∈Θ

EQ[`(X,Y, θ)]. (8b)

If Q solves (8b), we say that Q is nature’s least favorable distribution. The mathematical

program in (8a) is typically referred to as a DRO problem.

4. Dropout Training is Distributionally Robust Optimal

We now specialize the general DRO framework of Section 3 by imposing two restrictions.

First, we use the negative log-likelihood of generalized linear models (McCullagh and Nelder,

1989) as a loss function for the statistician. Second, we define nature’s uncertainty set (i.e.,

the possible data distributions that nature can take) using the multiplicative errors-in-

variables model of Hwang (1986).

4.1 Statistician’s Payoff

We define the loss function for the statistician to be the negative of the logarithm of the

likelihood in (1), that is,

`(X,Y, θ) = − lnh(Y, φ) + (Ψ(β>X)− Y (β>X))/a(φ), (9)
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where θ ≡ (β>, φ)> ∈ Θ ⊆ Rd × R+. Equation (9) defines the statistician’s objective and

its set of actions.

4.2 Nature’s Distributional Uncertainty Set

We now define the possible distributions that nature can choose. We start out by letting

Q0 denote some benchmark or reference distribution over (X,Y ). This distribution will

typically be the empirical distribution of the data, but we present our main result allowing

for a general Q0. This distribution need not correspond to that induced by a generalized

linear model. In other words, our framework allows for the statistician’s model to be mis-

specified.

Next, we define nature’s action space by considering perturbations of Q0. Although

there are different ways of doing this—for example, by using either f -divergences (such

as the Kullback–Leibler divergence, as used by Nguyen et al. 2020 and the χ2 divergence,

as done by Duchi and Namkoong 2019) or the optimal transport distance (such as the

Wasserstein distance, as in Blanchet et al. 2019b) to define a neighborhood—we herein use

a nonparametric multiplicative errors-in-variables model as in Hwang (1986).6

The idea is to allow nature to independently introduce measurement error to the covari-

ates using multiplicative noise. Let ξ ≡ (ξ1, . . . , ξd)
> be defined as a d-dimensional vector

of random variables that are independent of (X,Y ). We perturb the distribution Q0 by

considering the transformation

(X,Y ) 7→ (X1ξ1, . . . , Xdξd, Y )>.

As a result, each covariate Xj is distorted, in a multiplicative fashion, by ξj . We often

abbreviate (X1ξ1, . . . , Xdξd)
> by X � ξ, where � signifies element-wise multiplication.

We restrict the distribution of ξ in the following way: First, for a parameter δ ∈ [0, 1),

we define Qj(δ) to be the set of distributions for ξj that are supported on the interval

[0, 1/(1− δ)] and that have mean equal to 1. More specifically,

Qj(δ) ≡
{
Qj : Qj is a probability distribution on R, Qj([0, (1− δ)−1]) = 1, EQj [ξj ] = 1

}
.

(10)

This set of distributions, prescribed using support and first-order moment information, is

popular in the DRO literature thanks to its simplicity and tractability (Wiesemann et al.,

2014). From the perspective of an errors-in-variables model, these distributions are also

6. The different choices of action space in the DRO literature have been shown to enjoy regularization
benefits. For example, Duchi and Namkoong (2019) showed that a DRO formulation with χ2 divergence
leads to convex variance regularization. Blanchet et al. (2019b) showed that DRO with Wasserstein
distance amounts to square-root LASSO in linear regressions. In contrast, the action space we introduce
induces dropout regularization.

8



Dropout Training is Distributionally Robust Optimal

attractive because they preserve the expected value of the covariates, assuming that Xj

and ξj are drawn independently.

Consider now the joint random vector (X,Y, ξ) ∈ Rd×R×Rd. For a constant δ ∈ [0, 1)

consider the joint distributions over (X,Y, ξ) defined by

U(Q0, δ) = {Q0 ⊗Q1 ⊗ . . .⊗Qd : Qj ∈ Qj(δ) ∀j = 1, . . . , d} , (11)

where ⊗ denotes the product measure (meaning that the joint distribution is the product

of the independent marginals Qj , j = 0, . . . , d). Thus, in the game, we consider U(Q0, δ) as

nature’s action space or nature’s distributionally uncertainty set.

We will make only one assumption about the reference distribution: Q0 :

Assumption 1 The distribution Q0 satisfies EQ[`(X� ξ, Y, θ)] <∞ for any Q ∈ U(Q0, δ),

any θ ∈ Θ, and any scalar δ ∈ [0, 1).

This assumption implies a minimal regularity condition to guarantee that the expected

loss is well defined for both the statistician and nature. Assumption 1 holds trivially when

Q0 is the empirical distribution of the data, which is one of the main cases of interest in

the paper.

4.3 Dropout Training is Distributionally Robust Optimal

Theorem 1 Consider the two-player zero-sum game where the statistician has the loss

function in (9) and nature has the action space in (11) for some reference distribution Q0

and a scalar δ ∈ [0, 1). If Assumption 1 holds, then for any θ ∈ Θ,

sup
Q∈U(Q0,δ)

EQ [`(X � ξ, Y, θ)] (12)

is equivalent to

EQF [`(X � ξ, Y, θ)], (13)

where QF = Q0⊗QF
1 ⊗. . .⊗Q

F
d , and QF

j = (1−δ)−1×Bernoulli(1−δ) is a scaled Bernoulli

distribution for any j = 1, . . . , d, i.e., under QF
j

ξj =

0 with probability δ,

(1− δ)−1 with probability (1− δ).
(14)

In addition, let θF ∈ Θ be a minimizer of (13). Then (θF,QF) constitutes a Nash equi-

librium of the two-player zero-sum game defined by (9) and (11), and QF is nature’s least

favorable distribution.
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Proof See Appendix A.2.

The first part of the theorem characterizes nature’s worst-case perturbation of Q0. From

the statistician’s perspective, nature’s worst-case perturbation of Q0 is given by the dropout

noise QF in (14). Under this worst-case distribution, nature independently corrupts each

entry of X = (X1, . . . , Xd)
>, either by dropping the j-th component (if ξj = 0), or by re-

placing it by Xj/(1− δ). Dropout training—which here refers to estimating the parameter

θ after adding dropout noise to X—thus becomes the statistician’s preferred way of esti-

mating the parameter θ when facing an adversarial nature. This gives a decision-theoretic

foundation for the use of dropout training.

Note that, in order to recover the objective function introduced in (5) (the sample

average of the contaminated log-likelihood), it suffices to set the reference measure—Q0—

as the empirical distribution P̂n of {(xi, yi)}ni=1, which satisfies Assumption 1.

We provide now some intuition about how dropout noise becomes nature’s worst-case

distribution. Algebra shows that, in light of Assumption 1, the expected loss under an

arbitrary distribution Q is finite and can be written as

EQ[`(X � ξ, Y, θ)] = −EQ0 [lnh(Y, φ)]

+ EQ0

[
EQ1⊗...⊗Qd [(Ψ((β �X)>ξ)− Y ((β �X)>ξ))/a(φ)]

]
,

where the first expectation is taken with respect to the reference distribution, and the

second with respect to ξ. For fixed values of (X,Y, θ), we can define the function

A(X,Y,θ)((β �X)>ξ) ≡ (Ψ((β �X)>ξ)− Y ((β �X)>ξ))/a(φ).

The key step to establishing Theorem 1 is to show that

sup
{
EQ1⊗...⊗Qd [A(X,Y,θ)((β �X)>ξ)] : Qj ∈ Qj(δ)

}
= EQF

1 ⊗...⊗Q
F
d

[A(X,Y,θ)((β �X)>ξ)]

(15)

for any θ. The proof of this equality crucially exploits the convexity of the function A(X,Y,θ) :

R → R, which we show to be a consequence of the convexity of the log-partition function

Ψ(·).7 We make four important remarks about the equality in (15), and about the role that

convexity plays in the optimality of dropout training.

Remark 1. First, a natural question to ask is whether the convexity of the log-partition

function Ψ imposes a significant restriction on the class of generalized linear models that

7. To derive our result, we first characterize the worst-case distribution for the expectation of a real-valued
convex function (Lemma 1) and then we generalize this result to functions that depend on ξ only through
linear combinations, as A(X,Y,θ)(·) (Lemma 2).
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we are considering. It is known that the log-partition function of any generalized linear

model with an open parameter space is convex; see Proposition 3.1 in Wainwright and

Jordan (2008). This immediately implies that the convexity of Ψ should not be viewed as

a significant restriction.

Remark 2. Second, it is reasonable to inquire whether our results concerning the optimality

of dropout training could be extended beyond generalized linear models. For instance, one

could be interested in considering a model in which linear predictors are obtained using an

objective function of the form

EQ0 [f(Y, β>X)],

where f(y, ·) : R → R, and (X,Y ) ∼ Q0. This formulation includes certain types of

extremum estimators as well as single-index models estimated by nonlinear least squares.

Theorem 4 in Appendix A.6.1 shows that, if dropout noise is nature’s worst-case distribution

among multiplicative perturbations of covariates; that is, if

sup
Q∈U(Q0,δ)

EQ[f(Y, β>X � ξ)] = EQF [f(Y, β>X � ξ)] (16)

for some δ ∈ (0, 1], all d ≥ 1, all β ∈ Rd and all reference distributions Q0, then f(y, ·)
must be a convex function on the real line for any given y. This means that convexity

indeed plays a crucial role in the optimality of dropout training and, while it is possible

to consider extensions outside the class of generalized linear models, such extensions will

still have to impose some form of convexity (which may turn out to be very strong).8 In

Appendix A.6.2, we also argue that, beyond generalized linear models, the convexity of the

objective function and the definition of U are, in general, not sufficient to make dropout

training minimax-optimal.

Remark 3. Third, to further understand the extent to which convexity-like restrictions

imply the optimality of dropout noise, we consider a generalization of the multiplicative

errors-in-variables model that allows for correlated noise. We show that, in this case, there

is a simple generalization of dropout (that we term “block dropout”) that drops out blocks

of variables at the same time. See Appendix A.6.3.

Remark 4. Fourth, Theorem 1 does not imply that U(Q0, δ) is the largest class of distri-

butions for which dropout training is distributionally robust optimal (or for which dropout

noise is the worst-case distribution). In appendix A.6.4 we show that—in the context of

the linear regression model—the dropout estimator can also be obtained by solving a dis-

tributionally robust optimization problem over “additive” contamination models (provided

8. For instance, in Appendix A.6.1, we show that the only single-index model with an objective function of
the form f(y, β>x) = (y− g(β>x))2 for which dropout training is optimal is the linear regression model;
that is, g(β>x) = β>x.
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the additive perturbations are independent of the data, have a mean of zero, and satisfy a

certain bound on their second moments). Thus, the union of additive and multiplicative

perturbations still gives dropout noise as the worst-case distribution, and makes the dropout

training estimator distributionally robust optimal.

How about the Nash Equilibrium of the two-player zero-sum game defined by Equa-

tions (9) and (11)? The equality in Equation (15) clearly shows that QF is nature’s best

response for any θ ∈ Θ. If there is a vector θF that solves the dropout training problem in

Equation (13), then this vector is the statistician best’s response to nature’s choice of QF.

Consequently, (θF,QF) is a Nash equilibrium.

Finally, we discuss the extent to which QF can be referred to as nature’s least favorable

distribution, which has been defined as nature’s solution to the maximin problem. It is well

known that the maximin value of a game is always smaller than its minimax value:9

sup
Q∈U(Q0,δ)

inf
θ∈Θ

EQ[`(X � ξ, Y, θ)] ≤ inf
θ∈Θ

sup
Q∈U(Q0,δ)

EQ[`(X � ξ, Y, θ)].

We have shown that the right-hand side of the display above equals the infimum of (13).

Therefore, if there is a θF ∈ Θ that solves such program, then QF achieves the upper bound

to the maximin value of the game. To see this, note that by definition of the left-hand side

of the display above

inf
θ∈Θ

EQF [`(X � ξ, Y, θ)] ≤ sup
Q∈U(Q0,δ)

inf
θ∈Θ

EQ[`(X � ξ, Y, θ)],

while we also have

inf
θ∈Θ

EQF [`(X � ξ, Y, θ)] = inf
θ∈Θ

sup
Q∈U(Q0,δ)

EQ[`(X � ξ, Y, θ)],

by Equation (13). This makes dropout noise nature’s least favorable distribution.

Now that we have established that dropout training gives the minimax solution of the

DRO game, we discuss the implications of this result regarding the out-of-sample perfor-

mance of dropout training. Suppose Q0 is the empirical measure P̂n supported on n training

samples {(xi, yi)}ni=1. Let θ̂(δ) denote the estimators of (β, φ) based on dropout training

with dropout probability δ. The in-sample loss of dropout training, averaged over dropout

9. This follows from the fact that for any Q ∈ U(Q0, δ) :

inf
θ∈Θ

EQ[`(X � ξ, Y, θ)] ≤ EQ[`(X � ξ, Y, θ)] ≤ sup
Q∈U(Q0,δ)

EQ[`(X � ξ, Y, θ)].

See also the discussion of the minimax theorem in Ferguson 1967, p. 81.
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noise, is

1

n

n∑
i=1

EQF [`(X � ξ, Y, θ̂(δ))|X = xi, Y = yi], (17)

which is equivalent to the objective function of dropout noise that we presented in equation

(5), evaluated at the parameters estimated using dropout training; that is

1

n

n∑
i=1

Eδ
[
− ln f

(
yi|xi � ξi, β̂(δ), φ̂(δ)

)]
.

A typical concern about estimation procedures is whether their performance in a specific

sample translates to good performance out of sample. In our context, the out-of-sample

performance of dropout training can be thought of as the expected loss that would arise

for some other data distribution Q̃ over (X,Y ) at the parameter estimated via dropout

training:

EQ̃[`(X,Y, θ̂(δ))].

The following is a direct corollary of Theorem 1:

Corollary 1 Let θ̂(δ) = (β̂(δ)>, φ̂(δ))> denote the dropout estimators of β and φ given

dropout noise δ. Consider any distribution Q̃ over (X,Y ) that can be obtained from P̂n by

perturbing covariates with mean-one, independent multiplicative error ξj ∈ [0, (1 − δ)−1].

That is, if Q corresponds to the distribution of a vector of the form

(X̃1ξ1, . . . , X̃dξd, Y )>,

where (X̃1, . . . , X̃d, Y ) ∼ P̂n and (ξ1, . . . ξd) is a vector of i.i.d. random variables (indepen-

dent of the empirical distribution of the data), supported on [0, (1− δ)−1]. Then,

EQ̃[`(X,Y, θ̂(δ))] ≤ 1

n

n∑
i=1

Eδ
[
− ln f

(
yi|xi � ξi, β̂(δ), φ̂(δ)

)]
. (18)

This means that the objective function used for dropout training will provide an upper

bound for the out-of-sample loss associated with multiplicative perturbations of the training

data.

Finally, we note that Theorem 1 was stated for a scalar δ that is homogeneous across

the multiplicative noise ξj . To model non-identical dropout noise, we can substitute the sets

in Equations (10) and (11) by Qj(δj) for a collection of parameters (δ1, . . . , δd) ∈ [0, 1)d.

In this case, the results of Theorem 1 hold with QF
j = (1 − δj)−1 × Bernoulli(1 − δj) for

j = 1, . . . , d.
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5. Statistical Guidance on Choosing δ

Theorem 1 above showed that dropout training is distributionally robust optimal and that

nature’s least favorable distribution is dropout noise with probability δ ∈ [0, 1). This

section suggests a strategy to pick this parameter to control the generalization error of

dropout training.

5.1 Additional Notation

Let φ̂n denote an arbitrary
√
n-asymptotically normal estimator for the scale parameter φ.

Such an estimator can be the maximum likelihood estimator, which is known to be consistent

and asymptotically normal under mild regularity conditions on the joint distribution of

(Xi, Yi) (Fahrmeir and Kaufmann, 1985). We also allow φ̂n to be the dropout training

estimator of φ but with a dropout probability of c/
√
n. Finally, as we did before, we let

β̂(δ) denote the dropout estimator of β under dropout probability δ.

In this section, we assume that the observed data was generated by a generalized linear

model. Let (β∗, φ∗) denote the parameters that were used to generate the training data,

and let P ∗ denote the corresponding joint distribution of covariates and outcomes under

the true data generating process (hence, the training sample consists of n i.i.d. draws from

P ∗).

A key quantity in this section is

Ln(β, φ, δ) ≡ 1

n

n∑
i=1

Eδ [− ln f(yi|xi � ξi, β, φ)] , (19)

which equals the in-sample (or empirical) loss at parameters β and φ, but averaged over

the dropout noise with dropout probability δ.

To speak about the generalization error of dropout training, we define the “population”

loss at (β, φ) as

L(β, φ) ≡ EP ∗ [− ln f(Y |X,β, φ)] . (20)

Then,

L(β̂(δn), φ̂n) (21)

is the loss that will arise from evaluating the negative log-likelihood in Equation (1) at

(β̂(δn), φ̂n) and then averaging over values of (X,Y ) drawn according to P ∗. This corre-

sponds to the definition of generalization error used in Equation (2), evaluated at P ∗. If the

negative log-likelihood is used as a measure of performance of the estimators (β̂(δn), φ̂n),

then an upper bound on (21) can be thought of as an upper bound on the generalization

error of (β̂(δn), φ̂n).

14
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The main result in this section shows that the event

Ln(β̂(δn), φ̂n, δn) ≥ L((β̂(δn), φ̂n)), (22)

can be guaranteed to hold with probability at least 1− α, for an appropriate choice of the

sequence δn. This means that we can upper bound the generalization error of the estimators

(β̂(δn), φ̂n) with probability at least 1− α, as we explain next.

5.2 Additional Assumptions and Main Result of this Section

Assumption 2 The log-partition function Ψ(·) has a bounded second derivative.

Assumption 3 The second moment matrix EP ∗ [XX>] is finite, positive definite.

Assumption 4 For some σ2:

√
n
(
Ln(β∗, φ̂n, 0)− L(β∗, φ∗)

)
d→ N (0, σ2).

We can now state this section’s main result. Define the random variable

µn(β, φ, δ) ≡ Ln(β, φ, δ)− Ln(β, φ, 0), (23)

which is nonnegative for any δ ∈ [0, 1) by Theorem 1.

Theorem 2 Suppose that Assumptions 2, 3, 4 hold. Then for any sequence δn = c/
√
n,

√
n
(
Ln(β̂(δn), φ̂n, δn)− L((β̂(δn), φ̂n)

)
d→ N (µ∞(β∗, φ∗, c), σ2),

where µ∞(β∗, φ∗, c) ≥ 0 is a linear function of c, strictly increasing for almost every (β∗, φ∗),

and equal to the probability limit of

√
nµn

(
β∗, φ̂n, δn

)
,

and µn(·) is defined as in Equation (23).

Proof See Appendix A.3.

The main message of Theorem 2 is that the probability of the event

Ln(β̂(δn), φ̂n, δn) ≥ L((β̂(δn), φ̂n)
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can be approximated, as the sample size goes large, by the probability—under a normal

random variable with positive mean—of the positive half of the real line. That is:

P∗
(
Ln(β̂(δn), φ̂n, δn) ≥ L((β̂(δn), φ̂n)

)
= P

(
N (µ∞(β∗, φ∗, c), σ2) ≥ 0

)
+ o(1).

Since µ∞ is nonnegative, it is a strictly increasing function of c for almost every (β∗, φ∗),

then c can be chosen to guarantee that the probability of the first term in the right-hand

side of the equality is as close to one as desired. This means that we can choose the

dropout probability to guarantee that the generalization error associated with the estimator

(β̂(δn), φ̂n)—which we have denoted as L(β̂(δn), φ̂n)—admits an upper bound (estimable

based on information in the sample) with high probability. See Equation (29) for our

explicit recommendation on how to choose δ = c/
√
n based on Theorem 2.

Some elementary algebra can be used to illustrate the main argument behind the proof.

It is convenient to start analyzing the difference

√
n
(
Ln(β̂(δn), φ̂n, δn)− L(β∗, φ∗)

)
instead of

√
n
(
Ln(β̂(δn), φ̂n, δn)− L((β̂(δn), φ̂n)

)
.

Algebra shows that

√
n
(
Ln(β̂(δn), φ̂n, δn)− L(β∗, φ∗)

)
=
√
n
(
Ln(β̂(δn), φ̂n, δn)− Ln(β∗, φ̂n, δn)

)
(24)

+
√
nµn(β∗, φ̂n, δn) (25)

+
√
n
(
Ln(β∗, φ̂n, 0)− L(β∗, φ∗)

)
. (26)

We show that the sum of these terms converges in distribution to a normal. The proof has

three main steps that we explain below.

Step 1. We start by showing that term (24) converges in probability to zero. To do this,

we show that
√
n(β̂(c/

√
n)− β∗) (27)

is asymptotically normal and that the derivative of Ln(·) with respect to β (evaluated at β∗)

converges in probability to zero. One important observation is that mean of the asymptotic

distribution of Equation (27) is nonzero, and depends linearly on c. Consequently, even

though the dropout training estimator is asymptotically normal, its limiting distribution

exhibits bias (and the norm of such bias increases linearly as a function of c2). This first

step thus shows that choosing a larger dropout probability comes at the cost of a decrease in

accuracy in the estimation of β∗. Our recommended procedure for choosing c will guarantee
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that the generalization error of dropout training will be bounded with some prespecified

probability, despite the decrease in estimation accuracy.

Step 2. We then show that term (25) has a finite probability limit. This is the key step in

the proof. Importantly, we can characterize this limit explicitly and show that

√
nµn(β∗, φ̂n, δn)

p→ c · µ,

where

µ ≡

∑
ξ∈A

EP ∗ [Ψ((X � ξ)>β∗)]

− dEP ∗ [Ψ(X>β∗)] + EP ∗ [Y X>]β∗

/a(φ∗),

and A is the collection of all vectors in {0, 1}d for which there is only one zero. In Section

7, we provide an expression for this term in the linear regression model.

Step 3. The term (26) above has, by Assumption 4, an asymptotically normal distribution

with mean zero and variance σ2.

Step 4. Finally, in order to establish Theorem 1 we show that

√
n
(
L((β̂(δn), φ̂n))− L(β∗, φ∗)

)
= oP ∗(1), (28)

which means that the expected loss evaluated at (β̂(δn), φ̂n) converges in probability to

L(β∗, φ∗) at a rate of at least n−1/2.

It is important to mention that the DRO interpretation of dropout training can be

leveraged to select the dropout parameter δ. For example, a possible approach is choosing δ

so that the true data-generating process belongs to nature’s choice set with some prespecified

probability. This approach, which is often advocated in the literature on machine learning

and robustness (Hansen and Sargent, 2008), often leads to a very pessimistic selection of δ

simply because this criterion is not informed at all by the loss function defining the decision

problem. Further, in our problem, it is impossible to apply this approach, given that the

set of multiplicative perturbations of the empirical distribution will generally not cover the

true data-generating process.

Another approach involves using generalization bounds leading to finite sample guar-

antees; see, for instance, a summary of this discussion in Section 6.2 of Rahimian and

Mehrotra (2019). This method, while appealing, often requires either distributions with

compact support or strong control on the tails of the underlying distributions. Also, often,

the bounds depend on constants that may be too pessimistic or too difficult to compute.

Finally, Blanchet et al. (2019b) recently introduced a method for the case in which

nature’s choice set is defined in terms of the Wasserstein distance around the empirical
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distribution. The idea therein is that—for a fixed δ—every distribution that belongs to

nature’s choice set corresponds to an optimal parameter choice for the statistician. Thus,

one can collect each and every of the statistician’s optimal choices associated with each

distribution in nature’s uncertainty set, and treat the resulting region as a confidence set

for the true parameter. This confidence set grows bigger (in the sense of nested confidence

regions) as δ increases. The goal is then to minimize δ subject to a desired level of coverage

in the underlying parameter to estimate. This leads to a data-driven choice of δ explicitly

linked to the statistician’s decision problem. However, this approach is not feasible for our

problem because, once again, regardless of the value of δ, the parameter choices for each of

the multiplicative perturbations of the empirical distribution will generally fail to cover the

true parameter.

5.3 Our recommendation for choosing δ.

We advocate choosing the parameter δ to control how often the in-sample loss obtained

from dropout training exceeds the population loss. The proof of Theorem 2 shows that

µ∞(β∗, φ∗, c) is of the form c · µ, where µ depends on (β∗, φ∗). Consequently, as long as

µ > 0, it is straightforward to pick c to guarantee a pre-specified coverage of the population

loss: for any α ∈ (0, 1), if we pick c to be

z1−α · σ/µ, (29)

where z1−α is the 1-α quantile of a standard normal, and µ is evaluated at consistent

estimators of β∗ and σ∗ then the probability of the event (22) asymptotically approaches

1− α.

6. An Algorithm for Dropout Training

The goal of this section is to suggest an algorithm for solving the dropout training problem

inf
θ∈Θ

EQF [`(X � ξ, Y, θ)],

where QF = P̂n ⊗ QF
1 ⊗ . . . ⊗ QF

d and QF
j , j = 1, . . . , d is the dropout noise distribution

defined in (14). Notice that we here consider the specific case in which Q0 is set to the

empirical measure P̂n supported on n training samples {(xi, yi)}ni=1. We will use θFn to

denote the solution of the dropout training problem above. It will sometimes be convenient
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to rewrite this dropout training problem as

min
θ

1

n

n∑
i=1

EQF [`(X � ξ, Y, θ) |X = xi, Y = yi], (30)

which coincides with expression (5). Conditioning on the values of (xi, yi) makes it clear

that the expectation is computed over the d-dimensional vector ξ. We now briefly describe

three common approaches to implement dropout training and discuss some of its limitations.

6.1 Naive Dropout Training

Because QF
j places mass on only two points, namely 0 and (1 − δ)−1, the support of the

joint distribution QF
1 ⊗ . . .⊗QF

d has cardinality 2d. Thus, a näıve approach to solving the

dropout training problem specified by Equation (30) is to expand the objective function as

a sum with n · 2d terms, then apply a tailored gradient descent algorithm to the resulting

optimization problem. Computationally, however, this approach is too demanding because

the number of individual terms in the objective function grows exponentially with d.

6.2 Dropout Training via Stochastic Gradient Descent

Another method to solve the dropout training problem in Equation (13) is to use stochastic

gradient descent (Robbins and Monro, 1951). This is tantamount to i) taking a draw of

(xi, yi) according to its empirical distribution, ii) independently taking a draw of ξi using

the distribution in Equation (3), and iii) computing the stochastic gradient descent update

using

∇ ln f(yi|xi � ξi, β, φ).

Given a current estimate θ̂, we compute an unbiased estimate of the gradient to the

objective function of (13), and move in the direction of the negative gradient by a step of

suitable size. Since QF is discrete, the expectation under QF can be written as a finite

sum, and, by differentiating under the expectation, we have

∇θEQF [`(X � ξ, Y, θ̂)] = EQF

[
∇θ`(X � ξ, Y, θ̂)

]
. (31)

The standard SGD algorithm uses a näıve Monte Carlo estimator as an estimate of the

gradient (31), that is, at iteration k ∈ N with incumbent solution θ̂k,

∇θEQF [`(X � ξ, Y, θ̂k)] ≈ ∇θ`(xk � ξk, yk, θ̂k),

where (xk, yk, ξk) is an independent draw from QF.
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One drawback of using SGD for our problem is that it is not easily parallelizable, and

thus its implementation can be quite slow. Moreover, under the strong convexity assump-

tion of the loss function `, SGD exhibits only linear convergence (Nemirovski et al., 2009,

Section 2.1). In contrast, gradient descent (GD) offers exponential convergence (Boyd and

Vandenberghe, 2004, Section 9.3.1).

6.3 Näıve Monte Carlo Approximation for Dropout Training

Consider solving dropout training problem (30) using a näıve Monte Carlo approximation.

Instead of using 2d terms to compute

EQF [`(X � ξ, Y, θ) |X = xi, Y = yi],

we approximate this expectation by taking a large number of K i.i.d. draws {ξki }Kk=1,

ξki ∈ Rd, according to the distribution QF
1 ⊗ . . .⊗QF

d . When d is large, this approximation

is computationally cheaper than the näıve dropout training procedure described above,

provided that K � 2d.

Thus, the näıve Monte Carlo approximation of the dropout training problem is

min
θ∈Θ

1

n

n∑
i=1

[
1

K

K∑
k=1

`(xi � ξki , yi, θ)

]
, (32)

where the random vectors ξki are sampled independently—over both k and i—using the

distribution QF
1 ⊗ . . .⊗QF

d .

Relative to the solution of the dropout training problem—which we denoted as θFn —the

minimizer of approximation (32) is consistent and asymptotically normal as K →∞. This

follows by standard arguments; for example, those in Shapiro et al. (2014, Section 5.1).

There are, however, two problems that arise when using problem (32) as a surrogate for the

dropout training problem. First, the solution to approximation (32) is a biased estimator

for θFn . This means that, if we average the solution over the K ·n different values of ξki , the

average solution need not equal θFn . Second, implementing approximation (32) requires a

choice of K and, to the best of our knowledge, there is no off-the-shelf procedure for picking

it.

6.4 Unbiased Multi-level Monte Carlo Approximation for Dropout Training

To address these two issues, we apply the recent techniques suggested by Blanchet et al.

(2019a) that we refer to as unbiased multi-level Monte Carlo approximations. Multi-level

Monte Carlo methods (Giles, 2008, 2015) are a set of techniques for approximating the ex-
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pectation of random variables. The adjective “multi-level” emphasizes the fact that random

samples of different levels of accuracy are used in the approximation. Before presenting the

detailed algorithm, we provide a heuristic description. To this end, let θ̂Fn (K) denote the

level K solution of the problem in (32); that is, the solution based on K draws. Define the

random variable

∆K ≡ θ̂Fn (K)− θ̂Fn (K − 1)

and, for simplicity, assume that θ̂Fn (0) is a vector of zeros. Under suitable regularity condi-

tions:
∞∑
K=1

E[∆K ] = lim
K→∞

E[θ̂Fn (K)] = θFn .

Consider now pickingK∗ randomly from some discrete distribution supported on the natural

numbers. Let p(·) denote the probability mass function of such distribution and consider a

Monte Carlo approximation scheme in which—after drawing K∗—we sample K∗ ·n different

random vectors ξki ∈ Rd according to QF
1 ⊗ . . .⊗QF

d . The estimator

Z(K∗) ≡ ∆K∗

p(K∗)

has two sources of randomness. These are, firstly, the random choice of K∗ and, secondly,

the random draws ξki . Averaging over both yields

E[Z(K∗)] =
∞∑
K=1

E[Z(K∗)|K∗ = K] · p(K) =
∞∑
K=1

(E[∆K ]/p(K)) · p(K) = θFn .

Thus, by taking into account the randomness in the selection of K, we have managed to

provide a rule for deciding the number of draws (specifically, our recommendation is to pick

K∗ at random), and, at the same time, we have removed the bias of näıve Monte Carlo

approximations.

One possible concern with our suggested implementation is that the expected computa-

tional cost of Z(K∗) could be infinitely large. Fortunately, this issue can be easily resolved

by an appropriate choice of the distribution p(·). To see this, define the computational cost

simply as the number of random draws that are required to obtain Z(K∗). In the construc-

tion we have described above, we need K∗ · n draws for the construction of the estimator.

Thus, the average cost is

E[K∗ · n] = n

∞∑
K=1

K · p(K)
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which, under mild integrability conditions on p(·), will be finite.10

We now present the algorithm that will be used to solve the dropout training problem.

To ensure that the estimator Z(K∗) has a finite variance, instead of defining ∆K as the

difference between the level K and K − 1 solutions to the approximation problem (32) in

the above heuristic arguments, we use solutions for a sample of size 2K+1 and with its odd

and even sub-samples of size 2K .

6.5 Algorithm for the Unbiased Multilevel Monte Carlo

We present a parallelized version using L processors, which works even when L = 1. Parallel

computing reduces the variance of the estimator, so we suggest using as many processors

as are available per run.

Fix an integer m0 ∈ N such that 2m0+1 � 2d. For each processor l = 1, . . . , L we

consider the following steps.

i) Take a random (integer) draw, m∗l , from a geometric distribution with parameter

r > 1/2.11

ii) Given m∗l , take 2K
∗
l +1 i.i.d. draws from the d-dimensional vector ξi ∼ QF

1 ⊗ . . .⊗QF
d ,

where

K∗l ≡ m0 +m∗l .

Repeat this step independently for each i = 1, . . . , n.

iii) Solve problem (32) using the first 2m0 i.i.d. draws of ξi for each i. Let θl,m0 denote a

minimizer.

iv) Denote by θ̂Fn (2K
∗
l +1), θ̂On (2K

∗
l ), and θ̂En (2K

∗
l ) any solution to the following optimiza-

tion problems (all of which are based on sample average approximations as the Monte

10. For example, if p(·) is selected as a geometric distribution with parameter r, the expected computational
cost will be n(1− r)/r.

11. To see why we require that r > 1/2, notice that, if the computational cost of evaluating Z(K∗) (as in
the heuristic description above) increases exponentially in K and takes the form C · 2K , the expected
computational cost will be

∞∑
K=1

Cr(2(1− r))K = Cr(1/2(1− r)),

provided 2(1− r) < 1, or equivalently, r > 1/2. As we show in the proof of Theorem 3, constraining the
variance requires then imposing r < 3/4. Ultimately, optimizing the product of computational cost and
variance leads to the optimal selection r = 1− 2−3/2.
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Carlo approximation 32):

θ̂Fn (2K
∗
l +1) ∈ arg min

θ∈Θ

1

n

n∑
i=1

 1

2K
∗
l +1

2K
∗
l +1∑

k=1

`(xi � ξki , yi, θ)

 ,

θ̂On (2K
∗
l ) ∈ arg min

θ∈Θ

1

n

n∑
i=1

 1

2K
∗
l

2K
∗
l∑

k=1

`(xi � ξ2k−1
i , yi, θ)

 ,

θ̂En (2K
∗
l ) ∈ arg min

θ∈Θ

1

n

n∑
i=1

 1

2K
∗
l

2K
∗
l∑

k=1

`(xi � ξ2k
i , yi, θ)

 .

Intuitively, θ̂On and θ̂En denote the solutions to problem (32) but using a sample of size

2K
∗
l with only odd indices and even indices, respectively.

v) Define

∆̄K∗l
≡ θ̂Fn (2K

∗
l +1)− 1

2
(θ̂On (2K

∗
l ) + θ̂En (2K

∗
l ))

and let

Z(K∗l ) =
∆̄K∗l

r(1− r)K∗l −m0
+ θl,m0 .

Our recommended estimator is

1

L

L∑
l=1

Z(K∗l ).

We now show that the suggested algorithm gives an estimator with desirable properties.

We do so under the following regularity assumptions.

Assumption 5 Suppose that the parameter space Θ is compact. Suppose in addition that

the optimal solution θFn to the dropout training problem in (30) is (globally) unique.

Assumption 6 Let θ̂Fn (K) denote the solution of the problem in (32) based on K draws.

Suppose that as K →∞,

E[‖K
1
2 (θ̂Fn (K)− θFn )‖42) = O(1),

where the expectation is taken over the i.i.d. dropout noise distribution used to generate ξki .

Assumption 7 Assume that, for each (X,Y, ξ), `(X � ξ, Y, ·) is thrice continuously differ-

entiable over Θ and that the Hessian matrix ∇θθEQF [`(X � ξ, Y, θFn )] is non-singular.
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Theorem 3 Under Assumption 5, E[Z(K∗l )] = θFn . The number of random draws required

to compute Z(K∗l ) is n ·2K∗l +1 and thus the expected computational complexity for producing

Z(K∗l ) equals
n(2m0+1)r

2r − 1
< n(2m0+1)� n2d.

Suppose, in addition, that θ̂Fn (K) is almost surely in the interior of Θ for large enough K.

If Assumptions 6 and 7 hold, and r < 3/4, then Var(Z(K∗l )) <∞.

Proof See Appendix A.4.

Our suggested algorithm has finite expected computational complexity that does not

grow exponentially with the dimensionality d, thus, every time we need to obtain θ̂Fn (2K
∗
l +1),

we can do so by gradient descent. Combined with parallelization, the unbiased multi-level

Monte Carlo approach produces an unbiased estimator with a variance that can be made

arbitrarily small if L is large enough, provided that the regularity assumptions that give

Var(Z(K∗l )) <∞ hold.

7. Numerical Experiments

We conduct numerical experiments in this section to compare our preferred implementation

of dropout training to stochastic gradient descent, as well as our recommended selection

of δ to cross-validation. The benefits of our suggested unbiased multi-level Monte Carlo

algorithm are analyzed using high-dimensional regression, whereas our selection of δ is

analyzed using a low-dimensional regression model.

7.1 Advantage of the Unbiased Multi-level Monte Carlo Estimator

We present a simple numerical experiment to illustrate the advantage of using the unbiased

multi-level Monte Carlo estimator suggested in Section 6.4. We consider the linear regression

problem with known variance and we focus on solving the dropout training problem with

our recommended δ chosen according to Proposition 2.

Our simulation setting considers a linear regression model with a covariate vector having

dimensionality d = 100 and sample size n = 50. We pick a known regression coefficient

β0 ∈ Rd being a vector with all entries equal to 1. With fixed coefficients, we assume the

covariate vector follows an independent Gaussian, as well as for the regression noise. More

specifically, we can get our 50 observations (xi, yi) via

• sampling xi ∼ N (0, Id), i = 1, . . . , n,
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• sampling yi ∈ R conditional on xi, where yi is given by the linear assumption and εi

are i.i.d. random noise following N (0, 102), for i = 1, . . . , n.

Our simulation first considers a high-dimension setting (relatively low ratio between sample

size per dimension n/d = 0.5) with high noise-to-signal ratio (variability on residual noise

is high compared to the variability on xi).

If we set Q0 to be the empirical distribution of {(xi, yi)ni=1}, the dropout training problem

in the linear regression model is

min
β∈Rd

EQF

[(
β>(X � ξ)− Y

)2
]
.

Corollary 2 in Appendix A.5 shows that, in the linear regression model, the dropout training

problem can be written as

min
β∈Rd

1

n

[
(Y −Xβ)>(Y −Xβ) +

δ

1− δ
β>Λβ

]
,

where Y = [y1, y2, . . . , yn]>, X = [x1, x2, . . . , xn]> and Λ is the diagonal matrix with its

diagonal elements given by the diagonals of X>X. Moreover, there is a closed-form solution

for the dropout training problem and it is given by the ridge regression formula:

β∗n =

(
X>X +

δ

1− δ
Λ

)−1

X>Y.

We choose the dropout probability δ following Proposition 2. More specifically, Propo-

sition 2 suggests the choice δ = c/
√
n where c = z1−α · σ/µ. For linear regression with

known variance, it is straightforward to compute

µ =
1

2φ∗

d∑
j=1

EP ∗ [X2
j ](β∗j )2,

and

σ2 = VarP ∗

[
1

2
log(2πφ∗) +

(Y − (β∗)>X)2

2φ∗

]
.

Choosing α = 0.1 and note that β∗ = β0, φ
∗ = 102, we have δ ≈ 0.26.

Since neither our suggested multi-level Monte Carlo algorithm nor standard SGD (as

defined in Section 6.2) uses closed-form formulae for their implementation, we analyze the

extent to which these procedures can approximate the parameter β∗n. The two algorithms

we compare are:
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Figure 1: l2 difference

• Standard SGD algorithm with a learning rate 0.0001 and initialization at the origin.

Note that we take batched SGD instead of the single-sample SGD introduced in

Section 6.2.

• Multi-level Monte Carlo algorithm with a geometric rate r = 0.6 and a burn-in period

m0 = 5. Note that in each parallel run, we use gradient descent (GD) with 0.01

learning rate and initialization at origin for steps iii) and iv) in Section 6.4.

We run our simulation on a cluster with two Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40 GHz

processors (with 10 cores each), and a total memory of 128 GB. We fix 60 seconds as a

“wall-clock time”, so that we terminate the two algorithms after 60 seconds.12 We run 1000

independent experiments. For each run, we calculate and report the average parameter

estimation divergence to β∗n and 1-standard deviation error bar for the divergence. We

consider different number of parallelizations (i.e., L in Section 6.4) from 400 to 2400. We

cap the run at 2400 due to the saturation of divergence after ∼ 2000 parallelizations.

Figure 1 shows the l2 divergence from the true β∗n of the two algorithms for varying

L, while Figure 2 and Figure 3 show the l∞ and l1 divergence, respectively. We observed

that our unbiased estimator outperforms the standard SGD algorithm once the number of

parallel iterations exceeds some moderate threshold (∼ 1000 here). We provide supporting

evidence in Appendix A.7 to argue our choice of the learning rate, initialization, and wall-

clock time, where our proposed algorithm is robust to any reasonable choices.

12. The parameters for the SGD algorithm are appropriately tuned to achieve good convergence within 60 s
(see Appendix A.7 for the tuning procedure). We do not claim that this choice of parameters is optimal.
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Figure 2: l∞ difference

Figure 3: l1 difference
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7.2 Coverage of the True Loss of Dropout Training

Here, we validate that our recommended selection of δ guarantees that the in-sample loss

of dropout training is covering the true loss with arbitrarily high probability as prescribed

by Proposition 2.

We use the same linear regression model with dimensionality d = 10 and n ∈ {103, 104}
training samples. We choose different quantiles of the normal as in Proposition 2. We also

include 10-fold cross-validation and ordinary least squares for comparison; see Table 1, where

we estimate the frequency of coverage over 1000 independent runs. The main message is

that our suggested choice of δ guarantees that the in-sample loss of dropout training exceeds

the true, unknown, population loss with probability 1 − α. When using standard OLS or

choosing δ by cross-validation, the in-sample loss is smaller than the population loss with

probability close to 1/2, which implies that these methods are unsatisfactory in terms of

frequency of coverage.

α = 0.2 α = 0.1 α = 0.05 10-fold CV plain OLS

n = 103 0.77± 0.01 0.88± 0.01 0.94± 0.01 0.52± 0.02 0.40± 0.01
n = 104 0.79± 0.01 0.90± 0.01 0.94± 0.01 0.49± 0.02 0.47± 0.02

Table 1: Frequency of in-sample loss covering the true population loss. Our recommended
selection of δ = c/

√
n with c = z1−ασ/µ has a theoretical 1−α coverage probability.

8. Extensions

In this section, we discuss the extent to which the decision-theoretic support for dropout

training carries over to neural networks. The main idea is to use a GLM model where

the natural parameter is no longer a linear function of the covariates, but instead a neural

network. We note that dropout training in neural networks typically drops neuron activa-

tions in both the input layer and the hidden layer. Dropout only at the input layer (data

augmentation) is more closely related to our analysis in the context of GLM models and is

also considered in the literature, for example by Devries and Taylor (2017) and Park et al.

(2019) for vision and speech recognition tasks. In the remaining part of this section, we

consider feed-forward neural network with one hidden layer, and consider dropout noise in

both the input and hidden layers.

We also note that there are already concrete recommendations for how to select the

dropout probability in neural networks. For example, Goodfellow et al. (2016, p. 257)

says, “The probability of sampling a mask value of one (causing a unit to be included) is

a hyperparameter fixed before training begins. It is not a function of the current value of
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the model parameters or the input example. Typically, an input unit is included with a

probability 0.8, and a hidden unit is included with a probability 0.5. We then run forward

propagation, back-propagation, and the learning update as usual.” It is not entirely clear

to us what the theoretical support is for this recommendation. We think that our results

for choosing δ in GLM models (which depends on the sample size, and on the estimated

values of the parameters of the model) provide, at the very least, a principled alternative

to select the dropout probability of features in the hidden layer that precedes the output

layer. Our simulations for GLM models (Table 1) suggest that this strategy indeed gives

good bounds on generalization error.

8.1 One-hidden-layer Feed-Forward Neural Networks

Suppose the scalar response variable Y is generated by the conditional density

f(Y |X, θ, φ) ≡ h(Y, φ) exp ((Y Ωθ(X))−Ψ(Ωθ(X))) /a(φ)) , (33)

where Ωθ(X) is a neural network with parameters θ and X ∈ Rd. This is a simple extension

of the regression model that has been used recently to study deep neural networks—see

Schmidt-Hieber (2020) in which the conditional density is Gaussian.

In this section, we will assume that Ωθ(X) is a neural network with a single hidden layer,

a differentiable activation (squashing) function, and a linear output function. A function

h : R→ [0, 1] is a squashing function if it is non-decreasing and if

lim
r→∞

h(r) = 1, lim
r→−∞

h(r) = 0.

For further detail, see Hornik et al. (1989, Definition 2.3).

Although these types of networks—which will be formally described below—are restric-

tive compared to the modern deep learning architectures, they can approximate any Borel

measurable function from a finite-dimensional space to another, provided the hidden units

in the hidden layer are large (Hornik et al., 1989).

Consider a neural network with K units in the hidden layer, each using input weights

wk ∈ Rd, k = 1, . . . ,K. Denote the activation function in the hidden layer as h(·). Assume

a linear output function with a vector of weights β ∈ RK . Thus, the network under

consideration is defined by the function:

Ωθ(X) ≡ β1h(w>1 X) + . . .+ βKh(w>KX) = β>H(X),
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where H(X) = (h(w>1 X), . . . , h(w>KX))>. The neural network is parameterized by θ ≡
(β>, w>1 , . . . , w

>
k )>. Under this model, the distribution of Y |X is a GLM model with co-

variates H(X).

8.1.1 Statistician’s Objective Function

We will endow the statistician with the loss function given by the negative of the conditional

log-likelihood for the model in Equation (33).

8.1.2 Nature’s Uncertainty Set

We allow nature to introduce additional noise to the statistician’s model. We do this in

two steps. First, we allow nature to distort the distribution of X using a multiplicative

noise denoted as ξ(1) ∈ Rd. This is exactly analogous to what we did in the GLM model,

where nature was allowed to pick a distribution for the covariates of the form (X � ξ(1)).

We allow nature to contaminate the input layer with independent and multiplicative noise.

Second, we also allow nature to contaminate each of the hidden units with multiplicative

noise ξ(2) ∈ RK . That is, nature is also allowed to pick a vector ξ(2) = (ξ(2)1, . . . , ξ(2)K)>,

independently of ξ(1) ∈ Rd, to distort the each of the K units in the hidden layer as

H(X)� ξ(2) ≡ (h(w>1 X)ξ(2)1, . . . , h(w>KX)ξ(2)K)>.

Our choice of a one-hidden neural network was simply for expositional simplicity, but

the analysis would be the same with a feed-forward neural network with L hidden layers.

8.1.3 Minimax Solution

The minimax solution of the DRO game is given by

inf
θ

sup
Q

EQ [− ln f(Y |H(X � ξ1)� ξ2, β, φ)] , (34)

where Q now refers to the joint distribution of (X,Y, ξ(1), ξ(2)) and f(Y |X,β, φ) is the GLM

density defined in (1). We continue working with the assumption that ξ ≡ (ξ(1)>, ξ(2)>)>

has independent marginals and that it is independent of (X,Y ).

We would like to solve for the worst-case distributions of the random vectors ξ(1) and

ξ(2), assuming that both of these satisfy the restrictions analogous to Equation (11). The

solution for the distribution of ξ(2) can be obtained as a corollary to Theorem 1, as it

suffices to define

X̃ ≡ H(X � ξ(1))
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and to view (34) as the DRO problem in a linear regression model, in which the data is

(X̃, Y ) and ξ(2) ∈ RK is simply the multiplicative noise that transforms the covariates into

(X̃ � ξ(2)).

The worst-case choice of ξ(1), the multiplicative error for the inputs, is more difficult

to characterize and we were not able to find general results for it. Below, we provide a

heuristic argument suggesting that dropout noise might approximate the worst-case choice

when the output layer is a Gaussian linear model. Let ξ(1)j denote the j-th coordinate of

ξ(1). Suppose that the distribution of this random variable places most of its mass on the

interval [1− ε, 1 + ε].13 This allows us to ‘linearize’ the output of each of the hidden units

around the output corresponding to unperturbed inputs as

h(w>k (X � ξ(1))) = h(w>k (X � (ξ(1)− 1)) + w>k X)

≈ h(w>k X) +
(
ḣ(w>k X) · (wk �X)>(ξ(1)− 1)

)
.

In the notation above, 1 denotes the d-dimensional vector of ones. For the sake of exposition,

ignore the approximation error in the linearization above. If we fix (X,Y, ξ(2)), then the

worst-case choice for the distribution of ξ(1), denoted by Q(1), maximizes

EQ(1)

 K∑
k=1

βk · ξ(2)k ·

h(w>k X) +

ḣ(w>k X) ·
d∑
j=1

wk,j ·Xj · (ξ(1)j − 1)

2
among all distributions with independent marginals for which EQ(1)[ξ(1)j ] = 1 for all j =

1, . . . , d. It can then be shown that such a maximization problem is equivalent to maximizing

EQ(1)

 K∑
k=1

βk · ξ(2)k · ḣ(w>k X) ·

 d∑
j=1

wk,j ·Xj · (ξ(1)j − 1)

2 , (35)

which, in turn, can be written as

EQ(1)

[(
a>(ξ(1)− 1)

)2
]

for an appropriate choice of a vector a ∈ Rd that depends only on (β, ξ(2), h, ḣ, w,X).

Lemma 2 in Appendix A.2 shows that the solution to this problem is dropout noise.

13. This is compatible with dropout noise for which δ is very close to zero.
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9. Concluding Remarks

This paper examines dropout training, an increasingly popular estimation method in ma-

chine learning. Dropout training is a fundamental part of modern machine learning tech-

niques for training very deep networks (Goodfellow et al., 2016).

Our main result (Theorem 1) established a novel decision-theoretic foundation for the

use of dropout training. We showed that this method, when applied to generalized linear

models, can be viewed as the minimax solution to an adversarial two-player, zero-sum

game between a statistician and nature. The framework used in this paper is known in

the stochastic optimization literature (Shapiro et al., 2014) as a distributionally robust

optimization (DRO) problem.

Our minimax result showed, by construction, that dropout training indeed provides

out-of-sample performance guarantees for distributions that arise from multiplicative per-

turbations of the in-sample data. Our result thus justified, explicitly, the ability of dropout

training to enhance a predictor’s out-of-sample performance, which is one of the reasons

often invoked to promote the dropout method.

In addition to our theoretical result, we also suggested a new strategy to select the

dropout probability and a new stochastic optimization implementation of dropout training.

For the latter, we borrowed ideas from the multi-level Monte Carlo literature—in particular

from Blanchet et al. (2019a)—to suggest an unbiased dropout training routine that is easily

parallelizable and that has a smaller computational cost than näıve dropout training meth-

ods when the number of features is large (Theorem 3). Crucially, we showed that under

some regularity conditions, our estimator has finite variance (which means that there are

also theoretical, and not just practical, gains from parallelization).

The connection between dropout training and the multiplicative errors-in-variables model

established in this paper is novel. We think this connection is potentially interesting because

multiplicative errors have found a range of applications in empirical work across various dis-

ciplines, from economics to epidemiology. For example, Alan et al. (2009) uses it to account

for measurement error in consumption data when estimating the elasticity of intertemporal

substitution via Euler equations. Pierce et al. (1992) and Lyles and Kupper (1997) use

it to relate health outcomes to the exposure of a chemical toxicant that is observed with

error. Moreover, due to privacy considerations, statistical agencies such as the U.S. Census

Bureau sometimes mask data using multiplicative noise, as discussed by Kim and Winkler

(2003) and Nayak et al. (2011). Examples of data sets that contain variables masked with

multiplicative noise include the Commodity Flow Survey Data (2017) and the Survey of

Business Owners (2012)—both from the U.S. Census Bureau—and the U.S. Energy Infor-

mation Administration Residential Energy Consumption survey. Applications of dropout

training in these contexts could be an interesting area for future work.

32



Dropout Training is Distributionally Robust Optimal

We also discussed the extent to which our theoretical results extended to Neural Net-

works (in particular, to the universal approximators in Hornik et al. 1989 consisting of a

single-hidden layer and a squashing activation function). Our results showed that Theorem

1 can be used to establish the optimality of dropout training to estimate the parameters of

the last hidden layer in general feed-forward neural networks, where the output layer takes

the form of a generalized linear model. We hope that our analysis serves as a foundation to

understand the benefits of dropout training in neural networks.
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Appendix A.

This appendix collections all the proofs of main results, as well as additional theoretical

and empirical results.

A.1 Probability Limit of the Dropout Training Estimator for β

Proposition 1 Suppose that Assumptions 2 and 3 hold. Let the data {(xi, yi)}ni=1 consist

of n i.i.d. draws from a distribution P∗. Then for any sequence δn → δ ∈ [0, 1) as n→∞,

β̂(δn) converges in probability to

β∗(δ) ≡ arg minβ EP ∗ [Eδ [− ln f(Y |X � ξ, β, φ)]] , (36)

where the minimizer in (36) is unique and does not depend on φ.

Proof The dropout estimator of β maximizes

Qn(β) ≡ 1

n

n∑
i=1

yi(β
>xi)− Eδn [Ψ(β>(xi � ξ))].

In a slight abuse of notation, let ξδ denote a realization of dropout noise parameterized by δ.

Then it is possible to re-write the objective function as a weighted average of the functions

Qn,ξδn (β) ≡ 1

n

n∑
i=1

yi(β
>xi)−Ψ(β>(xi � ξδn)).

It will be convenient to define the limiting objective function to be

Q(β) ≡ EP ∗ [Y (β>X)]− EP ∗ [Eδ[Ψ(β>(X � ξ))]],

which, by Assumptions 1 and 2, is finite and strictly concave. The population objective

function is then the average (over dropout noise) of

Qξδ(β) ≡ EP ∗ [Y (β>X)]− EP ∗ [Ψ(β>(X � ξδ))].

It is straightforward to show that β∗(δ) in Equation (36) denotes the unique maximizer of

Q(β).

The proof of the proposition follows from standard arguments in the theory of extremum

estimators. In particular, it suffices to verify the conditions of Theorem 2.7 in Newey and

McFadden (1994).
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Condition i) in Newey and McFadden (1994) requires Q(β) to be uniquely maximized

at β∗(δ). This holds because Assumptions 1 and 2 imply that Q(β) is strictly concave.

Condition ii) in Newey and McFadden (1994) requires β∗(δ) to be an element in the

interior of a strictly convex set, which holds because, in the GLM models under consider-

ation, the parameter space is Rd. Furthermore, Qn(β) is trivially concave by Assumption

1.

Condition iii) requires Qn(β) to converge in probability to Q(β) for every β. For this

purpose, it suffices to show that Qn,ξδn (β) converges in probability to Qξδ(β) for each fixed

β, and for a sequence ξδn and ξδ that have zeros and non-zeros in exactly the same entries.

Assumptions 1 and 2 imply EP ∗ [Y (β>X)] < ∞ for all β. Thus, using the Law of Large

Numbers for i.i.d. sequences,

1

n

n∑
i=1

Yi(β
>Xi)

p→ EP ∗ [Y (β>X)].

Finally, Assumptions 1 and 2 imply that the triangular array

Zn,i = Ψ(β>(Xi � ξδn)), 1 ≤ i ≤ n,

satisfies the conditions for the Law of Large Numbers for triangular arrays (Durrett, 2019,

Theorem 2.2.11), and, consequently,

1

n

n∑
i=1

Ψ(β>(Xi � ξδn))
p→ EP ∗

[
Ψ(β>(X � ξδ))

]
.

This completes the proof.

A.2 Proof of Theorem 1

The proof of Theorem 1 relies on the following two preparatory results.

Lemma 1 (Extremal expectation of a univariate convex function) For any −∞ <

a < b < +∞, let ζ be a random variable in [a, b] with mean µ ∈ [a, b]. For any convex,

continous function f : [a, b] → R, the distribution of ζ that maximizes E[f(ζ)] among all

distributions over [a, b] with a given mean µ ∈ [a, b] is a scaled and shifted Bernoulli distri-

bution, i.e.,

ζ =

a with probability (b− µ)/(b− a),

b with probability (µ− a)/(b− a).
(37)
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Proof Let Q∗ denote the probability measure induced by the random variable in (37). By

definition

EQ∗ [f(ζ)] =
b− µ
b− a

f(a) +
µ− a
b− a

f(b).

Suppose first that µ = a. In this case, Jensen’s inequality implies that for any other

probability measure Q over [a, b] with mean µ = a,

EQ[f(ζ)] ≤ f(EQ[ζ]) = f(a) = EQ∗ [f(ζ)].

An analogous result holds if µ = b.

Consider then the case in which µ ∈ (a, b). For an arbitrary probability measure Q over

[a, b] with mean µ ∈ (a, b), we have∫
[a,b]

f(ζ)dQ =

∫
[a,b]

f
(
a
b− ζ
b− a

+ b
ζ − a
b− a

)
dQ ≤

∫
[a,b]

(b− ζ
b− a

f(a) +
ζ − a
b− a

f(b)
)
dQ,

where the inequality follows from the convexity of f . By the linearity of the integral operator

and the fact that
∫

[a,b] ζdQ = µ, we find∫
[a,b]

f(ζ)dQ ≤ b− µ
b− a

f(a) +
µ− a
b− a

f(b).

Because the probability measure Q was chosen arbitrarily, this implies that the distribution

of ζ in Equation (37) maximizes the expectation of f(ζ).

Lemma 2 Fix a vector of tuning parameters δ ∈ (0, 1)d. Let Qj(δj) be defined as in (10).

Suppose that A is a convex and continuous function on R. For any θ ∈ Rd, we have

sup
{
EQ1⊗...⊗Qd [A(θ>ξ)] : Qj ∈ Qj(δj)

}
= EQF

1 ⊗...⊗Q
F
d

[A(θ>ξ)],

where QF
j is a scaled Bernoulli distribution of the form QF

j = (1−δj)−1×Bernoulli((1−δj))
for each j = 1, . . . , d.

Proof First, note that QF
j ∈ Qj(δj) for each j, and thus QF

1 ⊗ . . . ⊗ QF
d is a feasible

solution to the maximization problem. It suffices to show that, for any set of feasible

measures Qj ∈ Qj(δj), j = 1, . . . , d, we have

EQ1⊗...⊗Qd [A(θ>ξ)] ≤ EQF
1 ⊗...⊗Q

F
d

[A(θ>ξ)].

36



Dropout Training is Distributionally Robust Optimal

Towards this end, pick any k ∈ {1, . . . , d}. By Fubini’s theorem, we can write

EQ1⊗...⊗Qd [A(θ>ξ)] = EQ1⊗...⊗Qk−1⊗Qk+1⊗...⊗QdEQk [A(θ>ξ)].

For any fixed value (ξ1, . . . , ξk−1, ξk+1, . . . , ξd) the function ξk 7→ A(
∑

j 6=k θjξj + θkξk) is

convex in the variable ξk over the interval [0, (1− δk)−1]. Thus by Lemma 1,

EQk [A(
∑
j 6=k

θjξj+θkξk)] ≤ EQF
k

[A(
∑
j 6=k

θjξj+θkξk)] for any fixed (ξ1, . . . , ξk−1, ξk+1, . . . , ξd).

Thus by the monotonicity of the expectation operator,

EQ1⊗...⊗Qd [A(θ>ξ)] ≤ EQ1⊗...⊗Qk−1⊗Qk+1⊗...⊗QdEQF
k

[A(θ>ξ)]

= EQ1⊗...⊗Qk−1⊗QF
k ⊗Qk+1⊗...⊗Qd

[A(θ>ξ)].

By cycling through all possible values of k ∈ {1, . . . , d} we conclude that

EQ1⊗...⊗Qd [A(θ>ξ)] ≤ EQF
1 ⊗...⊗Q

F
d

[A(θ>ξ)].

Therefore, the postulated claim holds.

We are now ready to prove Theorem 1.

Proof Note that for Q ∈ U(Q0, δ), Assumption ?? implies EQ[`(X � ξ, Y, θ)] is finite for

any θ ∈ Θ and any scalar δ ∈ [0, 1). Therefore, from Fubini’s theorem and the definition of

the loss function:

EQ[`(X � ξ, Y, θ)] = EQ0 [EQ1⊗...⊗Qd [`(X � ξ, Y, θ)]]

= EQ0

[
EQ1⊗...⊗Qd [− lnh(Y, φ) + (Ψ(β>(X � ξ))− Y (β>(X � ξ)))/a(φ)]

]
= −EQ0 [lnh(Y, φ)]

+ EQ0

[
EQ1⊗...⊗Qd [(Ψ(β>(X � ξ))− Y (β>(X � ξ)))/a(φ)]

]
.

It can then be shown that, for any β, X and ξ:

β>(X � ξ) = (β �X)>ξ.

Thus, we can fix the values of (X,Y, θ) and define the function

A(X,Y,θ)((β �X)>ξ) ≡ (Ψ(β>(X � ξ))− Y β>(X � ξ))/a(φ).
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Note that A(X,Y,θ) satisfies the condition of Lemma 2. Therefore

sup
{
EQ1⊗...⊗Qd [A(X,Y,θ)((β �X)>ξ)] : Qj ∈ Qj(δj)

}
= EQF

1 ⊗...⊗Q
F
d

[A(X,Y,θ)((β �X)>ξ)],

for any (X,Y, θ), which completes the proof.

A.3 Proof of Theorem 2

Proof We write
√
n(Ln(β̂(δn), φ̂n, δn)−L(β∗, φ∗)) as the sum of the following three terms

√
n
(
Ln(β̂(δn), φ̂n, δn)− Ln(β∗, φ̂n, δn)

)
, (38a)

√
n
(
Ln(β∗, φ̂n, δn)− Ln(β∗, φ̂n, 0)

)
, (38b)

√
n
(
Ln(β∗, φ̂n, 0)− L(β∗, φ∗, 0)

)
. (38c)

By Assumption 4, the last term converges in distribution to a normal random variable, so

we only need to analyze terms (38a) and (38b). We establish the proof following the four

steps outlined in the main body of the paper.

Step 1: The same arguments as in Theorem 3.1 in Newey and McFadden (1994) we can

show that for any sequence δn = c/
√
n

√
n(β̂(δn)− β∗) d→ Σ(β∗)−1Nd(−cµ̃, a(φ∗)Σ(β∗)),

where

Σ(β) ≡ EP ∗ [Ψ̈(X>β)XX>],

and

µ̃ ≡

∑
ξ∈A

EP ∗ [Ψ̇((X � ξ)>β∗)(X � ξ)]

− (d− 1)EP ∗ [Y X] + Σ(β∗)β∗.

The set A above is defined as {ξ ∈ {0, 1}d : exactly one entry of ξ is zero}. The argument

is essentially the same as in every proof of asymptotic normality for extremum (or M -

estimators), with the only difference being that, because of the dropout noise, the score

term is asymptotically normal with a nonzero mean. In fact,

∇βLn(β, φ̂n, δn) ≡ ∇βLn(β, φ̂n, 0)+
1

a(φ̂n)

(
1

n

n∑
i=1

Eδn [(Xi � ξ)Ψ̇(β>(Xi � ξ))]−XiΨ̇(X>i β)

)
,
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where

∇βLn(β, φ̂n, 0) ≡ − 1

a(φ̂n)

1

n

n∑
i=1

Xi(Yi − Ψ̇(X>i β)).

Recognizing the term∇βLn(β, φ̂n, 0) as the negative of the score function in the GLM model

and doing some algebra, it is possible to show that ∇βLn(β, φ̂n, δn) is op(1). Therefore (38a)

is op(1).

Step 2: For the term in (38b), note first that it is nonnegative. Also: Ln(β∗, φ̂n, δn) −
Ln(β∗, φ̂n, 0) equals

1

a(φ̂n)

(
1√
n

n∑
i=1

Eδn [Ψ((Xi � ξ)>β∗)]−Ψ(X>i β
∗)

)
.

The term in parenthesis has a finite mean equal to

∆n ≡ EP ∗Eδn [Ψ((X � ξ)>β∗)]− EP ∗ [Ψ(X>β∗)]. (39)

It can be shown—by verifying the conditions for the Law of Large Numbers for triangular

arrays (Theorem 2.2.11 in Durrett 2019)—that

√
n(Ln(β∗, δn)− Ln(β∗, 0)− a(φ̂n)−1∆n)

p→ 0.

Moreover, Assumptions 1 and 2 imply
√
n∆n

p→ ∆, where

∆ ≡ c

∑
ξ∈A

EP ∗ [Ψ((X � ξ)>β∗)]− dEP ∗ [Ψ(X>β∗)] + EP ∗ [Ψ̇(X>β∗)X>β∗]

 .

Step 3: Since, by Assumption, the term in (34c) is asymptotically normal, then we have

shown that
√
n(Ln(β̂(δn), φ̂n, δn)− L(β∗, φ∗))

d→ N (∆/a(φ∗), σ2).

Step 4: Finally, we show that

n
(
L((β̂(δn), φ̂n))− L(β∗, φ∗)

)
= OP ∗(1).

We have defined

Ln(β, φ, δ) ≡ 1

n

n∑
i=1

Eδ [− ln f(yi|xi � ξi, β, φ)] ,

and

L(β, φ) ≡ EP ? [− ln f(Y |X,β, φ)] .
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Let (β?, φ?) be a stationary point of L in the interior of the parameter space, so that

∂

∂β
L(β?, φ?) = 0,

∂

∂φ
L(β?, φ?) = 0.

Further, let φ̂n denote an arbitrary
√
n-consistent, asymptotically normal estimator of φ?.

Under our assumptions, L continuously differentiable. Then, by Taylor expansion,

L(β̂(δn), φ̂n)− L(β?, φ?) =
∂

∂β
L(β̃, φ̃)(β̂(δn)− β?) +

∂

∂φ
L(β̃, φ̃)(φ̂n − φ?),

where (β̃, φ̃) lies on the line between (β̂(δn), φ̂n) and (β?, φ?). We have shown that

√
n(β̂(δn)− β?) d→ Σ(β∗)−1Nd(−cµ̃, a(φ∗)Σ(β∗)).

Also we have that
∂

∂β
L(β̃, φ̃)→ 0,

∂

∂φ
L(β̃, φ̃)→ 0

in probability, since (β̃, φ̃)→ (β?, φ?) in probability and (β?, φ?) is a stationary point of L.

Thus
√
n(L(β̂(δn), φ̂n)− L(β?, φ?))→ 0,

in probability by Slutsky’s theorem. Moreover, because L is twice continuously differen-

tiable, then

n(L(β̂(δn), φ̂)− L(β?, φ?)) = Op(1).

A.4 Proof of Theorem 3

Proof By definition

Z(K∗l ) =
∆̄K∗l

r(1− r)m∗l
+ θl,m0 ,

where K∗l is a discrete random variable with probability mass function:

p(K∗l ) = r(1− r)K∗l −m0 ,

and supported on the integers larger than m0.
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We first show that the estimator Z(K∗l ) is unbiased (as we average over both K∗l and

ξki ). Algebra shows that

E[Z(K∗l )] =

∞∑
K=m0

E[Z(K∗l )|K∗l = K]p(K)

=
∞∑

K=m0

E

[
∆̄K∗l

p(K∗l )
+ θl,m0

∣∣∣∣∣K∗l = K

]
p(K)

=
∞∑

K=m0

E

[
∆̄K

p(K)
+ θl,m0

∣∣∣∣∣K∗l = K

]
p(K)

=

 ∞∑
K=m0

E
[
θ̂Fn (2K+1)− 1

2
(θ̂On (2K) + θ̂En (2K))

]+ E[θl,m0 ]

= −1

2

(
E[θ̂On (2m0)] + E[θ̂En (2m0)]

)
+ E[θl,m0 ] + lim

K→∞
E[θ̂Fn (2K+1)].

The expectations in the last line are all finite because Θ is compact. In addition, since the

draws are i.i.d. and θl,m0 is the solution to the problem (32) when 2m0 draws are used we

have

−1

2

(
E[θ̂On (2m0 )] + E[θ̂En (2m0 )]

)
+ E[θl,m0 ] = 0.

Moreover, the sequence of random variables {θ̂Fn (2K+1)} is uniformly integrable, because Θ

is a compact subset of a finite-dimensional Euclidean space. Finally, we know that

θ̂Fn (2K+1)
p→ θFn

as K →∞. The uniform integrability of the sequence of estimators then implies

lim
K→∞

E[θ̂Fn (2K+1)] = E
[

lim
K→∞

θ̂Fn (2K+1)

]
= θFn ,

see Theorem 6.2 in DasGupta (2008). We conclude that

E[Z(K∗l )] = lim
K→∞

E[θ̂Fn (2K+1)] = θFn .

Now we show that the expected computational cost of Z(K∗l ) is finite. In order to com-

pute Z(K) for a given K we need n·2K+1 random draws. Thus, the expected computational
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cost of Z(K∗l ) is

∞∑
K=m0

n2K+1r(1− r)K−m0 = n · (2m0+1) · r
∞∑

K=m0

2K−m0(1− r)K−m0

= n · (2m0+1) · r
∞∑

K=m0

(2(1− r))K−m0 .

The term above converges to

n · (2m0+1) · r
1− 2(1− r)

=
n · (2m0+1) · r

2r − 1
,

provided that 2(1− r) < 1, which holds because we have chosen r > 1/2.

For the proof of finite variance, we intend to show that

E
[
∆̄>K∆̄K

]
= O(2−2K) (40)

as K → ∞. Equation (40) guarantees that every processor generates an estimator Z(K∗l )

with finite variance. Since K∗l is a discrete random variable with probability mass function

p(K∗l ) = r(1− r)K∗−m0 ,

and

E[Z(K∗l )>Z(K∗l )] =

∞∑
K=m0

E
[
Z(K∗l )>Z(K∗l )|K∗l = K

]
p(K)

=

∞∑
K=m0

E

[(
∆̄K

p(K)
+ θl,m0

)>(
∆̄K

p(K)
+ θl,m0

)]
p(K)

≤ 2

 ∞∑
K=m0

E
[

∆̄>K∆̄K

p(K)2

]
p(K) +

∞∑
K=m0

E
[
θ>l,m0

θl,m0

]
p(K)


≤ C

 ∞∑
K=m0

2−2K

p(K)
+ sup
θ∈Θ
‖θ‖22p(K)


≤ C

 ∞∑
K=m0

1

22m022(K−m0)p(K)
+ sup
θ∈Θ
‖θ‖22p(K)


≤ C1

 ∞∑
K=m0

1

r4m0

1

(4(1− r))K−m0

+ C2.
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The geometric sum in the last expression is finite because we have assumed that r < 3
4 .

To show Equation (40), we do a Taylor expansion of the first-order conditions of the

problem (32) around θFn . The Karush–Kuhn–Tucker optimality condition for the level-2K

solution θ̂Fn (2K) of the problem in expression (32) implies

0 =

n∑
i=1

 1

2K

2K∑
k=1

∇θ`(xi � ξki , yi, θ̂Fn (2K))

 .
It follows by Taylor expansion and Assumption 4 that

0 =

n∑
i=1

 1

2K

2K∑
k=1

∇θ`(xi � ξki , yi, θFn )

+
n∑
i=1

 1

2K

2K∑
k=1

∇θθ`(xi � ξki , yi, θFn )

(θ̂Fn (2K)− θFn
)

+RK,θ

=
n∑
i=1

 1

2K

2K∑
k=1

∇θ`(xi � ξki , yi, θFn )


+

n∑
i=1

∇θθEQF

[
`(X � ξ, Y, θFn )|X = xi, Y = yi

]
]
(
θ̂Fn (2K)− θFn

)
+RK +RK,θ, (41)

where

RK ≡

 n∑
i=1

 1

2K

2K∑
k=1

∇θθ`(xi � ξki , yi, θFn )−∇θθEQF

[
`(X � ξ, Y, θFn )|X = xi, Y = yi

]
·
(
θ̂Fn (2K)− θFn

)
,

and

‖RK,θ‖2 ≤
n∑
i=1

sup
θ∈Θ,ξ

‖∇θθθ`(xi � ξ, yi, θ)‖2
∥∥∥θ̂Fn (2K)− θFn

∥∥∥2

2
≤ C3

∥∥∥θ̂Fn (2K)− θFn
∥∥∥2

2

by Assumption 4. Thus, by Assumption 3, we have

E[R>K,θRK,θ] = O(2−2K)
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as K → ∞. Moreover, by the multivariate version of Theorem 2 in Bahr (1965) which

follows from the Cramér–Wold theorem, we have that

E

∥∥∥∥∥∥
n∑
i=1

 1

2K

2K∑
k=1

∇θθ`(xi � ξki , yi, θFn )−∇θθEQF

[
`(X � ξ, Y, θFn )|X = xi, Y = yi

]∥∥∥∥∥∥
4

2


is O(2−2K).

We can express R>KRK as ‖RK‖2. The Cauchy–Schwarz inequality implies

E[R>KRK ]

≤E

∥∥∥∥∥∥
n∑
i=1

 1

2K

2K∑
k=1

∇θθ`(xi � ξki , yi, θFn )−∇θθEQF

[
`(X � ξ, Y, θFn )|X = xi, Y = yi

]∥∥∥∥∥∥
2

2

×

∥∥∥θ̂Fn (2K)− θFn
∥∥∥2

2

]
.

By Hölder’s inequality we have

E[R>KRK ]

≤E

∥∥∥∥∥∥
n∑
i=1

 1

2K

2K∑
k=1

∇θθ`(xi � ξki , yi, θFn )−∇θθEQF

[
`(X � ξ, Y, θFn )|X = xi, Y = yi

]∥∥∥∥∥∥
4

2


1
2

×

E
[∥∥∥θ̂Fn (2K)− θFn

∥∥∥4

2

] 1
2

≤O(2−2K).

Finally, consider the solutions θ̂Fn (2K
∗
l +1), θ̂On (2K

∗
l ), θ̂En (2K

∗
l ) conditional on K∗l = K. De-

note the remainder terms in Equation (41) corresponding to the level 2K+1 solution θ̂Fn (2K+1)

as RF
K+1, R

F
K+1,θ. Similarly, denote the remainder terms in Equation (41) corresponding to

the level-2K solution θ̂On (2K) (and, respectively, θ̂En (2K)) as ROK , R
O
K,θ ( REK , R

E
K,θ). By the

construction of θ̂On (2K), θ̂En (2K) using odd and even indices, we have, from Equation (41)

−
n∑
i=1

∇θθEQF [`(X � ξ, Y, θFn )|X = xi, Y = yi]

(
θ̂Fn (2K+1)− 1

2
(θ̂On (2K) + θ̂En (2K))

)
=RF

K+1 −
1

2
(ROK +REK) +RF

K+1,θ −
1

2
(ROK,θ +REK,θ).
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By Assumption 4,

n∑
i=1

∇θθEQF [`(X � ξ, Y, θFn )|X = xi, Y = yi] = n · ∇θθEQF [`(X � ξ, Y, θFn )]

is invertible. Thus, we have shown that

∆̄K ≡ θ̂Fn (2K+1)− 1

2
(θ̂On (2K) + θ̂En (2K))

=
(
n · ∇θθEQF [`(X � ξ, Y, θFn )]

)−1
(
RF
K+1 −

1

2
(ROK +REK) +RF

K+1,θ −
1

2
(ROK,θ +REK,θ)

)
.

Since each of the terms on the right-hand side has been shown to be O(2−2K), we conclude

that E[∆̄>K∆̄K ] = O(2−2K).

A.5 Dropout Training in Linear Regression

Here, diag(M) denotes the diagonal matrix formed by the diagonal elements of M .

Corollary 2 (Linear regression with φ = 1) For linear regression with `(x, y, β) = (β>x−
y)2, we have

min
β∈Rd

max
Q∈U(P̂n,δ)

EQ

[(
β>(X � ξ)− Y

)2]
= min

β∈Rd
EQF

[(
β>(X � ξ)− Y

)2]
,

where QF = P̂n⊗QF
1 ⊗. . .⊗Q

F
d and QF

j = (1−δ)−1×Bernoulli(1−δ) for each j = 1, . . . , d.

Moreover,

min
β∈Rd

EQF

[(
β>(X � ξ)− Y

)2]
= min

β∈Rd
1

n

[
(Y −Xβ)>(Y −Xβ) +

δ

1− δ
β>Λβ

]
, (42)

where Λ = diag(X>X) which implies that the dropout training estimator equals

β̂(δ) =

(
X>X +

δ

1− δ
diag(X>X)

)−1

X>Y.

Finally, if EP ∗ [XX>] is a diagonal matrix with strictly positive entries then

β̂(δ)
p→ (1− δ)EP ∗ [XX>]−1EP ∗ [XY ].

Proof The first part of the corollary follows directly from (12) and (13) in our main

theorem. The second part of the corollary follows from Proposition 1. According to this
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proposition, the limit of β̂(δ) is

β∗(δ) =
(
EP ∗ [XX>] + (δ/1− δ) diag(EP ∗ [XX>])

)−1
EP ∗ [Y X]. (43)

Thus, if EP ∗ [XX>] is a diagonal matrix, we obtained the desired limit.

One interesting implication of Equation (43) is that β∗(0)—which gives the probability

limit of the maximum likelihood estimator—generally differs from β∗(δ) when δ 6= 0, which

is the probability limit of the dropout estimator.14 In particular, the estimator in Equation

(43) differs from the best linear predictor of y using x as long as EP ∗ [Y X] 6= 0 and δ 6= 0.

This estimator differs from Ridge regression in that diag(EP ∗ [XX>]) replaces the identity

matrix (and this simple adjustment makes the estimator scale equivariant).

A.6 Additional Theoretical Results

A.6.1 Convexity of f is necessary for the optimality of dropout noise

Theorem 4 Let f : R2 → R be a function such that f(y, ·) : R → R admits bounded and

continuous second-order derivatives for any given y ∈ R. If, for some δ ∈ (0, 1], all d ≥ 1,

all β ∈ Rd and all reference distributions Q0 (where (X,Y ) ∼ Q0), it holds that

sup
Q∈U(Q0,δ)

EQ[f(Y, β>X � ξ)] = EQF [f(Y, β>X � ξ)], (44)

then f(y, ·) is a convex function on the real line for any given y.

Proof Since (44) holds for any reference distribution Q0, we consider the case where Q0

is given by the Dirac measure on the point (x, y), where x ∈ Rd, y ∈ R. Since dropout is

the solution to problem (44), we have that the dropout noise on the last coordinate, viz.,

QF
d = (1− δ)−1 ×Bernoulli(1− δ), solves

max
Qd∈Qd(δ)

EQd

[
EQF

1 ⊗···Q
F
d−1

[
f(y, β>x� ξ)

]]
.

Define

φ(ξd) = EQF
1 ⊗···Q

F
d−1

f(y,

d−1∑
j=1

βjxjξj + βdxdξd)

 ,
14. Relatedly, Farrell et al. (2021)—who study deep neural networks and their use in semiparametric

inference—report that their numerical exploration of dropout increased bias and interval length compared
to nonregularized models.
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where φ is implicitly indexed by β, x and y. By duality in semi-infinite linear programming

(see Theorem 1 and Equation 4 in Isii 1962), there exists an affine function L(·) such that

φ(ξd) ≤ L(ξd) ∀ξd ∈ [0,
1

1− δ
] with equality at ξd = 0 or

1

1− δ
.

Let ξd = (1− α) 1
1−δ for α ∈ [0, 1], we have that

φ((1− α)
1

1− δ
) ≤ L((1− α)

1

1− δ
)

= L(α · 0 + (1− α)
1

1− δ
)

= αL(0) + (1− α)L(
1

1− δ
)

= αφ(0) + (1− α)φ(
1

1− δ
).

Since β, x, y are arbitrary, this is equivalent to saying that, for all (z1, . . . , zd−1), z, y and

α ∈ (0, 1),

∑
(i1,...,id−1)∈{0,1}d−1

p(i1, . . . , id−1)f(y,

d−1∑
j=1

zjij + (1− α)z)

≤ α ·
∑

(i1,...,id−1)∈{0,1}d−1

p(i1, . . . , id−1)f(y,

d−1∑
j=1

zjij)

+ (1− α) ·
∑

(i1,...,id−1)∈{0,1}d−1

p(i1, . . . , id−1)f(y,
d−1∑
j=1

zjij + z),

where p(i1, . . . , id−1) is the probability mass function for independent Bernoulli trials i1, . . . , id−1.

Rearranging the inequality, we have

∑
(i1,...,id−1)∈{0,1}d−1

p(i1, . . . , id−1)

f(y,

d−1∑
j=1

zjij + (1− α)z)− f(y,

d−1∑
j=1

zjij)


≤ (1− α)

 ∑
(i1,...,id−1)∈{0,1}d−1

p(i1, . . . , id−1)

f(y,
d−1∑
j=1

zjij + z)− f(y,
d−1∑
j=1

zjij)

 .

By second-order Taylor expansion around z = 0, we have

f(y,
d−1∑
j=1

zjij + (1− α)z)− f(y,
d−1∑
j=1

zjij) = fx(y,
d−1∑
j=1

zjij)(1− α)z +O(1)(1− α)2z2,
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and

f(y,

d−1∑
j=1

zjij + z)− f(y,

d−1∑
j=1

zjij) = fx(y,

d−1∑
j=1

zjij)z +
1

2

fxx(y,

d−1∑
j=1

zjij) + o(1)

 z2,

where fx, fxx denote partial derivatives of f with respect to the second argument. Therefore,

we have the former inequality becomes (by the cancellation of terms)∑
(i1,...,id−1)∈{0,1}d−1

p(i1, . . . , id−1)O(1)(1− α)

≤
∑

(i1,...,id−1)∈{0,1}d−1

p(i1, . . . , id−1)

fxx(y,
d−1∑
j=1

zjij) + o(1)

 .

Thus letting α→ 1, and then letting z → 0, we obtain

∑
(i1,...,id−1)∈{0,1}d−1

p(i1, . . . , id−1)fxx(y,
d−1∑
j=1

zjij) ≥ 0,

for all zj ∈ R, ∀j.

Now we consider z1 = · · · = zd−1 = c ∈ R and denote Sd =
∑d−1

j=1 ij . Thus Sd follows

the binomial distribution B(d− 1, p) where p = (1− δ). We rewrite the previous inequality

as

ESd∼B(d−1,p)[fxx(y, cSd)] ≥ 0.

Let us consider c = c̃
(d−1)p , and rewrite

cSd =
c̃

(d− 1)p
(Sd − p(d− 1)) + c̃.

By the standard Central Limit Theorem,

Sd − p(d− 1)√
d− 1

⇒ N (0, p(1− p)),

where ⇒ denotes convergence in law. Therefore, we have that cSd converges to the Dirac

measure at c̃ as d → ∞. Since fxx(y, ·) is bounded and continuous, we conclude that

fxx(y, c̃) ≥ 0 for arbitrary c̃ ∈ R. The convexity of f(y, ·) then follows.

48



Dropout Training is Distributionally Robust Optimal

Corollary 3 Consider the single index models with f(y, β>x) = (y − g(β>x))2. Then

sup
Q∈U(Q0,δ)

EQ[(Y − g(β>X � ξ))2] = EQF [(Y − g(β>X � ξ))2]

for all δ ∈ (0, 1], d ≥ 1, all β ∈ Rd and all reference distribution Q0 (where (X,Y ) ∼ Q0) if

and only if g is a linear function.

Proof The “if” part is given by Theorem 1 of the paper, as f(y, u) = (y− g(u))2 is convex

if g is linear. For the “only if” part, we know that

fxx(y, u) = −2yg
′′
(u) + 2g(u)g

′′
(u) + 2(g

′
(u))2 ≥ 0

Suppose that g
′′
(u0) 6= 0 for some u0 ∈ R, then, by choosing a sufficiently large (in absolute

value) y, we have fxx(y, u0) < 0, a contradiction. Thus g
′′
(u) = 0 for all u, which implies

that g must be linear.

A.6.2 Convexity is not sufficient for the optimality of dropout noise

Consider a slight generalization of the set U used in Theorem 1 by defining

Qj(δ) = {Qj : Qj([0, (1− δ)−1]) = 1,EQj [ξj ] = 1,Qj([0, ε]) = δ}

and

U(Q0, δ) = {Q0 ⊗Q1 ⊗ . . .⊗Qd : Qj ∈ Qj(δ)}.

The only difference between U(Q0, δ) and our previous construction is that we “force” the

random variables Qj to have positive mass on the interval [0, ε]. Consider the problem

sup
Q∈U(Q0,δ)

EQ[f
(
Y, β> (X � ξ)

)
]

where f(y, ·) : R → R is a convex function for every y. Just as we did in the proof of

Theorem 1, we fix ξ2, . . . , ξd, and try to solve

sup
Q1∈Q1(δ)

EQ0⊗Q1

f
Y, β1X1ξ1 +

d∑
j=2

βjXjξj

 .
We argue that the optimal solution Q1 in general depends on the values of ξ2, . . . , ξd and,

more importantly, Q1 may fail to include zero in its support. This last point implies that
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Q1 cannot be interpreted as dropout noise (as there is no sense in which the first variable

is ever dropped out). We make this point by showing a simple example.

Consider Q0 is the Dirac measure on (x, y) with y > 0 and consider f(y, z) = (y −
z+)2 (i.e., square loss with the so-called “ReLu” activation function). Now, f(y, β1x1ξ1 +∑d

j=2 βjxjξj) = ((β1x1ξ1 +
∑d

j=2 βjxjξj)+ − y)2 = β2
1x

2
1((ξ1 + z̃)+ − ỹ)2 where we assume

β1x1 > 0. Thus, the problem is equivalent to

sup
Q1∈Q1(δ)

[((ξ1 + z̃)+ − ỹ)2].

If z̃ ∈ (−0.99,−ε), then by Isii (1962, Theorem 1 ), the problem has the dual

inf
a,b,c

a+ b+ cδ s.t. ((ξ1 + z̃)+ − ỹ)2 ≤ a+ bξ1 + c1{ξ1∈[0,ε]} ∀ξ1 ∈
[
0,

1

1− δ

]
and moreover the optimal solution Q∗1 is supported in the set{

ξ1 ∈
[
0,

1

1− δ

]
: ((ξ1 + z̃)+ − ỹ)2 = a∗ + b∗ξ1 + c∗1{ξ1∈[0,ε]}

}
,

where a∗, b∗, c∗ constitute the solution to the dual problem. We claim that 0 is not in the

support of Q∗1. Otherwise, ξ1 = 0 need to satisfy

((ξ1 + z̃)+ − ỹ)2 = a∗ + b∗ξ1 + c∗1{ξ1∈[0,ε]}.

Since the left-hand side is constant for ξ1 in a neighborhood of 0, we have that b∗ ≥
0. Since −0.99 < z̃ < −ε, we have that, for ξ1 > 0.99, ((ξ1 + z̃)+ − ỹ)2 < ỹ2 while

a∗+ b∗ξ1 + c∗1{ξ1∈[0,ε]} > ỹ2. Hence, the support of Q∗1 is a subset of [0, 0.99], contradicting

the requirement that Q∗1 has mean 1.

We conclude that, while convexity is somewhat necessary for dropout to be optimal, it

need not be sufficient.

A.6.3 Block Dropout

Finally, we generalize the notion of dropout so that the noise distributions Q1, . . . ,Qd are

arbitrarily correlated. Thus, we define

U(Q0, δ) = {Q0 ⊗Q1:d : Q1:d([0, (1− δ)−1]d) = 1,EQ1:d
[ξ] = (1, . . . , 1)>}

and consider the problem

sup
Q∈U(Q0,δ)

EQ[f(Y, β>X � ξ)].
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We give an example where this is a meaningful generalization of the notion of dropout.

Consider f(y, z) = (y − z)2 (i.e., square loss), also that Q0 is a Dirac measure on (x, y).

Then the problem

sup
Q∈U(Q0,δ)

EQ1:d

(y − (
d∑
i=1

xiβiξi)

)2


is equivalent to

sup
Q∈U(Q0,δ)

EQ1:d

( d∑
i=1

xiβiξi

)2
 .

By Theorem 1 in Isii (1962), the problem has dual

inf
a0,...,ad

d∑
i=0

ai s.t.

(
d∑
i=1

xiβiξi

)2

≤ a0 +
d∑
i=1

aiξi ∀ξ ∈ [0, (1− δ)−1]d

and, moreover, the optimal solution Q∗1:d is supported in the setξ ∈ [0, (1− δ)−1]d :

(
d∑
i=1

xiβiξi

)2

= a∗0 +

d∑
i=1

a∗i ξi

 , (45)

where a∗0, . . . , a
∗
d are the optimal dual variables. Suppose that xiβi 6= 0 for all i. Then,

since
(∑d

i=1 xiβiξi

)2
is convex quadratic, any ξ in the support points set (45) must be

in the boundary of the cube [0, (1 − δ)−1]d. Moreover, since we have the mean constraint

EQ∗1:d
[ξ] = (1, . . . , 1)>, there exists ξ in (45) with blocks of components comprising zeros.

The above arguments extend to any Q0 and f as long as the function EQ0 [f(Y, β>X�ξ)]
is a strictly convex function of ξ. Solving precisely the support of the noise requires solving

for the dual variables a∗i , which is a semi-infinite linear programming (finite-dimensional lin-

ear objective with infinitely many constraints). The numerical methods in the literature ap-

proximate the semi-infinite problem with a sequence of finite programming problems, which

are then solved by applying appropriate linear or nonlinear programming algorithms Het-

tich and Kortanek (1993). Since the computation of the noise relies on the value of β, we

suspect the overall computational burden will be large (as one first needs to solve for the

worst-case block dropout noise, and then solve for the optimal β).

A.6.4 Additive Perturbations in the Linear Regression Model

Let ξ ≡ (ξ1, . . . , ξd)
> be defined as a d-dimensional vector of random variables that are

independent of (X,Y ). We now perturb the distribution Q0 by considering the transforma-
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tion

(X,Y ) 7→ (X1 + ξ1, . . . , Xd + ξd, Y )>.

As a result, each covariate Xj is distorted in an additive fashion by ξj . We abbreviate

(X1 + ξ1, . . . , Xd + ξd)
> by X + ξ.

We restrict the distribution of ξ in the following way. First, for a parameter λ ∈ [0,∞),

we define Qj(λ) to be the set of distributions for ξj that have mean 0 and variance EQ0 [x2
j ].

More specifically,

Qj(δ) ≡
{
Qj : Qj is a probability distribution on R, EQj [ξj ] = 0,EQj [ξ

2
j ] ≤ λEQ0 [x2

j ]
}
.

(46)

Consider now the joint random vector (X,Y, ξ) ∈ Rd×R×Rd. For a constant λ ∈ [0,∞)

consider the joint distributions over (X,Y, ξ) defined by

Ũ(Q0, λ) = {Q0 ⊗Q1 ⊗ . . .⊗Qd : Qj ∈ Qj(λ) ∀j = 1, . . . , d} ,

where ⊗ denotes the product measure (meaning that the joint distribution is the product

of the independent marginals Qj , j = 0, . . . , d).

For the linear regression model, for any Q ∈ Ũ(P̂n, λ) we have

EQ

[
(Y − (X + ξ)>β)2

]
= EP̂n

[
(Y −Xβ)2

]
+

d∑
j=1

β2
jEQj [ξ

2
j ],

≤ EP̂n

[
(Y −Xβ)2

]
+

d∑
j=1

β2
jλEP̂n [x2

j ],

=
1

n

[
(Y −Xβ)>(Y −Xβ) + λβ>Λβ

]
,

where Λ = diag(X>X). Therefore,

sup
Q∈Ũ(P̂n,λ)

EQ

[
(Y − (X + ξ)>β)2

]
=

1

n

[
(Y −Xβ)>(Y −Xβ) + λβ>Λβ

]
.

Corollary 2 implies that, for the linear regression model, the distributionally robust es-

timator to additive perturbations equals the dropout estimator with dropout probability

λ/(1 + λ). This means that the dropout estimator remains distributionally robust over the

set of additive and multiplicative perturbations of the empirical distribution:

U(P̂n, δ) ∪ Ũ(P̂n, δ/(1− δ)).
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A.7 Additional Numerical Results

Here, we outline an empirical rationale behind our parameter choices.

A.7.1 Learning Rate

We first fix an all-zeros initialization scheme, and vary the learning rate. We summarize

the average parameter divergence and 1-standard deviation error for 20 repetitions of the

SGD algorithm in Table 2. We can observe that the learning rate 0.0001 shows a clear

advantage. We plot the average parameter divergence and 1-standard deviation error for

the SGD trajectory up to the 180 s wall-clock time in Figure 4, which demonstrates that

the divergence saturates with the selected learning rate (also see Figure 5 for detail between

the 30 s and 180 s wall-clock times).

A.7.2 Initialization

Next, we fix the learning rate to be 0.0001, and consider different initialization schemes.

We note that the mean value (resp., absolute value) of elements in β∗n is 0.3947 (resp.,

0.6977). Table 3 shows the average parameter divergence and the 1-standard deviation

from 20 repetitions of the SGD algorithm. We see that the initialization at origin is a fair

choice.

A.7.3 Naive Monte Carlo with a fixed K

We compare to the näıve Monte Carlo implementation with a fixed K, where we do gra-

dient descent on objective (32). The gradient-descent learning rate is searched over the

grid {10−i, i = 0, 1, . . .}. We summarize the average parameter divergence and 1-standard

deviation error for 20 repetitions of the approach (with the best learning rate) in Table 4.

Note that, for small K, the objective (32) has a high bias, while for large K, there are fewer

gradient descent steps completed within 60 s due to heavy computational burdens.

Learning rate 0.1 0.01 0.001

‖β̂SGD − β∗n‖∞ 1.1026± 0.1705 0.2717± 0.0403 0.0827± 0.0133

Learning rate 0.0001 0.00001 0.000001

‖β̂SGD − β∗n‖∞ 0.0301± 0.0025 0.6702± 0.1082 1.7202± 0.0044

Table 2: Comparison for different learning rates, with fixed zero initializations.

A.7.4 Wall-Clock Time

We document the numerical results for 120 s/180 s wall-clock time; see Figures 6–8 for the

case of 120 s, and Figures 9–11 for the case of 180 s. We see that the proposed unbiased
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Figure 4: SGD trajectory up to 180 s wall-clock time

Figure 5: SGD trajectory between 30 s and 180 s wall-clock time

approach outperforms the standard SGD when the number of parallel iterations reaches

above some threshold.

Initializations all zeros all 0.2 s all 1 s

‖β̂SGD − β∗n‖∞ 0.0301± 0.0025 0.0317± 0.0047 0.0614± 0.0196

Initializations i.i.d. N (0, 1) i.i.d. N (0, 10) i.i.d. N (0, 102)

‖β̂SGD − β∗n‖∞ 0.0376± 0.0067 0.1006± 0.0469 0.3208± 0.1432

Table 3: Comparison for different initialization schemes with fixed learning rate 0.0001.
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Figure 6: l2 difference for 120 s wall-clock time

Figure 7: l∞ difference for 120 s wall-clock time

Figure 8: l1 difference for 120 s wall-clock time
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Figure 9: l2 difference for 180 s wall-clock time

Figure 10: l∞ difference for 180 s wall-clock time

Figure 11: l1 difference for 180 s wall-clock time
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K 25 210 215

‖β̂naiveMC − β∗n‖∞ 0.7370± 0.1181 0.1281± 0.0231 0.7417± 0.0046

Table 4: Comparison with näıve Monte Carlo with a fixed K.
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