
Journal of Machine Learning Research 24 (2023) 1-41 Submitted 5/21; Revised 9/22; Published 01/23

An Inertial Block Majorization Minimization Framework for
Nonsmooth Nonconvex Optimization∗

Le Thi Khanh Hien khanhhiennt@gmail.com
University of Mons, Belgium

Duy Nhat Phan nhatsp@gmail.com
Department of Mathematics and Statistics, University of Massachusetts Lowell, USA

Nicolas Gillis nicolas.gillis@umons.ac.be

Department of Mathematics and Operational Research, University of Mons, Belgium

Editor: Lorenzo Rosasco

Abstract

In this paper, we introduce TITAN, a novel inerTIal block majorizaTion minimizAtioN
framework for nonsmooth nonconvex optimization problems. To the best of our knowl-
edge, TITAN is the first framework of block-coordinate update method that relies on the
majorization-minimization framework while embedding inertial force to each step of the
block updates. The inertial force is obtained via an extrapolation operator that subsumes
heavy-ball and Nesterov-type accelerations for block proximal gradient methods as spe-
cial cases. By choosing various surrogate functions, such as proximal, Lipschitz gradient,
Bregman, quadratic, and composite surrogate functions, and by varying the extrapolation
operator, TITAN produces a rich set of inertial block-coordinate update methods. We
study sub-sequential convergence as well as global convergence for the generated sequence
of TITAN. We illustrate the effectiveness of TITAN on two important machine learning
problems, namely sparse non-negative matrix factorization and matrix completion.

Keywords: inertial method, block coordinate method, majorization minimization, sur-
rogate functions, sparse non-negative matrix factorization, matrix completion

1. Introduction

In this paper, we consider the following nonsmooth nonconvex optimization problem

min
x

F (x) := f(x1, . . . , xm) +

m∑
i=1

gi(xi)

such that xi ∈ Xi for i ∈ [m] = {1, . . . ,m},
(1)

where Xi ⊆ Ei is a closed convex set of a finite dimensional real linear space Ei, x can
be decomposed into m blocks x = (x1, . . . , xm) with xi ∈ Xi, f : E1 × . . . × Em → R is
a lower semi-continuous function that can possibly be nonsmooth nonconvex, and gi(·) is
a proper and lower semi-continuous function (possibly with extended values). We assume

∗. L. T. K. Hien and N. Gillis are supported by the Fonds de la Recherche Scientifique - FNRS and the
Fonds Wetenschappelijk Onderzoek - Vlaanderen (FWO) under EOS project no 30468160 (SeLMA), by
the European Research Council (ERC starting grant 679515), and by the Francqui Foundation.

c©2023 Le Thi Khanh Hien, Duy Nhat Phan, Nicolas Gillis.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v24/21-0571.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v24/21-0571.html

Hien, Phan and Gillis

dom gi ∩ Xi is a non-empty closed set and F is bounded from below. We denote X :=∏m
i=1Xi. Problem (1) is equivalent to the following optimization problem

min
x∈E

Φ(x) := F (x) +
m∑
i=1
IXi(xi), (2)

where IXi(·), for i ∈ [m], is the indicator function of Xi. Hence, it makes sense to consider
the optimality condition 0 ∈ ∂Φ(x∗) for Problem (1), that is, x∗ is a critical point of Φ.
Note that Φ(x) = F (x) when Xi = Ei. Throughout the paper we assume the following.

Assumption 1 We have

∂Φ(x) = {∂x1(F (x) + IX1(x1))} × . . .× {∂xm(F (x) + IXm(xm))} ,

see Appendix A for the notion of subdifferential.

This assumption is satisfied when f is a sum of a continuously differentiable function and
a block separable function, see Attouch et al. 2010, Proposition 2.1.

1.1 Applications

Some remarkable applications of Problem (1) include nonnegative matrix factorization (see
Gillis 2020), sparse dictionary learning (see Aharon et al. 2006; Xu and Yin 2016), and
“lp-norm” regularized sparse regression problems with 0 ≤ p < 1 (see Blumensath and
Davies, 2009; Natarajan, 1995). In this paper, we will illustrate our new proposed algorith-
mic framework (TITAN, Algorithm 1 in Section 2) on the following two machine learning
problems.

Sparse Non-negative Matrix Factorization (Sparse NMF). We consider the fol-
lowing sparse NMF problem, see Peharz and Pernkopf (2012),

min
U,V

{1

2
‖M − UV ‖2 : U ∈ Rm×r

+ , V ∈ Rr×n
+ , ‖U:,i‖0 ≤ s for i ∈ [r]

}
, (3)

where M ∈ Rm×n
+ is a data matrix, r is a given positive integer, U:,i denotes the i-th column

of U and ‖U:,i‖0 denotes the number of non-zero entries of U:,i. Problem (3) is an instance
of Problem (1) with U ∈ X1 = Rm×r, V ∈ X2 = Rr×n, f(U, V) = 1

2‖M −UV ‖
2, g1(·) is the

indicator function of the closed nonconvex set {U : U ∈ Rm×r
+ , ‖U:,i‖0 ≤ s for i ∈ [r]}, and

g2(·) is the indicator function of the closed convex set {V : V ∈ Rr×n
+ }.

We note that g1 is nonconvex while g2 is convex.

Matrix Completion Problem (MCP). We consider the following MCP

min
U∈Rm×r,V ∈Rr×n

{
1

2
‖P(A− UV)‖2F +R(U, V)

}
, (4)

where A ∈ Rm×n is a given data matrix, R is a regularization term, and P(Z)ij = Zij if Aij
is observed and is equal to 0 otherwise. The MCP (4) is one of the workhorse approaches
in recommendation system; see Koren et al. (2009); Dacrema et al. (2019); Rendle et al.
(2019). Other applications of the MCP include sensor network localization (Biswas et al.

2

Inertial Block Majorization Minimization

2006), social network analysis (Kim and Leskovec 2011), and image processing (Liu et al.
2013). For R(U, V), we will use the exponential regularization (see, e.g., Bradley and
Mangasarian 1998), namely R = φ ◦ r, where φ and r are given by

φ(U, V) = λ
(∑

ij

(
1− exp(−θuij)

)
+
∑

ij

(
1− exp(−θvij)

))
,

r(U, V) = (r1(U), r2(V)) = (|U |, |V |),
(5)

where uij is the entry of U at position (i, j), |U | is component-wise absolute value of
U , and λ and θ are tuning parameters. Problem (4) is an instance of Problem (1) with
U ∈ X1 = Rm×r, V ∈ X2 = Rr×n, gi = 0 for i = 1, 2, and f(U, V) = ψ(U, V) + φ(r(U, V)),
where ψ(U, V) := 1

2‖P(A− UV)‖2F is the data-fitting term.
We note that R is nonsmooth and the proximal mappings of the functions U 7→ R(U, V)

and V 7→ R(U, V) do not have closed forms (see more details in Section 6.2). Hence, the
subproblems of proximal alternating linearized minimization method (see Bolte et al. 2014)
and its inertial versions (see Ochs et al. 2014; Xu and Yin 2013, 2017; Pock and Sabach
2016; Hien et al. 2020) do not have closed forms when solving the MCP.

1.2 Related works

Our new proposed algorithmic framework (TITAN, Algorithm 1 in Section 2) relies on
block-coordinate update methods based on majorization minimization, and the addition of
inertial force. In the next two paragraphs, we briefly summarize previous works on these
topics.

Block-coordinate update methods Block coordinate descent (BCD) methods are stan-
dard approaches to solve the nonsmooth nonconvex problem (1). Starting with a given
initial point, BCD updates one block of variables at a time while fixing the values of the
other blocks. Typically, there are three main types of BCD methods: classical BCD (see
Grippo and Sciandrone 2000; Hildreth 1957; Powell 1973; Tseng 2001), proximal BCD (see
Grippo and Sciandrone 2000; Razaviyayn et al. 2013; Xu and Yin 2013), and proximal gra-
dient BCD (see Beck and Tetruashvili 2013; Bolte et al. 2014; Razaviyayn et al. 2013; Tseng
and Yun 2009). Let us briefly describe these three types of BCD methods. Fixing xj for
j ∈ {1, . . . ,m} \ {i}, let us call the function xi 7→ f(x) a block i function of f . The classical
BCD methods alternatively minimize the block i functions of the objective. These methods
fail to converge for some nonconvex problems, see for example Powell (1973). The proximal
BCD methods improve the classical BCD methods by coupling the block i objective func-
tions with a proximal term. Considering Problem (1) with m = 2, the authors in Attouch
et al. (2010) proved the global convergence of the generated sequence of the proximal BCD
methods to a critical point of F , which is assumed to satisfy the Kurdyka- Lojasiewicz (KL)
property, see Kurdyka (1998); Bolte et al. (2007). The proximal gradient BCD methods
minimize a standard proximal linearization of the objective function, that is, they linearize
f , which is assumed to be smooth, and take a proximal step (which can involve Bregman
divergences) on the nonsmooth part g. Using the KL property of F , Bolte et al. (2014)
proved the global convergence of the proximal gradient BCD for solving Problem (1) when
each block function of f is assumed to be Lipschitz smooth. When the block functions are
relative smooth (Bauschke et al. 2017; Lu et al. 2018), Ahookhosh et al. (2021a); Hien and
Gillis (2021); Teboulle and Vaisbourd (2020) prove the global convergence.

3

Hien, Phan and Gillis

The BCD methods presented in the previous paragraph belong to a more general frame-
work that was proposed in Razaviyayn et al. (2013), and named the block successive upper-
bound minimization algorithm (BSUM). BSUM for one block problem is closely related
to the majorization-minimization algorithm. BSUM updates one block i of x by minimiz-
ing an upper-bound approximation function (also known as a majorizer, or a surrogate
function) of the corresponding block i objective function. BSUM recovers proximal BCD
when the proximal surrogate functions are chosen, and it recovers proximal gradient BCD
when the Lipschitz gradient surrogate or Bregman surrogate functions are chosen, see Sec-
tion 4 and Mairal (2013) for examples of surrogate functions. Considering the nonsmooth
nonconvex Problem (1) with g = 0, the authors in Razaviyayn et al. (2013) established
sub-sequential convergence for the generated sequence of BSUM under some suitable as-
sumptions. When f and g are convex functions, the iteration complexity of BSUM with
respect to the optimality gap F (xk) − F (x∗), where x∗ is the optimal solution of (1), was
studied in Hong et al. (2017). We note that global convergence for the generated sequence
of BSUM for solving nonsmooth nonconvex Problem (1) was not studied in Razaviyayn
et al. (2013).

Inertial methods In the convex setting, the gradient descent (GD) method is known
to have suboptimal convergence rate. To accelerate the convergence of the GD method,
Polyak (1964) proposed the heavy ball method for solving the convex optimization problem
minx∈Rn f(x) by adding an inertial force to the gradient direction using αk(xk−xk−1), where
xk is the current iterate, xk−1 is the previous iterate, and αk is an extrapolation parameter.
In fact, the heavy ball update is given by xk+1 = xk−βk∇f(xk)+αk(x

k−xk−1), where βk is
the step size. Later, in a series of works, Nesterov (1983, 1998, 2004, 2005) proposed the well-
known accelerated fast gradient methods. While extrapolation is not used to calculate the
gradients as in the heavy ball method, Nesterov acceleration uses it to evaluate the gradients
as well as adding the inertial force: denoting the extrapolation point x̄k = xk+αk(x

k−xk−1),
Nesterov’s acceleration has the form xk+1 = xk − βk∇f(x̄k) + αk(x

k − xk−1). The spirit
of using inertial terms to accelerate first-order methods has been brought to nonconvex
problems. In the nonconvex setting, the heavy ball acceleration type was used in Zavriev
and Kostyuk (1993); Ochs et al. (2014); Ochs (2019), the Nesterov acceleration type was used
in Xu and Yin (2013, 2017). Interestingly, using two different extrapolation points, one is
for evaluating gradients and another one is for adding the inertial force, was also considered,
by Pock and Sabach (2016) and Hien et al. (2020). Sub-sequential and global convergence of
some specific inertial BCD methods for nonconvex problems have been established when F
is assumed to have the KL property, see, e.g., Ahookhosh et al. (2021b); Hien et al. (2020);
Ochs (2019); Xu and Yin (2013, 2017). To the best of our knowledge, applying acceleration
strategies to the general BSUM framework has not been studied in the literature.

1.3 Contribution

First, we propose TITAN, a novel inertial block majorization minimization framework for
solving the nonsmooth nonconvex problem (1). TITAN updates one block of x at a time by
choosing a surrogate function (see Definition 1 and Section 4) for the corresponding block
objective function, embedding inertial force to this surrogate function and then minimizing
the obtained inertial surrogate function. The novelty of TITAN lies in how we control

4

Inertial Block Majorization Minimization

the inertial force. Specifically, we use an extrapolation operator that can be wisely chosen
depending on specific assumptions considered for Problem (1) to produce various types of
acceleration; see Section 4 for examples.

Then, we study sub-sequential convergence as well as global convergence for TITAN,
which unifies the convergence analysis of many acceleration algorithms that TITAN sub-
sumes. TITAN can be thought of as BSUM with extrapolation. However, it is important
noting that the objective function of Problem (1) includes a separable nonsmooth function
g =

∑m
i=1 gi that is very important to model the regularizers of many practical optimiza-

tion problems, and we only require g to be lower semi-continuous. We note that Assump-
tion 2 (B4) of Razaviyayn et al. (2013) on the continuity of the block surrogate functions
of the objective F over the joint variables could be violated for Problem (1) when g is
not continuous but only lower semi-continuous. The sparse NMF problem (3) presented
in Section 1.1 is such a case since g1 will be the indicator function of a closed nonconvex
set. And as such the analysis in Razaviyayn et al. (2013) is not applicable to Problem (1).
Furthermore, when no extrapolation is applied and g = 0, TITAN becomes BSUM. Hence,
the global convergence established for TITAN with suitable assumptions can be applied to
derive the global convergence for BSUM, which was not studied in Razaviyayn et al. (2013).

Finally, we illustrate the effectiveness of TITAN on the two applications presented in
Section 1.1, namely sparse NMF and the MCP. Applying TITAN to sparse NMF illustrates
the benefit of using inertial terms in BCD methods. The deployment of TITAN in solving
the MCP illustrates the advantages of using suitable surrogate functions. Specifically, we
will use a composite surrogate function for the MCP. Compared to the typical proximal
gradient BCD method, each minimization step of TITAN has a closed-form solution while
each proximal gradient step does not. In our experiments, TITAN outperforms the proximal
gradient BCD method (also known as proximal alternating linearized minimization), being
at least 4 times faster on three widely used data sets.

1.4 Organization of the paper

In the next section, we present TITAN with cyclic block update rule. In Section 3, we estab-
lish the subsequential and global convergence for TITAN. In Section 4, we employ various
surrogate functions and wisely choose the extrapolation operators to derive specific acceler-
ated BCD methods. In particular, we recover the inertial block proximal algorithm of Hien
et al. (2020) in Section 4.1. In Section 4.2.1, we recover the Nesterov type acceleration of Xu
and Yin (2013, 2017) and the acceleration algorithm that uses two different extrapolation
points of Hien et al. (2020). In Section 4.2.2, we use TITAN to derive a multiblock version
for the inertial gradient with Hessian damping proposed by Adly and Attouch (2020). In
Section 4.3 and Section 4.4 we use TITAN to derive heavy-ball type inertial block coordi-
nate algorithms for Bregman and quadratic surrogates. Furthermore, we employ TITAN to
derive new inertial block coordinate methods for composite surrogates in Section 4.5. To
the best of our knowledge, the inertial block coordinate methods in Sections 4.2.2 and 4.5
and their convergence analysis are new. We extend TITAN to allow essentially cyclic rule
in choosing the block to update in Section 5. In Section 6, we report the numerical results
of TITAN applied on the sparse NMF and the MCP. We conclude the paper in Section 7.

5

Hien, Phan and Gillis

2. Inertial Block Alternating Majorization Minimization

In this section, we introduce TITAN, an inertial block alternating majorization-minimization
framework, with cyclic update rule. The description of TITAN is given in Algorithm 1. At

Algorithm 1: TITAN with cyclic update to solve Problem (1)

Require: Choose x−1, x0 ∈ X (x−1 can be chosen equal to x0).
Ensure: xk that approximately solves (1).

1: for k = 0, 1, . . . do
2: for i = 1, ...,m do
3: Choose a block i surrogate function ui of f and an extrapolation Gki (xki , x

k−1
i).

See Section 2.1 for the conditions on ui and Gki (xki , x
k−1
i), and Section 2.2 for

general choices for ui and Gki (xki , x
k−1
i).

4: Update block i by

xk+1
i ∈ argmin

xi∈Xi
ui(xi, x

k,i−1)− 〈Gki (xki , x
k−1
i), xi〉+ gi(xi). (6)

5: end for
6: end for

the k-th iteration, we cyclically update each block while fixing the values of the other blocks.
In Algorithm 1 and throughout the paper, we use the notation

xk,0 = xk, xk,i = (xk+1
1 , . . . , xk+1

i , xki+1, . . . , x
k
m) for i ∈ [m], and xk+1 = xk,m.

To update block i at the k-th iteration, we first need to choose a block i surrogate function
ui of f , which is defined below.

Definition 1 (Block surrogate function) A function ui : Xi×X → R is called a block i
surrogate function of f if ui(xi, y) is continuous in y and lower semi-continuous in xi, and
the following conditions are satisfied:

(a) ui(yi, y) = f(y) for all y ∈ X ,

(b) ui(xi, y) ≥ f(xi, y6=i) for all xi ∈ Xi and y ∈ X , where

f(xi, y6=i) := f(y1, . . . , yi−1, xi, yi+1, . . . , ym).

The block approximation error is defined as hi(xi, y) := ui(xi, y)− f(xi, y6=i).

Then, we solve the sub-problem (6) in which the block surrogate function is equipped with
an inertial force via the extrapolation operator Gki . In the following, we give a simple
example for the choice of ui and Gki . More examples and a discussion in the context of
TITAN are provided in Section 4.

Example 1 Given a continuous function f : E1 × . . . × Em → R, we can take the block
surrogate functions as ui(xi, y) = f(xi, y6=i) + ρi

2 ‖xi − yi‖
2, where ρi is a positive scalar,

6

Inertial Block Majorization Minimization

and take the extrapolations as Gki (xki , x
k−1
i) = ρiβ

k
i (xki − x

k−1
i), where βki are extrapolation

parameters. The update (6) becomes

argmin
xi∈Xi

f(xi, x
k,i−1
6=i) + ρi

2 ‖xi − (xki + βki (xki − x
k−1
i))‖2 + gi(xi),

which has the form of an inertial proximal method. In Section 4.1, we will discuss a more
general form of this choice (ρi will be allowed to vary along with the updates of the blocks)
and provide the details of its use in the context of TITAN.

2.1 Conditions for TITAN

First note that TITAN is a generic scheme. The surrogate functions ui of TITAN must
satisfy the following assumption (see Lemma 2 below for some sufficient conditions for
Assumption 2 to be satisfied).

Assumption 2 [Bound of approximation error]

For i ∈ [m], given y ∈ X , there exists a function xi 7→ h̄i(xi, y) such that h̄i(·, y)
is continuously differentiable at yi, h̄i(yi, y) = 0 and ∇xi h̄i(yi, y) = 0, and the block
approximation error xi 7→ hi(xi, y) satisfies

hi(xi, y) ≤ h̄i(xi, y) for all xi ∈ Xi. (7)

Together with Assumption 2, we also need the following additional condition on the gener-
ated sequence {xk}. Once the formulas of surrogate functions ui as well as the extrapolation
Gki are specified, TITAN generates a sequence, which must satisfy the following nearly suf-
ficiently decreasing property (NSDP):

F (xk,i−1) +
γki
2
‖xki − xk−1

i ‖2 ≥ F (xk,i) +
ηki
2
‖xk+1

i − xki ‖2, k = 0, 1, . . . (NSDP)

where γki ≥ 0 and ηki > 0 may depend on the extrapolation parameters used in Gki and the
parameters used to construct ui, and the formulas of these sequences are known once ui
and Gki are specified. In Section 2.2, we will provide sufficient conditions on ui and Gki that
make (NSDP) satisfied.

The following lemma provides some sufficient conditions for Assumption 2 to be satisfied.
It will be used to verify Assumption 2 for the block surrogate functions that will be given
in Section 4.

Lemma 2 Assumption 2 is satisfied when one of the following two conditions holds:

• the block error hi(·, y) is continuously differentiable at yi and ∇xihi(yi, y) = 0,

• hi(xi, y) ≤ υi‖xi − yi‖1+εi for some εi > 0 and υi > 0.

Proof In the first case, we take h̄i(xi, y) = hi(xi, y), and in the second case, we take
h̄i(xi, y) = υi‖xi − yi‖1+εi .

7

Hien, Phan and Gillis

2.2 General choices for ui and Gki such that the NSDP condition is satisfied

Let us discuss the parameters γki and ηki in (NSDP). In Section 4, we provide their explicit
formulas in some specific examples of TITAN which correspond to specific choices of ui and
Gki . The following theorem is a cornerstone to characterize the general choices of ui and Gki
that satisfy the (NSDP). The two important parameters in Theorem 3 to compute γki and

ηki of (NSDP) are ρ
(y)
i of Condition 2 (or ρ

(y)
i of Condition 3) and Aki of Condition 1.

Theorem 3 Suppose Gki satisfies the following Condition 1 and ui satisfies the following
Condition 2.

Condition 1 There exists a sequence {Aki }i∈[m],k≥0 such that the extrapolation operator Gki
satisfies ‖Gki (xki , x

k−1
i)‖ ≤ Aki ‖xki − x

k−1
i ‖ for i ∈ [m] and k ≥ 0.

Condition 2 Given y ∈ X , there exists a positive constant ρ
(y)
i (which may depend on y)

such that the block i approximation error satisfies the inequality

hi(xi, y) ≥ ρ
(y)
i
2 ‖xi − yi‖

2 for all xi ∈ Xi.

Then the (NSDP) holds with

γki =
(Aki)2

νρ
(xk,i−1)
i

, ηki = (1− ν)ρ
(xk,i−1)
i , (8)

where 0 < ν < 1 is a constant. For notation succinctness, we denote ρki = ρ
(xk,i−1)
i .

Equation (NSDP) also holds with γki and ηki given in (8) if Condition 1 holds and the
following condition 3 holds with y = xk,i−1.

Condition 3 Given y ∈ X , the function xi 7→ ui(xi, y) + gi(xi) is ρ
(y)
i -strongly convex.

Proof In this proof, we denote y = xk,i−1. Let us consider the first case: Condition 1 and
Condition 2 hold. We have

ui(x
k+1
i , y) = f(xk+1

i , y6=i) + hi(x
k+1
i , y) ≥ f(xk+1

i , y6=i) +
ρki
2 ‖x

k+1
i − xki ‖2. (9)

On the other hand, it follows from (6) that, for all xi ∈ Xi, we have

ui(x
k+1
i , y) + gi(x

k+1
i) ≤ ui(xi, y)− 〈Gki (xki , x

k−1
i), xi − xk+1

i 〉+ gi(xi). (10)

Choosing xi = xki in (10), we get the following inequality from (10) and (9):

ui(x
k
i , y) + gi(x

k
i)− 〈Gki (xki , x

k−1
i), xki − x

k+1
i 〉

≥ f(xk+1
i , y6=i) + gi(x

k+1
i) +

ρki
2 ‖x

k
i − x

k+1
i ‖2.

(11)

Since ui(x
k
i , y) = f(y), and recalling that F (x) = f(x1, . . . , xm)+

∑m
i=1 gi(xi), and f(xi, y6=i) =

f(y1, . . . , yi−1, xi, yi+1, . . . , ym), we derive from (11) that

F (xk,i−1)−
〈
Gki (xki , x

k−1
i), xki − x

k+1
i

〉
≥ F (xk,i) +

ρki
2 ‖x

k+1
i − xki ‖2. (12)

8

Inertial Block Majorization Minimization

From Young’s inequality, we have

Aki ‖xki − x
k−1
i ‖‖xk+1

i − xki ‖ ≤
νρki
2 ‖x

k+1
i − xki ‖2 +

(Aki)2

2νρki
‖xki − x

k−1
i ‖2.

Hence, from (12) and Requirement 1, we obtain

F (xk,i) +
(1−ν)ρki

2 ‖xk+1
i − xki ‖2 ≤ F (xk,i−1) +

(Aki)2

2νρki
‖xki − x

k−1
i ‖,

which gives the result.
Let us now consider the second case, when Conditions 1 and 3 hold. Let ũi(xi, y) =

ui(xi, y) + gi(xi). It follows from the optimality conditions of (6) that〈
si(x

k+1
i)− Gki (xki , x

k−1
i), xki − xk+1

i

〉
≥ 0, (13)

where si(x
k+1
i) is a subgradient of ũi(·, y) at xk+1

i . Since ũi(·, y) is strongly convex, we have

ũi(x
k
i , y) ≥ ũi(x

k+1
i , y) +

〈
si(x

k+1
i), xki − x

k+1
i

〉
+

ρki
2 ‖x

k
i − x

k+1
i ‖2. Together with (13) and

noting that ui(x
k+1
i , y) ≥ f(xk+1

i , y6=i), we get (11). The result follows using the same proof
as in the first case.

Let us provide a sufficient condition for Condition 2.

Lemma 4 If hi(·, y) is ρ
(y)
i -strongly convex and is differentiable at yi, and ∇ihi(yi, y) = 0,

then we have hi(xi, y) ≥ ρ
(y)
i
2 ‖xi − yi‖

2.

Proof The result follows from the definition of ρ
(y)
i -strong convexity, that is,

hi(xi, y) ≥ hi(yi, y) + 〈∇ihi(yi, y), xi − yi〉+
ρ

(y)
i

2
‖xi − yi‖2,

the assumption ∇ihi(yi, y) = 0, and the property hi(yi, y) = 0 from Definition 1.

In Section 4, we will provide the explicit formulas of Aki in some specific examples. Note
that Aki may depend on the iterates. Condition 2 is always satisfied for the regularized

block i surrogate function that has the form ui(xi, y) +
ρ
(y)
i
2 ‖xi− yi‖

2, where ui(xi, y) is any
block i surrogate function of f .

3. Convergence analysis

In this section, we will study sub-sequential convergence as well as global convergence of
TITAN. Let us recall that TITAN is a generic framework, for which Assumption 2 and
the (NSDP) must be satisfied to obtain our convergence guarantees. To guarantee a sub-
sequential convergence, we need the following additional conditions.

Condition 4 (i) For k = 0, 1, . . ., we have

γk+1
i ≤ Cηki (14)

for some constant 0 < C < 1.

(ii) There exists a positive number l such that mini,k
{ηki

2

}
≥ l.

9

Hien, Phan and Gillis

Proposition 5 Let {xk} be the sequence generated by TITAN, that is, Algorithm 1. Sup-
pose that the parameters of TITAN are chosen such that Condition 4 (i) holds. Let η−1

i =
γ0
i /C. Then the following statements hold.

(A) For any K > 1, we have

F (xK) + (1− C)
K−1∑
k=0

m∑
i=1

ηki
2 ‖x

k+1
i − xki ‖2 ≤ F (x0) + C

m∑
i=1

η−1
i
2 ‖x

0
i − x

−1
i ‖2. (15)

(B) If Condition 4 (ii) is also satisfied, then we have

+∞∑
k=0

m∑
i=1

‖xk+1
i − xki ‖2 < +∞.

Proof (A) It follows from (NSDP) and (14) that, for k = 0, 1, . . ., we have

F (xk,i) +
ηki
2 ‖x

k+1
i − xki ‖2 ≤ F (xk,i−1) + C

ηk−1
i
2 ‖x

k
i − x

k−1
i ‖2. (16)

Note that
∑m

i=1(F (xk,i) − F (xk,i−1)) = F (xk+1) − F (xk). Summing Inequality (16) over
i = 1, ...,m gives

F (xk+1) +
m∑
i=1

ηki
2 ‖x

k+1
i − xki ‖2 ≤ F (xk) + C

m∑
i=1

ηk−1
i
2 ‖x

k
i − x

k−1
i ‖2. (17)

Summing up Inequality (17) from k = 0 to K − 1, we obtain

F (x0) +
m∑
i=1

C
η−1
i
2 ‖x

0
i − x

−1
i ‖2

≥ F (xK) + C
m∑
i=1

ηK−1
i
2 ‖x

K
i − x

K−1
i ‖2 + (1− C)

K−1∑
k=0

m∑
i=1

ηki
2 ‖x

k+1
i − xki ‖2,

which gives the result.
(B) The result is a direct consequence of the inequality (15).

3.1 Sub-sequential Convergence

Let us now prove sub-sequential convergence of TITAN. We will assume that the generated
sequence {xk} is bounded which is a standard assumption, see Attouch and Bolte (2009);
Attouch et al. (2010, 2013); Bolte et al. (2007). From Inequality (15) in Proposition 5,
we have that the boundedness of {xk} is satisfied for bounded-level set functions F . We
will also assume ‖Gki (xki , x

k−1
i)‖ goes to 0 when k goes to ∞. This assumption will be

satisfied if Condition 1 is satisfied and Aki is bounded for the bounded sequence {xk}.
Indeed, from Proposition 5(B), ‖xki − x

k−1
i ‖ converges to 0 when k goes to ∞. Hence, if

‖Gki (xki , x
k−1
i)‖ ≤ Aki ‖xki − x

k−1
i ‖ and Aki is bounded, then ‖Gki (xki , x

k−1
i)‖ goes to 0.

Theorem 6 (Sub-sequential convergence) Suppose Condition 4 is satisfied for TITAN.
We further assume that the generated sequence {xk} by Algorithm 1 is bounded and
‖Gki (xki , x

k−1
i)‖ goes to 0 when k goes to ∞. Then every limit point x∗ of {xk} is a critical

point of Φ.

10

Inertial Block Majorization Minimization

Proof Suppose a subsequence {xkn} of {xk} converges to x∗ ∈ X (we remark that xk+1
i

lies in dom gi ∩ Xi for all k ≥ 0, i ∈ [m]). Proposition 5(B) implies that xkn−1 → x∗ and
xkn+1 → x∗. Choosing xi = x∗i and k = kn in (10), we obtain

ui(x
kn+1
i , xkn,i−1) + gi(x

kn+1
i)

≤ ui(x∗i , xkn,i−1)− 〈Gkni (xkni , x
kn−1
i), x∗i − x

kn+1
i 〉+ gi(x

∗
i).

(18)

Note that xkn,i−1 → x∗ and ui(xi, y) is continuous in y. Hence, we derive from (18) that

lim sup
n→∞

ui(x
kn+1
i , xkn,i−1) + gi(x

kn+1
i) ≤ ui(x∗i , x∗) + gi(x

∗).

Furthermore, ui(xi, y)+gi(xi) is lower semi-continuous. Hence, ui(x
kn+1
i , xkn,i−1)+gi(x

kn+1
i)

converges to ui(x
∗
i , x
∗) + gi(x

∗
i). We then choose k = kn in (10) and let n→∞ to obtain

ui(x
∗
i , x
∗) + gi(x

∗
i) ≤ ui(xi, x∗) + gi(xi) for all xi ∈ Xi.

Note that ui(x
∗
i , x
∗) = f(x∗) and ui(xi, x

∗) = f(xi, x
∗
6=i) + hi(xi, x

∗). Therefore, for all
xi ∈ Xi, we have

F (x∗) ≤ F (x∗1, . . . , x
∗
i−1, xi, x

∗
i+1, . . . , x

∗
m) + hi(xi, x

∗)

≤ F (x∗1, . . . , x
∗
i−1, xi, x

∗
i+1, . . . , x

∗
m) + h̄i(xi, x

∗),
(19)

where we have used Assumption 2. Inequality (19) shows that, for i = 1, . . . ,m, x∗i is a
minimizer of the problem

min
xi∈Xi

F (x∗1, . . . , x
∗
i−1, xi, x

∗
i+1, . . . , x

∗
m) + h̄i(xi, x

∗). (20)

The result follows from the optimality condition of (20) and ∇ih̄i(x∗i , x∗) = 0.

Remark 7 Considering the case X = E := E1 × . . . × Em, the assumption that Inequal-
ity (7) is satisfied for all xi ∈ Ei can be relaxed to that for any given bounded subset of Ei,
i ∈ [m], Inequality (7) is satisfied for any xi in this bounded subset. In other words, we
relax the global bound for the block approximation error to the “local” bound1. Note that
Inequality (7) was not used before the proof of Theorem 6, it was not required in the proof
of Proposition 5. On the other hand, we assume that the generated sequence of TITAN
is bounded (see the discussion at the beginning of Section 3 for a sufficient condition on
this boundedness assumption). Hence, we can consider Inequality (7) in the closed bounded
convex set X̄ that contains the generated sequence of TITAN and contains limit points x∗

as interior points. We repeat the proof of Theorem 6 to obtain the first inequality of (19):
for all xi ∈ Ei,

F (x∗) ≤ F (x∗1, . . . , x
∗
i−1, xi, x

∗
i+1, . . . , x

∗
m) + hi(xi, x

∗).

1. Let us give an example when a property is not satisfied over the whole space but is satisfied over any
given bounded subset of the space. The function f(x) = x3 does not have Lipschitz continuous gradient
over the whole space R, but it has Lipschitz continuous gradient over any given bounded subset of R.

11

Hien, Phan and Gillis

This inequality implies that for all xi ∈ X̄i, we have the second inequality of (19). Conse-
quently, x∗i is a minimizer of Problem (20) with Xi being replaced by X̄i. Note that x∗i is in
the interior of X̄i. Hence, the subsequential convergence to a critical point of F also holds
for the relaxed condition.

3.2 Global Convergence

A global convergence recipe was proposed by Attouch et al. (2010, 2013); Bolte et al.
(2014) for proximal BCD (that is, when the proximal surrogate function is used; see also
Section 4.1) and proximal gradient BCD methods (that is, when the Lipschitz gradient
surrogate function is used; see also Sections 4.2) for solving nonsmooth nonconvex problems;
see also Section 1.2. The recipe was extended in Ochs (2019) and (Hien et al., 2020, Theorem
2) to deal with the accelerated algorithms, which may produce non-monotone sequences of
objective function values. For completeness, we provide (Hien et al., 2020, Theorem 2),
which will be used to prove the global convergence of TITAN, in Appendix B. In order to
achieve the global convergence of the generated sequence, we need the following additional
assumption.

Assumption 3 (i) For any x, z ∈ X , we have

∂xi
(
f(x) + gi(xi) + IXi(xi)

)
= ∂xif(x) + ∂xi

(
gi(xi) + IXi(xi)

)
,

∂xi
(
ui(xi, z) + gi(xi) + IXi(xi)

)
= ∂xiui(xi, z) + ∂xi

(
gi(xi) + IXi(xi)

)
.

(21)

(ii) For any bounded subset of X and any x, z in this subset, for si ∈ ∂xiui(x, z), there
exists ti ∈ ∂xif(x) such that

‖si − ti‖ ≤ Bi‖x− z‖

for some constant Bi that may depend on the subset.

We make the following remarks for Assumption 3.

• We note that when gi = 0 and Xi = Ei then Assumption 3 (i) is satisfied. Let us
give another simple sufficient condition that makes Assumption 3 (i) hold: if the
functions xi 7→ f(x) and xi 7→ ui(xi, z) are strictly differentiable then Assumption 3
(i) is satisfied (Rockafellar and Wets, 1998, Exercise 10.10). We refer the readers to
Rockafellar and Wets (1998) (Corollary 10.9) for a more general sufficient condition
for Assumption 3 (i).

• It is important noting that the constants Bi of Assumption 3 (ii) do not influence
how to choose the parameters for TITAN, their existence is just for the purpose of
proving the global convergence of the generated sequence. More specifically, as we
assume that the generated sequence {xk} is bounded, in the proof of Theorem 8, we
only work on a bounded set that contains {xk}.

• Assumption 3 (ii) is naturally satisfied when the function f(·) and the surrogate func-
tions ui(·, ·) are continuously differentiable, ∇xiui(xi, x) = ∇xif(x), and ∇xiui(·, ·) is
Lipschitz continuous on any bounded subsets of Xi × X since in this case we have
∇xiui(x, z) − ∇xif(x) = ∇xi

(
ui(x, z) − ui(xi, x)

)
. We note that all the surrogate

12

Inertial Block Majorization Minimization

functions given in Sections 4.1–4.4 satisfy Assumption 3 when f has Lipschitz contin-
uous gradient on bounded subsets of X . We refer the readers to (Hien et al., 2022,
Section 3) for an example of nonsmooth f that satisfies Assumption 3 (ii).

Theorem 8 (Global convergence) Suppose the parameters of TITAN are chosen such
that Condition 4 is satisfied. Furthermore, we assume that, the block surrogate functions
ui(xi, y) is continuous on the joint variable (xi, y), Assumption 3 holds, Condition 1 holds
with bounded Aki , Φ is a KL function (see Appendix A), and together with the existence of

l, we also assume there exists l > 0 such that maxi,k
{ηki

2

}
≤ l. Suppose one of the following

two conditions hold.

1. Condition (14) is satisfied with some C satisfying C < l/l.

2. We use a restarting regime for TITAN, that is, if F (xk+1) ≥ F (xk) then we re-do the
k-iteration with Gki = 0 (that is, no extrapolation is used). When restarting happens,
we suppose that (NSDP) is satisfied with 2 γki = 0, for i ∈ [m].

Then the whole generated sequence {xk} of Algorithm 1, which is assumed to be bounded,
converges to a critical point x∗ of Φ.

Proof See Appendix C.1.

We make some remarks to end this section.

Remark 9 (Convergence rate) As long as a global convergence (see Theorem 8) is guar-
anteed, we can derive a convergence rate for the generated sequence using the same technique
as in the proof of Attouch and Bolte (2009) (Theorem 2). We refer the reader to (Hien
et al., 2020, Theorem 3) and (Xu and Yin, 2013, Theorem 2.9) for some examples of using
the technique of (Attouch and Bolte, 2009, Theorem 2) to derive the convergence rate and
omit the details of the proof for the convergence rate for TITAN. The type of the convergence
rate depends on the value of the K L exponent a, where ξ(s) = cs1−a for some constant c
in Definition 17. In particular, if a = 0 then TITAN converges after a finite number of
steps. If a ∈ (0, 1/2] then TITAN has linear convergence, that is, there exists k0 > 0,
ω1 > 0 and ω2 ∈ [0, 1) such that ‖xk − x∗‖ ≤ ω1ω

k
2 for all k ≥ k0. And if a ∈ (1/2, 1)

then TITAN has sublinear convergence, that is, there exists k0 > 0 and ω1 > 0 such that
‖xk − x∗‖ ≤ ω1k

−(1−a)/(2a−1) for all k ≥ k0. Determining the value of a is out of the scope
of this paper.

Remark 10 (With or without restarting steps?) If we target a global convergence guar-
antee and to avoid the restarting step (which could be expensive when the objective function
is expensive to evaluate), TITAN without restarting steps is recommended when the bounds
l and l are easy to estimate (then C in Condition (14) also needs to satisfy C < l/l). If the
values of the parameters ηki vary along with the block updates, it is in general not easy to
estimate the bounds l and l. In that case, TITAN with a restarting regime is recommended
to guarantee a global convergence. It is important to note that TITAN always guarantees a
sub-sequential convergence with or without restarting steps.

2. If ui satisfies Condition 2 or Condition 3 then we repeat the proof of Theorem 3 to derive Inequality (12)
which leads to Condition (NSDP) being satisfied with γki = 0 and ηki = ρki /2.

13

Hien, Phan and Gillis

4. Some TITAN Accelerated Block Coordinate Methods

In order to guarantee a subsequential convergence, TITAN must choose the parameters that
satisfy the conditions in Theorem 6, which include Assumption 2, the (NSDP), the condition
‖Gki (xki , x

k−1
i)‖ → 0 and Condition 4. As noted in the first paragraph of Section 3.1, the

condition ‖Gki (xki , x
k−1
i)‖ → 0 is satisfied by the extrapolation satisfying Condition 1 with

bounded Aki . Theorem 3 characterizes some general properties of ui and Gki that make
the (NSDP) hold, and it determines the corresponding values of ηki and γki when Condition 1
is satisfied, along with Condition 2 or 3. Once ηki and γki are determined (such as in (8)),
the condition in (14) helps choose the appropriate extrapolation parameters to guarantee a
subsequential convergence.

In the following, we consider some important block surrogate functions from the litera-
ture (more examples can be found in Mairal (2013)), and derive several specific instances
of TITAN. We verify Assumption 2 using Lemma 2, and provide the formulas of ηki and
γki using Theorem 3. TITAN recovers many inertial methods from the literature; see Sec-
tion 4.1–4.4. TITAN with Lipschitz gradient surrogates combined with an inertial gradient
with Hessian damping of Adly and Attouch (2020) gives us a new inertial block coordinate
method; see Section 4.2.2. In Section 4.5, we use TITAN to derive new inertial methods
when composite surrogates are used. The method proposed in Section 4.5 will be applied
to solve the matrix completion problem in Section 6.2.

4.1 TITAN with proximal surrogate function

The proximal surrogate function, which has been used for example in Attouch and Bolte
(2009); Attouch et al. (2013); Hien et al. (2020), has the following form

ui(xi, y) = f(xi, y6=i) +
ρ
(y)
i
2 ‖xi − yi‖

2,

where f is a lower semi-continuous function and ρ
(y)
i > 0 is a scalar.

Verifying Assumption 2. We have hi(xi, y) =
ρ
(y)
i
2 ‖xi − yi‖

2. Hence, Assumptions 2
and Condition 2 are satisfied.

Choosing Gki and determining Aki . Let us choose Gki (xki , x
k−1
i) = ρki β

k
i (xki − xk−1

i),

where βki are some extrapolation parameters and ρki = ρ
(xk,i−1)
i . We have Aki = ρki β

k
i . The

minimization problem in the update (6) becomes

min
xi∈Xi

f(xi, x
k,i−1
6=i) +

ρki
2 ‖xi − (xki + βki (xki − x

k−1
i))‖2 + gi(xi).

Verifying the (NSDP). The formulas of ηki and γki are determined as in Theorem 3, and

the (NSDP) is thus satisfied. Specifically, γki =
(Aki)2

νρki
= (βki)2ρki /ν and ηki = (1 − ν)ρki .

Hence, when we choose the parameters βki and ρki such that (βk+1
i)2ρk+1

i /ν ≤ C(1 − ν)ρki
and ρki ≥ ε for some constants ε > 0, 0 < ν,C < 1, then Condition 4 is satisfied.

When we choose ρki = ρ for all i, k, then we can take l = l = (1 − ν)ρ so that the
first condition of Theorem 8 holds, and (14) becomes βk+1

i ≤
√
ν(1− ν)C. The global

convergence is then guaranteed without restarting steps.

14

Inertial Block Majorization Minimization

This TITAN scheme recovers the inertial block proximal algorithm and the convergence
results of Hien et al. (2020) for Problem (1).

4.2 TITAN with Lipschitz gradient surrogates

The Lipschitz gradient surrogate function, which has been used for example in Xu and Yin
(2013, 2017); Hien et al. (2020), has the form

ui(xi, y) = f(y) + 〈∇if(y), xi − yi〉+
κiL

(y)
i

2 ‖xi − yi‖2,

where κi ≥ 1, the block function xi 7→ f(xi, y6=i) is differentiable and ∇if(xi, y6=i) is L
(y)
i -

Lipschitz continuous. Note that L
(y)
i may depend on y. The block approximation error hi

for this case is

hi(xi, y) = f(y) + 〈∇if(y), xi − yi〉+
κiL

(y)
i

2
‖xi − yi‖2 − f(xi, y6=i).

Verifying Assumption 2. We have

∇xihi(xi, y) = κiL
(y)
i (xi − yi) +∇if(y)−∇if(xi, y6=i),

so that ∇xihi(yi, y) = 0. Hence, Assumption 2 is satisfied with h̄i(xi, y) = hi(xi, y).

Choosing Gki and determining Aki . We will consider two variants of Gki : the choice
in (22) that leads to inertial block proximal gradient methods, see Section 4.2.1, and the
choice in (25) that leads to block proximal gradient algorithms with Hessian damping, see
Section 4.2.2.

Verifying the (NSDP). Consider the case when gi(xi) is a nonconvex function. As

∇if(xi, y6=i) is L
(y)
i -Lipschitz continuous, we have xi 7→

L
(y)
i
2 ‖xi‖

2− f(xi, y6=i) is convex, see

Zhou (2018). Hence, we always have xi 7→ hi(xi, y) is a (κi−1)L
(y)
i -strongly convex function.

In this case, we need to choose κi > 1, and Condition 2 is satisfied with ρ
(y)
i = (κi− 1)L

(y)
i .

If gi(xi) is convex then we have xi 7→ ui(xi, y) + gi(xi) is a κiL
(y)
i -strongly convex function;

as such, in this case we can choose κi = 1 and Condition 3 is satisfied with ρ
(y)
i = L

(y)
i .

In the following, we consider two specific choices for Gki , one leads to the inertial block
proximal gradient method (Section 4.2.1), the other leads to the Hessian damping algorithm
(Section 4.2.2). We then determine the corresponding values of Aki and check Condition 4.
Taking y = xk,i−1, the corresponding formulas of ηki and γki will be determined as in
Theorem 3, and hence the (NSDP) is thus satisfied for both algorithms.

4.2.1 Deriving inertial block proximal gradient methods

Let us consider the case ∇if(xi, y6=i) is L
(y)
i -Lipschitz continuous over Ei, and take

Gki (xki , x
k−1
i) = ∇if(xk,i−1)−∇if(x̄ki , x

k,i−1
6=i) + κiL

k
i β

k
i (xki − xk−1

i), (22)

15

Hien, Phan and Gillis

where x̄ki = xki + τki (xki − xk−1
i), τki and βki are some extrapolation parameters, and

Lki = L
(xk,i−1)
i . The update in (6) becomes

argmin
xi∈Xi

f(xk,i−1) +
〈
∇if(xk,i−1), xi − xki

〉
+

κiL
k
i

2 ‖xi − x
k
i ‖2

−
〈
∇if(xk,i−1)−∇if(x̄ki , x

k,i−1
6=i) + κiL

k
i β

k
i (xki − x

k−1
i), xi

〉
+ gi(xi)

= argmin
xi∈Xi

〈
∇if(x̄ki , x

k,i−1
6=i), xi

〉
+ gi(xi) +

κiL
k
i

2

∥∥xi − (xki + βki (xki − x
k−1
i))

∥∥2
.

We now determine the values of Aki in Condition 1. We consider the following situations.

General case. In general when no convexity is assumed for the block functions of f , we
have

‖Gki (xki , x
k−1
i)‖ ≤ Lki (τki + κiβ

k
i)‖xki − xk−1

i ‖

Hence, we can take Aki = Lki (τ
k
i + κiβ

k
i). Let us recall that ρki = (κi − 1)Lki , κi > 1,

when no convexity is assumed for gi and ρki = Lki , κi = 1, when gi is convex; see the
above paragraph “Verifying the (NSDP)”. The formulas of γki and ηki are then deter-
mined as in (8) of Theorem 3, and Condition 4 (i) tells us how to choose the extrapola-
tion parameters βki and τki . Specifically, (Lk+1

i)2(τk+1
i +κiβ

k+1
i)2 ≤ Cνρk+1

i (1− ν)ρki .
Regarding the first condition of Theorem 8, we see that estimating the values of l de-
pends on estimating the bound for Lki which highly depends on the problem at hand.
As mentioned in Remark 10, a restarting step is necessary for a global convergence
guarantee when the bound cannot be estimated.

The block function f(·, xk,i−1
6=i) is convex. We can get a tighter value for Aki . Specifi-

cally, if we choose βki ≥ τki , then the function

xi 7→ ξ(xi) =
1

2
κiL

k
i

βki
τki

(xi)
2 − f(xi, x

k,i−1
6=i)

is convex, and it has
(
κiL

k
i
βki
τki

)
-Lipschitz gradient. Therefore, we get

‖∇ξ(x̄ki)−∇ξ(xki)‖ ≤ κiLki
βki
τki
‖x̄ki − xki ‖ = κiL

k
i β

k
i ‖xki − x

k−1
i ‖.

On the other hand, we see that

∇ξ(x̄ki)−∇ξ(xki) = κiL
k
i
βki
τki
x̄ki −∇if(x̄ki , x

k,i−1
6=i)− κiLki

βki
τki
xki +∇if(xk,i−1)

= Gki (xki , x
k−1
i).

Hence, in this case, we can take Aki = κiL
k
i β

k
i . The condition in (14) becomes

(κiL
k+1
i βk+1

i)2 ≤ Cνρk+1
i (1 − ν)ρki , where ρki = (κi − 1)Lki , κi > 1, when no con-

vexity is assumed for gi and ρki = Lki , κi = 1, when gi is convex. Similarly to the
previous case, we see that estimating the value of l depends on estimating the upper
bound for Lki . If such a bound is too difficult to estimate, then a restarting step is
necessary to have a global convergence.

16

Inertial Block Majorization Minimization

This TITAN scheme recovers the accelerated methods and their convergence results in
the literature as follows.

• If we use Gki in (22) and choose βki = τki then we recover the Nesterov type acceleration
as in Xu and Yin (2013, 2017).

• If we use Gki in (22) and let βki 6= τki and βki ≥ τki then the update in (6) uses two
different extrapolation points as in Hien et al. (2020).

It is important noting that we can also recover the heavy-ball type acceleration by
choosing Gki (xki , x

k−1
i) = κiL

k
i β

k
i (xki − x

k−1
i), and, for this case, we can assume ∇if(xi, y6=i)

is L
(y)
i -Lipschitz continuous over Xi (not necessary to be over Ei).

Remark 11 We have derived the values of ηki and γki using Theorem 3, and specific values
of Aki and ρki of Theorem 3 were given. We have analyzed the following cases: (i) the
functions f and gi’s are nonconvex, (ii) the block functions of f are convex but the gi’s are
not, and (iii) the function f is nonconvex but the functions gi’s are convex.

When F possesses the strong property that the block functions of f are convex and the
gi’s are convex, we can obtain better values for γki and ηki that allow larger extrapolation
parameters based on Condition (14). Let us choose Gki as in (22). It was established in the
proof in (Hien et al., 2020, Remark 3) that

F (xk,i−1) +
Lki
2

(
(τki)2 +

(βki − τki)2

ν

)
‖xki −xk−1

i ‖2 ≥ F (xk,i) +
(1− ν)Lki

2
‖xk+1

i −xki ‖2, (23)

where 0 < ν < 1 is a constant. Hence, in this case, the (NSDP) is satisfied with

γki = Lki

(
(τki)2 +

(βki − τki)2

ν

)
, ηki = (1− ν)Lki . (24)

Note that if we choose βki = τki , then the (NSDP) is satisfied with

γki = Lki (τ
k
i)2, ηki = Lki ,

see also (Xu and Yin, 2013, Lemma 2.1).

4.2.2 Inertial block proximal gradient algorithm with Hessian damping

Let us take

Gki = αki
(
∇if(xk−1

i , xk,i−1
6=i

)
−∇if(xk,i−1)) + κiL

k
i β

k
i (xki − xk−1

i), (25)

where αki and βki are some extrapolation parameters. The problem in (6) becomes

argmin
xi

f(xk,i−1) +
〈
∇if(xk,i−1), xi − xki

〉
+

κiL
k
i

2 ‖xi − x
k
i ‖2

−
〈
αki
(
∇if(xk−1

i , xk,i−1
6=i)−∇if(xk,i−1)

)
+ κiL

k
i β

k
i (xki − x

k−1
i), xi

〉
+ gi(xi)

= argmin
xi

〈
∇if(xk,i−1) + αki

(
∇if(xk,i−1)−∇if(xk−1

i , xk,i−1
6=i)

)
, xi

〉
+ gi(xi)

+
κiL

k
i

2

∥∥xi − (xki + βki (xki − x
k−1
i))

∥∥2
.

To determine the values of Aki in Condition 1, let us consider the following two situations:

17

Hien, Phan and Gillis

• In the general case when no convexity is assumed for f(·, xk,i−1
6=i), we have

‖Gki (xki , x
k−1
i)‖ ≤ Lki (αki + κiβ

k
i)‖xki − xk−1

i ‖.

Hence, we take Aki = Lki (α
k
i + κiβ

k
i).

• If the block function f(·, xk,i−1
6=i) is convex, we choose αki ≤ κiβ

k
i to guarantee the

convexity of the function xi 7→ ξ(xi) = 1
2κiL

k
i β

k
i (xi)

2 − αki f(xi, x
k,i−1
6=i). Note that

ξ(xi) has κiL
k
i β

k
i -Lipschitz gradient. Hence, similarly to Section 4.2.1, we can take

Aki = κiL
k
i β

k
i .

The condition in (14) becomes (Ak+1
i)2 ≤ Cνρk+1

i (1− ν)ρki , where ρki = (κi − 1)Lki , κi > 1,
when no convexity is assumed for gi and ρki = Lki , κi = 1, when gi is convex. Furthermore,
if the upper bound of Lki is too difficult to estimate, using restarting step is recommended
to have a global convergence guarantee.

With this TITAN scheme, we obtain an inertial block proximal gradient algorithm with
the corrective term ∇if(xk,i−1) − ∇if(xk−1

i , xk,i−1
6=i) which is related to the discretization

of the Hessian-driven damping term; see Adly and Attouch (2020). When gi(xi) = 0, the
update in (6) becomes

xk+1
i = xki + βki (xki − xk−1

i)− 1

κiLki

(
∇if(xk,i−1) + αki

(
∇if(xk,i−1)−∇if(xk−1

i , xk,i−1
6=i)

))
,

which has the form of the inertial gradient algorithm with Hessian damping of Adly and
Attouch (2020).

4.3 TITAN with Bregman surrogates

The Bregman surrogate for relative smooth functions, which has been used for example
in Ahookhosh et al. (2021a); Hien and Gillis (2021); Teboulle and Vaisbourd (2020), has
the form

ui(xi, y) = f(y) + 〈∇if(y), xi − yi〉+ κiL
(y)
i D

ϕ
(y)
i

(xi, yi),

where κi ≥ 1, the block function xi 7→ f(xi, y6=i) is differentiable, ϕ
(y)
i is a differentiable

convex function such that the function xi 7→ L
(y)
i ϕ

(y)
i (xi) − f(xi, y6=i) is convex, and D

ϕ
(y)
i

is the block Bregman divergence associated with ϕ
(y)
i defined by

D
ϕ
(y)
i

(xi, vi) = ϕ
(y)
i (xi)− [ϕ

(y)
i (vi) + 〈∇ϕ(y)

i (vi), xi − vi〉]. (26)

It is assumed that ϕ
(y)
i is a ρ

ϕ
(y)
i

-strongly convex function on Ei and its gradient is Lipschitz

continuous on bounded subsets of Ei.

Verifying Assumption 2. The block approximation error hi for this case is

hi(xi, y) = f(y) + 〈∇if(y), xi − yi〉+ κiL
(y)
i D

ϕ
(y)
i

(xi, yi)− f(xi, y6=i).

We thus have

∇xihi(xi, y) = κiL
(y)
i (∇ϕ(y)

i (xi)−∇ϕ(y)
i (yi)) +∇if(y)−∇if(xi, y6=i).

Hence, Assumption 2 is satisfied with h̄i(xi, y) = hi(xi, y).

18

Inertial Block Majorization Minimization

Choosing Gki and determining Aki . Let us consider when a weak inertial force is used:
Gki (xki , x

k−1
i) = βki (xk−1

i − xki), where βki are some extrapolation parameters. In this case,
we have Aki = βki . This case recovers the block inertial Bregman proximal algorithm
in Ahookhosh et al. (2021b).

Verifying the (NSDP). We use Theorem 3 to determine the values of ηki and γki of
the (NSDP). Similarly to Section 4.2, if gi(xi) is convex then xi 7→ ui(xi, y) + gi(xi) is a

κiL
(y)
i ρϕi-strongly convex function. In this case we can choose κi = 1 and Condition 3 is

satisfied with ρ
(y)
i = L

(y)
i ρ

ϕ
(y)
i

. Considering the case when no convexity is assumed for gi,

as we have hi(·, y) is a (κi− 1)L
(y)
i ρ

ϕ
(y)
i

-strongly convex function, we need to choose κi > 1,

and Condition 2 is satisfied with ρ
(y)
i = (κi − 1)L

(y)
i ρ

ϕ
(y)
i

. Taking y = xk,i−1, the formulas

of ηki and γki are determined as in Theorem 3.

Therefore, when weak inertial force is used, the condition (14) becomes (βk+1
i)2 ≤

Cνρk+1
i (1 − ν)ρki . If we further assume that L

(y)
i = Li, for i = 1, . . . ,m (that is, L

(y)
i is

independent of y, see Ahookhosh et al. (2021b)) then the first condition of Theorem 8 can
be verified, that leads to a global convergence without restarting steps.

In the following, we propose another method to choose Gki that leads to a new inertial
algorithm when Bregman surrogates are used.

Heavy ball type acceleration with back-tracking. Let us choose

Gki (xki , x
k−1
i) = κiL

k
i (∇ϕki (x̄ki)−∇ϕki (xki)),

where ϕki = ϕ
(xk,i−1)
i , x̄ki = xki + τki (xki − x

k−1
i) with τki being extrapolation parameters.

Recall we assume that ϕki (·) is strongly convex and differentiable on Ei, and hence ∇ϕki (x̄ki)
is well-defined. The update (6) becomes

argmin
xi

〈
∇if(xk,i−1), xi − xki

〉
+ gi(xi) + κiL

k
i

(
ϕki (xi)− 〈∇ϕki (x̄ki), xi − x̄ki 〉 − ϕki (x̄ki)

)
= argmin

xi

〈
∇if(xk,i−1), xi − xki

〉
+ gi(xi) + κiL

k
iDϕki

(xi, x̄
k
i),

which has the form of a heavy ball acceleration of Polyak (1964). Note that we do not
assume that ∇ϕki is globally Lipschitz continuous. Therefore, we propose to apply line-
search to determine the extrapolation parameter τki as follows. Starting with τki = 1, we
decrease τki by multiplying it with a constant τ̄ < 1 until the following condition is satisfied

κiL
k
i ‖∇ϕki (x̄ki)−∇ϕki (xki)‖2 ≤ C‖xki − xk−1

i ‖2ρki ρk+1
i .

This process terminates after a finite number of steps as we assume ∇ϕki (xi) is Lipschitz
continuous on any given bounded sets of Ei. Then the condition in (14) is satisfied with

Aki =
‖∇ϕki (x̄ki)−∇ϕki (xki)‖

‖xki−x
k−1
i ‖

. Since∇ϕki (·) is Lipschitz continuous on any given bounded subsets,

we have Aki is bounded over the bounded set that contains the generated sequence.

19

Hien, Phan and Gillis

4.4 TITAN with quadratic surrogates

The quadratic surrogate, which has been used for example in Chouzenoux et al. (2016);
Ochs (2019), has the following form

ui(xi, y) = f(y) + 〈∇if(y), xi − yi〉+
κi
2

(xi − yi)TH(y)
i (xi − yi), (27)

where κi ≥ 1, f is twice differentiable and H
(y)
i is a positive definite matrix such that

(H
(y)
i −∇2

i f(xi, y6=i)) is positive definite (H
(y)
i may depend on y).

Taking y = xk,i−1, we note that the quadratic surrogate is a special case of the Bregman
surrogate (Section 4.3) with ϕki (x) = xTi H

k
i xi, L

k
i = 1 and ρϕki

being the smallest eigenvalue

of Hk
i . However, it is important noting that the kernel function ϕki (xi) =

〈
xi, H

k
i xi
〉

is
globally ‖Hk

i ‖-Lipschitz smooth. Therefore, we can recover the heavy ball type acceleration
as in Section 4.3 but without back-tracking for the extrapolation parameters as follows. We
choose Gki as

Gki (xki , x
k−1
i) = κi(H

k
i (x̄ki)−Hk

i (xki)) = κiτ
k
i H

k
i (xki − xk−1

i),

where x̄ki = xki + τki (xki − x
k−1
i). In this case, Aki = κiτ

k
i ‖Hk

i ‖. The update in (6) has the
form of a heavy ball acceleration

argmin
xi

〈
∇ifi(xki), xi − xki

〉
+ gi(xi) +

κi
2

(xi − x̄ki)THk
i (xi − x̄ki).

The condition in (14) for this case is (κiτ
k+1
i ‖Hk+1

i ‖)2 ≤ Cνρk+1
i (1 − ν)ρki , where ρki =

(κi− 1)λmin(Hk
i), κi > 1, if no convexity is assumed for gi, and ρki = λmin(Hk

i), κi = 1, if gi
is convex. The upper bound of λmin(Hk

i) highly depends on specific applications. In case
this bound is not easy to estimate, a restarting step can be used to have global convergence.

4.5 TITAN with composite surrogates

In this section, we derive new inertial algorithms when using composite surrogates. Suppose
f has the form

f(x) = ψ(x) + φ(r(x)), (28)

where

• ψ : X → R is a nonsmooth nonconvex function, and let us denote uψi (xi, y), for i ∈ [m],
to be block surrogate functions of ψ,

• r = (r1, ..., rm), where ri : Xi → Yi ⊂ Fi are Lipschitz continuous (that is, ‖ri(xi) −
ri(yi)‖ ≤ Lri‖xi− yi‖ for xi, yi ∈ Xi) and Fi (i = 1, . . . ,m) are finite dimensional real
linear spaces, and

• φ : Y := Y1 × ... × Ym → R+ is a continuously differentiable and block-wise concave
function with Lipschitz gradient.

20

Inertial Block Majorization Minimization

There are several practical problems in machine learning that minimize an objective function
of the form (28); see for example Bradley and Mangasarian (1998); Fan and Li (2001); Phan
and Le Thi (2019). We will provide an example with the MCP in Section 6.

Considering f of the form (28), we propose to use the following composite block surrogate
functions:

ui(xi, y) = uψi (xi, y) + φ(r(y)) + 〈∇iφ(r(y)), ri(xi)− ri(yi)〉.

Since the block function of φ is concave, we have

(φ ◦ r)(xi, y6=i) ≤ φ(r(y)) + 〈∇iφ(r(y)), ri(xi)− ri(yi)〉, (29)

where 〈∇iφ(r(y)) is the gradient of φ at r(y) with respect to block i.

Verifying Assumption 2. Let us assume the block surrogate functions uψi (·, ·) of ψ(·)
satisfy Assumption 2. We prove that the block surrogate functions ui of f also satisfy
Assumption 2. Indeed, we have

hi(xi, y) = ui(xi, y)− f6=i(xi, y)

= uψi (xi, y)− ψ(xi, y6=i) + φ(r(y)) + 〈∇iφ(r(y)), ri(xi)− ri(yi)〉 − φ ◦ r(xi, y6=i).

Moreover, as we assume ∇iφ is Lipschitz continuous, we have

φ(r(y)) + 〈∇iφ(r(y)), ri(xi)− ri(yi)〉 − (φ ◦ r)(xi, y6=i) ≤
Lφi
2
‖ri(xi)− ri(yi)‖2,

for some constant Lφi . Therefore, we obtain

hi(xi, y) ≤ uψi (xi, y)− ψ(xi, y6=i) +
Lφi
2 ‖ri(xi)− ri(yi)‖

2

≤ uψi (xi, y)− ψ(xi, y6=i) +
Lφi (Lri)

2

2 ‖xi − yi‖2,
(30)

where we use the Lipschitz continuity of ri(·) in the last inequality. Since uψi (·, ·) satisfies
Assumption 2, it follows from (30) that ui(·, ·) satisfies Assumption 2.

Choosing Gki and determining Aki . The values of Aki of Theorem 3 depends on how we
choose block surrogate functions for ψ, and how we choose Gki . Specific examples and their
corresponding values of Aki that were presented in Section 4.2, Section 4.3 and Section 4.4
can be used for ψ.

Verifying the (NSDP). Let us determine the values of ρki of Theorem 3 for the two cases

(i) uψi satisfies Condition 2, and (ii) uψi (·, y) satisfies Condition 3 and xi 7→ 〈∇iφ(r(y)), ri(xi)〉
is convex. For the first case, we see that ui(xi, y) also satisfies Condition 2. Indeed, it follows
from Inequality (29) that

hi(xi, y) ≥ uψi (xi, y)− ψ(xi, y6=i) ≥
ρ

(y)
i

2
‖xi − yi‖2.

For the second case, we see that ui(xi, y) + gi(xi) is also a ρyi -strongly convex function. The
formulas of ηki and γki are then determined as in Theorem 3 and the condition in (14) tells
us how to choose the corresponding extrapolation parameters such that a subsequential
convergence is guaranteed.

21

Hien, Phan and Gillis

Remark 12 Let us consider the case when gi(xi) and xi 7→ 〈∇iφ(r(y)), ri(xi)〉, for i ∈ [m],
are convex, ψ(x) is a block-wise convex function, and its block functions xi 7→ ψ(xi, y6=i) are

continuously differentiable with L
(y)
i -Lipschitz gradient. We choose the Lipschitz gradient

surrogate for ψ, and Gki as in (22). Let y = xk,i−1 and Lki = L
(xk,i−1)
i . Using the same

technique as in the proof of (Hien et al., 2020, Remark 3), we get the following inequality
(note that we can also take F = ψ(x) +

∑m
i=1

(
〈∇iφ(r(y)), ri(xi)〉+ gi(xi)

)
in (23) to obtain

the result):

ψ(xk,i−1) + 〈∇iφ(r(y)), ri(x
k
i)〉+ gi(x

k
i) +

Lki
2

(
(τki)2 +

(βki −τki)2

ν

)
‖xki − x

k−1
i ‖2

≥ ψ(xk,i) + 〈∇iφ(r(y)), ri(x
k+1
i)〉+ gi(x

k+1
i) +

(1−ν)Lki
2 ‖xk+1

i − xki ‖2.

Together with (29), we obtain

ψ(xk,i−1) + φ(r(y)) + gi(x
k
i) +

Lki
2

(
(τki)2 +

(βki −τki)2

ν

)
‖xki − x

k−1
i ‖2

≥ ψ(xk,i) + (φ ◦ r)(xk+1
i , y6=i) + gi(x

k+1
i) +

(1−ν)Lki
2 ‖xk+1

i − xki ‖2.
(31)

Moreover, recall that F (x) = ψ(x) + φ(r(x)) +
∑m

i=1 gi(xi). Therefore, Inequality (31)
recovers Inequality (23), and we can take ηki and γki as in (24).

5. Extension to essentially cyclic rule

In this section, we extend TITAN to allow the essentially cyclic rule in the block updates; see
e.g., Xu and Yin (2017); Tseng (2001); Hong et al. (2017); Latafat et al. (2022). Instead of
cyclically updating the m blocks as in Algorithm 1, the updated block of variables, ik ∈ [m],
is randomly or deterministically chosen. The essentially cyclic rule with interval T ≥ m
imposes that each of the m blocks is at least updated once every T steps. Starting with
two initial points x−1 and x0, at iteration k, k ≥ 0, TITAN with essentially cyclic rule will
update xk as follows:

xk+1
ik
∈ argmin
xik∈Xik

{
uik(xik , x

k)− 〈Gkik(xkik , x
prev
ik

), xik〉+ gik(xik)

}
, (32)

and set xk+1
a = xka for all a 6= ik. Here we use xprevik

to denote the value of block ik before

it was updated to xkik . To simplify the presentation of our upcoming analysis, we use the
following notation:

• Starting from x0, we split the generated sequence {xk} into partitions of T consecutive
iterates. We denote xk the last iterate in every partition, that is, xk = xkT for k ≥ 0.
We denote x−1 = x−1.

• xk,j for j ∈ [T] are the points within the sequence {xk} lying between xk and xk+1,
that is, xk,j = xkT+j .

• Since a block may not be updated in some consecutive iterations, we denote x̄k,li the
value of block i after it has been updated l times with the k-th partition

[xk,xk,1, . . . ,xk,T−1,xk+1 = xk,T].

22

Inertial Block Majorization Minimization

In other words, x̄k,li records the value of the i-th block when it is actually updated.

The previous value of block i before it is updated to x̄k,li (which is xk,ji for some j)

is x̄k,l−1
i (which is xk,j−1

i). Correspondingly, we use dki to denote the total number of
times the i-th block is updated during the k-th partition.

• xkprev stores the previous values of the blocks of xk, that is, (xk+1
prev)i = x̄

k,dki−1
i .

Using these notations, we express the generated sequence {xn}n≥0 as the following sequence
{xk,j}k≥0,j=0,...,T−1:

. . . ,xk = xk,0,xk,1, . . . ,xk,T−1,xk+1 = xk,T , . . . (33)

So xn = xk,j with k = b nT c being the largest integer number that does not exceed n
T . Let us

now translate the (NSDP) using this notation. The inequality (NSDP) for updating block i
in the k-th partition becomes

F (xk,j−1) +
γ

(xk,j−1)
i

2
‖xk,j−1

i − xprevi ‖2 ≥ F (xk,j) +
η

(xk,j−1)
i

2
‖xk,ji − xk,j−1

i ‖2. (34)

Note that xprevi , xk,j−1
i and xk,ji are three consecutive points of {x̄k,li }l=−1,...,dki

. We remark

that x̄k,−1
i = (xkprev)i. So if xk,j−1

i is x̄k,l−1
i then x̄k,l−2

i = xprevi and x̄k,li = xk,ji . Inequal-
ity (34) is rewritten as

F (xk,j−1) +
γ̄k,l−1
i

2
‖x̄k,l−1

i − x̄k,l−2
i ‖2 ≥ F (xk,j) +

η̄k,l−1
i

2
‖x̄k,li − x̄k,l−1

i ‖2, (35)

where η̄k,l−1
i = η

(xk,j−1)
i and γ̄k,l−1

i = γ
(xk,j−1)
i . All the convergence results so far still hold

for TITAN with the essentially cyclic update rule. For example, the following proposition
has the same essence as Proposition 5.

Proposition 13 Considering TITAN with essentially cyclic rule, let {xk,l} be the generated
sequence of TITAN, see (33). Assume that the parameters are chosen such that the condi-
tions in (35)(or its equivalent form in (34)), and Assumption 2 are satisfied. Furthermore,
suppose that for k = 0, 1, . . . and l ∈ [dki],

γ̄k,li ≤ Cη̄
k,l−1
i , (36)

for some constant 0 < C < 1. Let η̄0,−1
i = γ̄0,0

i /C.
(A) We have

F (xK)+(1−C)

K−1∑
k=0

m∑
i=1

dki∑
l=1

η̄k,l−1
i

2
‖x̄k,li − x̄k,l−1

i ‖2 ≤ F (x0)+C

m∑
i=1

η̄0,−1
i

2
‖x0

i −x−1
i ‖

2. (37)

(B) If there exists positive number l such that mini,k,l
{ η̄k,li

2

}
≥ l, then

+∞∑
k=0

m∑
i=1

dki∑
l=1

‖x̄k,li − x̄k,l−1
i ‖2 < +∞.

23

Hien, Phan and Gillis

Proof See Appendix C.2.

To conclude this section, let us explain briefly how subsequential and global convergence
can be obtained for TITAN with the essentially cyclic rule; similarly as it was proved for
the cyclic rule in Theorems 6 and 8, respectively.

Subsequential convergence A subsequence {xkn} of {xn}n≥0, when being expressed

as xk,l (see (33)), is {xk̄n,ln} with k̄n = bknT c and ln = kn − T bknT c. We derive from

Proposition 13 that if x̄k,lki converges to x∗i as k goes to 0, then x̄k,li also converges to x∗i
for l = 1, . . . , dki . From this fact, we use the same technique as in the proof of Theorem 6
to establish the subsequential convergence: considering TITAN with essentially cyclic rule,
we assume that the parameters are chosen such that the conditions in Proposition 13 are
satisfied, the generated sequence is bounded and ‖Gki (x̄k,li , x̄

k,l−1
i)‖ goes to 0 when k goes

to ∞, then every limit point x∗ of {xn} is a critical point of Φ. We omit the details here.

Global convergence Let us now provide the following global convergence result.

Theorem 14 Considering TITAN with essentially cyclic rule, where the parameters are
chosen such that the conditions in Proposition 13 are satisfied. Furthermore, assume that the
block surrogate functions ui(xi, y) is continuous on the joint variable (xi, y), Assumption 3
holds, Condition ‖Gkik(xkik , x

prev
ik

)‖ ≤ Akik‖x
k
ik
− xprevik

‖ holds with bounded Akik , Φ is a KL

function, and together with the existence of l in Proposition 13, assume there exists l such

that maxi,k,l
{ η̄k,li

2

}
≤ l. Suppose one of the two conditions hold: (i) the condition in (36) is

satisfied with C < l/l or (ii) we apply restarting steps for (32). Then the whole generated
sequence {xk}, which is assumed to be bounded, converges to a critical point x∗ of Φ.

Proof [Sketch] We only sketch the proof as it follows closely that of Theorem 8 (Appendix
C.1). We define the following potential function Φδ(x, y) := Φ(x)+

∑m
i=1

δi
2 ‖xi−yi‖

2, define
the following auxiliary sequence

ϕ2
k =

m∑
i=1

dki∑
l=0

1
2‖x̄

k,l
i − x̄k,l−1

i ‖2 =
m∑
i=1

dki∑
l=1

1
2‖x̄

k,l
i − x̄k,l−1

i ‖2 + 1
2‖x

k − xkprev‖2,

and let zk = (xk,xkprev). Then, we have

Φδ(zk)− Φδ(zk+1) = F (xk)− F (xk+1) +
m∑
i=1

δi
2 ‖x

k
i − (xkprev)i‖2 −

m∑
i=1

δi
2 ‖x

k+1
i − (xk+1

prev)i‖2.

As for Theorem 8, we can prove that the whole sequence {xk} converges to x∗ in the two
cases: C < l/l, or applying restarting steps for (32). Hence each sequence {xki }k≥0 converges
to x∗i for i ∈ [m]. Finally, note that

‖xk,j−1 − x∗‖2 ≤ (T − j + 2)
(∑T−1

a=j−1 ‖xk,a − xk,a+1‖2 + ‖xk+1 − x∗‖2
)

≤ (T − j + 2)
(∑m

i=1

∑dki
l=1 ‖x̄

k,l−1
i − x̄k,li ‖2 + ‖xk+1 − x∗‖2

)
.

Together with Proposition 13(B), this implies that the whole sequence {xk} converges.

24

Inertial Block Majorization Minimization

6. Numerical results

In this section, we apply TITAN to the sparse NMF (3) and the MCP (4). All tests are
preformed using Matlab R2019a on a PC 2.3 GHz Intel Core i5 of 8GB RAM. The code is
available from https://github.com/nhatpd/TITAN.

6.1 Sparse Non-negative Matrix Factorization

Let us consider the sparse NMF problem (3), with two blocks of variables: x1 = U and
x2 = V . The functions ∇Uf(U, V) = (UV −M)V T and ∇V f(U, V) = UT (UV −M) are
Lipschitz continuous with constants L1 = ‖V V T ‖ and L2 = ‖UTU‖, respectively. Hence
we choose the block Lipschitz surrogate for f as in Section 4.2. Let us also choose the
Nesterov-type acceleration as in Section 4.2.1. The corresponding update in (6) for U is

Uk+1 = argmin
U

〈
∇Uf(Ūk, V k), U

〉
+
κ1L

k
1

2
‖U − Ūk‖2 + g1(U),

where κ1 > 1 is a constant, Ūk = Uk + βk1 (Uk − Uk−1), Lk1 = ‖V k(V k)T ‖, and the corre-
sponding update for V is

V k+1 = argminV
〈
∇V f(Uk+1, V̄ k), V

〉
+

Lk2
2 ‖V − V̄

k‖2 + g2(V)
=
[
V̄ k − 1

Lk2
∇V f(Uk+1, V̄ k)

]
+
,

where V̄ k = V k + βk2 (V k − V k−1), Lk2 = ‖(Uk+1)TUk+1‖ and [a]+ denotes max{a, 0}. It
was shown in Bolte et al. (2014) that the update of U has the form

Uk+1 = Ts
([
Ūk − 1

κ1Lk1
∇Uf(Ūk, V k)

]
+

)
,

where Ts(a) keeps the s largest values of a and sets the remaining values of a to zero.
Let us now determine ηki and γki for i = 1, 2, of Condition (14). Note that f(·, V),

f(U, ·) and g2(·) are convex functions but g1(·) is nonconvex. It follows from Section 4.2.1
that ρk1(V) = (κ1 − 1)Lk1 and Ak1 = κ1β

k
1L

k
1 for the block U surrogate functions. Ap-

plying Theorem 3, we get ηki and γki , and the condition (14) for block U becomes βk1 ≤
κ1−1
κ1

√
Cν1(1−ν1)Lk−1

1

Lk1
, where 0 < C, ν1 < 1. Considering block V , as both f(U, ·) and g2(·)

are convex, it follows from Remark 11 that γk2 = Lk2(βki)2 and ηk2 = Lk2. Hence, the condi-

tion (14) for block V becomes βk2 ≤
√

CLk−1
2

Lk2
, where 0 < C < 1. In our experiments, we

choose

C = 0.99992, µ0 = 1, µk = 1
2(1 +

√
1 + 4µ2

k−1), ν1 = 1/2,

βk1 = min
{
µk−1−1
µk

, κ1−1
κ1

√
Cν1(1−ν1)Lk−1

1

Lk1

}
, βk2 = min

{
µk−1−1
µk

,

√
CLk−1

2

Lk2

}
.

Since TITAN also works with essentially cyclic rule, in our experiment, we update U several
times before updating V and vice versa. As explained in Gillis and Glineur (2012), repeating
update U or V accelerates the algorithm compared to the cyclic update since the terms

25

https://github.com/nhatpd/TITAN

Hien, Phan and Gillis

V V T and MV T in the gradient of U (resp. the terms UTU and UTM in the gradient
of V) do not need to be re-evaluated hence the next evaluation of the gradient only requires
O(mr2) (resp. O(nr2)) operations in the update of U (resp. V) compared to O(mnr)
of the cyclic update. In our experiments, we use κ1 = 1.0001 and use “TITAN - κ =
1.0001” to denote the respective TITAN algorithm. As we do not use restarting, the TITAN
algorithm guarantees a sub-sequential convergence. To verify the effect of inertial terms,
we compare our TITAN algorithms with its non-inertial version, which is the proximal
alternating linearized minimization (PALM) proposed in Bolte et al. (2014).

It is worth mentioning iPALM which is another inertial version of PALM proposed by
Pock and Sabach (2016). We observe from Section 5.1 of the paper that iPALM with
dynamic inertial parameters much outperforms other variants of iPALM that use constant
inertial parameters, and iPALM using constant inertial parameters just perform similarly to
PALM. However, the convergence analysis of Pock and Sabach (2016) does not support the
setting of iPALM with dynamic inertial parameters. As our main purpose of this section
is to verify the effect of inertial terms of our TITAN algorithms (note that the inertial
parameters βk1 and βk2 of TITAN are dynamic, and we still have convergence guarantee),
we will only report the performance of TITAN algorithms and PALM in the following.

Dense facial images data sets In the first experiment, we test the algorithms on four
facial image data sets: Frey3 (1965 images of dimension 28 × 20), CBCL4 (2429 images of
dimension 19 × 19), Umist5 (575 images of dimension 92 × 112), and ORL6 (400 images
of dimension 92 × 112). We choose r = 25 and take a sparsity of s equal to 0.25r, that
is, each column of U contains at most 25% non-zero entries. For each data set, we run all
the algorithms 20 times, use the same initialization each time for all algorithms which is
generated by the Matlab commands W = rand(m, r) and H = rand(r,n), and run each
algorithm for 100 seconds for the Frey and CBCL data sets, and 300 seconds for the Umist
and ORL data sets. We define the relative error as ‖M−UV ‖F /‖M‖F . Figure 1 reports the
evolution with respect to time of the average values of E(k) := ‖M−UkV k‖F /‖M‖F −emin,
where emin is the smallest value of all the relative errors in all runs. Table 1 reports the
average and the standard deviation (std) of the relative errors.

We observe that TITAN - κ = 1.0001 converges initially faster than PALM for all data
sets. In term of the accuracy of the final solutions, TITAN - κ = 1.0001 provides better
relative errors on average for the CBCL and ORL data sets, while PALM for the Frey and
Umist data sets. This is expected since sparse NMF is a hard nonconvex problem, and
hence different algorithms converge towards different critical points with different objective
function values (even if they are initialized with the same solution).

Sparse document data sets In the second experiment, we test the two algorithms on
six sparse document data sets: classic, sports, reviews, hitech, k1b and tr11, see Zhong
and Ghosh (2005). We choose r = 25, s = 0.25r, run all algorithms 20 times, use the same
random initialization for all algorithms in each run, and run each algorithm for 100 seconds.

3. https://cs.nyu.edu/~roweis/data.html

4. http://cbcl.mit.edu/software-datasets/heisele/facerecognition-database.html

5. https://cs.nyu.edu/~roweis/data.html

6. https://cam-orl.co.uk/facedatabase.html

26

https://cs.nyu.edu/~roweis/data.html
http://cbcl.mit.edu/software-datasets/heisele/facerecognition-database.html
https://cs.nyu.edu/~roweis/data.html
 https://cam-orl.co.uk/facedatabase.html

Inertial Block Majorization Minimization

Frey CBCL

20 40 60 80 100
Time

2

3

4

5

6

7

8

9
10
11

||M
-U

V
|| F

/||
M

|| F
 -

 e
m

in

10-3

TITAN - kappa = 1.0001
PALM

20 40 60 80
Time

1.5

2

2.5

3

3.5

4

4.5

5
5.5

6

||M
-U

V
|| F

/||
M

|| F
 -

 e
m

in

10-3

TITAN - kappa = 1.0001
PALM

Umist ORL

50 100 150 200 250 300
Time

2

4

6

8

10

12

14

||M
-U

V
|| F

/||
M

|| F
 -

 e
m

in

10-3

TITAN - kappa = 1.0001
PALM

50 100 150 200 250 300
Time

2

4

6

8

10

12

14
||M

-U
V

|| F
/||

M
|| F

 -
 e

m
in

10-3

TITAN - kappa = 1.0001
PALM

Figure 1: TITAN and PALM applied on sparse NMF. The plots show the evolution of the
average value of E(k) with respect to time on the image data sets.

Figure 2 reports the evolution with respect to time of the average values of E(k). Table 2
reports the average and the standard deviation (std) of the relative errors.

We again observe that TITAN - κ = 1.0001 converges on average faster than PALM
in all data sets. In terms of the relative errors of the final solutions computed within the
allotted time, TITAN - κ = 1.0001 performs on average better than PALM, except for the
k1b data set.

6.2 Matrix Completion Problem

In this section, we illustrate the advantages of using block surrogate functions by deploying
TITAN for the MCP (4), as explained in Section 4.5. As for sparse NMF, we use two blocks
of variables, x1 = U and x2 = V . Since ψ(U, V) is continuously differentiable andR(U, V) is

27

Hien, Phan and Gillis

Table 1: Average and std of relative errors obtained by TITAN and PALM applied on sparse
NMF (3). Bold values correspond to the best results for each data set.

Data set Method mean ± std

Frey
PALM 1.4901 10−1 ± 1.0342 10−3

TITAN - κ = 1.0001 1.4939 10−1 ± 1.0448 10−3

cbclim
PALM 1.1955 10−1 ± 7.4322 10−4

TITAN - κ = 1.0001 1.1939 10−1 ± 7.1868 10−4

Umist
PALM 1.2002 10−1 ± 8.1340 10−4

TITAN - κ = 1.0001 1.2031 10−1 ± 9.3527 10−4

ORL
PALM 1.9108 10−1 ± 6.5507 10−4

TITAN - κ = 1.0001 1.9084 10−1 ± 8.4325 10−4

Table 2: Average and std of relative errors obtained by TITAN and PALM applied on sparse
NMF (3). Bold values correspond to the best results for each data set.

Data set Method mean ± std

classic
PALM 8.9160 10−1 ± 7.4522 10−4

TITAN - κ = 1.0001 8.9145 10−1 ± 3.1633 10−4

sports
PALM 8.1190 10−1 ± 4.3938 10−4

TITAN - κ = 1.0001 8.1177 10−1 ± 2.9569 10−4

reviews
PALM 8.0803 10−1 ± 5.6695 10−4

TITAN - κ = 1.0001 8.0779 10−1 ± 7.0906 10−4

hitech
PALM 8.6305 10−1 ± 5.5024 10−4

TITAN - κ = 1.0001 8.6302 10−1 ± 6.2594 10−4

k1b
PALM 8.1829 10−1 ± 6.1890 10−4

TITAN - κ = 1.0001 8.1842 10−1 ± 7.5261 10−4

tr11
PALM 1.4768 10−1 ± 7.4810 10−4

TITAN - κ = 1.0001 1.4752 10−1 ± 5.3136 10−4

a block separable function, F (in this case F = f) satisfies the condition in (1). Moreover,
φ is block-wise concave and differentiable with Lipschitz gradient on Rm×n

+ . Hence, we
select the composite surrogate function for f = ψ+ φ ◦ r as in Section 4.5, in which we will
choose block surrogate functions for ψ as follows. Since ∇Uψ(U, V) = −P(A−UV)V T and
∇V ψ(U, V) = −UTP(A − UV) are Lipschitz continuous with constants L1 = ‖V V T ‖ and

L2 = ‖UTU‖, respectively, we choose the block surrogate functions uψi , i = 1, 2, for ψ to
be the block Lipschitz gradient surrogate functions as in Section 4.2. Assumption 2 is then
satisfied; see Section 4.5.

28

Inertial Block Majorization Minimization

classic sports

20 40 60 80 100
Time

0.5

1

1.5

10-3

TITAN - kappa = 1.0001
PALM

20 40 60 80 100
Time

0.5

1

1.5

2

2.5

||M
-U

V
|| F

/||
M

|| F
 -

 e
m

in

10-3

TITAN - kappa = 1.0001
PALM

reviews hitech

20 40 60 80 100
Time

1.5

2

2.5

3

3.5

4

||M
-U

V
|| F

/||
M

|| F
 -

 e
m

in

10-3

TITAN - kappa = 1.0001
PALM

20 40 60 80 100
Time

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

||M
-U

V
|| F

/||
M

|| F
 -

 e
m

in

10-3

TITAN - kappa = 1.0001
PALM

k1b tr11

20 40 60 80
Time

1

1.5

2

2.5

3

3.5

||M
-U

V
|| F

/||
M

|| F
 -

 e
m

in

10-3

TITAN - kappa = 1.0001
PALM

20 40 60 80
Time

2

3

4

5

6

7
8
9

10
11

||M
-U

V
|| F

/||
M

|| F
 -

 e
m

in

10-3

TITAN - kappa = 1.0001
PALM

Figure 2: TITAN and PALM applied on sparse NMF. The plots show the evolution of the
average value of E(k) with respect to time on the sparse document data sets.

Let us choose the Nesterov-type acceleration. The update in (6) for U is

Uk+1 ∈ argmin
U

〈
∇Uψ(Ūk, V k), U

〉
+
Lk1
2
‖U − Ūk‖2 + 〈∇Uφ(r(Uk, V k)), |U |〉, (38)

29

Hien, Phan and Gillis

where ∇Uφ(r(Uk, V k)) = λθ
(

exp(−θ‖ukij‖)
)

, Lk1 = ‖V k(V k)T ‖, Ūk = Uk+βk1 (Uk−Uk−1).

The solution of (38) is given by

Uk+1 = S1/Lk1

(
P k,∇Uφ

(
r
(
Uk, V k

)))
, (39)

where P k = Ūk− 1
Lk1
∇Uψ(Ūk, V k), and Sτ is the soft-thresholding operator with parameter

τ , that is,

Sτ (P,W)ij = [|pij | − τwij]+sign(pij). (40)

Similarly ,the update for V is given by

V k+1 = S1/Lk2

(
Qk,∇V φ

(
r
(
Uk+1, V k

)))
, (41)

where Lk2 = ‖(Uk+1)TUk+1‖, Qk = V̄ k− 1
Lk2
∇V ψ(Uk+1, V̄ k) and V̄ k = V k+βk2 (V k−V k−1).

Let us now determine ηki and γki , for i = 1, 2, of Condition (14). Note that xi 7→
〈∇iφ(r(y)), ri(xi)〉 are convex. Furthermore, ψ(U, V) is a block-wise convex function. There-
fore, it follows from Remark 12 that we can take ηki and γki as in (24). Note that τki = βki ,

since we choose Nesterov-type acceleration. Condition (14) becomes βki ≤
√
CLk−1

i /Lki ,
where 0 < C < 1. In our experiments, we choose

C = 0.99992, µ0 = 1, µk = 1
2(1 +

√
1 + 4µ2

k−1),

βki = min
{
µk−1
µk

,
√
CLk−1

i /Lki

}
.

(42)

We compare three algorithms: (1) TITAN without extrapolation, that is, βki = 0 for all k,
which is denoted by TITAN-NO, (2) TITAN with extrapolation, that is, βki are chosen as
in (42), which is denoted by TITAN-EXTRA, and (3) PALM that alternatively updates U
and V by solving the following sub-problems

min
U

〈
∇Uψ(Uk, V k), U

〉
+ L1(V k)

2 ‖U − Uk‖2 + λ
∑

ij

(
1− exp(−θ|uij |)

)
,

min
V

〈
∇V ψ(Uk+1, V k), V

〉
+ L2(Uk+1)

2 ‖V − V k‖2 + λ
∑

ij

(
1− exp(−θ|vij |)

)
.

These sub-problems can be separated into one-dimensional nonconvex problems

min
x∈R

1

2
‖x− v‖2 − γ exp(−θ|x|). (43)

Although the solutions to these subproblems can be computed via the Lambert W function
(Corless et al., 1996), it does not have a closed-form solution. To the best of our knowledge,
TITAN is the only framework that allows to use extrapolation while having closed-form
updates to solve this particular matrix completion formulation.

In our experiments, all the algorithms start from the same initial point (U0, V 0), where
U0 is an m × r orthogonal matrix whose range approximates the range of P(A), which is
computed by a power method (Halko et al., 2011, Algorithm 4.1) with r iterations and a
tolerance 10−6. The initial matrix V 0 is determined by V 0 = VT with UΣV T being the

30

Inertial Block Majorization Minimization

singular value decomposition of (U0)TP(A), i.e., UΣV T = (U0)TP(A). We choose λ = 0.1
and θ = 5. We note that we do not optimize numerical results by tweaking the parameters
as this is beyond the scope of this work. Rather, we simply chose the parameters that are
typically used in the literature, see, e.g., Bradley and Mangasarian (1998). It is important
noting that we evaluate the algorithms on the same models. We carried out the experiments
on the two most widely used data sets in the field of recommendation systems, MovieLens
and Netflix, which contain ratings of different users. The characteristics of the data sets
are given in Table 3. We respectively choose r = 5, 8, and 13 for MovieLens 1M, 10M, and
Netflix data set. We randomly picked 70% of the observed ratings for training and the rest
for testing. The process was repeated twenty times. We run each algorithm 20, 200, and
3600 seconds for MovieLens 1M, 10M, and Netflix data sets, respectively. We are interested
in the root mean squared error on the test set: RMSE =

√
‖PT (A− UV)‖2/NT , where

PT (Z)ij = Zij if Aij belongs to the test set and 0 otherwise, NT is the number of ratings in
the test set. We plotted the curves of the average value of RMSE and the objective function
value versus training time in Figure 3, and report the average and the standard deviation
of the RMSE and the objective function value in Table 4.

Table 3: The number of users, items, and ratings used in each data set.

Data set #users #items #ratings

MovieLens
1M 6,040 3,449 999,714
10M 69,878 10,677 10,000,054

Netflix 480,189 17,770 100,480,507

Table 4: Comparison of TITAN and PALM applied on the MCP (4): RMSE and final
objective function values obtained within the allotted time. Bold values indicate
the best results for each data set.

Data set Method
RMSE Objective value
mean ± std (mean ± std)×10−5

MovieLens 1M
PALM 0.7550 ± 0.0016 1.9155 ± 0.0088
TITAN-NO 0.7514 ± 0.0013 1.8879 ± 0.0066
TITAN-EXTRA 0.7509 ± 0.0008 1.8483 ± 0.0038

MovieLens 10M
PALM 0.7462 ± 0.0006 18.8038 ± 0.0348
TITAN-NO 0.7402 ± 0.0006 18.4027 ± 0.0375
TITAN-EXTRA 0.7283 ± 0.0005 17.2277 ± 0.0236

Netflix
PALM 0.8274 ± 0.0006 226.4846 ± 1.1898
TITAN-NO 0.8265 ± 0.0006 225.4806 ± 1.1808
TITAN-EXTRA 0.8250 ± 0.0004 210.4999 ± 0.3569

We observe that TITAN-EXTRA converges the fastest on all the data sets, providing a
significant acceleration of TITAN-NO: as shown on Table 5, TITAN-EXTRA is at least 4
times faster than TITAN-NO on the three data sets. TITAN-EXTRA achieves not only the

31

Hien, Phan and Gillis

500 1000 1500 2000 2500
Time

0.825

0.83

0.835

0.84

0.845

0.85

0.855

0.86

R
M

S
E

netflix

PALM
TITAN-NO
TITAN-EXTRA

500 1000 1500 2000 2500
Time

2.2

2.3

2.4

2.5

2.6

O
bj

ec
tiv

e
va

lu
e

107 netflix

PALM
TITAN-NO
TITAN-EXTRA

2 4 6 8 10 12 14
Time

0.75

0.76

0.77

0.78

0.79

0.8

0.81

0.82

0.83

R
M

S
E

movielens1m

PALM
TITAN-NO
TITAN-EXTRA

2 4 6 8 10 12 14
Time

1.9

1.95

2

2.05

2.1

2.15

2.2

2.25

O
bj

ec
tiv

e
va

lu
e

105 movielens1m

PALM
TITAN-NO
TITAN-EXTRA

50 100 150
Time

0.74

0.76

0.78

0.8

0.82

0.84

R
M

S
E

movielens10m

PALM
TITAN-NO
TITAN-EXTRA

0 50 100 150
Time

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

O
bj

ec
tiv

e
va

lu
e

106 movielens10m

PALM
TITAN-NO
TITAN-EXTRA

Figure 3: TITAN and PALM applied on the MCP (4). Evolution of the average value of
the RMSE on the test set and the objective function value with respect to time.

32

Inertial Block Majorization Minimization

best final objective function values but also the best RMSE on the test set. This illustrates
the usefulness of the inertial terms. Moreover, TITAN-NO performs better PALM on the
three data sets which illustrates the usefulness of properly choosing the surrogate function.
Recall that TITAN-NO and TITAN-EXTRA are two new algorithms for the MCP (4),
which are specific instances of the TITAN framework.

data set TITAN-EXTRA TITAN-NO acceleration
lead time (s) total time (s) factor

netflix 674.91 3000 4.44
movielens1m 3.8 15 3.94
movielens10m 28.67 200 6.97

Table 5: TITAN lead time compared to TITAN-NO to obtain the same objective function
value within the allotted time.

7. Conclusion

We have proposed and analysed TITAN, a novel inertial block majorization-minimization
algorithmic framework. TITAN unifies many inertial block coordinate descent methods,
while allowing to derive new highly efficient algorithms, as illustrated in Section 6.2 on the
MCP. We proved sub-sequential convergence of TITAN under mild assumptions and global
convergence of TITAN under some stronger assumptions. We applied TITAN to sparse
NMF and the MCP to illustrate the benefit of using inertial terms in BCD methods, and
of using proper surrogate functions. Especially, the way we choose the surrogate functions
and the corresponding extrapolation operators to derive TITAN-based algorithms for the
MCP illustrated the advantages of using TITAN compared to the typical proximal BCD
methods. Our future research direction include the development of TITAN-based algorithms
for solving specific practical problems, for which using typical proximal BCD methods is
not efficient (in particular when a closed-form for the subproblems in each block of variables
does not exist).

Appendix A. Preliminaries of nonconvex nonsmooth optimization

Let g : E→ R ∪ {+∞} be a proper lower semicontinuous function.

Definition 15 (i) For each x ∈ dom g, we denote ∂̂g(x) as the Frechet subdifferential of
g at x which contains vectors v ∈ E satisfying

lim inf
y 6=x,y→x

1

‖y − x‖
(g(y)− g(x)− 〈v, y − x〉) ≥ 0.

If x 6∈ dom g, then we set ∂̂g(x) = ∅.

(ii) The limiting-subdifferential ∂g(x) of g at x ∈ dom g is defined as follows.

∂g(x) :=
{
v ∈ E : ∃xk → x, g

(
xk
)
→ g(x), vk ∈ ∂̂g

(
xk
)
, vk → v

}
.

33

Hien, Phan and Gillis

Partial subdifferentials with respect to a subset of the variables are defined analogously by
considering the other variables as parameters.

Definition 16 We call x∗ ∈ dom F a critical point of F if 0 ∈ ∂F (x∗) .

We note that if x∗ is a local minimizer of F then x∗ is a critical point of F .

Definition 17 A function φ(x) is said to have the KL property at x̄ ∈ dom ∂ φ if there
exists η ∈ (0,+∞], a neighborhood U of x̄ and a concave function ξ : [0, η) → R+ that
is continuously differentiable on (0, η), continuous at 0, ξ(0) = 0, and ξ′(s) > 0 for all
s ∈ (0, η), such that for all x ∈ U ∩ [φ(x̄) < φ(x) < φ(x̄) + η], we have

ξ′ (φ(x)− φ(x̄)) dist (0, ∂φ(x)) ≥ 1. (44)

dist (0, ∂φ(x)) = min {‖y‖ : y ∈ ∂φ(x)}. If φ(x) has the KL property at each point of dom ∂φ
then φ is a KL function.

Many nonconvex nonsmooth functions in practical applications belong to the class of KL
functions, for examples, real analytic functions, semi-algebraic functions, and locally strongly
convex functions, see Bochnak et al. (1998); Bolte et al. (2014).

Appendix B. Global convergence recipe

Let us recall Theorem 2 of Hien et al. (2020).

Theorem 18 (Hien et al., 2020, Theorem 2) Let Φ : RN → (−∞,+∞] be a proper and
lower semicontinuous function which is bounded from below. Let A be a generic algorithm
which generates a bounded sequence

{
zk
}

by z0 ∈ RN , zk+1 ∈ A(zk), k = 0, 1, . . . Assume
that there exist positive constants ρ1, ρ2 and ρ3 and a non-negative sequence {ϕk}k∈N such
that the following conditions are satisfied:

(B1) Sufficient decrease property:

ρ1‖zk − zk+1‖2 ≤ ρ2ϕ
2
k ≤ Φ(zk)− Φ(zk+1), k = 0, 1, . . .

(B2) Boundedness of subgradient:

‖ωk+1‖ ≤ ρ3ϕk, ω
k ∈ ∂Φ(zk) for k = 0, 1, . . .

(B3) KL property: Φ is a KL function.

(B4) A continuity condition: If a subsequence {zkn} converges to z̄ then Φ(zkn) con-
verges to Φ(z̄) as n goes to ∞.

Then we have
∑∞

k=1 ϕk <∞, and {zk} converges to a critical point of Φ.

Appendix C. Technical proofs

In this section, we provide the proofs for Theorem 8 and Proposition 13.

34

Inertial Block Majorization Minimization

C.1 Proof of Theorem 8

Let x∗ be a limit point of xk. From Theorem 6 we have x∗ is a critical point of Φ. As the
generated sequence {xk} is assumed to be bounded, in the following, we only work on the
bounded set that contains {xk}.

Case 1: C < l/l. Define Φδ(x, y) := Φ(x) +
∑m

i=1
δi
2 ‖xi − yi‖2. Let zk = (xk, xk−1)

and ϕ2
k = 1

2‖x
k+1 − xk‖2 + 1

2‖x
k − xk−1‖2 . We verify the conditions of Theorem 18 for

Φδ(xk, xk−1) with δi = (l + Cl)/2.
(B1) Sufficient decrease property. From Inequality (17), we have

F (xk+1) + l‖xk+1 − xk‖2 ≤ F (xk) + Cl‖xk − xk−1‖2.

Hence, Φδ(zk)− Φδ(zk+1) ≥ (l − Cl)ϕ2
k.

(B2) Boundedness of subgradient. We note that

∂xΦδ(x, y) = ∂Φ(x) + [δi(xi − yi)|i=1,...,m], ∂yΦ
δ(x, y) = [δi(yi − xi)|i=1,...,m]. (45)

Writing the optimality condition for (6), we have

Gki (xki , x
k−1
i) ∈ ∂xi

(
ui(x

k+1
i , xk,i−1) + IXi(x

k+1
i) + gi(x

k+1
i)

)
.

Hence, by Assumption 3 (i), there exist ski ∈ ∂xiui(x
k+1
i , xk,i−1) and vki ∈ ∂(IXi(x

k+1
i) +

gi(x
k+1
i)) such that

Gki (xki , x
k−1
i) = ski + vki .

As we assume Assumption 3 (ii) holds, there exists tki ∈ ∂xif(xk+1) such that

‖ski − tki ‖ ≤ Bi‖xk+1 − xk,i−1‖.

We note that tki + vki ∈ ∂xiΦ(xk+1) by Assumption 3 (i). On the other hand,

‖tki + vki ‖ = ‖tki − ski + ski + vki ‖ ≤ Bi‖xk+1 − xk,i−1‖+Aki ‖xki − xk−1
i ‖,

which implies the boundedness of the subgradient since Aki is bounded.
(B3) KL property. As Φ is a KL function, Φδ is also a KL function.
(B4) A continuity condition. Suppose zkn → z∗. From Proposition 5, we have that if

xkn converges to x∗ then xkn−1 also converges to x∗. Hence z∗ = (x∗, x∗). On the other
hand, we can derive from (10) that, for i ∈ [m], ui(x

kn
i , x

kn−1,i−1) + gi(x
kn
i) converges to

ui(x
∗
i , x
∗) + gi(x

∗
i). As we assume ui(·, ·) is continuous we have ui(x

kn
i , x

kn−1,i−1) converges
to ui(x

∗
i , x
∗) = f(x∗). Hence, gi(x

kn
i)→ gi(x

∗
i). We then have F (xkn) = f(xkn) +

∑
gi(x

kn
i)

converges to F (x∗), which leads to Φδ(zkn+1) converges to Φδ(z∗)
Applying Theorem 18, we get 0 ∈ ∂Φδ(x∗, x∗), which leads to 0 ∈ ∂Φ(x∗).
Case 2: With restart. We use the technique in the proof of (Bolte et al., 2014, Theorem 1)

with some modification. A restarting step would be taken when F (xk+1) ≥ F (xk). When
restarting happens, Condition (NSDP) is assumed to be satisfied with γki = 0, we thus have

F (xk+1) +
m∑
i=1

ηki
2
‖xk+1

i − xki ‖2 ≤ F (xk). (46)

35

Hien, Phan and Gillis

Hence, we have

F (xk+1) +

m∑
i=1

ηki
2
‖xk+1

i − xki ‖2 ≤ F (xk) + Ĉ
m∑
i=1

ηk−1
i

2
‖xki − xk−1

i ‖2, (47)

where Ĉ = C in normal situation as in Inequality (17) and Ĉ = 0 when restarting happens.
Thus the result in Proposition 5 does not change. Exactly as for the proof of the continuity
condition (B4) above (the first case), we can show that F (xkn) → F (x∗). Since F (xk) is
non-increasing we have F (xk) → F (x∗). This also means Φ(x) is constant on the set Ω of
all limit points of xk. From Proposition 5, we have ‖xk − xk−1‖ → 0. Hence, (Bolte et al.,
2014, Lemma 5) yields that Ω is a compact and connected set.

Let us recall that restarting happens when F (xk+1) ≥ F (xk) and when it happens
Inequality (46) holds. Therefore, as long as xk+1 6= xk, F (xk) is strictly decreasing (that
is F (xk+1) < F (xk)). Hence, if there exists an integer k̄ such that F (xk̄) = F (x∗) then we
have F (xk) = F (x∗) and xk = xk̄ for all k ≥ k̄. So this case is trivial.

Let us consider F (xk) > F (x∗) for all k. Then there exists a positive integer k0 such
that F (xk) < F (x∗) + η for all k > k0. On the other hand, there exists a positive integer k1

such that dist(xk,Ω) < ε for all k > k1. Applying (Bolte et al., 2014, Lemma 6) we have

ξ′
(
Φ
(
xk
)
− Φ(x∗)

)
dist

(
0, ∂Φ(xk)

)
≥ 1, for any k > k := max{k0, k1}. (48)

On the other hand, exactly as for Case 1 without restarting step, we can prove that ∃$ > 0
such that for some ωk+1 ∈ ∂Φ(xk+1) we have ‖ωk+1‖ ≤ $ϕk ≤ $√

2
(‖xk+1 − xk‖ + ‖xk −

xk−1‖). Therefore, it follows from (48) that

ξ′
(
Φ
(
xk
)
− Φ(x∗)

)
(‖xk+1 − xk‖+ ‖xk − xk−1‖) ≥

√
2
$

(49)

From Inequality (47) and noting that C̄ ≤ C, we get

Φ(xk)− Φ(xk+1) ≥
∑m

i=1
ηki
2 ‖x

k+1
i − xki ‖2 − C

∑m
i=1

ηk−1
i
2 ‖x

k
i − x

k−1
i ‖2 (50)

Denote Ai,j = ξ(Φ(xi) − Φ(x∗)) − ξ(Φ(xj) − Φ(x∗)). From the concavity of ξ we get
Ak,k+1 ≥ ξ′

(
Φ
(
xk
)
− Φ(x∗)

)(
Φ(xk)− Φ(xk+1)

)
. Together with (49) and (50) we get

m∑
i=1

ηki
2
‖xk+1

i −xki ‖2 ≤ C
m∑
i=1

ηk−1
i

2
‖xki −xk−1

i ‖2+
$√

2
Ak,k+1(‖xk+1−xk‖+‖xk−xk−1‖) (51)

Denote Υk =
∑m

i=1
ηki
2 ‖x

k+1
i −xki ‖2. Using inequality

√
a+ b ≤

√
a+
√
b and

√
ab ≤ ta+b/4t,

for t > 0, from (51) we get

√
Υk ≤

√
CΥk−1 +

√
$Ak,k+1√

2
(‖xk+1 − xk‖+ ‖xk − xk−1‖)

≤
√
CΥk−1 +

(1−
√
C)
√
l

3 (‖xk+1 − xk‖+ ‖xk − xk−1‖) +
3$Ak,k+1

4
√

2
√
l(1−
√
C)

Summing up this inequality from k = k + 1 to K we obtain

36

Inertial Block Majorization Minimization

√
ΥK +

K−1∑
k=k+1

(1−
√
C)
√

Υk ≤
√
CΥk +

(1−
√
C)
√
l

3

K∑
k=k+1

(‖xk+1 − xk‖+ ‖xk − xk−1‖)

+
3$

4
√

2
√
l(1−

√
C)
Ak+1,K+1.

On the other hand, we note that
√

Υk ≥
√
l‖xk+1 − xk‖. Therefore, we get

2

3
(1−

√
C)
√
l

K∑
k=k+1

‖xk+1 − xk‖ ≤ (1−
√
C)
√
l

3

K∑
k=k+1

‖xk − xk−1‖+
3$Ak+1,K+1

4
√

2
√
l(1−

√
C)
,

which implies that
∑K

k=k+1 ‖xk+1 − xk‖ ≤ ‖xk+1 − xk‖ + 9$
4
√

2(1−
√
C)2l

Ak,K+1. Hence,∑∞
k=1 ‖xk+1 − xk‖ < +∞. The result follows.

C.2 Proof of Proposition 13

Let us prove Statement (A). Statement (B) of Proposition 13 is a consequence of Statement
(A). From Inequality (35) we get

F (xk,j) +
η̄k,l−1
i

2
‖x̄k,li − x̄k,l−1

i ‖2 ≤ F (xk,j−1) +
Cη̄k,l−2

i

2
‖x̄k,l−1

i − x̄k,l−2
i ‖2. (52)

Summing up Inequality (52) from j = 1 to T we obtain

F (xk+1) +

m∑
i=1

dki∑
l=1

η̄k,l−1
i

2
‖x̄k,li − x̄k,l−1

i ‖2 ≤ F (xk) + C

m∑
i=1

dki∑
l=1

η̄k,l−2
i

2
‖x̄k,l−1

i − x̄k,l−2
i ‖2.

Therefore,

F (xk+1) + C

m∑
i=1

η̄
k,dki −1
i

2
‖x̄k,d

k
i

i − x̄
k,dki −1
i ‖2 + (1− C)

m∑
i=1

dki∑
l=1

η̄k,l−1
i

2
‖x̄k,li − x̄k,l−1

i ‖2

≤ F (xk) + C

m∑
i=1

η̄k,−1
i

2
‖x̄k,0i − x̄k,−1

i ‖2.

(53)

Note that x̄k,0i = x̄
k−1,dk−1

i
i , x̄k,−1

i = x̄
k−1,dk−1

i −1
i = (xk−1

prev)i and η̄k+1,−1
i = η̄

k,dki
i . Hence,

from (53) we obtain

F (xk+1) + C

m∑
i=1

η̄k+1,−1
i

2
‖xk+1

i − (xk+1
prev)i‖2 + (1− C)

m∑
i=1

dki∑
l=1

η̄k,l−1
i

2
‖x̄k,li − x̄k,l−1

i ‖2

≤ F (xk) + C

m∑
i=1

η̄k,−1
i ‖xki − (xkprev)i‖2.

(54)

Summing up Inequality (54) from k = 0 to K − 1 we get

F (xK) + C
m∑
i=1

η̄K,−1
i

2 ‖xKi − (xKprev)i‖2 + (1− C)
∑K−1
k=0

m∑
i=1

dki∑
l=1

η̄k,l−1
i

2 ‖x̄k,li − x̄k,l−1
i ‖2

≤ F (x0) + C
m∑
i=1

η̄0,−1
i

2 ‖x
0
i − (x0

prev)i‖2,

which gives the result.

37

Hien, Phan and Gillis

References

S. Adly and H. Attouch. Finite convergence of proximal-gradient inertial algorithms com-
bining dry friction with Hessian-driven damping. SIAM Journal on Optimization, 30(3):
2134–2162, 2020.

M. Aharon, M. Elad, A. Bruckstein, et al. K-SVD: An algorithm for designing overcomplete
dictionaries for sparse representation. IEEE Transactions on Signal Processing, 54(11):
4311, 2006.

M. Ahookhosh, L. T. K. Hien, N. Gillis, and P. Patrinos. Multi-block Bregman proximal
alternating linearized minimization and its application to sparse orthogonal nonnegative
matrix factorization. Computational Optimization and Applications, 79:681–715, 2021a.

M. Ahookhosh, L. T. K. Hien, N. Gillis, and P. Patrinos. A block inertial Bregman proximal
algorithm for nonsmooth nonconvex problems with application to symmetric nonnegative
matrix tri-factorization. Journal of Optimization Theory and Applications, 190:234–258,
2021b.

H. Attouch and J. Bolte. On the convergence of the proximal algorithm for nonsmooth
functions involving analytic features. Mathematical Programming, 116(1):5–16, Jan 2009.
ISSN 1436-4646.

H. Attouch, J. Bolte, P. Redont, and A. Soubeyran. Proximal alternating minimization
and projection methods for nonconvex problems: An approach based on the Kurdyka-
 Lojasiewicz inequality. Mathematics of Operations Research, 35(2):438–457, 2010.

H. Attouch, J. Bolte, and B. F. Svaiter. Convergence of descent methods for semi-algebraic
and tame problems: proximal algorithms, forward–backward splitting, and regularized
gauss–seidel methods. Mathematical Programming, 137(1):91–129, Feb 2013.

H. H. Bauschke, J. Bolte, and M. Teboulle. A descent lemma beyond Lipschitz gradient
continuity: First-order methods revisited and applications. Mathematics of Operations
Research, 42(2):330–348, 2017.

A. Beck and L. Tetruashvili. On the convergence of block coordinate descent type methods.
SIAM Journal on Optimization, 23:2037–2060, 2013.

P. Biswas, T.-C. Lian, T.-C. Wang, and Y. Ye. Semidefinite programming based algorithms
for sensor network localization. ACM Trans. Sen. Netw., 2(2):188–220, 2006.

T. Blumensath and M. E. Davies. Iterative hard thresholding for compressed sensing.
Applied and Computational Harmonic Analysis, 27(3):265 – 274, 2009. ISSN 1063-5203.

J. Bochnak, M. Coste, and M-F. Roy. Real Algebraic Geometry. Springer, 1998.

J. Bolte, A. Daniilidis, and A. Lewis. The Lojasiewicz inequality for nonsmooth subana-
lytic functions with applications to subgradient dynamical systems. SIAM Journal on
Optimization, 17(4):1205–1223, 2007.

38

Inertial Block Majorization Minimization

J. Bolte, S. Sabach, and M. Teboulle. Proximal alternating linearized minimization for
nonconvex and nonsmooth problems. Mathematical Programming, 146(1):459–494, Aug
2014.

P. S. Bradley and O. L. Mangasarian. Feature selection via concave minimization and
support vector machines. In Proceeding of international conference on machine learning
ICML’98, 1998.

E. Chouzenoux, J.-C. Pesquet, and A. Repetti. A block coordinate variable metric for-
ward–backward algorithm. Journal of Global Optimization, 66:457–485, 2016.

R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth. On the
lambertw function. Advances in Computational Mathematics, 5, 1996.

M. F. Dacrema, P. Cremonesi, and D. Jannach. Are we really making much progress? a
worrying analysis of recent neural recommendation approaches. In Proceedings of the
13th ACM Conference on Recommender Systems, pages 101–109, 2019.

J. Fan and R. Li. Variable selection via nonconcave penalized likelihood and its oracle
properties. J. Amer. Stat. Ass., 96(456):1348–1360, 2001.

N. Gillis. Nonnegative Matrix Factorization. SIAM, Philadelphia, 2020.

N. Gillis and F. Glineur. Accelerated multiplicative updates and hierarchical als algorithms
for nonnegative matrix factorization. Neural Computation, 24(4):1085–1105, 2012.

L. Grippo and M. Sciandrone. On the convergence of the block nonlinear gauss–seidel
method under convex constraints. Operations Research Letters, 26(3):127 – 136, 2000.
ISSN 0167-6377.

N. Halko, P. G. Martinsson, and J. A. Tropp. Finding structure with randomness: Prob-
abilistic algorithms for constructing approximate matrix decompositions. SIAM Review,
53(2):217–288, 2011.

L. T. K. Hien and N. Gillis. Algorithms for nonnegative matrix factorization with the
Kullback-Leibler divergence. Journal of Scientific Computing, (87):93, 2021.

L. T. K. Hien, N. Gillis, and P. Patrinos. Inertial block proximal method for non-convex non-
smooth optimization. In Thirty-seventh International Conference on Machine Learning
(ICML), 2020.

L. T. K. Hien, D. N. Phan, and N. Gillis. Inertial alternating direction method of multipliers
for non-convex non-smooth optimization. Computational Optimization and Applications,
83:247–285, 2022.

C. Hildreth. A quadratic programming procedure. Naval Research Logistics Quarterly, 4
(1):79–85, 1957.

M. Hong, X. Wang, M. Razaviyayn, and Z.-Q. Luo. Iteration complexity analysis of block
coordinate descent methods. Mathematical Programming, 163:85–114, 2017.

39

Hien, Phan and Gillis

M. Kim and J. Leskovec. The network completion problem: Inferring missing nodes and
edges in networks. In Proceedings of the 11th International Conference on Data Mining,
pages 47–58, 2011.

Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender
systems. Computer, 42(8):30–37, 2009.

K. Kurdyka. On gradients of functions definable in o-minimal structures. Annales de
l’Institut Fourier, 48(3):769–783, 1998.

P. Latafat, A. Themelis, and P. Patrinos. Block-coordinate and incremental aggregated
proximal gradient methods for nonsmooth nonconvex problems. Mathematical Program-
ming, 193:195–224, 2022.

G. Liu, Z. Lin, S. Yan, J. Sun, Y. Yu, and Y. Ma. Robust recovery of subspace struc-
tures by low-rank representation. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 35(1):171–184, 2013.

H. Lu, R. M. Freund, and Y. Nesterov. Relatively smooth convex optimization by first-order
methods, and applications. SIAM Journal on Optimization, 28(1):333–354, 2018.

J. Mairal. Optimization with first-order surrogate functions. In Proceedings of the 30th
International Conference on International Conference on Machine Learning - Volume
28, ICML’13, pages 783–791. JMLR.org, 2013.

B. Natarajan. Sparse approximate solutions to linear systems. SIAM Journal on Computing,
24(2):227–234, 1995.

Y. Nesterov. A method of solving a convex programming problem with convergence rate
O(1/k2). Soviet Mathematics Doklady, 27(2), 1983.

Y. Nesterov. On an approach to the construction of optimal methods of minimization of
smooth convex functions. Ekonom. i. Mat. Metody, 24:509–517, 1998.

Y. Nesterov. Introductory lectures on convex optimization: A basic course. Kluwer Academic
Publ., 2004.

Yu. Nesterov. Smooth minimization of non-smooth functions. Math. Prog., 103(1):127–152,
2005.

P. Ochs. Unifying abstract inexact convergence theorems and block coordinate variable
metric ipiano. SIAM Journal on Optimization, 29(1):541–570, 2019.

P. Ochs, Y. Chen, T. Brox, and T. Pock. iPiano: Inertial proximal algorithm for nonconvex
optimization. SIAM Journal on Imaging Sciences, 7(2):1388–1419, 2014.

R. Peharz and F. Pernkopf. Sparse nonnegative matrix factorization with `0-constraints.
Neurocomputing, 80:38 – 46, 2012. ISSN 0925-2312. Special Issue on Machine Learning
for Signal Processing 2010.

40

Inertial Block Majorization Minimization

D. N. Phan and H. A. Le Thi. Group variable selection via `p,0 regularization and application
to optimal scoring. Neural Networks, 118:220 – 234, 2019.

T. Pock and S. Sabach. Inertial proximal alternating linearized minimization (iPALM) for
nonconvex and nonsmooth problems. SIAM Journal on Imaging Sciences, 9(4):1756–
1787, 2016.

B.T. Polyak. Some methods of speeding up the convergence of iteration methods. USSR
Computational Mathematics and Mathematical Physics, 4(5):1–17, 1964. ISSN 0041-5553.

M. J. D. Powell. On search directions for minimization algorithms. Mathematical Program-
ming, 4(1):193–201, Dec 1973. ISSN 1436-4646.

M. Razaviyayn, M. Hong, and Z. Luo. A unified convergence analysis of block successive
minimization methods for nonsmooth optimization. SIAM Journal on Optimization, 23
(2):1126–1153, 2013.

S. Rendle, L. Zhang, and Y. Koren. On the difficulty of evaluating baselines: A study on
recommender systems. arXiv preprint arXiv:1905.01395, 2019.

R. Tyrrell Rockafellar and Roger J.-B. Wets. Variational Analysis. Springer Verlag, Hei-
delberg, Berlin, New York, 1998.

M. Teboulle and Y. Vaisbourd. Novel proximal gradient methods for nonnegative matrix
factorization with sparsity constraints. SIAM Journal on Imaging Sciences, 13(1):381–
421, 2020.

P. Tseng. Convergence of a block coordinate descent method for nondifferentiable mini-
mization. Journal of Optimization Theory and Applications, 109(3):475–494, Jun 2001.

P. Tseng and S. Yun. A coordinate gradient descent method for nonsmooth separable
minimization. Mathematical Programming, 117(1):387–423, Mar 2009.

Y. Xu and W. Yin. A block coordinate descent method for regularized multiconvex op-
timization with applications to nonnegative tensor factorization and completion. SIAM
Journal on Imaging Sciences, 6(3):1758–1789, 2013.

Y. Xu and W. Yin. A fast patch-dictionary method for whole image recovery. Inverse
Problems & Imaging, 10:563, 2016. ISSN 1930-8337.

Y. Xu and W. Yin. A globally convergent algorithm for nonconvex optimization based on
block coordinate update. Journal of Scientific Computing, 72(2):700–734, Aug 2017.

S.K. Zavriev and F.V. Kostyuk. Heavy-ball method in nonconvex optimization problems.
Computational Mathematics and Modeling, 1993.

S. Zhong and J. Ghosh. Generative model-based document clustering: a comparative study.
Knowledge and Information Systems, 8(3):374–384, 2005.

Xingyu Zhou. On the fenchel duality between strong convexity and lipschitz continuous
gradient, 2018. arXiv:1803.06573.

41

	Introduction
	Applications
	Related works
	Contribution
	Organization of the paper

	Inertial Block Alternating Majorization Minimization
	Conditions for TITAN
	General choices for ui and Gik such that the NSDP condition is satisfied

	Convergence analysis
	Sub-sequential Convergence
	Global Convergence

	Some TITAN Accelerated Block Coordinate Methods
	TITAN with proximal surrogate function
	TITAN with Lipschitz gradient surrogates
	Deriving inertial block proximal gradient methods
	Inertial block proximal gradient algorithm with Hessian damping

	TITAN with Bregman surrogates
	TITAN with quadratic surrogates
	TITAN with composite surrogates

	Extension to essentially cyclic rule
	Numerical results
	Sparse Non-negative Matrix Factorization
	Matrix Completion Problem

	Conclusion
	Preliminaries of nonconvex nonsmooth optimization
	Global convergence recipe
	Technical proofs
	Proof of Theorem 8
	Proof of Proposition 13

