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Abstract

In recent years, we have witnessed a surge of Graph Neural Networks (GNNs), most of which
can learn powerful representations in an end-to-end fashion with great success in many
real-world applications. They have resemblance to Probabilistic Graphical Models (PGMs),
but break free from some limitations of PGMs. By aiming to provide expressive methods
for representation learning instead of computing marginals or most likely configurations,
GNNs provide flexibility in the choice of information flowing rules while maintaining good
performance. Despite their success and inspirations, they lack efficient ways to represent and
learn higher-order relations among variables/nodes. More expressive higher-order GNNs
which operate on k-tuples of nodes need increased computational resources in order to
process higher-order tensors. We propose Factor Graph Neural Networks (FGNNs) to
effectively capture higher-order relations for inference and learning. To do so, we first
derive an efficient approximate Sum-Product loopy belief propagation inference algorithm
for discrete higher-order PGMs. We then neuralize the novel message passing scheme into
a Factor Graph Neural Network (FGNN) module by allowing richer representations of
the message update rules; this facilitates both efficient inference and powerful end-to-end
learning. We further show that with a suitable choice of message aggregation operators, our
FGNN is also able to represent Max-Product belief propagation, providing a single family
of architecture that can represent both Max and Sum-Product loopy belief propagation.
Our extensive experimental evaluation on synthetic as well as real datasets demonstrates
the potential of the proposed model.
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1. Introduction

Deep neural networks are powerful function approximators that have been extremely suc-
cessful in practice. While fully connected networks are universal approximators, successful
networks in practice tend to be structured, e.g., grid-structured convolutional neural net-
works and chain-structured gated recurrent neural networks (e.g., LSTM, GRU). Graph
neural networks (Gilmer et al., 2017; Xu et al., 2018; Yoon et al., 2019) have recently been
successfully used with graph-structured data to capture pairwise dependencies between
variables and to propagate the information to the entire graph.

GNNs learn node representations by iteratively passing messages between nodes within
their neighbourhood and updating the node embeddings based on the messages received.
Though successful, these models are limited by the first order approximations they make in
aggregating information from the neighbouring nodes. The dependencies in the real-world
data are often of higher-order which cannot be captured by only pairwise modeling. For
example, in LDPC encoding, the bits of a signal are grouped into several clusters and in each
cluster, the parity of all bits is constrained to be equal to zero (Zarkeshvari and Banihashemi,
2002). For good performance, these higher-order constraints should be exploited in the
decoding procedure. Furthermore, many naturally occurring graphs like molecules exhibit
repeating substructures like motifs; atoms in a molecule additionally satisfy higher-order
valence constraints (Wu et al., 2018; Agarwal et al., 2006). We can learn better node
representations if we can design better message passing schemes that can directly utilize the
higher-order dependencies that are not captured using pair-wise dependencies.

Node interactions have also been modeled by Probabilistic Graphical Models (PGMs)
(Wainwright and Jordan, 2008; Koller and Friedman, 2009) wherein nodes are viewed as
random variables with a factorized joint distribution defined over them. Research that
focuses on such models has been directed towards finding approximate inference algorithms
to compute node marginals or the most likely configuration of the variables. There is rich
literature of theoretically grounded PGM inference algorithms to find the state of a node
given its statistical relations with other variable nodes in the graph. Knowledge of such
inference algorithms can provide good inductive bias if it can be encoded in the neural
network. The inductive bias lets the network favour certain solutions over others, and if the
bias is indeed consistent with the target task, it helps in better generalization (Battaglia et al.,
2018). So, while we use deep learning methods to learn representations in an end-to-end
setting, better generalization may be achievable for some tasks with the inductive bias
of classical inference algorithms. Unfortunately, these approximate inference algorithms
become inefficient at higher-order.

One such well-known algorithm to find approximate node marginals is Loopy Belief
Propagation (LBP) (Murphy et al., 2013; Pearl, 2014) which operates on the factor graph
data structure. A factor graph is a bipartite graph with a set of variable nodes connected
to a set of factor nodes; each factor node indicates the presence of dependencies among its
connected variables. In this paper, we propose to leverage Sum-Product LBP to formulate
the message passing updates and build a better graph representation learning model. To
this end, we derive an efficient message passing algorithm based on LBP with arbitrary
higher-order factors on discrete graphical models, with the assumption that higher-order
factors are of low rank, parameterized in the form of a mixture of rank-1 tensors. The derived
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Figure 1: The structure of the Factor Graph Neural Network (FGNN): the Variable-to-Factor (VF)
module is shown on the left and the Factor-to-Variable (FV) module is shown on the right.

message passing updates only need two operations, matrix multiplication and Hadamard
product, and their complexity grows linearly with the number of variables in the factor.
Furthermore, this parameterization can represent any factor exactly with a large enough set
of rank-1 tensors; the number of rank-1 tensors required can grow exponentially for some
problems but often in practice, a small number is sufficient for a good approximation.

Further, we represent the message passing updates in a neural network module and
unroll the inference over discrete graphical models as a computational graph. We allow the
messages to be arbitrary real valued vectors (instead of being constrained to be positive as
in LBP) and treat the messages as latent vectors in a network; the latent vectors produced
by the network can then be used for learning the target task through end-to-end training.
Instead of using just the product operations to aggregrate the set of latent vectors, we
allow the use of other aggregrators, potentially even universal set functions, to provide more
flexibility in representation learning. We refer to the process of unrolling the algorithm,
relaxing some of the constraints, modifying some of the components to potentially make
the network more powerful, and using the resulting network as a component for end-to-end
learning as neuralizing the algorithm. We call the neural module as a Factor Graph Neural
Network (FGNN).

The FGNN is defined using two types of modules, the Variable-to-Factor (VF) module
and the Factor-to-Variable (FV) module (see Figure 1). These modules are combined
into a layer, and the layers are stacked together into an algorithm. Though the FGNN is
motivated with Sum-Product LBP, we show that by using a different form of low-rank tensor
representation and aggregator function, it is able to exactly parameterize the Max-Product
Belief Propagation, which is a widely used approximate maximum a posteriori (MAP)
inference algorithm for PGMs, as well. Theoretically, this shows that FGNN can represent
both Max-Product and Sum-Product within a single architecture simply by changing the
aggregator function; furthermore if a universal approximator is used as the aggregator, it
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would be able to learn to approximate the better of the two message passing algorithms on
the problem.

The theoretical relationship with Sum-Product and Max-Product provides understanding
on the representational capabilities of GNNs in general, and of FGNN in particular, e.g. it
can solve problems solvable by graphical model message passing algorithms e.g., (Bayati
et al., 2008; Kim and Pearl, 1983). From the practical perspective, the factor graph provides
a flexible way for specifying dependencies among the variables, including higher-order
dependencies. Furthermore, inference algorithms for many types of graphs, e.g., graphs with
typed edges or nodes, are easily developed using the factor graph representation. Edges,
or more generally factors, can be typed by tying together parameters of factors of the
same type, or can also be conditioned from input features by making the edge or factor
parameters a function of the features; nodes can similarly have types or features with the
use of factors that depend on a node variable. With typed or conditioned factors, the
factor graph can also be assembled dynamically for each graph instance. FGNN provides a
flexible learnable architecture for exploiting these graphical structures—just as factor graph
allows easy specification of different types of PGMs, FGNN allows easy specification of both
typed and conditioned variables and dependencies as well as a corresponding data-dependent
approximate inference algorithm.

To be practically useful, the FGNN architecture needs to be practically learnable without
being trapped in poor local minima. We performed experiments to explore the practical
potential of FGNN on both problems where the graphical model inference aspects are clear,
as well as problems where the FGNN is used mostly as a graph neural network that allows
the structure of the higher-order interactions to be specified and exploited. On problems
closely related to PGM inference, we experimented with a synthetic higher-order PGM
inference problem, LDPC decoding, as well as a graph matching problem. FGNN performed
well on the synthetic PGM inference and outperforms the standard LDPC decoding method
under some noise conditions. On the graph matching problem, FGNN outperforms both
a graphical model approximate inference algorithm as well as a graph neural network. To
show that FGNN can be used purely as a graph neural network to exploit higher-order
dependencies, we conducted experiments on handwritten character recognition within words
where there is strong correlation in the character sequences, human motion prediction
where different joint positions are constrained by the human body structure and molecular
property prediction where higher-order correlations in the molecular graphs are likely to
be present. We demonstrate that FGNN is able to exploit the higher-order information
with state-of-the-art results on human motion prediction. Furthermore, FGNN is able to
outperform other recent k-order GNNs (Morris et al., 2019; Maron et al., 2019) substantially
on two challenging large molecular datasets (QM9 and Alchemy).

2. Related work

Belief Propagation (BP) inference algorithms have been used in variety of applications
spanning computer vision, natural language processing and other machine learning domains.
Due to the intractability of the algorithm in its higher-order form, first-order pairwise BP
has been predominantly used in most problems. However, multiple works have proposed
approaches to efficiently run higher-order BP in various settings (Lan et al., 2006; Potetz
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and Lee, 2008; Kohli and Kumar, 2010). Most of the approaches are designed either with
assumptions on input graph structures or with restrictions on the kind of higher-order
functions being modelled. Lan et al. (2006) used an adaptive state space to handle the
increased complexity for higher-order 2x2 MRF clique structures. Potetz and Lee (2008)
used specific assumption of linear constraints on higher-order functions to efficiently run the
BP equations. Kohli and Kumar (2010) used linear envelope approximations to model the
higher-order functions and showed its usefulness for semantic segmentation.

The inspiration for our low-rank formulation of higher-order functions comes from Wrigley
et al. (2017) where higher-order potentials were decomposed with CP decompositions to
efficiently run the sampling-based junction-tree algorithm. They used CP tensor decomposi-
tion to efficiently sample from higher-order functions in the junction-tree updates, whereas
in our work, we assume tensor decomposition form of higher-order function and derive
efficient message update equations for the LBP algorithm. Furthermore, our method is
a deterministic approximation of LBP and we neuralize it to learn the parameters in an
end-to-end training.

There have been a significant number of works which have tried to incorporate inference
algorithms in deep networks (Zheng et al., 2015; Chen et al., 2015; Lin et al., 2016, 2015;
Tamar et al., 2016; Karkus et al., 2017; Xu et al., 2017). A large number of these works
focus on learning pairwise potentials of graphical models on top of CNN to capture relational
structures among their outputs for structured prediction. These methods are largely focused
on modeling for a specific task like semantic segmentation (Zheng et al., 2015; Lin et al.,
2016), scene graph prediction (Xu et al., 2017), and image denoising (Wu et al., 2016). On
the other hand, (Tamar et al., 2016; Karkus et al., 2017) represent planning algorithms as
neural network layers in sequential decision making tasks.

Various graph neural network models have been proposed for graph structured data,
including methods based on the graph Laplacian (Bruna et al., 2013; Defferrard et al.,
2016; Kipf and Welling, 2016), gated networks (Li et al., 2015), and various other neural
networks structures for updating the information (Duvenaud et al., 2015; Battaglia et al.,
2016; Kearnes et al., 2016; Schütt et al., 2017). Gilmer et al. (2017) show that these methods
can be viewed as applying message passing on pairwise graphs and are special cases of
Message Passing Neural Networks (MPNNs).

There has been some recent work on extending the graph convolutional neural networks
to hyper-graphs in order to capture higher-order information (Feng et al., 2019; Yadati et al.,
2019; Jiang et al., 2019; Zhang et al., 2019). Feng et al. (2019); Jiang et al. (2019) used
clique-expansion of hyper-edges to extend convolutional operation to hyper-graphs. Such
modeling is equivalent to decomposing an hyper-edge to a set of pairwise edges. Similar
approximation is applied in Yadati et al. (2019) where the number of pairwise edges added
are reduced and are linearly dependent on the size of the hyperedge. Although, these
methods operate on hyper-graphs, effectively the hyper-graphs are reduced to graphs with
pairwise edges.

Recently, Morris et al. (2019) and Maron et al. (2019) used Weisfeiler Lehman (WL)
graph isomorphism tests to construct increasingly powerful GNNs. They proposed models of
message passing called k-order GNNs to capture higher-order structures and compared their
expressiveness with higher-order WL tests. In contrast to k-order GNNs which build on
graph isomorphism testing, FGNN builds on probabilistic graphical models, which provide
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a rich modeling language allowing the designer to specify prior knowledge in the form of
pairwise as well as higher-order dependencies in a factor graph. As k-order GNNs are
theoretically shown to be more expressive in capturing higher-order information, we compare
our model with the k-order GNNs on the molecular datasets.

Running inference algorithms on graph neural networks has been previously explored
in Yoon et al. (2019); Dai et al. (2016) and Chen et al. (2018). These works showed methods
of running graphical model inference with GNN message passing updates. However, they
operate with the assumption of pairwise graphical models and not more general higher-order
models. In contrast, our work deals mainly with running the inference algorithms on the
higher-order graphical model as a graph neural network. Following our initial work, Satorras
and Welling (2020) proposed a graph neural network based on the factor graph for LDPC
code decoding that also exploits the loopy belief propagation messages. However they did
not connect message passing on factor graphs with higher-order factors represented using
tensor decompositions as we have done which further gives a theoretical understanding of
the relation between inference algorithms and GNNs.

3. Preliminaries

In this section, we briefly review two concepts central to our approach, low rank tensor
decomposition and the loopy belief propagation inference algorithm.

3.1 Tensor decompositions

Tensors are generalizations of matrices to higher dimensions. An order-m tensor T is an
element in RN1×N2···×Nm with Nk possible values in kth dimension for k ∈ {1, 2, . . . ,m}.
Tensor rank decompositions provide succinct representation of tensors. In CANDECOMP /
PARAFAC (CP) decomposition, a tensor T can be represented as a linear combination of
outer products of vectors as

T =
R∑
r=1

λrwr1 ⊗ wr2 ⊗ · · · ⊗ wrm (1)

where λr ∈ R, wrk ∈ RNk , ⊗ is the outer product operator, i.e., T(i1, i2 . . . , im) =∑R
r=1 λ

rwr1i1
wr2i2
· · ·wrmim , and the term wr1 ⊗ wr2 ⊗ · · · ⊗ wrm is a rank-1 tensor. The scalar

coefficients λr can optionally be absorbed into {wrk}. The smallest R for which an exact
R-term decomposition exists is the rank of tensor T and the decomposition (1) is its R-rank
approximation. With this compact representation, an exponentially large tensor T with
N1 ×N2 · · · ×Nm entries can be represented with R vectors for each variable in T, i.e., with
a total of R(N1 +N2 + · · ·+Nm) parameters. More information about tensor decompositions
can be found in Kolda and Bader (2009), and Rabanser et al. (2017).

3.2 Graphical models and Loopy belief propagation

Probabilistic Graphical Models (PGMs) use graphs to model dependencies among random
variables. These dependencies are conveniently represented using a factor graph, which is
a bipartite graph G = (V, C, E) where each vertex i ∈ V in the graph is associated with a
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random variable xi ∈ x, each vertex c ∈ C is associated with a non-negative function φc, and
an edge connects a variable vertex i to a factor vertex c if φc depends on xi. An example
factor graph is shown in Figure 2.

We consider PGMs which model dependencies between discrete random variables. Let
x be the set of all variables and let xc be the subset of variables that φc depends on. The
joint distribution of variables factorizes over C as

P (x) = 1
Z

∏
c∈C

φc(xc) Z =
∑

x

∏
c∈C

φc(xc) (2)

Figure 2: A factor graph where φa depends on
{x1, x2, x3} while φb depends on {x1, x4, x5}.

Z is the normalizing constant. Without loss
of generality, we assume all variables can
take d values and consequently φc(xc) ∈
Rd| xc | .

Marginal and MAP Inference In this
paper we consider two main inference tasks
— the marginal inference and the maximum
a posteriori (MAP) inference. The aim
of marginal inference is to compute the
marginals pi(xi)

pi(xi) =
∑

xV \{i}

P (x) =
∑

xV \{i}

1
Z

∏
c∈C

φc(xc), (3)

and the aim of MAP inference is to find the assignment which maximizes P (x), that is

x∗ = argmax
x

∏
c∈C

φc(xc)

= argmax
x

∑
c∈C

log φc(xc) (4)

Loopy Belief Propagation The marginal inference and MAP inference problem are
NP-hard in general, and thus approximation algorithms are usually required. Different
versions of the loopy belief propagation (LBP) algorithms (Pearl, 2014; Murphy et al.,
2013) compute approximate marginals p(xi) at each node xi, or the approximate MAP
assignment, by sending messages between factor and variables nodes on a factor graph. First
we introduce the Sum-Product loopy belief propagation. Essentially, the Sum-Product LBP
starts by initializing two kinds of messages, factor-to-variable mc→i(xi) and variable-to-factor
mi→c(xi). Messages are a function of the variable in the variable node, updated with the
following recursive equations,

mi→c(xi) =
∏

d∈N(i)\{c}
md→i(xi) (5)

mc→i(xi) =
∑

xc \{xi}
φc(xc)

∏
j∈N(c)\{i}

mj→c(xj) (6)
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(a) Variable to Factor message (b) Factor to Variable message

Figure 3: Loopy Belief Propagation messages

where N(i) is the set of neighbours of i and messages mi→c,mc→i ∈ Rd. As illustrated in
Figure 3, mi→c is the message from variable i to factor c and mc→i is the message from
factor c to variable i. After sufficient number of iterations, the belief of variables is computed
by

bi(xi) =
∏

c∈N(i)
mc→i(xi). (7)

Similarly, the Max-Product belief propagation algorithm can be formulated as

mi→c(xi) =
∏

d∈N(i)\{c}
md→i(xi) (8)

mc→i(xi) = max
xc \{xi}

φc(xc)
∏

j∈N(c)\{i}
mj→c(xj) (9)

bi(xi) =
∏

c∈N(i)
mc→i(xi). (10)

Performed in log space, the product operator in Eqns 8, 9, 10 becomes sum and we have the
Max-Sum algorithm which may be better behaved numerically.

4. Proposed Method

In this section, we derive the FGNN model through neuralizing the Sum-Product loopy belief
propagation that utilizes the low rank decomposition of higher-order potentials. Then we
show that with a slight modification the model can also mimic the Max-Sum or equivalently
the Max-Product belief propagation.

4.1 Low Rank Sum-Product Loopy Belief Propagation

We start the derivation by writing the LBP equations in vectorized form. Consider a factor
φc(xc) over nc number of variables i.e. xc = [x1, x2 . . . , xnc ]. Then the message update
equations are,

mi→c =
∏

d∈N(i)\{c}
md→i (11)

mc→i =
∑

xc \{xi}
φc(xc)

∏
j∈N(c)\{i}

mj→c (12)
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where φc(xc) ∈ Rdnc and the messages mj→c,mc→i are in Rd. A tensorized way to implement
Equation (12) would be to take the outer product of all incoming messages mj→c, expand a
dimension corresponding to the dimension of the ith variable and elementwise multiply with
the φc(xc) tensor. Then, we can marginalize all variables except xi to get the message mc→i
i.e.,

mc→i =
∑

xc \{xi}
φc(xc)�

(
m1→c ⊗ · · · ⊗ 1i→c ⊗ · · · ⊗mnc→c

)
(13)

where 1i→c is a vector of ones in Rd, ⊗ is the outer product and � is elementwise mul-
tiplication or Hadamard product. Note that the summation operator

∑
xc \{xi} performs

“marginalization” operation or summation across all dimensions except the ith dimension
corresponding to variable xi which reduces the order-nc tensor to an Rd vector.

Since φc(xc) is a tensor in Rdnc , it can be represented as a sum of R fully factored terms
in CP decomposition form (1).

φc(xc) =
R∑
r=1

λrw
r
c,1 ⊗ wrc,2 ⊗ · · · ⊗ wrc,nc (14)

where wrc,j ∈ Rd and λr are real-valued scalars. This representation is efficient if φc is of
low-rank i.e., R� dnc , and in that case, a dnc dimensional tensor is compressed into a set
of nc ·R vectors of d dimensons each. Please refer Section 3.1 on Preliminaries for details on
CP Tensor Decomposition.

We posit that such a low-rank representation is often a good approximation of φc in
practice; the method is likely to be useful when this assumption holds. Previously, such low
rank approximations have been shown to be useful in variety of real world tasks including
semantic segmentation and knowledge graph embedding (Wrigley et al., 2017; Kohli and
Kumar, 2010; Trouillon et al., 2017). Moreover, we provide supporting evidence on the
low-rank assumption in our ablation experiments in Section 5.4 and 5.5 (See Figure 7 and
11).

Absorbing λr in (14) into weights {wrc,j} and substituting in (13), we have

mc→i =
∑

xc \{xi}

( R∑
r=1

wrc,1 ⊗ wrc,2 ⊗ · · · ⊗ wrc,nc
)
�
(
m1→c ⊗ · · · ⊗ 1i→c ⊗ · · · ⊗mnc→c

)
(15a)

=
∑

xc \{xi}

R∑
r=1

(
wrc,1 �m1→c

)
⊗ · · ·wrc,i · · · ⊗

(
wrc,nc �mnc→c

)
(15b)

In Equation (15b), we have used the distribution rule i.e. ∀ u, v ∈ Rd and u′, v′ ∈ Rd′ , then
(u⊗ u′)� (v ⊗ v′) = (u� v)⊗ (u′ � v′).

The variables are grouped together with the factor parameters corresponding to them.
Now we can marginalize out a variable easily as we have a sum of fully factorized functions.
We simply push the outer summation inside, distribute and separately evaluate it over each
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of the univariate products
(
wrc,j �mj→c

)
. This gives us,

mc→i =
R∑
r=1

∑
xc \{xi}

(
wrc,1 �m1→c

)
⊗ · · ·wrc,i · · · ⊗

(
wrc,nc �mnc→c

)
(16a)

=
R∑
r=1

wrc,i

(∑
x1

wrc,1 �m1→c
)
· · ·
(∑
xnc

wrc,nc �mnc→c
)

(16b)

=
R∑
r=1

wrc,iγ
r
c,1 · · · γrc,nc ; with γrc,i = 1 (16c)

=
R∑
r=1

wrc,iγ
r
c (16d)

In Equation (16a), we have swapped the summations and in Equation (16b), have distributed
the summation

∑
xc \{xi} over each variable. In Equation (16c), we evaluate the summation

over each variable to get γrc,j i.e. (
∑
xj w

r
c,j �mj→c) = wr

T

c,jmj→c = γrc,j ∈ R, which is a
scalar. To rule out the message from variable xi, we set γrc,i = 1 and therefore, the product
γrc = γrc,1 · γrc,2 . . . γrc,nc ∈ R is also a scalar in Equation (16d).

Since mc→i is a linear combination of R number of wrc,i vectors in Equation (16d), we
can rewrite it in matrix form. For this, we stack the R component weight vectors for each
variable as matrix Wc,i = [w1

c,i, w
2
c,i, . . . , w

R
c,i] ∈ Rd×R. Similarly, we stack R number of γrc’s

together as vector Γc = [γ1
c ,γ

2
c , . . . ,γ

R
c ]T ∈ RR×1. Then, we can rewrite the Equation (16d)

in matrix form as
mc→i = Wc,iΓc (17)

Note that since Γc = [γ1
c ,γ

2
c , . . . ,γ

R
c ]T ∈ RR×1 where each γrc is a product of γrc,j ’s

i.e. γrc = γrc,1 · γrc,2 . . . γrc,nc (from Equations (16c), (16d), we can rewrite Γc as elementwise
product of vectors in each variable as:

Γc =


γ1
c

γ2
c
...
γRc

 =


γ1
c,1 · γ1

c,2 . . . γ
1
c,nc

γ2
c,1 · γ2

c,2 . . . γ
2
c,nc

...
γRc,1 · γRc,2 . . . γRc,nc

 =


γ1
c,1
γ2
c,1
...
γRc,1

�

γ1
c,2
γ2
c,2
...
γRc,2

 · · · �

γ1
c,nc

γ2
c,nc
...

γRc,nc

 (18)

This gives us,
Γc = [Γc,1 � Γc,2 · · · � Γc,nc ] (19)

where each Γc,j = [γ1
c,j , γ

2
c,j , . . . , γ

R
c,j ]T ∈ RR×1. Note that from Equation (16c), Γc contains

Γc,i as a vector of all ones i.e. Γc,i = [γ1
c,i, γ

2
c,i, . . . , γ

R
c,i]T = [1, 1, . . . , 1]T . Therefore,

Equation (17) can now be written as

mc→i = Wc,i
[
Γc,1 � Γc,2 · · · � Γc,nc

]
(20)
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Furthermore, from Equation (16c) we have γc,j =
∑
xj w

r
c,jmj→c = wr

T

c,jmj→c. Therefore, we
can write Γc,j as

Γc,j = [γ1
c,j , γ

2
c,j , . . . , γ

R
c,j ]T (21a)

= [w1
c,j , w

2
c,j , . . . , w

R
c,j ]Tmj→c (21b)

= WT
c,jmj→c (21c)

Now, combining with Equation (20) we have new message passing updates for the
low-rank loopy belief propagation algorithm,

mc→i = Wc,i

[(
WT

c,1m1→c
)
�
(
WT

c,2m2→c
)
· · · �

(
WT

c,ncmnc→c
)]
\i

(22a)

mi→c =
⊙

d∈N(i)\{c}
md→i (22b)

Belief update is simple. For the variable xi, we project the messages from the other variables
sharing a factor with xi to RR, perform elementwise multiplication and then project the
product back to Rd. Thereafter, multiply such messages from all the factors xi is connected
to get the updated belief of xi.

Clearly, the computational complexity of the message updates grows linearly with the
addition of variables to factors and thereby the algorithm is efficent enough to run with
higher-order factors.

4.2 Neuralizing Low Rank Sum-Product LBP

To learn better node and consequently, graph representations in an end-to-end setting, we
seek to neuralize the Low Rank LBP algorithm by writing the message passing updates
as a functionally equivalent neural network module and unroll the inference algorithm
as a computational graph. We further replace the positive message vectors in LBP with
unconstrained real valued hidden latent vector representations initialized from a feature
extractor network.

In the Low-rank LBP algorithm, a factor is parameterized by the set of matrices {Wc,j}
i.e. it has as many Wc,j ’s as the number of variables adjacent to it in the factor graph. We
can relax this constraint and maintain 2|{Wc,j}| matrices at each factor, one set is used for
transformation of messages before Hadamard product and the other set after the product
in equation (22a). The additional parameters are helpful as the two message updates are
not tied with shared parameters and can be run parallelly. Also, with more parameters,
this may increase the representative power of the neural-network while still being able to
represent equation (22a) as the extra set of matrices can be learnt to be same as the first
set.With this relaxation, we can push the outer Wc,i to equation (22b) and rewrite the LBP
updates of (22a) and (22b) as,

mc→i =
⊙

j∈N(c)\{i}
WT

c,jmj→c (23a)

mi→c =
⊙

d∈N(i)\{c}
Wd,imd→i (23b)
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Figure 4: A single aggregator of the FGNN architecture.

The message updates of (23a) and (23b) only involve operations like matrix-vector product
and elementwise multiplication. These operations can very well be represented in a neural
network for end-to-end learning. But the multiplication of several terms can lead to
numerical instability in learning due to overflow and underflow errors. Therefore, we replace
the Hadamard product with other generalized set-function aggregators. It has been shown
that given a set of input vectors, an MLP followed by sum (Zaheer et al., 2017) or max (Qi
et al., 2017) aggregator is a universal set approximator; it can approximate any non-linear set
function and hence can be used in place of Hadamard product, approximating the Hadamard
product if necessary, and providing the capability to possibly learn a better aggregator
than the Hadamard product. To provide even more approximation capabilities, we allow a
multi-layer perceptron (MLP) to transform the message after aggregation just like typical
graph neural networks.

A single aggregator of FGNN is shown in Figure 4. For a message between node c and
node i, we optionally allow both the the latent vectors from c and i to be used as input to the
MLP at node c. The matrix W that is used to multiply the message can be learned directly,
if necessary. Alternatively, if some feature tci is available, the Wc,i can be conditioned on
tci by using a MLP to output the matrix conditioned on the feature.

For implementing Equations (23a) and (23b), the nodes in Figure 4 correspond to
messages mc→i and mi→c. If we want to use the architecture as a graph neural network
instead, it is convenient to define the latent vectors to correspond to factor and variable
nodes as it would result in a smaller network. This can be done if we do not exclude the
vector from the target node in the aggregration operation, i.e. use mc =

⊙
j∈N(c) WT

c,jmj

and mi =
⊙

d∈N(i) Wd,imd as the starting points for neuralization instead. The original
belief propagation equations are exact inference algorithms when there are no loops. For
correctness, the information in each message is only used once for computing a node marginal.
As a graph neural network, the network is trained end-to-end and can be trained to account
for the repeated information. We find experimentally that the results are similar when we

12
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use networks where nodes correspond to the belief propagation messages and networks where
the nodes correspond to variables and factors. Hence, we use the networks where nodes
correspond to variables and factors except for theoretical results where we are simulating
the Sum-Product and Max-Product algorithms.

4.3 Factor Graph Neural Network

We now describe the Factor Graph Neural Network (FGNN), a graph neural network model
based on the derived low-rank LBP equations. It consists of two modules, Variable-to-Factor
module and Factor-to-Variable module. Given a factor graph G = (V, C, E), unary features
[f i]i∈V and factor features [gc]c∈C, assume that for each edge (c, i) ∈ E , with c ∈ C, i ∈ V,
there is an associated edge feature vector [tci]. Let k and l be hidden dimensions of variable
and factor node embeddings, respectively. Then, the pseudo code for a FGNN layer on
G is shown in Algorithm 1, where [ΦVF,ΘVF] are parameters for the Variable-to-Factor
module, and [ΦFV,ΘFV] are parameters for the Factor-to-Variable module. The factor to
variable messages are computed as f̃ i = AGG

c:(c,i)∈E
Q(tci |ΦFV)M([ gc, f i]|ΘFV) whereM is a

neural network mapping feature vectors to a length-k feature vector, and Q(eij) is a neural
network mapping eij to a k × l matrix. Then by matrix multiplication and aggregation
operator AGG, a new length-l variable feature f̃ i is generated. Similarly, the variable to
factor messages are computed as g̃c= AGG

i:(c,i)∈E
Q(tci |ΦVF)M([gc, f i]|ΘVF) to generate the

updated factor feature g̃c.

Algorithm 1 The FGNN layer
Input: G = (V, C, E), [f i]i∈V , [gc]c∈C , [tci](c,i)∈E

Output: [f̃ i]i∈V , [g̃c]c∈C

1: Variable-to-Factor:

2: g̃c= AGG
i:(c,i)∈E

Q(tci |ΦVF)M([gc, f i]|ΘVF)

3: Factor-to-Variable:

4: f̃ i = AGG
c:(c,i)∈E

Q(tci |ΦFV)M([ gc, f i]|ΘFV)

By stacking multiple FGNN layers together, we obtain a FGNN that transforms the
initial factor graph features to variable and factor embeddings. To assist learning, we can
add other architecture details such as residual connections. As graph neural networks, unlike
belief propagation algorithms, the parameters do not need to be tied across different layers,
potentially giving better representational power. Furthermore, the latent variables can have
different dimensions in different layers. Different types of layers such as fully connected
layers can also be interleaved with the FGNN layers.

4.4 FGNN for Max-Product Belief Propagation

We motivated the construction of FGNN based on Low-rank Sum-Product LBP message
updates. In this section, we prove that another widely used approximate inference algo-
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rithm, Max-Product Belief Propagation can be exactly parameterized by the FGNN using
maximization as AGG operator in Algorithm (1). For convenience of description, we use a
log-linear formulation of PGMs.

Let x be the set of all variables and let xc be the subset of variables that factor φc
depends on. Denote the set of indices of variables in xc by s(c). Then, an equivalent
formulation of PGMs in equation (2) is as follows

p(x) = 1
Z

exp
[∑
c∈C

θc(xc) +
∑
i∈V

θi(xi)
]
, (24)

where exp(θc(xc)) = φc(xc) and exp(θi(xi)) = φi(xi) are non-negative factor potential
functions (with θc(·), θi(·) as the corresponding log-potentials) and Z is a normalizing
constant. Using the log-linear formulation, the MAP inference problem in (4) can be
reformulated as

x∗ = argmax
x

∑
c∈C

θc(xc) +
∑
i∈V

θi(xi), (25)

and the Max-Product loopy belief propagation in Eqns 8, 9, 10 can be reformulated as

ni→c(xi) =θi(xi) +
∑

d:d 6=c,i∈s(d)
md→i(xi), (26a)

mc→i(xi) = max
xc \{xi}

θc(xc) +
∑

j∈s(c),j 6=i
nj→c(xj)

 , (26b)

bi(xi) =θi(xi) +
∑

c:i∈s(c)
mc→i(xi) (26c)

We prove that Max-Product Belief Propagation can be exactly parameterized by the FGNN.
The proof of the propositions and lemmas are provided in the appendix. The sketch of the
proof is as follows. First, instead of parameterizing higher-order potentials as sum of rank-1
tensors, we show that the higher-order potentials can be also decomposed as maximization
over a set of rank-1 tensors, and that the decomposition can be represented by a FGNN
layer. After the decomposition, a single Max-Product iteration only requires two operations:
(1) maximization over rows or columns of a matrix, and (2) summation over a group of
features. We show that the two operations can be exactly parameterized by the FGNN and
that k Max-Product iterations can be simulated using O(k) FGNN layers.

Initially, we represented the higher-order potential functions as sum of rank-1 tensors
which is suitable for Sum-Product type inference algorithms. However for Max-Product
type algorithms, a decomposition as a maximum of a finite number of rank-1 tensors is
more appropriate. It has been shown that there is always a finite decomposition of this type
(Kohli and Kumar, 2010).
Lemma 1 ((Kohli and Kumar, 2010)). Given an arbitrary potential function φc(xc), there
exists a variable zc ∈ Zc = {1, 2, . . . , Zc} with Zc < ∞ and a set of univariate potentials
{φic(xi, zc)|i ∈ c}, s.t.

log φc(xc) = log max
zc∈Zc

∏
i∈s(c)

φic(xi, zc) = max
zc∈Zc

∑
i∈s(c)

ϕic(xi, zc), (27)

where ϕic(xi, zc) = log φic(xi, zc).
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In Lemma 1, a higher-order potential are formulated as maximization over a set of
rank-one tensors. It is notable that in worst cases, the size of set Zc, denoted by Zc, is
exponential against the order of the factor, but in practice higher-order potentials with
low-rank properties can often be decomposed as (27) with relatively small Zc. Using ideas
from (Kohli and Kumar, 2010), we show that a PGM can be converted into single layer
FGNN with the non-unary potentials represented as a finite number of rank-1 tensors.

Proposition 2. A factor graph G = (V, C, E) with variable log potentials θi(xi) and factor
log potentials ϕc(xc) can be converted to a factor graph G′ with the same variable potentials
and the decomposed log-potentials ϕic(xi, zc) using a one-layer FGNN.

With the decomposed higher-order potential, one iteration of the Max-Product (26) can
be rewritten using the following three steps 1:

bc→i(zc)←
∑

j∈s(c),j 6=i
max
xj

[ϕjc(xj , zc)−mc→j(xj) + bj(xj)] , (28a)

mc→i(xi)←max
zc

[bc→i(zc) + ϕic(xi, zc)] , (28b)

bi(xi)←θi(xi) +
∑

c:i∈s(c)
mc→i(xi) (28c)

Given the log potentials represented as a set of rank-1 tensors at each factor node, we show
that each iteration of the Max-Product message passing update can be represented by a
Variable-to-Factor (VF) layer and a Factor-to-Variable (FV) layer, forming a FGNN layer,
followed by a linear layer (that can be absorbed into the VF layer for the next iteration).

With decomposed log-potentials, Max-Product belief propagation mainly requires two
operations: (1) maximization over rows or columns of a matrix; (2) summation over a group
of features. We first show that the maximization operation in (28a) and (28b) (producing
max-marginals) can be done using neural networks that can be implemented by theM units
in the VF layer.

Proposition 3. For arbitrary feature matrix X ∈ Rk×l with xij as its entry in the ith row
and jth column, the feature mapping operation x̂ = [maxj xij ]li=1 can be exactly parameterized
with a 2log2 l-layer neural network with at most O(l2 log2 l) parameters.

Following the maximization operations, Eq. (28a) requires summation of a group of
features. However, the VF layer uses max instead of sum operators to aggregate features.
Assuming that the M operator has performed the maximization component of equation
(28a) producing max-marginals, Proposition 4 shows how the Q layer can be used to produce
a matrix W that converts the max-marginals into an intermediate form to be used with
the max aggregators. The output of the max aggregators can then be transformed with a
linear layer (Q in Proposition 4) to complete the computation of the summation operation
required in equation (28a). Hence, equation (28a) can be implemented using the VF layer
together with a linear layer that can be absorbed in theM operator of the following FV
layer.

1. Detailed derivation are in appendix
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Proposition 4. For arbitrary non-negative valued feature matrix X ∈ Rk×l>0 with xij as its
entry in the ith row and jth column, there exists a constant tensor W ∈ Rk×l×kl that can be
used to transform X into an intermediate representation yir =

∑
ij xijwijr, such that after

maximization operations are done to obtain ŷr = maxi yir, we can use another constant
matrix Q ∈ Rl×kl to obtain [

∑
i xij ]lj=1 = Q[ŷr]klr=1.

Eq. (28b) and (28c) can be implemented in the same way as (28a) by the FV layer.
First the max operations are done by the M units to obtain max-marginals. The max-
marginals are then transformed into an intermediate form using the Q units which are
further transformed by the max aggregators. An additional linear layer is then sufficient to
complete the summation operation required in (28c). The final linear layer can be absorbed
into the next FGNN layer, or as an additional linear layer in the network in the case of the
final Max-Product iteration.

Using the above two proposition, we can implement all important operations (28).
Firstly, by Proposition 3, we can construct the Variable-to-Factor module using the following
proposition.

Proposition 5. The operation in (28a) can be parameterized by one MPNN layer with
O(|X|maxc∈C | Zc |) parameters followed by a O(log2 |X|)-layer neural network with at most
O(|X|2 log2 |X|) hidden units.

Meanwhile, by Proposition 3 and Proposition 4 the Factor-to-Variable module can be
constructed using the following proposition.

Proposition 6. The operation in (28c) can be parameterized by one MPNN layer, where the
Q network is identity mapping and theM network consists of a O(maxc∈C log2 | Zc |)-layer
neural network with at most O(maxc∈C | Zc |2 log2 | Zc |) parameters and a linear layer with
O(maxc∈C |c|2|X|2) parameters.

Using the above two proposition, we achieves the main result of this section as follows.

Corollary 7. The Max-Product algorithm in (26) can be exactly parameterized by the FGNN,
where the number of parameters are polynomial w.r.t |X|, maxc∈C | Zc | and maxc∈C |c|.

5. Experiments

In this section, we evaluate our FGNN over a diverse set of tasks. First, we evaluate FGNN’s
performance for graphical model inference. We create synthetic PGMs in both low order and
higher-order settings, and compare FGNN with other PGM inference algorithms. We also
conduct experiments on low-density parity check (LDPC) decoding task (a typical PGM
inference task).

Next, we want to study how does FGNN perform on real-world data as against other
state-of-the-art models. For this, we evaluate FGNN over three real-world problems where
capturing higher-order dependencies is likely useful. We report experiments on the graph
matching problem formulated as a PGM inference problem. We performed experiments on
handwritten character recognition within words to demonstrate that FGNN is able to exploit
sequence information. To validate the effectiveness of FGNN in capturing higher-order
information from more general graph structured data, we report results on molecular datasets
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Table 1: Results (percentage agreement with MAP and standard error) on synthetic datasets with
runtime in microseconds in bracket (exact followed by approximate inference runtime for AD3). A
brief description of the three datasets is as follows. D1: random unary potentials + fixed parameter
in pairwise and higher order potentials; D2: random parameter in unary and pairwise potentials +
fixed parameter in higher-order potentials; D3: random parameter in all potentials.

AD3 Max-Product MPLP MPNN Ours

D1 80.7±0.0014 (5 / 5) 57.3±0.0020 (6) 65.8±0.0071 (57) 71.9±0.0009 (131) 92.5±0.0012 (144)
D2 83.8±0.0014 (532 / 325) 50.5±0.0053 (1228) 68.5±0.0074 (55) 74.3±0.0009 (131) 89.1±0.0010 (341)
D3 88.1±0.0006 (91092 / 1059) 53.5±0.0081 (4041) 64.2±0.0056 (55) 82.1±0.0008 (121) 93.2±0.0006 (382)

and compare with other state-of-the-art k-order GNNs that capture higher-order information
as well. Finally, we show FGNN is well suited for modeling human motion prediction task.

5.1 MAP Inference over Synthetic PGMs

We first evaluate FGNN on synthetically constructed datasets on graphical model inference
tasks. As FGNN is based on inference algorithms, we test whether FGNN is able to
outperform other prominent solvers on these inference problems on multiple datasets. First
we describe experiments on chain-structured graphical model and then provide further results
on other MRF structures.

Data We construct three synthetic datasets (D1, D2 and D3) for this experiment. All
models start with a length-30 chain structure with binary-states nodes with node potentials
randomly sampled from the uniform distribution over the interval [0, 1], U [0, 1], and pairwise
potentials that encourage two adjacent nodes to take state 1, i.e., it gives high value to
configuration (1, 1) and low value to other configurations. In D1, the pairwise potentials
are fixed, while in the others, they are randomly generated. For D1, D2, and D3, a budget
higher-order potential (Martins et al., 2015) is added at every node; these potentials allow
at most k of the 8 variables within their scope to take the state 1; specifically, we set k = 5
in D1 and D2 and set k randomly in D3.

In this paper, we use the simplest, but possibly most flexible method of defining factors in
FGNN: we condition the factors on the input features. Specifically, for the problems in this
section, all parameters that are not fixed are provided as input factor features. We test the
ability of the proposed model to find the MAP solutions, and compare the results with a well
known graph neural network, MPNN (Gilmer et al., 2017) as well as several MAP inference
solvers, namely AD3 (Martins et al., 2015) which solves a linear programming relaxation
using subgradient methods, Max-Product Belief Propagation (Weiss and Freeman, 2001),
implemented by (Mooij, 2010), and a convergent version of Max-Product – MPLP (Globerson
and Jaakkola, 2008), also based on a linear programming relaxation. The approximate
inference algorithms are run with the correct models while the graph neural network models
use learned models, trained with exact MAP solutions generated by a branch-and-bound
solver that uses AD3 for bounding (Martins et al., 2015)2.

2. When obtaining the ground truth, we let the upper bound to touch the lower bound in the branch-and-
bound solver to guarantee the optimality.
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Architecture and training details In this task, we use a factor graph neural network
consisting of 8 FGNN layers (see the detail in the Appendix). The model is implemented
in pytorch (Paszke et al., 2017), and trained with Adam optimizer (Kingma and Ba, 2014)
with initial learning rate lr = 3× 10−3. After each epoch, lr is decreased by multiplying a
factor of 0.98. All the models in Table 1 were trained for 50 epochs after which all of them
achieve convergence.

Results The percentage of agreement with MAP solutions is shown in Table 1. Our model
achieves far better results on D1, D2, and D3 than all others. D4 consists of chain models,
where Max-Product works optimally3. The linear programming relaxations also perform
well. In this case, our method is able to learn a near-optimal inference algorithm on the
chain case as well.

Traditional methods including Max-Product, MPLP perform poorly on D1, D2 and D3.
In these, even though FGNN can emulate the traditional Max-Product, it is better to learn
a different inference algorithm. AD3 have better performance than others, but is worse than
our FGNN. The accuracy of FGNN is noticeably higher than that of MPNN as MPNN does
not use the higher-order structural priors that are captured by FGNN.

5.1.1 Ablation studies

In order to study the behaviour of the FGNN model under varying inputs, we conducted
the following additional experiments as part of the ablation study using synthetic data.

Effect of wrong graph structures First we did a small ablation study by modifying
the graph structure inputed to FGNN using the Dataset D1 and D2. Originally D1 and
D2 provides chain structured PGM, with budget higher-order factor formed over every 8
neighbor variables. In this experiment we augment the graph structure by using 4 and
6 variables to form a higher-order factor instead of the correct 8 variables. On D1, the
accuracies are 81.7 and 89.9 when 4 and 6 variables are used in place of the correct 8
variables; on D2, the accuracies are 50.7 and 88.9 respectively. In both cases, the highest
accuracies are achieved when the sizes of the HOPs are set correctly.

Generalization to novel graph structures In order to further evaluate the generaliza-
tion of FGNN, we conducted an additional experiment to train the FGNN on fixed length-30
MRFs using the same protocol as Dataset3, and test the algorithm on 60000 random gener-
ated chain MRF whose length ranges from 15 to 45 (the potentials are generated using the
same protocol as D3, where all unary, pairwise and higher-order potentials have random
parameters). The result is in Table 2, which shows that the model trained on fixed size
MRF can be generalized to MRF with different graph structures.

Effect on low order PGMs such as chains and trees In addition to the higher-order
PGM above, we conducted an additional experiment on chain and tree structured PGMs.
For chain structured PGMs, we use the same protocol as D3 to generate training and testing
data, but with higher-order factors removed. For tree structured dataset, the training set
includes 90000 different PGMs as randomly generated binary trees whose depths are between

3. Additional experiment on trees, where Max-Product also works optimally can be found in Appendix 5.1.1
along with details on all experiments.

18



Factor Graph Neural Networks

Chain length AD3 FGNN

(15, 25) 88.95 94.31
(25, 35) 88.18 93.64
(35, 45) 87.98 91.50

Table 2: Generalization ability (measured by percentage agreement with MAP) of algorithms on PGMs
with different graph structures. We train our FGNN model on the training set of D3 where structure of
PGMs is fixed and test it on higher-order PGMs with different chain-length.

3 and 6. Each node is associated with a random variable xi ∈ {0, 1} along with a log
potential θi(xi) randomly sampled from Gaussian distribution N (0, 1). Each edge (i, j) in a
tree is associated with a pairwise log potential θij(xi, xj) which is randomly sampled from
Gaussian distribution N (0, 1). There is also 10000 testing instances which are generated in
the same way as the training set. The experiment result is shown in Table 3.

AD3 Max-Product MPLP MPNN FGNN

Chain 100 100 99.9 91.2 98.0

Tree 100.0 100.0 99.97 – 98.35

Table 3: Results (percentage agreement with MAP) on chain and tree structured PGMs.

For chain PGMs, our algorithm achieves comparable results as Max-Product, which is
known to be optimal on chain PGMs, and outperforms pairwise MPNN. For a tree structured
PGM, it is not as easy to shrink the pairwise features to the nodes as an adaptation for
MPNN as in the case of chain PGM in Section 5.1, so we omit the experiment on MPNN.
Still, our Factor Graph Neural Network achieves a good performance even when compared
with Max-Product which is optimal on tree PGMs and also with the linear programming
relaxations.

5.2 LDPC Decoding (MAP or Marginal Inference)

The low-density parity check (LDPC) codes are widely used in wired and wireless com-
munication, where the decoding can be done by Sum- or Max-Product belief propagation
(Zarkeshvari and Banihashemi, 2002).

Data Let x be the 48-bit original signal, and y be the 96-bit LDPC encoded signal
by encoding scheme “96.3.963”(MacKay, 2009). Then a noisy signal ỹ is obtained by
transferring y through a channel with white Gaussian and burst noise, that is, for each bit
i, ỹi = yi + ni + pizi, where ni ∼ N (0, σ2) , zi ∼ N (0, σ2

b ), and pi is a Bernoulli random
variable s.t. P (pi = 1) = η; P (pi = 0) = 1− η. In the experiment, we set η = 0.05 as (Kim
et al., 2018) to simulate unexpected burst noise during transmission. By tuning σ, we can
get different signal with SNRdB = 20 log10(1/σ).

In the experiment, for all learning-based methods, we generate ỹ from randomly sampled
x on the fly with SNRdB ∈ {0, 1, 2, 3, 4} and σb ∈ {0, 1, 2, 3, 4, 5}. For each learning-based
method, 108 samples are generated for training. Meanwhile, for each different SNRdB and
σb, 1000 samples are generated for validating the performance of the trained model.
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Figure 5: Experimental results (Bit Error Rate, BER v.s. Signal-to-Noise Ratio, SNR) on LDPC
decoding.

In LDPC decoding, the SNRdB is usually assumed to be known and fixed, and the burst
noise is often unexpected and its parameters are unknown to the decoder. Thus, for learning
based methods and traditional LDPC decoding method, the noisy signal ỹ and the SNRdB
are provided as input. In our experiments, since the LDPC decoding can be done by both
max-product and sum-product, we train our FGNN with both max and sum aggregation
function (see FGNN-Max and FGNN-Sum in Figure 5.). The FGNN is compared with
baselines including two implementation of Sum-Product (Mackey-Sum (MacKay, 2009) and
Commpy-Sum (Taranalli, 2020)), the max-product decoder from Commpy (Commpy-Max
(Taranalli, 2020)) and the bit decoding baseline.

Architecture and training details In this task, we use a factor graph neural
network consisting of 8 FGNN layers (the details are provided in the Appendix). The
model is implemented by using pytorch (Paszke et al., 2017), and trained with Adam
optimizer (Kingma and Ba, 2014) with initial learning rate lr = 1× 10−2. After every 10000
samples, lr is decreased by multiplying a factor of 0.98. After training over 108 samples, the
training loss converges.

Results We compare FGNN with three public available LDPC decoder MacKay-Sum
(MacKay, 2009), Commpy-Sum (Taranalli, 2020) and Commpy-Max (Taranalli, 2020). The
first two decoders are using Sum-Product belief propagation to propagate information
between higher-order factors and nodes, but with different belief clipping strategy and
different belief propagation scheduler. The third decoder are using Max-Product for as
inference algorithm. Meanwhile, our FGNN uses a learned factor-variable information
propagation scheme, and the other learning based method, MPNN ignores the higher-order
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dependencies. The decoding accuracy is provided in Figure 5. The Sum-Product based
methods (MacKay-Sum and Commpy-Sum) are known to be near optimal for Gaussian
noise, however the hyper-parameter of Sum-Product are sensitive. Due to different hyper-
parameters, MacKay-Sum get the best performance when the burst noise level is low while
Commpy-Sum have superior performance than MacKay-Sum with high burst noise level. Our
FGNN (both FGNN-Max and FGNN-Sum) always performs better than the Commpy-Sum
and Commpy-Max, it achieves comparable but lower performance than the MacKay-Sum
for low burst noise level(σb ∈ [0, 2]), and outperforms all other methods for high burst noise
levels (σb ∈ [3, 5]), and the results from “sum” aggregation function are slightly better than
the results from “max” aggregation function.

5.3 The Graph Matching Problem (MAP Inference)

The Graph Matching is a fundamental problem by itself and a key step in various computer
vision topics including image registration, tracking, motion analysis and more. Traditionally,
the graph matching problems are often modelled as Quadratic Assignment Problems (QAPs)
and they can be also viewed as MAP inference problems over factor graphs (Zhang et al.,
2016; Swoboda et al., 2017). These problems can be solved by using belief propagations in
PGMs (Zhang et al., 2016; Swoboda et al., 2017), or using graph neural networks (Wang
et al., 2019; Zhang and Lee, 2019). In this section, we apply our FGNN to graph matching
problems and compare with both traditional methods as well as recent graph neural network
based approaches.

The Problem and Traditional Model Let P = {pi |i ∈ [n]}, Q = {qi |i ∈ [n]} be two
sets of feature points, where [n] denotes the set {1, 2, . . . , n}. The graph matching problem
can be formulated as an MAP inference problem as follows

argmax
X

n∑
i,j=1

xijSn(pi,pj) +
n∑

i,j,k,l=1
xikxjlSe(ePij , eQkl) + φ(X), (29)

where Sn and Se are user-specified similarity functions of features, and ePij and eQkl are edge
features extracted or learned from P and Q, respectively. The variable X is a n× n matrix
with xij as its entry at ith row and jth column. The higher-order log-potential φ(X) is used
to enforce the one-to-one constraints as follows,

φ(X) =
{

0,
∑n
i=1 xij = 1,

∑n
j=1 xij = 1, xij > 0

−∞, otherwise. (30)

Traditionally, both the features and the similarity functions are handcrafted (Wang et al.,
2018; Swoboda et al., 2017; Liu et al., 2014; Zhou and De la Torre, 2012; Zhang et al., 2016).
Recently, many approaches were proposed (Wang et al., 2021; Xu et al., 2021; Rolínek et al.,
2020; Fey et al., 2020; Wang et al., 2020; Yu et al., 2019; Wang et al., 2019) to replace the
handcrafted feature with learned feature with very promising results.

The FGNN Model In the traditional formulation of graph matching problem (29), there
are n2 binary variables. We instead use a more compact but equivalent formulation where
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there are 2n variables with n states. We formulate the graph matching problem as

argmax
y,z

=
n∑
i=1

θi(yi| P,Q) +
n∑
j=1

ϑj(zj | P,Q) + ϕ(y, z | P,Q), (31)

where yi = j indicates that the ith node in source graph corresponding to the jth node in the
target graph. Similarly, zj = i indicates that the the ith node in source graph corresponds
the jth node in the target graph. The higher-order term can enforce that y and z being
consistency, and can absorb the pairwise terms in (29). As a result, we can extend the
graph neural network in Zhang and Lee (2019) to handle higher-order terms more efficiently
by using the proposed factor graph neural network shown in Figure 6, where each node in
source graph corresponds to random variable yi and each node in target graph corresponds
to random variable zi. The pairwise message passing procedure inside the FGNN is only
used to produce better node features as Zhang and Lee (2019). Without factors, the model
can still work as a metric-learning based method but the factors can significantly improve
the performance of GNN model.

Data Following the experimental settings of (Wang et al., 2019; Yu et al., 2019; Fey et al.,
2020; Rolínek et al., 2020; Xu et al., 2021), we use the Pascal VOC dataset (Everingham
et al., 2010) with the keypoints annotated by Bourdev and Malik (2009) to evaluate the
performance of handcrafted and learning-based graph matching algorithms. The dataset
contains 20 classes of instances (objects) with manually labeled keypoint locations, and the
instances may vary in scale, view angle and illumination. For each instance, the number of
inliers ranges from 6 to 23. We applied the same filtering and training/testing split (Wang
et al., 2019; Yu et al., 2019; Fey et al., 2020; Rolínek et al., 2020; Xu et al., 2021), where
7020 annotated images are used for training and 1682 for testing.

Architecture and training details In our experiment, we use the same training protocol
as in (Wang et al., 2019; Yu et al., 2019; Fey et al., 2020; Rolínek et al., 2020; Xu et al.,
2021), where the input of the models are two sets of coordinates of key-points and two
images. In our model, as in previous work the two images are first been fed to the VGG19
(Simonyan and Zisserman, 2014) net to form visual features. By using bilinear interpolating
as previous work (Fey et al., 2020), we can get the visual feature vector of every node from
the outputs of VGG. For each set of key-points, each key-point is connected to its k-nearest
neighbors with k = 6. For each node, the geometric and visual features are concatenated
to form the node feature. For each edge, the difference of geometric node features of the
two nodes connected by the edge serves as the edge feature. Furthermore, the initial factor
features are generated as follows

f = max
i∈f

vi, (32)

where vi is the node feature associated with node i, and max is the entrywise maximization.
The above node, edge and factor features will be fed into a FGNN network composed by
three blocks. In each block, there will be a pairwise message passing module as (Zhang and
Lee, 2019), and one factor message passing module as 1. Then the FGNN network, along
with the VGG network, will be trained with Adam (Kingma and Ba, 2014) optimizer with
learning rate 10−4 (10−6 for the VGG part). Our algorithm has been trained for 200 epochs
and in each epoch we random samples 16000 image pairs from the training set.
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Source
Graph

Target
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Figure 6: Factor Graph Neural Networks for Graph Matching Problems. The pairwise message
passing are used to produce better node features so that without the factor it can still work as a
metric-learning based methods. With the factor, the performance of matching can be significantly
improved as shown in Table 4.

Method aero bike bird boat btl bus car cat chair cow table dog horse mbk prn plant shp sofa trn tv avg
IPFP (Leordeanu et al., 2009) 25.1 26.4 41.4 50.3 43.0 32.9 37.3 32.5 33.6 28.2 26.9 26.1 29.9 32.0 28.8 62.9 28.2 45.0 69.3 33.8 36.6
RRWM (Cho et al., 2010) 30.9 40.0 46.4 54.1 52.3 35.6 47.4 37.3 36.3 34.1 28.8 35.0 39.1 36.2 39.5 67.8 38.6 49.4 70.5 41.3 43.0
PSM (Egozi et al., 2012) 32.6 37.5 49.9 53.2 47.8 34.6 50.1 35.5 37.2 36.3 23.1 32.7 42.4 37.1 38.5 62.3 41.7 54.3 72.6 40.8 43.1

GNCCP (Liu and Qiao, 2013) 28.9 37.1 46.2 53.1 48.0 36.3 45.5 34.7 36.3 34.2 25.2 35.3 39.8 39.6 40.7 61.9 37.4 50.5 67.0 34.8 41.6
ABPF (Wang et al., 2018) 30.9 40.4 47.3 54.5 50.8 35.1 46.7 36.3 40.9 38.9 16.3 34.8 39.8 39.6 39.3 63.2 37.9 50.2 70.5 41.3 42.7

GMN (Zanfir and Sminchisescu, 2018) 31.9 47.2 51.9 40.8 68.7 72.2 53.6 52.8 34.6 48.6 72.3 47.7 54.8 51.0 38.6 75.1 49.5 45.0 83.0 86.3 55.3
LCS (Wang et al., 2020) 46.9 58.0 63.6 69.9 87.8 79.8 71.8 60.3 44.8 64.3 79.4 57.5 64.4 57.6 52.4 96.1 62.9 65.8 94.4 92.0 68.5

HNN-HM(Liao et al., 2021) 39.6 55.7 60.7 76.4 87.3 86.2 77.6 54.2 50.0 60.7 78.8 51.2 55.8 60.2 52.5 96.5 58.7 68.4 96.2 92.8 68.0
PCA-GM (Wang et al., 2019) 40.9 55.0 65.8 47.9 76.9 77.9 63.5 67.4 33.7 65.5 63.6 61.3 68.9 62.8 44.9 77.5 67.4 57.5 86.7 90.9 63.8

CIE-H (Yu et al., 2019) 51.2 69.2 70.1 55.0 82.8 72.8 69.0 74.2 39.6 68.8 71.8 70.0 71.8 66.8 44.8 85.2 69.9 65.4 85.2 92.4 68.9
DGMC (Fey et al., 2020) 47.0 65.7 56.8 67.6 86.9 87.7 85.3 72.6 42.9 69.1 84.5 63.8 78.1 55.6 58.4 98.0 68.4 92.2 94.5 85.5 73.0

BBGM (Rolínek et al., 2020) 61.5 75.0 78.1 80.0 87.4 93.0 89.1 80.2 58.1 77.6 76.5 79.3 78.6 78.8 66.7 97.4 76.4 77.5 97.7 94.4 80.1
NGMv2 (Wang et al., 2021) 61.8 71.2 77.6 78.8 87.3 93.6 87.7 79.8 55.4 77.8 89.5 78.8 80.1 79.2 62.6 97.7 77.7 75.7 96.7 93.2 80.1
NHGMv2(Wang et al., 2021) 59.9 71.5 77.2 79.0 87.7 94.6 89.0 81.8 60.0 81.3 87.0 78.1 76.5 77.5 64.4 98.7 77.8 75.4 97.9 92.8 80.4
MPNN (Zhang and Lee, 2019) 57.8 69.1 74.4 77.7 89.2 90.4 90.4 77.4 73.1 81.9 90.4 76.5 78.6 76.5 54.4 97.9 78.2 70.0 97.3 94.9 79.8

Ours 57.3 69.0 75.9 78.3 93.8 91.6 90.8 76.9 73.9 82.5 89.9 77.0 79.9 77.8 54.4 98.2 78.2 74.9 97.7 94.7 80.6

Table 4: Accuracy on the Pascal VOC Keypoint dataset. Top: Results of traditional
hand-crafted solver. Bottom: Result from methods using learned feature. All the learning
based approaches are using VGG19 (Simonyan and Zisserman, 2014) as backbone to extract
visual feature, but the graph neural network architectures are different.

Results Our FGNN based algorithm is compared with a bunch of traditional handcrafted
graph matching algorithms, as well as several state-of-the-arts learned graph matching
algorithms. The results are shown in Table 4, where the results of handcrafted graph
matching methods are from Wang et al. (2020), and the results of learning-based approaches
are from their paper except for MPNN (Zhang and Lee, 2019). For the results of MPNN,
their network is identical to ours but with the factor message passing module removed, and
we train the network using exactly the same protocol as ours.

Our algorithm outperforms the previous methods because our factor message passing
module can handle higher-order information better. Particularly the performance of previous
pairwise network based state-of-the-arts methods NGMv2 (Wang et al., 2021) can be
improved by introducing higher-order terms to form NHGMv2 (Wang et al., 2021) to get
an improvement of 0.3%. Meanwhile, compare to our pairwise counter-part MPNN (Zhang
and Lee, 2019), we got a performance improvement of 0.8% and our average performance
outperforms all previous methods.
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Figure 7: Factor Graph model for the Handwriting character recognition.
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Figure 8: Handwriting character Recognition

5.4 Handwritten character sequence recognition (Marginal Inference)

In this experiment, we explore how useful higher-order modeling with FGNN is for structured
prediction tasks with sequence data. A sequence is one of the simplest graph structures
where nodes are connected in the form of a linear chain. FGNN should be able to capture
strong higher-order dependencies in such datasets. Therefore, we explore the effect of order
of factors on the task of handwritten character recognition.

Modeling In handwritten character recognition sequence, the adjacent few characters
of a node are likely to contain useful information for predicting a character. We consider
one of the simplest higher-order model: a k−order factor for each node in the sequence.
Formally, let x = [x1, . . . , x|x|] denote an input sequence of length |x| with each xi associated
with a label yi ∈ {a, b, . . . , z}. If xi,k = [xi−k, . . . , xi+k] is an order-k segment of x centered
at xi and yi,k is the corresponding label segment of xi,k, we define fi(yi,k|xi,k : θ) as the
k−order factor encoding dependencies in yi,k. This gives us a conditional random field with
unnormalized probability as P (y|x) =

∏|x|
i=1 fi(yi,k|xi,k; θ). This corresponds to a factor fi

for every node i connecting its adjacent k nodes in the sequence.
Data We study the properties of FGNN network with the handwriting recognition data

set from (Taskar et al., 2004), originally collected by (Kassel, 1995). The dataset consists
of a subset of ∼ 6100 handwritten words with the average length of ∼ 8 characters. The
words are segmented into characters and each character is rasterized into an image of 16
by 8 binary pixels. The dataset is available in 10 folds with each fold containing ∼ 6000
characters. The task is to recognise characters by leveraging the neighbourhood of characters
within the context of words. Since the words come from a small vocabulary, there is a strong
higher-order correlation present in the dataset. In our framework, depending on the order,
each character node xi can share a factor with other character nodes xj within the same
word. We follow a 10-fold cross-validation setup with 1 fold for training and 9 folds for
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testing and report averaged results. We evaluate the performance of FGNN by varying the
order and rank of the factors.

Architecture and training details We use 3 standard convolution and a fully
connected layer as the base feature extractor to get the zero-th order feature of 512 dimensions.
We then run 3 iterations of higher-order message passing followed by a classifier. We fix the
rank of all factors at 1024 and share parameters between factors with the same order. We
train for 50 epochs with a learning rate of 0.001.

Results In this experiment we study the behaviour of the model in terms of accuracy
and training time when order and rank of the factors are varied. Results as shown in
Figure (8) suggest the FGNN is able to capture higher-order information. The model shows
strong improvements as maximum order of factors used is successively increased before
saturating at 4th-order and above. To evaluate the efficiency of FGNN with higher-order
factors, we analysed the computation time as we vary the order of factors used. Figure (8)
shows that the training time per epoch grows almost linearly with the order of factors.

64 128 256 512 1024 2048
Rank (R) of factors

86

88

90

92

94

96

Ac
cu

ra
cy

Figure 9: Effect of rank of factor parameters for Handwriting character Recognition. The
accuracy of the model increases with increasing rank and saturates after rank-1024, whereas
a full rank 3rd order factor would need at least 17576 components for exact representation.

Effect of Rank of factor parameters One important hyperparameter of the FGNN
model is the rank of the higher-order factors which is given by the out dimension of
transformation matrix W. Since, the effect of higher-order context is clear from the results,
we analyse the sensitivity of the model performance with the rank of the higher-order
factors. To evaluate the effect of varying rank, we fixed the zero-th order feature dimension
to 64 and used factors up to order-3. We then ran three message passing iterations by
varying the rank of the factors from 64 to 2048. Results in Figure (9) show consistent
improvements in performance with the increasing rank before saturating at 1024 and above.
Note that for characters with the class size of 26 for each character, a full-rank tensor
representation for order-3 potential function needs at least 263 = 17576 components. Clearly,
1024 << 263 shows that the underlying high-order potential is well approximated by the
low-rank representation.
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5.5 Molecular data (Graph Regression)

In the following set of experiments, we use FGNN purely as graph neural network operating
on graph structured data. Note that FGNN only provides inductive bias of graphical model
inference algorithms but is free to learn a richer algorithm suitable for the task. With the
molecular data, we show that FGNN can work purely as a graph neural network on variable
sized graphs and provides additional flexibility in modeling typed nodes and edges.

Molecular data has several properties needed for an effective study of higher-order
representation learning models of graphs. A molecule can be represented as a graph with
atoms as nodes and bonds that exist between atoms as edges. Higher-order information
is present in the form of valence constraints of atoms which determine the number of
bonds they can form. In addition, molecules often contain subgraphs, also called functional
groups (e.g., OH, CHO etc.), which are identifiable and significant in determining their
functionality and geometry. Any relational learning model should be powerful enough to
capture such higher-order structures and dependencies in order to learn highly discriminative
representations. Furthermore, molecules come with varying number of nodes and hence
learning higher-order functions with shareable parameters is necessary. This makes FGNN
suitable for statistical learning in such datasets. We now focus on molecular data to study
the effectiveness of the proposed model and show its modeling flexibility in incorporating
domain knowledge in constructing the factors.

Modeling In molecular data, there is an input graph with node and edge features. To
use FGNN, we need to define a suitable factor graph model based on the graph structure. In
FGNN, Q(tci) is conditioned on edge features and hence separate for all variables connected
to the factor. This gives much freedom in modeling to leverage domain knowledge in order
to share some of the factor parameters and be able to work with large graphs with typed
edges as well. Given a molecular graph, we discuss possible ways of constructing higher-order
factors, conditioning and sharing of parameters.

One way to capture higher-order information is to add a factor for every node in the
molecule connecting that node (we will call this node central atom in that factor) and its
neighbours to the factor. Then weights of the potential for the factor can be shared by
conditioning on the following:

• Central atom type (CAT): Weights within the factor are shared but different factors
share parameters only if they have the same central atom type.

• Bond type (BT): Weights are shared if the bond type between the central atom and its
neighbour is same.

• Central atom and bond type (CABT): Weights are shared if both the central atom
type and bond type are same.

• Central atom, bond and neighbour atom type (CABTA): Weights are shared if
the bond type and the atom types of atoms sharing the bond are same.

Do note that most molecular datasets have small number of atom types and bond types.
This shows the proposed model of message passing is flexible and provides sufficient freedom
in modeling.
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Figure 10: Factor Graph model for molecular graphs.

Data We evaluate our model on two large scale datasets on quantum chemistry,
QM9 (Ruddigkeit et al., 2012; Ramakrishnan et al., 2014) and Alchemy (Chen et al., 2019)
datasets on the task of regression on 12 quantum-mechanical properties. QM9 is composed
of 134K drug-like organic molecules with sizes varying from 4 to 29 atoms per molecule.
Atoms belong to one of the 5 types, Hydrogen (H), Carbon (C), Oxygen (O), Nitrogen(N),
and Fluorine (F) and each molecule may contain up to 9 heavy (non-Hydrogen) atoms.
Nodes come with discrete features along with their 3D positions. We follow the standard
80:10:10 random split for training, validation, and testing.

Alchemy (Chen et al., 2019) is a recently released more challenging dataset of 119K
organic molecules comprising of 7 atom-types H, C, N, O, F, S (Sulphur) and Cl (Chlorine)
with up to 14 heavy atoms. These molecules are screened for being more likely to be useful
for medicinal chemistry based on the functional group and complexity. Furthermore, we
follow the split based on molecule size where almost all training set contains molecules with
9 or 10 heavy atoms while the validation and test set contain molecules with 11 or 12 heavy
atoms. As quantum-mechanical properties depend on the molecule size, this split tests how
well the model can generalize to heavier molecules. The regression targets are the same as
in QM9 dataset.

Architecture and training details We run our message passing scheme on features
initialized on MPNN network with the standard implementation provided by Pytorch-
geometric (Fey and Lenssen, 2019). The MPNN implementation has Edge-conv (Gilmer
et al., 2017) as message function, GRU (Chung et al., 2014) as update function followed by
a Set2set (Vinyals et al., 2015) function as readout for the whole graph. Readout function
is required as the task is a prediction on graphs and the readout function takes in node
features and outputs a vector which is used for final regression. In our implementation, we
run 3 iterations of MPNN message passing scheme on input graph followed by 3 iterations
of higher-order FGNN message passing described in Algorithm 1. Learning node marginals
is likely to be helpful in this case as we want good node representations to be combined in
the readout function. We use max function as the aggregator in VF module and summation
as aggregator in FV module. We select this combination as we found it useful while being
numerically stable. We then combine the MPNN output from the third iteration and the

27



Zhang, Dupty, Wu, Shi and Lee

Table 5: Graph Regression results on QM9 dataset. The error rates of MPNN, 123-GNN,
PPGNN and NestedGNN are reported in different units in the respective papers. We
have converted the reported numbers to units below according to multiples mentioned in
Pytorch-Geometric (Fey and Lenssen, 2019). MPNN is a general GNN model and all the
other baselines are learnable GNN models designed to be more expressive than MPNN. The
backbone neural model of FGNN is MPNN.

Joint training of targets Separate training of targets

Target Units MPNN 123-GNN PPGNN FGNN Gain(%) 123-GNN NestedGNN PPGNN FGNN Gain(%)

µ D 0.3580 0.4070 0.2310 0.0920 60.19 0.4760 0.4330 0.0934 0.0688 26.33
α a3

0 0.8900 0.3340 0.3820 0.1830 45.20 0.2700 0.2650 0.3180 0.1403 47.05
εhomo meV 147.21 2124 75.10 54.15 27.89 100.68 75.91 47.34 45.71 2.98
εlumo meV 169.52 2310.79 78.09 55.78 28.57 95.51 75.10 57.14 43.53 22.95
∆ε meV 179.59 2976.65 110.47 75.91 31.28 130.61 106.13 78.91 65.30 15.51
〈R2〉 a2

0 28.50 22.83 16.07 2.81 82.53 22.90 20.10 3.78 1.41 62.69
ZPV E meV 58.77 307.21 17.41 4.898 71.87 5.170 4.08 10.85 2.72 33.33
U0 meV 55783 242453 6367 2468 61.25 1161 5578 598 443 25.90
U meV 54422 242453 6367 2468 61.23 3020 5442 1371 378 72.42
H meV 54967 242453 6231 2465 60.42 1140 5775 800 476 40.47
G meV 54967 242453 6476 2468 61.91 1276 6884 653 364 44.16
Cv

cal
mol K 0.42 0.1184 0.184 0.0840 29.05 0.0944 0.081 0.144 0.0552 32.09

Table 6: Graph Regression results on Alchemy dataset. The backbone neural model of
FGNN is MPNN, which is also shown for comparison with FGNN.

Target MPNN* FGNN Gain(%) FGNN Network Ablation Models

CAT BT CABT CABTA

µ 0.1026 0.1041 -1.41 0.1091 0.1041 0.1092 0.1233
α 0.0557 0.0451 19.05 0.0473 0.0451 0.0446 0.0449
εhomo 0.1151 0.1004 12.74 0.1065 0.1004 0.1001 0.1007
εlumo 0.0817 0.0664 18.74 0.0712 0.0664 0.0685 0.0696
∆ε 0.0832 0.0691 16.88 0.0739 0.0691 0.0703 0.0720
〈R2〉 0.0271 0.0099 63.47 0.0099 0.0099 0.0094 0.0120
ZPV E 0.0259 0.0115 55.42 0.0116 0.0115 0.0108 0.0140
U0 0.0131 0.0044 65.80 0.0042 0.0044 0.0046 0.0054
U 0.0131 0.0044 65.90 0.0041 0.0044 0.0046 0.0054
H 0.0130 0.0044 65.77 0.0042 0.0044 0.0046 0.0054
G 0.0130 0.0044 65.77 0.0042 0.0044 0.0046 0.0054
Cv 0.0559 0.0481 13.93 0.0472 0.0481 0.0488 0.0502

MAE 0.0499 0.0394 21.18 0.04115 0.0394 0.0400 0.0424

FGNN output with concatenation followed by the set2set readout function. For FGNN
module, we set the hidden vector dimension to 64. The projection dimension of VF module
is set to to 512. We use Adam optimizer initialized with learning rate of 1e−3. Since we
want to show improvements over MPNN, all other hyperparameters are maintained as is
provided by Pytorch-geometric implementation of MPNN for a fair comparison. All targets
are normalized and are trained with the absolute error loss for 200 epochs with batch size of
64.

Results For QM9 dataset, following (Maron et al., 2019) we report Mean Absolute
Error (MAE) in two settings, one where all targets are jointly trained and the other where
each target is separately trained. Factors are constructed as described in modeling, with factor
weights conditioned on the central atom and bond type (CABT). The baselines we compare
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with are MPNN (Gilmer et al., 2017), 123-GNN (Morris et al., 2019), PPGNN (Maron
et al., 2019) and NestedGNN (Zhang and Li, 2021). MPNN is a generalized GNN similar to
that of Battaglia et al. (2018) with good performance on QM9. 123-GNN and PPGNN are
the k-order methods which capture higher-order information. NestedGNN is another more
expressive GNN which passes messages on rooted subgraphs instead of trees and is shown
to do well on QM9 dataset. Table 5 shows that FGNN outperforms MPNN, 123-GNN,
NestedGNN and PPGNN by a significant margin in all the targets under both the settings.
Furthermore, the margin of improvement indicates that much of the higher-order information
was not sufficiently captured by the k-order GNNs.

For Alchemy dataset, following (Chen et al., 2019) we report MAE on jointly trained
normalized targets and compare with MPNN which was the best performing model in
the benchmark results (Chen et al., 2019). We use the validation set to select among the
models in Section 5.5. As FGNN is built on MPNN as the backend network, the margin
of improvement in Table 6 is mainly because of higher-order message passing module. We
also did an ablation study using the different sharing configurations. Results indicate that
conditioning of parameters on either central atom or edge type helps most. Conditioning
in these ways helps capture most of the higher-order information centered around an atom
(node). For the CABTA method, there is a slight decrease in performance which is likely
caused by the large parameter size in the model. Collectively, the ablation results suggest
that major improvements are coming from the higher-order message passing scheme itself
since conditioning on only bond types (BT) seems to be sufficient for a better performance.

Figure 11: Effect of rank of factor parameters on QM9 dataset. Mean absolute error of
the model consistently decreases with the increasing rank and saturates after rank-256. In
contrast, an exact representation of the full-rank tensor of the order-5 potential would need
at least 3125 components.

Effect of rank of factor parameters We now study the sensitivity of the model per-
formance MAE with the variation in the rank of the factor parameters on the molecular
data as well. For this, we fix all the model hyperparameters described in architecture details
and only vary the factor rank. Figure 11 shows the variation of MAE with the increasing
factor rank on the QM9 dataset. Clearly, there is improvement in model performance
with the increasing rank and saturates above 256. The rank of the higher-order factors in
this task is considerably lower compared to the rank in the character recognition ablation
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Table 7: Comparison of FGNN with position coordinate factors with recent baselines. The
backbone model of FGNN is MPNN. All the baselines compared are more powerful models
than MPNN specifically designed for exploiting 3D geometric information of molecules.

Target Units Joint training of targets Seperate training of targets

Dimenet FGNN Dimenet MGCN EGNN ALIGNN SphereNet FGNN

µ D 0.0775 0.0549 0.0286 0.056 0.029 0.0146 0.0245 0.0373
α a3

0 0.0616 0.1364 0.0469 0.030 0.071 0.0561 0.0449 0.0868
εHOMO meV 45.1 38.7 27.8 42.1 29 21.4 22.8 33.68
εLUMO meV 41.1 37.4 19.7 57.4 25 19.5 18.9 31.26
∆ε meV 59.2 53.7 34.8 64.2 48 38.1 31.1 48.7〈
R2
〉

a2
0 0.345 1.40 0.331 0.11 0.106 0.543 0.268 0.365

ZPVE meV 2.87 3.51 1.29 1.12 1.55 3.1 1.12 1.8
U0 meV 12.9 36.3 8.02 12.9 11 15.3 6.26 21.5
U meV 13.0 36.6 7.89 14.4 12 14.4 6.36 20.6
H meV 13.0 36.7 8.11 16.2 12 14.7 6.33 27.4
G meV 13.8 36.8 8.98 14.6 12 14.4 7.78 26.9
cv

cal
mol K 0.0309 0.057 0.0249 0.038 0.031 NA 0.0215 0.0249

in Figure 9. This can be explained with the different class sizes of the variables in both
the tasks. The variables in the molecular data belong to 5 atom types only, whereas the
variables in character-recognition had a class size of 26. Considering a factor of order-5 (for
Carbon atom), a full-rank tensor representation for the potential function would need at
least 55 = 3125 components for exact representation. Both of our ablation experiments on
handwriting recognition and molecular data provide consistent evidence that the higher-order
factors can be approximated with a mixture of relatively small number of rank-1 tensors.

5.5.1 QM9 with positional information

The QM9 dataset comes with additional atom coordinate features which can provide the
positional as well as directional information. These directional features have been shown to
be useful in Directional message passing network (Dimenet) (Klicpera et al., 2020), which
was further confirmed in subsequent works of ALIGNN (Choudhary and DeCost, 2021),
SphereNet (Liu et al., 2022) and GEM (Fang et al., 2022). The directional features, i.e.
positional and angular information, used in Dimenet are known to help substantially in QM9
dataset. Specifically, Dimenet extracts the features from triplets of nodes with each triplet
feature constructed from the angular information within the triplet encapsulated within a
basis function. In order to incorporate this informative directional information, we augment
our FGNN model with the additional factors along with node positional coordinates. We
conduct additional experiments with the added factors and compare with the Dimenet and
other recent baselines in performance.

Modeling and Architecture We augment the above FGNN model for molecular
graphs with edge factors with positional coordinates. The edge factor connects two adjacent
nodes in the molecular graph with elementwise multiplication as the aggregator function.

g̃ij =M(f i |ΘVFi)�M(f j |ΘVFj ) (33)

where f i is the node position coordinate feature and M() is an MLP. Note that unlike
Dimenet, our model does not include features for each triplet of nodes.
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Table 8: Long-term prediction error (the smaller the better) of joint angles (top) and 3D
joint positions (bottom) on H3.6M. Our model share the same backbone as Mao et al. (2019),
and we replace the last two layer of GNN in Mao et al. (2019) with our FGNN model.

Walk Eating Smoking Discussion Average
milliseconds 560 1000 560 1000 560 1000 560 1000 560 1000

convSeq2Seq(Li et al., 2018) N/A 0.92 N/A 1.24 N/A 1.62 N/A 1.86 N/A 1.41
GNN(Mao et al., 2019) 0.65 0.67 0.76 1.12 0.87 1.57 1.33 1.70 0.90 1.27
DMGNN (Li et al., 2020) 0.66 0.75 0.14 1.14 0.83 1.52 1.33 1.45 0.89 1.21

Ours 0.67 0.70 0.76 1.12 0.88 1.57 1.35 1.70 0.91 1.27
convSeq2Seq(Li et al., 2018) 69.2 81.5 71.8 91.4 50.3 85.2 101.0 143.0 73.1 100.3

GNN(Mao et al., 2019) 55.0 60.8 68.1 79.5 42.2 70.6 93.8 119.7 64.8 82.6
Hist-Attention (Mao et al., 2020) 47.4 58.1 50.0 75.7 47.6 69.5 86.6 119.8 57.9 80.7

Ours 44.1 53.5 59.5 73.0 33.0 61.9 86.9 113.5 55.9 75.5

Results Table 7 shows the results of the augmented FGNN model on QM9 dataset in
both the settings i.e. joint training of 12 targets and separate training of each target. Results
suggest that FGNN performs competitively in most targets and under the setting of joint
training of targets, FGNN is able to beat the Dimenet in four of the twelve targets. Note that
FGNN uses only node position features without explicit angular features encapsulated in
basis functions as in DImenet. Furthermore, for completeness, we compare with other models
including MGCN (Shui and Karypis, 2020) and more recent baselines EGNN (Satorras
et al., 2021), ALIGNN(Choudhary and DeCost, 2021), SphereNet(Liu et al., 2022) which
all use the 3D coordinate positional information. Furthermore, note that these models,
including Dimenet, are specifically designed for molecular graph structures with domain-
specific inductive biases while FGNN is a general model which can be used over any graph
structure. Hence, FGNN is not able to outperform these models, however, can perform
competitively.

5.6 Human Motion Prediction (Sequential Prediction)

The human motion prediction aims at predicting the future motion of a human given a
history motion sequence. As there are obviously higher order dependencies between joints,
the factor graph neural network may help to improve the performance of the predictor. In
this section, we consider the human motion prediction problem for the skeleton data, where
the angle and 3d position of each joint are predicted. We build a factor graph neural network
model for the skeleton data and compare the FGNN model with the state-of-the-art model
based on GNN.

Data and Modeling For human motion prediction, we are using the Human 3.6M
(H3.6M) dataset. In this experiment, we replace the last two GNN layer in (Mao et al.,
2019)’s model with FGNN layer with the same number of output channels. The H3.6M
dataset includes seven actors performing 15 varied activities such as walking, smoking etc..
The poses of the actors are represented as an exponential map of joints, and a special
pre-processing of global translation and rotation. In our experiments, as in previous work(Li
et al., 2018; Mao et al., 2019), we only predict the exponential map of joints. That is, for
each joints, we need to predict a 3-dimensional feature vector. Thus we add a factor for the
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3 variable for each joint 4. Also for two adjacent joint, a factor of 6 variables are created.
The factor node feature are created by put all its variable node feature together. For the
edge feature, we simply use one hot vector to represent different factor-to-variable edge. For
evaluation, we compared 4 commonly used action — walk, eating, smoking and discussion.
The result of GNN and convSeq2Seq are taken from (Mao et al., 2019), and our FGNN
model also strictly followed the training protocol of (Mao et al., 2019).

Architecture and training details We train our model on the Human3.6M dataset
using the standard training-val-test split as previous works (Mao et al., 2019; Li et al., 2018;
Martinez et al., 2017), and we train and evaluate our model using the same protocol as
(Mao et al., 2019) (For details, see the Appendix).

Results The results are provided in Table 8. For angle error, our FGNN model achieves
similar results compared to the previous state-of-the-art GNN-based method (Mao et al.,
2019; Li et al., 2020), while for 3D position error, our model achieves superior performance
than the state-of-the-art models (Mao et al., 2019, 2020). Furthermore, since the backbone
of our model is same as that of Mao et al. (2019), the performs improvement suggests that
the higher-order modeling with FGNN is able to capture better higher-order structural
priors compared to the pairwise GNN.

6. Conclusion

In this paper, we derive an efficient Low-rank Sum-Product Loopy Belief Propagation
procedure for inference in factor graphs. The derived update functions are simple—need
only matrix multiplication and Hadamard product operations, and efficient—the complexity
of message updates grows linearly with the number of variables in the factor. In order
to learn better node representations with end-to-end training, we neuralize the message
passing updates to give Factor Graph Neural Network (FGNN) allowing the network to
capture higher-order dependencies among the variables. We then showed FGNN can also
represent the execution of the Max-Product inference algorithm on probabilistic graphical
models, providing a graph neural network architecture that can represent both the Sum and
Max-Product belief propagation inference algorithms.

Furthermore, we showed multiple ways of modeling higher-order factors with graph
structured input data. This gives us a fairly simple, flexible, powerful, and efficient message
passing scheme for representation learning of graph data where higher-order information
is present. We evaluated the proposed model with extensive experiments on various tasks
and domains including inference in PGMs, molecular and vision datasets where it either
outperforms other state-of-the-art models substantially or is at least competitive enough.
The FGNN provides a convenient method of capturing arbitrary dependencies in graphs and
hypergraphs, including those with typed or conditioned nodes and edges, opening up new
opportunities for adding higher-order inductive biases into learning and inference problems.
More importantly, it provides a deeper theoretical understanding of the relationship between
graph neural networks and inference algorithms on graphical models.

4. In practice, those angles with very small variance are ignored, and these variables are not added to the
factor graph

32



Factor Graph Neural Networks

Acknowledgments

This work was supported by the National Research Foundation Singapore under its AI
Singapore Program (Award Number: AISGRP- 2018-006). Any opinions, findings and
conclusions or recommendations expressed in this material are those of the author(s) and do
not reflect the views of National Research Foundation, Singapore. Zhen Zhang’s participation
was partially supported by the Australian Research Council Grant DP160100703. Zhen
Zhang and Javen Shi’s participation were partially supported by Centre for Augmented
Reasoning at the Australian Institute for Machine Learning.

33



Zhang, Dupty, Wu, Shi and Lee

Appendix A. Proof of propositions

A.1 Propositions for decomposing higher-order potentials

First we provide Lemma 8, which will be used in the proof of Proposition 2 and 4.

Lemma 8. Given l non-negative feature vectors f i = [fi0, fi1, . . . , fik], where i = 1, . . . , l,
there exists l matrices Qi with shape lk × k and l vector f̂ i = Qi fTi , s.t.

, [f1, f2, . . . , f l] = [max
i
f̂i0,max

i
f̂i1, . . . ,max

i
f̂i,kl].

Proof Let

Qi =

0k×k, . . . ,0k×k︸ ︷︷ ︸
i−1 matrices

, I,0k×k, . . . ,0k×k︸ ︷︷ ︸
n−i matrices


>

, (34)

then we have that

f̂ i = Qi fTi =

 0, . . . , 0︸ ︷︷ ︸
(i−1)k zeros

, fi0, fi1, . . . , fik, 0, . . . , 0︸ ︷︷ ︸
(n−i)k zeros


>

.

By the fact that all feature vectors are non-negative, obviously we have that [f1, f2, . . . , f l] =
[maxi f̂i0,maxi f̂i1, . . . ,maxi f̂i,kl].

Lemma (8) suggests that for a group of feature vectors, we can use the Q operator to produce
several Q matrices to map different vector to different sub-spaces of a high-dimensional
spaces, and then our maximization aggregation can sufficiently gather information from the
feature groups.

Proposition 2. A factor graph G = (V, C, E) with variable log potentials θi(xi) and factor
log potentials ϕc(xc) can be converted to a factor graph G′ with the same variable potentials
and the decomposed log-potentials ϕic(xi, zc) using a one-layer FGNN.

Proof Without loss of generality, we assume that log φc(xc) > 1. Then let

θic(xi, zc) =
{ 1
|s(c)| log φc(xzcc ), if x̂i = xzci ,

−cxi,zc , otherwise,
(35)

where cxi,zc can be arbitrary real number which is larger than maxxc θc(xc). Obviously we
will have

log φc(xc) = max
zc

∑
i∈s(c)

θic(xi, zc) (36)

Assume that we have a factor c = 1, 2, . . . n, and each nodes can take |X| states. Then xc
can be sorted as

[ x0
c = [x1 = 0, x2 = 0, . . . , xn = 0],

x1
c = [x1 = 1, x2 = 0, . . . , xn = 0],
. . . ,

x|X|n−1
c = [x1 = |X|, x2 = |X|, . . . , xn = |X|]],
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and higher-order potential can be organized as vector gc = [log φc(x0
c), log φc(x1

c), . . . , log φc(x|X|
n−1

c )].
Then for each i the item θic(xi, zc) in (35) have |X|n+1 entries, and each entry is either a
scaled entry of the vector gc or arbitrary negative number less than maxxc θc(xc).

Thus if we organize θic(xi, zc) as a length-|X|n+1 vector f ic, then we define a |X|n+1×|X|n
matrix Qci, where if and only if the lth entry of f ic is set to the mth entry of gc multiplied by
1/|s(c)|, the entry of Qci in lth row, mth column will be set to 1/|s(c)|; all the other entries
of Qci is set to some negative number smaller than −maxxc θc(xc). Due to the assumption
that log φc(xc) > 1, the matrix multiplication Qci gc must produce a legal θic(xi, zc).

If we directly define a Q-network which produces the above matrices Qci, then in the
aggregating part of our network there might be information loss. However, by Lemma
8 there must exists a group of Q̃ci such that the maximization aggregation over features
Q̃ci Qci gc will produce exactly a vector representation of θic(xi, zc), i ∈ s(c). Thus if every
tci is a different one-hot vector, we can easily using one single linear layer Q-network to
produce all Q̃ci Qci, and with aM-network which always output factor feature, we are able
to output a vector representation of θic(xi, zc), i ∈ s(c) at each factor node c.

A.2 Derivation of decomposed max-product belief propagation

In this section, we reformulate the (26) using the decomposed higher-order-log potentials.
We use mc→i(xi) and bi(xi) for the previous messages and beliefs, and use m′c→i(xi) and
b′i(xi) for the updated messages and beliefs. Then message updating step in the max product
belief propagation (26) can be reformulated as

ni→c(xi) =θi(xi) +
∑

d:d6=c,i∈s(d)
md→i(xi),

=θi(xi) +
∑

d:i∈s(d)
md→i(xi)−mc→i(xi)

=bi(xi)−mc→i(xi) (37a)

m′c→i(xi) = max
xc \xi

θc(xc) +
∑

j∈s(c),j 6=i
nj→c(xj)


= max

xc \xi

max
zc

 ∑
j∈s(c),j 6=i

ϕjc(xj , zc) + ϕic(xi, zc)

+
∑

j∈s(c),j 6=i
nj→c(xj)


= max

xc \xi

max
zc

 ∑
j∈s(c),j 6=i

ϕjc(xj , zc) + ϕic(xi, zc)

+
∑

j∈s(c,j 6=i)
[bj(xj)−mc→j(xj)]


= max

zc
max
xc \xi


 ∑
j∈s(c),j 6=i

ϕjc(xj , zc) + ϕic(xi, zc)

+
∑

j∈s(c,j 6=i)
[bj(xj)−mc→j(xj)]


= max

zc

 ∑
j∈s(c),j 6=i

max
xj

[ϕjc(xj)−mc→j(xj) + bj(xj)] + ϕic(xi, zc)

 (37b)
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Here for simplying the notation we define

bc→i(zc) =
∑

j∈s(c),j 6=i
max
xj

[ϕjc(xj , zc)−mc→j(xj) + bj(xj)] ,∀c, i ∈ s(c)

and then the updating rule for beliefs can be reformulated as

b′i(xi) = θi(xi) +
∑

c:i∈s(c)
m′c→i(xi)

= θi(xi) +
∑

c:i∈s(c)
max
zc

[bc→i(zc) + ϕic(xi, zc)] .

Thus finally the max-product updating rules are

bc→i(zc)←
∑

j∈s(c),j 6=i
max
xj

[ϕjc(xj , zc)−mc→j(xj) + bj(xj)] ,

mc→i(xi)←max
zc

[bc→i(zc) + ϕic(xi, zc)] ,

bi(xi)←θi(xi) +
∑

c:i∈s(c)
mc→i(xi)

A.3 Recovering decomposed max-product belief propagation using FGNN

Given the log potentials represented as a set of rank-1 tensors at each factor node, we need
to show that each iteration of the Max Product message passing update can be represented
by a Variable-to-Factor layer followed by a Factor-to-Variable layer (forming a FGNN layer).
We reproduce the update equations here.

bc→i(zc)←
∑

j∈s(c),j 6=i
max
xj

[ϕjc(xj , zc)−mc→j(xj) + bj(xj)] , (38a)

mc→j(xi) ←max
zc

[bc→i(zc) + ϕic(xi, zc)] , bi(xi)← θi(xi) +
∑

c:i∈s(c)
mc→j(xi) (38b)

In the Max-Product updating procedure, we should keep all the decomposed ϕjc(xj , zc) =
log φjc(xj , zc) and all the unary potential θi(xi) for use at the next layer. That requires the
FGNN to have the ability to fit the identity mapping. Consider letting the Q network to
always output identity matrix,M([gc, fi]|ΘVF) to always output gc, andM([gc, fi]|ΘFV)
to always output fi. Then the FGNN will be an identity mapping. As Q always output a
matrix andM output a vector, we can use part of their blocks as the identity mapping to
keep log φjc(xj , zc) and θi(xi). The other blocks are used to updating bc→i(zc), messages
mc→j(xj), and bi(xi).

First we show thatM operators in the Variable-to-Factor layer can be used to construct
the computational graph for the max-marginal operations.

Proposition 3. For arbitrary real valued feature matrix X ∈ Rk×l with xij as its entry in
the ith row and jth column, the feature mapping operation x̂ = [maxj xij ]ki=1 can be exactly
parameterized with a 2log2 l-layer neural network with RELU as activation function and at
most 2n hidden units.
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Proof Without loss of generality we assume that k = 1, and then we use xi to denote x1i.
When l = 2, it is obvious that

max(x1, x2) = Relu(x1 − x2) + x2 = Relu(x1 − x2) + Relu(x2)−Relu(−x2)

and the maximization can be parameterized by a two layer neural network with 3 hidden
units, which satisfied the proposition.

Assume that when l = 2al for some integer a >= 1, the proposition is satisfied 5. Then for
l = 2a+1, we can find max(x1, . . . , x2a) and max(x2a+1, . . . , x2a+1) using two network with
2a layers and at most 2a+1 hidden units. Stacking the two neural network together would
results in a network with 2i layers and at most 2i+2 parameters. Then we can add another
2 layer network with 3 hidden units to find max(max(x1, . . . , x2a),max(x2a+1, . . . , x2a+1)).
Thus by mathematical induction the proposition is proved.

The update equations contain summations of columns of a matrix after the max-marginal
operations. However, the VF and FV layers use max operators to aggregate features produced
byM and Q operator. Assume that theM operator has produced the max-marginals, then
we use the Q to produce several weight matrix. The max-marginals are multiplied by the
weight matrices to produce new feature vectors, and the maximization aggregating function
are used to aggregating information from the new feature vectors. We use the following
propagation to show that the summations of max-marginals can be implemented by one
MPNN layer plus one linear layer. Thus we can use the VF layer plus a linear layer to
produce bc→i(zc) and use the FV layer plus another linear layer to produce bi(xi). Hence to
do k iterations of Max Product, we need k FGNN layers followed by a linear layer.

Proposition 4. For arbitrary non-negative valued feature matrix X ∈ Rk×l>0 with xij as its
entry in the ith row and jth column, there exists a constant tensor W ∈ Rk×l×kl that can be
used to transform X into an intermediate representation yir =

∑
ij xijwijr, such that after

maximization operations are done to obtain ŷr = maxi yir, we can use another constant
matrix Q ∈ Rl×kl to obtain

[
∑
i

xij ]lj=1 = Q[ŷr]klr=1. (39)

Proof The proposition is a simple corollary of Lemma 8. The tensor W serves as the same
role as the matrices Qi in Lemma 8, which can convert the feature matrix X as a vector,
then a simple linear operator can be used to produce the sum of rows of X, which completes
the proof.

In Lemma 8 and Proposition 4, only non-negative features are considered, while in
log-potentials, there can be negative entries. However, for the MAP inference problem
in (25), the transformation as follows would make the log-potentials non-negative without
changing the final MAP assignment,

θ̃i(xi) = θi(xi)−min
xi

θi(xi), θ̃c(xc) = θc(xc)−min
xc

θc(xc). (40)

5. For any l we can always padding the vector to get an l′ = 2a for some interger a
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As a result, for arbitary PGM we can first apply the above transformation to make the log-
potentials non-negative, and then our FGNN can exactly do Max-Product Belief Propagation
on the transformed non-negative log-potentials.

A.4 A Factor Graph Neural Network Module Recovering the Belief
Propagation

In this section, we give the proofs of Proposition 5 and 6 by constructing two FGNN layers
which exactly recover the belief propagation operation. As lower order factors can always
shrank by higher-order factors, we will construct the FGNN layers on an factor graph
H = (V,F , Ê), which satisfies the following condition

1. ∀i ∈ V, the associated θi(xi) satisfies that θi(xi) > 0∀xi ∈ X;

2. ∀f1, f2 ∈ F , |f1| = |f2|;

3. ∀f ∈ F , the corresponding ϕf (xf ) can be decomposed as

ϕf (xf ) = max
zf∈Z

∑
i∈f

ϕfi(xi, zf ), (41)

and ∀i ∈ f, ϕfi(xi, zf ) satisfies that ϕfi(xi, zf ) > 0.

On factor graph H, we construct a FGNN layer on the directed bipartite graph in Figure 12.

Variable-to-Factor Factor-to-Variable

Figure 12: Directed bipartite graph for constructing FGNN layers. In the Variable-to-Factor
sub-graph, each factor receives the messages from the same number of nodes. On the other hand,
for each Factor-to-Variable sub-graph, each nodes may receives messages from different number of
factors.

FGNN Layer to recover (28a) Here we construct an FGNN layer to produce all bf→i(zf ).
First we reformulate (28a) as

bf→i(zf )← ϕ̃f (zf )−max
xi

[ϕif (xi, zf )−mf→i(xi) + bi(xi)],

ϕ̃f (zf )←
∑
i∈f

max
xi

[ϕif (xi, zf )−mf→i(xi) + bi(xi)].
(42)

Here we use the Variable-to-Factor sub-graph to implement (42). For each variable node i,
we associated it with an length-|X| vector [bi(xi)]x∈X (Initially bi(xi) = θi(xi)). For each
edge in the sub-graph, assume that f = [i1, i2, . . . , i|f |], then for some ij ∈ f , the associated
feature vector is as length-|f | one-hot vector as follows

[0, 0, . . . , 1︸︷︷︸
The jth entry.

, . . . , 0].
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For each factor node f = [i1, i2, . . . , i|f |] in the sub-graph, it is associated with an |f |×|X||Z|
feature matrix as follows

[ϕfi(xi1 , zf )−mf→i(xi)]
xi1=|X|,zf=|Z|
xi1=1,zf=1

[ϕfi(xi2 , zf )−mf→i(xi)]
xi2=|X|,zf=|Z|
xi2=1,zf=1

. . .

[ϕfi(xi|f | , zf )−mf→i(xi)]
xi|f |=|X|,zf=|Z|
xi|f |=1,zf=1

 .

Then we construct an MPNN

f̃ i = max
i∈f
Q(ef→i)M(f i, f f ), (43)

as follows. The Q(ef→i) is an identity mapping. The M(f i, f f ) consists of |f | addition
networks, where the ithj networks will have an |f | × |X||Z| parameter

−∞
−∞
. . .

[ϕfi(xij , zf )−mf→i(xi)]
xij=|X|,zf=|Z|
xij=1,zf=1

. . .
−∞


.

In theM-network, the |f | × |X||Z| parameter will be added to the |f | × |X||Z| and then
the result will be reshaped to an |f | × |X| × |Z| tensor. After that the tensor will be added
to the length-|X| feature vector of each nodes (reshaped to 1× 1× |X| × 1 tensor). In that
case, for each ij ∈ f , the ithk will produce

−∞
−∞
. . .

[ϕfi(xik , zf )−mf→i(xi) + bij (xij )]
xik=xij=|X|,zf=|Z|
xik=xij=1,zf=1

. . .
−∞


.

The |f | |f | × |X| × |Z| tensors will be stacked into an |f | × |f | × |X| × |Z| tensor, and it
will be multiplied by the length-|f | one-hot edge feature vector. That will produce

−∞
−∞
. . .

[ϕfi(xij , zf )−mf→ij (xij ) + bij (xij )]
xij=|X|,zf=|Z|
xij=1,zf=1

. . .
−∞


.
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Then the max operation over all i ∈ f will produce edge feature matrix
[ϕfi1(xi1 , zf )−mf→i1(xi1) + bi1(xi1)]xi1=|X|,zf=|Z|

xi1=1,zf=1

[ϕfi2(xi2 , zf )−mf→i2(xi2) + bi2(xi2)]xi2=|X|,zf=|Z|
xi2=1,zf=1

. . .

[ϕfi|f |(xi2 , zf )−mf→in(xin) + bi|f |(xi|f |)]
xi|f |=|X|,zf=|Z|
xi|f |=1,zf=1

 .

Then by Proposition 3, we can recover the maximization operation in (42) using an
O(log2 |X|)-layer neural network with at most O(|X|2 log2 |X|) hidden units. After that,
all the other operations are simple linear operations, and they can be easily encoded in
a neural-network without adding any parameter. Thus we can construct an FGNN layer,
which produces factor features for each factor f as follows

[bf→i1(zf )]zf=|Z|
zf=1

[bf→i2(zf )]zf=|Z|
zf=1

. . .

[bf→i|f |(zf )]zf=|Z|
zf=1

 .

Finally we constructed an FGNN to parameterize the operation in (28a), and this
construction also proves Proposition 5 as follows.

Proposition 5. The operation in (28a) can be parameterized by one MPNN layer with
O(|X|maxc∈C | Zc | hidden units followed by a O(log2 |X|)-layer neural network with at most
O(|X|2 log2 |X|) hidden units.

FGNN Layer to recover (28c) Here we construct an FGNN layer to parameterize (28b)
and (28c) in order to prove Proposition 6. Using the notation in this section the operation
in (28c) can be reformulated as

mf→i(xi)← max
z

[ϕif (xi, zf ) + bc→i(zf )]

bi(xi)← θi(xi) +
∑
f :i∈f

max
z

[ϕif (xi, zf ) + bf→i(zf )].

In previous paragraph, the new factor feature
[bf→i1(zf )]zf=|Z|

zf=1

[bf→i2(zf )]zf=|Z|
zf=1

. . .

[bf→i|f |(zf )]zf=|Z|
zf=1

 .

Considering the old factor feature
[ϕfi(xi1 , zf )]xi1=|X|,zf=|Z|

xi1=1,zf=1

[ϕfi(xi2 , zf )]xi2=|X|,zf=|Z|
xi2=1,zf=1
. . .

[ϕfi(xi|f | , zf )]
xi|f |=|X|,zf=|Z|
xi|f |=1,zf=1

 ,
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we can use broadcasted addition between these two features to get
[bf→i1(zf ) + ϕfi(xi1 , zf )]xi1=|X|,zf=|Z|

xi1=1,zf=1

[bf→i2(zf ) + ϕfi(xi2 , zf )]xi2=|X|,zf=|Z|
xi2=1,zf=1

. . .

[bf→i|f |(zf ) + ϕfi(xi|f | , zf )]
xi|f |=|X|,zf=|Z|
xi|f |=1,zf=1

 .

After that we have an |f | × |X| × |Z| feature tensor for each factor f ∈ F . By 3, a
O(log2 | Z |)-layer neural network with at most O(| Z |2 log2 | Z |) parameters can be used to
convert the above feature to

[mf→i1(xi1)]xi1=|X|
xi1=1

[mf→i2(xi2)]xi2=|X|
xi2=1

· · ·

[mf→i|f |(xi|f |)]
xi|f |=|X|
xi|f |=1

←


[maxzf [bf→i1(zf ) + ϕfi(xi1 , zf )]]xi1=|X|
xi1=1

[maxzf [bf→i2(zf ) + ϕfi(xi2 , zf )]]xi2=|X|
xi2=1

. . .

[maxzf [bf→i|f |(zf ) + ϕfi(xi|f | , zf )]]
xi|f |=|X|
xi|f |=1

 .

We will use this as the first part of our M network. For the second part, as we need to
parameterize the

∑
f :i∈f maxz[ϕif (xi, zf )+bc→i(zf )] from feature maxz[ϕif (xi, zf )+bc→i(zf ),

by Proposition 4, it will require another linear layer with O(maxi∈V deg(i)2|X|2), where
deg(i) = |{f |f ∈ F , i ∈ f}|. After that, the Q network can be a simple identity mapping,
and the FGNN would produce updated messages mf→i(xi) = maxz[ϕif (xi, zf ) + bc→i(zf )]
for each node. Adding these feature with the initial node feature would results new node
feature bi(xi). Thus by constructing a FGNN layer to parameterize (28b) and (28c) we
complete the proof of Proposition 6.

A.5 Example of Recovering Max Product Belief Propagation

We provide a simple example that uses the proposed FGNN to recover Max Product Belief
Propagation. Since the Max Product Belief Propagation can be viewed as a continuous
mapping between the input log-potentials and the output “beliefs”, and our FGNN is acutally
a universal approximator for such mapping. In this part, we provide one parametrization of
FGNN that can exactly recover Max Product Belief Propagation, but it may not be the
only one or the optimal one. Our goal is to design a network that is capabale of recovering
traditional inference procedures such as belief propagation, but by learning from data our
approach may learn a better inference approach.

Let’s consider a simple MAP inference problem over a simple graphical model as follows,

max
x

[θ1,2(x1, x2) + θ2,3(x2, x3)] , (44)

where each variable xi ∈ {0, 1, . . . N − 1}, and the log-potentials are all real-valued functions.
Then we show the most complicated procedure of (28), that is (28a), can be recovered by a
Variable-to-Factor module. In such a Variable-to-Factor (shown in Figure 13) module, in the
first layer ofM(·|ΘFV ), the edge potentials are mapped into the decomposed log-potentials
defined in Lemma 1. This operation only requires a linear transformation. Then the
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First Layer of

Second Layer of

Factor
Features

Variable Features  1 Variable Features  2

Aggregation

Figure 13: Example of Variable-to-Factor module that recovers the operations in (28a).

decomposed log-potentials will be concatenated as the input of the second layer ofM(·|ΘFV )
(recall that the Variable-to-Factor requires both factor and variable feature as input), then
by another linear transformation we can get the term inside the max-operation in (28a),
plus a redundant term with the same shape. Then the Q network, works as a selector, will
set the redundant term to −∞, then by the aggregation part, the redundant term will be
filtered. Finally, by applying MLP to max over x and do the summation, the factor {1, 2}
can have a feature vector that consists of b1,2→1(zc) and b1,2→2(zc).

Appendix B. Experiments

B.1 Additional Information on MAP Inference over PGM

Data We construct four datasets. All variables are binary. The instances start with a chain
structure with unary potential on every node and pairwise potentials between consecutive
nodes. A higher-order potential is then imposed to every node for the first three datasets.

The node potentials are all randomly generated from the uniform distribution over [0, 1].
We use two kinds of pairwise potentials, one randomly generated (as in Table 10), the
other encouraging two adjacent nodes to both take state 1 (as in Table 9 and Table 11),
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i.e. the potential function gives high value to configuration (1, 1) and low value to all other
configurations. For example, in Dataset1, the potential value for x1 to take the state 0 and
x2 to take the state 1 is 0.2; in Dataset3, the potential value for x1 and x2 to take the state
1 at the same time is sampled from a uniform distribution over [0, 2].

pairwise
potential x2 = 0 x2 = 1

x1 = 0 0 0.1

x1 = 1 0.2 1

Table 9: Pairwise Potential for
Dataset1

pairwise
potential x2 = 0 x2 = 1

x1 = 0 U[0,1] U[0,1]

x1 = 1 U[0,1] U[0,1]

Table 10: Pairwise Potential for
Dataset2,4

pairwise
potential x2 = 0 x2 = 1

x1 = 0 0 0

x1 = 1 0 U[0,2]

Table 11: Pairwise Potential for
Dataset3

For Dataset1,2,3, we additionally add the budget higher-order potential (Martins et al.,
2015) at every node; these potentials allow at most k of the 8 variables that are within
their scope to take the state 1. For the first two datasets, the value k is set to 5; for the
third dataset, it is set to a random integer in {1,2,3,4,5,6,7,8}. For Dataset4, there is no
higher-order potential.

As a result of the constructions, different datasets have different inputs for the FGNN;
for each dataset, the inputs for each instance are the parameters of the PGM that are not
fixed. For Dataset1, only the node potentials are not fixed, hence each input instance is a
factor graph with the randomly generated node potential added as the input node feature
for each variable node. Dataset2 and Dataset4 are similar in terms of the input format,
both including randomly generate node potentials as variable node features and randomly
generated pairwise potential parameters as the corresponding pairwise factor node features.
Finally, for Dataset3, the variable nodes, the pairwise factor nodes and the high order factor
nodes all have corresponding input features.

Architecture We use a multi-layer factor graph neural network with architecture FGNN(64)
- Res[FC(64) - FGNN(64) - FC(64)] - MLP(128) - Res[FC(64) - FGNN(64) -
FC(128)] - FC(256) - Res[FC(256) - FGNN(64) - FC(256)] - FC(128) - Res[FC(128)
- FGNN(64) - FC(128)] - FC(64) - Res[FC(64) - FGNN(64) - FC(64)] - FGNN(2).
Here one FGNN(Cout) is a FGNN layer with Cout as output feature dimension with ReLU
(Nair and Hinton, 2010) as activation. One FC(Cout) is a fully connected layer with Cout as
output feature dimension and ReLU as activation. Res[·] is a neural network with residual
link from its input to output; these additional architecture components can assist learning.

Running Time We report the inference time of one instance and the training time of one
epoch for the synthetic datasets in Table 12. The results show that our method runs in a
reasonable amount of time.

(µs) PointNet DGCNN AD3 (exact/approx) Max-Product MPLP MPNN Ours

D1 45 (43) 285 (107) 5 / 5 6 57 131 (72) 144 (75)
D2 – – 532 / 325 1228 55 131 (72) 341 (162)
D3 – – 91092 / 1059 4041 55 121 (74) 382 (170)

Table 12: Inference time in microseconds of one instance on synthetic datasets and GPU training
time of one epoch in milliseconds (in bracket) for applicable methods.
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B.2 Implementation details on MAP Solvers

In the experiment, the AD3 code is from the official code repo 6, which comes with a python
interface. For Max-Product algorithm, we use the implementation from libdai and convert
the budget higher potential as a table function. For the MPLP algorithm, we implemented it
in C++ to directly support the budget higher-order potential. The re-implemented version
is compared with the original version 7, and its performance is better than the original one
in our experiment. So we provide the result of the re-implemented version.

B.3 Dataset Generation and Training Details of LDPC decoding

Data Each instance of training/evaluation data is generated as follows:

Algorithm 2 Data Generation for LDPC decoding
Output: y: a 96-bit noisy signal; SNRdB: signal-to-noise ratio, a scalar

Uniformly sample a 48-bit binary signal x, where for each 0 < i 6 48, P (xi = 1) = P (xi =
0) = 0.5
Encode x using the “96.3.963” scheme (MacKay, 2009) to get a 96-bit signal y
sample SNRdB ∈ {0, 1, , 2, 3, 4} and σb ∈ {0, 1, , 23, 4, 5} uniformly
For each 0 < i 6 96,uniformly, sample

• ηi ∈ U(0, 1),

• ni ∈ N (0, σ2) s.t. SNRdB = 20 log10 1/σ

• zi ∈ N (0, σ2
b )

Set noisy signal ỹ to

• ỹi = yi + ni + I(ηi 6 0.05)zi

During the training of FGNN, the node feature include the noisy signal ỹ and the
signal-to-noise ratio SNRdB. For FGNN, for each factor f , the vector [ỹi]i∈f is provided as
feature vector. Meanwhile, for each edge from factor node f to one of its variable node i,
the factor feature and the variable node feature are put together to get the edge feature.

Architecture In our FGNN, every layer share the same Q network, which is 2-layer
network as follows MLP(64)-MLP(4). Here the first layer comes with a ReLU activation
function and the second layer is with no activation function.

The overall structure of our FGNN is as follows Input - Res[FC(64) - FGNN(64)
- FC(64)] - Res[FC(64) - FGNN(64) - FC(64)] - FC(64) - FGNN(64) - FC(128) -
FC(256) - FGNN(128) - FC(256) - - Res[FC(256) - FGNN(128) - FC(256)] - FC(128)
- FGNN(128) - FC(128) - FC(64) - FGNN(64) - FC(64) - Res[FC(64) - FGNN(64) -
FC(64)] - FC(128) - FC(128) - FC(1). In the network, a batch-normalization layer and

6. https://github.com/andre-martins/AD3
7. https://people.csail.mit.edu/dsontag/code/mplp_ver2.tgz
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a ReLU activation function is after each FC layer and FGNN layer except for the last FC
layer.

B.4 Additional experiments on Molecular data

B.4.1 Improvement over MPNN when distance information is excluded

In the main paper, we reported the improved performance of FGNN over MPNN on Alchemy
dataset. The FGNN is built on MPNN as backend feature extractor. Therefore, its improved
performance is the result of capturing dependencies not modeled by MPNN. This begs the
question: can higher-order message passing capture more information when the backend
MPNN module is further constrained. For this, we limit the input to MPNN module and
see if FGNN can further improve its gain with respect to MPNN.

One of the main reasons for the superior performance of MPNN on molecular datasets is
that it can capture the 3D geometric structure of the molecule (Chen et al., 2019; Gilmer
et al., 2017). MPNN is provided with edge features which include bond type and spatial
distance between the pair of atoms. Further, it operates on a complete graph where extra
virtual edges are added between every pair of atoms with no bond. The edge feature for
such virtual edges contains the spatial distance between the pair of atoms. Consequently,
MPNN can capture 3D geometric structure of the molecule with such a complete graph.

In the following experiments, we evaluate whether higher-order message passing can
help capture structure of the molecule in the absence of pairwise distance edge features. We
do include 3D atom positions in the node features and hence the information about the
geometric structure of the molecule is indirectly provided. Based on the pairwise distance
feature, we divide the experimental setup in three categories .

• Sparse graph without distance: Input graph is a sparse graph i.e., edge exists only
if bond exists between atoms, with edge features containing the bond type without the
distance between the pair of atoms.

• Sparse graph with distance: Input graph is a sparse graph with edge features contain-
ing bond type and distance between the pair of atoms.

• Complete graph with distance: Input graph is a complete graph with extra virtual
edges containing distance information between pair of atoms in the edge. This setup is
the standard MPNN model.

In all three cases, regardless of input to the MPNN module, the higher-order message passing
works only on the sparse graph.

Results in Table 13 shows that the margin of improvement of FGNN over MPNN is
significantly higher when pairwise distance feature is not included in the graph. This suggests
MPNN is not able to sufficiently capture the 3D molecular shape in both the cases where
sparse graph is used, In such scenarios, capturing higher-order structures with FGNN is
more helpful in reducing the MAE. Furthermore, results of both the cases are similar when
sparse graph is used and inclusion of pairwise distance in the edge feature does not lead
to significant performance gains. Following this, it can be inferred that bond types are
indicative of distance between the atoms as well.
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Table 13: Comparison of FGNN with MPNN on Alchemy dataset with/without distance
information

Target Sparse graph without distance Sparse graph with distance Complete graph with distance

MPNN FGNN Gain(%) MPNN FGNN Gain(%) MPNN FGNN Gain(%)
µ 0.3546 0.3071 13.39 0.3655 0.3012 17.60 0.1026 0.1041 -1.41
α 0.1971 0.0873 55.68 0.1639 0.0888 45.80 0.0558 0.0451 19.06
εhomo 0.1723 0.1281 25.66 0.1539 0.1220 20.73 0.1151 0.1005 12.75
εlumo 0.1280 0.0905 29.31 0.1120 0.0847 24.37 0.0817 0.0664 18.74
∆ε 0.1266 0.0902 28.75 0.1084 0.0854 21.18 0.0832 0.0692 16.88
〈R2〉 0.1439 0.0629 56.31 0.2926 0.0629 78.50 0.0271 0.0099 63.47
ZPV E 0.1388 0.0412 70.28 0.1020 0.0399 60.80 0.0259 0.0115 55.42
U0 0.0806 0.0206 74.39 0.0606 0.0236 61.05 0.0131 0.0045 65.80
U 0.0806 0.0206 74.37 0.0606 0.0236 61.05 0.0131 0.0045 65.90
H 0.0806 0.0209 74.07 0.0606 0.0236 60.98 0.0131 0.0045 65.77
G 0.0806 0.0208 74.13 0.0606 0.0236 61.02 0.0131 0.0045 65.77
Cv 0.2177 0.0913 58.04 0.1729 0.0931 46.13 0.0559 0.0481 13.93
MAE 0.1501 0.0818 45.50 0.1428 0.0810 43.24 0.0499 0.0394 21.18

B.4.2 Results of ablation models on QM9 dataset:

In the main paper, we considered ablation models of FGNN based on conditioning of factor
parameters. These models are CAT (central atom type), BT (bond type), CABT (central
atom and bond type) and CABTA (central atom, bond type and neighbouring atom type).
We reported results on Alchemy dataset where we found that conditioning on bond type
was sufficient for good performance. To further verify the results, we evaluate the ablation
models on QM9 dataset.

Results in Table 14 show that unlike Alchemy dataset, CABT model performs better
in almost all the targets on QM9 dataset. This perhaps suggests that in QM9 dataset,
higher-order constraints are more centered around the atom and are better captured by
having separate parameters for different central atom types. Collectively, the ablation study
on QM9 and Alchemy datasets suggests that conditioning the parameters on neighbouring
atom type (CABTA) is not helpful and only increases the paramter size. It is sufficient if
edge type and central atom type information is directly captured in the model.
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