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Abstract

Regression discontinuity (RD) designs are widely used to estimate causal effects in
the absence of a randomized experiment. However, standard approaches to RD analysis
face two significant limitations. First, they require a priori knowledge of discontinuities in
treatment. Second, they yield doubly-local treatment effect estimates, and fail to provide
more general causal effect estimates away from the discontinuity. To address these limita-
tions, we introduce a novel method for automatically detecting RDs at scale, integrating
information from multiple discovered discontinuities with an observational estimator, and
extrapolating away from discovered, local RDs. We demonstrate the performance of our
method on two synthetic datasets, showing improved performance compared to direct use
of an observational estimator, direct extrapolation of RD estimates, and existing meth-
ods for combining multiple causal effect estimates. Finally, we apply our novel method
to estimate spatially heterogeneous treatment effects in the context of a recent economic
development problem.

Keywords: causal inference, natural experiments, heterogeneous treatment effects, re-
gression discontinuity designs, Gaussian processes

1. Introduction

Estimating casual effects from observational data remains a central challenge across empir-
ical sciences. While randomized trials and experimentation allow for causal inference under
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minimal assumptions, many important scientific questions are not amenable to study under
randomization for practical or ethical reasons.

Where direct randomization is infeasible – but observational data is on hand – empirical
scientists are left with two main paths to causal inference. One option is to make the strong
assumption that assignment to treatment is conditionally independent of potential outcomes
given observables, and to estimate causal effects using a “conditioned-on-observables” es-
timator (e.g., matching or reweighting estimators, or doubly-robust variants thereof). Un-
fortunately, if this strong assumption does not hold, unobserved confounders can introduce
bias into the estimates of causal effect.

If treatment assignment cannot be assumed to be conditionally independent of potential
outcomes, one can alternatively attempt to identify and exploit sources of exogenous, ran-
dom variation in treatment (natural experiments, or quasi-experimental designs) to obtain
causal estimates. While this general approach encompasses a wide range of econometric
methods, we focus on one in particular: regression discontinuity (RD) designs. RD designs
occur where treatment propensity varies discontinuously across some threshold. Under as-
sumptions given in Dong (2018) and Hahn et al. (2001), such discontinuities can be exploited
to obtain unbiased estimates of causal effects at the threshold.

RD designs are well-established, for example, by Hahn et al. (2001), and are widely used
in practice. However, as routinely applied, they suffer from two substantial drawbacks.
First, and most significantly, most RD analyses exploit discontinuities that are known a
priori, reducing the applicability of RD designs to emerging domains where discontinuities
are as of yet unknown. Second, since RD designs yield causal estimates that are local to
the discontinuity, they do not immediately allow for inference across the full population.
The combination of the manual, limited, and ad hoc nature of current approaches for RD
identification, and the inability to extrapolate well from discovered RDs, limits the ability of
RD designs to provide unbiased and accurate estimates of heterogeneous treatment effects
across a population. In contrast, we wish to discover RDs systematically, automatically,
and at scale, and to use these discovered natural experiments to draw broader inferences
across the population as to which treatments are effective and for whom.

To address these limitations, we introduce a novel approach, DEE (Discover-Estimate-
Extrapolate) for the discovery and analysis of RD designs. DEE extends LoRD3, a re-
cently introduced method for discovery of local regression discontinuities from observa-
tional data (Herlands et al., 2018), by introducing a complementary approach to extrap-
olating and integrating information from a set of discovered local discontinuities. After
estimating conditional causal effects along the discovered discontinuities, we take a non-
parametric approach to extrapolating these estimates throughout the attribute space. We
consider two extrapolation strategies: (i) directly extrapolating treatment effect estimates
from discovered discontinuities, and (ii) exploiting the discovered discontinuities to debias
a conditioned-on-observables estimate. By averaging estimates from these two approaches,
we realize gains relative to model selection.

Our approach contributes to three recent areas of research. First, our method extends
recent work on discovery of natural experiments (Jensen et al., 2008; Herlands et al., 2018).
Jensen et al. (2008) provide one of the earliest methods for automated discovery of natural
experiments, describing an automated system for discovering “non-equivalent comparison
group designs” under which a pre/post comparison identifies a causal effect. Herlands et al.
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(2018) subsequently introduced a local scan method (LoRD3) for automatic discovery of
RD designs. We directly extend Herlands et al. (2018), describing a novel approach for
combining multiple discovered, local discontinuities into a global estimator of conditional
causal effects.

Second, we contribute to the growing body of literature on generalizing regression dis-
continuity estimates (Angrist and Rokkanen, 2015; Cattaneo et al., 2020). Angrist and
Rokkanen (2015) describe falsification tests for a strong notion of external validity, under
which treatment is conditionally independent of potential outcomes. Compared to An-
grist and Rokkanen (2015), we adopt and are able to extrapolate regression discontinuity
estimates under a weaker restriction, though our method does not offer falsification tests
comparable to theirs. Our method is also similar to Cattaneo et al. (2020), in that it ex-
ploits multiple discontinuities to extrapolate the treatment effect away from a threshold.
However, unlike their method, we do not require (i) that the discontinuities share a common
running variable, nor (ii) that each individual unit be assigned to a known discontinuity.

Finally, similar to Kallus et al. (2018), we take the approach of exploiting unbiased
treatment effect estimates (in our case, from discovered regression discontinuities) to esti-
mate a bias correction for a conditioned-on-observables estimator. Unlike Kallus et al., we
do not assume that this bias follows a parametric form. Moreover, in addition to estimating
and extrapolating a bias correction, our method adaptively considers direct extrapolation
of RD treatment effect estimates and integrates the two estimates through model averaging.

The remainder of the paper proceeds as follows. Section 2 formally introduces the causal
inference problem. Section 3 presents our novel inferential method. Section 4 provides
theoretical results in support of model averaging using a novel measure of predictive fit.
Section 5 discusses related work. Section 6 presents empirical results on two synthetic
problems, and on a recent problem from the economic development literature (Asher and
Novosad, 2020). Finally, Section 7 discusses potential extensions and variations of our
method, and concludes.

2. Setup

We aim to estimate the heterogeneous effect of a binary treatment T ∈ {0, 1} on a real-
valued observed outcome Y ∈ R, given a set of observed covariates X with support X ⊂ Rd.
Adopting the Rubin Casual Model and potential outcomes notation (Rubin, 2005), the
target estimand is the conditional average treatment effect (CATE) given by

τ(x) = E[Y (1)− Y (0) | X = x],

where Y (1) and Y (0) respectively denote the potential outcomes given a unit’s assignment
to the treatment or control group.1 The observed outcome (Y ) can then be represented in
terms of the potential outcomes and treatment as Y = (1− T ) ∗ Y (0) + T ∗ Y (1). We aim
to estimate CATE in the absence of experimental data, using just an observational dataset
D = {(xi, ti, yi)}Ni=1, and as such we face the fundamental problem of causal inference
(Holland, 1986), since we only observe one of the two potential outcomes, yi = Yi(ti), for
each unit.

1. We adopt the potential outcome notation as it allows us to more easily and clearly express the assump-
tions and identification in RD designs (Imbens, 2020).
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An initial approximation to τ(x), which we denote as τ obs(x), can be obtained by con-
ditioning on the observed covariates X:

τ obs(x) = E[Y | X = x, T = 1]− E[Y | X = x, T = 0]

= E[Y (1) | X = x, T = 1]− E[Y (0) | X = x, T = 0].

Assuming probabilistic treatment assignment, such that 0 < P (T = 1 | X = x) < 1 for all
x, and strong conditional ignorability2, such that treatment is conditionally independent
of potential outcomes ({Y (0), Y (1)} ⊥ T | X), the “conditioned-on-observables” estimator
τ obs(x) is in fact equal to the target estimand τ(x).3 However, when treatment assign-
ment is not conditionally independent of potential outcomes given observed covariates, the
conditioned-on-observables approximation to the CATE can suffer from omitted variables
bias.

To address this potential confounding, we follow Kallus et al. (2018), in spirit, and
consider a special case where we can generate unconfounded estimates of τ(x), but only for
x within a subset U (an unconfounded subset) of the support X . While Kallus et al. consider
the case where a supplemental experimental dataset is available, but only on a restricted
region U ⊂ X , we instead consider the case where multiple fuzzy regression discontinuities4

– discontinuities in the treatment propensity P (T = 1 | X = x) – can be discovered, offering
the possibility of directly constructing U from D.

These regression discontinuities are typically analyzed under a Local Average Treatment
Effect (LATE) framework (Imbens and Angrist, 1994). Consider an RD design where treat-
ment propensity is a discontinuous function of Z (the running variable), with a discontinuity
at Z = z0 (the threshold).5 As a concrete example, Matsudaira (2008) studied the effect
of summer school attendance on subsequent achievement scores. In this example, students
whose test score (running variable) is less than a predefined cutoff z0 were encouraged to
attend summer school. This is a fuzzy RD design, as there is a probabilistic relationship
between test score (running variable) and summer school attendance (treatment), and it is
discontinuous at the cutoff z0.

Under the LATE framework, units are associated with a potential treatment function
T (z), which indicates each unit’s treatment status based on a given cutoff value z. That
is, T (z) = 1 if the unit would be treated had the threshold value been set to z, and
T (z) = 0 otherwise (Imbens and Lemieux, 2008). Considering the earlier example based
on Matsudaira (2008), a potential treatment function T (z) maps the cutoff test score z to
a student’s summer school attendance, i.e., T (z) = 1, and increasing the cutoff z means
that more students will be encouraged to attend the summer school program. Based on
the behavior of T (z), units are assigned a compliance type G. Under Assumptions 1-3
below, compliers are those units whose treatment status T (z) is sensitive to the value of the
threshold z, while always-takers and never-takers are characterized by constant potential

2. This assumption has many names in the literature such as no unmeasured confounders, unconfounded-
ness, selection on observables, exogeneity, or conditional independence.

3. Note that τ(x) can also be estimated using indirect approaches, including reweighting estimators such
as inverse propensity score weighting (Li et al., 2018).

4. We adopt the term “fuzzy regression discontinuity” from Trochim (1984).
5. Note that for simplicity of notation we assume a single running variable. In our approach, we allow for

the discovery of complex RDs involving multiple/joint running variables.
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treatment functions T (z) = 1 and T (z) = 0, respectively. For the example based on
Matsudaira (2008), compliers are those individuals who would attend the summer school
if their test score Z was lower than the cutoff z (i.e., if they were encouraged to attend
summer school) and would not attend summer school if their score Z was above the cutoff
z. Never-takers and always-takers are respectively those individuals who would never attend
and always attend summer school, irrespective of whether their test score Z was above or
below the cutoff z.

Given this framework, standard assumptions provide for identification and estimation
of the LATE,

τLATE(Z = z0) = E[Y (1)− Y (0) | Z = z0, G = Complier].

Several authors (Hahn et al., 2001; Imbens and Lemieux, 2008; Dong, 2018; Angrist and
Rokkanen, 2015) give sufficient conditions for identification and estimation of τLATE(Z =
z0). These standard assumptions include:

Assumption 1 (Existence of RD) The treatment propensity P (T = 1 | Z = z) is dis-
continuous at Z = z0. That is, limz↓z0 P (T = 1|Z = z) 6= limz↑z0 P (T = 1|Z = z).

Assumption 2 (Monotonicity) The potential treatment function T (z) is either non-
increasing in z for all units, or non-decreasing in z for all units.

Assumption 3 (Continuity) The conditional expectations E[Y (1) | Z = z,G = g] and
E[Y (0) | Z = z,G = g] and the conditional distributions P (G = g | Z = z) are continuous
in z at z = z0 for all compliance types G = g.

Assumption 1 is that an RD exists, that is, the probability of treatment is sharply
affected at the threshold Z = z0. Assumptions 1 and 2 together imply that there are, in
fact, compliers at the threshold Z = z0. Assumption 2 also means that all individuals
are affected the same way by the choice of the threshold z, if at all. Finally, Assumption
3 implies the threshold z0 only impacts the probability of treatment assignment, not the
potential outcomes or compliance type.

These standard assumptions allow for identification and estimation of

τLATE(Z = z0) =
limz↓z0 E[Y |Z = z]− limz↑z0 E[Y |Z = z]

limz↓z0 E[T |Z = z]− limz↑z0 E[T |Z = z]
.

However, the estimated effect is doubly local: it is both (i) local to the discontinuity Z = z0,
and (ii) local to the complier subpopulation. Since we aim to estimate the CATE across all
of X , our approach requires two modifications to this standard treatment of RD designs.

First, we aim to estimate the CATE τ(x) conditioning on all observed covariates, not just
the running variable Z. Thus, instead of estimating LATEs of the form τLATE(Z = z0),
averaging the treatment effect along the full extent of the discontinuity at Z = z0 (i.e.,
marginalizing over all X\Z = X \ {Z}), we estimate conditional local average treatment

effects (CLATEs), τCLATE(Z = z0, X\Z = x), following for example Becker et al. (2013),
and defined as

τCLATE(Z = z0, X\Z = x) = E[Y (1)− Y (0) | Z = z0, X\Z = x,G = Complier]

=
limz↓z0 E[Y |Z = z,X\Z = x]− limz↑z0 E[Y |Z = z,X\Z = x]

limz↓z0 E[T |Z = z,X\Z = x]− limz↑z0 E[T |Z = z,X\Z = x]
.
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Second, we require this local treatment effect to generalize to the full population at
(Z = z0, X\Z = x), such that the CLATE, τCLATE(Z = z0, X\Z = x), is equal to the
CATE, τ(Z = z0, X\Z = x). To this end, in addition to standard fuzzy RD assumptions,
we also apply the conditional constant effects (CCE) restriction (Angrist, 2004), also called
conditional effect ignorability (CEI) by Angrist and Fernández-Val (2013).

Assumption 4 (CCE/CEI) The treatment effect Y (1) − Y (0) is mean independent of
compliance type G given observed covariates X:

E[Y (1)− Y (0) | X,G] = E[Y (1)− Y (0) | X] = τ(X).

Note that since the compliance type G (complier, always-taker, or never-taker) dictates
the treatment assignment, Assumption 4 leads to E[Y (1) − Y (0)] ⊥ T | X. As noted in
Angrist and Fernández-Val (2013), Assumption 4 describes the case when heterogeneity in
treatment effects is solely a function of the observed covariates:

Y (1) = Y (0) + τ(x) + ν,

where E[ν | G,X] = E[ν | X] = 0. That is, the CCE/CEI assumption states that though
treatment effects may not be constant, they are the same for two units with the same
observed covariates X = x, regardless of their compliance type.

Under this assumption, we can extrapolate from the compliers to the full population at
the threshold:

τCLATE(Z = z0, X\Z = x) = τ(Z = z0, X\Z = x).

Note that this CCE/CEI assumption is not overly restrictive, as it still allows treatment
effects to vary heterogeneously as a function of x. Moreover, the CCE/CEI assumption
is similar to assumptions required for other novel machine learning methods for treatment
effect estimation, specifically the assumption of additive confounding required for both
DeepIV (Hartford et al., 2017), a deep method for instrumental variables regression, and
ModeIV (Hartford et al., 2021), a recent method for combining multiple IV estimates.6

Under this additional assumption on the underlying regression discontinuities, we can
use the observational dataset D to obtain unconfounded treatment effect estimates at points
along discontinuities, and thus construct a set U directly from D.

Finally, given a set of CATE estimates τ̂(x) at points falling on regression discontinuities,
there are two paths to extrapolating these estimates to the rest of X . First, there is
the option of directly extrapolating the CATE estimates. Alternatively, a bias correction
β(x) can be estimated for a conditioned-on-observables estimand τ obs(x), that is, β(x) =
τ(x)− τ obs(x). The estimate of the bias can be obtained using the difference

β̂(x) = τ̂(x)− τ̂ obs(x).

Then, this bias correction can be extrapolated across the full support X . We might expect
the former approach to be preferable when the CATE τ(x) is smoother than the bias

6. Note that CCE/CEI is a reasonable assumption in practice and is the basis of much of empirical work
(Angrist, 2004; Hartford et al., 2017). For instance, Hartford et al. (2017) argue that CCE/CEI assump-
tion is a weaker assumption than conditional ignorability, as we could still have {Y (1), Y (0)} 6⊥ T |X. In
this case, techniques based on conditional ignorability, such as matching and propensity score reweight-
ing, will produce biased estimates.
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correction β(x), and the latter approach to be preferable when the bias correction β(x)
is smoother than the CATE τ(x). The fact that there are two candidate approaches to
extrapolating from the embedded regression discontinuities to the ambient covariate space
X raises a natural model selection problem, which we address through model averaging.

3. Method

We introduce DEE (Discover-Estimate-Extrapolate), a method for estimating the CATE
τ(x) given observational data containing regression discontinuities satisfying the CCE/CEI
assumption along with the standard RD assumptions above. At a high level of abstraction,
DEE has three steps, which correspond to the three methodological questions of discovering
RDs, estimating CATE at the discovered RDs, and extrapolating these estimates to the
larger population:

1. Automated RD Discovery: We first apply LoRD3 (Herlands et al., 2018) to auto-
matically discover local discontinuities in the treatment propensity P (T = 1 | X = x).

2. CATE Estimation: Next, we estimate τCLATE along the discovered regression dis-
continuities, using the novel repair procedure described below. Under the CCE/CEI
assumption, these complier treatment effect estimates generalize to the full population,
and are only local in covariate space, and not local to the complier subpopulation.

3. Extrapolation: Finally, we apply Gaussian process regression to extrapolate7 the
RD CATE estimates to the full support X , integrating the multiple RD estimates
with a conditioned-on-observables estimator through model averaging.

We proceed to describe each of the three steps of DEE in greater detail.8

3.1 Automated RD Discovery

Given the observational dataset D, DEE first applies LoRD3 (Herlands et al., 2018) to auto-
matically discover local RDs. LoRD3 characterizes discontinuities as unexpected “jumps” in
the probability of treatment, which is assumed to be a smooth function except at the discon-
tinuities. It therefore models ti = f(xi)+εi, where f belongs to a class of functions that are
sufficiently expressive to represent the general smooth curvature of the treatment propen-
sity function without fully capturing any potential (non-smooth) discontinuities. Thus, in
the absence of a discontinuity, we expect the noise to have constant mean E[εi] = µ0, e.g.,
if f is unbiased, then µ0 = 0. However, local to a discontinuity, f will overestimate ti for
the xi on one side of the discontinuity (E[εi] > µ0), and underestimate those on the other
side (E[εi] < µ0). See Figure 1 for graphical intuition.

LoRD3 exploits the unique residual pattern created by a discontinuity to discover its
presence. More precisely, it first computes f̂ , a global estimate of f such that ti = f̂(xi)+ri.
Then for each data point (xi, ti, yi) ∈ D, it builds si,k, the local k-neighborhood around xi,

7. In our setting, we use Gaussian process regression as it is a standard and natural approach to model
correlated data, and we expect the CATE estimates to be spatially correlated. However, our method
can allow for any other approach for extrapolation.

8. Our code for DEE is available at https://github.com/ssomanch/DEE.
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Figure 1: Illustration of a one-dimensional RD design (dashed line) from Herlands et al.
(2018). Blue dots: treatment propensity for each xi. Orange curve: f̂(x).

and selects a bisecting hyperplane vi,k (from a set of k−1 options) that it determines is most
likely to reflect an underlying regression discontinuity in the neighborhood. Any potential
discontinuity will partition the neighborhood into two groups g1 and g2. Therefore, LoRD3

evaluates any candidate hyperplane with a log-likelihood ratio (LLR) test statistic, which
computes how much more likely is the evidence for E[rj ] = µ1,∀j ∈ g1, and E[rj ] =
µ2,∀j ∈ g2 (the alternative hypothesis that the candidate hyperplane creates a pattern of
residuals consistent with a discontinuity) than the evidence for E[rj ] = µ0, ∀j ∈ si,k (the
null hypothesis of no discontinuity).

The bisection that provides the most evidence against H0 in neighborhood si,k becomes
its most likely discontinuity vi,k with corresponding LLR test statistic LLRi,k. This pro-
duces Lfull = {(xi, vi,k, LLRi,k)},∀si,k, the full set of discontinuities discovered by LoRD3.
Randomization testing, density (“bunching”) testing (McCrary, 2008), and placebo testing
are then all carried out to filter out any neighborhood si,k whose corresponding potential
discontinuity vi,k is not statistically significant (adjusting for multiple hypothesis testing)
or shows evidence of violating the assumptions of an RD design. This process yields a set
of M valid discontinuities discovered by LoRD3, L = {(xj , vj , LLRj)}Mj=1, where M can
either be prespecified or determined based on the number of discontinuities which are valid
and significant at level α. Algorithm 2 in Appendix A provides a summary of the LoRD3

procedure; we refer readers to Herlands et al. (2018) for a more detailed exposition.

3.2 CATE estimation

Our primary goal is to extrapolate the CATE, τ(x), over X . We expect that our extrapola-
tion will improve if we can identify all of the discontinuities embedded in X and estimate τ(x)
over the full extent of each discontinuity. Therefore, given the set L = {(xj , vj , LLRj)}Mj=1

of validated local discontinuities from LoRD3, DEE proceeds to estimate the CATE along the
discovered discontinuities. We treat CATE estimation as a separate step in our inferential
procedure, though we could, in theory, combine RD discovery and CATE estimation into a
single step. For example, while scanning each data instance xi ∈ D during RD discovery,
we could estimate each τ(xi) using a local two-stage least squares (2SLS) estimator fit us-
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ing the k-nearest neighbors of xi, and then directly proceed to extrapolate the estimated
effects using the discovered local RDs in L. More specifically, a 2SLS estimate of τ(xi)
would use the data from the neighborhood, si, of xi. Each element j ∈ si is represented
by (xj , tj , yj , gj), where the binary indicator gj = 1{j∈g1} captures on which side of the
discontinuity (vi) data point xj lands. The first stage

Tj = νgj + f(xj) + ε
(T )
j (1)

instruments (the endogenous variable) Tj with (the exogenous variable) gj , providing

T̂j = ν̂gj + f̂(xj), (2)

the predicted value of Tj . Intuitively, T̂j is not confounded by unobservables because it
only uses variation from the exogenous gj , while controlling for the observed features xj ;
all other sources of variation in Tj are contained in the estimate of the residuals, which are
excluded from (2). The second stage is then an estimate of

yj = τ T̂j + λxj + ε
(y)
j . (3)

Intuitively, instead of using all the variation contained in Tj to compute τ̂ , the 2SLS pro-
cedure first obtains (from (2)) and then uses (in (3)) only the exogenous variation, as
estimated by T̂j .

While the neighborhood-based 2SLS procedure allows for the local estimation of τ(xi),
this approach faces significant drawbacks. That is, L likely includes a number of very sim-
ilar local discontinuities9 (see for example the left panels of Figures 2 and 14). Since the
k-nearest neighbors for two similar discontinuities xi ≈ xj will overlap substantially, the
sampling errors in the local 2SLS estimates τ̂(xi), τ̂(xj) computed using each instance’s
neighbors will be highly correlated. Using Gaussian process regression to extrapolate di-
rectly from such estimates risks learning local correlation in the sampling error (due to
overlapping k-NN balls), instead of learning the desired correlation structure in τ(x). At-
tempting to address this issue by applying a LLR threshold to select fewer local RDs from L
is insufficient, as this approach still allows selected discontinuities to have substantially over-
lapping neighborhoods, while also leaving large regions of the true discontinuity uncovered
(see for example the center panels of Figures 2 and 14).

As such, instead of using the local RDs in L directly, DEE applies a novel repair procedure
that reduces the original set L of M local discontinuities to a set U of M ′ ≤ M local
discontinuities. While constructing U , the repair procedure assigns each local discontinuity
in U a disjoint index set containing those data instances (xi, ti, yi) ∈ D that will be used for
CATE estimation10. Finally, DEE applies the local 2SLS estimator to estimate the CATE
at each of the local discontinuities in U . We proceed to detail each of these substeps.

9. Two local discontinuities (xi, vi, LLRi) and (xj , vj , LLRj) are similar if ‖xi−xj‖ ≈ 0 (the discontinuities’
centers are near to each other) and |vTi vj | ≈ 1 (their normal vectors define similar hyperplanes).

10. One can equivalently understand each index set as defining a non-rectangular (but convex) uniform
kernel, which we use for a subsequent local 2SLS estimation step.

9
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3.2.1 Repairing L and Constructing Index Sets

Instead of directly computing the CATE at each local discontinuity included in L, DEE

first applies the novel “Voronoi ∩ KNN” repair procedure presented in Algorithm 1. This
repair procedure greedily selects a subset of local discontinuities from L, selecting the most
likely discontinuities in L (i.e., those with the highest log-likelihood ratios) while ensuring
that the selected discontinuities approximately cover the discovered discontinuities in L.
Note that the Voronoi ∩ KNN approach was chosen to satisfy two desired criteria for our
repair procedure. First, the KNN procedure ensures we use only the data points near the
discontinuity to estimate CATE. Second, the Voronoi procedure minimizes the possibility
of choosing very similar discontinuities that could hinder learning the desired correlation
structure of τ(x), as explained above. Therefore, a combination of KNN and Voronoi
procedure helps us utilize only the points close to the discontinuity for estimating the
treatment effect while simultaneously ensuring that these points are distinct (i.e., forming
non-overlapping k-NN balls).

In addition to selecting a subset of the discontinuities in L, this procedure also assigns
each selected discontinuity an index set containing those instances from D that are used
for CATE estimation. The index set for discontinuity (x, v, LLR) contains those points
in D which fall in the intersection V K[x] = V [x] ∩ K[x] of x’s Voronoi cell, V [x] (i.e.,
those instances in D that are closer to x than any other discontinuity), and its k-NN
ball, K[x] (i.e., the k-nearest neighbors of x in D). Using V K[x] as the index set for
discontinuity (x, v, LLR) ensures that the CATE is estimated using points that are local
to the discontinuity, and that all of the index sets are disjoint (see, for example, the right
panels of Figures 2 and 14). In Appendix D.3, we demonstrate the advantages of using the
combined V K[x] in Algorithm 1 as compared to KNN-only and Voronoi-only procedures.
Note that while K[x] is static, and can be precomputed for each x, V [x] is dynamically
updated during the execution of Algorithm 1 as additional discontinuities are added to U .

3.2.2 Estimating the CATE at Each Discontinuity in U

Algorithm 1 yields a set U of local discontinuities that approximately cover the original set of
discovered discontinuities, and assigns each discontinuity x ∈ U a disjoint index set V K[x].
To estimate the CATE at x ∈ U , DEE applies the local 2SLS estimator described in (1)-(3),
computing the 2SLS estimate using just those instances in the Voronoi ∩ KNN index set of
x. All instances in V K[x] are within x’s k-NN ball, so following Becker et al. (2013), eqn. 10,
this yields a non-parametric estimate of τCLATE(Z,X\Z).11 However, under the CCE/CEI

assumption, these CLATE estimates generalize, with τCLATE(Z,X\Z) = τCATE(Z,X\Z).

As such, this procedure yields a set of CATE estimates U = {(xk, τ̂(xk), σ̂(xk)}M
′

k=1, where
σ̂(xk) is the standard error of the CATE estimate τ̂CATE(xk).

3.3 Nonparametric Extrapolation from U to X

Given the set of discovered, repaired discontinuities and their associated CATE estimates
U = {(xk, τ̂(xk), σ̂(xk)}M

′
k=1, the final step of DEE is to extrapolate from U to the rest of X .

11. Again, this is in contrast to the typical treatment of RD designs, in which an unconditional local average
effect is estimated at Z = z0 via local regression with a kernel that is functionally independent of X\Z .
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Algorithm 1: Voronoi ∩ KNN repair procedure used by DEE. Greedily selects
discontinuities from the original set L, and assigns each discontinuity an index set.

Input: L
Parameter: k – Number of nearest neighbors for KNN.
Parameter: t – Minimum number of neighbors on each side of the discontinuity.
Output: U

U ← {}
Compute K[x] for each (x, v, LLR) in L.
while |L| > 0 do

Remove the discontinuity (x, v, LLR) with maximum LLR from L.
U ′ ← U ∪ {(x, v, LLR)}
For each x ∈ U ′, update V [x] by computing the Voronoi partition of D into U ′,
and update V K[x] = V [x] ∩K[x].

if for all (x, v, LLR) ∈ U ′, V K[x] includes at least t instances on each side of
its separating hyperplane then
U ← U ′ # Include (x, v, LLR) with maximum LLR in the returned set U

for (x, v, LLR) ∈ U do
Center x on the local discontinuity by (i) projecting V K[x] onto the separating
hyperplane defined by v, then (ii) updating x to the mean of these projections.

As previously mentioned, there are two natural approaches to extrapolation. We describe
each of these approaches in turn, then several candidate strategies for model averaging.

3.3.1 Direct Extrapolation of τ̂

The first approach we consider is direct extrapolation of the treatment effect estimates. For
this direct extrapolation, we model the estimated CATE τ̂(xk) as a Gaussian process (GP)
with noise variance σ̂(xk)

2:

τ̂(xk) = τ̃(xk) + εk,

εk ∼ N (0, σ̂(xk)
2),

τ̃(xk) ∼ GP (µτ , kΘτ ).

We let the GP prior mean µτ be a free parameter, along with the kernel parameters Θτ , and
fit the GP using marginal likelihood maximization on the dataset U , with target y = τ̂(xk).
To extrapolate the CATE to x∗ ∈ X , we simply compute the posterior distribution of τ̃(x∗),
conditioning on the estimates in U .

3.3.2 Extrapolating a Bias Correction

As an alternative to directly extrapolating the treatment effect, we can instead use the
CATE estimates in U to debias a conditioned-on-observables estimate. There are four steps
in this approach:

1. Fit a conditioned-on-observables estimator to D to obtain τ̂ obs(x).

11
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2. Estimate a bias correction for each point in U as

β̂(xk) = τ̂CATE(xk)− τ̂ obs(xk).

3. Model this bias correction using a GP:

β̂(xk) = β̃(xk) + γk,

γk ∼ N (0, σ̂(xk)
2),

β̃(xk) ∼ GP (µβ, kΘβ ).

Again, we let the GP prior mean µβ be a free parameter, along with the kernel
parameters Θβ, and fit the GP using marginal likelihood maximization on the set U ,

with target y = β̂(xk).

4. To extrapolate the CATE to x∗ ∈ X , (i) compute the posterior distribution of β̃(x∗),
conditioning on U , then (ii) add τ̂ obs(x∗) to the posterior mean to recover the final
CATE estimate.

The conditioned-on-observables estimate τ̂ obs(x) can be obtained using a variety of
estimators, including direct estimation of the treatment and control regression functions
E[Y (1) | T = 1, X = x] and E[Y (0) | T = 0, X = x]. Alternatively, tree-based methods
can be used, including causal trees (Athey and Imbens, 2016) or causal forests (Wager and
Athey, 2018). These methods achieve “honest” estimation through sample splitting, using
separate data partitions for tree learning and for effect estimation to ensure that the trees
provide unbiased estimates of treatment effects in their leaves. Since causal forests represent
the state-of-the-art for CATE estimation when potential outcomes are, in fact, conditionally
independent of treatment, we use causal forests to estimate τ obs(x) in our experiments –
though we stress that in our context the causal forest estimates will still be confounded.

As there are two competing approaches to nonparametric extrapolation, we face a model
selection and evaluation problem. To address this problem, we consider several potential
model averaging strategies, and introduce BLOOCV as a novel measure of predictive fit
when nonparametrically extrapolating from points on manifolds into an ambient space.

3.3.3 Model Selection and Averaging

Let Mτ denote the direct CATE extrapolation model, and Mβ denote the bias correction
model. Instead of choosing one of these models a priori, we can adaptively blend these
models via model averaging. The weight on model Mi in the average can be expressed as:

w(Mi | y) =
m(y | Mi)p(Mi)∑

i∈{τ,β}m(y | Mi)p(Mi)
, (MA)

where m(y | Mi) denotes the likelihood and p(Mi) denotes the model prior. In practice,
we use a uniform prior over the two candidate models.

When we let m(y | Mi, X) be the marginal likelihood, Equation MA just describes
Bayesian model averaging. However, following Eklund and Karlsson (2007), we can also
let m(y | Mi, X) be a predictive likelihood. For example, instead of using the marginal
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likelihood, we can use the leave-one-out cross-validation (LOOCV) predictive likelihood.
Specifically, let y denote the target of the Gaussian Process (subsuming both y = τ̂(x)
and y = β̂(x)), and let µi and σi denote the leave-one-out posterior predictive mean and
variance for the ith training instance. Then the LOOCV log predictive likelihood is given
by equations 5.10 and 5.11 in Rasmussen and Williams (2005) as

llLOOCV (y) = −1

2

N∑
i=1

[(
yi − µi
σi

)2
]
−

N∑
i=1

[
log(σi

√
2π)
]

︸ ︷︷ ︸
PPV

, (LOOCV)

where PPV is the posterior predictive variance. While the LOOCV likelihood is a commonly
used measure of predictive fit, it is not appropriate in our context, since points in U are not
drawn from the underlying marginal distribution P (X) over X . Instead, points in U fall
on discovered RDs embedded in X . As such, the LOOCV likelihood does not meaningfully
estimate predictive fit over the underlying marginal distribution P (X).

Furthermore, asymptotically the LOOCV likelihood will fail to concentrate weight on
the desired model. Consider the LOOCV log-likelihood llLOOCV for our two candidate
models Mτ and Mβ. We expect llLOOCV (y) to be larger for the model with smaller
posterior predictive variances, due to the contribution of the PPV term. That is, if one of
our models yields substantially more precise posterior predictions than the other, we expect
that the llLOOCV will be larger for the more precise model, allowing us to concentrate weight
on that model. Unfortunately, in our context, differences in the leave-one-out posterior
predictive variances across our two models vanish asymptotically, as shown in Theorem 1
below. Specifically, under the conditions of Lederer et al. (2019), Corollary 3.2, the LOOCV
posterior predictive variances at xk of each of our two models will converge to the shared
noise variance σ̂(xk)

2. As such, in the limit of |U| → ∞, LOOCV will fail (in expectation) to
differentiate between our two candidate models. To address this issue, we introduce Buffered
Leave-One-Out Cross Validation (BLOOCV) as an alternate measure of predictive fit when
extrapolating from points on a manifold into an ambient space.

3.3.4 BLOOCV: An Alternate Measure of Predictive Fit

The key difference between LOOCV and BLOOCV is in which data instances are excluded
when computing the posterior predictive distributions. In computing the posterior predic-
tive distribution for the kth data instance, LOOCV only excludes that specific data instance,
while BLOOCV excludes all instances that fall within a buffer distance b of xk. To highlight
this dependence on b, we denote the BLOOCV log-likelihood for the kth data instance by
llBLOOCV (yk; b).

Applying BLOOCV requires specifying a method for choosing the buffer radius b. Given
that our aim is to approximate generalization performance over P (X), we choose b based on
the distance between points sampled from P (X) and points in U . Specifically, fixing U , we
let D̂ denote the distribution of distances induced by sampling x ∼ P (X) and computing
minxk∈U ‖x− xk‖. Then, for the kth instance in U , we take as our measure of predictive fit
the average BLOOCV log-likelihood Eb∼D̂[llBLOOCV (yk; b)], averaging over buffer distances

b drawn from this derived distribution D̂. Finally, to measure the BLOOCV log-likelihood
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over the full set U , we simply take the sum of each of the M ′ average log-likelihoods∑
k=1,··· ,M ′=|U|

Eb∼D̂[llBLOOCV (yk; b)]. (BLOOCV)

We consider two variants of BLOOCV, corresponding to two strategies for estimating
Eb∼D̂[llBLOOCV (yk; b)] for the kth instance:

1. 1-MC: Our first estimation strategy has lower computational expense but higher vari-
ance. In this variant, for each instance k = 1, · · · ,M ′, we approximate Eb∼D̂[llBLOOCV (yk; b)]

using a single Monte Carlo sample of b from D̂. Specifically, for each k = 1, · · · ,M ′,
we:

(a) Sample b′ ∼ D̂ by (i) choosing x uniformly at random from P (X), then (ii)
letting b′ = minxj∈U ‖x− xj‖.

(b) Approximate Eb∼D̂[llBLOOCV (yk; b)] ≈ llBLOOCV (yk; b
′).

2. Weighted variant: The second approach trades off greater computational expense
for lower variance. In this variant, instead of a single Monte Carlo sample from D̂,
for each k we exactly compute the empirical expectation Eb∼D̂[llBLOOCV (yk; b)]. This
expectation can be computed as a weighted sum of O(|U|) buffered log-likelihoods as
follows:

(a) Compute the empirical CDF FD̂(d) = P (D̂ ≤ d).

(b) Let d0 ≤ d1 ≤ · · · ≤ dM ′−1 denote the ordered pairwise distances ‖xk − xj‖
between xk and xj ∈ U . For notational convenience let dM ′ =∞.

(c) Then the empirical expectation Eb∼D̂[llBLOOCV (yk; b)] can be computed exactly
as a weighted sum of |U| buffered log-likelihoods:

Eb∼D̂[llBLOOCV (yk; b)] =
M−1∑
j=0

P (dj ≤ D̂ < dj+1)llBLOOCV (yk; dj)

While Eb∼D̂[llBLOOCV (yk; b)] can thus be computed as a weighted sum of O(|U|)
buffered log-likelihoods, computing each log-likelihood requires O(|U|3) time. As such,
this approach naively takes O(|U|5) time (ignoring potential optimizations), and is
thus potentially impractical for large U .

4. Theoretical Results

Before demonstrating the performance of our DEE approach in simulation, we show that
BLOOCV addresses the asymptotic degeneracy of LOOCV. First, we describe the asymp-
totic degeneracy of the LOOCV likelihood. Then, we show in Theorem 1 that BLOOCV
does not suffer from the same degeneracy.

To start, consider two zero-mean GPs, GP1 and GP2, sharing common homoskedastic
noise variance σ2

n. Moreover, assume these GPs have isotropic Gaussian kernel functions
k1(q) = exp

(
−‖q‖2/(2b21)

)
and k2(q) = exp

(
−‖q‖2/(2b22)

)
, where the length scale b1 > b2.
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Finally, assume that training instances {xi}Ni=1 are sampled from an RD manifold. Then,
under the conditions of Lederer et al. (2019), Corollary 3.2, the LOOCV posterior predictive
variance at x∗ for each of our two models will converge to the shared noise variance σ2

n.
This is problematic, since it implies that in the asymptotic regime, LOOCV likelihood model
selection or averaging will fail to differentiate between GP1 and GP2. Fortunately, buffering
allows us to mitigate this degeneracy and to correctly differentiate between models even in
the asymptotic regime.

To show that buffering mitigates this asymptotic degeneracy, we consider a case simpli-
fied for analytic tractability. Our simplification is motivated by the following observation:
buffering guarantees that there are no training instances xi within the buffer radius ρ of the
held-out instance x∗. We can therefore simplify the problem while retaining this key prop-
erty by assuming all training instances x∗ are exactly at distance ρ from the test instance.
By further assuming the training instances are distributed symmetrically on the surface
of the radius ρ ball, we can analytically show that, under these simplifying assumptions,
increasing the buffer radius ρ addresses the asymptotic degeneracy of LOOCV.

Theorem 1 (Buffering increases the asymptotic PPV difference) Consider two GPs,
GP1 and GP2, sharing common homoskedastic noise variance σ2

n. Moreover, assume that
these GPs have isotropic Gaussian kernel functions k1(q) = exp

(
−‖q‖2/(2b21)

)
and k2(q) =

exp
(
−‖q‖2/(2b22)

)
, where the length scale b1 > b2. For analytic tractability, assume all

training points {xi}Ni=1 are at distance ρ from the test point x∗, the distance distribution
from each training point to all other training points is the same (assume pairwise distances
are drawn q ∼ Q), and E[q] < ρ

√
2. Then the difference in posterior predictive variances

σ2
1(x∗)− σ2

2(x∗) satisfies the following:

1. If ρ = 0, then limN→∞
(
σ2

2(x∗)− σ2
1(x∗)

)
= 0.

2. If ρ > 0, then limN→∞
(
σ2

2(x∗)− σ2
1(x∗)

)
> 0.

3. limN→∞
(
σ2

2(x∗)− σ2
1(x∗)

)
is bounded below by a function f(ρ), which increases from

f(0) = 0 at ρ = 0 through ρ = b1b2

√
2 log

(
b1
b2

)
(2−θ2)(b21−b22)

> 0 (see proof for definition of θ).

A proof of Theorem 1 is provided in Appendix B. The key result is implication 3,
which states that (under the given conditions) buffering increases the minimum guaranteed
difference in the asymptotic posterior predictive variances between GP1 and GP2. As such,
BLOOCV addresses the degeneracy of LOOCV, and thus provides a measure of predictive
fit that is appropriate when extrapolating from points on manifolds into an ambient space.

5. Related Work

There has been a growing literature using statistical learning methods to provide data-driven
approaches for estimating heterogeneous treatment effects. Some of this work adapts exist-
ing machine learning algorithms, including regularized regression (Imai and Ratkovic, 2013;
Tian et al., 2014; Weisberg and Pontes, 2015), regression trees (Su et al., 2009; Athey and
Imbens, 2016), random forests (Foster et al., 2011; Wager and Athey, 2018), boosting (Pow-
ers et al., 2018), neural networks (Shalit et al., 2017), Bayesian methods (Hill, 2011; Green
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and Kern, 2012; Alaa and van der Schaar, 2017), and other ensemble approaches (Grimmer
et al., 2017), to causal inference tasks. In addition, there has been a collection of meta-
learning methods that allow the use of a broad class of nonparametric estimators; see Curth
and van der Schaar (2021) for a unifying framework, taxonomy, and general theory for meta-
learning methods. At a high level, these methods detail which relationships to estimate and
how to combine them to obtain heterogeneous causal estimates with desirable properties:
e.g., double-robustness (Kennedy, 2020), quasi-oracle bounds for binary treatments (Nie
and Wager, 2020) or for structured treatments (Kaddour et al., 2021), or adaptation to
structural properties such as the sparsity or smoothness of the CATE (Künzel et al., 2019).

While the literature on treatment effect heterogeneity continues to grow, the vast ma-
jority of the work (including the papers referenced above) relies on the assumption of strong
conditional ignorability (or the even stronger assumption of a randomized, controlled exper-
iment), which assumes that treatment is conditionally independent of potential outcomes,
{Y (0), Y (1)} ⊥ T | X. This assumption is critical for their ability to conduct causal in-
ference, leading to biased treatment effect estimates when the assumption is violated (e.g.,
when there is non-random selection into treatment). In contrast, DEE aims to discover por-
tions of the data for which unbiased estimates can be obtained even when strong conditional
ignorability does not hold.

There is a small subset of methods that attempt to justify the conditional independence
of the treatment assignment T and the potential outcomes {Y (0), Y (1)}. As described
above, Kallus et al. (2018) assume that supplemental experimental data (restricted to a
subset of X ) is available, and can be used to unconfound T . Without access to an uncon-
founded sample, other methods attempt to learn a function to adjust the original covari-
ates, in order to make the treatment conditionally independent of the potential outcomes:
Gultchin et al. (2020) carry out an optimization approach to learn a covariate adjustment
function over a subset of variables, while Yao et al. (2018) use deep learning to produce
a new representation of the original covariate space X . However, Yao et al. (2018) also
make the assumption of strong conditional ignorability, while Gultchin et al. (2020) make
an alternative strong assumption that there exist an observed auxiliary variable W and a
subset of observed covariates X∗ ⊆ X for which, conditional on X∗, all paths from W to Y
are mediated by the treatment T .

Our DEE approach instead discovers RD designs in the data to obtain unbiased local
treatment effect estimates, and extrapolates from these to better estimate CATE across
the entire covariate space X , as shown by our experimental results below. RDs have been
characterized as requiring fewer assumptions than most causal inference techniques and are
arguably most similar to true gold-standard randomized experiments (Lee and Lemieux,
2010). Rather than requiring strong conditional ignorability for unbiased estimation, DEE
relies only on the weaker assumption of CCE/CEI, to generalize from the compliers at each
discovered RD to the full population.

6. Experimental Results

To evaluate the performance of our DEE method, we present results on two synthetic datasets,
then apply DEE to a recent problem from the economic development literature (Asher and
Novosad, 2020). Within each simulation, we compare our method’s performance varying the
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prior variances in τ(x) and in β(x). When τ(x) is less variable than β(x), we expect direct
extrapolation of τ̂ to outperform bias correction; conversely, when β(x) is less variable than
τ(x), we expect bias correction to outperform direct extrapolation. As such, in these cases,
we aim to show that model averaging concentrates weight on the model with less variance.
Finally, when these functions have similar variances, we anticipate that model averaging
will deliver gains over model selection.

In addition to evaluating performance across different τ(x) and β(x) variance regimes,
we also benchmark DEE against several alternatives. First, we compare our extrapolated esti-
mates to the input causal forest estimates. Second, by treating those instances in the neigh-
borhood of a discovered regression discontinuity as an unconfounded sample, we compare
our approach to Kallus et al.’s method of experimental grounding (Kallus et al., 2018).12

Third, we attempt to apply a method for exploiting multiple discontinuities along a com-
mon running variable (Cattaneo et al., 2020). This method requires observation of unit-level
threshold assignments – but such threshold assignments are clearly latent when the RDs are
themselves unknown a priori. We describe how we address this and other implementation
challenges in detail in Appendix C. Finally, to highlight the importance of our novel Voronoi
∩ KNN repair algorithm, we also compare our procedure to a variant of DEE that directly
extrapolates from L, instead of applying Algorithm 1 to obtain and extrapolate from U .

6.1 Simulation 1: Smooth τ and β

The data generating process for our first simulation is presented in Appendix D.1. In
this simulation, the data generating process includes two binary RD instruments13, Z1

and Z2, each associated with a separate complier subpopulation. Cases in the complier
subpopulation C1 are treated if and only if Z1 = 1, and cases in the complier subpopulation
C2 are treated if and only if Z2 = 1.

As noted in Appendix D.1, this data generating process can be shown to satisfy the
CCE/CEI assumption. Beyond simply noting that this assumption is satisfied, this simu-
lation also clarifies its key role in our procedure. In this simulation, our method discovers
and estimates conditional local average effects along the discontinuities associated with the
RD instruments Z1 and Z2. As such, U contains conditional local effect estimates

τ̂CLATE(Z = z0, X\Z = x) = E[Y (1)− Y (0) | Z = z0, X\Z = x, Complier]

for the two disjoint complier subpopulations G = C1 and G = C2. Since the conditional
constant effects assumption holds, it is irrelevant whether a CLATE was associated with
G = C1 or G = C2, since both are equivalent to the CATE τCATE . Thus it is valid to treat
these estimates as equivalent in the set U . If conditional constant effects did not hold, then
G would no longer be ignorable, and extrapolation from U would not yield valid estimates
for a single, well-defined complier population. Instead, the posterior mean estimates would
mix incomparable complier effects from the G = C1 and G = C2 subpopulations.

12. Viewing discovered RDs as local randomized experiments suggests the potential applicability of Kallus
et al.’s method of experimental grounding (Kallus et al., 2018). However, while sharp RD designs can
be treated as local randomized experiments (Lee and Lemieux, 2010), this approach is expected to fail
in fuzzy RD designs where treatment uptake is selective.

13. RD instruments act as traditional instrumental variables at the regression discontinuity. For more
information, see Angrist and Keueger (1991) and Imbens and Van Der Klaauw (1995).
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Figure 2: Illustrating the Discover and Estimate steps of DEE. For this example, X1 and
X2 are two covariates in a uniform [0, 1]2 grid. The left panel shows the M =
|L| = 400 local discontinuities initially selected using LoRD3, while the right panel
shows the subset of discontinuities (and their index sets) output by Algorithm 1.
As seen in the middle panel, applying a higher LLR threshold when constructing
L is an insufficient solution to the problems of neighborhood overlap and RD
coverage, since (i) the selected local RDs may still overlap, and (ii) the selected
local RDs may not cover the full extent of the true discontinuity.

In this simulation the treatment effect τ(x) and expected bias β(x) are both drawn
from Gaussian Processes with isotropic Gaussian kernels kΘτ and kΘβ , respectively. In this
simulation, we fix the output scale of these kernels to 5, such that kΘτ (0) = kΘβ (0) = 5,
and treat the length scale as the sole kernel parameter. As such, Θτ = {θτ}, and kΘτ is

kΘτ (xi, xj) = kΘτ (‖xi − xj‖) = 5 exp

(
−‖xi − xj‖

2

2θ2
τ

)
,

with kΘβ defined equivalently.
For each parameter configuration in the 2 × 2 parameter grid (θτ ∈ {0.2, 0.5}, θβ ∈

{0.2, 0.5}), we draw N = 20, 000 samples from this DGP and apply our DEE approach 14.
We use the following parameter settings for each step of DEE:

1. RD Discovery: LoRD3 was applied with k = 200 nearest neighbors, and a degree-
4 polynomial baseline treatment propensity model. We selected the M = |L| =
400 points with the highest LLR. For illustration, we show the 400 x’s in L for one
simulated run in the left panel of Figure 2.

2. CATE Estimation: The CATE was estimated using

• Voronoi ∩ KNN repair (Algorithm 1) with parameters k = 1000 and t = 30.
For illustration, we show the set U (and associated index sets) returned by Al-
gorithm 1 in the right panel of Figure 2.

14. We show the results with this specific combination of parameters for illustrative purposes. Our results
are robust to various other parameter combinations for θτ , θβ , k, and t.
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• Local linear 2SLS, with the following specification: letting Z denote the binary
RD instrument, and XRD denote the projection of X onto the RD normal vector,
the local linear 2SLS estimator has first stage and reduced form

T ∼ αT + βT,ZZ + βT,XRDXRD + β
(Z)
T,XRD

ZXRD, (First stage)

Y ∼ αY + βY,ZZ + βY,XRDXRD + β
(Z)
Y,XRD

ZXRD. (Reduced form)

3. Extrapolation: As an observational estimator, we fit a causal forest (Wager and
Athey, 2018). To extrapolate, we use Gaussian Processes fit via marginal likelihood
maximization using gpytorch (Gardner et al., 2018), with (i) constant mean parame-
ters, and (ii) isotropic Gaussian (RBF) kernels parameterized by an output scale and
length scale.

We then repeat this procedure for Nrep = 50 independent replications.
Figure 3 presents estimates of the generalization performance of various models over

P (X). Specifically, letting µ(x) denote the posterior mean of the final model, Figure 3
averages (τ(x) − µ(x))2 over a 100 × 100 mesh grid uniformly covering [0, 1]2. The panels
each present a different parameter setting (θτ , θβ), with θτ = θβ on the diagonal, and θτ 6= θβ
off the diagonal.

As an initial observation, we note that across all parameter settings, all RD methods
outperform direct use of the causal forest estimator. Moreover, we observe that our infer-
ential method yields substantially lower mean squared error in the CATE estimates than
the methods of Cattaneo et al. (2020) and Kallus et al. (2018). This is unsurprising, as
both of these methods require assumptions that do not hold in our context. Specifically,
Kallus et al. (2018) requires access to an unconfounded sample, and conditional ignorability
({Y (1), Y (0)} ⊥ T |X) is a much stronger assumption than the CCE/CEI assumption that
E[Y (1)−Y (0)] ⊥ T |X. As such, one might expect Kallus’s method to do badly in the pres-
ence of confounding, as we find in our simulation.15 Meanwhile, Cattaneo et al.’s treatment
effect estimator is biased if there are always-takers, as is the case in our simulation. More-
over, Cattaneo’s method requires each data instance to be assigned to one of two thresholds
` and h along a running variable, and such threshold assignments are not observed in our
observational dataset D. As such, we resort to imputing individual threshold assignments
as described in Appendix C, further reducing the accuracy of their method in our context.

Figure 3 also highlights the importance of Voronoi ∩ KNN repair (Algorithm 1) in
DEE. Instead of applying Algorithm 1 to repair the original set of discovered RDs L, we
could consider computing treatment effects at each discovered RD in L using the same
k = 200 neighborhoods that were used for RD discovery. However, GP extrapolation of these
estimates (Figure 3, red trace) achieves significantly worse performance than extrapolation
of estimates from the repaired set U (blue trace).

Next, comparing the MSEs for the bias modelMβ and CATE modelMτ where θτ 6= θβ
(off-diagonal), we confirm that the model M∗ with the longer length scale has lower MSE.
Moreover, in this θτ 6= θβ context, model averaging successfully concentrates weight on
M∗. However, all likelihoods (marginal likelihood, LOOCV likelihood, and both BLOOCV

15. Additionally, Kallus’s assumption of strong overlap between confounded and unconfounded datasets
requires us to split the data and thus lose some accuracy.
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Figure 3: Average MSEs evaluated over a uniform mesh grid, with N = 100×100 points, ap-
proximating performance over P (X) = Unif([0, 1]2). The x−axis gives the model
selection strategy. “Bias” and “CATE” refer to the strategies of always selecting
the bias correcting model Mβ, and the direct extrapolation model Mτ , respec-
tively. “MLL”, “LOO”, “1-MC”, and “BW” refer to model averaging strategies
where model weights are computed using the marginal likelihood, the LOOCV
likelihood, the 1-MC BLOOCV variant, and the weighted BLOOCV variant, re-
spectively. Benchmark MSEs are given in the inset table. The blue trace shows
MSEs for CATE estimates obtained from the full inferential procedure of DEE, in-
cluding the repair procedure in Algorithm 1 (which maps L → U). The red trace
shows the MSEs obtained when DEE does not apply Algorithm 1 and instead
directly applies Gaussian process regression to local 2SLS estimates, computed
using overlapping k-neighborhoods (k = 200), for each discovered local RD in L.
Note that we do not use weighted BLOOCV when using direct GP extrapolation
from L due to the O(|L|5) runtime.

likelihood variants) yield model averages with similar MSEs. To explain this result, Figure
4 shows the mean difference in log-likelihoods under the CATE model Mτ and bias model
Mβ in this off-diagonal regime. As expected from Theorem 1, the BLOOCV log-likelihood
differences are larger than the LOOCV log-likelihood difference, thus indicating a better
ability to distinguish these two models. However, as there are already significant differences
between the marginal log-likelihoods under Mτ and Mβ (and between the LOOCV log-
likelihoods as well), the relatively larger log-likelihood difference achieved using BLOOCV
does not translate into significant improvements in MSE.
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Figure 4: Difference between various log-likelihoods, under the CATE model Mτ and the
bias model Mβ, in the off-diagonal regime where θτ 6= θβ. “MLL”, “LOO”,
“1-MC”, and “BW” refer to model averaging strategies where model weights
are computed using the marginal likelihood, the LOOCV likelihood, the 1-MC
BLOOCV variant, and the weighted BLOOCV variant, respectively. The sign of
the difference determines which model is preferred by each approach.

We specifically investigate this further in Appendix D.2, where we increased the number
of training samples, thus increasing |U|. We show that both BLOOCV variants are able to
identify the significant difference between log-likelihoods under Mτ and Mβ, whereas this
difference for both marginal and LOOCV log-likelihoods is close to 0, as predicted by our
theoretical results for the large-sample case. This resulted a better MSE for BLOOCV as
compared to MLL and LOOCV.

Finally, while Figure 4 considers the off-diagonal regime where θτ 6= θβ, Figure 5 con-
siders the regime where θτ = θβ, and shows that model averaging yields gains over model
selection.

6.2 Simulation 2: Normal, Latent Index Model

Simulation 1 illustrates the performance of our DEE method when Mτ and Mβ are both
correctly specified. In contrast, our second simulation illustrates the performance of DEE in
the context of a standard econometric model – the normal latent index model (Heckman
et al., 2001). Under this model, the bias function β(x) is discontinuous at the regression
discontinuities. As such, our model is misspecified, with the smooth GP modelMβ offering,
at best, a biased approximation of β(x).
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Figure 5: Relative mean squared error versus the Mβ weight computed using marginal
likelihood weighting (i.e., Bayesian model averaging) in the θτ = θβ regime. The
y-axis gives the MSE ratio for the marginal likelihood weighted model average
versus the individual model (Mτ orMβ) with the maximum marginal likelihood.
In general, model averaging reduces MSE (i.e., the local linear regression estimate,
in blue, is smaller than 1, shown as a dashed grey reference line).

The data generating process for this simulation is presented in Appendix E.1. There
are two key elements to this normal, latent index model. First, there are two16 unobserved
confounders, UT and UY , drawn from a Gaussian distribution on R2. UY is a confounding
term in the structural equations for Y (1) and Y (0), and UT passes through latent indices
to determine potential treatments T (0), T (1), and T (2). If UT and UY are correlated, they
correlate the treatment and potential outcomes, and bias the naive approximation τ obs(x).
Moreover, by applying standard results for bivariate normals, this bias can be shown to be
a multiple of the covariance between UY and UT (Heckman et al., 2001). Thus, by treating
this covariance as a function of x, we can specify the expected bias in τ obs up to a factor
that is a piecewise constant function in x.

We apply a similar simulation procedure for this second DGP. For each parameter
configuration in the 2 × 2 parameter grid (θτ ∈ {0.2, 0.5}, θCov ∈ {0.2, 0.5}), we sample a
training set D with |D| = N = 20, 000 instances, and then apply DEE. In this simulation,
we apply Algorithm 1 with parameters k = 400 and t = 30, and estimate the RD treatment
effect using a simple difference-in-means 2SLS estimator, with first stage T ∼ αT +βTZ and
reduced form Y ∼ αY + βY Z. Again, we repeat this procedure for Nrep = 50 independent
replications. Results from these simulations are presented in Appendix E.2, Figures 14-
17, and are broadly consistent with our first set of simulations. Again, we observe that
exploiting the discovered RD offers improved performance relative to direct use of the causal

16. Readers may be more familiar with the general formulation of a normal latent index model, where there
are separate latent variables U1 and U0 for Y (1) and Y (0), respectively. To satisfy the conditional
constant effects assumption, we restrict the general normal latent index model to U1 = U0 = UY .
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forest, that DEE improved on the various benchmarks, that our novel repair procedure
improved the performance of DEE, and that model averaging both identified the desired
model in the off-diagonal regime and yielded gains in the on-diagonal regime.

6.3 Application: Rural Roads and Economic Development

Having shown that our method outperforms benchmarks on synthetic datasets, we next
apply our method to a causal inference problem from the recent economic development
literature. In their paper, Asher and Novosad (2020) use a fuzzy RD design to estimate
the village-level causal effect of the Pradhan Mantri Gram Sadak Yojana (PMGSY), or the
Prime Minister’s Village Road Program. This program aimed to connect unconnected rural
Indian villages to existing road networks.

Asher and Novosad (2020) use a fuzzy RD design to evaluate this program, exploiting the
fact that the program prioritized villages for road building based on their 2001 population.
Specifically, it aimed to connect all villages with populations greater than 1,000 by 2003,
and all villages with populations greater than 500 by 2007. These population thresholds
create discontinuities in the treatment propensity, with villages just above these thresholds
being 22 percentage points more likely to be treated than villages just below the threshold.

This problem provides an ideal context to demonstrate our method for two reasons.
First, in addition to the two known population discontinuities, it is plausible there are
also spatial discontinuities in treatment – whether across geographic boundaries or due to
the spatial configuration of the existing road network. Second, inspecting Figure 6, there
appears to be overlap in the spatial distribution of treated and untreated villages – allowing
for estimation of τ obs(xgeo) where xgeo = (Long., Lat.). Given these two factors, we proceed
by applying our method to estimate the spatial CATE τ(xgeo) = E[Y (1)−Y (0) | X = xgeo].

6.3.1 Rural Roads: Dataset

We use a subset of rural villages from the full replication dataset of Asher and Novosad
(2020) provided on OpenICPSR.17 Specifically, we follow Asher and Novosad (2020) in
restricting our sample to villages that (i) did not have a paved road in 2001, (ii) were not
missing any covariates or outcomes (i.e., were matched across all datasets), and (iii) were
in one of six states: Chhattisgarh, Gujarat, Madhya Pradesh, Maharashtra, Orissa, and
Rajasthan. While Asher and Novosad restrict their analytic sample to just those villages
within the optimal bandwidth of the relevant population threshold, we include all 35,273
villages with populations between 300 and 1,300 that satisfied these initial criteria, to show
that DEE can discover and extrapolate from discontinuities without the benefit of this prior
knowledge. The left panel of Figure 6 shows the 35,273 villages in our sample, with treated
villages in blue and untreated villages in red.

6.3.2 Rural Roads: Method

We applied our method to estimate τ(xgeo) = E[Y (1) − Y (0) | X = xgeo], for each of the
five main outcomes in Asher and Novosad (2020), as follows:

17. We are grateful to Asher and Novosad for posting full replication data and code on ICPSR.
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Figure 6: Left panel: 35,273 villages included in our analytic sample, colored by treatment
status. Blue villages were treated (i.e., received a new all-weather road), while
red villages were untreated. Right panel: Villages selected into L, colored by RD
type. Blue points correspond to the center of a detected local spatial RD, while
orange points correspond to the center of a detected local population RD. Figure
7 describes the method used to categorize discovered RDs.

1. RD Discovery: First, we detect regression discontinuities in

(Longitude, Latitude, Population) ∈ R3

by applying LoRD3 with k = 200 nearest neighbors, and a degree-4 polynomial base-
line treatment propensity model. We select the M = 2,784 discovered discontinuities
that are significant at α = 0.05 using randomization testing (Herlands et al., 2018)
into L, then drop discontinuities from L that fail the covariate balance test described
in Appendix F.2.

As shown in Figures 7 and 8, the resulting set L includes both population and spatial
RDs. Since our goal is to estimate the spatial CATE τ(xgeo), we proceed under an
additional assumption:
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Figure 7: Discovered regression discontinuities are categorized as spatial or population RDs
based on the absolute cosine similarity between the RD’s normal vector vj and the
population standard basis vector epop. Discontinuities with | cos(vj , epop)| > 0.75
are categorized as population discontinuities, and those with | cos(vj , epop)| ≤ 0.75
are categorized as spatial discontinuities.

Assumption 5 Treatment effects are conditionally mean independent of population
size,

E[Y (1)− Y (0) | Xgeo = xgeo, Population] = E[Y (1)− Y (0) | Xgeo = xgeo].

Under this assumption, treatment effects estimated at local population discontinuities
of 500 or 1,000 generalize to other villages with similar population sizes. (Note that
our extrapolations may not be appropriate for megacities with significantly larger
population sizes.)

2. CATE Estimation: We apply Voronoi ∩ KNN repair (Algorithm 1) with parameters
k = 400 and t = 40 to obtain set U of disjoint, local discontinuities. Once again we
drop discontinuities from U that fail the covariate balance test described in Appendix
F.2. Then, having filtered U down to only validated RDs, we estimate RD treatment
effects using a simple difference-in-means 2SLS estimator, with first stage T ∼ αT +
βTZ and reduced form Y ∼ αY + βY Z.

3. Extrapolation: Again we fit a causal forest (Wager and Athey, 2018) as our ob-
servational estimator τ̂ obs(xgeo). To extrapolate, we use Gaussian Processes fit via
marginal likelihood maximization using gpytorch (Gardner et al., 2018), with (i) con-
stant mean parameters, and (ii) isotropic Gaussian (RBF) kernels parameterized by
an output scale and length scale. We compute our final model average using the
weighted BLOOCV approach, described in Section 3.3.4.
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Figure 8: LoRD3 log-likelihood ratios LLR for each village, by village population. Discon-
tinuities that are categorized as population RDs (as described in Figure 7) are
shown in red, while spatial RDs are shown in blue. The M = 2,784 RDs selected
into L are those RDs that are significant at α = 0.05 using randomization testing
and fall above the red dashed reference line.

6.3.3 Rural Roads: Results

We evaluate our method’s performance on this applied task three ways. First, we evaluate
our method’s ability to identify known and unknown regression discontinuities. Second,
we compare our method’s average treatment effect estimates to those obtained using Asher
and Novosad’s 2SLS specification (Asher and Novosad, 2020). Finally, we comment on the
spatial treatment effect heterogeneity detected by our method.

First, we find that DEE successfully identifies both known and unknown discontinuities.
As shown in Figures 7 and 8, we identify the two known discontinuities in village population
at 500 and 1,000. Using Figure 7, we categorize discovered RDs as spatial or population
RDs based on the absolute cosine similarity18 between the RD’s normal vector vj and the
population standard basis vector epop. In addition, as seen in the right panel of Figure 6,
we identify several coherent spatial discontinuities. Table 1 provides additional information
about discovered RDs, and describes the index sets associated with each validated RD in
U . As seen in Table 1, applying Algorithm 1 with k = 400 and t = 40 yields index sets
containing between 81 and 351 villages (mean = 148). Discovered population RDs also have
an average effective population bandwidth of 95, similar to the bandwidth of 84 used by
Asher and Novosad (2020).

Second, we find that DEE yields average treatment effect estimates consistent with those
reported in Asher and Novosad (2020). Figure 9 presents 2SLS RD estimates based on Asher
and Novosad’s original 2SLS specification alongside two effect estimates obtained using DEE:

18. The threshold of 0.75 for the cosine similarity was chosen in Figure 7 to clearly distinguish population
discontinuities from spatial discontinuities in our visualizations and results. Modifying this parameter
between 0.5 and 0.75 has no real impact on our results.
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Population and Spatial RDs Population RDs
All Spatial Population All

# RDs

L 2784 2136 648 –
Validated L 1613 979 634 –
U 94 75 19 32
Validated U 62 45 17 30

V K[x]

Long BW 1.26 1.31 1.12 1.2
Lat BW 0.73 0.77 0.61 0.65
Pop BW 75.69 69.59 91.85 95
Mean N (min,max) 148 (81-351) 150 (81-351) 141 (96-315) 174 (83-400)

Table 1: Top panel (# RDs): Number of local RDs, by RD type, in each of four sets: all
discovered RDs L, covariate balance test validated RDs in L, filtered RDs U , and
filtered and covariate balance test validated RDs in U . Bottom panel (V K[x]):
Descriptive statistics for Voronoi ∩ KNN sets associated with discovered, validated
RDs x ∈ U . Rows 1-3 provide the mean effective bandwidth (BW), where a given
V K[x]’s dimension-specific effective bandwidth is defined as half the max−min
difference. Row 4 provides the mean number of villages, and (min, max) range,
included in each V K[x].

Figure 9: Average treatment effects across the five main outcomes in Asher and Novosad
(2020). Asher and Novosad’s RD estimates are interpreted as LATEs, while GP
debiasing estimates are interpreted as CATEs under assumptions. Note that the
reported Asher and Novosad RD estimates are not identical to those in Asher
and Novosad (2020), since we refit their 2SLS estimator using a uniform kernel.

(i) using just the discovered population RDs, and (ii) using both discovered spatial RDs
and discovered population RDs. Within each of the five indexed outcomes, the confidence
intervals for DEE overlap with the confidence interval for the 2SLS estimates, indicating that
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these estimates are similar – though DEE’s confidence intervals are more precise. As in Asher
and Novosad (2020), we observe significant (at α = 0.05), positive average treatment effects
for the impact of rural roads on the availability of transportation services. We also observe
significant (at α = 0.05), negative average effects on the consumption index.

Finally, Appendix F.1 presents maps displaying spatially heterogeneous treatment effect
estimates τ̂(xgeo) across all five outcomes. We find relatively little spatial heterogeneity in
the effect of road building on transportation availability using just population RDs (see the
left panel of Figure 18). However, we find some heterogeneity in treatment effects using
spatial and population RDs, especially in the tri-state regions south of Madhya Pradesh (see
the right panel of Figure 18). Furthermore, across the remaining outcomes (Figures 19-22),
we find potentially greater evidence of spatial heterogeneity – especially when extrapolating
from discovered spatial RDs. In particular, it appears that the impacts of rural roads on
agricultural yields, consumption, and employment growth in the semi-arid western region
may lag behind the possible benefits observed in other regions of India. Further studies
are needed to verify these results and to examine potential factors that could explain these
regional differences.

7. Discussion

As demonstrated in Section 6, our DEE method improves on a conditioned-on-observables
estimate and allows for more accurate extrapolation off of the discovered discontinuities.
Moreover, applying DEE to a recent economic development dataset (Asher and Novosad,
2020) demonstrates its ability to detect local regression discontinuities, and to extrapolate
heterogeneous effect estimates from these discovered RDs.

Nevertheless, there are several limitations to the method. First, the effective use of
DEE requires the presence of a sufficiently large number of RDs in the data to accurately
extrapolate CATE estimates, and these estimates will be less precise in regions of the at-
tribute space that are further from the discovered discontinuities. It is not guaranteed that
a given dataset will have any RDs to discover. Nevertheless, we believe that large real-world
datasets (such as the Rural Roads dataset examined here) are likely to contain numerous
RDs because of the many phenomena (such as geographic boundaries, laws, clinical guide-
lines, etc.) which can result in discontinuous changes in treatment probability. Second,
the RDs must be successfully identified before we can use them for estimation and extrap-
olation, and this may be more difficult for complex, high-dimensional datasets. In their
prior work on LoRD3, Herlands et al. (2018) examine the effects of dimensionality, and con-
clude that performance of LoRD3 “is robust to large numbers of covariates but reduced over
larger spaces of forcing variables”. We note, however, that the estimation and extrapolation
steps of DEE could generalize to any set of identified RDs, whether discovered (by LoRD3

or another procedure) or manually specified, and thus prior domain knowledge could be
applied to improve RD discovery in such cases. Third, the ability to obtain unbiased CATE
estimates from the discovered RDs depends on the validity of several assumptions noted
above. Our Assumptions 1-3 are standard in the RD literature, and necessary for any valid
inferences using RDs. While the CCE/CEI assumption is reasonable, common, and weaker
than the assumption of strong conditional ignorability that is made in “selection on observ-
ables” analyses, it is also untestable, and thus our CATE estimates must still be viewed
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with the important caveat, “if CCE/CEI holds”. Other potential threats to the validity of
the RD estimates, such as discontinuities in covariates or manipulation of treatment at the
RD threshold, are testable (and tested) as part of the LoRD3 discovery procedure.

Given these considerations, there are two potential variations to the method which could
be considered. First, there is the potential for data-driven discovery of local RDs to intro-
duce bias into treatment effect estimates τ̂(x) for x ∈ U . Using independent samples to
discover RDs and to estimate treatment effects (i.e., data splitting) would ameliorate this
concern, with the possible tradeoff of increasing variance due to the reduced sample size.
Second, our method requires setting a number of hyperparameters, including the param-
eters t and k in Algorithm 1, and choosing GP kernel functions. While our experimental
results suggest that the performance of DEE is relatively robust to the choice of hyperpa-
rameters, our current approach to choosing hyperparameters is rather arbitrary. Again,
BLOOCV or marginal likelihood could be used to guide parameter tuning. Leaving aside
these potential variations for future work, we have demonstrated that our method improves
on a conditioned-on-observables estimate and allows for effective extrapolation off of the
discovered discontinuities.

Acknowledgments

The authors wish to thank William Herlands for discussing the application of the LORD3

procedure (Herlands et al., 2018) and sharing his code for LORD3.

References

Ahmed M. Alaa and Mihaela van der Schaar. Bayesian inference of individual-
ized treatment effects using multi-task gaussian processes. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, ed-
itors, Advances in Neural Information Processing Systems, volume 30. Curran As-
sociates, Inc., 2017. URL https://proceedings.neurips.cc/paper/2017/file/

6a508a60aa3bf9510ea6acb021c94b48-Paper.pdf.

Joshua D. Angrist. Treatment effect heterogeneity in theory and practice. The Economic
Journal, 114(494):C52–C83, 2004. URL http://www.jstor.org/stable/3590307.

Joshua D. Angrist and Iván Fernández-Val. ExtrapoLATE-ing: External Validity and Overi-
dentification in the LATE Framework, volume 3 of Econometric Society Monographs, page
401–434. Cambridge University Press, 2013. doi: 10.1017/CBO9781139060035.012.

Joshua D. Angrist and Alan B. Keueger. Does Compulsory School Attendance Affect School-
ing and Earnings?*. The Quarterly Journal of Economics, 106(4):979–1014, 11 1991. ISSN
0033-5533. doi: 10.2307/2937954. URL https://doi.org/10.2307/2937954.

Joshua D. Angrist and Miikka Rokkanen. Wanna get away? regression discontinuity esti-
mation of exam school effects away from the cutoff. Journal of the American Statisti-
cal Association, 110(512):1331–1344, 2015. doi: 10.1080/01621459.2015.1012259. URL
https://doi.org/10.1080/01621459.2015.1012259.

29

https://proceedings.neurips.cc/paper/2017/file/6a508a60aa3bf9510ea6acb021c94b48-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/6a508a60aa3bf9510ea6acb021c94b48-Paper.pdf
http://www.jstor.org/stable/3590307
https://doi.org/10.2307/2937954
https://doi.org/10.1080/01621459.2015.1012259


Jakubowski, Somanchi, McFowland III, and Neill

Sam Asher and Paul Novosad. Rural roads and local economic development. American
Economic Review, 110(3):797–823, March 2020. doi: 10.1257/aer.20180268. URL https:

//www.aeaweb.org/articles?id=10.1257/aer.20180268.

Susan Athey and Guido Imbens. Recursive partitioning for heterogeneous causal effects.
Proceedings of the National Academy of Sciences, 113(27):7353–7360, 2016. doi: 10.1073/
pnas.1510489113. URL https://www.pnas.org/content/113/27/7353.

Sascha O. Becker, Peter H. Egger, and Maximilian von Ehrlich. Absorptive capacity and the
growth and investment effects of regional transfers: A regression discontinuity design with
heterogeneous treatment effects. American Economic Journal: Economic Policy, 5(4):29–
77, 2013. ISSN 19457731, 1945774X. URL http://www.jstor.org/stable/43189353.
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Appendix A. Pseudocode for LoRD3 Procedure

Algorithm 2: LoRD3 procedure, used by DEE, to automatically discover local
regression discontinuities.

Input: D = {(xi, ti, yi)}Ni=1

Parameter: Kmin – The minimum number of neighbors to consider for KNN.
Parameter: Kmax – The maximum number of neighbors to consider for KNN.
Parameter: Z – The subset of features Z ⊆ X to be considered (jointly) as

forcing variables.
Output: L

L ← {}
Compute f̂(x) as an estimate of a properly chosen smooth function f(x), where
ti = f(xi) + εi

Compute the estimated residuals ri = ti − f̂(xi) for i = 1, . . . , N .
for k = Kmin, ...,Kmax do

for i = 1, ..., N do
Compute si,k, the k-sized neighborhood containing the ith data point and its
k − 1 nearest neighboring points, where only features in Z are used to
measure distance.

Compute L0(si,k), the likelihood of si,k under the null hypothesis that it
does not contain a regression discontinuity, H0 : E[rj ] = µ0,∀j ∈ si,k, j 6= i.

for l = 1, ..., k − 1 do
Compute (i) the vector hl between center point xi and xl, where l ∈ si,k
(again only using Z); and (ii) the hyperplane vl that passes through xi
and is orthogonal to hl, bisecting {xj | j ∈ si,k} into two partitions g1

and g2.
Compute L1(si,k, vl), the likelihood of si,k under the alternative
hypothesis that it contains an regression discontinuity at vl,
H1 : E[rj ] = µ1

(
1{j∈g1}

)
+ µ2

(
1{j∈g2}

)
,∀j ∈ si,k, j 6= i.

Compute LLR(si,k, vl) = log
L1(si,k, vl)

L0(si,k)
, the log-likelihood ratio (LLR)

testing the alternative hypothesis of a discontinuity at vl against the
null hypothesis of no discontinuity for neighborhood si,k.

Compute LLRi,k = maxl LLR(si,k, vl) and vi,k = arg maxl LLR(si,k, vl), by
maximizing the log-likelihood ratio (LLR) over all (k − 1) partitions of
neighborhood si,k.

if LLRi,k is statistically significant (i.e., it exceeds the significance threshold
for a given level α, obtained by randomization), and the corresponding si,k
and vi,k are econometrically valid (by density and placebo tests) then
L ← L ∪ {(si,k, vi,k, LLRi,k)}

Note that we typically set Kmin = Kmax for computational efficiency. For example,
Kmin = Kmax = k = 200 for our simulation studies.
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Appendix B. Proof of Theorem 1

First, we present two lemmas. Then we give the proof of Theorem 1.

Lemma 1 Under the assumptions of Theorem 1, the posterior predictive variance at a point
x∗ is given by

σ2(x∗) = σ2
n + k(0)− k(ρ)2

σ2
n
N + E[k(q)]

.

Proof Following Rasmussen and Williams (2005), the posterior predictive variance at x∗,

σ2(x∗) = σ2
n + k(0)− kTK−1k,

where k = [k(x∗, x1), · · · , k(x∗, xN )]T and K is the N ×N kernel matrix with i, jth element
Kij = k(xi, xj). Now, since all training instances are distance ρ from the test instance,
k(x∗, xi) = k(ρ) for all i. Thus, we can rewrite

σ2(x∗) = σ2
n + k(0)− kTK−1k

= σ2
n + k(0)− k(ρ)21TK−11.

Moreover, recalling that q denotes pairwise distances between training instances, the row
sums of K are all equal to

r = k(0) + σ2
n + (N − 1)Ei,j:i 6=j [k(xi, xj)] = σ2

n +NE[k(q)].

This means that K has eigenvalue r for eigenvector 1, so K−1 has eigenvalue 1/r for
eigenvector 1, and thus

K−11 =
1

σ2
n +NE[k(q)]

1.

Thus, we obtain

σ2(x∗) = σ2
n + k(0)− kTK−1k

= σ2
n + k(0)− k(ρ)21TK−11

= σ2
n + k(0)− k(ρ)21T

[
1

σ2
n +NE[k(q)]

1

]
= σ2

n + k(0)− Nk(ρ)2

σ2
n +NE[k(q)]

= σ2
n + k(0)− k(ρ)2

σ2
n
N + E[k(q)]

.

Lemma 2 Let Z1 and Z2 be defined such that

k1(Z1) = E[k1(q)]; k2(Z2) = E[k2(q)].

Then Z2 ≤ Z1 ≤ E[q], with equality if and only if q is constant.
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Proof First, we show Z1 ≤ E[q], by applying the AM-GM inequality to E[k1(q)] and
k1(E[q]).

E[k1(q)] =
1

N

[∑
i

exp

(
− q2

i

2b21

)]

k1(E[q]) = exp

(
1

N

∑
i

− q2
i

2b21

)

=

[∏
i

exp

(
− q2

i

2b21

)] 1
N

.

Thus, by the AM-GM inequality, we have

E[k1(q)] ≥ k1(E[q]) (AM-GM)

⇐⇒ k1(Z1) ≥ k1(E[q]) (definition of Z1)

=⇒ Z1 ≤ E[q], (k1 decreasing)

with equality achieved if and only if exp(−q2
i /(2b

2
1)) is equal for all i, implying qi is constant.

Now, we show Z2 ≤ Z1 using the generalized power mean inequality. We can write

exp(−Z2
1 ) = E[(xi)

1/(2b21)]2b
2
1

and
exp(−Z2

2 ) = E[(xi)
1/(2b22)]2b

2
2 ,

where xi = exp(−q2
i ). Since 1

2b21
< 1

2b22
, we know exp(−Z2

1 ) ≤ exp(−Z2
2 ) by the power mean

inequality, and thus Z1 ≥ Z2, again with equality if and only if qi is constant.

Now we proceed to restate and prove Theorem 1.

Theorem 1 (Buffering increases the asymptotic PPV difference) Consider two GPs,
GP1 and GP2, sharing common homoskedastic noise variance σ2

n. Moreover, assume that
these GPs have isotropic Gaussian kernel functions k1(q) = exp

(
−‖q‖2/(2b21)

)
and k2(q) =

exp
(
−‖q‖2/(2b22)

)
, where the length scale b1 > b2. For analytic tractability, assume all

training points {xi}Ni=1 are at distance ρ from the test point x∗, the distance distribution
from each training point to all other training points is the same (assume pairwise distances
are drawn q ∼ Q), and E[q] < ρ

√
2. Then the difference in posterior predictive variances

σ2
1(x∗)− σ2

2(x∗) satisfies the following:

1. If ρ = 0, then limN→∞
(
σ2

2(x∗)− σ2
1(x∗)

)
= 0.

2. If ρ > 0, then limN→∞
(
σ2

2(x∗)− σ2
1(x∗)

)
> 0.

3. limN→∞
(
σ2

2(x∗)− σ2
1(x∗)

)
is bounded below by a function f(ρ), which increases from

f(0) = 0 at ρ = 0 through ρ = b1b2

√
2 log

(
b1
b2

)
(2−θ2)(b21−b22)

> 0 (see proof for definition of θ).
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Proof
Implication 1:

Applying Lemma 1, and noting k1(0) = k2(0), we obtain

σ2
2(x∗)− σ2

1(x∗) =

[
σ2
n + k2(0)− k2(ρ)2

σ2
n
N + E[k2(q)]

]
−

[
σ2
n + k1(0)− k1(ρ)2

σ2
n
N + E[k1(q)]

]

=
k1(ρ)2

σ2
n
N + E[k1(q)]

− k2(ρ)2

σ2
n
N + E[k2(q)]

.

Then taking the limit as N →∞, the noise variance drops out:

lim
N→∞

(
σ2

2(x∗)− σ2
1(x∗)

)
= lim

N→∞

[
k1(ρ)2

σ2
n
N + E[k1(q)]

− k2(ρ)2

σ2
n
N + E[k2(q)]

]
=

k1(ρ)2

E[k1(q)]
− k2(ρ)2

E[k2(q)]
.

If ρ = 0, then the pairwise distances q are uniformly 0, so this reduces to

k1(0)2

k1(0)
− k2(0)2

k2(0)
= k1(0)− k2(0) = 0.

Implication 2:
Now let zi = k−1

i (E[ki(q)]). Then this expression simplifies to

k1(ρ)2

E[k1(q)]
− k2(ρ)2

E[k2(q)]
=
k1(ρ)2

k1(z1)
− k2(ρ)2

k2(z2)

≥ k1(ρ)2

k1(z2)
− k2(ρ)2

k2(z2)
,

since z2 ≤ z1 by Lemma 2. Next, let θ = z2
ρ , and note that z2 ≤ E[q] ≤ ρ

√
2 implies

θ = z2/ρ ≤
√

2. Then, we can write ki(z2) = ki(ρ)θ
2
, simplifying the lower bound to

k1(ρ)2

k1(z2)
− k2(ρ)2

k2(z2)
=

k1(ρ)2

k1(ρ)θ2
− k2(ρ)2

k2(ρ)θ2

= exp

(
−ρ2(2− θ2)

2b21

)
− exp

(
−ρ2(2− θ2)

2b22

)
.

But then noting −ρ2(2− θ2) ≤ 0, we have

b1 > b2 =⇒ 1/b2 > 1/b1

=⇒ −ρ2(2− θ2)

2b2
≤ −ρ

2(2− θ2)

2b1

=⇒ exp

(
−ρ2(2− θ2)

2b22

)
≤ exp

(
−ρ2(2− θ2)

2b21

)
=⇒ exp

(
−ρ2(2− θ2)

2b21

)
− exp

(
−ρ2(2− θ2)

2b22

)
≥ 0,
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with equality only if θ =
√

2, or equivalently if z2
2 = 2ρ2. But, by Lemma 2, this cannot be

the case if 0 < E[q] < ρ
√

2, completing the proof of the second implication.
Implication 3:

We now show that the asymptotic difference in posterior variances is bounded below by

a function f(ρ), which increases from f(0) = 0 at ρ = 0, through ρ = b1b2

√
2 log

(
b1
b2

)
(2−θ2)(b21−b22)

.

Specifically, continuing from above, let

f(ρ) = exp

(
−ρ2(2− θ2)

b21

)
− exp

(
−ρ2(2− θ2)

b22

)
,

and consider its first and second derivatives with respect to ρ.

f ′(ρ) = −2ρ(2− θ2)

b21
exp

(
−ρ2(2− θ2)

b21

)
+

2ρ(2− θ2)

b22
exp

(
−ρ2(2− θ2)

b22

)
= 2ρ(2− θ2)

(
1

b22
exp

(
−ρ2(2− θ2)

b22

)
− 1

b21
exp

(
−ρ2(2− θ2)

b21

))
;

f ′′(ρ) = 2(2− θ2)

(
1

b22
exp

(
−ρ2(2− θ2)

b22

)
− 1

b21
exp

(
−ρ2(2− θ2)

b21

))
+

4ρ2(2− θ2)2

(
1

b41
exp

(
−ρ2(2− θ2)

b21

)
− 1

b42
exp

(
−ρ2(2− θ2)

b22

))
.

So f ′(ρ) at ρ = 0 is 0, and f ′′(ρ) at ρ = 0 is 2(2 − θ2)(1/b22 − 1/b21) > 0. Hence, as
we increase ρ from 0, the lower bound on the difference in posterior predictive variances
increases. Moreover, we find a ρ > 0 for which f ′(ρ) = 0:

0 =
1

b22
exp

(
−ρ2(2− θ2)

b22

)
− 1

b21
exp

(
−ρ2(2− θ2)

b21

)

⇐⇒ ρ = b1b2

√√√√ 2 log
(
b1
b2

)
(2− θ2)(b21 − b22)

.

Appendix C. Applying Kallus et al. (2018) and Cattaneo et al. (2020)

C.1 Kallus et al.

Kallus et al.’s method of experimental grounding (Kallus et al., 2018) requires two data
samples: an observational sample DConf , and an unconfounded sample DUnc. However, in
our context, we only have access to a single observational dataset D = {(xi, ti, yi)}Ni=1. As
such, in order to apply Kallus’s method, we treat the discovered RDs as local randomized
experiments. Specifically, we:

1. Apply LoRD3 to the full dataset D to discover a set L of local regression discontinu-
ities, each associated with a k-NN ball.
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2. Randomly partition the full dataset D into two equally-sized subsamples D1 and D2.

3. Treat D1 as the confounded sample DConf .

4. Treat the instances in D2 that fall within one of the discovered RD’s k-NN balls (i.e.
instances in D2 that are local to a discovered RD) as the “unconfounded” set DUnc.

Again, Kallus’s method could prove effective if the discovered RDs in fact served as local
randomized experiments, such that {Y (1), Y (0)} ⊥ T | X for instances in the neighborhood
of the discovered RDs. However, while sharp RD designs can be viewed as local randomized
experiments (Lee and Lemieux, 2010), viewing fuzzy RD designs as randomized experiments
requires considering the potential for selective compliance. As such, in our context, we do
not expect Kallus’s method to offer gains over the confounded observational estimator.

C.2 Cattaneo et al.

Cattaneo et al. (2020) provide a method for extrapolating a LATE-type parameter in the
fuzzy RD setting. In order to apply this method, we must satisfy two requirements. First,
Cattaneo’s method is applicable when there are at least two discontinuities, ` and h, in the
treatment propensity along a common running variable. Second, their method requires a
dataset where each unit (zi, ti, yi) is associated with a known discontinuity ci ∈ {`, h}. This
second requirement poses a substantial challenge in our context, since individual threshold
assignments ci are clearly latent where RDs are themselves unknown.

To meet the first requirement, we restrict our application of Cattaneo’s method to
Simulation 1 (see Appendix D.1), where there are multiple discontinuities along a common
running variable (see Figure 10). In particular, in Simulation 1 we can apply Cattaneo’s
method twice, first to discontinuities at x1 ∈ {`, h} in P (T = 1 | X1 = x1), and second to
discontinuities at x2 ∈ {`, h} in P (T = 1 | X2 = x2), where ` = 0.25 and h = 0.65. We also
simplify our problem: instead of requiring RD discovery, we provide Cattaneo’s method
with oracle access to the true underlying RDs.

To meet the second requirement, we must assign each instance an imputed threshold
ĉi ∈ {`, h}. We desire an imputation strategy that assigns compliers falling between the
two thresholds ` and h to the correct threshold. We consider the behavior of compliers for
each of the two discontinuities c = {`, h} across different values of x:

1. Case 1: If x ≤ `, then compliers for both discontinuities are treated, and treatment
uptake is uninformative.

2. Case 2: If ` < x ≤ h, then compliers for the c = h discontinuity are treated, and
compliers for the c = ` discontinuity are untreated.

3. Case 3: If x > h, then compliers for both discontinuities are untreated, and treatment
uptake is uninformative.

As such, the following randomized imputation ĉi(xi, ti) is guaranteed to assign compliers
between the two thresholds ` and h to the correct threshold, such that ĉi(xi, ti) = ci:

ĉi(xi, ti) =


P (ĉi = `) = P (ĉi = h) = 0.5 xi ≤ ` (Case 1)

` ` < xi ≤ h, ti = 0 (Case 2: Untreated compliers)

h ` < xi ≤ h, ti = 1 (Case 2: Treated compliers)

P (ĉi = `) = P (ĉi = h) = 0.5 xi > h (Case 3)
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Figure 10: Imputed threshold assignments ci and data subsets used to extrapolate from
multiple discontinuities in X1 (top row) and X2 (bottom row). Color shows the
unit’s treatment status.

Figure 10 shows the imputed threshold assignments ĉi (columns) for discontinuities along
each of the two dimensions (rows), along with each unit’s treatment status (color).

Given this setup, we apply Cattaneo’s method twice. First, we apply Cattaneo’s method
along X1 to estimate an extrapolated LATE-type parameter

τCatt,X1(x1) = E[Y (1)− Y (0) | X1 = x1, ĉ = h, Complier] for x1 ∈ (`, h).

Applying Cattaneo’s method along X2 yields a similar estimate for

τCatt,X2(x2) = E[Y (1)− Y (0) | X2 = x2, ĉ = h, Complier] for x2 ∈ (`, h).

While Cattaneo’s method yields estimates for these LATE-type parameters, our goal is to
estimate the CATE τ(x). To that end, we approximate the CATE using a simple average
of τ̂Catt,X1(x1) and τ̂Catt,X2(x2):

1

2

(
τ̂Catt,X1(x1) + τ̂Catt,X2(x2)

)
≈ τ(x1, x2) for (x1, x2) ∈ (`, h)2.
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For instances (x1, x2) 6∈ (`, h)2, we project onto the set (`, h)2 before computing this average.
In practice, we do not necessarily expect this method to yield a competitive CATE estimate,
since Simulation 1 does not satisfy the assumptions required for Cattaneo’s method to yield
unbiased estimates for the LATE-type parameters τCatt,X1(x1) and τCatt,X2(x2), let alone
prove a context where this simple average will yield an unbiased estimate of the CATE.

Appendix D. Simulation 1

D.1 Simulated DGP

The simulated DGP for our first simulation is as follows:

X ∼ Unif([0, 1]2) (Covariates)

τ(X) ∼ GP (0, kΘτ ) (CATE GP prior)

β(X) ∼ GP (0, kΘβ ) (Bias GP prior)

P (G = g) =


0.1 A (Always-taker)

0.4 C1 (Complier type 1)

0.4 C2 (Complier type 2)

0.1 N (Never-taker)

(Treatment uptake group)

Z1 = (X1 ≤ 0.65) ∨ (X2 ≤ 0.65) (First RD instrument)

Z2 = (X1 ≤ 0.25) ∨ (X2 ≤ 0.25) (Second RD instrument)

T =


1 G = A

1 (G = C1) ∧ (Z1 = 1)

1 (G = C2) ∧ (Z2 = 1)

0 Otherwise

(Observed treatment)

g(X,G) =



1

2
β(X) G = A

0 G = C1

−4

5
β(X) G = C2

−13

10
β(X) G = N

(Group-specific shift in potential outcomes)

ε ∼ N (0, 1) (Outcome noise)

Y (1) =
1

2
τ(X) + g(X,G) + ε (Potential outcome)

Y (0) = −1

2
τ(X) + g(X,G) + ε (Potential outcome)

Y = Y (T ) (Observed outcome)

Note that this DGP satisfies the CCE/CEI assumption, since

E[Y (1)− Y (0) | X = x,G = g] = τ(x) ∀g.
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Moreover, we note that β(x) is in fact the bias in a conditioned-on-observables approxima-
tion to τ obs(x). This can be confirmed using iterated expectations, iterating over G.

We confirm by considering three cases:

1. Case 1: Z1 = 0 and Z2 = 0. In this region, the treated subpopulation is composed
entirely of always-takers G = A, and the untreated subpopulation mixes never-takers
and both complier types G ∈ {C1, C2, N}.

τ obs(x) = E[Y (1) | T = 1, X = x]− E[Y (0) | T = 0, X = x]

= EG[E[Y (1) | T = 1, X = x,G = g]]︸ ︷︷ ︸
G=A

−EG[E[Y (0) | T = 0, X = x,G = g]]︸ ︷︷ ︸
G∈{C1,C2,N}

= E
[

1

2
τ(X) + g(X,G) + ε | X = x,G = a

]
− 4

9
E
[
−1

2
τ(X) + g(X,G) + ε | X = x,G = C1

]
− 4

9
E
[
−1

2
τ(X) + g(X,G) + ε | X = x,G = C2

]
− 1

9
E
[
−1

2
τ(X) + g(X,G) + ε | X = x,G = N

]
=

1

2
τ(x) +

1

2
β(x)︸ ︷︷ ︸

G=A

− 4

9

(
−1

2
τ(x)

)
︸ ︷︷ ︸

G=C1

− 4

9

(
−1

2
τ(x)− 4

5
β(x)

)
︸ ︷︷ ︸

G=C2

− 1

9

(
−1

2
τ(x)− 13

10
β(x)

)
︸ ︷︷ ︸

G=C2

= τ(x) + β(x)

2. Case 2: Z1 = 1 and Z2 = 0. In this region, the treated subpopulation mixes always-
takers and complier type C1, while the untreated subpopulation mixes never-takers
and complier type C2.

τ obs(x) = E[Y (1) | T = 1, X = x]− E[Y (0) | T = 0, X = x]

= EG[E[Y (1) | T = 1, X = x,G = g]]︸ ︷︷ ︸
G∈{A,C1}

−EG[E[Y (0) | T = 0, X = x,G = g]]︸ ︷︷ ︸
G∈{C2,N}

=
1

5
E
[

1

2
τ(X) + g(X,G) + ε | X = x,G = a

]
+

4

5
E
[

1

2
τ(X) + g(X,G) + ε | X = x,G = C1

]
− 4

5
E
[
−1

2
τ(X) + g(X,G) + ε | X = x,G = C2

]
− 1

5
E
[
−1

2
τ(X) + g(X,G) + ε | X = x,G = N

]
=

1

5

(
1

2
τ(x) +

1

2
β(x)

)
︸ ︷︷ ︸

G=A

+
4

5

(
1

2
τ(x)

)
︸ ︷︷ ︸

G=C1

− 4

5

(
−1

2
τ(x)− 4

5
β(x)

)
︸ ︷︷ ︸

G=C2

− 1

5

(
−1

2
τ(x)− 13

10
β(x)

)
︸ ︷︷ ︸

G=C2

= τ(x) + β(x)
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3. Case 3: Z1 = 1 and Z2 = 1. In this region, the treated subpopulation mixes
always-takers and both complier types C1 and C2, while the untreated subpopulation
is composed entirely of never-takers.

τ obs(x) = E[Y (1) | T = 1, X = x]− E[Y (0) | T = 0, X = x]

= EG[E[Y (1) | T = 1, X = x,G = g]]︸ ︷︷ ︸
G∈{A,C1,C2}

−EG[E[Y (0) | T = 0, X = x,G = g]]︸ ︷︷ ︸
G=N

=
1

9
E
[

1

2
τ(X) + g(X,G) + ε | X = x,G = a

]
+

4

9
E
[

1

2
τ(X) + g(X,G) + ε | X = x,G = C1

]
+

4

9
E
[

1

2
τ(X) + g(X,G) + ε | X = x,G = C2

]
− E

[
−1

2
τ(X) + g(X,G) + ε | X = x,G = N

]
=

1

9

(
1

2
τ(x) +

1

2
β(x)

)
︸ ︷︷ ︸

G=A

+
4

9

(
1

2
τ(x)

)
︸ ︷︷ ︸

G=C1

+
4

9

(
1

2
τ(x)− 4

5
β(x)

)
︸ ︷︷ ︸

G=C2

−
(
−1

2
τ(x)− 13

10
β(x)

)
︸ ︷︷ ︸

G=C2

= τ(x) + β(x)

In all three cases, τ obs(x) = τ(x) + β(x), implying that β(x) is the bias in the conditioned-
on-observables approximation of τ(x).

Finally, we note that LoRD3 does not require access to Y . As such, in simulation, we
apply the following procedure to sample N = 20, 000 training instances, and evaluate τ(x)
and β(x) at each (i) x ∈ D, (ii) x ∈ U , and (iii) x on our test grid:

1. Sample X and G, and compute T , for all 20, 000 training instances in D.

2. Run LoRD3 to compute L, then apply Algorithm 1 to map L → U .

3. Sample τ(x) and β(x) from the GP priors and evaluate at all x in D, U , and the test
grid.

4. Compute Y (0) and Y (1) for each instance in the training set D.

5. Proceed to estimate τ̂ obs(x) and to estimate τ̂(x) for each x ∈ U .

Empirical results for Simulation 1 are provided in the main text.

D.2 Improvements from BLOOCV in Large Sample

In Section 4, we showed theoretically that BLOOCV addresses the asymptotic degeneracy
of LOOCV. Specifically, we showed that as the number of repaired discontinuities (U), from
Algorithm 1 increases, LOOCV will fail to differentiate between our two candidate models
Mτ and Mβ. We further showed that our novel BLOOCV-based predictive log-likelihood
would not suffer from the same degeneracy as |U| → ∞. In this section, we empirically
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validate these results and further demonstrate the effect on MSE of the extrapolated CATE
estimates using the BLOOCV method.

We use the same setup as Simulation 1 for the off-diagonal regime with θτ = 0.2 and
θβ = 0.5, where we saw a significant difference in MSE between the direct CATE extrap-
olation model Mτ and the bias-correcting model Mβ (see Figure 3). In order to increase
|U|, we increase the number of training samples N = 200, 000.19 From Figure 11, we ob-
serve that the difference between LOOCV log-likelihoods under Mτ and Mβ is close to 0.
Similarly, the difference between marginal log-likelihoods between Mτ and Mβ is close to
0. More importantly, we further observe that both BLOOCV variants are able to identify
the significant difference between log-likelihoods under Mτ and Mβ. This corresponded
to a significant improvement in MSE for the BLOOCV variants as compared to MLL and
LOOCV, as shown in Figure 12.

Figure 11: Difference between various log-likelihoods, under the CATE modelMτ and the
bias model Mβ, in a large sample setting, N = 200, 000, under the off-diagonal
regime with θτ = 0.2 and θβ = 0.5.

19. We generated more training samples at the discontinuities to increase |U| without significantly increas-
ing N , which increases the memory requirements during the sampling from the GPs in step 3 of the
simulation. As a result, |U| changed from around 50 to 60 in our main paper (across 50 independent
replications) to around 500 to 600.
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Figure 12: Average MSEs evaluated over a uniform mesh grid, with N = 100× 100 points,
approximating performance over P (X) = Unif([0, 1]2) in a large sample setting,
N = 200, 000, under the off-diagonal regime with θτ = 0.2 and θβ = 0.5. The
x-axis gives the model selection strategy. “Bias” and “CATE” refer to the
strategies of always selecting the bias correcting model Mβ, and the direct
extrapolation model Mτ , respectively. “MLL”, “LOO”, “1-MC”, and “BW”
refer to model averaging strategies where model weights are computed using the
marginal likelihood, the LOOCV likelihood, the 1-MC BLOOCV variant, and
the weighted BLOOCV variant, respectively. The blue trace shows MSEs for
CATE estimates obtained from the full inferential procedure of DEE, including
the repair procedure in Algorithm 1 (which maps L → U). The red trace shows
the MSEs obtained when DEE does not apply Algorithm 1 and instead directly
applies Gaussian process regression to local 2SLS estimates, computed using
overlapping k-neighborhoods (k = 200), for each discovered local RD in L. Note
that we do not use weighted BLOOCV when using direct GP extrapolation from
L due to the O(|L|5) runtime.

D.3 Using KNN-only and Voronoi-only procedures in Algorithm 1

Empirically, performing the KNN-only procedure (i.e., including just the index sets K[x])
in Algorithm 1 will result in the same set of discontinuities as not running Algorithm 1 (the
original RDs), as shown in the right panel of Figure 13. This is because the index sets with
KNN-only remain static and do not change over the iterations of Algorithm 1. As we can see
from the red-colored error bars in Figure 3, empirically, this yields worse MSEs as compared
to a combination of Voronoi and KNN procedures. Finally, performing the Voronoi-only
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Figure 13: Index sets for Algorithm 1 with Voronoi-only procedure (left panel) and KNN-
only procedure (right panel).

procedure (i.e., including just the index sets V [x]) in Algorithm 1 is shown in the left panel
of Figure 13. We observe that though the discovered RDs are distinct, their index sets
include points far away from the discontinuity, which can bias our estimation of treatment
effects at the RDs. Therefore, the Voronoi ∩ KNN procedure we used in Algorithm 1 in
§3.2.1 ensures that we include only the points local to the discontinuity (based on KNN)
and that the index sets are disjoint (based on Voronoi), and the resulting treatment effect
estimates are valid generally at RDs.

Appendix E. Simulation 2

E.1 Simulated DGP

Before giving the DGP for our second simulation, we introduce a number of auxiliary
functions. Let Φ denote the Gaussian cumulative density function (cdf), and φ denote
the Gaussian probability density function (pdf). We construct the CATE τ(x) and the
(scaled) covariance function Cov(x) by first sampling Gaussian Process priors GP (0, kΘτ )
andGP (0, kΘCov) at a set of inducing points (a 50×50 uniform mesh grid on [0, 1]2). We then
define τ(x) and Cov(x) as the posterior means of the same Gaussian process, conditioned
on these samples. Again, we let the length scales θτ and θCov be free parameters in our
simulation.

While in Simulation 1 we set the prior output scale kΘτ = kΘβ , in Simulation 2 we do
not directly specify a GP prior over the bias function β(x); instead, we specify the GP prior
over the covariance function Cov(x). Thus, we cannot simply use the same output scale
for the prior kernels kΘτ and kΘβ . However, we note that Cov(x) = ρ(x)σ, so the bias
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β(x) = Cov(x) φ(γ)
Φ(γ)(1−Φ(γ)) for some x-dependent γ. Given this observation, we define the

output scales kτ (0) and kCov(0) as follows. First, we let kCov(0) = 1
4 . Then, we let c denote

the weighted average of the multiplier φ(γ)
Φ(γ)(1−Φ(γ)) , where we average over the distribution

on γ induced by X ∼ Unif([0, 1]2). Finally, we let kτ (0) = c2

4 .
Given these functions, the DGP is:

X ∼ Unif([0, 1]2) (Observed covariates)

γ0 = Φ−1(0.1), γ1 = 0, γ2 = Φ−1(0.9) (Latent treatment index thresholds)

Z1 = (max{X1, X2} > 0.5) ∧ (min{X1, X2} < 0.5) (First RD instrument)

Z2 = (min{X1, X2} > 0.5) (Second RD instrument)[
UT (x)
UY (x)

]
∼ N

([
0
0

]
,

[
1 ρ(x)σ

ρ(x)σ σ2

])
(Unobserved confounders)

T (0) = 1[γ0 > UT ] (Potential treatment)

T (1) = 1[γ1 > UT ] (Potential treatment)

T (2) = 1[γ2 > UT ] (Potential treatment)

T = T (1)Z1 + T (2)Z2 + T (0)(1− Z1)(1− Z2) (Observed treatment)

Y (0) = −1

2
τ(X) + UY (Potential outcome)

Y (1) =
1

2
τ(X) + UY (Potential outcome)

Y = Y (T ) (Observed outcome)

Note that, in this DGP, the variance σ2 of UY is an unspecified constant, and the
correlation function ρ(x) is also (up to this point) undefined. In simulation, we compute σ2

and define ρ(x) as follows:

1. First, we draw the N = 20, 000 training set xi’s.

2. We then compute Cov(xi) for each training xi.

3. We then set σ to

σ =
maxi=1...20,000 |Cov(xi)|

0.9

and define the correlation function ρ(x) = Cov(x)/σ. This ensures that the correlation
at each training xi is between −0.9 and 0.9.
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E.2 Empirical Results for Simulation 2

Figure 14: Illustrating the Discover and Estimate steps of DEE for Simulation 2. The left
panel shows the M = |L| = 400 local discontinuities initially selected using
LoRD3, while the right panel shows the subset of discontinuities (and their index
sets) output by Algorithm 1. As seen in the middle panel, applying a higher
LLR threshold when constructing L fails to solve the problems of neighborhood
overlap and RD coverage.
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Figure 15: Average MSEs evaluated over a uniform mesh grid, with N = 100× 100 points,
approximating performance over P (X) = Unif([0, 1]2) for Simulation 2. The
x−axis gives the model selection strategy. “Bias” and “CATE” refer to the
strategies of always selecting the bias correcting model Mβ, and the direct
extrapolation model Mτ , respectively. “MLL”, “LOO”, “1-MC”, and “BW”
refer to model averaging strategies where model weights are computed using the
marginal likelihood, the LOOCV likelihood, the 1-MC BLOOCV variant, and
the weighted BLOOCV variant, respectively. Benchmark MSEs are given in the
inset table. The blue trace shows MSEs for CATE estimates obtained from the
full inferential procedure of DEE, including the repair procedure in Algorithm 1
(which maps L → U). The red trace shows the MSEs obtained when DEE does
not apply Algorithm 1, and instead directly applies Gaussian process regression
to local 2SLS estimates, computed using overlapping k-neighborhoods (k = 200),
for each discovered local RD in L. Note that we do not use weighted BLOOCV
when using direct GP extrapolation from L due to the O(|L|5) runtime.
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Figure 16: Difference between various log-likelihoods for Simulation 2, under the CATE
model Mτ and the bias model Mβ, in the off-diagonal regime where θτ 6=
θβ. “MLL”, “LOO”, “1-MC”, and “BW” refer to model averaging strategies
where model weights are computed using the marginal likelihood, the LOOCV
likelihood, the 1-MC BLOOCV variant, and the weighted BLOOCV variant,
respectively. The sign of the difference determines which model is preferred by
each approach.
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Figure 17: Relative mean squared error versus the Mβ weight computed using marginal
likelihood weighting (i.e., Bayesian model averaging) in the θτ = θβ regime
for Simulation 2. The y-axis gives the MSE ratio for the marginal likelihood
weighted model average, versus the individual model (Mτ orMβ) with the max-
imum marginal likelihood. In general, model averaging reduces MSE (i.e., the
local linear regression estimate, in blue, is smaller than 1, shown as a dashed
grey reference line).
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Appendix F. Application: Rural Roads and Economic Development
(Asher and Novosad, 2020)

F.1 Rural Roads and Economic Development: Additional Results

Figure 18: Applying GP extrapolation to estimate the spatially heterogeneous effect of road
building on the availability of transportation services.
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Figure 19: Applying GP extrapolation to estimate the spatially heterogeneous effect of road
building on employment in agriculture.

Figure 20: Applying GP extrapolation to estimate the spatially heterogeneous effect of road
building on employment growth in village firms.
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Figure 21: Applying GP extrapolation to estimate the spatially heterogeneous effect of road
building on agriculture yields and investments.

Figure 22: Applying GP extrapolation to estimate the spatially heterogeneous effect of road
building on an asset/consumption index.
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F.2 Rural Roads and Economic Development: Balance Test

Using LoRD3, we identify a set of M = 2,784 candidate local regression discontinuities that
are significant at α = 0.05 using randomization testing (Herlands et al., 2018). However,
instead of simply selecting all of these local RDs into L and proceeding with our inferential
procedure, we first apply a covariate balance test to validate the discovered RDs. Specif-
ically, for each baseline covariate B in the set of baseline covariates included in Table 1
of Asher and Novosad (2020), we test for continuity at the threshold using the regression
specification

B ∼ αY + βB,ZZ + βB,XRDXRD + β
(Z)
B,XRD

ZXRD,

where, as previously, Z denotes the binary RD instrument and XRD denote the projection
of X onto the RD normal vector. This set includes the following 11 baseline covariates:
having a primary school, having a medical center, electrification, distance from the nearest
town, land irrigated, in land area, literate population, scheduled caste, land ownership,
subsistence agriculture, and household income above INR 250. We test for continuity in B
across the discontinuity using the p-value associated with the t-test of βB,Z . Since we are
testing 11 covariates for continuity, we adjust for multiple testing by rejecting discontinuities
where minB p < α/11 = 0.05/11. Note that after applying Algorithm 1 we once again apply
this balance test to validate the RDs included in the final set U .

Figure 23 shows the distribution of minB p across the two types of discovered RDs,
population and spatial. As expected, we reject very few of the (known, and previously
validated) population RDs, but reject a large number of the spatial RDs based on baseline
covariate imbalance.
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Figure 23: Testing balance in baseline covariates across the M = 2,784 discontinuities with
significantly high LLR statistics using randomization testing. α/11 is shown by
the vertical red line.
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