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Abstract

We develop a method for understanding specific predictions made by (global) predictive
models by constructing (local) models tailored to each specific observation (these are also
called “explanations” in the literature). Unlike existing work that “explains” specific obser-
vations by approzimating global models in the vicinity of these observations, we fit models
that are globally-consistent with predictions made by the global model on past data. We
focus on rule-based models (also known as association rules or conjunctions of predicates),
which are interpretable and widely used in practice. We design multiple algorithms to
extract such rules from discrete and continuous datasets, and study their theoretical prop-
erties. Finally, we apply these algorithms to multiple credit-risk models trained on the
Explainable Machine Learning Challenge data from FICO and demonstrate that our ap-
proach effectively produces sparse summary-explanations of these models in seconds. Our
approach is model-agnostic (that is, can be used to explain any predictive model), and
solves a minimum set cover problem to construct its summaries.

Keywords: Explainable Artificial Intelligence (XAI), Local Explanations, Interpretabil-
ity, Credit Risk

1. Introduction

As the use of predictive models for high-stakes or other important decisions in society is on
the rise, it has become apparent that flaws in these models, or even a flawed understanding
of these models, can cause (and has caused) catastrophic harm. In the justice system,
mistakes in data entry within predictive models have caused people to be denied parole
(Citron 2016, Wexler 2017), or to be released when they are actually dangerous, leading to
increased crime (Ho 2017). Proprietary models for air quality in California in 2018 indicated
that dangerous levels of ash in the air due to wildfires were actually safe (Mannshardt
and Naess 2018). Proprietary credit risk models routinely deny or grant loans, leading to
questions of fairness and transparency. This has led to a subfield of machine learning (ML)
called “explainable” machine learning, where the goal is to produce accurate predictions
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that can be intuitively understood by relevant stakeholders, for example, using a simpler
“explanation” of a complex models’ prediction.

However, mistakes in applying statistical models to high-stakes decisions will not vanish
so easily; placing “explanations” on a complex model has dangers that are almost worse
than using the complex models alone. The most serious mistake in applying explanations is
arguably that explanations are generally not consistent with the underlying model they are
trying to explain. For instance, imagine a person being denied credit by a model, receiving
an explanation such as “credit history not greater than 10 years.” However, a different
person could have a credit history less than 10 years and yet could be granted credit. This
is a case where the explanation is not globally-consistent with the underlying model. In
some cases, the explanation could actually produce the opposite prediction as the global
model, which means it is not trustworthy. In these cases, the explanation approximates the
global model, but does not actually explain it. In that sense, even the word “explanation”
here is misleading: it does not actually explain the global model, but instead, approximates
it, and does so in a way we cannot necessarily trust.

There are modeling choices we can make in order to avoid mistakes like those listed
above. First, we can work with interpretable global and local models, rather than propri-
etary models or complicated black-box models. Second, we can ensure that our explana-
tions are globally-consistent, which means that if a local explanation of the global model
is provided for a part of the state space, it must agree with the global model for all past
observations that it claims to apply to. While there has been substantial work on local
explanations that do not need to be consistent, there has been (as far as we know) no prior
work on globally-consistent explanations.

Our approach. In this work, we present a method to create very sparse summary-
explanations that are globally-consistent with the global model, for all observations that
such a summary applies to. (Here we have changed the misleading term “explanation” to
“summary-explanation” so as to avoid the wrong implications that the summary actually
explains the global model.) The summary-explanation only applies to a local part of the
search space that is designated. For example, a summary-explanation might state that
“all 500 individuals who have credit history less than 5 years were predicted to default on
a loan.” In that case, all individuals who have less than 5 years of credit history would
actually be predicted to default by the global model. This summary would be true whether
or not the global model uses the length of the credit history as a variable. The summary-
explanation would only apply to the local space of observations that have less than 5 years
of credit history, and not beyond that. Because the summary-explanation applies only to a
part of the search space, it can be optimized to be simultaneously sparse (in its description)
and correct. Figure 1 presents examples of summary-explanations generated by one of our
algorithms for predictions made by various machine learning models. We used the dataset
for the Explainable Machine Learning Challenge (FICO 2018) for these examples.

Graphical illustration. Figure 2 illustrates the overarching process for utilizing globally
consistent rules. First, a dataset is collected (Figure 2a) for constructing a global model
(Figure 2b). The model is applied for making predictions (Figure 2c), either on the same
data or on a new dataset. A user of the model is interested in a sparse characterization of
a specific prediction (pointed by the arrow in Figure 2c), perhaps as part of an interaction
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For all 1342 people where:

e ExternalRiskEstimate> 80,

e MSinceOldestTradeOpen> 179, and
o NumSatisfactoryTrades> 15

the global model predicts a low risk of default.

For all 462 people where:

o AverageMInFile< 52,

e ExternalRiskEstimate< 66, and
e PercentTradesNeverDelq< 93

the global model predicts a high risk of default.

For all 272 people where:

e PercentInstallTrades> 55 and

o AverageMInFile< 42

the global model predicts a high risk of default.

For all 936 people where:

o ExternalRiskEstimate< 61 and

e NetFractionRevolvingBurden> 54

the global model predicts a high risk of default.

For all 199 people where:
e ExternalRiskEstimate> 84 and
e NetFractionRevolvingBurden< 50

the global model predicts a low risk of default.

For all 105 people where:

e NumlInqLast6M> 7 and

o AverageMInFile< 54

the global model predicts a high risk of default.

For all 1299 people where:

e NumBank2NatlTradesWHighUtilization> 1,
o AverageMInFile< 76,

e FxternalRiskEstimate< 73, and

e NumSatisfactoryTrades< 18

the global model predicts a high risk of default.

For all 177 people where:
o ExternalRiskEstimate< 54

the global model predicts a high risk of default.

Figure 1: Examples of globally-consistent summary-explanations for the FICO dataset gen-
erated using ContMaxSupport for different observations and models (from top to
bottom and left to right, the explanations pertain to the global models: Logistic
regression, Random forest, Logistic regression, SVM with RBF kernel, SVM with
polynomial kernel, Adaboost, and KNN). Description of the features is provided
in Appendix B. Some of the more important ones include “AverageMInFile” (av-
erage months in file) and “ExternalRiskEstimate” (which is a consolidated set of

risk markers).
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Figure 2: A graphical illustration of globally-consistent rules. The red arrows point to
specific predictions that the user of the model (e.g., loan officer) wishes to find
a summary-explanation for (e.g., find a rule to explain that the loan application
pointed at by a red arrow was denied, along with all other customers like that
one). The gray boxes are our rules that provide a sparse summary of conditions
under which the loan was denied, including the current observation.

with a customer (e.g., a loan applicant asks “Was everyone like me also denied a loan?”).
The user of the model can then generate rules (Figure 2d) that agree with the specific
prediction (e.g., the loan officer could reply “Of the 11 people who also have more than 10
past loan defaults and more than 8 month delinquency, all were predicted to default and
thus denied a loan.”). The user and the customer can both be certain that the rule applies
to all other customers in the data and no exceptions were made. To our knowledge, this
is the first work that proposes using this form of explanation, formulates the respective
problem, and offers algorithmic solutions to the problem.

Contributions. This paper makes the following contributions. First, we develop a new
method for understanding predictions made by arbitrary ML models, which we refer to as
summary-explanations. Our summary-explanations are sparse rules (i.e., rules defined us-
ing a small number of features) that locally summarize, and are consistent with predictions
from, a globally-interpretable model, which is how we envision them being used in prac-
tice. Our summary-explanations are designed to optimize both sparsity and coverage (i.e.,
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support) of the rules, while constraining them to be fully consistent with the global model.
Each rule is conditioned on a given observation and on its predicted class; that is, each
rule is customize-designed to describe the local space around a given observation. Second,
we show that the optimization problem for designing these rules is a generalization of the
well-known minimum set cover problem. We present algorithms that solve this problem to
find optimal sparse rules. Third, we apply the method in the context of credit risk assess-
ment, which is one of the domains where interpretability of predictions is essential; these
models make decisions that critically affect people’s lives. A recent explainable machine
learning effort by the Fair Isaac Corporation (FICO) challenged researchers to construct
explanations for models of credit risk (FICO 2018). They specifically requested rule-based
explanations, of the same form as the summary-explanations we provide here (though they
did not require that the explanations be consistent with the global model). Our numerical
experiments suggest that the resulting summary-explanations can be produced in seconds,
which makes them suitable for practical use. In fact, a competition entry based on the
algorithms discussed in this work was recognized by the senior executives of the FICO Al
team.! Finally, we developed a simple programming interface in Python for applying our
algorithms, which is publicly available at this link (see Appendix C for more information).

Related work. Our work is most closely related to the literature on local explanations for
machine learning models, which aims to explain specific predictions made by (potentially
black-box) global models. We therefore focus on this research area and refer the reader to
survey papers on interpretable and explainable machine learning to other bodies of work
(Rudin et al. 2022, Dosilovié¢ et al. 2018, Guidotti et al. 2018b, Arya et al. 2020, Tjoa and
Guan 2020, Roscher et al. 2020, Burkart and Huber 2021).

A class of algorithms (for instance, the popular LIME algorithm proposed by Ribeiro
et al. 2016) randomly perturb the explained observation and use the perturbations to train
a model which locally approximates the global model. These explanations, however, are
not necessarily accurate, nor globally-consistent, and their important features are not nec-
essarily those of the global model; LIME has been heavily criticized for its lack of fidelity in
particular (Slack et al. 2020). Many papers since tried to improve LIME in various ways.
For example, Zafar and Khan (2021) proposes DLIME, a deterministic variant of LIME,
aimed to address the instability in the resulting explanations due to the random perturba-
tion. Shankaranarayana and Runje (2019) developed ALIME, an alternative approach to
address the same issue using an autoenconder which generates synthetic data that is later
used to generate local models. Yoon et al. (2019) suggest to replace the sampling-based
approach of LIME and use data instead whereby observations are weighted according to
a weight function that is learned using reinforcement learning. Another prominent local
method is SHAP (Lundberg and Lee 2017) which applies concepts from game theory to de-
rive the linear coefficients of a local model. It is shown to be the only method that satisfies
several properties, none of which is global consistency. Like LIME, SHAP requires access
to the global model and perturbs the explained observation to compute the local model.

While many of the above papers make use of linear local models, there is a line of
work that employs rule-based models, similar to the ones we use in this work. In Ribeiro

1. The entry won the “FICO recognition award” in the “Explainable Machine Learning Challenge” (FICO
2019).
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et al. (2018), the authors propose an approach called Anchors, whereby they create local
rule-based models which guarantee a minimal degree of accuracy of the rules around the
explained observations. Anchors requires rules to have sufficiently large precision and cov-
erage, which bare similarities with the notions of consistency and support that are relevant
to our approach (and which we formally define in later sections). A key conceptional dif-
ference from our approach is that in Anchors, the metrics are estimated locally whereas
we seek for a resolution that applies to the entire feature space. Moreover our approach
is not required to use sampling and does not generally require access to the global model
beyond the labeling of the dataset and the explained observation. This means that we do
not need to make any assumptions about the (local) sampling distribution. This lends itself
to different algorithmic ideas than Ribeiro et al. (2018), who use a greedy algorithm based
on a multi-armed bandit formulation, while we use linear integer programs and dynamic
programming (as there is no need for exploration in our problem since we do not sample
new data points). This allows us to directly optimize the sparsity (interpretability) of the
resulting rules, which cannot be controlled for under Anchors (and other methods such as
LIME), leaving them with less interpretable explanations. Another method for generating
local rules is LORE (Guidotti et al. 2018a), which uses a genetic algorithm to generate
samples near the explained observation. It then uses the samples to train a classification
tree from which a local model is derived. They further use this tree to derive counterfactual
explanations in the form of minimal changes to the observation that result in an opposite
prediction (for additional examples of counterfactual explanations see also work of Dhurand-
har et al. 2019, Van Looveren and Klaise 2021, White and Garcez 2019, Kanamori et al.
2020). However, there are no guarantees of any sort on the fidelity of the local rules or the
counterfactual explanations. Note that in contrast to the above, our methods require access
to a dataset (the training set or a separate dataset) based on which summary-explanations
are generated and to which summary statistics are reported (we discuss the privacy-related
implications of this in Section 5).

All of the above works suffer from the problem we discussed, namely that the local
explanations are not globally consistent with the model. In fact, Ribeiro et al. (2016)
acknowledge the possibility of conflicting rules arising from their methodology, which would
never happen in our globally consistent setting. We find conflicting explanations to be
confusing, and ultimately uninterpretable, undermining the point of providing explanations
in the first place. This lack of fidelity of a rule can be problematic; a loan applicant
confronting a rule that is even occasionally (say 5%) broken can ask “If 5% of customers
that are like me are granted a loan, why can’t I also be granted a loan?”. In that case,
despite the sparsity of the rule, its lack of consistency with respect to the underlying model
leads it to be confusing and uninterpretable. If there exists an inconsistent rule, it means
there exist two data points on which a rule that is valid for one of them would be incorrect
for the other. (E.g., “those with less than 3 loan defaults in the last year are generally
granted a loan” would be a valid explanation for someone granted a loan, but the same rule
does not apply to someone with 2 defaults who is denied such a loan, even though the rule
applies to them.)

The only example in the literature that does not seem to suffer the same problems
as the above works is that of Ignatiev et al. (2019), done in parallel to our work (see
Rudin and Shaposhnik 2019, for an earlier version of this manuscript). They approach the
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problem of finding globally-consistent rules from a logic-based perspective, assuming that
their global machine learning model can be described by a set of constraints and logical
conditions, and that the model is known (which we do not). They apply an iterative search
procedure that aims to identify the smallest subset of features, which added as constraints
to the global ML model, would guarantee consistency (that is, that the prediction of the
global model coincides with the explained observation). To this end, they solve constraint
satisfaction problems and use a mixed linear integer program to check the satisfiability
of the rule with respect to the global model (but not to construct the rule in the first
place, like we do). In contrast, we approach the problem from a data-centered (rather than
model-centered) perspective, using labeled data to generate rules, and assume no knowledge
about the underlying model, which makes our approach truly model agnostic. This also
leads us to adopting different algorithmic ideas using dynamic programming and taking
advantage of modern software tools for solving mixed integer linear programs to directly
extract consistent rules. We briefly note the follow up work to ours by Izza et al. (2020),
Marques-Silva et al. (2020) who develop similar solutions to Ignatiev et al. (2019) in the
context of other ML models (decision trees and linear classifiers). In short, our approach
is completely different, but these works (like us) recognize the value of global consistency
with respect to the underlying global model.

Finally, we note the recent work of Geng et al. (2022) and Kanamori et al. (2022) which
build on our work and apply the ideas of global-consistency in the context of counterfactual
explanations using sampling of new data points and querying of the global model.

Organization. In Section 2, we formally define globally-consistent rules and formulate
the optimization problem of identifying these rules in datasets. In Section 3, we develop al-
gorithms for solving the optimization problem, and in Section 4, we apply these algorithms
to predictions about credit risk. We discuss relevant practical aspects of globally-consistent
rules in Section 5 and conclude in Section 6.

2. Problem Formulation

Consider a general binary classification problem defined over a data-matrix X e RINVIXIPI,

We use N and P to respectively denote the set of observations and features. In addition,
we assume access to {h&°Pal(x;) 1V the labels predicted by a global (potentially black-
box or potentially somewhat complex globally-interpretable) model h8°P2l: that is, for each
observation i € N we have h#°"2l(x;). We do not make any assumptions about the nature
of h&loPal nor of having access to h8l°P2l for making predictions on arbitrary observations.
With a slight abuse of notation, we use both ¢ € N and x; to denote an observation. We
denote the values of a feature p, that is a column of X, as X.,. Note that we do not
make assumptions about nor require access to the labels of the original data, that were
presumably used to train the global model h&'°P2. Our technique can thus be used even
when we have only an observational dataset containing predictions from a black box model.
Our goal is to simply provide insights that improve our understanding of how the given
model he'°Pal makes predictions.
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Figure 3: Illustration of a globally-consistent local summary-explanation h®*P™(€) for obser-
vation e. The curve represents the decision boundary of a global model hglobal
that respectively predicts “x” above the curve and “o” below the curve. In the
shaded area, the summary-explanation hexPIn(e) predicts “x” and in other parts
of the feature space it abstains. The summary-explanation satisfies Properties 1
and 2 of Definition 1: relevance (it predicts “x” for e, which is what the global
model predicts) and global consistency (for every observation where hexPIn(e) pre-
dicts “x”, the global model h&'°Pal also predicts “x”). Observe that the labels
“x” and “o” are determined by the global model h#°P3 which are presented in
the figure (rather than the labels of the actual data which are irrelevant for our
purposes). The point ¢ labeled in the figure contributes to the relevancy of e’s
summary-explanation.

Definition 1 Let x. denote a new observation and its label predicted by the global model
is hel°bal(x,). We say that the model hexPn(e) provides a globally-consistent local summary-
explanation to observation e with respect to the model h8°P2 and the data-matriz X if the
following conditions are met:

1. (Relevance) heP™(€)(g,) = hgloPal(g, ). That is, e’s summary-explanation must agree
with e’s prediction from the global model at the point e itself;

2. (Global consistency) For every observation i € N, if hP™)(g;) = helobal(g.) then
hglobal () = pexpin(e) () — pglobal (g, ) — pexpln(e) (g} That is, if point e’s summary-
explanation covers point ¢, then point ¢ must have the same prediction as e according
to both the global model and e’s summary-explanation.

Equivalently, if ¢ has the opposite global prediction as e, then e’s explanation must dis-
agree with the global model’s prediction of point i. That is, if h8l°Pal(x;) # h&loPal(x,)
then hexpln(e) (Xz) ?é hglobal(xe)'

3. (Interpretability) the model he¥PI(E) belongs to a class of interpretable models H.

Throughout the work we use the terms local-models, local-rules, and simply rules synony-
mously to refer to summary-explanations.

Figure 3 illustrates properties 1 and 2 of Definition 1. Condition 2 implies that he<P(€)
is consistent with past predictions. If ¢ participate in e’s summary explanation, it must
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also have the same global model label as point e. There are two important aspects to this
condition:

e The summary-explanation hexPIn(e) pertains only to a subset of data local to point
e. For instance, if the global model’s prediction for e is h#°P2l(x,) = 1, then the
summary-explanation pertains only to points where its value pexpIn(e) ig 1. The
summary-explanation says nothing about (abstains on) points where hexPIn(e) g 0.
Re¥PIN(e) must be consistent with points i where h®P(€)=1  but says nothing about
other points and does not need to be consistent with them.

o he*PIn(e) must be consistent with all points i where h®P(€)=1_ This is in sharp con-
trast to alternative approaches which generate explanations by approximating hgPa!
in the vicinity of x., which could result in providing explanations that can be contra-
dicted using observations from the dataset and their predictions by the global model.
As discussed above, the existence of such contradictory explanations could negatively
impact the trust that customers or users have in the system and its underlying model,
as well as in the interpretability of the rules. In contrast, by design, our summary-
explanations cannot be contradicted using past data.

Condition 3 (interpretability) favors sparse and reliable summary-explanations. (In practice
users could choose other metrics for interpretability as well.) We use two measures to assess
the quality of a summary-explanation hePI(e):

o T'.(h*PIn(9)): Complexity —a measure for (the inverse of) interpretability based on the
class ‘H. For example, the complexity of a model could be the number of non-zero
coefficients in linear models, or the number of leaves in decision trees. Sparse models
(within the same hypotheses class) would typically be considered less complex.

o T',(h®P(©)): Support—the number of observations in the dataset that satisfy the
rule, that is,

Fs(hexpln(e)) _ |{Z eN: hexpln(e) (Xz) _ hglObal(Xe)H.

Intuitively, the support measures the coverage of a summary-explanation. Larger
support values indicate that the rule applies to a greater number of past observations,
which increases trust and confidence in the explanation, and helps to ensure statistical
generalization and reduce overfitting of the summary-explanations.

Ideal rules have low complexity and large support.

Using these conditions, we can formulate the problem for finding a globally-consistent
summary-explanation for the point (x., h#°*3!(x,)). Here we recall that h8°P3l(x;) is given
for each ¢, and our goal is to construct pexpln(e) (x), which is the summary-explanation for
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point e:

MaXj,expln(e) cgy Ws * Fs(he"pln(e)) — W, - Fc(heXpln(e)) (maximize support, minimize complexity)

s.t. hexpin(e) (x ) = pelobal(x ) (summary-explanation is relevant)
Vi€ N : If p8lobal(x;) = 1 — pelobal(x ) (summary-explanation is consistent)
Then hexpln(e) (Xz) -1 hglobal(xe)
L. (hePne)) < p... (interpretability)

(1)
The coefficients wy and w,. are user-defined non-negative weights that balance the desired
support and sparsity of the resulting rule, while the bound p. ensures sufficient sparsity. The
three types of constraints capture the three conditions of globally-consistent local summary-
explanations: relevance, global consistency, and interpretability, respectively. Note that the
antecedent in the second constraint (consistency) is independent of the decision variables
and therefore it can be written as a linear constraint applied only to a subset of the obser-
vations. This constraint says that any point ¢ that is classified differently than our point e
must not be part of the explanation (which is equivalent to stating that if the explanation
applies to a point ¢, then the global model’s prediction at point ¢ must be identical to the
prediction at point e).

To provide more detail on the consistency condition, if we provide a summary-explanation
for a point x, where h8'°P¥(x,) = 1, then every point x; where h&'°P3(x;) = 0 cannot be
part of the explanation, and must have h®P™(€)(x;) = 0. Symmetrically, if we provide
a summary-explanation for a point x. where hglObal(xe) = 0, then every point x; where
helobal(x;) = 1 cannot be part of the explanation, and must have h®P"(€)(x;) = 1.

In the remainder of this paper, we focus on a specific class of interpretable models H
that are rule-based. We say that a model h is a rule-based classifier predicting a € {0,1} if
it can be written as a conjunction of one-dimensional step functions with a single step:

a if 2, > 7,,Vp € R where R C P
1—a otherwise

b al) = { @
This defines a hyperbox in the feature space. Note that any rule-based model can provide a
globally-consistent summary-explanation for an observation x. if it satisfies the conditions
of Definition 1. Moreover, the canonical form of the rule-based model above can capture
more general rules:

1. Strict inequalities can be expressed using inequalities since the dataset values are finite
(e.g., by increasing the value of 7, by a small value €).

2. Opposite inequalities of the form x, < 7, can be expressed using the above repre-
sentation of rules by expanding the feature space to include features with opposite
signs. That is, we can double the size of the data matrix to include -X in addition
to X, in which case a predicate of the form x, < 7, would be represented using the
new feature —X. , as —x, > —7,. Note that for a binary dataset X, one could simply
append the features 1)y, p| — X to achieve the same result while keeping the domain
of the feature space binary (we use 1y« |p| to denote a matrix of dimensions [N | x |P]|
whose entries are all equal to 1).

10
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Figure 4: Graphical illustration of two rules (e.g., the left rule is h.(x) =
1 [ExternalRiskEstimate < 63 & 73 < NetFractionRevolvingBurden)]). These
rules are summary-explanations of all the points they contain, and are based
on features that are interpretable within their context.

For rule-based models, we use cardinality as a natural measure for complexity, that is,
Ie(hrry) = |R|. In this case, ws and w,. have a more concrete interpretation: if w. = 10
and ws; = 1, then we would trade 10 points of the support for one fewer condition in the
rule.

The problem of finding a consistent rule-based summary-explanation for a point x,,
which we will denote as OptConsistentRule, can then be written as follows, combining the
formulation (1) with the specific model choice in (2):

Maxp r ws - Us(hpg - pgiovarx,)) — We - | R| (maximize support, minimize complexity)
s.t. VpER:Tep > Ty (summary-explanation is relevant)
Vi€ N: If p8lobal(x;) = 1 — pelobal(x ) (summary-explanation is consistent)
Then dp € R: 2, <7y
|R| < pe (interpretability)
(3)
Throughout the paper, we also use the terms cardinality and sparsity as synonym and

antonym to complexity.

Geometrically, a globally-consistent rule is a hyperbox in the feature space that contains
the observation we wish to explain and only other observations that are similarly labeled.
It need not cover all similarly-labeled observations, but it must not cover observations from
the opposite class. OptConsistentRule tries to find a box that simultaneously maximizes
support and minimizes the number of facets. Figure 4 illustrates two rules. The first
(on the left) represents a rule with two features (ExtrernalRiskEstimate and NetFraction-
RevolovingBurden) and the second rule (on the right) representes a rule with 3 features
(NetFractionRevolovingBurden, AverageMInFile, and ExtrernalRiskEstimate).

Observe that global consistency by Definition 1 is only one-way, not two-way. That is,
inside the box, the box must agree with the underlying global model. This is not heavily
restrictive as long as the global model does not have a singularity around the data point.
Outside the box, there is no restriction.

11
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3. Algorithms

We now study the properties of OptConsistentRule and develop algorithms for solving it.
We begin in Section 3.1 by showing that OptConsistentRule is a theoretically challenging
combinatorial optimization problem. We then use insights about its structure to design
algorithms that are computationally tractable. Specifically, in Section 3.2, we develop
algorithms for the case of binary datasets, and in Section 3.3 we address the case of datasets
with continuous features.

3.1 Equivalence to Minimum Set Cover and Computational Complexity

We show that OptConsistentRule generalizes the Minimum Set Cover Problem
(MinSetCover), which can be stated as follows (Williamson and Shmoys 2011): there is a
ground set of elements £ = {1,...,n}, a collection of subsets Si,...,S, C E, and the goal
is to find the smallest collection of subsets that covers E; that is, find R C {1,..., p} where
UperSp = I/ where R has small size. Formally,

minRg{l,...,p} ‘R| (4)
s.t. dpeR:1iec Sy =1 Vie{l,...,n} "’

While MinSetCover is known to be NP-hard (Bernhard and Vygen 2008), this does
not mean we cannot solve it in practice, as we will show later. Let us show an equivalence
between these two problems, and show that OptConsistentRule is more general, as follows.

Theorem 2 OptConsistentRule generalizes the MinSetCover problem.

Proof Equation (4) can be equivalently written as follows (since i € S, <= i & E\ Sp,
which is a double negative statement):

minRg{l,...,p} |R‘ (5)
s.t. dpeR:1lic E\S) =0 Vie{l,...,n} "’

We reduce OptConsistentRule to this version of the MinSetCover problem. Specifically, for
each instance of MinSetCover, we construct an instance of OptConsistentRule where the
data matrix X consists of n observations (corresponding to elements of the MinSetCover
problem) and p binary features (corresponding to sets from MinSetCover). Figure 5 il-
lustrates the idea. The globally consistent rule for OptConsistentRule is formed from a
minimum set of hyperplanes that cover all observations whose labels differ from the global
model’s prediction on Xe.

We assign feature p of observation ¢ to 1 if and only if element e; does not belong to set
Sp, that is, e; ¢ Sp, that is,

fEi,p:l <~ ’iGE\Sp.

All predictions from the global model are set to +1. The observation we wish to explain is
initialized as x. = 1 and its label is set to 0. The coefficient values are: ws = 0, w. = 1,
and p. = p.

The dataset is binary, that is, X € {0, 1}|N IXIPI Without loss of generality, we set all
threshold values to 1 (for any feature p € R, a threshold value of 7, > 1 is not feasible; a
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Figure 5: Idea of proof. The optimization problem finds a set of predicates that form a
globally-consistent rule. It does this by forming a minimal cover for all obser-
vations whose labels are opposite to the global model’s prediction on x., while
refraining from covering x. (left panel). In the special case where ws = 0 and
we = 1, all observations whose prediction is equal to that of the global model’s
prediction on x. (denoted in the figure as circles that are not x.) can be ignored
when constructing the summary explanation (right panel).

threshold value of 7, < 0 is redundant; and any threshold value 0 < 7, < 1 is equivalent to
7p = 1). Therefore, the only decision variables in Equation (3) are the set of features R,
and the optimization problem can be written as:

maxpcqi,.,p  —|R (minimize complexity)
s.t. VpER:Tep>1 (summary-explanation is relevant)
Vie N : If helobal(x) = 1 (summary-explanation is consistent)  (6)
Then dJpe R:z;p <1
|R| < p. (sparsity)

Now, by construction, the first and third constraints in the above formulation become trivial
and can be removed (the first constraint holds because, by definition, z., = 1 for all p,
and the third constraint |R| < p trivially holds). Moreover, the second constraint applies
to all observations (whose predictions were all defined to be 1), and we obtain the following
equivalent formulation:

Mingc(i,...,p} |R| (7)
s.t. VieN:I3pe R:x;p=0"

By construction x;;, = 0 if and only if i € E'\ S,. Therefore, the constraint in Equa-
tion (7) is equivalent to the constraint in Equation (5), and therefore the formulations are
equivalent. This means that OptConsistentRule generalizes MinSetCover, since we had
chosen a special case of OptConsistentRule that is equivalent to an arbitrary given in-
stance of MinSetCover. [ |

Since MinSetCover is NP-hard, we have the following:

13
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Corollary 3 OptConsistentRule is NP-hard.

Let us provide some intuition about the equivalence between these two problems. The
optimization problem for OptConsistentRule tries to find a set of predicates that form a
globally-consistent rule by covering observations whose labels are opposite to h8'°P#(x,). In
the proof of Theorem 2, we showed that, given a MinSetCover problem, we can construct
an instance of OptConsistentRule whose formulation coincides with the former. This
construction provides us with the insight that adding a predicate x;,, > 7, to a rule-based
model has the effect of excluding parts of the space where observations whose sign differs
from h8&'°Pal(x,.) reside.

While MinSetCover is a theoretically difficult problem, from a practical standpoint, it
can be easily implemented and solved using current computing technologies and Integer
Programming (IP) solution techniques. Later in the numerical experiments section, we
show that the running time for solving various problem instances is sufficiently low and can
be used in practice.

3.2 Algorithms for Binary Datasets

Assume that the dataset is binary, that is, X € {0, 1}|N‘X|P|. As shown in the proof of
Theorem 2, we may assume without loss of generality that all threshold values 7, are equal
to 1 and the only decision variables in Equation (1) are the set of features R. We can then
simplify the optimization problem of OptConsistentRule to

ming —w;s - Ts(hp g paiovarx,)) + we - || (maximize support, minimize complexity)
s.t. VpER:Zep>1 (summary-explanation is relevant)
Vi€ N : If helobal(x;) = 1 — pelobal(x ) (summary-explanation is consistent)
Then dp € R:x;), =0
IR| < p. (sparsity)

(8)
Figure 6 illustrates a rule-based summary-explanation for a simple binary dataset:
crosses and filled circles denote observations of two classes, the empty red circle denotes
the observation being explained (which in this case, is also part of the data), while the
shaded area depicts the part of the feature-space where the summary explanation applies.
In this case, Rule (3) is dominated by Rule (1) and Rule (2), both of which are considered
optimal. Later in Section 4, we find the best v rules by applying a cutting-plane method
that iteratively solves (8), each time with an additional constraint that turns the previously
obtained solution into an infeasible solution. This method might first find Rule (1), then
Rule (2) and then Rule (3).
Next, in Section 3.2.1, we develop the algorithm BinMinSetCover which solves the
problem for the special case of optimizing for sparsity (that is, ws = 0). In Section 3.2.2,
we formulate an IP for solving the general optimization problem.

3.2.1 ALGORITHM BINMINSETCOVER.

We address the problem of finding summary-explanations with optimal sparsity. The prob-
lem of minimizing sparsity is a special case of Equation (8) where ws = 0,w, = 1, and
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GLOBALLY CONSISTENT RULE-BASED SUMMARY-EXPLANATIONS

Rule (1): x; =1 Rule (2): xo =1 Rule (3):x;=1;x,=1
Me=1,Ts=2 Me=1,Ts=2 re=2,T=1
X & |1 X |1 X
X
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Figure 6: A simple example of rule-based summary-explanations for a binary dataset. The
red circle denotes the observation being explained (which in this case, is also part
of the data), while the shaded area depicts the part of the feature space where
the summary-explanation applies. Rule (1) and Rule (2) both dominate Rule (3)
because they cover more than just the one point of Rule (3) while using fewer
thresholds.

pe = | P|. The respective optimization problem can be written as

mingcgy,. my R (minimize complexity)
s.t. 2pe(l,..my Lp € B] - Lzep = 1] > [R| (explanation is relevant)
Vi€ N : If helobal(x,;) = 1 — pelobal(x ) (explanation is consistent)
Then ¥yeqn, my 1p € Bl - Ly = 0] > 1.

(9)

Note that for the first constraint to hold, the set R must only contain features for which
Zep = 1. Therefore, we may discard all features p where z., = 0 and Constraint 1 will
trivially hold. The second constraint is an equivalent way of representing Constraint 2 in
Equation (8).

Recall that to allow our approach to generate rules that account for inequalities in both
directions (e.g., 1 > 7 and/or z; < 71), we add to the data-matrix X all complemen-
tary values (that is, for each feature p where X., € X it holds that [1)5] — X.,] € X).
BinMinSetCover is then feasible whenever there is no observation in X with identical val-
ues to x. that is oppositely labeled (selecting every feature p such that z., = 1 provides
one such feasible solution). In other words, the solution to the problem is always feasible
except in the pathological case when a positive observation and a negative observation sit
on top of each other and we want a consistent summary explanation for one of these points.
This would be impossible when summarizing predictions from models, as the prediction
function must have a single value for each observation (otherwise it would not actually be
a function). Thus, there is always a feasible solution when summarizing predictions from a
global model at any point x..

Let Pe 2 {p : xep = 1} denote the set of features that are equal to 1 in observation
e. (We omit the features for which z.;, = 0 from the optimization problem, since they can
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never be part of the summary-explanation for e.) We can write the following equivalent
integer program (IP):

ming, pepe}  2pepe Up
s.t. >pepe bp - Lzip =0 > 1 Vi : helobal(x;) =1 — pelobal(x.) - (10)
b, € {0,1} Vp € P¢

where the binary decision variable b, indicates whether feature p is part of the rule hg 1y
(that is, b, = 1[p € R]). The sum only over p € P¢ ensures that e will satisfy its summary-
explanation, the min ensures that the solution is sparse, the first constraint again ensures
that no 7 that disagrees with e on the global model’s prediction is part of the summary-
explanation, and the last constraint b, € {0, 1} encodes that b, is an indicator as to whether
p is part of the definition of the summary-explanation. Problem (10) is an instance of
the minimum set cover problem, which can be solved by commercial solvers exactly using
the formulation above, or approximately using approximation algorithms (e.g., those of
Williamson and Shmoys 2011, Vazirani 2013). For example, a simple greedy algorithm for
selecting features provides a In(|P|)-approximation; this can be used to efficiently generate
summary-explanations for big datasets.

Now that we have a formulation to generate summary-explanations with optimal spar-
sity, let us move onto the more general problem we care about, where we trade off between
sparsity and support in our summary-explanations.

3.2.2 ALGORITHM BINMAXSUPPORT.

We use the Big-M method to formulate an IP for the general optimization problem (8).

Let N, 2 {i : helobal(x,) = pelobal(x )1 denote the set of observations that are labeled by
the global model in the same way as e, whose label is h#'°P2l(x.). We define 7; as a decision
variable that indicates whether the rule we are trying to construct, namely hp q pgiobai(x, ),

predicts h8'°P8l(x,) for observation i. We would like a large number of r;’s to be 1 in order
to have high support. The optimization problem can be written as follows:

MaxXp,y Ws* Y ene i — We ZpePe bp

s.t. > pepebp - Lzip =0 >1 Vi:e N\ N¢
> pepebp Lzip =01 < M- (1 —m;) Vie N¢ (11)
b, € {0,1} Vp € P°
ri € {0,1} Vi e Ne
Zpbp < pe.

To ensure global consistency, the first constraint guarantees that the rule we are construct-
ing does not apply to any observation in N \ N¢, which are points that disagree with the
global model’s prediction on point e. The first term in the objective counts the number of
observations for which the rule applies (i.e., the support), while the second term character-
izes the complexity. The second constraint ensures correctness of r;, so that the rule indeed
applies to the observations counted in the support. Note that for all practical purposes, the
constant M could be set to |P€|.
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3.3 Algorithms for Continuous Datasets

We now leverage algorithms developed in the previous section for binary datasets to generate
optimal summary-explanations for continuous datasets. When we do this, there will be no
discretization choices by the user, and thus no performance loss due to discretization. The
method is more sophisticated than previous approaches and uses dynamic programming, as
we will discuss.

Specifically, our approach is to first apply BinMinSetCover to generate “basic solutions,”
which are sparse continuous summary-explanations, using a reduction of the continuous
dataset to a binary dataset (Section 3.3.1). Then, we apply a dynamic programming (DP)
based algorithm to expand these summary-explanations in order to optimize their support
while maintaining sparsity (Section 3.3.2). While using discrete optimization methods for
continuous data may seem unnatural, given the uncountable number of possible boxes for
continuous data, there are effectively a finite number of equivalence classes of boxes. Any
two boxes are equivalent if they use the same variables and contain the same data. This
results in a discrete and finite set of possible boxes.

Example. Consider Figures 7 and 8, which illustrate a 2-dimensional continuous dataset
(the values of features x1 and xy vary between 10 and 12) where we wish to explain ob-
servation x, = (12,11) (circled). Figure 7 illustrates the first step in our approach of
generating “basic” summary-explanations where the value of each threshold is equal to
the value of the respective feature in the observation being explained (i.e., feature x; is
either at most 12, at least 12, both (i.e., equal to 12) or none (i.e., x1 is not part of the
summary-explanation); the same holds for feature xo and the threshold value 11). In to-
tal, we generate 6 summary-explanations to start with, each shown in a different subfigure
in Figure 7. The shaded area in each plot corresponds to the part of the feature space
where that plot’s explanation model (and the underlying model due to global-consistency)
predicts hgk’bal(xe). According to formulation (3), the quality of a summary-explanation
is measured by its support I's (the number of observations contained within the shaded
region) and its complexity I'. (the number of facets, or thresholds used to define the
shaded area), both of which are illustrated in the figure (Section 3.3.1 below discusses
how such basic summary-explanations can be obtained). Figure 8 shows the result of
applying the second step of our approach. The illustrated rule is a potentially optimal
solution (summary-explanation) that was generated by expanding “Rule (6)” of Figure 7.
The solution in Figure 8 was obtained by systematically relaxing the thresholds of Rule
(6), which was obtained using BinMinSetCover, in every possible direction until violating
global consistency (i.e., relaxing the rule he(z1,22) = 1[12 <21 <12 & 11 <29 < 11] to
he(z1,x9) = 111 <27 <12 & x9 < 11]). This systematic relaxation is done by applying
a DP-based algorithm (discussed below in Section 3.3.2). Note that the same solution might
have been obtained by expanding several boxes. E.g., the rule in Figure 8 can be obtained
from either Rules (4) or (6) in Figure 7, both of which were obtained from the first step
using BinMinSetCover.

Similarly to the algorithms for binary datasets, here too we expand the data-matrix X
to include the opposite features. That is, for each feature p € P, there exists a feature
p¢ € P such that X. pe = —X_,,.
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Rule (1): Rule (2): Rule (3):
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Figure 7: A simple example of “basic” rule-based summary-explanations for a continuous
dataset.

3.3.1 ALGORITHM CoNTMINSETCOVER.

We begin with an observation about rules that attain optimal sparsity. Namely, the following
lemma states that for each globally-consistent rule kg ; pgiobal(x,), Where a threshold 7, is
not equal to z. p, there is another globally-consistent rule hp ;/ pgiobal (i, ) Whose threshold 7,
is equal to x,p. This follows from the requirement for global-consistency which guarantees
that 7, < z., (and therefore we can always raise the threshold to z ;).

Lemma 4 For any data-matriz X, model h8'°2 observation ., hgk’bal(me), and globally-

consistent rule hR7T7hglobal(me), there exists a globally-consistent rule th’,T’,hglobal(xe) where
R' =R, 7, = x¢p, and whose complerity is equal to that of hp r peobal(g,)

(that Z‘S, FC(hR,T,hglObal(:L'e)) - FC(h/FE/,T/,thObal(ze)))'

Proof Geometrically, any rule h defines a box polytope that contains x. but excludes
observations whose labels are 1 — h8°P3l(x,). Therefore, any other box that is contained
within h and contains x. is a globally-consistent rule-based summary-explanation. This
holds when we alter any facet of the box z, > 7 to 2, > x.,. Since raising the threshold
values 7 up to z., does not change the cardinality I'; of the rule, we obtain a new rule with
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Rule (1):
l1=x1=12, —0o=x,=<11
[c=3,Ts=4
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i @ X X
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Figure 8: A simple example of a potentially optimal rule-based summary-explanation for
a continuous dataset, found in the second step of our approach. We will later
determine that this rule is not optimal, because a sparser rule with higher support
exists.

identical cardinality. |

The main insight from Lemma 4 is that in order to compute the most sparse solution,
we need only to decide on the subset of features R, while 7 can be fixed to x.. Including
a feature within R excludes certain observations from the support of the resulting rule,
and the goal is to find the minimal set of features that would exclude all observations that
are labeled as 1 — h8'°P2l(x,). This is exactly the problem solved by BinMinSetCover. We
formulate Algorithm 1, which first constructs a data matrix X¢ € {0, 1}‘N \NelxIPl " where
zf, = 1z < xep| (that is, each entry denotes if including the feature p would exclude
observation ¢ € N \ N.). Then, the algorithm applies BinMinSetCover to find the subset
of features to be included in the most sparse rule that is globally-consistent.

Algorithm 1 Algorithm ContMinSetCover

Input: data matrix X, observation to explain x., and global model predictions
{hglobal(xi) N, and hglobal(xe).

Output: globally-consistent rule hp . peiobal(x, )-

1. Compute X¢ € {0, 1HN\NelxIPl where xf, = 1xip < xcp] foralli € N and p € P.

2. Solve BinMinSetCover using X¢, {h8°P3l(x;)} V| x,, h8°Pal(x,) to compute the subset
of features R.

3. Return the rule hp y paiobal(x,)-

Next, we will include support, and we will use dynamic programming to construct the
summary-explanations.
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3.3.2 ALGORITHM CONTMAXSUPPORT.

We now use ContMinSetCover to develop the algorithm ContMaxSupport for identifying
globally-consistent rules with optimized support. The basic ideas behind the algorithm are:

1. Use ContMinSetCover to extract a “basic” rule with optimal sparsity. For example,
a sparse summary explanation for x. = (10, 20, 30,40), h&°P¥(x,) = +1 could be the
rule

hR’xe’hglobal(xe) = [(1‘2 >20 & T3 > 30) — —1—1]

where R = {2,3} and whose support could be 100 observations.

2. Expand the rule by decreasing the thresholds to increase support while maintaining
optimal sparsity. For example, expanding the above rule could result in the rule

hR:{273}77:{15,27}’hg10bal(xe) == [(132 2 15 & I3 Z 27) — +1],

whose support could be 150 observations. The expansion is carried out by solving a
DP for each rule we want to construct.

3. Repeat the previous steps v times, each time excluding previously encountered basic
solutions. Such rules could be obtained by rerunning BinMinSetCover (as a subroutine
of ContMinSetCover) with an additional constraint that prohibits previous solutions.
E.g., to prohibit the basic rule with R = 2, 3, the following constraint could be added
to Equation (10): (1 —b1) +ba+ b3+ (1 —by) < 3.

We next describe the DP formulation for expanding rules and present ContMaxSupport
in Algorithm 2. Given a rule hp, peiobai(y,) that needs to be expanded, we define the
following DP:

e State-space: the state-space {7} is |R|-dimensional, representing the possible values
of the thresholds 7, for p € R: 7, € {—00,Zcp} U{Zip 1 € Ne,xip < zcp} (observe
that threshold values larger than x. ), do not satisfy relevance, see Definition 1). We
define the initial state as 70 = (zcp : p € R).

e Reward function: the objective function, that is, ws - I's(hp ; petovar(x,)) — we - |R| (see
Formulation (3)).

e Action space: we define R actions corresponding to the p thresholds. An action p
decreases a certain threshold 7, to the next highest value in {—oco,zcp} U {z;p : 1 €
Ne,2ip < Tep}. We denote the outcome of action p by 7 & p. Note that the action
corresponding to feature p cannot be selected when 7, = —oo.

e Bellman’s equation: can be written as

—00 /] Tog 7 peieba(x,) is not globally-
J (7) = max consistent 7
ws - Ts(hp - paiovar () — we - |[R| // select current state
J(T©p) // explore the next state.
(12)
and we find the optimal expanded rule hp ;. psiobar(,y by computing J (79).
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Note that a different DP is constructed for expanding each basic rule.

Figure 9 illustrates the construction of the state-space for a 2-dimensional dataset. The
figure on the left shows a basic summary-explanation for the positively labeled observation
e using the rule: 1 < 7, 71 < 71, and 9 < 7. The state-space in the corresponding DP
is 3-dimensional (one dimension per each of the 3 thresholds), and the initial state is equal
to (11,71, 72). The state-space is the Cartesian product of the projected positively labeled
observations onto each of the axes, truncated by the feature values of x., and appended
by the bounding values of x., and —oo. The figure on the right shows additional rules
(boxes), each corresponding to a state reached while computing Bellman’s equation. Each
tick on each axis corresponds to a value in one of the dimensions of the state-space. The DP
algorithm systematically expands the basic solution in every direction, exploring all feasible
solutions.

X5 X5 © Predicted negative

8 o % 8 o % by global model

x ¥ %8 x ¥ %

o £ R s o , -
2 ® o 2 % o o % £ Predicted positive

T+ 8 o % R w5 ® by global model

® © ° © o
»Xq

Figure 9: An illustration of basic rule and states of the corresponding DP. Left: the initial
state of the DP, which is a summary-explanation for observation e (in gray).
Right: states of the DP, each corresponding to a summary-explanation.

ContMaxSupport obtains rules with good sparsity by running ContMinSetCover and
performing expansion operations that, while improving support, do not increase the cardi-
nality of the resulting rules (i.e., no features are added by the DP). In fact, when a selected
threshold is expanded to —oo, sparsity improves as well; sending a boundary to —oco removes
a box boundary.

The value v in Algorithm 2 is the number of times we repeat the process of finding a
rule (that is not equivalent to one we have already seen). Observe that Algorithm 2 returns
the optimal solution when ~ is sufficiently large. This is because each of the v solutions
is unique: all previous solutions are excluded when constructing the next solution. In this
way, large v would allow us to enumerate all feasible (equivalence classes of) boxes, after
which point, the optimization problem becomes infeasible.

Thus, we now have a method that produces globally-consistent summary-explanations
for continuous variables that are sparse and have high support.
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Algorithm 2 Algorithm ContMaxSupport

Input: v (number of initial rules to extract), ws and w. (objective coefficients), X (data
matrix), observation to explain x., and predictions {h&°bal(x;)} N helobal(x, ).
Output: globally-consistent rule (R, T, hgl(’bal(xe)) .

1. Apply ContMinSetCover to extract v rules with optimal sparsity (e.g., by running
ContMinSetCover iteratively with additional cutting-planes that prohibit previous
solutions).

2. Apply the DP formulation (12) to each of the extracted rules hp . paiovar(x, ) to increase
their support.

3. Return the expanded rule whose objective value is maximal.

4. Numerical Experiments

We conducted a computational study to assess the quality of the summary-explanations gen-
erated by our algorithms on a real-world dataset provided by FICO. We show that the algo-
rithms can be used to effectively generate sparse summary-explanations with large support
in seconds (in the case of BinMinSetCover, ContMinSetCover, and ContMaxSupport) or at
most minutes (in the case of BinMaxSupport) that could be used in practice. In Section 4.1
we describe the dataset and the computational setting, and in Sections 4.2 and 4.3 we dis-
cuss the results obtained by applying the algorithms to binary and continuous datasets,
respectively. There are no other approaches that aim to generate globally-consistent rule-
based explanations, so our goal in these experimental sections is to show that our method is
useful, scalable, and practical for this new task. In Section 4.4, we conduct additional tests
to evaluate our algorithms on a different dataset. In Section 4.5, we compare our results to
an alternative method for generating rule-based explanations.

4.1 The Computational Setting

Data: The dataset? contains “an anonymized dataset of Home Equity Line of Credit
(HELOC) applications made by real homeowners. A HELOC is a line of credit typically
offered by a bank as a percentage of home equity (the difference between the current market
value of a home and its purchase price).” The features are based on credit bureau data with
interpretable features, and the target variable indicates whether a consumer was 90 days
past due or worse at least once over a period of 24 months from when the credit account was
opened. The dataset contains a total of 9,871 observations and 23 categorical and numerical
features. The dataset is balanced, with 52% of customers late on payments. The sample
appears to arise from a subpopulation that is harder to classify than the general population
of individuals seeking a loan.

Preprocessing: We used the following methods to preprocess the data prior to training
models:

2. The dataset can be downloaded, see ref. FICO (2018).
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e “Original”—use the dataset as is (missing values were encoded as -7,-8, and -9);

e “Missing as binary”—add binary features for each variable with missing values to
indicate a missing value of a particular feature (e.g., x7_missing is a new feature
indicating that the value of feature x7 is missing for a particular observation), which
could be useful in the case that missingness is correlated with outcome information;

e “x quantiles”—in order to attain binary features (to apply algorithms for binary
datasets), we discretized continuous features based on the distribution of each fea-
ture using 2, 4, 8, and 16 equal quantiles (e.g., assuming the values of the variable
x7 are [1,2,3,...,100], using 4-quantiles would result in 4 binary variables x7[Q1],
x7[Q2], x7[Q3], and z7[Q4] where xz7[Q2] = 1 if and only if 26 < z7 < 50);

e “Manual”’—we discretized each feature manually by examining the conditional ex-
pectation of the output variable as a function of the input variable, defining break
points at feature values where the conditional distribution is significantly different or
non-smooth. This type of analysis of one dimension at a time is typical in practice
(and easy, since it involves only one dimension at a time).

The last two preprocessing methods yield binary datasets (to which the algorithms
BinMinSetCover and BinMaxSupport could be applied) while the first two yield contin-
uous datasets (to which the algorithms ContMinSetCover and ContMaxSupport could be
applied).

We compared the accuracy of different global models (described below) using the differ-
ent preprocessing methods and found that the models are comparable in terms of their accu-
racy (see Figures 21, 22, and 23 in Appendix A). Therefore, we simply apply BinMinSetCover
and BinMaxSupport on the “Manual” preprocessing method, and we apply ContMinSetCover
and ContMaxSupport on the “Missing as binary” method.

We note in passing that a considerable effort in which we tried various transformations
of the features and other discretization methods did not lead to improved predictions (Chen
et al. 2022). The accuracy level attained for the prediction task is consistent with other
studies on other (structured) datasets for credit risk analysis (e.g., Baesens et al. 2003).

Global predictive models: Our global models include: K-nearest neighbors (KNN),
logistic regression (Log. Reg.) SVM with linear, polynomial, and radial basis function
(RBF) kernels, classification trees (CART), random forests (RF), and boosted decision
trees (AdaBoost).

We trained the aforementioned global models on a random training set consisting of
75% of all observations. We performed hyper-parameter tuning for the global models using
cross-validation within the training set on a wide range of parameter values to optimize the
choice of parameters. Models were then evaluated on the test data (the remaining 25%).
Summary-explanations were constructed using our method for all of these global models.
Whereas the global models were created using training sets, summary-explanations were
created using the entire dataset. (In Section 4.4 we evaluate the algorithms using out-of-
sample test data).

Figure 24 in Appendix A presents a comparison between the predictions made by the
different models. We see that while accuracy is generally similar, the models differ in
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how they make predictions. Constructing summary-explanations for this variety of models
serves as a robustness test for our algorithms: ideally, our algorithms should perform well
regardless of which machine learning approach generated the underlying model. We evaluate
our summary explanations in the following subsections.

Practical adaptation to our algorithms: To find summary-explanations on binary
datasets, we first solve BinMinSetCover to find summary-explanations with optimal sparsity
(denoted as “Min Features”). Denoting by p@FT the minimal number of features obtained
by optimizing for the sparsity of the resulting rule, we then solve BinMaxSupport 3 times,
setting ws = 1, w, = 0, and p. to p?PT,p(?PT + 1, and p(?PT + 2. That is, we maximize
support and gradually relax the restriction on the maximal number of features (i.e., sparsity)
of the resulting rules. We denote the latter algorithm as “Max support + o”, where a €
{0,1,2}. In addition, while generating summary-explanations for each observation e, we use
as initial feasible solutions the solution of the previous optimization problem (that is, the
solution to BinMinSetCover serves as an initial solution to Max support + 0; the solution
to Max support + 0 then serves as an initial solution to Max support + 1, and so forth).
To find summary-explanations on continuous datasets, we applied ContMinSetCover and
ContMaxSupport as is.

Implementation: The code for the numerical experiment was implemented in Python
using scikit-learn (Pedregosa et al. 2011) and Gurobi (Gurobi 2014). The total running
time of the experiment was approximately two weeks on 3 personal computers, setting a
maximal timeout of 1 minute for solving IPs. A total of 394,940 summary-explanations
were generated.

4.2 Binary datasets

The results are summarized in Figure 10 (number of terms/sparsity and support per algo-
rithm). Figure 11 provides more detail, giving the average number of terms, support and
runtime per model and algorithm. The key findings are listed below:

e Our rules tend to be very sparse, even on real datasets. In Figure 10, we
see that the resulting rules (summary-explanations) are surprisingly sparse, requiring
on average less than 3 features, and in 90% of cases requiring 4 or less features.
At the same time, the support of these rules is large with an average value of 778
observations per rule, and in 90% of cases the support is larger than 17. Moreover,
the average support increases by roughly 300 observations by adding only one feature
to the summary-explanations.

e BinMinSetCover’s running time is fast. Figure 11 shows that BinMinSetCover is
typically solved to optimality in less than 15 seconds. All other rules were obtained
by setting a time limit of 60 seconds. These run times are sufficient for most practical
applications, and additional algorithmic improvements can be made to speed up the
generation of summary-explanations. For example, the support of some rules includes
more than 1000 observations. This means that generating a rule for one of these obser-
vations could be used for the remaining 999 observations; this saves the computation
of generating rules 999 more times. Pre-computing some rules and using those as
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initial solutions in future optimization problems would also be a way to significantly

improve the running time in practice.

e Robustness to the underlying global model. We see in Figure 11 that our
approach produces high quality rules (in terms of sparsity and support) for the entire
collection of considered global models. Our rules are (by design) always consistent
with the underlying global model in the local region where they apply.

Number of terms per algorithm
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Min Features - 2.92 4.00 m

S
3.6
Max Support+2 - 4.34 6.00 6.00
3.0
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Support per algorithm
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Figure 10: Number of terms and support per algorithm, averaged over the rules generated
using the complete binary FICO dataset using Algorithms BinMinSetCover (de-
noted as “Min Features”) and BinMaxSupport for binary datasets (denoted as
“Max Support + d” with d indicating the relaxation of the sparsity constraint),

and averaged over global models.

Each cell in the tables is an average over

78,968 rules. Here, “q90” denotes .9-quantile (similar notation is used for other
quantiles). Figure 11 provides a breakdown of these results per global model

and gives timing information.

4.3 Continuous datasets

We generated summary-explanations for the predictive models described in Section 4.1 and
measured sparsity, support and running time. The main results are presented in Figure 12
and more detailed results are in Figure 13. Similarly to the binary datasets, we find that:

e The summary-explanations generated using ContMinSetCover and ContMaxSupport
are sparse, consisting of 2.14 terms on average, and in 95% of all cases consist of 3

or less terms.

e The support of the generated rules is quite large, with an average value of
1020, and in 90% of all cases the support is larger than 29 (Figure 12).

e Our algorithms are robust to the underlying global model. As noted above,
there is some variability between different global models. The resulting summary-
explanations are good for all of these models (Figure 13).

e The running time is quite fast. Without any time limit, the rules were obtained
consistently in under 30 seconds (in contrast to the algorithms for binary datasets
where a time limit of 1 minute was set for solving the IPs).
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Figure 11: Average number of terms, support and runtime (in seconds) for generating
1 rule per model, using the complete binary FICO dataset, and Algorithms
BinMinSetCover and BinMaxSupport for binary datasets. Each cell in each
table is an average over 9,871 rules.

In conclusion, the numerical experiments suggest that the proposed algorithms for gen-
erating summary-explanations from binary and continuous datasets work well and can be
used in practice.

4.4 Robustness checks

Here, we consider an alternative dataset with a larger number of features, and study how
the size of set used to generate explanations affects the resulting summary-explanations in
terms of run time, sparsity of the generated rules, support, and global-consistency using
both in-sample and out-of-sample data.

Dataset. We use the US 1990 Census dataset (Meek et al. 2022) whereby we predict
whether an individual’s annual income exceeds $15,000 (dRpincome> 3) based on demo-
graphic and financial information. We binarize the categorical features to obtain a binary
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Figure 12: Distribution of the number of terms and support per rule for algorithm
ContMaxSupport for continuous datasets (using the complete continuous FICO
dataset across all global models, resulting in a total of 78,968 rules). The aver-
age, 90th quantile, and 95th quantile of the number of terms are 2.14, 3.00, and
3.00, respectively. The 5th quantile, 10th quantile, and average of the support
are 13, 29, and 1020, respectively. Figure 13 has a breakdown of results with
respect to the different global models.
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Figure 13: Average number of terms, support and runtime (in seconds) per rule, for each
global model on the FICO dataset (Algorithm ContMaxSupport for continuous

datasets).

dataset with a total of 368 features. 33% of the labels are 1 (income over 15K) and the
remaining observations are labeled 0. We used the first 100K observations of the dataset.

Global models and hyper-parameters. We split the dataset into a training set and a
test set, each consisting of 50K observations. Using the training set, we train and evaluate
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3 global models: LR (maz_iter = 1000), RF (maz_depth = 7, min_samples_split = 5), and
ANN (maz_iter = 1000, hidden_layer_sizes = (4,2)). Figure 14 compares the global models
and presents their accuracy, which is close to 90%.

Generating and evaluating summary-explanations. Using the trained models and
the test set, we generate and evaluate the global consistency of the summary-explanations.
Specifically, we generate summary-explanations for 1,000 observations in the training set.
These summary-explanations are generated using an ezplanation train-set consisting of
1,000-9,000 training observations, and, for each of these explanations, we measure the
number of times global consistency is violated on the 50,000 test observations (which were
not used in the training of the model or the generation of explanations).

-1.00 -1.00
> -0.98 > -0.98
0.96 0.96
o o
| -
0.94 0.94
i 0.92 i 0.92
0.90 0.90
= =
=2 =2
< 0.88 < 0.88

Figure 14: Census dataset global model comparison. The values indicate the percentage
of observations in the training set (left) and test set (right) for which pairs of
models predict identically; Y indicates the ground truth and the corresponding
values indicate models’ accuracy.

Results. We summarize below the key results. In what follows, we denote the set for
which explanations are generated as the explanation train-set.

e Runtime. Figure 15 shows the average running time for generating summary-
explanations as a function of the size of the explanation train-set. We observe that
the running time increases roughly at a linear rate. As suggested earlier, for very
large datasets, one could use a sample of the explanation train-set, or devise more
efficient algorithms that leverage the structure of the problem, to improve running
time. For instance, it is possible that almost all points far away from the decision
boundary may be summarized with only one or two summary-explanations. Also, we
might choose to omit points that are very far away from the current point for which
we are designing a summary-explanation in order to save computation.

e Sparsity. Figure 16 shows the average number of features used in the summary-

explanations as a function of the explanation train-set size. While we observe a
decline in sparsity, overall it is quite mild and it appears to be converging.
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Support. Figure 17 shows the average support of the summary-explanations as a
function of the explanation train-set size. This appears to be increasing at a roughly
linear rate. Observe that while adding observations adds constraints that make the
generation of rules more difficult, it also increases the overall number of observations,
which results in higher support values.

Global consistency. Figure 18 shows the average number of inconsistencies in the
out-of-sample data as a function of the explanation train-set size.

We see that when the explanation train-set size is relatively small (1000 observations
for a dataset with 368 features), there are some inconsistencies (under 70 on average
out of 50,000 test observations). As the size of the explanation train-set increases,
the number of inconsistencies becomes almost negligible (under 10 on average out of
50,000 test observations).

Of course, we cannot completely ensure global-consistency with respect to out-of-
sample data, but the number of violations is relatively small and the summary-
explanations are truthful (they make an accurate statement about previous cases,
which are in the training set).

Comparing BinMinSetCover with BinMaxSupport, we observe that BinMaxSupport
returns rules with a higher support, but has a higher risk of overfitting in comparison
with BinMinSetCover. This is potentially because it expands its rules to the nearest
decision boundaries.

Overall, these experiments illustrate the effectiveness of our algorithms, and the im-
portance of taking global-consistency into consideration in the design of algorithms that
generate explanations.

Runtime

Average running time (seconds) vs. # observations
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Figure 15: Average time for generating summary-explanations as a function of the expla-

nation train-set size (Census dataset).
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Average sparsity of summary-explanations vs. # observations
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Figure 16: Average sparsity as a function of the explanation train-set size (Census dataset).
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Figure 17: Average support as a function of the explanation train-set size (Census dataset).

4.5 Comparison with Anchors

We also compare our methods to Anchors (Ribeiro et al. 2018), which can also be used to
create rule-based explanations. Figure 19 uses the same setup and dataset as the previous
subsection. We set the maximal running time of our algorithms to 10 minutes and used the
default parameters of Anchors (the resulting running times were comparable). Similarly
to the previous experiment, we generate Anchor-explanations and summary-explanations
for observations in the training set and count the number of inconsistencies in the training
set (top right) and test set (top left). Specifically, we generated explanations for 1,000
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Number of inconsistencies vs. # observations
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Figure 18: The average number of inconsistencies in the test set as a function of the expla-
nation train-set size (Census dataset).

training set observations using an explanation train-set consisting of 9,000 training set
observations, which resulted in a total of 6,000 instances (3 global models x 2 algorithms,
namely BinMinSetCover with BinMaxSupport, x 1,000 observations). We generated the
Anchor-explanations for the same 1,000 train-set observations using the default parameters
of Anchors. We note that Anchors did not finish its execution in 20 out of 3000 instances,
and our algorithms timed out in 31 out of 6,000 instances (3 global models x 2 algorithms,
namely BinMinSetCover with BinMaxSupport, x 1,000 observations).

We observe that there is a significantly higher number of inconsistencies (top row) in
Anchors in comparison with our algorithms, which is zero (by design) in the training set
and is very low in the test set. In terms of the support size (middle row), Anchors performs
better than BinMinSetCover and worse than BinMaxSupport. Our algorithms outperform
Anchors in terms of both sparsity (bottom row, right) and runtime (bottom row, left).

Finally, we note that while the parameters of Anchors could potentially be configured
to expand its search strategy and to return rules with a higher precision (and consequently
better consistency), its running time is already longer than ours, which suggests that perhaps
more significant design changes would need to be made to Anchors in order to compete along
this dimension.

5. Discussion and Future Directions

We next discuss a few aspects related to the practical application and limitations of our
approach, as well as future directions for research.

e Running time. While the algorithms ran sufficiently fast in our experiments, in gen-
eral, the combinatorial nature of the problem could indicate that for larger datasets,
longer running times would be needed to generate rules. This could potentially be
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Figure 19: A comparison between Anchor-explanations and summary-explanations (Census

dataset). Most importantly, fewer inconsistencies (see top row) is better. Larger
support is better (middle row) and smaller runtime and number of terms is better
(bottom row).

exacerbated by our reliance on a commercial-grade solver (Gurobi) that is free for
academic use but might hinder a widespread adoption of the algorithms.

On the other hand, our algorithms are closely related to the minimal set cover problem,
which is a well understood problem. Clever data structures and preprocessing are two
approaches that could potentially improve the scalability of the algorithms.

Privacy concerns. The explanations generated by the algorithms provide aggregated
information about the users and the model (but not on the true labels, which are not
used by the algorithms). This aggregated information could potentially be used for
inference about the distribution of the data and the model, which a company may
not be interested in revealing. To mitigate this issue, one could consider discretizing
the reported values of the support to impede such inferences (e.g., report that the
support of a rule is low (under 10), medium (over 10), or high (over 100)). However,
many scholars advocate for transparency, arguing that releasing information about
how models work is not necessarily a problem but even a desirable model property
for increasing trust.

Misinterpretation of results. While our rules are globally consistent, it is impor-
tant to recognize that they do not imply a causal relation. The rules do not imply
that the global model is using particular features that are included in the summary-
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explanation, only that the summary-explanation reliably describes a pattern that
exists in the data, and that other patterns exist simultaneously without there being
a contradiction.

Interpretable features. An implicit assumption we make is that the features are
interpretable. This is true in most tabular prediction problems where data are struc-
tured. However, in other cases, the data may contain features that are not inter-
pretable or unstructured. Generating summary-explanations directly on such data
would not lead to meaningful explanations.

One possible direction to address this issue is to run the summary-explanation al-
gorithms with a subset of the original feature set that are interpretable. This could
potentially work well if the global model’s decision boundary is smooth in the subspace
of features selected.

Stability of explanations. For a given observation, there can exist many globally
consistent rules that are functions of different features, particularly when features are
correlated. This phenomenon, which could occur with any explanation method, could
result in situations where, over time, users receive explanations that vary even though
little if nothing has changed on their part.

If one wanted to have summary-explanations that remain relatively stable over time
and across observations, one could potentially rank the summary-explanations in a
way that encourages consistency in feature usage. For example, we could do this
by generating summary-explanations for the entire training dataset and identifying
which features appear more frequently and prioritizing such features (e.g., through
the objective function).

In general, however, we may want to find a way to present all equally good rules to
the user, which would be a fruitful direction for future work. Enumerating all such
rules (which could be done with our approach by adding cutting planes to remove
previously discovered rules) may be overwhelming to the user without a sophisticated
user interface.

Interestingly, it may be useful to create rules that depend on different features than
those used in the model. For instance, if race features are not used in the model, but
if a rule arises such as “all individuals with race X and no credit history were denied
a loan,” it might suggest that a change in the global model is warranted.

e-inconsistency. One could try to relax the strict requirement of global consistency
with the hope that the resulting rules would have higher support and thus generalize
better to new observations. While this could be done technically by modifying the
optimization problem (Formulation (3)), such an attempt could hinder interpretabil-
ity by undermining the fundamental premise of the proposed approach which seeks
to provide clarity and trust through consistency. Note that in contrast to typical
applications of ML algorithms which apply directly to the labels y of the data, in gen-
erating local summary-explanations, one uses a model, h#°*2! for labeling the data.
This results in training and test data that are much smoother and are not subject to
noise, which reduces the need to protect oneself against noisy data, and is more likely
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to result in better generalization. Hence e-inconsistency is less likely to be needed in
practice, compared to global consistency.

Also, it is easily possible that the observations that are the most important and
difficult to explain (those near the decision boundary) are exactly the points where
an e-inconsistent explanation is likely to make a mistake.

One can see in the summary-explanations for the FICO data that the rules tend to
be sparse even with the requirement of global consistency, so it is not clear that any
benefit would be gained from allowing inconsistencies.

If one did find that no sparse rule could be constructed that has sufficient support,
this could be an indicator of an underlying problem with the smoothness of the global
model that warrants investigation, which would help us troubleshoot it, as we discuss
next.

Troubleshooting the global model with summary-explanations. If there are
issues with the summary-explanations, for instance if all summary-explanations for
an observation cover only that one observation, there is probably an issue with the
global model’s lack of smoothness, which may be indicative of overfitting. Also, if the
rules do not make intuitive sense (e.g., if a rule indicates that high-risk prediction is
made when a certain feature is too small, but we would expect it to be the opposite),
it would be worthwhile to go back and examine the global model. How the rules might
be used in other ways to troubleshoot the global model could be a useful direction for
future research.

Generalization to new observations (the risk of overfitting). Typically, if a
new observation is presented that is not in the training set, we could simply generate
a new rule for it that is globally consistent, using the algorithms above. However,
if we add more data without regenerating the rules, the rules we have previously
generated may no longer be globally consistent with respect to the new data. In that
case, we are interested in generalization of the summary-explanations to new data
points. While global consistency is achieved with respect to the training data, it may
not be satisfied with respect to new observations. However, the likelihood of such
an event decreases as the number of observations in the training data increases. We
observe this behavior in Section 4.4, and it also follows from classic results in statistical
learning theory: for a finite hypothesis class (in the case of binary datasets there are
2!P| hypotheses corresponding to subsets of features), the deviation from the empirical
loss (likelihood of inconsistency) is bounded by a sublinear function of the number of
features and is inversely proportional to the number of observations. The same bound
also holds for the size of the support. Moreover, while perfect generalization cannot
be guaranteed, the summary-explanation remains truthful when stated with respect
to previously observed data. We believe that similar generalizations could potentially
be obtained for continuous datasets as well (possibly by utilizing the VC-dimension
of box-classifiers).

Enhancing the quality of rules by adding extrapolated data, or checking
explicitly for violations of global consistency. Let us assume we have access to
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query the global model to provide a value for h#°*2!(x) for any given feature vector x;
note that this assumption was not made previously in the paper. With query access
to hel°Pal we can use this access to gain better guarantees on global consistency.

The feature data used for the summary-explanation algorithms do not all need to
arise from the training distribution. The data used for constructing rules can be
sampled from a distribution, or chosen any other way. (The labels come from the
global model h#'°P2! which we could query for any given x.) Sampling many points
near X, (See Figure 20) would help ensure that the generated summary-explanation
is globally consistent across all data that falls into it. (When doing this, one should
calculate the support from the actual training data, or importance sampling weights,
rather than the simulated points though. This is because it does not make sense to
us to suggest that “All 400 observations, 350 of which were simulated, had a rejected
loan application.”)

Consistent rule, with sampling
to clarify decision boundary

- - predict no default (-) + +
- - - grantloan +

+ + predict default (+)
+ p
/‘-F + @ + deny loan +
+ . +

Everyone with similar

characteristic would + +
have their loan denied. +
+
+ +
P + +
+ + +
+
+

Figure 20: Rule created with extra sampled data. Additional samples were drawn near the
decision boundary of the global model and the edge of the rule to help with
generalization. Here, x. is in red.

If the global function is known or easy to work with, one could check explicitly whether
the rule is globally consistent by minimizing (respectively, maximizing) the global
function inside of the rule to see whether any point inside the rule violates global
consistency. Let us consider the standard form for machine learning models, where
h&°bal is a threshold model for a real-valued model f™, so that hel°Pal(z) = 1 if
f™(z) > 6 for some threshold #. Then, if h8°"¥(x.) = 1, we check for violations in

35



RUDIN AND SHAPOSHNIK

global consistency of he*Pn(€) by solving:

6° := min f™(z) s.t. AP (z) = pElobel(x,).

If the solution of this obeys #¢ > 6, then global consistency holds for hexPn(e), (Sym-
metrically, if h#°P(x,)=0, the max becomes a min, and we check whether ¢ < 6.)
In many cases this optimization problem is not difficult:

— If the global model is piecewise constant, such as a boosted decision tree or
random forest, one could examine whether each piece (here an intersection of
leaves of the trees) overlaps with the proposed rule. For each such overlapping
region, we can check whether its predicted label agrees with the rule’s label. If
all such regions agree, then the rule is globally consistent.

— If the global model f™ is a linear model, maximizing (or minimizing) the model
within the boundaries of a proposed rule is a linear program. The solution of
this linear program will tell us directly whether global consistency holds.

— If the global model is a neural network, one could try to use neural network
optimization approaches to find extreme values of the global model within the
boundaries of the rule.

These explicit checks can be useful to ensure that new data points arising within a rule
would maintain consistency. Indeed some recent work which builds on our work makes
use of sampling to improve consistency in the context of counterfactual explanations
(Geng et al. 2022, Kanamori et al. 2022).

Summarizing global models. Multiple summary-explanations that cover most or
all of the predictions can be generated to precisely represent (or approximate) global
models in a consistent and relatively compact way. This collection could serve as a
useful summary for the predictions of a global model.

Model obfuscation. Our approach can also be used for an interpretable model
obfuscation, that is, scenarios in which a model designer does not wish to share a
model, but is still interested in explaining its predictions. To this end, one could
generate a large collection of summary-explanations for a dataset, and then when
a new observation arrives, make a prediction using one of the existing summary-
explanations (which are globally-consistent), or generate an explanation on-the-fly if
the observation is not covered by any of the summary-explanations.

Counterfactual explanations. One could generate recommendations for what the
user could do to increase the odds of being evaluated differently by the model. For
example, in the spirit of Section 3, a similar optimization problem could be formulated
to generate the following summary-explanation: “all 500 individuals who have credit
history that is greater than 5 years and whose average standing balance is smaller
than $5000 were predicted to pay back their loan on time.” This could focus the
user on particular aspects of his or her application that can be changed to potentially
reverse the prediction made by the model (though one would need to check that this
reversal would be possible with the global model itself).
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e Case-based explanations. Given a summary-explanation, one could display past
observations that satisfy the rule to illustrate that similar predictions are being made
for other cases in the data.

6. Conclusions

This work studies summary-explanations for predictions made by ML models that are
globally-consistent, thus avoiding scenarios where an explanation offered to one customer
does not apply to other customers. We developed algorithms for generating such summary-
explanations and showed that while these are theoretically challenging optimization prob-
lems, numerical experiments on real-world datasets suggest that these problems can be
solved in seconds. Our approach can be used for summarizing predictions from black boxes
but also for summarizing patterns from machine learning models that are inherently in-
terpretable, but that are not as concise as a single rule from our summary-explanation
algorithms. The foundation of all of these summary-explanation problems relies upon be-
ing able to compute them efficiently. The approaches proposed here pave the way not just
for more research in this area, but for direct usage in practice, enabling more informed
decision-making.
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Appendix A. Additional Plots and Figures
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Figure 21: Test data accuracy of global models using various discretization methods. All
global models tend to perform similarly. No summary-explanations are involved

in this analysis yet.

Original 2 4 8 16 Missing Manual
quantiles quantiles quantiles quantiles | as binary
0.719 0.709 0.718 0.72 0.723 0.723 0.723

Figure 22: Average accuracy of different preprocessing methods (averaged over ML models)

KNN CART SVM RF SVM SVM AdaBoost| Log.
Reg.

(Linear) (RBF) (Poly)
0.707 0.711 0.716 0.722 0.722 0.724 0.726 0.726

Figure 23: Average accuracy of different ML models (averaged over preprocessing methods)
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AdaBoost 088 o8t n- 099
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CART - (.88 1
096
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Log. Reg. n 0&8 093
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SVM [Linear)
SWM (REBF) 0.94 089
-0.84

AdaBoost -
CART -
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SWM (REF) -

Figure 24: Similarity in predictions on test data of various models (Manual discretization)

Appendix B. The FICO Dataset
Table B describes the features in the FICO dataset (FICO 2018).
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Feature

Description

ExternalRiskEstimate
MSinceOldestTradeOpen
MSinceMostRecent TradeOpen
AverageMInFile
NumSatisfactoryTrades
NumTrades60Ever2DerogPubRec
NumTrades90Ever2DerogPubRec
PercentTradesNeverDelq
MSinceMostRecentDelq
MaxDelg2PublicRecLast12M

MaxDelqEver

NumTotalTrades
NumTradesOpeninLast12M
PercentInstallTrades
MSinceMostRecentIngexcl7days
NumlInqgLast6 M
NumInqgLast6Mexcl7days
NetFractionRevolvingBurden

NetFractionInstallBurden

NumRevolvingTradesWBalance
NumlInstallTradesWBalance

NumBank2NatlTradesWHighUtilization

PercentTradesWBalance

Consolidated version of risk markers

Months Since Oldest Trade Open

Months Since Most Recent Trade Open

Average Months in File

Number Satisfactory Trades

Number Trades 60+ Ever

Number Trades 90+ Ever

Percent Trades Never Delinquent

Months Since Most Recent Delinquency

Max Delq/Public Records Last 12 Months. See tab
“MaxDelq” for each category

Max Delinquency Ever. See tab “MaxDelq” for each
category

Number of Total Trades (total number of credit ac-
counts)

Number of Trades Open in Last 12 Months

Percent Installment Trades

Months Since Most Recent Inq excl 7days

Number of Inq Last 6 Months

Number of Inq Last 6 Months excl 7days. Excluding
the last 7 days removes inquiries that are likely due
to price comparision shopping.

Net Fraction Revolving Burden. This is revolving
balance divided by credit limit

Net Fraction Installment Burden. This is installment
balance divided by original loan amount

Number Revolving Trades with Balance

Number Installment Trades with Balance

Number Bank/Natl Trades w high utilization ratio
Percent Trades with Balance

Table 1: Description of the FICO dataset (source: FICO 2018).

Appendix C. Programming interface

A Python interface for our algorithms is publicly available online (link). Figure 25 illustrates
a basic working example.

from ConsistentLocalRules import *
explainer = ConsistentRulesExplainer (X, Y_global)

df = explainer.explain(X_e, Y_e, objective='SPARSITY',
n_explanations=1, max_features=999999, max_runtime=1)

Figure 25: A basic working example for the programming interface.

The first line of code imports the code, which is contained in a single Python file (Con-
sistentLocalRules.py). In the second line we create an explainer which is initalized using a
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data matrix X and the predictions of some global model Y _global. In the third line, we gen-
erate summary-explanations for a collection of observations X_e whose predictions by the
global model are Y_e. This returns a dataframe with multiple summary-explanations which
are consistent with X,Y _global for each observation (x_e,y_e) in (X_e,Y_e). The parameters
of the function explain( ) are:

e objective : specifies whether the algorithm should aim to find rules that have the
smallest possible number of features (SPARSITY) or rules that are satisfied by the
largest number of observations (SUPPORT).

e n_explanations : the maximal number of returned explanations.
e max_features : the maximal number of features that constitute each explanation.

e max_runtime : the maximal running time per explanation (in seconds; a mixed integer
programming solver is used to generate summary-explanations and this parameter sets
a limit on its runtime).

Sample output. Figure 26 illustrates the output of the code for a single observation when
the objective is to optimize sparsity (objective=SPARSITY) while limiting the number of
resulting summary-explanations to 3 (n_explanations=3). The resulting dataframe consists
of 3 rows, one per summary-explanation, and the columns provide information about each
summary-explanation, such as the rule, its support, sparsity, running time, and the algo-
rithm used to generate the explanation. Here, the algorithm is chosen automatically, based
on whether all input features are binary.

#0bservation #Explanation Rule Prediction Support #Features Runtime Algorithm
0 0 MSinceMostRecentDelg>=2.00, ExternalRiskEstima... 1 204 2 5.3 ContMinSetCover
0 1 NumTrades60Ever2DerogPubRec>=3.00, ExternalRis... 1 85 2 5.3 ContMinSetCover
0 2 ExternalRiskEstimate<=55.00, NumTrades90Ever2D... 1 730 2 53 ContMinSetCover

Figure 26: Example of summary-explanations returned by the programming interface.

Dependencies. The code was developed in Python v3.7 and makes use of the following
libraries: pandas, matplotlib, numpy, scikit learn, pulp (Mitchell et al. 2011), and Gurobi
(Gurobi 2014).
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