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Abstract
This paper characterizes the maximum mean discrepancies (MMD) that metrize the weak
convergence of probability measures for a wide class of kernels. More precisely, we prove that,
on a locally compact, non-compact, Hausdorff space, the MMD of a bounded continuous
Borel measurable kernel k, whose RKHS-functions vanish at infinity (i.e.,Hk ⊂ C0), metrizes
the weak convergence of probability measures if and only if k is continuous and integrally
strictly positive definite (

∫
s.p.d.) over all signed, finite, regular Borel measures. We also

correct a prior result of Simon-Gabriel and Schölkopf (JMLR 2018, Thm. 12) by showing that
there exist both bounded continuous

∫
s.p.d. kernels that do not metrize weak convergence

and bounded continuous non-
∫
s.p.d. kernels that do metrize it.

Keywords: Maximum Mean Discrepancy, Metrization of weak convergence, Kernel mean
embeddings, Characteristic kernels, Integrally strictly positive definite kernels

1. Introduction

Although the mathematical and statistical literature has studied kernel mean embeddings
(KMEs) and maximum mean discrepancies (MMDs) at least since the 1970s (Guilbart, 1978),
the machine learning community rediscovered and applied them only since the late 2000s
(Smola et al., 2007). A KME with reproducing kernel k is a map from measures µ – in
particular probability distributions – to functions fµ in the reproducing kernel Hilbert space
(RKHS) Hk of k. The RKHS distance between two embeddings then yields a semi-metric dk
on measures, called the maximum mean discrepancy (MMD), which can be used to compare
two measures or distributions µ and ν: dk(µ, ν) := ‖fµ − fν‖k.

Their theoretical tractability and computational flexibility has allowed MMDs to flourish
in many areas of machine learning that require comparing probability distributions, such as
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two-sample testing (compare two discrete distributions Gretton et al. (2012)), sample quality
measurement and goodness-of-fit testing (compare a discrete distribution to a reference
distribution, as in Chwialkowski et al. 2016; Liu et al. 2016; Gorham and Mackey 2017;
Jitkrittum et al. 2017; Huggins and Mackey 2018), generative model fitting (compare
distributions of fake and real data; see Dziugaite et al. 2015; Sutherland et al. 2017; Feng
et al. 2017; Pu et al. 2017; Briol et al. 2019), de novo sampling and quadrature (Chen et al.,
2010; Huszár and Duvenaud, 2012; Liu and Wang, 2016; Chen et al., 2018; Futami et al.,
2019; Chen et al., 2019), importance sampling (Liu and Lee, 2017; Hodgkinson et al., 2020),
and thinning (Riabiz et al., 2022).

For most applications, one seeks a kernel k whose MMD can separate all probability
distributions P,Q, meaning that, dk(P,Q) = 0 (if and) only if Q = P . Such kernels are said
to be characteristic (to the set of probability distributions P). If for example we optimize
a parametric distribution Q to match a target P by minimizing their MMD dk(P,Q), it is
rather natural to require that it be minimized only if Q perfectly matches P , i.e. Q = P .
Another natural, but a priori stronger requirement, is that when Q gets closer to P in MMD,
such as when dk(Q,P )→ 0, we would like Q to “truly” converge to P , where “truly” means
“for some other standard and/or more familiar notion of convergence”.

Although several standard notions may come to mind – convergence in KL-divergence,
in total variation or in Hellinger distance –, many are too strong for our purposes which
often require handling discrete data. For example, even if x → ξ, the Dirac masses δx
will not converge to δξ in total variation or KL-divergence unless x is eventually equal
to ξ. Said differently, a sequence of deterministic variables would not converge in total
variation unless it was eventually constant. Since in practice MMDs are frequently used to
compare samples or empirical (hence discrete) distributions, it comes as no surprise that
MMD convergence cannot, in general, ensure these strong types of convergence. Instead we
will opt for a standard, yet comparatively weak notion of convergence, known as weak or
narrow convergence or convergence in distribution. Specifically, the central question of this
paper will be

When is convergence in MMD metric equivalent to weak convergence on P?

In that case, we will say that the kernel k metrizes the weak convergence of probability
measures. This question lies at the heart of the learning applications described above, as the
quality of these inferences depends on the metrization properties of the chosen kernel (Zhu
et al., 2019, 2021; Ansari et al., 2020; Li et al., 2017). For example, Zhu et al. (2019, 2021)
establish that kernel MMD tests have the “universal hypothesis testing property” introduced
by Hoeffding (1965) provided that their kernels control weak convergence. Conversely, when
the kernel MMD fails to reflect the convergence of distributions, the results are at best
inaccurate and at worst invalid.

1.1 Previous results

The aforementioned question was studied as early as 1978 by Guilbart (1978) in his thesis.
On separable metric spaces, he characterized the kernels for which weak convergence implies
convergence in MMD (Thm. 1.D.I). Conversely, he showed that, in some cases, MMD
convergence can also imply weak convergence, meaning that there do exist kernels that metrize
weak convergence. He provided a concrete recipe to construct such kernels (Thm. 1.E.I
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& Lem. 3.E.I) and used it to exhibit some examples. However, Guilbart (1978) did not
characterize these kernels and left most standard kernels (Gaussian, Laplacian, etc.) aside.

These initial results went largely unnoticed by the ML community, and it is only much
later, with the emergence and the new applications of MMDs in applied statistics, that
the important question of weak convergence metrization re-surfaced. Sriperumbudur et al.
(2010) in particular presented sufficient conditions under which the MMD metrizes weak
convergence when the underlying input space is either Rd (Thm. 24) or a compact metric
space (Thm. 23). Sriperumbudur (2016, Thm. 3.2) then considerably improved these results
and showed the following theorem.

Theorem 1 (Sriperumbudur 2016) A continuous, bounded, integrally strictly positive
definite (

∫
s.p.d.) kernel over a locally compact Polish space X such that Hk ⊂ C0 metrizes

weak convergence.

Let us explain and discuss this result, as it will provide context for the new results of this
work. First, the theorem assumes that the underlying input space is locally compact and
Polish. Either assumption taken separately is quite general: all topological manifolds (f.ex.
Rd) and all discrete spaces are locally compact, and all separable, complete, metric spaces
are, by definition, Polish, which includes any separable Banach space. This generality made
locally compact spaces on the one hand and Polish spaces on the other standard choices for
carrying out general measure and probability theory. However, when the two assumptions
are combined, the result can be quite restrictive. A Banach space, for example, is locally
compact only if it has finite dimension. Therefore, combining both assumptions yields an
important constraint that limits the applicability of the result: one would hope for one or
the other but not both.

Second, Hk ⊂ C0 means that the RKHS functions f are assumed to be continuous and
vanish at infinity, i.e., for any ε > 0, there exists a compact K ⊂X for which supX\K |f | ≤ ε.
Many standard kernels satisfy this assumption which is typically easy to verify (see Lem. 8
below). The assumption that f be in C0 is also rather natural in the context of locally
compact spaces X, since, by the Riesz representation theorem, the set of finite, signed and
regular measures – a.k.a. finite Radon measures – can be identified with the continuous
dual of C0 (Villani, 2010, Def.VI-66 & Thm.VI-61). This, in turn, can be advantageously
leveraged in many proofs and theorems (e.g. for the equivalence between universal and
characteristic kernels). However, that same assumption Hk ⊂ C0 is often inadequate on
Polish spaces, because, on Polish spaces, C0 is typically very small: for example, on an
infinite dimensional Banach space (hence not locally compact), C0 contains only the null
function. This suggests that it might be more natural to remove the Polish assumption
than the locally compact assumption, which is what we will do in this paper. However, by
dropping the Polish assumption, we need to pay a bit more attention to the sets of measures
that we manipulate. Specifically, on Polish spaces, all signed Borel measures happen to be
regular (see definition in Section 1.4), meaning that the set of finite Borel and finite Radon
measures coincide there. On locally compact Hausdorff spaces however, this need not be the
case. So, when dropping the Polish assumption, we also need to decide on which measures
we want to focus and in particular to which measures we would like to be characteristic. As
shown in Section 2, it turns out that in cases where Borel and Radon measures do not match,
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no kernel can be characteristic to all Borel measures. Hence, the only sensible choice is to
focus on Radon measures.

Third, the theorem assumes that the kernel is
∫
s.p.d., meaning that its MMD separates

all finite signed measures M: for any µ, ν ∈ M, dk(µ, ν) = 0 only if µ = ν. It is easy
to see that an MMD that metrizes weak convergence on the set of probability measures
P, must separate P. But by assuming that it even separates M, which is bigger than P,
Sriperumbudur (2016)’s Thm. 2 leaves open the case of any MMD that separates P but
not M.

In 2018, Simon-Gabriel and Schölkopf (2018, Thm. 12) seemed to finally address all
weaknesses mentioned above by characterizing the metrization of weak convergence of
probability measures on locally compact spaces as follows.

Claim 2 (Simon-Gabriel and Schölkopf 2018) On a locally compact Hausdorff space,
a bounded, Borel measurable kernel metrizes the weak convergence of probability measures if
and only if it is continuous and characteristic (to the set of probability measures).

This statement weakens the sufficient condition of Thm. 1 from separation of M (
∫
s.p.d.

kernel) to separation of P (characteristic kernel), which, as discussed, immediately yields
the converse direction. It gets rid of the Polish assumption and, surprisingly, also drops the
assumption Hk ⊂ C0.

1.2 Our contributions

Unfortunately, Claim 2 turns out to be wrong when the input space X is not compact. Our
main result, Thm. 9, provides a correction under the additional assumption that Hk ⊂ C0.
Crucially, we find that the compact and non-compact case are inherently different. Metrizing
weak convergence on non-compact spaces requires strictly stronger conditions, since the MMD
needs to separate, not only the probability measures – as in the compact case or in Claim 2 –
but all finite signed measures. Put differently, Thm. 9 drops the Polish assumption from
Thm. 1 and proves that its converse – which is too strong when X is compact (see Thm. 7
& Prop. 13) – does hold when X is non-compact. An important implication is that any C0

kernel that maps a probability measure to 0 fails to metrize weak convergence; in particular,
this establishes that large classes of Stein kernels are unable to metrize convergence (see
Rem. 10).

Additionally, Cor. 15 shows that Thm. 9 does not hold without the assumption Hk 6⊂ C0,
while Cor. 17 provides a sufficient condition to metrize weak convergence when Hk 6⊂ C0.
Our results also complete the findings of Chevyrev and Oberhauser (2022), who constructed
a counter-example showing that Claim 2 does not hold on Polish spaces. Overall, our findings
show that the old quest to characterize weak-convergence metrizing MMDs – which we close
under the quite general assumption that X is locally compact and Hk ⊂ C0 – depends in
much more subtle ways on the properties of the underlying space X (being compact or
not, Polish or not, etc.) and the kernel k (Hk contained in C0 or not) than was previously
thought.
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1.3 Paper structure

Section 1.4 fixes notations and makes a few important reminders and remarks. Section 3
then extends Sriperumbudur (2016)’s Thm. 1 and gives a general sufficient condition to
metrize weak convergence when Hk ⊂ C0. We then investigate whether this condition is also
necessary, first when the input space X is compact (Sec. 4), where it turns out to be too
strong (Thm. 7); then when X is not compact, but locally compact (Sec. 5), in which case
the sufficient condition turns out to be necessary (Thm. 9). We finish with a few results in
the general case (Sec. 6), when Hk 6⊂ C0: first a negative result (Cor. 15) showing that the
assumption Hk ⊂ C0 cannot be dropped without replacement; then a result that generalizes
the condition Hk ⊂ C0. Section 7 concludes.

1.4 Notation, definitions, and reminders

We use letter k to denote a reproducing kernel (i.e. a positive definite function) over a
locally compact Hausdorff (LCH) X and Hk denotes its RKHS. Cb is the space of bounded,
continuous and real valued 1 functions f over X. C0 is its subspace of functions that vanish
at infinity, i.e. such that for any ε > 0, there exists a compact K ⊂ X such that |f | ≤ ε
on X\K. We say that k is a C0-kernel if Hk ⊂ C0 and that it is C0-universal if its Hk

is also dense in C0. We denote by M∗ the set of finite, signed Borel measures, and by
M the set of finite Radon measures, i.e., the subset of signed measures in M∗ that are
also regular. Recall that a positive Borel be regular if for any Borel measurable set A and
any ε > 0, there exists a compact K and an open set O in X such that K ⊂ A ⊂ O,
|µ(A) − µ(K)| ≤ ε and |µ(O) − µ(A)| ≤ ε. Said differently, a measure is regular if any
measurable set can be approximated (in terms of measure) from the inside by the compacts
it contains and from the outside by the open sets that contain it. A signed Borel measure
is regular if its positive and negative parts are. Except for Section 2 where we discuss the
differences between Borel and Radon measures, this work focuses on finite Radon measures.
When used without further specification, the word “measure” designates an element in M.
We denote by (C0)

′ the continuous dual of C0 which, by the Riesz representation theorem
(a.k.a. Riesz-Markov-Kakutani theorem Villani 2010, VI-61), can be identified with M. L(µ)
denotes the set of µ-integrable functions (i.e. verifying

∫
X
|f |d|µ| < ∞) and for any such

function f we write µ(f) :=
∫
X
f dµ. We denote by M+, P and M0 the subsets of M

consisting of non-negative measures, of probability measures, and of signed measures µ such
that µ(X) = 0 respectively.

Definition of KMEs and MMDs. For a continuous, bounded kernel k and any µ ∈M,∫
X
‖k(.,x)‖k d|µ| =

∫
X

√
k(x,x) d|µ|(x) < ∞. By standard properties of the so-called

Bochner integral (Schwabik, 2005), the (Bochner-)integral

fµ(·) :=

∫
X

k(.,x) dµ(x)

is a well-defined function in the RKHS Hk of k, and all functions f ∈ Hk are µ-integrable
and verify what we call the Pettis property : µ(f) = 〈fµ , f〉k. In particular, for any µ, ν ∈M,

〈µ , ν〉k := 〈fµ , fν〉k = µ⊗ ν(k) and ‖µ‖2k = µ⊗ µ(k) ,

1. Our results extend to complex valued functions modulo some obvious slight modifications.
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where µ⊗ ν denotes the (tensor) product measure between µ and ν. The maximum mean
discrepancy (MMD) dk(µ, ν) between µ and ν is then defined as the RKHS distance between
their embeddings:

dk(µ, ν) := ‖µ− ν‖k = ‖fµ − fν‖k .

Why bounded kernels? In all our results, we will assume that the kernel k is bounded.
One may wonder if those results could be generalized to unbounded kernels. To do so,
one would need a definition of KMEs and MMDs that allows unbounded kernels. Such
generalizations do exist (see f.ex. Def. 1 in Simon-Gabriel and Schölkopf 2018), but they all
at least require that Hk ⊂ L(µ) for any embeddable measure µ. But if k is unbounded, then
Hk contains an unbounded function f (Simon-Gabriel and Schölkopf, 2018, Cor. 3), and
therefore, it is easy to construct a probability measure P such that f 6∈ L(P ). So P does
not embed into Hk and the MMD is not defined over all probability measures and cannot, a
fortiori, metrize weak convergence there.

Equivalence of universal, characteristic and
∫
s.p.d. kernels. Let F be a normed

set of functions and D a subset of M. A kernel k is said to be universal to F if Hk is a
dense subset of F. It is characteristic to D – or just characteristic when D = P – if the
KME is well-defined and injective over D. It is said to be integrally strictly positive definite
(
∫
s.p.d.) to D – or just

∫
s.p.d. when D = M – if its MMD separates all measures in D.

It will be useful to remember that a kernel is universal to F (f.ex. to C0) if and only if it
is characteristic to its dual ((C0)

′ = M) (Simon-Gabriel and Schölkopf, 2018, Thm. 6 &
Tab. 1). Also, it is characteristic to a set if and only if it is

∫
s.p.d. to that same set (which

is almost immediate to see). The distinction between characteristicness and
∫
s.p.d. is mostly

due to historical reasons. We advice to simply think in terms of separation of D.

2. Radon versus Borel measures

As explained in introduction, we would like to drop the Polish assumption in Thm. 1 and
focus on LCH spaces. However, while on Polish spaces all finite, signed Borel measures
happen to be regular, i.e. M∗ = M by Ulam’s lemma (Villani, 2010, Thm. I-54), on LCH
spaces, this need not be the case. So, if we drop the Polish assumption in Thm. 1, should we
focus on characteristicness to Borel or to Radon measures? The following theorem answers
this question. It is a direct consequence of the proof of Thm 3.13 in Steinwart and Ziegel
(2021).

Theorem 3 (Steinwart and Ziegel 2021) Let X be a locally compact Hausdorff space.
If a C0-kernel is characteristic to a set of measures D ⊂ M∗(X), then D ⊂ M(X). In
particular, if M∗(X) 6= M(X), then no C0-kernel is characteristic to M∗(X).

Said differently, the biggest set of finite Borel measures that a C0-kernel can be characteristic
to is the set of finite Radon measures M.

However, how common is it that M 6= M∗? First, we note that the conclusion of Ulam’s
lemma (M = M∗) also holds for LCH spaces X if one additionally assumes that X is
σ-compact, i.e., that it can be covered by at most countably many compact sets (Villani,
2010, Thm. I-56). However, how restrictive is the σ-compact assumption for an LCH space?
Examples of non-σ-compact LCH spaces such as the long line (a.k.a. Alexandroff line) exist,
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but they may seem irrelevant to the working machine learner. In contrast, the following
theorem shows that, on an LCH space, (a) considering a continuous C0-universal kernel
(i.e., a continuous C0-kernel that is characteristic to M), amounts to assuming that X

is metrizable and (b) that in this context, assuming σ-compactness amounts to adding a
separability assumption on X. The proof is in Appendix B.

Theorem 4 Let X be an LCH space.

(a) A C0-universal kernel k on X is continuous if and only if (iff) it metrizes X, i.e. if
dk(x, y) := ‖k(., x)− k(., y)‖k is a metric for the topology of X. In particular, if there
exists a continuous C0-universal kernel on X, then X is metrizable.

(b) Moreover, the following is equivalent.
(i) X is metrizable and separable.
(ii) X is σ-compact and there exists a continuous C0-universal kernel k on X.

Point (a) shows that even if we drop the Polish assumption, whenever we consider a continuous
C0-universal kernel, we are still assuming that X is metrizable. Point (b) adds that, if
additionally X is assumed to be σ-compact, then the only missing assumption for X to be
Polish is its completeness.

To finish this section, let us discuss some of the hypotheses made in Thm. 4. First,
Guilbart (1978, Thm. 4.D.I) shows that, even without the LCH assumption on X, (i) implies
the existence of a kernel that is characteristic to M (i.e., to M∗). Second, separability
(or σ-compactness) is not a required condition for the existence of a C0-universal kernel
on a (metrizable) LCH space. For example, the discrete kernel kδ(x, y) = 1(x = y) is a
C0(Rδ)-universal kernel over the discrete real line Rδ, i.e., the real line equipped with the
discrete topology. (To see this, notice that the compact sets in Rδ are the finite subsets of R,
and hence that C0(Rδ) is the set of real functions for which only finitely many points have a
value ≥ ε, whatever ε > 0 you choose.) We do not know wether, more generally, the converse
of (a) is true, i.e., whether on an LCH space, metrizability alone suffices to guarantee the
existence of a C0-universal kernel. Finally, we note that in some publications, the continuity
assumption on k is hidden in the definition of C0-universality (see f.ex. Thm 2 in Steinwart
et al. 2006). However, this need not be the case (see Simon-Gabriel and Schölkopf, 2018,
Cor 3&Def 5) and so one may wonder if a non-continuous C0-universal kernel exist. We do
not know.

3. Sufficient conditions to metrize weak convergence

We start with a lemma that extends Thm. 1. Its main message is the same: bounded, con-
tinuous,

∫
s.p.d. kernels metrize weak convergence of probability measures. But, importantly,

it drops the Polish assumption and adds a few interesting details. For one thing, it shows
that weak and MMD convergence also coincide with (the a priori even weaker) vague and
weak RKHS convergence. For another, it adds a form of converse: weak convergence implies
MMD convergence if and only if the kernel is bounded and continuous. Since most usual
kernels are bounded and continuous, this lemma also confirms what we mentioned earlier:
convergence in MMD is often rather weak and can, at best, metrize weak convergence, but
not convergence in total variation or KL divergence (since those are known to be strictly
stronger than weak convergence).
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Lemma 5 Let k be an
∫
s.p.d. kernel such that Hk ⊂ C0 and let (Pα) (sequence or net) and

P be probability measures. If k is continuous, then the following are equivalent.

(i) ‖Pα − P‖k → 0 (convergence in strong RKHS topology)
(ii) Pα(f)→ P (f) for all f ∈ Hk (convergence in weak RKHS topology)
(iii) Pα(f)→ P (f) for all f ∈ C0 (convergence in weak-∗ or vague topology)
(iv) Pα(f)→ P (f) for all f ∈ Cb (convergence in weak topology)

Conversely, if (iv) implies (i) for any probability measures (Pα) and P , then k is continuous.

When (i) and (iv) are equivalent for all sequences of probability measures, we say that k
metrizes the weak convergence of probability measures.
Proof Since Hk ⊂ C0 ⊂ Cb, (iv) ⇒(iii) ⇒(ii). Moreover, strong RKHS convergence implies
weak RKHS convergence, that is (i) ⇒(ii), since P (f) = 〈P , f〉k for any f ∈ Hk. Now
assume k is continuous. If (iv), then the product measures Pα ⊗ P , P ⊗ Pα and Pα ⊗ Pα
converge weakly to P ⊗ P (Berg et al., 1984, Thm. 2.3.3). Hence

‖Pα − P‖2k = Pα ⊗ Pα(k) + P ⊗ P (k)− Pα ⊗ P (k)− P ⊗ Pα(k)→ 0 ,

i.e. (iv) ⇒(i). Summing up so far: (iv) ⇒(i) ⇒(ii) and (iv) ⇒(iii) ⇒(ii).
Conversely, assume (ii). Since k is

∫
s.p.d. and Hk ⊂ C0, by Cor. 3 and Thm. 8 in

Simon-Gabriel and Schölkopf (2018), Hk is dense in C0. And since P is a bounded subset of
the dual M of C0 (which is a Banach, hence barreled space), by Thm. 33.2 in Treves (1967),
P is equicontinuous. So, by Prop. 32.5 in Treves (1967), (ii) implies vague convergence, i.e.
(iii). Cor. 2.4.3 in Berg et al. (1984) then yields (iv). Hence the equivalence of (i) to (iv).

Now assume (iv) ⇒(i) on P, and suppose that x → ξ and y → ζ in X. Then
the Dirac point masses δx and δy converge weakly to δξ and δζ , which, by assumption,
implies convergence in RKHS norm. Since the inner product is continuous (for the RKHS
norm/topology), we get

k(x,y) = 〈δx , δy〉k → 〈δξ , δζ〉k = k(ξ, ζ) ,

so k is continuous.

Remark 6 The proof shows that (ii) and (iii) are even equivalent on any bounded subset
of M (Treves, 1967, Prop. 32.5) (even without continuity of k) and that (i)–(iv) are actually
equivalent on any bounded subset of M+ whenever Pα(X)→ P (X) (which is always true for
probability measures).

The previous lemma gives sufficient conditions to metrize weak convergence. We now
investigate whether they are necessary. To do so, we have to distinguish the case where the
input space X is compact and where the conditions turn out to be too strong, from the one
where X is locally compact but not compact (and Hk ⊂ C0), where they are necessary.
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4. Necessary condition for compact input space X

When the underlying space X is not just locally compact but compact, the equivalence given
in Claim 2 actually turns out to hold: contrary to the general case, here, a continuous kernel
only needs to separate the probability measures to also metrize their weak convergence. The
reason for this difference is essentially that, because X is compact, measures cannot diffuse
to 0 at infinity (see Section 5).

Theorem 7 On a compact Hausdorff space, a bounded, measurable kernel metrizes the weak
convergence of probability measures if and only if it is continuous and characteristic to P.

Proof If k metrizes weak convergence, then the RKHS metric needs to separate all
probability measures, i.e. k is characteristic to P. And the last sentence of Lem. 5 shows
that k is continuous. Conversely, if k is characteristic to P, then the kernel κ := k + 1
is

∫
s.p.d. (Simon-Gabriel and Schölkopf, 2018, Thm. 8). Also, since k is continuous, κ

is continuous. Thus Hκ is a continuous subspace of C = Cb = C0 (Simon-Gabriel and
Schölkopf 2018, Cor. 3 and compactness). By Lem. 5, κ metrizes weak convergence on P,
and by Thm. 8 of Simon-Gabriel and Schölkopf (2018), κ and k induce the same metric onP.

What is surprising here is that, on a compact space and for a continuous kernel, it suffices
to separate probability measures to also metrize their weak convergence, which, a priori, may
have seemed a strictly stronger requirement. We will see that when X is not compact, this
need not be the case.

5. Necessary condition when X is locally compact but non-compact and
Hk ⊂ C0

Since the condition Hk ⊂ C0 is at the heart of this section, we would like to remind the reader
that, by the following lemma (Simon-Gabriel and Schölkopf, 2018, Cor. 3), it is satisfied by
many standard kernels: Gaussian, Laplacian, Matern, inverse multi-quadratic kernels, etc.

Lemma 8 Hk ⊂ C0 if and only if k is bounded (i.e. supx∈X k(x,x) < ∞) and for all
x ∈X, k(x, .) ∈ C0.

We now turn to our main theorem, which corrects Claim 2 when X is non-compact and
Hk ⊂ C0.

Theorem 9 Suppose that the locally compact Hausdorff space X is not compact and that,
for some kernel k on X ×X, Hk(X) ⊂ C0(X). Then k metrizes the weak convergence of
probability measures if and only if k is continuous and

∫
s.p.d. (i.e. characteristic to M(X)).

We see that, contrary to the compact case, it is not enough to separate all probability
measures P to metrize their weak convergence: dk must separate all finite measures M,
which strictly contains P. Moreover, Prop. 13 below confirms that there are indeed kernels
that separate P but not M. Hence, Thms. 7 and 9 show that, surprisingly, the converse of
Sriperumbudur’s Thm. 1 is generally too restrictive when X is compact but does hold when
it is not. Also, they confirm that the Polish assumption made in Thm. 1 is superfluous.

9
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Remark 10 (On the significance of Thm. 9) One advantage of dropping the Polish as-
sumption is that our result may cover more sets, e.g. non complete ones. Besides, we believe
that dropping unnecessary hypotheses helps clarifying the role of each remaining assumption.
However, in our view, the main contribution of Thm. 9 is its converse part, which implies that
many popular kernels fail to metrize weak convergence. For example, it rules out any RKHS
contained in C0 that maps some probability measure(s) to 0. This has important implications
for the Stein kernels adopted in Liu and Wang (2016); Jitkrittum et al. (2017); Gorham and
Mackey (2017); Huggins and Mackey (2018); Feng et al. (2017); Pu et al. (2017); Liu and
Wang (2016); Chen et al. (2018, 2019); Hodgkinson et al. (2020) which, by design, map a
particular target distribution to 0 and which, if one is not careful, will also induce RKHSes
in C0.

We now turn towards the proof. While it is almost obvious that metrization of weak
convergence implies separation of P, showing that it also implies separation of M will require
some work and, in light of Lem. 5, is essentially all that remains to be proven. To do so,
we will use the following two lemmata. The first one is a straightforward extension of a
basic property of locally compact sets (every point has a compact neighborhood) from points
to compact sets (every compact set has a compact neighborhood). The second shows that
when Hk ⊂ C0 and X is not compact, then the RKHS metric cannot prevent some positive
measures from “diffusing” to the null measure. This will imply that if k is not characteristic
to all finite measures, one can construct a sequence of probability measures that converges in
RKHS norm but has some of its mass diffusing to 0.

Lemma 11 Let K be a compact subset of a locally compact space X. Then there exists an
open neighborhood of K with compact closure. Equivalently, there exist an open set O and a
compact set K′ in X such that K ⊂ O ⊂ K′.

Lemma 12 Suppose that the locally compact Hausdorff space X is not compact and that
k is continuous with Hk ⊂ C0. Then there exists a sequence of probability measures Pn
such that ‖Pn‖k → 0. Moreover, for any compact K ⊂X, one can additionally impose that
Pn(K) = 0 for all n.

As a side remark, note that Lem. 12 complements Lem 3.2 of Steinwart and Ziegel (2021),
which states that, if the constant-1 function 1 is in Hk, then M0 is Hk-closed. In contrast,
Lem. 12 from above shows that, if Hk ⊂ C0 (in which case 1 6∈ Hk), then P is not Hk-closed
and neither is M0 (to see this, replace (Pn)n by (Pn − P )n for some arbitrary P ∈ P in
Lem. 12).
Proof [Proof of Lem. 11] Since X is locally compact, every point has a compact
neighborhood. So let us consider the set of all compact neighborhoods of the points
contained in K′. Their interiors form an open cover of K′, and, since K′ is compact, a
finite number of them suffices to cover K′. Let O be the finite union of these interiors and
K′ the union of their closures (i.e., the union of the corresponding compact supersets).
Then O is open, K′ is compact, and K ⊂ O ⊂ K′ as advertised. We finally note that
this property is equivalent to the first claim (that there exists an open neighborhood of K
with compact closure) as O is contained in a compact set if and only if its closure is compact.

10
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Proof [Proof of Lem. 12] First we show that for any ε > 0 and any integer n > 0, we
can construct a sequence of n points x1, . . . ,xn in X\K such that for any 1 ≤ i 6= j ≤ n,
|k(xi,xj)| ≤ ε. We will construct it one point at a time. Choose a point x1 ∈ X\K. By
assumption on k, there exists a compact K1 ⊂ X such that for any point x ∈ X\K1,
|k(x,x1)| ≤ ε. Choose x2 to be also outside of K, i.e. x2 ∈X\(K ∪K1) (non-empty, since
K ∪K1 is compact and X is not). There exists a compact K2 ⊂X such that for any point
x ∈X\K2, |k(x,x2)| ≤ ε. Let x3 be any point in X\(K ∪K1 ∪K2) (non empty because
X is not compact). Continue this procedure until point xn. The sequence obviously satisfies
the requirement.

Now, for any integer n > 0, construct a finite sequence x(n)
1 , . . .x

(n)
n such that for any

1 ≤ i 6= j ≤ n, |k(xi,xj)| ≤ 1/n. Define the probability measures Pn := 1
n

∑n
i=1 δx(n)

i

. Then

all Pn(K) = 0, since all x(n)
i ∈X\K, and:

‖Pn‖2k =
1

n2

∑
1≤i≤n

k(xi,xi) +
1

n2

∑
1≤i 6=j≤n

k(xi,xj) ≤
n

n2
‖k‖∞ +

n(n− 1)

n2
1

n

n→∞−→ 0.

Proof [Proof of Thm. 9] Lem. 5 yields the “if” part and the continuity of the kernel in the
converse. Assume now that k is not characteristic to M. Then there exists a non-zero, finite
measure µ such that fµ = 0. Let µ+, µ− be its positive and negative parts respectively
– which are mutually singular (Hahn decomposition). By renormalizing µ if needed, we can
assume without loss of generality that µ−(X) ≤ µ+(X) = 1. If µ−(X) = µ+(X), then µ−
and µ+ are two non-equal probability measures that are at RKHS distance 0, hence k does
not metrize weak convergence. So, for the sequel, assume that µ−(X) < µ+(X).

Now, let K be a compact subset of X that satisfies µ+(K) ≥ (µ−(X)+µ+(X))/2, which
exists because µ+ is regular and µ−(X) < µ+(X). Select now an open set O and a compact
set K′ satisfying K ⊂ O ⊂ K′, which exist by Lem. 11. Then, since K ⊂ O, µ+(O) ≥ µ+(K).
Let now Pn be probability measures as in Lem.12 such that Pn(K′) = 0 (and hence Pn(O) = 0)
for all n. Consider the sequence of probability measures µn := µ− + (1− µ−(X))Pn. Then

‖µn − µ+‖k = ‖µn − µ−‖k (because fµ− = fµ+)
= (1− µ(X)) ‖Pn‖k −→ 0,

hence µn converges to µ+ in the RKHS metric. But µn does not converge weakly to µ+ since

µ+(O) ≥ µ+(K) ≥ (µ−(X) + µ+(X))/2 > µ−(X) ≥ µ−(O) = µn(O) ,

which contradicts the Portmanteau lemma (lim supn µn(O) 6≥ µ+(O)).

To prove that the initial claim (Claim 2) is indeed wrong when X is not compact, it
remains to show that being characteristic to M is not equivalent to being characteristic to
P ⊂M, i.e. that there exists a kernel k with Hk ⊂ C0 that is characteristic to P but not
to M. We show this under the assumption that there already exists a kernel of X that is
characteristic to M, which is in particular satisfied when X is metrizable and separable
(Thm. 4(b) or Thm. 4.D.I in Guilbart 1978), such as when X is an open subset of Rd.

11
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Proposition 13 If there exists a bounded continuous kernel over a locally compact Hausdorff
space X that is characteristic to M, then there also exists a kernel k with Hk ⊂ C0(X) that
is characteristic to P but not characteristic to M. In particular, this k does not metrize the
weak convergence of probability measures.

Proof Let κ be any bounded kernel over X that is
∫
s.p.d., i.e., characteristic to M,

ξ ∈ X and g ∈ C0 such that g(ξ) = 0 and g(x) > 0 for any x 6= ξ. Consider k(x,y) :=
g(x)κ(x,y)g(y). Then k is a kernel such that Hk ⊂ C0 (Lem. 8) and fδξ is the null function,
hence ‖δξ‖k = 0, so k is not

∫
s.p.d. But we will now show that k is characteristic to M0, i.e.

to P. Indeed, let µ ∈M0 such that
∫∫
k(x,y) dµ(x) dµ(y) = 0. Since the product gµ is a

finite measure and κ is
∫
s.p.d., the previous equality implies that gµ is the null measure.

Since g > 0 on any x 6= ξ, for any open set O ⊂X\{ξ}, |µ|(O) = 0. Hence the support of µ
(well-defined, because µ is regular) is contained in {ξ}, i.e. µ is proportional to the Dirac
point mass in ξ. Hence, if µ ∈M0, then µ is the null measure.

Prop. 13 has two implications. First, it shows that the metrization condition in the non
compact case is strictly stronger than in the compact case: on compact spaces, some kernels
do metrize weak convergence without separating all finite signed measures. Second, combining
it with Thm. 9 shows that the alleged proof of Claim 2 must be flawed. Another confirmation
will be given by point (i) in Cor. 15, with an explicit counter-example constructed in its
proof. However, to strengthen our claim, we now explicitly point out the flaw in the proof of
Claim 2 by Simon-Gabriel and Schölkopf (2018).

5.1 Flaw in the proof of Claim 2 of Simon-Gabriel and Schölkopf

The flaw in the proof of Theorem 12 of Simon-Gabriel and Schölkopf (2018) (our Claim 2)
resides in their auxiliary Lemma 20, which is essentially our Lem. 5, but without the
assumption Hk ⊂ C0. Their proof essentially consists in saying that, since (Pα) (denoted
(µα) there) is bounded, it is relatively vaguely compact, so one can extract a subnet (Pβ)
that converges vaguely to a measure P ′ (denoted µ′ there). They then try to identify the
vague limit P ′ with the MMD- (or weak RKHS-) limit P (denoted µ there) of the original net
(Pα), by arguing that weak and vague convergence coincide on P, and that weak convergence
implies MMD-convergence. Unfortunately, P is not closed in M for the vague topology, so
nothing guarantees a priori that P ′ ∈ P. And if P ′ 6∈ P, then vague convergence to P ′ does
not imply weak convergence to P ′ (Berg et al., 1984, Thm. 2.4.2), which is why the proof
fails – irremediably.

We can go further and exhibit a counter-example for the previous failure, i.e. a bounded,
continuous,

∫
s.p.d. kernel and a sequence (Pn) that converges to P ∈ P in MMD, but

converges vaguely to another measure P ′ 6= P in M. Indeed, consider the kernel κ := k + 1
from the proof of Cor. 15(i) below. Let K be a compact neighborhood of ξ (which exists
because X is locally compact) and choose a sequence (Pn) ⊂ P as in Lem. 12, i.e. such
that ‖Pn‖k → 0 and Pn(K) = 0 for all n. By using the vague compactness of B+ := {µ ∈
M+ |µ(X) ≤ 1} (Berg et al., 1984, Prop. 2.4.6) and extracting a subsequence if needed, we
may assume that (Pn) converges vaguely to a measure P ′ ∈ B+. Applying Urysohn’s lemma
(Villani, 2010, Thm. I-33) to the compact set {ξ} and an open neighborhood O ⊂ K of ξ,
we get a continuous function f whose support is contained in K and such that f(ξ) = 1.
Since f ∈ C0 and Pn(f) = 0 < 1 = f(ξ) = δξ(f), Pn does not converge vaguely to δξ, i.e.

12
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P ′ 6= δξ. Now κ is bounded, continuous and
∫
s.p.d., and induces the same metric than k on

P. So, since the KME of k maps the Dirac measure δξ to the null function in Hk (see proof
of Prop.13), we get

‖Pn − δξ‖κ = ‖Pn − δξ‖k = ‖Pn‖k → 0 .

Hence (Pn)→ δξ in MMD, but (Pn) converges vaguely to a different measure P ′.

Remark 14 The sequence (Pn) converges neither weakly to P ′ nor weakly to δξ, since weak
convergence would imply vague and MMD convergence to the same limit, i.e. would imply
P ′ = δξ. Hence P ′(X) 6= 1 (otherwise, vague convergence would imply weak convergence,
since both coincide on P (Berg et al., 1984, Cor. 2.4.3)), and since P ′ ∈ B+, we get
P ′(X) < 1. So (Pn) illustrates a phenomenon called mass escaping at infinity, which vague
convergence, contrary to weak convergence, cannot prevent.

6. General case: X locally compact but non-compact and Hk 6⊂ C0

All previous sections assumed that Hk ⊂ C0 (automatically satisfied when k continuous and
X is compact). So one may naturally wonder whether this assumption could be dropped
without replacement or at least extended. Cor. 15 shows that dropping it without replacement
is not possible; but Cor. 17 proposes a slight extension.

Corollary 15 Let X be a locally compact Hausdorff space that is not compact and for which
there exists a C0-universal kernel (such as when X is metrizable and separable). Then

(i) there exists a bounded continuous kernel that is
∫
s.p.d., but does not metrize the weak

convergence of probability measures;
(ii) there exists a bounded, continuous, characteristic (to P) kernel that is not

∫
s.p.d. but

metrizes the weak convergence of probability measures.

Remark 16 Note, however, that some kernels with non-vanishing RKHS functions do satisfy
the characterization of Thm. 9. For example, Thm. 9 extends to any kernel of the form
kc = k + c for c > 0 and Hk 6⊂ C0, since kc and k induce the same MMD.

Proof (i) By assumption, there exists a C0-universal kernel. Since that kernel is continuous
and characteristic to M (see Section 1.4), by Prop. 13, there also exists a kernel k that is
characteristic to P but not characteristic to M, with Hk ⊂ C0. Consider the new kernel
κ := k + 1. Then κ is

∫
s.p.d. (Simon-Gabriel and Schölkopf, 2018, Thm. 8), but κ induces

the same metric than k on the set of probability measures P. Hence it does not metrize their
weak convergence.

(ii) Let ξ be a point in X. Let k be a C0-universal on X. k is characteristic to Hk

(Section 1.4), so, by Thm. 9, k metrizes the weak convergence over P. Now, consider the
kernel κ(x,y) := 〈δx − δξ , δy − δξ〉k. κ is not

∫
s.p.d. (since the KME of δξ is the null

function) but it induces the same RKHS metric than k on P, that is ‖P −Q‖κ = ‖P −Q‖k
for any P,Q ∈ P. Hence κ metrizes weak convergence on P. (Remark: this implies that
Hκ 6⊂ C0, which is also easy to check directly.)

The existence of a C0-universal kernel when X is a metrizable and separable LCH space
is given by Thm. 4(b).

13
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Let us mention that, in a side remark of Guilbart (1978, p.18), Guilbart already exhibits a
theoretical construction of kernels on R that are

∫
s.p.d. but do not metrize weak convergence.

Hence, Claim 2 was actually disproved before being written.
We finish with a slight generalization of Thm. 9 that encompasses some kernels whose

RKHS is not contained in C0. The result builds on the same idea than in the proof of
Cor. 15(ii).

Corollary 17 Suppose that X is not compact and that Hk ⊂ C0. Fix a ≥ 0 and P ∈ P and
define

kaP (x,y) := 〈δx − P , δy − P 〉k + a = (δx − P )⊗ (δy − P )(k) + a .

Then kaP metrizes weak convergence of probability measures if and only if k is continuous and∫
s.p.d.

Proof Since kaP (x,y) = k(x,y)− fP (x)− fP (y) + ‖P‖2k + a, for any probability measures
S, T ∈ P, we get

‖S − T‖2kaP = (S − T )⊗ (S − T )(kaP ) = (S − T )⊗ (S − T )(k) = ‖S − T‖2k .

Hence k and kaP define the same metric on P and Thm. 9 concludes.

7. Conclusion

MMDs are at the heart of machine learning solutions to a variety of fundamental tasks in-
cluding two-sample testing, sample quality measurement and goodness-of-fit testing, learning
generative models, de novo sampling and quadrature, importance sampling, and thinning.
While these applications benefit from the tractability of MMDs compared to more classical
probability metrics, the validity of their results depends critically on the MMD’s ability to
ensure weak convergence. Simon-Gabriel and Schölkopf (2018) developed their Theorem 12
to provide a complete characterization of weak-convergence metrization for MMDs with
bounded continuous kernels. However, our work shows that their characterization was
incorrect and provides an alternative result that fully characterizes the weak-convergence
metrization of MMDs with bounded C0 kernels. Surprisingly, we find that the compact and
non compact cases are inherently different, the latter requiring strictly stronger conditions
for the metrization. This suggests that the question of weak-convergence metrization by
MMDs is more subtle than was previously thought. Our main results can also be seen as a
converse to Sriperumbudur’s Thm. 1, which in particular show that many popular kernels,
particularly Stein kernels, can fail to metrize weak convergence, if one is not careful enough.
In that spirit, we hope that our work will inform the selection of appropriate kernels and
MMDs in the future and launch new inquiries into the metrization properties of other classes
of MMDs.
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Appendix A. Translation of Some Results from Non-English References

For the convenience of the reader, we translate here some of the important results from
Villani 2010 that we cite, since the original manuscript is in French.

Theorem 18 (Urysohn’s Lemma. Translation of Thm-I.33 in Villani 2010) Let
X be a locally compact Hausdorff space, O an open and K a compact subset of X, K ⊂ O.
Then there exists a continuous function f with values in [0, 1], that is equal to the constant 1
on a neighborhood of K, and whose support is compact and included in O. In particular,

1K ≤ f ≤ 1O,

where 1K and 1O designate the functions that are equal to 1 on K and O respectively, and 0
otherwise.

Theorem 19 (Ulam’s Lemma. Thm. I-54 in Villani 2010) Let X be a Polish space
equipped with a σ-finite non-negative Borel measure µ (i.e., X is the countable union of sets
Ak that satisfy µ(Ak) <∞). Then µ is regular (and concentrated on a σ-compact set).

Theorem 20 (Ulam’s Lemma for LCH spaces. Thm. I-56 in Villani 2010) Let X
be an LCH space where every open set is σ-compact, equipped with a non-negative Borel
measure µ that is finite on compact sets. Then µ is regular.

Theorem 21 (Riesz-Markov-Kakutani Representation. Thm.VI-61 in Villani 2010)
Let X be an LCH space. Then one can identify (i.e., find an isometric bigection) between

. the continuous linear forms Λ on the space C0(X) of continuous functions on X that
converge to 0 at infinity, equipped with the supremum norm convergence;

. the set of signed, regular, finite Borel measures on X; i.e., measures that can be written
as µ+ − µ−, where µ+ and µ− are non-negative, regular, finite Borel measures which
are orthogonal to each other;

via the following formula:

Λf =

∫
f dµ :=

∫
f dµ+ −

∫
f dµ− .

In short:
(C0)

′ = M(X) .

Definition 22 (Radon Measures. Def. VI-66 in Villani 2010) Let X be an LCH
space equipped with its Borel σ-algebra, and let Ω be an open set in X. A Radon mea-
sure on Ω if it is signed, locally finite (i.e., finite on any compact in Ω) and regular.

Appendix B. Proof of Thm. 4

B.1 Proof of Point (a)

By Lem. 5 below, if k is continuous, then it metrizes the weak-∗ topology on the set P of
Radon probability measures. But, by Theorem V.5.1 in Conway (1994), X is homeomorphic
to the subset of Dirac measures in P, i.e. to {δx |x ∈X}, when equipped with the weak-∗
topology. Hence dk(x, y) = ‖δx − δy‖k metrizes X. Conversely, if k metrizes X, then
Lemma 4.29 (point iv ⇒ i) in Steinwart and Christmann (2008) shows that k is continuous.
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B.2 Proof of Point (b)

To prove (b), we are going to prove the following, more complete set of equivalences.

Theorem 23 On a LCH space X the following is equivalent.

(i) X is metrizable and separable.
(ii) X is σ-compact and there exists a continuous C0-universal kernel k on X.
(iii) X is second countable.
(iv) C0(X) is separable.

Proof (iii)⇔(i). Since X is LCH, X is completely regular (Aliprantis and Border, 2006,
Cor 2.74) and hence regular. Urysohn’s metrization theorem concludes (Aliprantis and
Border, 2006, Thm. 3.40).

(i) ⇔ (iv). An LCH space is completely regular (Aliprantis and Border, 2006, Cor 2.74).
So, if X is compact, then Theorem V.6.6 by Conway (1994) concludes. Otherwise, let X∞ be
the one-point compactification of X (Aliprantis and Border, 2006, Thm. 2.72). We saw above
that X is metrizable and separable iff X is second countable, and, by Thm 3.44 of the same
reference, the latter holds iff X∞ is metrizable. Since X∞ is compact and Hausdorff (hence
completely regular), this is equivalent to Cb(X∞) (equipped with its canonical supremum
norm topology) being separable (Conway, 1994, Thm. V.6.6), which in turn happens iff its
hyperplane H := {f ∈ Cb(X∞) : f(∞) = 0} is separable as well. Conclude by noting that
H is homeomorphic to C0(X).

(iv) ⇒(ii). We have already shown that, since C0 is separable, X is second countable,
which, in turn, implies that X is σ-compact (Aliprantis and Border, 2006, Lem 2.76). To
show that there exists a universal kernel, we now follow the proof of Thm 2 in Steinwart et al.
2006. Let {fn}n be an at most countable dense subset of C0. For any integer n ≥ 0, define
Φn(x) := 2−nfn/ ‖fn‖∞ if fn 6= 0 and Φn = 0 otherwise. Then, clearly, Φ(x) := (Φn(x))n
satisfies Φ(x) ∈ `2 for all x ∈X, hence k(x, y) := 〈Φ(x) , Φ(y)〉`2 , where x, y ∈X, defines a
kernel on X with feature map Φ : X −→ `2 . Fix f ∈ C0 and ε > 0. There exists an
integer n such that ‖fn − f‖∞ ≤ ε. Define the function w := 2n ‖fn‖∞ en where (en)n is the
canonical orthonormal basis of `2. This gives 〈w , Φ(x)〉 = fn(x) for all x ∈ X, and since
{〈v , Φ(x)〉 : v ∈ `2} is the RKHS of k (Steinwart and Christmann, 2008, Thm. 4.21), we
obtain the universality of k. It remains to be shown that k is continuous. To do so, we show
that that Φ is continuous. Indeed, let (xα)α be a net that converges to x in X. Fix ε > 0.

‖Φ(xα)− Φ(x)‖22 ≤
∑
n≥0
|Φn(xα)− Φn(x)|2 =

∑
n≥0

1

22n
|gn(xα)− gn(x)|2 ,

where we defined gn(x) := fn(x)/ ‖fn‖∞ (or 0 if fn = 0). Since |gn| ≤ 1, the summands
verify |gn(xα) − gn(x)|2/22n ≤ 122(n−1) for n ≥ 1. So let N be an integer such that∑

n>N
1

22(n−1) ≤ ε/2 and let A be an index such that
∑N

n=0 |gn(xα) − g(x)|2/22n ≤ ε/2

whenever α > A (which exists, since we are considering a finite sum of continuous functions).
The continuity then follows from the following.

‖Φ(xα)− Φ(x)‖22 ≤
N∑
n=0

1

22n
|gn(xα)− gn(x)|2 +

∑
n>N

1

22(n−1)
≤ ε

2
+
ε

2
≤ ε .
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(ii) ⇒(iv). We adapt the proof of Thm 2, point (i) ⇒ (ii), given by Steinwart et al.
(2006). Let k be a continuous universal kernel on X and let Φ : X −→ Hk

x 7−→ k(., x)
be its

canonical feature map. Then Φ is continuous (Steinwart and Christmann, 2008, Lem 4.29).
Since X is σ-compact, let (Ki)i be an at most countable compact cover of X. For each i,
Φ(Ki) is compact, and, sinceHk is a metric space, Φ(Ki) is separable. Hence Φ(X) = ∪iΦ(Ki)
is separable, and consequently, so is Hk = cl(span Φ(X)), the closed span of Φ(X) in Hk.
Since Hk is dense in C0, we then obtain that C0 is separable.

Alternative proof of (ii) ⇒(iv). Point (a) shows that X is metrizable. Conclude by
noting that a σ-compact metrizable spaces is separable, since it can be covered by countably
many compacts and, being a metrizable space, any compact is separable.

Proof [Alternative proof of (i) ⇔ (iv)] (i) ⇒(iv). We will adapt the proof given by Conway
(1994, Thm. V.6.6) for compact spaces. Let d be a metric that metrizes the topology of
X. Since X is separable, let (xk)k be a dense sequence in X. For any positive integer n,
let Bn

k be the open ball of radius 1/n centered on xk. For any n, (Bn
k )k is an open cover

of X. Since X is a metric space, apply Theorems 3.22 and 2.90 in Aliprantis and Border
(2006) to construct a continuous locally finite partition of unity (fnk )k subordinated to (Bn

k )k
(see Def 2.89 therein). Let Y be the rational linear span of (fnk )k,n, i.e., the finite linear
combinations of functions fnk with rational coefficients. Y is countable. We will show that Y
is dense in C0(X).

Fix f ∈ C0 and ε > 0. Since f vanishes at infinity, it is uniformly continuous. So there is
a δ > 0 such that |f(x)− f(y)| ≤ ε/2 whenever d(x, y) < δ. Choose n > 1/δ. Consider the
cover (Bn

k )k. If x ∈ Bn
k , d(x, xk) ≤ 1/n ≤ δ; hence |f(x)− f(xk)| ≤ ε/2. Let αk be a rational

number such that |αk − f(xk)| ≤ ε/2. Let g :=
∑

k αkf
n
k ; so g ∈ Y. For every x ∈X,

|f(x)− g(x)| ≤ |
∑
k

f(x)fnk (x)− αkfnk (x)|

≤
∑
k

|f(x)− αk|fnk (x).

Examine each of these summands. If x ∈ Bn
k , then |f(x)−αh| ≤ |f(x)−f(xk)|+|f(xk)−αh| ≤

ε; otherwise fnk (x) = 0. In both cases |f(x) − αk|fnk (x) ≤ εfnk (x), hence |f(x) − g(x)| ≤
ε
∑

k f
n
k (x) = ε. Thus ‖f − g‖∞ ≤ ε and Y is dense in C0. Hence C0 is separable.

(iv) ⇒(i). We will prove that, if C0 is separable, then X is second countable, which
concludes, since we already showed that (iii) and (i) are equivalent. The proof follows
Nate Eltredge (2019). Let {fn}n be a countable dense subset of C0, and for each n let
Un = {x ∈ X : fn(x) > 1/2}, which is an open subset of X. We claim that {Un}n is a
countable base for the topology of X. For let x ∈X and let V be an open neighborhood of
x. Then by Urysohn’s lemma for locally compact Hausdorff spaces, there exists a function
f compactly supported inside V with f(x) = 1. In particular f ∈ Cc(X) ⊂ C0, so by
density, we can find some fn with ‖f − fn‖∞ < 1/2. Then we have fn(x) > 1/2 so x ∈ Un.
Moreover, if y ∈ Un then fn(y) > 1/2 and so f(y) > 0, which implies y ∈ V . Therefore
Un ⊂ V . This proves that {Un}n is a base.
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