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Abstract
In this paper, we consider the estimation of a low Tucker rank tensor from a number of
noisy linear measurements. The general problem covers many specific examples arising
from applications, including tensor regression, tensor completion, and tensor PCA/SVD.
We consider an efficient Riemannian Gauss-Newton (RGN) method for low Tucker rank
tensor estimation. Different from the generic (super)linear convergence guarantee of RGN
in the literature, we prove the first local quadratic convergence guarantee of RGN for low-
rank tensor estimation in the noisy setting under some regularity conditions and provide
the corresponding estimation error upper bounds. A deterministic estimation error lower
bound, which matches the upper bound, is provided that demonstrates the statistical opti-
mality of RGN. The merit of RGN is illustrated through two machine learning applications:
tensor regression and tensor SVD. Finally, we provide the simulation results to corroborate
our theoretical findings.

Keywords: Low-rank tensor estimation, quadratic convergence, Riemannian optimiza-
tion, statistical optimality.

1 Introduction

The past decades have seen a large body of work on tensors or multiway arrays in applied
mathematics, signal processing, machine learning, statistics, among many other fields. Ten-
sors arise in numerous applications involving multiway data, such as brain imaging (Zhou
et al., 2013; Zhang et al., 2019), electron microscopy imaging (Han et al., 2022b; Zhang et al.,
2020b), recommender system design (Bi et al., 2018). In addition, tensor methods have been
applied to many problems in statistics and machine learning where the observations are not
necessarily tensors, such as topic and latent variable models (Anandkumar et al., 2014a),
additive index models (Balasubramanian et al., 2018), high-order interaction pursuit (Hao
et al., 2020). In this paper, we focus on a prototypical model for tensor estimation:

y “ A pX ˚q ` ε. (1)
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Here, y, ε P Rn are the observations and unknown noise and X ˚ P Rp1ˆ¨¨¨ˆpd is an order-d
parameter tensor of interest. A : Rp1ˆ¨¨¨ˆpd Ñ Rn is a known linear map, which can be
explicitly expressed as

A pX ˚q “ rxA1,X ˚y, . . . , xAn,X ˚ys
J , xAi,X ˚y “

ÿ

1ďikďpk,1ďkďd

pAiqri1,...,idsX
˚
ri1,...,ids

(2)

with the given measurement tensors tAiu
n
i“1 Ď Rp1ˆ¨¨¨ˆpd . Our goal is to estimate X ˚ based

on py,A q. When ε “ 0, (1) becomes the low-rank tensor recovery problem (Rauhut et al.,
2017) where the aim is to recover X ˚ exactly.

In many applications,
śd
k“1 pk, i.e., the number of parameters in X ˚, is much greater

than the sample size n, so some structural conditions are often assumed to ensure the problem
is well-posed. In the literature, the low-rank assumption was widely considered (Kolda and
Bader, 2009; Zhou et al., 2013; Anandkumar et al., 2014b; Richard and Montanari, 2014;
Montanari and Sun, 2018). In this work, we focus on the setting that the target parameter
X ˚ is low Tucker rank and admits the following Tucker (or multilinear) decomposition with
Tucker rank r “ pr1, . . . , rdq:

X ˚ “ S ˆ1 U1 ˆ ¨ ¨ ¨ ˆd Ud. (3)

Here, S P Rr1ˆ¨¨¨ˆrd is the order-d core tensor; Uk is a pk-by-rk matrix with orthonormal
columns, which represents the mode-k singular vectors of X ˚; “ˆk” is the tensor-matrix
product along mode k. The formal definitions of Tucker decomposition and tensor-matrix
product are given in Section 1.4.

With different designs of A , the general model (1) covers many specific settings arising
from applications, such as recommender system (Bi et al., 2018), neuroimaging (Guhaniyogi
et al., 2017; Li and Zhang, 2017), longitudinal relational data analysis (Hoff, 2015), imaging
processing (Guo et al., 2012). The specific settings of model (1) include:

• Tensor regression with general random or deterministic design (Zhou et al., 2013;
Raskutti et al., 2019), where Ai are general tensors. Specifically, the Gaussian ensemble
design (Ai has i.i.d. Gaussian/sub-Gaussian entries) is widely studied in the literature.

• Tensor completion (Gandy et al., 2011; Liu et al., 2013; Yuan and Zhang, 2014): Ai “

e
a
piq
1
˝ ¨ ¨ ¨ ˝ e

a
piq
d

, e
a
piq
k

is the apiqk th canonical vector and tapiq1 , ¨ ¨ ¨ , a
piq
d u

n
i“1 are randomly

selected integers from rp1s ˆ ¨ ¨ ¨ ˆ rpds, “˝” represents the outer product and rpks “
t1, . . . , pku;

• Tensor estimation via rank-1 projections (Hao et al., 2020): Ai “ a
piq
1 ˝ ¨ ¨ ¨ ˝ a

piq
d ,

where tapiqk P Rpkudk“1 are random vectors;

• Tensor PCA/SVD (Richard and Montanari, 2014; Hopkins et al., 2015; Zhang and
Xia, 2018; Perry et al., 2020) is a special case of tensor completion where all entries are
observable. In this particular setting, we can tensorize y, ε and rewrite the model (1)
equivalently to Y “ X ˚ ` E . Here X ˚ is the low Tucker rank signal tensor and E is the
noise.
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In view of model (1) and assumption (3), a natural estimator of X ˚ is

pX “ arg min
XPRp1ˆ¨¨¨ˆpd

fpX q :“
1

2
}y ´A pX q}22 , subject to TucrankpX q “ r. (4)

Here TucrankpX q is the Tucker rank of X (see definition in Section 1.4). However, the opti-
mization problem in (4) is non-convex and NP-hard in general. To tame the non-convexity,
a common scheme is the convex relaxation (Mu et al., 2014; Raskutti et al., 2019; Tomioka
et al., 2011). However, this scheme may either obtain suboptimal statistical guarantees or
require evaluating the tensor nuclear norm, which is NP-hard to compute in general (Hillar
and Lim, 2013). Alternatively, a large body of literature turns to the non-convex formulation
and focuses on developing computationally efficient two-stage procedures for estimating X ˚:
first, one obtains a warm initialization of X ˚ and then runs local algorithms to refine the es-
timate. Provable guarantees on estimation or recovery of X ˚ for such a two-stage paradigm
have been developed in different scenarios (Rauhut et al., 2017; Chen et al., 2019a; Ahmed
et al., 2020; Han et al., 2022b; Cai et al., 2019; Hao et al., 2020; Cai et al., 2020; Xia et al.,
2021). In this work, we focus on the non-convex formulation and aim to develop a prov-
able computationally efficient estimator for X ˚. Departing from the existing literature that
focuses on the first-order local methods, we consider a Riemannian Gauss-Newton (RGN)
algorithm for iterative refinement and establish the first quadratic convergence guarantee
on the estimation of X ˚.

1.1 Our Contributions

In this paper, we develop a new Riemannian Gauss-Newton (RGN) algorithm for low-rank
tensor estimation. The proposed algorithm is tuning-free and generally has the same per-
iteration computational complexity as the alternating minimization (Zhou et al., 2013; Li
et al., 2018) and comparable complexity to the other first-order methods including projected
gradient descent (Chen et al., 2019a) and gradient descent (Han et al., 2022b).

Moreover, assuming A satisfies the tensor restricted isometry property (TRIP) (see
Definition 2), we prove that with some proper initialization, the iterates generated by RGN
converge quadratically to X ˚ up to some statistical error. Especially in the noiseless setting,
i.e., ε “ 0, RGN converges quadratically to the exact parameter X ˚. Figure 1 shows
the numerical performance of RGN in tensor regression (left panel) and tensor completion
(right panel): in the noiseless case, RGN converges quadratically to X ˚; in the noisy case,
RGN converges quadratically to a neighborhood of X ˚ up to some statistical error. More
simulation results on tensor estimation via rank-1 projections and tensor SVD can be found
in Section 6. Since RGN generally converges to a point with nonzero function value in the
noisy setting, the generic theory on RGN can only guarantee a (super)linear convergence
rate to a stationary point (Absil et al., 2009; Breiding and Vannieuwenhoven, 2018). Our
result complements the classic theory of RGN: we show RGN converges quadratically to
a neighborhood of the true parameter of interest, which achieves a statistically optimal
estimation error rate. To our best knowledge, such a result is new and our RGN is the first
algorithm with a provable guarantee of second-order convergence for the low-rank tensor
estimation.
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(a) Tensor regression. Here, n is the sample
size, X˚

P Rpˆpˆp with p “ 30, Tucker rank
r “ p3, 3, 3q, ε

i.i.d
„ Np0, σ2

q with σ P t0, 10´6
u

and Ai has i.i.d. standard Gaussian entries.
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(b) Tensor completion. Here, we observe par-
tial uniformly-at-random sampled entries from the
noisy tensor Y index by Ω, where Y “ X˚

` E P
Rpˆpˆp with p “ 50. Tucker rank of X˚ is
p3, 3, 3q, n “ |Ω| and E has i.i.d. Np0, σ2

q entries
with σ P t0, 10´6

u.

Figure 1: RGN achieves a quadratic rate of convergence in low-rank tensor estimation. More
details of the simulation setting are given in Section 6.

Furthermore, we provide a deterministic minimax lower bound for the estimation er-
ror under model (1). The lower bound matches the estimation error upper bound, which
demonstrates the statistical rate-optimality of RGN.

Next, we apply RGN to two problems arising from applications in machine learning and
statistics: tensor regression and tensor SVD. In both problems, we prove the iterates of
RGN converge quadratically to a neighborhood of X ˚ that achieves the minimax optimal
estimation error. A comparison of RGN and prior algorithms on tensor regression and
tensor SVD is given in Table 1. We can see for fixed r, RGN achieves the best estimation
error and signal-to-noise ratio requirement, i.e., sample complexity in tensor regression and
least singular value in tensor SVD, compared to the state of the art while maintaining a
relatively low computational cost. Moreover, RGN is the only algorithm with guaranteed
quadratic convergence in both applications. Finally, we conduct numerical studies to support
our theoretical findings in Section 6. The simulation studies show RGN offers much faster
convergence compared to the existing approaches in the literature.

1.2 Related Literature

Our work is related to a broad range of literature from a number of communities. Here we
make an attempt to discuss existing results without claiming that the survey is exhaustive.

First, the low-rank tensor estimation has attracted much recent attention from machine
learning and statistics communities. Various methods were proposed, including the convex
relaxation (Mu et al., 2014; Raskutti et al., 2019; Tomioka et al., 2011), projected gradient
descent (Rauhut et al., 2017; Chen et al., 2019a; Ahmed et al., 2020; Yu and Liu, 2016),
gradient descent on the factorized model (Han et al., 2022b; Cai et al., 2019; Hao et al.,
2020), alternating minimization (Zhou et al., 2013; Jain and Oh, 2014; Liu and Moitra,
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Tensor Regression

Algorithm required convergence estimation per-iteration
sample size rate error cost

RGN
pd{2r3{2 quadratic σ

b

pr
n npdr(this work)

GD
pd{2r3{2 linear σ

b

pr
n npd(Han et al., 2022b)

Nonconvex-PGD
pd´1r linear σ

b

pd´1

n
npd(Chen et al., 2019a)

Alter Mini N.A. linear N.A. npdr(Zhou et al., 2013)
Tensor SVD

Algorithm least convergence estimation per-iteration
singular value rate error cost

RGN
pd{4r1{4σ quadratic σ

?
pr pdr(this work)

GD
pd{4r1{4σ linear σ

?
pr pdr(Han et al., 2022b)

Alter Mini
pd{4σ linear σ

?
pr pdr(Zhang and Xia, 2018)

Table 1: Comparison of RGN with gradient descent (GD), nonconvex projected gradient de-
scent (Nonconvex-PGD) and alternating minimization (Alter Mini) in the literature
in aspects of signal-to-noise ratio requirement (i.e., overall sample complexity in
tensor regression and least singular value in tensor SVD), convergence rate, estima-
tion error, and per-iteration computational cost. Here the convergence rate is global
for nonconvex-PGD and is local for other algorithms. We assume the Tucker rank
satisfies r1 “ ¨ ¨ ¨ “ rd “ r, the tensor dimension satisfies p1 “ ¨ ¨ ¨ “ pd, r, d ! n, p,
the tensor parameter of interest is well-conditioned and σ is the standard deviation
of the Gaussian noise in tensor regression and tensor SVD.

2020; Xia et al., 2021), and importance sketching (Zhang et al., 2020a). A scaled GD was
proposed in the concurrent work Tong et al. (2022). Moreover, when the target tensor has
order two, our problem reduces to the widely studied low-rank matrix recovery/estimation
(Recht et al., 2010; Li et al., 2019; Ma et al., 2019; Sun and Luo, 2015; Tu et al., 2016; Wang
et al., 2017; Zhao et al., 2015; Zheng and Lafferty, 2015; Charisopoulos et al., 2021; Luo
et al., 2023; Bauch et al., 2021). The readers are referred to a recent survey in Chi et al.
(2019).

Second, Riemannian manifold optimization methods have been powerful in solving op-
timization problems with geometric constraints (Absil et al., 2009; Boumal, 2020). Many
progresses in this topic were made for the low-rank matrix estimation (Keshavan et al.,
2009; Boumal and Absil, 2011, 2015; Wei et al., 2016; Meyer et al., 2011; Mishra et al.,
2014; Vandereycken, 2013; Huang and Hand, 2018; Cherian and Sra, 2016). In particular,
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Luo et al. (2023) proposed a recursive importance sketching algorithm for solving rank-
constrained least-squares problem and showed that it is closely related to the Riemannian
Gauss-Newton method. See also the recent survey on this line of work at Cai and Wei
(2018); Uschmajew and Vandereycken (2020). Moreover, the Riemannian manifold opti-
mization method has been applied for various problems on low-rank tensor estimation, such
as tensor regression (Kressner et al., 2016), tensor completion (Rauhut et al., 2015; Kasai
and Mishra, 2016; Dong et al., 2022; Kressner et al., 2014; Heidel and Schulz, 2018; Xia
and Yuan, 2017; Steinlechner, 2016; Da Silva and Herrmann, 2015), and robust tensor PCA
(Cai et al., 2022). These papers mostly focus on the first-order Riemannian optimization
methods, possibly due to the hardness of deriving the exact expressions of the Riemannian
Hessian. A few exceptions also appear: Heidel and Schulz (2018); Kasai and Mishra (2016)
and Psenka and Boumal (2020) developed Riemannian trust-region method for tensor com-
pletion under Tucker and tensor-train formats, respectively; a Riemannian Gauss-Newton
algorithm was also considered in Heidel and Schulz (2018); Kressner et al. (2016) proposed
approximate Riemannian Newton methods for tensor regression in tensor-train and Tucker
formats under the setting that the linear map has additive and Kronecker-product-type
structures. Departing from these results that focus on the geometric objects and numerical
implementations, in this paper we not only develop an efficient implementation of RGN
under the Tucker format but also prove the quadratic convergence of the iterates and the
optimal estimation error rate for the estimation of X ˚.

Finally, the low-rank tensor estimation model (1) is related to various problems in differ-
ent contexts. In the tensor-based scientific computing community, large-scale linear systems
where the solution admits a low-rank tensor structure commonly arise after discretizing
high-dimensional partial differential equations (PDEs) (Lynch et al., 1964; Hofreither, 2018),
which exactly become the central problem (1) in this paper. In the literature, various meth-
ods have been proposed there to solve (1). For example, Boussé et al. (2018) developed the
algebraic method and Gauss-Newton method to solve the linear system with a CP low-rank
tensor solution. Georgieva and Hofreither (2019) and Kressner et al. (2016) respectively
introduced a greedy approach and an approximate Riemannian Newton method to approx-
imate the linear system by a low Tucker rank tensor. The readers are also referred to
Grasedyck et al. (2013) for a recent survey. There are some key differences from this line of
work to ours: first, their goal is often to find a low-rank tensor that approximately solves
a linear system with small approximation error, while we aim to develop an estimator with
small estimation error; second, the design matrix in linear systems from discretized PDEs
often has Kronecker-product-type structure, we do not assume such structure in this paper.
On the other hand, the structures of the design assumed here are application dependent,
e.g., sub-Gaussian design in tensor regression and “one-hot” design in tensor completion
as we mentioned in the introduction; finally, their work mainly focuses on computational
aspects of the proposed methods (Grasedyck et al., 2013), while this paper develops Rieman-
nian Gauss-Newton for solving the low-rank tensor estimation problem and gives theoretical
guarantees for the quadratic convergence of the algorithm and for the optimal estimation
error bound of the final estimator.
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1.3 Organization of the Paper

After a brief introduction of notation and preliminaries in Section 1.4, we introduce our
main algorithm RGN and its geometric ingredients in Section 2. The theoretical results
of RGN and its applications in tensor regression and tensor SVD are discussed in Sections
3 and 4, respectively. The computational complexity of RGN and numerical studies are
presented in Sections 5 and 6, respectively. Conclusion and future work are given in Section
7. Additional algorithms and all technical proofs are presented in Appendices A-C.

1.4 Notation and Preliminaries

The following notation will be used throughout this article. Lowercase letters (e.g., a), lower-
case boldface letters (e.g., u), uppercase boldface letters (e.g., U), and boldface calligraphic
letters (e.g., A) are used to denote scalars, vectors, matrices, and order-3-or-higher tensors,
respectively. For simplicity, we denote Aj as the tensor indexed by j in a sequence of tensors
tAju. We use bracket subscripts to denote sub-vectors, sub-matrices, and sub-tensors. For
any vector v, define its `2 norm as }v}2 “

`
ř

i |vi|
2
˘1{2. For any matrix D P Rp1ˆp2 , let

σkpDq be the kth largest singular value of D. We also denote SVDrpDq “ ru1 ¨ ¨ ¨urs and
QR(D) as the subspace composed of the leading r left singular vectors and the Q part of
the QR orthogonalization of D, respectively. Ir represents the r-by-r identity matrix. Let
Op,r “ tU : UJU “ Iru be the set of all p-by-r matrices with orthonormal columns. For
any U P Op,r, PU “ UUJ represents the projection matrix onto the column space of U; we
use UK P Op,p´r to represent the orthonormal complement of U.

The matricizationMkp¨q is the operation that unfolds the order-d tensor A P Rp1ˆ¨¨¨ˆpd
along mode k into the matrix MkpAq P Rpkˆp´k where p´k “

ś

j‰k pj . Specifically, the
mode-k matricization of A is formally defined as

MkpAq P Rpkˆp´k , pMkpAqqrik,js “ Ari1,...,ids, j “ 1`
d
ÿ

l“1
l‰k

$

’

&

’

%

pil ´ 1q
l´1
ź

m“1
m‰k

pm

,

/

.

/

-

(5)

for any 1 ď il ď pl, l “ 1, . . . , d. We also use notation Tkp¨q to denote the mode-k ten-
sorization or reverse operator ofMkp¨q. Throughout the paper, Tk, as a reversed operation
of Mkp¨q, maps a Rpkˆp´k matrix back to a Rp1ˆ¨¨¨ˆpd tensor. The Hilbert-Schmidt norm
of A is defined as }A}HS “ pxA,Ayq1{2 . The Tucker rank of a tensor A is denoted by
TucrankpAq and defined as a d-tuple r :“ pr1, . . . , rdq, where rk “ rankpMkpAqq. For any
Tucker rank-pr1, . . . , rdq tensor A, it has Tucker decomposition (Tucker, 1966):

A “ JS;U1, . . . ,UdK :“ S ˆ1 U1 ˆ ¨ ¨ ¨ ˆd Ud, (6)

where S P Rr1ˆ¨¨¨ˆrd is the core tensor and Uk “ SVDrkpMkpAqq is the mode-k singular
vectors. Here, the mode-k product of A P Rp1ˆ¨¨¨ˆpd with a matrix B P Rrkˆpk is denoted
by Aˆk B and is of size p1 ˆ ¨ ¨ ¨ ˆ pk´1 ˆ rk ˆ pk`1 ˆ ¨ ¨ ¨ ˆ pd, and its formal definition is
given below

pAˆk Bqri1,...,ik´1,j,ik`1,...,ids “

pk
ÿ

ik“1

Ari1,i2,...,idsBrj,iks. (7)
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It is convenient to introduce the following abbreviations to denote the tensor-matrix product
along multiple modes: Aˆdk“1Uk :“ Aˆ1U1ˆ¨ ¨ ¨ˆdUd; Aˆl‰kUl :“ Aˆ1U1ˆ¨ ¨ ¨ˆk´1

Uk´1 ˆk`1 Uk`1 ˆ ¨ ¨ ¨ ˆd Ud. The following property about tensor matricization will be
used (Kolda, 2001, Section 4):

Mk pS ˆ1 U1 ˆ ¨ ¨ ¨ ˆd Udq “ UkMkpSqpUJ
d b ¨ ¨ ¨ bUJ

k`1 bUJ
k´1 b ¨ ¨ ¨ bUJ

1 q, (8)

where “b” is the matrix Kronecker product. For any tensor Z P Rp1ˆ¨¨¨ˆpd , we define
Zmaxprq :“ Z ˆdk“1 P pUk

as the best Tucker rank r approximation of Z in terms of Hilbert-
Schmidt norm, where ppU1, . . . , pUdq “ arg maxUkPOpk,rk

,k“1,...,d }Z ˆdk“1 PUk
}HS. Finally, for

any linear operator L, we denote L˚ as its adjoint operator.

2 Algorithm

We introduce the geometry of low Tucker rank tensor Riemannian manifolds in Section 2.1
and present the procedure of RGN in Section 2.2.

2.1 The Geometry for Low Tucker Rank Tensor Manifolds

Denote the collection of pp1, . . . , pdq-dimensional tensors of Tucker rank r by Mr “ tX P

Rp1ˆ¨¨¨ˆpd ,TucrankpX q “ ru. Then Mr forms a smooth submanifold embedded in Rp1ˆ¨¨¨ˆpd
with dimension

śd
j“1 rj `

řd
j“1 rjppj ´ rjq (Uschmajew and Vandereycken, 2013; Kressner

et al., 2014). Throughout the paper, we use the natural Euclidean inner product as the
Riemannian metric. Suppose X PMr has Tucker decomposition JS;U1, . . . ,UdK; Koch and
Lubich (2010) showed that the tangent space of Mr at X , TXMr, can be represented as

TXMr “

#

B ˆdk“1 Uk `

d
ÿ

k“1

S ˆk sDk ˆj‰k Uj :
B P Rr1ˆ¨¨¨ˆrd , sDk P Rpkˆrk ,
sDJ
kUk “ 0, k “ 1, . . . , d

+

. (9)

In the representation above, sDks are not free parameters due to the constraints sDJ
kUk “ 0,

k “ 1, . . . , d. In the following Lemma 1, we introduce another representation of TXMr

with a minimal parameterization, which matches the degree of freedom of the tangent space
(
śd
j“1 rj `

řd
j“1 rjppj ´ rjq). For X “ JS;U1, . . . ,UdK, we let Vk “ QRpMkpSqJq, which

corresponds to the row space ofMkpSq, and define

Wk :“ pUd b ¨ ¨ ¨ bUk`1 bUk´1 bU1qVk P Op´k,rk , k “ 1, . . . , d, (10)

where p´k “
ś

j‰k pj . By (8), Uk,Wk correspond to the subspaces of the column and row
spans ofMkpX q, respectively.

Lemma 1 The tangent space of Mr at X “ JS;U1, . . . ,UdK in (9) can be written as

TXMr “

#

B ˆdk“1 Uk `

d
ÿ

k“1

TkpUkKDkW
J
k q : B P Rr1ˆ¨¨¨ˆrd ,Dk P Rppk´rkqˆrk , k “ 1, . . . , d

+

,

where Tkp¨q is the mode-k tensorization operator and Wk is given in (10).
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We can also show that any tensor in TXMr is at most Tucker rank 2r. This fact will
facilitate the efficient computation of RGN to be discussed in Section 5.

Lemma 2 Any tensor Z P TXMr is at most Tucker rank 2r.

Lemma 3.1 of Koch and Lubich (2010) and the tangent space representation in Lemma
1 yield the following projection operator PTX that projects any tensor Z onto the tangent
space of Mr at X :

PTX pZq :“ LL˚pZq “ Z ˆdk“1 PUk
`

d
ÿ

k“1

TkpPUkK
MkpZqPWk

q, @Z P Rp1ˆ¨¨¨ˆpd , (11)

where L˚ and L are respectively the contraction map and extension map defined as follows:

L : Rr1ˆ¨¨¨ˆrd ˆ
d
ź

k“1

Rppk´rkqˆrk Ñ TXMr, pB, tDku
d
k“1q ÞÑ B ˆdk“1 Uk `

d
ÿ

k“1

TkpUkKDkW
J
k q,

L˚ : Rp1ˆ¨¨¨ˆpd Ñ Rr1ˆ¨¨¨ˆrd ˆ
d
ź

k“1

Rppk´rkqˆrk , Z ÞÑ pZ ˆdk“1 U
J
k , tU

J
kKMkpZqWku

d
k“1q.

(12)

In particular, L˚ is the adjoint operator of L. We will see in Section 2.2 that the represen-
tation in (11) helps the efficient implementation of RGN.

2.2 Riemannian Optimization and Riemannian Gauss-Newton

In this subsection, we first give a preliminary for Riemannian optimization and then intro-
duce the procedure of RGN for low-rank tensor estimation.

Overall three-step procedure of Riemannian optimization. Riemannian optimiza-
tion concerns optimizing a real-valued function f defined on a Riemannian manifold M, for
which the readers are referred to Absil et al. (2009) and Boumal (2020) for an introduction.
Due to the common non-linearity, the continuous optimization on the Riemannian manifold
often requires calculations on the tangent space. A typical procedure of a Riemannian opti-
mization method contains three steps per iteration: Step 1. find the tangent space; Step 2.
update the point on the tangent space; Step 3. map the point from the tangent space back
to the manifold.

Low-rank tensor Riemannian manifold (Step 1). We have already discussed the
tangent space of low Tucker rank tensor manifolds in Section 2.1, i.e., Step 1 above.

Update on tangent space (Step 2). Next, we describe the procedure of RGN in the
tangent space. We begin by introducing a few more preliminaries for Riemannian manifold
optimization. The Riemannian gradient of a smooth function f : Mr Ñ R at X P Mr

is defined as the unique tangent vector grad fpX q P TXMr such that xgrad fpX q,Zy “
D fpX qrZs,@Z P TXMr, where DfpX qrZs denotes the directional derivative of f at point
X along direction Z. Specifically for the embedded submanifold Mr, we have:

9
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Lemma 3 For fpX q in (4), grad fpX q “ PTX pA
˚pA pX q ´ yqq, where PTX p¨q is the pro-

jection operator onto the tangent space of Mr at X defined in (11).

A common way to derive RGN update in the literature is to first write down the Rie-
mannian Newton equation, then replace the Riemannian Hessian by its Gauss-Newton ap-
proximation (Absil et al., 2009, Chapter 8.4.1), and finally solve the modified Riemannian
Newton equation, i.e., the Riemannian Gauss-Newton equation. In our low-rank tensor esti-
mation problem with the objective function (4), suppose the current iterate is X t, the RGN
update ηRGN P TX tMr should solve the following RGN equation (Absil et al., 2009, Chapter
8.4),

´grad fpX tq “ PTX t

`

A ˚pA pηRGN qq
˘

. (13)

However, it is not clear how to solve this equation directly in practice.
Inspired by the classical Gauss-Newton (GN) algorithm, we instead introduce another

scheme to derive RGN. Recall in solving the nonlinear least squares problem in the Eu-
clidean space minx

1
2}hpxq}

2
2, the classic Gauss-Newton can be viewed as a modified Newton

method, and can also be derived by replacing the non-linear function hpxq by its local linear
approximation at the current iterate xk (Nocedal and Wright, 2006, Chapter 10.3). These
two ways of interpretation are equivalent. A similar local linearization idea can be extended
to the manifold setting except that the linearization needs to be taken in the tangent space
in each iterate. Specifically, consider the objective function fpX q in (4), the linearization
of y´A pX q at X t in TX tMr is y´A pX tq ´A PTX t pX ´X tq, which can be simplified to
y ´A PTX t pX q. After we further constraint the update direction to TX tMr, we have

Zt`1 “ arg min
ZPTX tMr

1

2
}y ´A PTX t pZq}22. (14)

By mapping Zt`1 back to the manifold, we get the new iterate X t`1.
Next, we show the proposed update derived in (14) actually matches the standard RGN

update (13).

Proposition 1 Let Zt`1 be the update computed in (14). Then, Zt`1´X t is the Rieman-
nian Gauss-Newton update, i.e., it solves the Riemannian Gauss-Newton equation (13).

Proposition 1 shows that (14) yields the RGN update, which directly provides a simple
implementation of RGN. To see this, recall PTX t “ LtL˚t , where Lt and L˚t are defined in
the similar way as in (12) except evaluated on X t “ JSt;Ut

1, . . . ,U
t
dK; then the objective

function in (14) can be rewritten as follows,

1

2
}y ´A PTX t pZq}22 “

1

2

n
ÿ

i“1

pyi ´ xAi,LtL˚tZyq2 “
1

2

n
ÿ

i“1

pyi ´ xL˚tAi,L˚tZyq2

“
1

2

n
ÿ

i“1

˜

yi ´ xAi ˆ
d
k“1 U

tJ
k ,By ´

d
ÿ

k“1

xUtJ
kKMk pAiqW

t
k,Dky

¸2

,

(15)

where pB, tDku
d
k“1q :“ L˚tZ. Based on the calculation in (15), we define the following

covariates maps AB : Rr1ˆ¨¨¨ˆrd Ñ Rn,ADk
: Rppk´rkqrk Ñ Rn, k “ 1, ¨ ¨ ¨ , d, where for

10
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1 ď i ď n,

pABqi “ Ai ˆ
d
k“1 U

tJ
k , pADk

qi “ UtJ
kKMk pAiqW

t
k.

Here, pABqi satisfies rABp¨qsi “ x¨, pABqiy and similarly for pADk
qi. Then, by (15) and the

fact that Z P TX tMr, (14) can be equivalently solved by

Zt`1 “ LtpBt`1,Dt`1
1 , ¨ ¨ ¨ ,Dt`1

d q,

where

pBt`1,Dt`1
1 , ¨ ¨ ¨ ,Dt`1

d q “ arg min
BPRr1ˆ¨¨¨ˆrd ,

DkPRppk´rkqˆrk ,k“1,...,d

›

›

›

›

›

y ´ABpBq ´
d
ÿ

k“1

ADk
pDkq

›

›

›

›

›

2

2

. (16)

Note that (16) is an unconstrained least squares with the number of parameters equal to
řd
k“1ppk ´ rkqrk `

śd
k“1 rk.

Retraction (Step 3). Finally, we discuss how to map the point from the tangent space
back to the manifold, i.e., Step 3 above. An ideal method is via the exponential map, which
moves a point on the manifold along the geodesic. However, computing the exponential
map is prohibitively expensive in most situations, and a more practical choice is the so-
called retraction. Retraction is in general a first-order approximation of the exponential
map. In tensor manifold Mr, the retraction map, denoted by R, should be a smooth map
from TMr to Mr that satisfies i) RpX , 0q “ X and ii) d

dtRpX , tηq|t“0 “ η for all X P Mr

and η P TXMr (Absil et al., 2009, Chapter 4). Here, TMr “ tpX , TXMrq : X P Mru is the
tangent bundle of Mr.

In the low Tucker rank tensor manifolds, Proposition 2.3 of Kressner et al. (2014) showed
that the truncated high-order singular value decomposition (T-HOSVD) (De Lathauwer
et al., 2000) is a retraction. We further show in the following Lemma 4 that the sequentially
truncated HOSVD (ST-HOSVD) (Vannieuwenhoven et al., 2012), a computationally more
efficient procedure than T-HOSVD, also satisfies the retraction properties. The detailed
procedures of T-HOSVD and ST-HOSVD are given in Appendix A.

Lemma 4 (Retraction of Sequentially Truncated HOSVD) For ST-HOSVD de-
fined in Appendix A, the map

R : TMr ÑMr, pX , ηq Ñ ST-HOSVDpX ` ηq

is a retraction on Mr around X .

Although ST-HOSVD has been widely used in practice, the retraction property of ST-
HOSVD we established in Lemma 4 is new.

Summary of RGN. We give the complete RGN algorithm for low-rank tensor estimation
in Algorithm 1.

11
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Algorithm 1 Riemannian Gauss-Newton for Low-rank Tensor Estimation
Input: y P Rn,A1, . . . ,An P Rp1ˆ¨¨¨ˆpd , tmax, Tucker rank r, initialization X 0 with Tucker
decomposition JS0;U0

1, . . . ,U
0
dK, and W0

k defined as (10).
1: for t “ 0, 1, . . . , tmax ´ 1 do
2: Construct the covariates maps AB : Rr1ˆ¨¨¨ˆrd Ñ Rn,ADk

: Rppk´rkqrk Ñ Rn, k “
1, ¨ ¨ ¨ , d, where for 1 ď i ď n

pABqi “ Ai ˆ
d
k“1 U

tJ
k , pADk

qi “ UtJ
kKMk pAiqW

t
k. (17)

3: Solve the unconstrained least squares problem

pBt`1,Dt`1
1 , ¨ ¨ ¨ ,Dt`1

d q “ arg min
BPRr1ˆ¨¨¨ˆrd ,

DkPRppk´rkqˆrk ,k“1,...,d

›

›

›

›

›

y ´ABpBq ´
d
ÿ

k“1

ADk
pDkq

›

›

›

›

›

2

2

. (18)

4: Update

X t`1 “ JSt`1;Ut`1
1 , . . . ,Ut`1

d K “ Hr

˜

Bt`1 ˆdk“1 U
t
k `

d
ÿ

k“1

TkpUt
kKD

t`1
k WtJ

k q

¸

(19)

and Wt`1
k via (10). Here Hrp¨q is the retraction map onto Mr (two choices are ST-

HOSVD and T-HOSVD).
5: end for
Output: X tmax .

Remark 1 (Operator Hr) In (19), Hr plays the role of retraction that maps the iterate
from the tangent space of Mr at X t back onto the manifold. Since Hr directly operates on
the updated tensor, to distinguish with the canonical notation Rp¨, ¨q for retraction, we use
a simplified notation Hr to represent this map here. As we mentioned before, T-HOSVD
(De Lathauwer et al., 2000) and ST-HOSVD (Vannieuwenhoven et al., 2012) are two choices
of retractions.

3 Theoretical Analysis

We analyze the convergence rate of RGN in this section.

3.1 Quasi-projection Property and Tensor Restricted Isometry Property

We begin by introducing the quasi-projection property of T-HOSVD and ST-HOSVD and
the assumption on the linear map A . Different from the low-rank matrix projection, which
can be efficiently and exactly computed via truncated SVD, performing low-rank tensor
projection exactly, even for r “ 1, can be NP-hard in general (Hillar and Lim, 2013). We
thus introduce the following quasi-projection property and the approximation constant δpdq.

12
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Definition 1 (Quasi-projection of Hr and Approximation Constant δpdq) Let
PMrp¨q be the projection map from Rp1ˆ¨¨¨ˆpd to the tensor space of Tucker rank at
most r, i.e., for any Z P Rp1ˆ¨¨¨ˆpd and pZ of Tucker rank at most r, one always has
}Z ´ pZ}HS ě }Z ´ PMrpZq}HS.

We say Hr satisfies the quasi-projection property with approximation constant δpdq if
}Z ´HrpZq}HS ď δpdq}Z ´ PMrpZq}HS for any Z P Rp1ˆ¨¨¨ˆpd .

It is known that T-HOSVD and ST-HOSVD satisfy the quasi-projection property (see Chap-
ter 10 in (Hackbusch, 2012)).

Proposition 2 (Quasi-projection property of T-HOSVD and ST-HOSVD) T-
HOSVD and ST-HOSVD described in Appendix A satisfy the quasi-projection property with
approximation constant δpdq “

?
d.

For technical convenience, we also assume A satisfies the following Tensor Restricted
Isometry Property (TRIP) (Rauhut et al., 2017). One major reason we need this assumption
is to control the spectrum of the operator L˚tA ˚A Lt presented in Lemma 6 in Appendix B
of the paper. The TRIP condition can be seen as a tensor generalization of the restricted
isometry property (RIP). In the compressed-sensing and low-rank matrix recovery literature,
the RIP condition has been widely used as one standard assumption (Candès and Plan, 2011;
Cai and Zhang, 2013).

Definition 2 (Tensor Restricted Isometry Property (TRIP)) Let A : Rp1ˆ¨¨¨ˆpd Ñ
Rn be a linear map. For a fixed d-tuple r “ pr1, . . . , rdq with 1 ď rk ď pk for k “ 1, . . . , d,
define the r-tensor restricted isometry constant to be the smallest number Rr such that
p1 ´ Rrq}Z}2HS ď }A pZq}22 ď p1 ` Rrq}Z}2HS holds for all Z of Tucker rank at most r. If
0 ď Rr ă 1, we say A satisfies r-tensor restricted isometry property (r´TRIP).

In Rauhut et al. (2017), the authors showed that TRIP can be satisfied in a number of
different scenarios. For example, if sensing tensors Ai are composed of i.i.d. sub-Gaussian
entries, then with high probability, the TRIP condition can be satisfied with TRIP constant
Rr as long as n ě Cp

řd
k“1 pkrk `

śd
k“1 rkq log d{R2

r for some constant C ą 0. In addition,
TRIP also holds for more structured measurement ensembles such as the random Fourier
mapping (Rauhut et al., 2017).

3.2 Main Convergence Results

In this subsection, we establish the deterministic convergence theory for RGN.

Theorem 1 (Convergence of RGN) Suppose Hr is either T-HOSVD or ST-HOSVD,
A satisfies the 3r-TRIP, and the initialization X 0 satisfies }X 0 ´ X ˚}HS ď

λ

4dp
?
d`1qpR3r{p1´R2rq`1q

, where λ :“ mink“1,...,d σrkpMkpX ˚qq is the minimum of least singu-
lar values at each matricization of X ˚. Then for all t ě 0,

}X t`1 ´X ˚}HS ď dp
?
d` 1q

ˆ

R3r

1´R2r
` 1

˙

}X t ´X ˚}2HS

λ
`

?
d` 1

1´R2r
}pA ˚pεqqmaxp2rq}HS.

Recall, p¨qmaxprq denotes the best Tucker rank r approximation of the tensor “¨".

13
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In particular, if ε “ 0, then tX tu converges quadratically to X ˚ as

}X t`1 ´X ˚}HS ď dp
?
d` 1q

ˆ

R3r

1´R2r
` 1

˙

}X t ´X ˚}2HS

λ
, @ t ě 0.

Theorem 1 shows with some proper assumptions on A and initialization, the iterates of
RGN converge quadratically to the ball centered atX ˚ and of radius Op}pA ˚pεqqmaxp2rq}HSq.
Especially if ε “ 0, i.e., the observations are noiseless, X t converges quadratically to the
exact X ˚. To the best of our knowledge, this is the first provable quadratic convergence
guarantee for both low-rank tensor estimation and recovery.

We note that, in the noisy setting, RGN in general converges to a stationary point with
nonzero function value, so the classical optimization theory can only yield local (super)linear
convergence guarantee for RGN (Absil et al., 2009; Breiding and Vannieuwenhoven, 2018).
Our result complements the classic theory of RGN: Absil et al. (2009); Breiding and Van-
nieuwenhoven (2018) studied the limiting convergence rate of RGN to a stationary point,
while we show RGN converges quadratically to X ˚, the true parameter of interest, up to
some optimal statistical error (see the forthcoming Theorem 2). This also suggests that to
achieve quadratic convergence performance in low-rank tensor estimation, the more sophis-
ticated Riemannian Newton algorithm may be unnecessary as simple RGN already enjoys
the quadratic convergence for estimating X ˚ with theoretical guarantees.

Remark 2 (Initialization) The convergence theory in Theorem 1 requires an initialization
condition. Our condition says that }X 0 ´ X ˚}HS needs to be on the order of λ. In the
matrix setting, i.e., d “ 2, this condition matches the initialization condition in the literature
for using two-stage nonconvex optimization methods to solve the low-rank matrix recovery
problems (Charisopoulos et al., 2021; Ma et al., 2019; Sun and Luo, 2015; Tu et al., 2016;
Wang et al., 2017; Zhao et al., 2015; Zheng and Lafferty, 2015). To this point of view,
our initialization condition is an extension of that. Moreover, in practice, the SVD-based
methods often provide a sufficiently good initialization that meets the requirement in many
statistical applications. We will further illustrate this point in Section 4. The numerical
studies in Section 6.1 show that RGN can still work well under random initialization. We
leave future work to provide convergence guarantees of RGN under random initialization.

Moreover, there is also a factor 1{d3{2 in the initialization condition. In typical applica-
tions, such as brain MRI images or fMRI images, d will be a moderately large value, say 3
or 4. If d is large, then the 1{d3{2 factor will be important and the power of d also comes for
reasons. The first reason is due to the fact that performing exact low-rank tensor projection
is computationally intractable and efficient procedures such as T-HOSVD and ST-HOSVD
can only achieve quasi-projection property with approximation constant

?
d as we discussed

in Proposition 2. The second reason is from the result in Lemma 9 that it has a factor d in
the numerator of the bound. This can also be seen from the proof that the effective dimension
of the orthogonal complement of TX tMr, which controls the error, scales linearly in d. These
two factors together yield the 1{d3{2 factor.

Remark 3 (Convergence under Restricted Isometry Property) In the literature,
the RIP-type assumptions are widely used to establish linear convergence guarantees for
various first-order algorithms in low-rank matrix/tensor recovery. A common strategy to
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establish such results is to first show the linear convergence of the empirical loss and then
transfer to the convergence of the iterates (Jain et al., 2010). To our best knowledge, we are
the first to use RIP to establish the second-order convergence of RGN by directly showing
the contraction of the iterates. The key lemmas in our theoretical analysis are Lemma 8,
which bounds the per-iteration least squares estimation error, and Lemma 9, which bounds
the projection of X ˚ on the orthogonal complement of TX tMr.

Corollary 1 (Two Phases of Convergence of RGN) Suppose the conditions in Theo-

rem 1 hold. Define ∆ :“
b

λ}pA ˚pεqqmaxp2rq}HS

dp1`R3r´R2rq
. At iteration t,

(Phase I) If }X t ´X ˚}HS ě ∆, then }X t`1 ´X ˚}HS ď 2dp
?
d` 1qp R3r

1´R2r
` 1q

}X t´X˚}2HS
λ ;

(Phase II) If }X t ´X ˚}HS ď ∆, then }X t`1 ´X ˚}HS ď
2p
?
d`1q

1´R2r
}pA ˚pεqqmaxp2rq}HS.

In summary, we have

}X t ´X ˚}HS ď 2´2t}X 0 ´X ˚}HS `
2p
?
d` 1q

1´R2r
}pA ˚pεqqmaxp2rq}HS, @t ě 0.

In addition, as long as

tmax ě Tmax :“

R

log

ˆ

1_
1

2
log

ˆ

dp1`R3r ´R2rq}X 0 ´X ˚}2HS

λ}pA ˚pεqqmaxp2rq}HS

˙˙V

` 1, (20)

we have }X tmax ´X ˚}HS ď
2p
?
d`1q

1´R2r
}pA ˚pεqqmaxp2rq}HS.

Notice the initialization error required in Theorem 1 is of order λ, which is in general
larger than }pA ˚pεqqmaxp2rq}HS, so the magnitude of ∆ in Corollary 1 can be much bigger
than }pA ˚pεqqmaxp2rq}HS. Corollary 1 shows that the convergence of RGN has two different
phases: in Phase I that }X t´X ˚}HS is bigger than the threshold ∆, X t converges quadrat-
ically to X ˚; in Phase II that }X t ´ X ˚}HS is smaller than the threshold, with one extra
step, the estimation error of X t`1 becomes at most 2p

?
d`1q

1´R2r
}pA ˚pεqqmaxp2rq}HS.

3.3 Optimality of RGN

Next, we further introduce a lower bound to show ξ :“ }pA ˚pεqqmaxp2rq}HS is essential in
the estimation error upper bounds of Theorem 1 and Corollary 1.

Theorem 2 (Minimax Lower Bound for Tensor Estimation) Consider the following
class of p ĂA , rX ,rεq:

Frpξq “

#

´

ĂA , rX ,rε
¯

:
ĂA satisfies 3r-TRIP, rX is of Tucker rank at most r,
}p ĂA ˚prεqqmaxp2rq}HS ď ξ

+

.

Under the low-rank tensor estimation model (1), we have

inf
xX

sup
´

ĂA ,ĂX ,rε
¯

PFrpξq

} pX ´ rX }HS ě 2´1{2ξ.
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Remark 4 ((One-step) Optimality of RGN for Low-rank Tensor Estimation)
Theorem 2 and Corollary 1 together show that with a fixed tensor order d and a proper
initialization, RGN achieves rate-optimal estimation error in class Frpξq after at most
double-logarithmic, i.e., Tmax defined in (20), number iterations.

Corollary 1 also shows in Phase II convergence of RGN, with one extra step, the esti-
mation error X t`1 becomes statistical rate-optimal. Such the one-step optimality shares the
same spirit as the “one-step MLE” property for Newton algorithm in the literature on sta-
tistical inference (see Bickel (1975) and (Shao, 2006, Chapter 4.5)). To our best knowledge,
this one-step optimality phenomenon is new for RGN.

4 Implications in Statistics and Machine Learning

In this section, we study the performance of RGN in two specific problems in machine
learning: tensor regression and tensor SVD. In addition, the algorithm is applicable to a
broader range of settings discussed in the introduction. Throughout this section, we denote
p̄ :“ maxk pk, p :“ mink pk, r̄ “ maxk rk, λ :“ mink σrkpMkpX ˚qq, λ̄ :“ maxk σ1pMkpX ˚qq

and κ :“ λ̄{λ.

4.1 Tensor Regression

Tensor Regression is a basic problem for supervised tensor learning, for which the readers
are referred to Section 1.2 for a literature review. Specifically, we assume tAiu

n
i“1 are

independent and have i.i.d. Np0, 1{nq entries; εi
i.i.d.
„ Np0, σ2{nq in model (1). Suppose the

initialization is obtained by T-HOSVD:

X 0 “ A ˚pyq ˆdk“1 PU0
k
, (21)

where U0
k “ SVDrkpMkpA

˚pyqqq. Then we have the following theoretical guarantee for the
outcome of RGN for tensor regression.

Theorem 3 (RGN for Tensor Regression) Consider RGN for tensor regression. Sup-
pose r̄ ď p1{2, Hr is either T-HOSVD or ST-HOSVD. If n ě cpdqp}X ˚}2HS`σ

2qκ2
?
r̄p̄d{2{λ2,

and tmax ě Cpdq log log

˜

λ
?
n

σ
b

řd
k“1 rkpk`

śd
k“1 rk

¸

, then

}X tmax ´X ˚}HS ď cp
?
d` 1qσ

g

f

f

e

˜

d
ÿ

k“1

rkpk `
d
ź

k“1

rk

¸

{n (22)

holds with probability at least 1´ p´C . Here c, C are some universal positive constants, and
cpdq, Cpdq are some constants that depend on d only.

Suppose d, r̄ are fixed. Note that Opdp̄r̄q samples is enough to guarantee the r-TRIP
and indeed this is the information-theoretic limit to make the problem solvable (Zhang
et al., 2020a, Theorem 5). However, we find to achieve the initialization assumption in
Theorem 1 via spectral method, a significantly larger sample complexity Opcpdq

?
r̄p̄d{2q is
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needed. Such a gap originates from the difficulty of computing the best Tucker rank r
approximation of A ˚pyq efficiently in initialization (Hillar and Lim, 2013). This difficulty
is also a common reason that causes the so-called “statistical and computational gaps" in
various tensor problems (Richard and Montanari, 2014; Zhang and Xia, 2018; Barak and
Moitra, 2016; Luo and Zhang, 2020, 2022a; Brennan and Bresler, 2020; Han et al., 2022a).
See more discussions in Section 4.3.

4.2 Tensor SVD

Tensor SVD is a specific model covered by the prototypical model (1), which can be equiv-
alently written as

Y “ X ˚ ` E,

where X ˚ has Tucker decomposition as (3) and E has i.i.d. Np0, σ2q entries. The goal is to
estimate X ˚ based on Y . As illustrated by the following Lemma 5, the RGN algorithm for
tensor SVD can be significantly simplified from the original Algorithm 1.

Lemma 5 (Least Squares Solution of RGN in tensor SVD) Consider the tensor
SVD model Y “ X ˚ ` E. Suppose at the t-th iteration of RGN, the current iterate is X t

with Tucker decomposition JSt;Ut
1, . . . ,U

t
dK. Then the least squares in (18) can be solved

by

Bt`1 “ Y ˆdk“1 U
tJ
k , Dt`1

k “ UtJ
kKMkpYqWt

k, k “ 1, ¨ ¨ ¨ , d.

Here Wt
k is given in (10).

Consequently, we simplify RGN for tensor SVD to the following Algorithm 2.

Algorithm 2 Riemannian Gauss-Newton for Tensor SVD
Input: Y P Rp1ˆ¨¨¨ˆpd , tmax, a Tucker rank r initialization X 0 with Tucker decomposition
JS0;U0

1, . . . ,U
0
dK.

1: for t “ 0, 1, . . . , tmax ´ 1 do
2: Update

X t`1 “ JSt`1;Ut`1
1 , . . . ,Ut`1

d K “ Hr

`

PTX t pYq
˘

.

Here PTX t p¨q is the projection operator that project Y onto the tangent space of X t

defined in (11), Hrp¨q maps the input tensor to be a Tucker rank r tensor.
3: end for
Output: X tmax .

The following Theorem 4 gives the theoretical guarantee of RGN initialized with T-
HOSVD for the tensor SVD.

Theorem 4 (RGN for Tensor SVD) Consider RGN for tensor SVD. Suppose r̄ ď p1{2,
Hr is either T-HOSVD or ST-HOSVD, and the algorithm is initialized by T-HOSVD,
i.e., X 0 “ Y ˆdk“1 PU0

k
where U0

k “ SVDrkpMkpYqq. If the least singular value λ ě
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cpdqκp̄d{4r̄1{4σ, and tmax ě Cpdq log log

"

λ
M

ˆ

σ
b

řd
k“1 rkpk `

śd
k“1 rk

˙*

,

}X tmax ´X ˚}HS ď c ¨ p
?
d` 1qσ

g

f

f

e

d
ÿ

k“1

rkpk `
d
ź

k“1

rk (23)

holds with probability at least 1´ expp´Cpq.

Remark 5 (RGN Versus Existing Algorithms in Tucker Tensor Decomposition)
We note that Algorithm 2 can also be viewed as a Riemannian Gauss-Newton algorithm for
Tucker tensor decomposition (Kolda and Bader, 2009). In the literature, a few other second-
order methods have been proposed for Tucker tensor decomposition under Grassmann or
quotient manifold structures, such as (quasi-)Newton-Grassmann method (Eldén and Savas,
2009; Savas and Lim, 2010), geometric Newton method (Ishteva et al., 2009), and Rieman-
nian trust region method (Ishteva et al., 2011). To the best of our knowledge, this is the first
Riemannian Gauss-Newton algorithm for Tucker tensor decomposition developed using the
embedded manifold structure on Mr. At the same time, we comment that different from the
common goal in tensor decomposition which aims to find a good low-rank approximation of
Y, our goal here is to find a good estimator for X ˚. So the convergence results established
in Eldén and Savas (2009); Savas and Lim (2010); Ishteva et al. (2009, 2011) are not di-
rectly comparable to ours. Moreover, due to the difference in the targets, the quasi-projection
property of T-HOSVD and ST-HOSVD in Tucker tensor decomposition (see Definition 1)
does not imply they are good estimators for X ˚. In fact, it has been shown in Zhang and
Xia (2018) that T-HOSVD is strictly suboptimal in estimating X ˚ in tensor SVD, see more
discussions in the second point of Section 4.3.

4.3 A Few More Remarks for Tensor Regression and Tensor SVD

In this section, we provide a few remarks regarding our results in Theorems 3 and 4.

• (Estimation Error, Convergence Rate, and Signal Strength) In both tensor re-
gression and SVD, the estimation upper bounds in Theorems 3 and 4 match the lower
bounds in the literature, (Zhang and Xia, 2018, Theorem 3) and (Zhang et al., 2020a, The-
orem 5), which shows that RGN achieves the minimax optimal rate of estimation error.
Compared to existing algorithms in the literature on tensor regression and SVD (Ahmed
et al., 2020; Chen et al., 2019a; Han et al., 2022b; Zhang and Xia, 2018), RGN is the
first to achieve the minimax rate-optimal estimation error with only a double-logarithmic
number of iterations attributed to its second-order convergence.

Suppose d, r̄ are fixed and the condition number κ is of order Op1q, we note that the
sample size requirement (n ě Op

?
r̄p̄d{2q) in tensor regression and least singular value

requirement (λ{σ ě Opp̄d{4r̄1{4q) in tensor SVD match the start-of-the-arts in literature
(see Table 1 for a comparison). Rigorous evidence has been established to show that
the least singular value lower bounds in tensor SVD are essential for any polynomial-
time algorithm to succeed (Zhang and Xia, 2018; Brennan and Bresler, 2020; Luo and
Zhang, 2022a). Recent studies in Luo and Zhang (2022b); Diakonicolas et al. (2023) have
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presented similar evidence for tensor regression, suggesting that a sample complexity of
Opp̄d{2q is essential for the success of any polynomial-time algorithm.

• (Guarantees of the Spectral Initializations in Tensor Regression and Tensor
SVD.) From the proof of Theorem 3 (46) and Theorem 4 (50), we show the spectral
initializations in tensor regression and tensor SVD have the following guarantees:

– tensor regression:

}X 0 ´X ˚}HS ď Cpdq

¨

˝κrσ

d

řd
k“1 pkrk `

śd
k“1 rk

n
`
pr̄
śd
k“1 pkq

1{2κrσ2

λn

˛

‚, (24)

where Cpdq is some constant depending on d only and rσ :“
b

}A}2HS ` σ
2 ą σ.

– tensor SVD:

}X 0 ´X ˚}HS ď Cpdq

¨

˝κσ

g

f

f

e

d
ÿ

k“1

pkrk `
d
ź

k“1

rk `
pr̄
śd
k“1 pkq

1{2κσ

λ

˛

‚. (25)

Comparing (24) and (25) with (22) and (23), we can see the estimation error guarantees
of the spectral initializations are strictly suboptimal comparing to the ones with iterative
refinement.

5 Computational Complexity of RGN

Next, we investigate the computational complexity of RGN. First, the per-iteration computa-
tional cost for RGN with a general linear map A isOpnpdr`nprd`dprq2q if p1 “ ¨ ¨ ¨ “ pd “ p
and r1 “ ¨ ¨ ¨ “ rd “ r. Here, Opnpdrq and Opnprd ` dprq2q are due to the costs for con-
structing the covariate maps (17) and for solving the least squares problem (18), respectively.
If r, d ! n, p (which is a typical case in practice), the cost of constructing the covariates
maps dominates and the per-iteration cost of RGN is Opnpdrq. Performing T-HOSVD or
ST-HOSVD in Hr can be expensive in general. Since the tensor we apply Hr on lies in the
tangent space of the current iterate and is at most Tucker rank 2r (Lemma 2), the retraction
via T-HOSVD and ST-HOSVD can be performed efficiently (Cai et al., 2020).

A comparison of the per-iteration computational complexity of RGN and several clas-
sic algorithms, including alternating minimization (Alter Mini), projected gradient descent
(PGD), and gradient descent (GD), in tensor regression and tensor SVD examples is provided
in Table 1 in the introduction section. The main complexity of alternating minimization
(Alter Mini) (Zhou et al., 2013; Li et al., 2018) is from constructing the covariates in solving
the least squares and the main complexity of the projected gradient descent (PGD) (Chen
et al., 2019a) and gradient descent (GD) (Han et al., 2022b) are from computing the gradi-
ent. We can see RGN has the same per-iteration complexity as Alter Mini and comparable
complexity with PGD and GD when r ! n, p. In addition, RGN and Alter Mini are tuning-
free, while a proper step size is crucial for PGD and GD to have fast convergence. Finally,
RGN enjoys a second-order convergence as shown in Section 3, while the convergence rates
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of all other algorithms are at most linear. We will further provide a numerical comparison
of these algorithms in Section 6.2.

Furthermore, in specific scenarios where the covariates Ai have more structures, the
procedure of RGN can be simplified and the computational complexity can be reduced. In
Section 4.2, we have already seen RGN can be significantly simplified in tensor SVD. Here
we discuss two additional scenarios: tensor estimation via rank-1 projections and tensor
completion.

• Tensor estimation via rank-1 projections. In this application, Ai “ a
piq
1 ˝ ¨ ¨ ¨ ˝ a

piq
d

and the construction of covariates maps in (17) can be simplified as follows

pABqi “ UtJ
1 a

piq
1 ˝ ¨ ¨ ¨ ˝UtJ

d a
piq
d , pADk

qi “ UtJ
kKa

piq
k pbj‰kU

tJ
j a

piq
j q

JVt
k, k “ 1, . . . , d.

Here Vt
k “ QRpMkpStqJq and St “ X tˆdk“1U

tJ
k . The computational cost for construct-

ing the covariates maps by such a scheme is Opnpp2 ` rdqq, which is much cheaper than
Opnpdrq, the computational cost in the general setting, when d ě 3.

• Tensor completion. We observe a fraction of entries indexed by Ω from the target
tensor. For pi1, . . . , idq P Ω, the corresponding covariate is ei1 ˝ ¨ ¨ ¨ ˝ eid . Then, simple
calculation yields the covariates maps can be calculated as

pABqi “ pU
tJ
1 qr:,i1s˝¨ ¨ ¨˝pU

tJ
d qr:,ids, pADk

qi “ pU
tJ
kKqr:,ikspbj‰kpU

t
jqrij ,:sqV

t
k, k “ 1, . . . , d.

The per-iteration cost for constructing the covariates maps above is Opnprd ` prqq.

6 Numerical Studies on RGN

We consider four specific numerical settings: 1. tensor regression under random design; 2.
tensor estimation via rank-1 projections; 3. tensor completion; 4. tensor SVD. In tensor
regression and tensor estimation via rank-1 projections, we generate the covariates Ai and
a
piq
k with i.i.d. Np0, 1q entries. In tensor completion, partial observations indexed by Ω

are sampled uniformly at random from the noisy tensor Y . In each simulation setting, we
generate εi

i.i.d.
„ Np0, σ2q, tUku

3
k“1 uniformly at random from Op,r, and S P Rrˆrˆr with

i.i.d. Np0, 1q entries; then we calculate X ˚ “ S ˆ1 U1 ˆ2 U2 ˆ3 U3. In tensor SVD,
we also rescale S so that mink“1,2,3 σrkpMkpX ˚qq is equal to a pre-specified value λ. The
implementation details of RGN under each setting have been discussed in Sections 4 and 5.
We apply the following initialization schemes respectively for each problem.

• Tensor regression/Tensor estimation via rank-1 projections: X 0 “ A ˚pyqˆdk“1PU0
k
, where

U0
k “ SVDrkpMkpA

˚pyqqq.

• Tensor completion: Suppose ρ “ |Ω|{p
śd
j“1 pjq is the sampling ratio. Denote

YΩ “

"

Yri1,...,ids, if pi1, . . . , idq P Ω

0, otherwise.

CalculateMkpYΩqMkpYΩq
J, zero out the diagonal entries ofMkpYΩqMkpYΩq

J, let U0
k

be the leading rk singular vectors of the diagonal-zero-out matrixMkpYΩqMkpYΩq
J, and

initialize X 0 “ pYΩ{ρq ˆ
d
k“1 PU0

k
(Xia et al., 2021).
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• Tensor SVD: Initialize X 0 “ Y ˆdk“1 PU0
k
, where U0

k “ SVDrkpMkpYqq.

Throughout the simulation studies, the error metric we consider is the relative root-mean-
squared error (Relative RMSE) }X t ´X ˚}HS{}X ˚}HS. The algorithm is terminated when
it reaches the maximum number of iterations tmax “ 300 or the corresponding error metric
is less than 10´14. Unless otherwise noted, the reported results are based on the averages of
50 simulations and on a computer with Intel Xeon E5-2680 2.5GHz CPU. The code of our
algorithm can be found at https://github.com/yuetianluo/RGN-for-Tensor-Estimation.

6.1 Numerical Performance of RGN

We first examine the convergence rate of RGN in each of the above-mentioned problems. We
set σ “ 1 for tensor SVD and σ P t0, 10´6u in the other three problems. We skip the noiseless
setting of tensor SVD since the initialization via T-HOSVD already achieves exact recovery.
The convergence performance of RGN in tensor regression and tensor completion is presented
in Figure 1 and the performance in tensor estimation via rank-1 projections and tensor SVD
is presented in Figure 2. In tensor regression under random design/rank-1 projections and
tensor completion, the estimation error converges quadratically to the minimum precision
in the noiseless setting and converges quadratically to a limit determined by the noise level
in the noisy setting. In tensor SVD, we observe RGN initialized with T-HOSVD converges
with almost one iteration. We tried several other simulation settings and observe a similar
phenomenon. This suggests that in tensor SVD, RGN may achieve one-step optimality
directly after initialization in estimating X ˚ as discussed in Remark 4. We leave it as future
work to further investigate this phenomenon.
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(b) Tensor SVD: p “ 100, r “ 3.

Figure 2: Convergence performance of RGN in tensor estimation via rank-1 projections and
tensor SVD under spectral initialization.

We note that in many problems, spectral initialization may not be obtainable, and
another common initialization choice for iterative algorithms in practice is random initial-
ization. Next, we illustrate the performance of RGN with random initialization in two
examples: tensor regression and tensor estimation via rank-1 projections. Here we simply
initialize X 0 by i.i.d. standard Gaussian entries and the simulation results are given in Fig-
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ure 3. We can see that RGN can still converge and estimate/recover X ˚ well under random
initialization. However, there are two main differences compared to the convergence of RGN
under spectral initialization: first, we find RGN generally requires a slightly larger sample
size to convergence under random initialization; second, the iterate tends to fluctuate at the
beginning stage before it enters the attraction region and larger sample size seems to make
the algorithm more stable.
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(b) Tensor estimation via rank-1 projections: p “
30, r “ 3

Figure 3: Convergence performance of RGN in tensor regression and tensor estimation via
rank-1 projections under random initialization

6.2 Comparison of RGN with Previous Algorithms

In this subsection, we compare RGN with other existing algorithms, including the Rie-
mannian trust region method (RTR) (Heidel and Schulz, 2018), alternating minimization
(Alter Mini) (Zhou et al., 2013; Li et al., 2018) 1, projected gradient descent (PGD)(Chen
et al., 2019a) and gradient descent (GD) (Han et al., 2022b), in tensor regression. Since the
approximate Riemannian Newton in Kressner et al. (2016) is developed under the setting
where the linear map has additive and Kronecker-product-type structures, we choose not
to compare it here. While implementing GD and PGD, we evaluate three choices of step
size, 1

n ˚ t0.1, 0.5, 1u, then choose the best one following Zheng and Lafferty (2015). We set
p “ 30, r “ 3, n “ 5 ˚ p3{2r and consider both the noiseless case (σ “ 0) and the noisy case
(σ “ 10´6).

We plot the relative RMSE versus iteration number/runtime in both the noiseless and
noisy tensor regression settings in Figures 4 and 5, respectively. In both settings, RGN
converges quadratically, and the Riemannian trust region method is slightly slower than
our method but also has superlinear or quadratic convergence performance. All the other
baseline algorithms converge in a much slower linear rate. To achieve an accuracy of 10´14

in the noiseless setting or the statistical error in the noisy setting, RGN requires a much
smaller runtime than PGD, Alter Mini, and GD.

1. Software package available at Zhou (2017)

22



Second-order Method for Low-rank Tensor Estimation

●●●●●●●●●●●●●●●●●●●●

1e−12

1e−08

1e−04

1e+00

0 5 10 15
Iteration Number

R
el

at
iv

e 
R

M
S

E

● ● ●

1e−12

1e−08

1e−04

1e+00

0.0 2.5 5.0 7.5 10.0
Runtime (s)

R
el

at
iv

e 
R

M
S

E

Algorithm

●
Alter Mini
GD
PGD
RGN
RTR

Figure 4: Relative RMSE of RGN (this work), Riemannian trust region (RTR), alternating
minimization (Alter Mini), projected gradient descent (PGD), and gradient de-
scent (GD) in noiseless tensor regression. Here, p “ 30, r “ 3, n “ 5 ˚p3{2r, σ “ 0.
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Figure 5: Relative RMSE of RGN (this work), Riemannian trust region (RTR), alternating
minimization (Alter Mini), projected gradient descent (PGD) and gradient descent
(GD) in noisy tensor regression. Here, p “ 30, r “ 3, n “ 5 ˚ p3{2r, σ “ 10´6.

6.3 A Real Data Example

In this section, we demonstrate the advantages of our algorithm in the application of high-
order image compression via rank-1 projection (Hao et al., 2020; Cai and Zhang, 2015). We
consider the ADHD-200 dataset that contains magnetic resonance imaging (MRI) data from
both the attention deficit hyperactivity disorder (ADHD) patients and the control group2.
The dataset includes 973 subjects and each subject is associated with a 121-by-145-by-121
MRI image denoted by X . The total storage space for these data through naive format is
121ˆ145ˆ121ˆ973ˆ4B « 7.48GB, which is expensive for both storage and computation.
Our goal is to compress the high-order image data via rank-1 projections and allow for
efficient retrieval from the compressed rank-1 projections. Here for each image, we choose

2. Available at http://neurobureau.projects.nitrc.org/ADHD200/Data.html
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to let X ˚ be the subtensor Xr1:40,1:50,1:40s with size 40ˆ 50ˆ 40. There are two reasons for
this choice: first, this experimental scale is already challenging for other algorithms as it is
unclear how to leverage the rank-1 projection structure efficiently there; second, since the
boundary of an MRI image often contains many zero entries, the selected subtensor has a
low-rank structure. An illustration of singular value decay of three matricizations of one
MRI image is given in Figure 6.
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Figure 6: Illustration of low-rankness of X ˚. Three plots represent the singular values for
MipX ˚q, i “ 1, 2, 3.

Specifically, we generate random vectors tapiq1 ,a
piq
2 ,a

piq
3 u

n
i“1 with i.i.d. standard Gaussian

entries and compute

yi “ xX ˚,a
piq
1 ˝ a

piq
2 ˝ a

piq
3 y, @i “ 1, . . . , n.

We can store y and ta
piq
1 ,a

piq
2 ,a

piq
3 u

n
i“1 in instead of the whole tensor X ˚. If n !

p1p2p3{pmax piq, we can reduce the memory cost from Opp1p2p3q to O pnpp1 ` p2 ` p3qq.
Furthermore, We can apply our algorithm with inputs y and tapiq1 ,a

piq
2 ,a

piq
3 u

n
i“1 to recover

X ˚.
We compare the relative RMSE of our algorithm with the Riemannian trust region

method and the PGD method as these two have the best performance from the last simula-
tion study. We stop the algorithm when the decrease of relative RMSE per iteration is less
than 10´3. The recovery performance of these three algorithms with spectral initialization
for a randomly drawn MRI image is shown in Figure 7. We can see that in this image all three
methods achieve roughly the same relative RMSE, but our algorithm requires significantly
less number of iterations and runtime.

Moreover, we repeat the experiment for randomly drawn 100 MRI images, and then
compare the averaged recovery performance and runtime of these algorithms. The results
are given in Table 2. We can see that on average, our method achieves similar recovery guar-
antees as the Riemannian trust region method but in less runtime. Both these algorithms
achieve better recovery performance than PGD.

7 Conclusion and Discussions

In this paper, we propose a new algorithm, Riemannian Gauss-Newton (RGN), for low
Tucker rank tensor estimation. Under some reasonable assumptions, we show RGN achieves

24



Second-order Method for Low-rank Tensor Estimation

0.2

0.3

0.5

0 20 40 60
Iteration Number

R
el

at
iv

e 
R

M
S

E

0.2

0.3

0.5

0 10 20 30 40 50
Runtime (s)

R
el

at
iv

e 
R

M
S

E

Algorithm
PGD
RGN
RTR

Figure 7: Relative RMSE of RGN (this work), Riemannian trust region (RTR), and pro-
jected gradient descent (PGD) over iteration number and runtime in MRI image
recovery.

Algorithm Relative RMSE Runtime
RGN 0.155p0.0137q 39.2 (6.49)
RTR 0.153p0.0137q 104.9 (17.17)
PGD 0.300p0.2598q 79.5 (48.79)

Table 2: Average relative RMSE and runtime (in second) of RGN (this work), Riemannian
trust region (RTR), and projected gradient descent (PGD) in MRI image recovery.
Mean values with standard deviation in the parenthesis are reported.

a local quadratic convergence and an optimal statistical error rate for low-rank tensor esti-
mation.

There are a number of directions worth exploring in the future. First, our current
convergence theory relies on the TRIP assumption, which may not hold in scenarios, such
as tensor estimation via rank-1 projections and tensor completion. In Section 6.1, we show
via simulation that RGN still works well without TRIP. It is an interesting future work
to establish the “TRIP-less" theoretical guarantees of RGN. Another future direction is to
study the convergence of RGN under random initialization. Some progress has been made on
the convergence of randomly initialized (Riemannian) gradient descent in low-rank matrix
recovery problems (Chen et al., 2019b; Hou et al., 2020). However, it can be much harder
to establish similar results for RGN in low-rank tensor recovery problems.

Second, throughout the applications, we assume the noise is Gaussian distributed. In
the scenarios that the noise is heavy-tailed or the data have outliers (Cai et al., 2022), we
would like to consider using the robust loss (e.g., l1 loss or Huber loss) in (18) instead of
the l2 loss or consider quantile tensor regression (Lu et al., 2020). It is interesting to see
whether RGN work in those settings and can we give some theoretical guarantees there.

Third, this paper mainly focuses on the scalar response and tensor predictor model (1).
In the literature, several papers have also studied the tensor response model (Sun and Li,
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2017; Li and Zhang, 2017), it is interesting to see whether the RGN method can be applied
to that setting.

Finally, we focus on low Tucker rank tensors in this paper. Although the Tucker format
has many advantages, in ultra higher-order tensor problems, the storage cost of the core ten-
sor in the Tucker format scales exponentially with respect to the tensor order and it is more
desirable to consider other low-rank tensor decomposition formats, such as the hierarchical
Tucker decomposition (Grasedyck, 2010; Hackbusch and Kühn, 2009) and tensor-train de-
composition (Oseledets, 2011; Zhou et al., 2022). It is known that the set of fixed hierarchical
rank or tensor-train rank tensors forms a smooth manifold (Uschmajew and Vandereycken,
2013; Hackbusch, 2012; Holtz et al., 2012), so it is interesting to see whether the RGN
algorithms can be established in these settings.
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Appendix A. T-HOSVD and ST-HOSVD

In this section, we present the procedures of truncated HOSVD (T-HOSVD) (De Lathauwer
et al., 2000) and sequentially truncated HOSVD (ST-HOSVD) (Vannieuwenhoven et al.,
2012). For simplicity, we present the sequentially truncated HOSVD with the truncation
order from mode 1 to mode d.

Algorithm 3 Truncated High-order Singular Value Decomposition (T-HOSVD)
Input: Y P Rp1ˆ¨¨¨ˆpd , Tucker rank r “ pr1, . . . , rdq.
1: Compute U0

k “ SVDrkpMkpYqq for k “ 1, . . . , d.
Output: pY “ Y ˆdk“1 PU0

k
.

Algorithm 4 Sequentially Truncated High-order Singular Value Decomposition (ST-
HOSVD)
Input: Y P Rp1ˆ¨¨¨ˆpd , Tucker rank r “ pr1, . . . , rdq.
1: Compute U0

1 “ SVDr1pM1pYqq.
2: for k “ 2, . . . , d do
3: Compute U0

k “ SVDrkpMkpY ˆk´1
l“1 PU0

l
qq.

4: end for
Output: pY “ Y ˆdk“1 PU0

k
.

Appendix B. Proofs

We collect all proofs for the main results in this section. We begin by introducing a few pre-
liminary results and then give the proof for all theorems/corollaries/lemmas in subsections.

First, by Lt defined in (12), we can write the least squares in (18) in the following
compact way

pBt`1, tDt`1
k udk“1q “ arg min

BPRr1ˆ¨¨¨ˆrd ,

DkPRppk´rkqˆrk ,k“1,...,d

›

›

›
y ´A LtpB, tDku

d
k“1q

›

›

›

2

2
. (26)

Also for X PMr and the projector PTX p¨q in (11), we let PpTX qKpZq :“ Z ´ PTX pZq be
the orthogonal complement of the projector PTX .

Next, we introduce a tensorized view of pZ ˆdk“1 U
tJ

k , tU
tJ
kKMkpZqWt

ku
d
k“1q generated

from L˚t pZq (12). For simplicity, denote BZ “ Z ˆdk“1 UtJ

k , DkZ “ UtJ
kKMkpZqWt

k. By
construction, it is convenient to view pBZ , tDkZu

d
k“1q lie in a Tucker rank 2r tensor space

in Rp1ˆ¨¨¨ˆpd and this fact is useful in the proof. In Figure 8, we draw a pictorial illustration
to illustrate how does L˚t pZq look like in a special setting.

By the explanation above, throughout the proof section, we will use the notation
pBt`1, tDt`1

k udk“1q to represent a tensor where Bt`1 and tDt`1
k udk“1 are located in the same

places as BZ and tDkZu
d
k“1 in Rp1ˆ¨¨¨ˆpd , and pBt`1, tDt`1

k udk“1q ´ L˚t pZq denotes the dif-
ference of these two tensors.
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Figure 8: Illustration of pBZ , tDkZu
d
k“1q. Here, we assume UJ

k “ rIrk 0rkˆppk´rkqs, k “
1, 2, 3, for a better visualization. The gray core tensor represents BZ and red,
green, blue blocks represent D1Z ,D2Z and D3Z , respectively.

For any given linear operator L, we use RpLq to denote its range space. The first Lemma
gives the bounds on the spectrum of L˚tA ˚A Lt.

Lemma 6 (Bounds for Spectrum of L˚tA ˚A Lt) Recall the definition of Lt in (12). It
holds that

}LtpZq}HS “ }Z}HS, @Z P RpL˚t q. (27)

Suppose the linear map A satisfies the 2r-TRIP. Then, it holds that for any tensor Z P

RpL˚t q,
p1´R2rq}Z}HS ď }L˚tA ˚A LtpZq}HS ď p1`R2rq}Z}HS. (28)

and
}Z}HS

1`R2r
ď }pL˚tA ˚A Ltq´1pZq}HS ď

}Z}HS

1´R2r
. (29)

Proof. Equation (27) can be directly verified from definitions of Lt and L˚t in (12) and the
orthogonality for each component in L˚t . (29) follows from (28) by the relationship of the
spectrum of an operator and its inverse, so we just need to show (28).

The second claim is equivalent to say the spectrum of L˚tA ˚A Lt is lower and upper
bounded by 1´R2r and 1`R2r, respectively, forZ P RpL˚t q. Since L˚tA ˚A Lt is a symmetric
operator, its spectrum can be upper bounded by supZPRpL˚t q,}Z}HS“1xZ,L˚tA ˚A LtpZqy and
lower bounded by infZPRpL˚t q,}Z}HS“1xZ,L˚tA ˚A LtpZqy. Also

sup
ZPRpL˚t q,}Z}HS“1

xZ,L˚tA ˚A LtpZqy “ sup
ZPRpL˚t q,}Z}HS“1

}A LtpZq}2HS

paq
ď 1`R2r

inf
ZPRpL˚t q,}Z}HS“1

xZ,L˚tA ˚A LtpZqy “ inf
ZPRpL˚t q,}Z}HS“1

}A LtpZq}2HS

paq
ě 1´R2r.

Here (a) is by the TRIP condition for A , LtpZq is at most Tucker rank 2r and (27). �
By assuming TRIP for A , Lemma 6 shows the linear operator L˚tA ˚A Lt is always

invertible over RpL˚t q (i.e. the least squares (18) has the unique solution).
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Next let us take a detailed look at the error in the least squares in (18). To have a better
understanding of this least squares, let us rewrite yi in the following way

yi “ xAi,X ˚y ` εi

“ xAi, PTX tX ˚y ` xAi, PpTX t qK
X ˚y ` εi

“ xL˚tAi,L˚tX ˚y
loooooooomoooooooon

paq

`xAi, PpTX t qK
X ˚y ` εi

looooooooooooomooooooooooooon

pbq

“ xL˚tAi,L˚tX ˚y ` εti.

(30)

Here εt :“ A pPpTX t qK
X ˚q ` ε. (30) can be viewed as the partial linear regression model

we considered in performing the least squares in (18). In the first expression (a) on the
right-hand side of (30), we have the covariates L˚t pAiq and (b) is the residual in the new
partial linear model. Thus, we can see that the estimating target of pBt`1, tDt`1

k udk“1q is
L˚tX ˚ and its estimation error is given in the following Lemma.

Lemma 7 (Least Squares Error in RGN) Recall the definition of εt “

A pPpTX t qK
X ˚q ` ε from (30). If the operator L˚tA ˚A Lt is invertible over RpL˚t q,

then pBt`1, tDt`1
k udk“1q in (18) satisfy

pBt`1, tDt`1
k udk“1q ´ L˚tX ˚ “ pL˚tA ˚A Ltq´1L˚tA ˚εt, (31)

and
}pBt`1, tDt`1

k udk“1q ´ L˚tX ˚}HS “
›

›pL˚tA ˚A Ltq´1L˚tA ˚εt
›

›

HS
. (32)

Proof. First by the decomposition of (30), we have

y “ A LtL˚t pX ˚q ` εt. (33)

In view of (26), if the operator L˚tA ˚A Lt is invertible, the output of least squares in (18)
satisfies

pBt`1, tDt`1
k udk“1q “ pL˚tA ˚A Ltq´1L˚tA ˚y “ L˚t pX ˚q ` pL˚tA ˚A Ltq´1L˚tA ˚εt,

where the second equality is due to (33). This finishes the proof. �
Next, we begin the proof for the main results in the paper one by one.

B.1 Proof of Lemma 1

To show the tangent space representation in Lemma 1 is equivalent to the tangent space
representation in literature (9), we just need to find a one-to-one correspondence between
D̄k and Dk in two representations as the B is the same in both representations. Given
D̄k P Rpkˆrk and D̄J

kUk “ 0, we have D̄k “ UkKM for some M P Rppk´rkqˆrk . So

MkpS ˆk D̄k ˆi‰k Uiq
(8)
“ UkKMMkpSqpb1

i“d,i‰kUiq
J paq“ UkKMRJWJ

k .

Here (a) is because Vk “ QRpMkpSqJq andMkpSq “ VkR for some invertible R P Rrkˆrk
matrix. Thus, we can see that Dk “ MRJ in the new representation. Similarly, given
Dk P Rppk´rkqˆrk ,

TkpUkKDkW
J
k q “ TkpUkKDkpR

Jq´1RJVJ
k pb

1
i“d,i‰kUiq

Jq
(8)
“ SˆkUkKDkpR

Jq´1ˆi‰kUi.

So D̄k “ UkKDkpR
Jq´1 and this finishes the proof. �
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B.2 Proof of Lemma 2

Suppose Z P TXMr and it has representation Bˆdk“1Uk`
řd
k“1 TkpUkKDkW

J
k q for some B

and tDku
d
k“1. To prove the result, it is enough to show rankpMkpZqq ď 2rk for k “ 1, . . . , d.

Let us show this is true for k “ 1 and the proof for other modes is similar.
Let Vk be the tensorzied VJ

k such thatMkpVkq “ VJ
k . Recall the definition of Wk in

(10), we have TkpUkKDkW
J
k q “ Vk ˆl‰k Ul ˆk UkKDk. So

M1pZq “ U1

˜

M1pB ˆk‰1 Ukq `

d
ÿ

k“2

M1pVk ˆUkKDk ˆl‰1,k Ulq

¸

`U1KD1M1pV1ˆk‰1Ukq.

(34)
Since B P Rr1ˆ¨¨¨ˆrd ,D1 P Rpp1´r1qˆr1 , each matrix on the right hand side of (34) is of rank
at most r1. ThusM1pZq is at most rank 2r1. This finishes the proof. �

B.3 Proof of Proposition 1

In view of the Riemannian Gauss-Newton equation in (13) and the Riemannian gradient in
Lemma 3, to prove the claim, we only need to show

PTX t pA
˚pA pZt`1q ´ yqq “ 0. (35)

Here we replace ηRNG by Zt`1 ´X t.
From the optimality condition of the least squares problem (14), we know that the least

squares solution Zt`1 satisfies

PTX tA
˚
`

A PTX t pZt`1q ´ y
˘

“ 0. (36)

Since Zt`1 lies in TX tMr, PTX t pZt`1q “ Zt`1. Hence, (36) implies (35). �

B.4 Proof of Theorem 1

In this section, we prove our main theorem. This section is divided into two subsections.
In the first subsection, we introduce two key Lemmas in proving the results. In the second
subsection, we prove the main results.

B.4.1 Key Lemmas

The first Lemma gives an upper bound for the distance of pBt`1, tDt`1
k udk“1q to their target

L˚tX ˚ in (32).

Lemma 8 (Upper Bound for the Least Squares Estimation Error) Let εt “

A pPpTX t qK
X ˚q ` ε. Suppose that A satisfies the 3r-TRIP. Then at tth iteration of RGN,

the approximation error (32) has the following upper bound:

›

›pL˚tA ˚A Ltq´1L˚tA ˚εt
›

›

HS
ď
R3r}PpTX t qK

X ˚}HS

1´R2r
`
}pA ˚pεqqmaxp2rq}HS

1´R2r
. (37)
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Proof. Since A satisfies 3r-TRIP, R2r ď R3r ă 1. Then, Lemma 6’s assumption holds and
L˚tA ˚A Lt is invertible over RpL˚t q.

›

›pL˚tA ˚A Ltq´1L˚tA ˚εt
›

›

HS

Lemma 6
ď

1

1´R2r
}L˚tA ˚εt}HS

paq
“

1

1´R2r
}L˚tA ˚pA pPpTX t qK

X ˚q ` εq}HS

pbq
ď

1

1´R2r

´

}L˚tA ˚A pPpTX t qK
X ˚q}HS ` }pA

˚pεqqmaxp2rq}HS

¯

pcq
ď
R3r}PpTX t qK

X ˚}HS

1´R2r
`
}pA ˚pεqqmaxp2rq}HS

1´R2r
,

here (a) is by the definition of εt; (b) is by triangle inequality and L˚t pA ˚pεqq is of at most
Tucker rank 2r as we discussed before; (c) is because

}L˚tA ˚A pPpTX t qK
X ˚q}HS “ sup

Z:}Z}HSď1
xL˚tA ˚A pPpTX t qK

X ˚q,Zy

“ sup
Z:}Z}HSď1

xA pPpTX t qK
X ˚q,A LtpZqy

paq
ď sup

Z:}Z}HSď1
R3r}PpTX t qK

X ˚}HS}LtpZq}HS

pbq
ďR3r}PpTX t qK

X ˚}HS.

Here (a) is due to Lemma 10, xPpTX t qK
X ˚,LtpZqy “ 0, PpTX t qK

X ˚ and LtpZq are of Tucker
rank at most r and 2r, respectively; (b) is because }LtpZq}HS ď }Z}HS ď 1. �

The following Lemma plays a key role in showing the quadratic convergence of RGN.

Lemma 9 (Projection of X ˚ on PpTX t qK
) For any two order-d Tucker rank r :“

pr1, . . . , rdq tensors X ˚,X t P Rp1ˆ¨¨¨ˆpd , we have

}PpTX t qK
X ˚}HS ď

d}X t ´X ˚}2HS

λ
,

where λ :“ mink“1,...,d σrkpMkpX ˚qq.

Proof. Suppose X t and X ˚ have Tucker rank r decomposition JSt;Ut
1, . . . ,U

t
dK and

JS;U1, . . . ,UdK, respectively. Recall

Wk :“ pUd b ¨ ¨ ¨ bUk`1 bUk´1 b . . .bU1qVk P Op´k,rk

in (10), where Vk “ QRpMkpSqJq. Similarly we have Wt
k for X t. For X ˚, it can be

decomposed in the following way

X ˚ “X ˚ ˆ1 PUt
1K
`X ˚ ˆ1 PUt

1
ˆ2 PUt

2K
` ¨ ¨ ¨ `X ˚ ˆ

k´1
l“1 PUt

l
ˆk PUt

kK
` ¨ ¨ ¨ `X ˚ ˆdl“1 PUt

l

“

d
ÿ

k“1

X ˚ ˆ
k´1
l“1 PUt

l
ˆk PUt

kK
`X ˚ ˆdl“1 PUt

l

(38)
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Then

PpTX t qK
X ˚ “X ˚ ´ PTX tX ˚

(11)
“ X ˚ ´ pX ˚ ˆdk“1 PUt

k
`

d
ÿ

k“1

TkpPUt
kK
MkpX ˚qPWt

k
qq

(38)
“

d
ÿ

k“1

´

X ˚ ˆ
k´1
l“1 PUt

l
ˆk PUt

kK
´ TkpPUt

kK
MkpX ˚qPWt

k
q

¯

(8)
“

d
ÿ

k“1

´

Tk
´

PUt
kK
MkpX ˚qpb

k`1
l“d Ipl b

1
l“k´1 PUt

l
´ PWt

k
q

¯¯

paq
“

d
ÿ

k“1

´

Tk
´

pPUk
´ PUt

k
qMkpX ˚qpb

k`1
l“d Ipl b

1
l“k´1 PUt

l
´ PWt

k
q

¯¯

pbq
“

d
ÿ

k“1

´

Tk
´

pPUk
´ PUt

k
qMkpX ˚ ´X tqpb

k`1
l“d Ipl b

1
l“k´1 PUt

l
´ PWt

k
q

¯¯

,

(39)

here (a) is because the Uk spans the column space of MkpX ˚q, (b) is because
MkpX tqpb

k`1
l“d Ipl b

1
l“k´1 PUt

l
´ PWt

k
q “ 0.

It is easy to check bk`1
l“d Ipl b

1
l“k´1 PUt

l
´ PWt

k
is a projection matrix. So from (39), we

have

}PpTX t qK
X ˚}HS ď

d
ÿ

k“1

}Tk
´

pPUk
´ PUt

k
qMkpX ˚ ´X tqpb

k`1
l“d Ipl b

1
l“k´1 PUt

l
´ PWt

k
q

¯

}HS

ď

d
ÿ

k“1

}pX ˚ ´X tq ˆk pPUk
´ PUt

k
q}HS

ďd}X ˚ ´X t}HS max
k“1,...,d

}PUk
´ PUt

k
}

paq
ď
d}X t ´X ˚}2HS

λ
,

here (a) is due to the matrix subspace perturbation bound }PUk
´ PUt

k
} ď

}MkpX˚q´MkpX tq}

σrk pMkpX˚qq
ď
}MkpX˚q´MkpX tq}F

σrk pMkpX˚qq
“

}X˚´X t}HS

σrk pMkpX˚qq
(for example see Lemma 4.2 of Wei

et al. (2016)). This finishes the proof of this Lemma. �

We note a similar result to Lemma 9 appears in Lemma 5.2 of Cai et al. (2020) and here
we have exponential improvement on the dependence of d.

B.4.2 Proof of Theorem 1

Now we prove the main results. First, notice the convergence result in the noiseless setting
follows easily from the noisy setting by setting ε “ 0. Suppose Hr satisfies the quasi-
projection property with approximation constant δpdq. For notation simplicity, let us denote
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X t`0.5 :“ Zt`1 “ LtpBt`1, tDt`1
k udk“1q “ Bt`1 ˆdk“1 U

t
k `

řd
k“1 TkpUt

kKD
t`1
k WtJ

k q.

}X t`1 ´X ˚}HS “}HrpX t`0.5q ´X ˚}HS

ď}HrpX t`0.5q ´X t`0.5}HS ` }X t`0.5 ´X ˚}HS

paq
ďδpdq}PMrpX t`0.5q ´X t`0.5}HS ` }X t`0.5 ´X ˚}HS

pbq
ďpδpdq ` 1q}X t`0.5 ´X ˚}HS

“pδpdq ` 1q}LtpBt`1, tDt`1
k udk“1q ´ PTX tX ˚ ´ PpTX t qK

X ˚}HS

pcq
ďpδpdq ` 1q

´

}LtpBt`1, tDt`1
k udk“1q ´ PTX tX ˚}HS ` }PpTX t qK

X ˚}HS

¯

Lemma 6
“ pδpdq ` 1q

´

}pBt`1, tDt`1
k udk“1q ´ L˚t pX ˚q}HS ` }PpTX t qK

X ˚}HS

¯

(40)

here (a) is by the quasi-projection property ofHr; (b) is by the projection property of PMrp¨q;
(c) is by triangle inequality.

Notice that by the 3r-TRIP assumption of A , the assumptions in Lemma 7 and 8 are
satisfied. By Lemma 7, 8 and 9, the right hand side of (40) can be bounded as follows

}X t`1 ´X ˚}HS

Lemma 7,8
ď pδpdq ` 1q

ˆ

p1`
R3r

1´R2r
q}PpTX t qK

X ˚}HS `
}pA ˚pεqqmaxp2rq}HS

1´R2r

˙

Lemma 9
ď dpδpdq ` 1qp

R3r

1´R2r
` 1q

}X t ´X ˚}2HS

λ
`
δpdq ` 1

1´R2r
}pA ˚pεqqmaxp2rq}HS.

Finally, the convergence is guaranteed under the initialization condition. By taking δpdq “?
d, we finish the proof of this Theorem. �

B.5 Proof of Corollary 1

Recall from Theorem 1, we have

}X t`1 ´X ˚}HS ď dpδpdq ` 1qp
R3r

1´R2r
` 1q

}X t ´X ˚}2HS

λ
looooooooooooooooooooooooomooooooooooooooooooooooooon

pA1q

`
δpdq ` 1

1´R2r
}pA ˚pεqqmaxp2rq}HS

looooooooooooooooomooooooooooooooooon

pA2q

.

Notice, in the first phase, (A1) dominates (A2) and in the second phase (A2) dominates
(A1) and the two-phase convergence results follow.

By induction, it is easy to show under the initialization condition, in the first phase we
have

}X t ´X ˚}HS ď 2´2t}X 0 ´X ˚}HS.

When t ě Tmax indicated in the Theorem, the algorithm enters the second phase and
}X t ´X ˚}HS ď

2pδpdq`1q
1´R2r

}pA ˚pεqqmaxp2rq}HS. Combining phases 1 and 2, we have

}X t ´X ˚}HS ď 2´2t}X 0 ´X ˚}HS `
2pδpdq ` 1q

1´R2r
}pA ˚pεqqmaxp2rq}HS

for all t. By taking δpdq “
?
d, we finish the proof. �
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B.6 Proof of Theorem 2

The proof is done by construction. We consider a very special setting where A pZq “
vecpZq, and here vecpZq denotes the vectorization of Z. This can be viewed as the tensor
decomposition setting and we can tensorize model (1) and getY “ X ˚`E . It is easy to verify
A satisfies the TRIP condition and here ξ “ }Emaxp2rq}HS. Let us denote r “ mink“1,...,d rk
and Ir P Rrˆrˆ¨¨¨ˆr as the order-d identity tensor with entries pi, i, . . . , iq to be 1 and others
are 0. We construct

E1 “
ξ
?
r
Ir ˆ1

¨

˝

0rˆr
Ir

0pp1´2rqˆr

˛

‚ˆ ¨ ¨ ¨ ˆd

¨

˝

0rˆr
Ir

0ppd´2rqˆr

˛

‚,

where 0mˆn denotes a mˆ n matrix with all entries to be 0.
It is easy to check that }pE1qmaxp2rq}HS “ ξ. Similarly, we construct

X1 “
ξ
?
r
Ir ˆ1

¨

˝

Ir
0rˆr

0pp1´2rqˆr

˛

‚ˆ ¨ ¨ ¨ ˆd

¨

˝

Ir
0rˆr

0ppd´2rqˆr

˛

‚.

Also we let E2 “ X1 and X2 “ E1, and it is easy to check pA , vecpX1q, vecpE1qq P Frpξq
and pA , vecpX2q, vecpE2qq P Frpξq. At the same time, we have E1 `X1 “ X2 ` E2. Thus

inf
xX

sup
p ĂA ,ĂX ,rεqPFrpξq

} pX ´ rX }HS ě inf
xX

max
!

} pX ´X1}HS, } pX ´X2}HS

)

ě
1

2

´

} pX ´X1}HS ` } pX ´X2}HS

¯

ě
1

2
}X1 ´X2}HS “

?
2

2
ξ.

�

B.7 Proof of Lemma 5

Note that in the tensor decomposition model, the map A can be viewed as an identity map,
and we have the tensorized model Y “ X ˚ ` E . The objective function of the least squares
in (18) can be written in the following way

}Y ´B ˆdk“1 U
t
k ´

d
ÿ

k“1

TkpUt
kKDkW

tJ
k q}

2
HS

“}Y ´ LtpB, tDku
d
k“1q}

2
HS

paq
“}PTX tY ´ LtpB, tDku

d
k“1q}

2
HS ` }PpTX t qK

Y}2HS

“}LtpL˚t pYq ´ pB, tDku
d
k“1qq}

2
HS ` }PpTX t qK

Y}2HS

(41)

here (a) is because PTX tY and LtpB, tDku
d
k“1q lie in the tangent space ofX t, while PpTX t qK

Y
lies in the orthogonal complement of the tangent space of X t.

Thus, to minimize the loss function, we just need to minimize the first term on the right-
hand side of (41) and it is easy to see the minimizer is obtained when pBt`1, tDt`1

k udk“1q is
equal to L˚t pYq. The results follow by the definition of L˚t in (12). �
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B.8 Proof of Theorem 3

First the 3r-TRIP condition for A holds when n ě Cpr̄d`dp̄r̄q{R2
3r by (Rauhut et al., 2017,

Theorem 2). Denote rσ2 “ }A}2HS ` σ2, we claim with probability at least 1 ´ ccp´C , the
following inequalities hold:

›

›sin ΘpU0
k,Ukq

›

› “ }U0J
kKUk} ď

a

pk{nrσλ` p
śd
k“1 pkq

1{2
rσ2{n

λ2

}pA ˚pεqqmaxp2rq}HS ď Cσ

d

řd
k“1 rkpk `

śd
k“1 rk

n
.

(42)

Here the first result holds when n ě cpdqp}X ˚}2HS ` σ2q
p̄d{2

λ2
by the proof of Theorem 4 in

Zhang et al. (2020a) and the second result is by Lemma 12.
Since X 0 “ pA ˚pA pX ˚q ` εqq ˆdk“1 PU0

k
, by Lemma 11, we have

›

›X 0 ´X ˚
›

›

HS
ď

›

›

›
pA ˚A pX ˚q ´X ˚ `A ˚pεqq ˆdk“1 PU0

k

›

›

›

HS
`

d
ÿ

k“1

›

›U0J
kKMkpX ˚q

›

›

F
.

For k “ 1, . . . , d
›

›U0J
k MkpX ˚q

›

›

F
“}U0J

kKUkU
J
kMkpX ˚q}F

ď}U0J
kKUk}F }U

J
kMkpX ˚q}

(47)
ď

a

pkrk{nrσλ` prk
śd
k“1 pkq

1{2
rσ2{n

λ2 λ̄.

Moreover,
›

›

›
pA ˚A pX ˚q ´X ˚ `A ˚pεqq ˆdk“1 PU0

k

›

›

›

HS

ď}pA ˚A pX ˚q ´X ˚q ˆdk“1 PU0
k
}HS ` }A

˚pεq ˆdk“1 PU0
k
}HS.

(43)

Notice that by Lemma 12, with probability at least 1´ expp´Cpq, we have

}A ˚pεq ˆdk“1 PU0
k
}HS ď

›

›pA ˚pεqqmaxp2rq

›

›

HS
ď C 1σ

d

řd
k“1 rkpk `

śd
k“1 rk

n
. (44)

In addition
}pA ˚A pX ˚q ´X ˚q ˆdk“1 PU0

k
}HS “ sup

Z:}Z}HS“1
xpA ˚A pX ˚q ´X ˚q ˆdk“1 PU0

k
,Zy

“ sup
Z:}Z}HS“1

xpA ˚A pX ˚q ´X ˚q,Z ˆdk“1 PU0
k
y

ď sup
Z:}Z}HS“1

|xA pX ˚q,A pZ ˆdk“1 PU0
k
qy ´ xX ˚,Z ˆdk“1 PU0

k
y|

Lemma 10
ď sup

Z:}Z}HS“1
R2r}X ˚}HS}Z ˆdk“1 PU0

k
}HS

ď R2r}X ˚}HS ď C

d

řd
k“1 rkpk `

śd
k“1 rk

n
}X ˚}HS,

(45)
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where the last inequality uses the fact R2r is of order
b

řd
k“1 rkpk`

śd
k“1 rk

n by (Rauhut et al.,
2017, Theorem 2).

By plugging (44), (45) into (43), we have

}X 0 ´X ˚}HS ď Cpdq

¨

˝κ
d
ÿ

k“1

c

pkrk
n

rσ `

d

śd
k“1 rk
n

pσ ` }X ˚}HSq `
pr̄
śd
k“1 pkq

1{2κrσ2

λn

˛

‚

ď Cpdq

¨

˝κrσ

d

řd
k“1 pkrk `

śd
k“1 rk

n
`
pr̄
śd
k“1 pkq

1{2κrσ2

λn

˛

‚.

(46)

Since the sample complexity in satisfying TRIP is smaller than the sample complexity
needed in initialization (42), overall when n ě cpdqp}X ˚}2HS ` σ

2q
κ2
?
r̄p̄d{2

λ2
and r̄ ď p1{2, we

have the initialization condition in Theorem 1 is satisfied. Then by Corollary 1 and the
upper bound of }pA ˚pεqqmaxp2rq}HS in (42), when

tmax ě Cpdq log log

¨

˝

λ
?
n

σ
b

řd
k“1 rkpk `

śd
k“1 rk

˛

‚,

we have

}X tmax ´X ˚}HS ď cp
?
d` 1qσ

g

f

f

e

˜

d
ÿ

k“1

rkpk `
d
ź

k“1

rk

¸

{n.

�

B.9 Proof of Theorem 4

As we have mentioned in this setting, A satisfies TRIP with R2r “ 0, R3r “ 0 and here
}pA ˚pεqqmaxp2rq}HS “ }Emaxp2rq}HS where E is the noise in the tensorized model. Without
loss of generality, we assume σ “ 1.

First, we claim with probability at least 1´Cexpp´cpq, the following inequalities hold:

›

›sin ΘpU0
k,Ukq

›

› “ }U0J
kKUk} ď

?
pkλ` p

śd
k“1 pkq

1{2

λ2

}Emaxp2rq}HS ď C

g

f

f

e

d
ÿ

k“1

rkpk `
d
ź

k“1

rk.

(47)

Here the first result holds when λ ě cpdqκp̄d{4r̄1{4 by the proof of Theorem 1 in Zhang and
Xia (2018) and the second result is by Lemma 12.

Since X 0 “ Y ˆdk“1 PU0
k
, by Lemma 11, we have

›

›X 0 ´X ˚
›

›

HS
ď

›

›

›
E ˆdk“1 PU0

k

›

›

›

HS
`

d
ÿ

k“1

›

›U0J
kKMkpX ˚q

›

›

F
. (48)
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For k “ 1, . . . , d

›

›U0J
k MkpX ˚q

›

›

F
“}U0J

kKUkU
J
kMkpX ˚q}F

ď}U0J
kKUk}F }U

J
kMkpX ˚q}

(47)
ď

?
pkrkλ` prk

śd
k“1 pkq

1{2

λ2 λ̄.

(49)

Notice
›

›

›
E ˆdk“1 PU0

k

›

›

›

HS
ď }Emaxp2rq}HS by definition of }p¨qmaxp2rq}HS, combining (47) and

(49), from (48), we have

}X 0 ´X ˚}HS ď Cpdq

˜

κ
d
ÿ

k“1

?
pkrk ` p

d
ź

k“1

rkq
1{2 `

pr̄
śd
k“1 pkq

1{2κ

λ

¸

. (50)

Notice, when λ ě cpdqκp̄d{4r̄1{4 and r̄ ď p1{2, we have the initialization condition in
Theorem 1 is satisfied. Then by Corollary 1 and the upper bound of }Emaxp2rq}HS in (47),
when

tmax ě Cpdq log log

¨

˝

λ
b

řd
k“1 rkpk `

śd
k“1 rk

˛

‚,

we have

}X tmax ´X ˚}HS ď 2p
?
d` 1q

g

f

f

e

d
ÿ

k“1

rkpk `
d
ź

k“1

rk.

�

Appendix C. Additional Proofs and Lemmas

Proof of Lemma 4. The proof is similar to the proof of (Kressner et al., 2014, Proposition
2.3). Recall retraction R is a smooth map from TMr to Mr that satisfies

• Property i) RpX , 0q “ X ;

• Property ii) d
dtRpX , tηq|t“0 “ η for all X PMr and η P TXMr.

We begin by checking the smoothness of ST-HOSVD. For any tensor Y , let tU0
ku
d
k“1

be the mode-k singular vectors computed in the ST-HOSVD algorithm. Let D1 denotes
the collection of tensors whose mode-1 matricization has a nonzero singular gap between
the r1th and pr1 ` 1qth singular values, and let Dk be collection of tensors Y such that
MrkpY ˆ

k´1
l“1 PU0

l
q has a nonzero singular gap between the rkth and prk ` 1qth singular

values. Let PU0
k
be a projection operator in the tensor space such that PU0

k
Y “ Y ˆk PU0

k
.

From standard results in matrix perturbation theory (Chern and Dieci, 2001), PU0
k
is smooth

and well-defined on Dk. Since X is contained in all Dk for k “ 1, . . . , d and is a fixed point of
every PU0

k
, we can construct an open neighborhood D of X such that PU0

1
˝¨ ¨ ¨˝PU0

d
D Ď Dk

for all k (here “˝” is the composition of the projection operator). The smoothness of ST-
HOSVD is implied by the chain rule.
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Next, we check the two properties of retraction. Property i) is clear as X P Mr. For
Property ii), because the tangent space TXMr is a first-order approximation of Mr around
η, we have }pX ` tηq ´ PMrpX ` tηq} “ Opt2q as t Ñ 0. Thus, by the quasi-projection
property of ST-HOSVD (Hackbusch, 2012, Chapter 10), we have

}pX ` tηq ´ ST-HOSVDpX ` tηq} ď
?
d}pX ` tηq ´ PMrpX ` tηq} “ Opt2q.

Hence, RpX ` tηq “ pX ` tηq `Opt2q and d
dtRpX , tηq|t“0 “ η. This has finished the proof.

�
Proof of Lemma 3. Since Mr is an embedded submanifold of Rp1ˆ¨¨¨ˆpd , from (Absil
et al., 2009, (3.37)), we have the result. �

Lemma 10 (Tensor Restricted Orthogonal Property) Let Z1,Z2 P Rp1ˆ¨¨¨ˆpd be two
low Tucker rank tensors with TucrankpZ1q “ r1 :“ pr1, . . . , rdq, TucrankpZ2q “ r2 :“
pr11, . . . , r

1
dq. If A satisfies the pr1 ` r2q-TRIP condition, hen we have

|xA pZ1q,A pZ2qy ´ xZ1,Z2y| ď Rr1`r2}Z1}HS}Z2}HS. (51)

In particular, if xZ1,Z2y “ 0, we have

|xA pZ1q,A pZ2qy| ď Rr1`r2}Z1}HS}Z2}HS.

Proof. The proof for the matrix version of this result can be found in (Candès and Plan,
2011, Lemma 3.3) and here we present the proof in the tensor setting. Without loss of
generality, assume }Z1}HS “ 1, }Z2}HS “ 1. Notice that Z1 `Z2 is of at most Tucker rank
r1`r2 as the matricization of Z1`Z2 on each mode k is of at most rank rk` r1k. Similarly,
Z1 ´Z2 is also at most Tucker rank r1 ` r2. By the TRIP of A , we have

2p1´Rr1`r2q ˘ 2p1´Rr1`r2qxZ1,Z2y “ p1´Rr1`r2q}Z1 ˘Z2}
2
HS ď }A pZ1 ˘Z2q}

2
HS

2p1`Rr1`r2q ˘ 2p1`Rr1`r2qxZ1,Z2y “ p1`Rr1`r2q}Z1 ˘Z2}
2
HS ě }A pZ1 ˘Z2q}

2
HS.

Then we have

xA pZ1q,A pZ2qy “
1

4

`

}A pZ1 `Z2q}
2
HS ´A pZ1 ´Z2q}

2
HS

˘

ď Rr1`r2 ` xZ1,Z2y

xA pZ1q,A pZ2qy “
1

4

`

}A pZ1 `Z2q}
2
HS ´A pZ1 ´Z2q}

2
HS

˘

ě ´pRr1`r2 ` xZ1,Z2yq.

Finally, we have
|xA pZ1q,A pZ2qy ´ xZ1,Z2y| ď Rr1`r2 .

�

Lemma 11 (Tensor Estimation from Projection) Given two order-d tensors Y ,X P

Rp1ˆ¨¨¨ˆpd . Suppose U0
k P Opk,rk , then

›

›

›
Y ˆdk“1 PU0

k
´X

›

›

›

HS
ď

›

›

›
pY ´X q ˆ1 PU0

1
ˆ ¨ ¨ ¨ ˆd PU0

d

›

›

›

HS
`

d
ÿ

k“1

›

›U0J
kKMkpX q

›

›

F
.
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Proof. First, notice the following decomposition

X “X ˆ1 PU0
1
ˆ ¨ ¨ ¨ ˆd PU0

d
`X ˆ1 PU0

1K
ˆ2 PU0

2
ˆ ¨ ¨ ¨ ˆd PU0

d

`X ˆ1 Ip1 ˆ2 PU0
2K
ˆ ¨ ¨ ¨ ˆd PU0

d
`X ˆ1 Ip1 ˆ2 Ip2 ˆ3 PU0

3K
¨ ¨ ¨ ˆd PU0

d

` . . .`X ˆ
d´1
i“1 Ipi ˆd PU0

dK

“X ˆ1 PU0
1
ˆ ¨ ¨ ¨ ˆd PU0

d
`

d
ÿ

k“1

X ˆ
k´1
i“1 Ipi ˆk PU0

kK
ˆdi“k`1 PU0

i
.

Thus,
›

›

›
Y ˆ1 PU0

1
ˆ ¨ ¨ ¨ ˆd PU0

d
´X

›

›

›

HS

ď

›

›

›
pY ´X q ˆ1 PU0

1
ˆ ¨ ¨ ¨ ˆd PU0

d

›

›

›

HS
`

d
ÿ

k“1

›

›

›
X ˆ

k´1
i“1 Ipi ˆk PU0

kK
ˆdi“k`1 PU0

i

›

›

›

HS

ď

›

›

›
pY ´X q ˆ1 PU0

1
ˆ ¨ ¨ ¨ ˆd PU0

d

›

›

›

HS
`

d
ÿ

k“1

›

›U0J
kKMkpX q

›

›

F
.

�

Lemma 12 (Concentration of the Noise) Suppose E P Rp1ˆ¨¨¨ˆpd and it has i.i.d.
Np0, 1q entries. Then with probability at least 1´ expp´Cpq (p :“ mink“1,...,d pk), we have

›

›Emaxp2rq

›

›

HS
ď C 1

g

f

f

e

d
ÿ

k“1

rkpk `
d
ź

k“1

rk,

for some C 1 ą 0.
Suppose A P Rp1ˆ¨¨¨ˆpd Ñ Rn is a linear map in (2) and its covariates Ai are inde-

pendent and has i.i.d. Np0, 1
nq entries, and εi

i.i.d.
„ Np0, σ

2

n q. Then with probability at least
1´ expp´Cpq, we have

›

›pA ˚pεqqmaxp2rq

›

›

HS
ď C 1σ

d

řd
k“1 rkpk `

śd
k“1 rk

n
,

for some C 1 ą 0.

Proof. The first result is proved in Lemma 5 of Zhang and Xia (2018) in d “ 3 case and it
can be easily generalized to order-d setting.

For the second result, recall
›

›pA ˚pεqqmaxp2rq

›

›

HS
“ sup

UkPOpk,2rk
,k“1,...,d

}A ˚pεq ˆdk“1 PUk
}HS

“ sup
UkPOpk,2rk

,k“1,...,d
sup

Z:}Z}HSď1
xZ,A ˚pεq ˆdk“1 PUk

y

“ sup
UkPOpk,2rk

,k“1,...,d
sup

Z:}Z}HSď1
xZ ˆdk“1 PUk

,A ˚pεqy.
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It was proved in Theorem 4.2 of Han et al. (2022b) that

sup
UkPOpk,2rk

,k“1,...,d
sup

Z:}Z}HSď1
xZ ˆdk“1 PUk

,A ˚pεqy ď 4σ

d

řd
k“1 rkpk `

śd
k“1 rk

n

holds with probability at least 1´ expp´Cpq when d “ 3. It is straightforward to extend to
the order-d case. For simplicity, we omit the proof here. �
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