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Abstract

Nonparametric regression imputation is commonly used in missing data analysis. However,
it suffers from the “curse of dimension”. The problem can be alleviated by the explosive
sample size in the era of big data, while the large-scale data size presents some challenges in
the storage of data and the calculation of estimators. These challenges make the classical
nonparametric regression imputation methods no longer applicable. This motivates us to
develop two distributed nonparametric regression imputation methods. One is based on
kernel smoothing and the other on the sieve method. The kernel-based distributed im-
putation method has extremely low communication cost, and the sieve-based distributed
imputation method can accommodate more local machines. The response mean estimation
is considered to illustrate the proposed imputation methods. Two distributed nonpara-
metric regression imputation estimators are proposed for the response mean, which are
proved to be asymptotically normal with asymptotic variances achieving the semiparamet-
ric efficiency bound. The proposed methods are evaluated through simulation studies and
illustrated in a real data analysis.

Keywords: Distributed data, Divide and conquer, Kernel method, Missing data, Sieve
method

1. Introduction

Missing data is a common issue that practitioners may face in data analysis. A typical
example of missing data is the missing response problem, such as nonresponse in sample
surveys and dropout in clinical trials. For missing response problems, the nonparamet-
ric regression imputation methods, which can often produce robust and efficient estimates
(Cheng, 1994; Hahn, 1998), are commonly used to deal with missing values. However, the
nonparametric regression imputation methods suffer from the “curse of dimension”, which
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deteriorates their finite sample performance since the sample size needed to achieve a given
estimation accuracy increases exponentially as the dimension of the covariate vector grows.
This problem restricts the application of the nonparametric regression imputation methods
to high-dimension regression problems because of the limitation of sample size. We discuss
the “curse of dimension” in nonparametric regression imputation estimation in Section 2.1.
In the big data era, however, the sample size is extremely large in some cases. On the one
hand, the large sample size makes it possible to achieve the desired estimation accuracy us-
ing the nonparametric regression imputation methods when the dimension of the covariate
vector is large. On the other hand, it may be infeasible to keep the large-scale data set in
memory or even store all the data on a single computer when the data size is too large (Fan
et al., 2014; Wang et al., 2016). Moreover, computations of the nonparametric regression
imputation estimations are usually time-consuming or even infeasible. These motivate us
to develop distributed nonparametric regression imputation methods to solve the computa-
tion problem while retaining the good theoretical properties of the classical nonparametric
methods and mitigating the so-called curse of dimension. To our knowledge, this problem
has not been investigated in the literature. In this paper, we consider the estimation prob-
lem in the presence of missing responses when data are stored distributionally on different
machines, and develop two distributed nonparametric regression imputation methods which
focus on the estimation of response mean.

To reduce the computational burden, we adopt the divide and conquer strategy. The
main idea of this strategy is to calculate some summary statistics on each local machine
and then aggregate the results from local machines to get a final estimate. Doing so can
substantially reduce computing time and alleviate the computer memory requirements. The
divide and conquer approach was first studied by Mcdonald et al. (2009) for multinomial
regression. Zhang et al. (2013) showed that in parametric estimation problems with fully
observed data, the divide and conquer approach generally has greater efficiency than the
naive approach that uses only the sample on a single machine. Lee et al. (2017) and Battey
et al. (2018) extended this approach to the sparse linear model in the high-dimensional
setting. Tang et al. (2020) further investigated the application of the divide and conquer
strategy in sparse generalized linear models. Distributed inference problems with non-
smooth loss functions were studied via this strategy by Volgushev et al. (2019).

This paper extends the divide and conquer strategy to missing response problems. We
first develop a kernel-based distributed imputation (KDI) approach to estimate the response
mean. Under some mild conditions, it is shown that the resulting estimator is asymptot-
ically normal and has the same asymptotic variance as the classical nonparametric kernel
regression imputation estimator (Cheng, 1994), which achieves the semiparametric efficiency
bound (see Appendix A for a brief introduction of the bound). The KDI method needs very
little communication between machines because it only needs to transmit a real value from
each local machine to the central machine. As discussed in Zhang et al. (2013), com-
munication between different machines may be prohibitively expensive, and the difference
in communication complexity between different algorithms can be significant. Thus dis-
tributed estimation methods that require fairly limited communication are of more interest.
Our KDI method is just this type.

However, the KDI method introduces additional bias if the number of machines is too
large, which is a common drawback of one-shot communication approaches (Jordan et al.,
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2019). To overcome this problem, we propose an alternative multi-round imputation method
based on another nonparametric method, sieve method (Newey, 1994; Ai and Chen, 2003;
Chen, 2007; Chen and Pouzo, 2012; Belloni et al., 2015), and call this method the sieve-based
distributed imputation (SDI) method. Compared to the KDI method, the SDI method can
accommodate distributed systems with more machines and thus has the potential to further
reduce computing time. Under certain conditions, the SDI estimator of the response mean
is also asymptotically normal, and the asymptotic variance achieves the semiparametric
efficiency bound. However, the SDI method needs more communication than the KDI. If
the communication cost is high, the KDI method is recommended, and one should limit the
number of local machines to avoid the additional bias of this method. If the communication
cost is low, the SDI method is recommended and one can use a lot of local machines to
reduce computing time.

The rest of this paper is organized as follows. In Section 2, we describe the KDI estimator
and derive its theoretical properties. In Section 3, we propose the SDI method and present
its theoretical properties. Simulation results are given in Section 5. As an illustration, a real
data analysis is provided in Section 6. The code to produce the results in the simulation and
the real data analysis is available at https://github.com/stat-conifer/DistNonparImp.
All proofs are relegated to the appendix.

2. Kernel-Based One-shot Method

In this section, we propose the KDI method and discuss its asymptotic properties.

2.1 Methodology

Let Y be the response variable and X the d-dimension completely observed covariate vector.
Suppose we have i.i.d. incomplete observations {(δi, Yi, Xi) : i = 1, . . . , N}, where δi = 1
if Yi is observed and δi = 0 otherwise. A classical nonparametric method to estimate the
response mean µ is the nonparametric kernel regression imputation method due to Cheng
(1994). The main idea of regression imputation is to impute the missing response Y by its
conditional mean m(X) = E[Y | X]. Throughout this paper, we assume that responses are
missing at random (MAR). That is, Y ‚ δ | X. Under MAR, E[Y | X] = E[Y | X, δ = 1].
Thus to estimate µ, Cheng (1994) first estimate m(x) = E[Y | X = x] by

m̂K(x) =

∑N
i=1Kh(Xi − x)δiYi∑N
i=1Kh(Xi − x)δi

and then the final estimator of µ is given by

µ̂K = N−1
N∑
i=1

{δiYi + (1− δi)m̂K(Xi)}, (1)

where Kh(·) = h−dK(·/h), K(·) is some kernel function and h is a bandwidth sequence that
decreases to zero as N →∞.

As pointed out previously, the estimator µ̂K suffers from the “curse of dimension” prob-
lem when the dimension of X is high. The nonparametric regression imputation is regarded
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reliable only when the number of covariates is very small in some existing works (Hu et al.,
2012; Chen and Haziza, 2017) due to this problem. Fortunately, this problem can be miti-
gated by the large sample size in the big data era. Next, we give some heuristic discussions.
Under some mild conditions, µ̂K − µ admits the following decomposition

µ̂K − µ = ψN +RN ,

where ψN = N−1
∑N

i=1 {δiYi/π(Xi) + (π(Xi)− δi)m(Xi)/π(Xi)− µ} and π(x) = P(δ =
1 | X = x). The term RN = OP

(
1/(Nhd) + hq

)
where q is a quantity that indicates

the smoothness of some specific functions determined by the underlying data generation
process. The convergence rate of the term ψN is dimension-free while that of the term RN
does depend on d. To discuss the impact of dimension, we focus on RN . With the optimal
choice of the bandwidth that minimizes the convergence rate of RN , we have RN = OP (aN )
where aN = (1/N)q/(d+q). Let ε > 0 be the required accuracy. For any given sample size
N and q, we investigate what values d can take such that aN ≤ ε. By straightforward
calculations, aN ≤ ε is equivalent to

d ≤ q
(

logN

log ε−1
− 1

)
, (2)

which establishes the upper bound of d given q, ε and N . For example, if q = 10, ε = 0.01
and N = 200, (2) restricts d to take 1 only. This implies that we can control the magnitude
of RN to the given accuracy ε = 0.01 only in the case of a one-dimensional covariate
when the sample size is 200. However, if q = 10, ε = 0.01 as before and the sample size
N = 200000, the inequality (2) allows d ≤ 16. This demonstrates the crucial role of sample
size in applying the nonparametric regression imputation method to problems with high
dimensional covariate vectors. The larger the sample size is, the larger d is allowed.

However, when N is extremely large, the calculation of µ̂K is problematic. The com-
puting time of the estimation process in (1) is Θ(N2), which is extremely long when N is
large. In this paper, we say the computing time is Θ(aN ) for some positive sequence aN if
the computing time belongs to [C−1aN , CaN ] for some constant C > 1. A similar notation
is used for communication complexity.

Besides the computational issue, it may be infeasible to keep the whole data set in mem-
ory or even store all the data on a single computer when N is extremely large. Throughout
this paper, we assume the samples are evenly distributed on L machines. Here we as-
sume N is divisible by L for simplicity and denote n = N/L. Suppose {(δi, Yi, Xi) : i =
n(l − 1) + 1, . . . , nl} is stored on the l-th machine for l = 1, . . . , L.

To reduce the computing time and accommodate the distributed data set, we propose
the KDI method to estimate µ. The procedure for the kernel-based distributed imputation
method is presented in Algorithm 1.

The computing time of the KDI estimation is Θ(n2) = Θ(N2/L2), which is significantly
faster than the conventional kernel regression imputation estimation in (1). Moreover, the
computation of the estimator µ̃K has a low communication complexity of order Θ(L) because
we only need to transmit a real number from each local machine to the first machine in the
KDI method.
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Algorithm 1 Algorithm for the KDI method

1: For each machine, calculate

µ̂
(l)
K = n−1

nl∑
i=n(l−1)+1

{δiYi + (1− δi)m̂(l)
K (Xi)}

in parallel, where

m̂
(l)
K (x) =

∑nl
i=n(l−1)+1Kh(Xi − x)δiYi∑nl
i=n(l−1)+1Kh(Xi − x)δi

;

2: Transmit µ̂
(l)
K to the first machine for l = 2, . . . , L;

3: Calculate µ̃K = L−1
∑L

l=1 µ̂
(l)
K on the first machine;

4: return µ̃K.

2.2 Theoretical Properties

Next, we establish the asymptotic properties of the KDI estimator. For convenience, we next
let C be a generic positive constant that may differ in different places. For any positive
sequences aN and bN , let aN � bN denote C−1bN ≤ aN ≤ CbN for some C > 1. The
establishment of the asymptotic normality and efficiency of µ̃K is nontrivial since we allow
the number of machines L to diverge as N → ∞. A careful analysis of the error term is
needed to ensure that the summation of many negligible terms is still negligible. Let f(·)
be the probability density of X and σ2(x) the variance of Y conditional on X = x. We
need the following conditions to establish asymptotic results.

(C.1) π(x), f(x) and m(x) have bounded partial derivatives up to order q > 0.

(C.2) infx π(x) > 0.

(C.3) infx f(x) > 0.

(C.4) supx σ
2(x) <∞.

(C.5) K(·) is a Lipschitz continuous kernel function of order no smaller than q with compact
support.

(C.6) hq logN and L(logN)2/(Nhd) are bounded as N →∞.

(C.7) q > d,
√
Nhq → 0 and L/(

√
Nhd)→ 0 as N →∞.

Conditions (C.1),(C.3),(C.4), and (C.5) are all standard conditions in the literature of
nonparametric regression (Hansen, 2008; Li et al., 2011, 2017; Ma et al., 2019). Conditions
(C.1), (C.3) and (C.4) are required to establish the convergence rate of the kernel estimators
for m(·) and π(·). Condition (C.1) is a general smoothness condition. The quantity q
determines how restrictive (C.1) is, and a detailed discussion for q will be conducted later.
The infimum and supremum in Conditions (C.2), (C.3), and (C.4) are taken over the support
of X. Condition (C.2) requires that the response of units with any covariate values can
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be observed with positive probability. It is crucial for the identification and
√
N -consistent

estimation of µ (Khan and Tamer, 2010). Condition (C.2) can be satisfied in many problems
and is widely adopted in the literature of nonparametric missing data methods (Wang and
Rao, 2002; Hirano et al., 2003; Hu et al., 2012; Chan et al., 2016). Condition (C.3) can be
easily satisfied when the covariate has bounded support. By truncating the denominators in
the estimator, we may relax Condition (C.3) (Cheng, 1994; Wang and Rao, 2002). However,
the truncation procedure introduces some extra tuning parameters. For this reason, we do
not adopt the truncation strategy. Condition (C.4) requires the conditional variance of the
response to be bounded, which is a mild condition on the data distribution. Regularity
conditions on the kernel imposed in (C.5) are for the convenience of establishing probability
and moment bounds and can be satisfied by many kernels such as the Epanechnikov kernel
and the tricube kernel. Condition (C.6) and (C.7) are restrictions imposed on the bandwidth
h and the number of machines L. Condition (C.6) is used to establish the asymptotic
expansion of µ̃K. Condition (C.7) further imposes restrictions on L and h to ensure the
asymptotic normality. Sufficient conditions for Conditions (C.6) and (C.7) will be discussed
later.

Theorem 1 Under conditions (C.1)-(C.6), if N/L→∞, we have

µ̃K − µ = ψN +OP

(
L

Nhd
+ hq

)
, (3)

where ψN = N−1
∑N

i=1 {δiYi/π(Xi) + (π(Xi)− δi)m(Xi)/π(Xi)− µ}. If we further assume
(C.7), we have √

N(µ̃K − µ)
d→ N(0,Var[ψ]), (4)

where

ψ =
δY

π(X)
+
π(X)− δ
π(X)

m(X).

Equality (3) establishes the asymptotic expansion of µ̃K. The first term ψN is
√
N -

asymptotically normal and has the same asymptotic variance as µ̂K. Hence we have
ψN = OP (1/

√
N) in terms of the convergence rate, which is irrelevant to h and L. Some

calculations can show that the convergence rate of the second term at the right-hand-side
of (3) is minimized if

h �
(
L

N

) 1
d+q

. (5)

With the bandwidth rate given in (5), the convergence rate of µ̃K equals to

OP

(
1√
N

+

(
L

N

) q
d+q

)
.

It can be seen that the number of machines L contributes to this convergence rate. The
minimax rate 1/

√
N provided in Appendix A can be achieved if q ≥ d and L is not too

large, specifically, if L ≤ CN1/2−d/(2q) for some constant C.
The asymptotic normality result (4) follows from Equation (3) provided the second

term at right-hand-side of (3) is of order oP (1/
√
N). It is straightforward to verify Var[ψ]
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equals to the semiparametric efficiency bound provided in Appendix A. When L is too
large, the second term at the right-hand-side of (3) may not get the required convergence
rate. Thus some extra restrictions on L are imposed in Condition (C.7) to ensure the
asymptotic efficiency of µ̃K. The bandwidth satisfying (C.7) exists as long as L satisfies
L/N1/2−d/(2q) → 0. If q in Condition (C.1) is sufficiently large, the requirement on L is
close to L/

√
N → 0, which are also required by many existing divide and conquer methods

to ensure their theoretical properties (Zhang et al., 2013; Lee et al., 2017; Battey et al.,
2018).

3. Sieve-Based Multi–round Method

In the last section, we discuss the KDI method. The method has good asymptotic properties
with very low communication cost. However, according to the discussion in the last section,
the number of machines cannot be too large to ensure the asymptotic efficiency of µ̃K.
This may restrict the application of this method and limit the role of the KDI method in
solving storage and computing problems with large-scale data. In fact, when we average
over multiple nonlinear estimators to obtain the aggregated estimator, strict restrictions
on the machine number are almost inevitable to ensure the

√
N -consistency (Zhang et al.,

2013; Lee et al., 2017; Battey et al., 2018; Jordan et al., 2019). To relax the restriction on
the machine number, we discard the one-shot averaging strategy and propose a multi-round
SDI method in this section. In the following, we propose the multi-round method based on
the sieve method, and then establish its asymptotic properties.

3.1 Methodology

Sieve method is a widely used nonparametric method and has been used to impute the
missing counterfactual value in the causal inference literature (Hahn, 1998; Imbens et al.,
2005). Nevertheless, the investigation on the application of the sieve method to data stored
in a distributed manner is still rare in the literature.

Let {Vk}∞k=1 be a nested sequence of finite-dimensional function classes such that

V2(Rd) = {f(x) : E[f(X)2] <∞} =
∞⋃
k=1

Vk.

For any positive integer K, let {v1(x), . . . , vK(x)} be a set of bases of VK with v1(x) =
1 and let VK(x) = (v1(x), . . . , vK(x))T. The linear combination of v1(x), . . . , vK(x) can
approximate any function in V2(Rd) if K is large. To circumvent the theoretical difficulty
brought by the approximation error, we let K increase to infinity as N → ∞. We use
m̂S(x) = VK(x)Tβ̂ to estimate m(x), where

β̂ = arg min
β

1

N

N∑
i=1

δi
(
Yi − VK(Xi)

Tβ
)2
.

Then µ can be estimated by

µ̂S =
1

N

N∑
i=1

{δiYi + (1− δi)m̂S(Xi)}.
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Here β̂ has the explicit form

β̂ = Σ̂−1Γ̂,

where Γ̂ =
∑N

i=1 δiYiVK(Xi)/N and Σ̂ =
∑N

i=1 δiVK(Xi)VK(Xi)
T/N . The computing time

of µ̂S is Θ(NK2 +K3) when processing all data on a single machine. When data are stored
in a distributed manner, we can first calculate

nl∑
i=n(l−1)+1

δiYiVK(Xi),

on the l-th machine and transmit the resulting K-dimensional vector to the first machine,
where n = N/L is the number of observations in each machine. Then Γ̂ can be gotten by
summing up these vectors and dividing the summations by N . However, to calculate Σ̂,
we need to transmit K ×K matrices and the transmission of K ×K matrices has a high
communication cost if K is large. Most of the time, K is taken to be of the polynomial order
of N to ensure the approximation accuracy of the basis functions. Thus K is usually large
when N is large. Motivated by the communication efficient algorithms in the parametric
model literature (Shamir et al., 2014; Jordan et al., 2019; Fan et al., 2021), we propose a
multi-round algorithm with a low communication cost to approximate β̂. For arbitrary β†,
we have by some simple algebra

1

N

N∑
i=1

δi(Yi − VK(Xi)
Tβ)2

= (β − β†)TΣ̂(β − β†)− 2(β − β†)T(Γ̂− Σ̂β†) + β†TΣ̂β† − 2β†TΓ̂ +
1

N

N∑
i=1

δiY
2
i .

Thus

β̂ = arg min
β
D̂(β, β†),

where

D̂(β, β†) = (β − β†)TΣ̂(β − β†)− 2(β − β†)T(Γ̂− Σ̂β†).

Let Σ̃ = n−1
∑n

i=1 δiVK(Xi)VK(Xi)
T. Since samples are independent and identically

distributed across different machines, Σ̃ is expected to be close to Σ̂. We hence use

D̃(β, β†) = (β − β†)TΣ̃(β − β†)− 2(β − β†)T(Γ̂− Σ̂β†)

to approximate D̂(β, β†). Note that Σ̃ can be calculated with the data in the first ma-
chine solely. Moreover, we can see that Σ̂β† is a vector and the calculation of Σ̂β† only
needs transmission of K-dimensional vectors by noting Σ̂β† =

∑L
l=1 Σ̂lβ

† where Σ̂l =∑nl
i=n(l−1)+1 δiVK(Xi)VK(Xi)

T. Thus to calculate D̃(β, β†), we need not to transmit K×K
matrices. Let ‖ · ‖ be the Euclid/spectral norm of a vector/matrix. Then |D̂(β, β†) −
D̃(β, β†)| ≤ ‖Σ̃ − Σ̂‖‖β − β†‖2. Thus if β is close to β†, the approximation performs well
even if Σ̃ is not that close to Σ̂. In order to get the desired approximation rate, we start at
an initial value β0, and minimize D̃(β, β0) over a small ball around β0. By the equivalence
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of the constrained optimization and the penalized optimization, we minimize the following
loss function

D̃(β, β0) + α‖β − β0‖2, (6)

where α is a tuning parameter. Let β1 be the minimum point of (6), β2 the minimum point
of D̃(β, β1) + α‖β − β1‖2 and let βt be defined in the same way for t > 2. It is not hard to
show that βt has the recursive relation

βt = βt−1 + (Σ̃ + αI)−1(Γ̂− Σ̂βt−1)

= βt−1 + (Σ̃ + αI)−1

(
Γ̂− 1

N

N∑
i=1

δiVK(Xi)VK(Xi)
Tβt−1

)
.

We use β̃ = βT as the approximation of β̂ with T being a properly chosen integer and
propose the following estimator for µ

µ̃S =
1

N

N∑
i=1

{δiYi + (1− δi)m̃S(Xi)},

where m̃S(x) = VK(x)Tβ̃. These procedures are summarized in Algorithm 2.
The proposed SDI method has a computing time of order Θ(NK2/L+K3 + TNK/L)

and a communication complexity of order Θ(TLK). In the next section, we show that taking
T � logN is often sufficient to ensure the statistical accuracy. In this case, the computing
time of the SDI estimator µ̃S is much shorter than that of µ̂S if L is large. Moreover, the
communication complexity of the SDI method is also relatively low as we do not require to
transmit K ×K matrices.

3.2 Theoretical Properties

Next, we establish the theoretical properties of the SDI estimator and show that the SDI
method can accommodate more machines compared to the KDI method while keeping the
theoretical properties.

To show the large sample properties, we need to introduce some conditions. We first
define ζK = supx ‖VK(x)‖. The quantity ζK is important in theoretical development and
can be determined by the basis functions. We have ζK ≤ C

√
K if the basis functions are

tensor products of univariate B-spline, Chebyshev polynomial, trigonometric polynomial
or wavelet bases. Also we have ζK ≤ C

√
K for tensor products of power series if the

support of X is contained in [−1, 1]d. See Newey (1994) and Chen (2007) for more results
on this quantity. For any symmetric matrix A, denote its largest and smallest eigenvalues
by σmax(A) and σmin(A), respectively. Let Σ = E[δVK(X)VK(X)T]. Then we are ready to
introduce the following technical conditions.

(C.8) There are some universal constants CL and CH such that CL ≤ σmin(Σ) ≤ σmax(Σ) ≤
CH.

(C.9) (i) E[m(X)2] ≤ ∞; (ii) there exists a constant r > 0 such that, for any K, there is some

β̄ and γ̄ satisfying E[
(
m(X)− VK(X)Tβ̄

)2
] ≤ CK−2r and E[

(
π(X)−1 − VK(X)Tγ̄

)2
] ≤

CK−2r.
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Algorithm 2 Algorithm for the SDI method

1: Initialize β0 = (0, . . . , 0)T;
2: For each machine, calculate

z0,l =

nl∑
i=n(l−1)+1

δiYiVK(Xi)

in parallel;
3: Transmit z0,l to the first machine for l = 2, . . . , L;
4: For each machine, calculate

Λl =

nl∑
i=n(l−1)+1

δiVK(Xi)VK(Xi)
T

in parallel;
5: Calculate Ψ = (n−1Λ1 + αI)−1 and Γ̂ = N−1

∑L
l=1 z0,l on the first machine;

6: for t = 1, . . . , T do
7: For each machine, calculate

zt,l = Λlβt−1

in parallel;
8: Transmit zt,l, to the first machine for l = 2, . . . , L;

9: Update βt = βt−1 + Ψ(Γ̂−N−1
∑L

l=1 zt,l) and transmit βt to each local machine;
10: end for
11: For each machine, calculate

µ̂
(l)
S =

1

n

nl∑
i=n(l−1)+1

{δiYi + (1− δi)VK(Xi)
TβT }

in parallel;

12: Transmit µ̂
(l)
S to the first machine for l = 2, . . . , L;

13: Calculate µ̃S = L−1
∑L

l=1 µ̂
(l)
S on the first machine;

14: return µ̃S.

(C.10) ζ2K logK/N → 0.

Let CN,K = 1− (1−min{α, 1/ logK})/(1 + 2αCL) where α is the tuning parameter for the
penalty in (6) and assume without loss of generality that logK > 1.

(C.11) (i)ζ4K/N → 0, NK−4r → 0;

(ii)T logC−1N,K − 0.5 logN − log ζK → ∞, where T is the number of iterations which
can be seen as a tuning parameter.

Condition (C.8) is a widely-adopted condition in the literature of sieve method (Newey,
1994; Ai and Chen, 2003; Belloni et al., 2015). The lower bound on the minimum eigen-
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value in (C.8) requires the basis functions not to be too co-linear, which is important for
establishing the optimization property of the iterative algorithm in the SDI method. The
upper bound on the maximum eigenvalue is needed to establish the convergence rate of Σ̃
and Σ̂ to their population counterpart Σ. Condition (C.9)(i) is a mild moment condition
required to establish the probability bound in the proof. Condition (C.9)(ii) imposes some
restrictions on the approximation error. The constant r appearing in (C.9) and (C.11) de-
pends on the dimension of the covariate vector, the smoothness of m(·) and π(·), and the
basis functions. Under Conditions (C.1), (C.2) and (C.3), Condition (C.9)(ii) is satisfied
with r = q/d if the basis functions are tensor products of polynomial functions, B-splines,
trigonometric polynomial functions or wavelet bases (Lorentz, 1986; Chen, 2007). See Chen
(2007) for more results on some common basis functions. Condition (C.11)(i) is related
to the number of basis functions K. Conditions (C.10) and (C.11)(i) are related to the
number of basis functions K. As discussed above, we have ζK ≤ C

√
K for many com-

monly used basis functions. Then Condition (C.10) only requires K logK/N → 0, which
is a mild constraint on K. If ζK ≤ C

√
K, a sufficient condition for Condition (C.11)(i) is

K = o(
√
N) and K−4r = o(1/N). The condition K−4r = o(1/N) can be easily satisfied as

long as K is not too small and r is moderately large. The requirement on upper bound of
the number of basis functions K = o(

√
N) is considerably weaker than that in the exist-

ing literature on mean estimation problem using sieve method. For example, Hahn (1998)
requires K = o(N1/7) and Chan et al. (2016) requires K = o(N1/11). Condition (C.11)(ii)
require the number of iterations not to be too small. If α is bounded as N increases, it is
not hard to verify that there is some constant C > 0 such that logC−1N,K ≥ C for all N .

Then Condition (C.11)(ii) can be satisfied if we take T = C−1 logN + 2C−1 log ζK . This
combined with Condition (C.11)(i) implies that it is sufficient to meet Condition (C.11)(ii)
if we increase the number of iterations with the sample size at a logarithm rate. Then we
are ready to state the theoretical result for the SDI method. For two positive sequences aN
and bN , we denote aN � bN if C−1bN ≤ aN ≤ CbN for any N and some constant C > 1.

Theorem 2 If α � log2K(Lζ2K/N)1/2, then under Conditions (C.2), (C.4), (C.8), (C.9)
and (C.10), we have

µ̃S − µ = ψN +OP

(
ζ2K
N

+
1

K2r

)
+OP

(
ζKC

T
N,K

)
, (7)

where ψN = N−1
∑N

i=1 {δiYi/π(Xi) + (π(Xi)− δi)m(Xi)/π(Xi)− µ}. If we further assume
that (C.11) holds, we have

√
N(µ̃S − µ)

d→ N(0,Var[ψ]),

where

ψ =
δY

π(X)
+
π(X)− δ
π(X)

m(X).

The equality (7) presents the asymptotic expansion of µ̃S. We have ψN = OP (1/
√
N) as in

Theorem 1. The second term at the right-hand-side of (7) depends on K, N , ζK and is inde-
pendent of L. Under Conditions (C.1), (C.2) and (C.3), we have ζK ≤ C

√
K and Condition

(C.9)(ii) is satisfied with r = q/d for the widely used basis functions listed before Theorem

11
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2. Then the second term at the right-hand-side of (7) is of order OP (K/N+1/K2q/d). This
rate is minimized if K � Nd/(d+2q) and the corresponding rate is OP (N−2q/(d+2q)) which is
no slower than OP (1/

√
N) if q ≥ d/2. The third term at the right-hand-side of (7) depends

on K and L through ζK and CN,K (Note that CN,K depends on α � log2K(Lζ2K/N)1/2).
However, for any K and L, we always have CN,K < 1 which implies the quantity ζKC

T
N,K

can be made arbitrarily small by choosing T sufficiently large. If we take

T ≥ 0.5 logN + log ζK

logC−1N,K
, (8)

then we have ζKC
T
N,K ≤ 1/

√
N and hence the third term is of order OP (1/

√
N).

In summary, the minimax rate 1/
√
N provided in Appendix A can be achieved by µ̃S

if (a) ζK ≤ C
√
K and Condition (C.9)(ii) is satisfied with r = q/d; (b) q ≥ d/2; (c)

K � Nd/(d+2q) and the number of iterations T satisfies (8).
Because ψN is

√
N -asymptotically normal with asymptotic variance achieving the semi-

parametric efficiency bound, µ̃S is asymptotically efficient when the second and third terms
at the right-hand-side of (7) are both of order oP (1/

√
N). The second term is oP (1/

√
N)

under Condition (C.11)(i) and the third term is oP (1/
√
N) provided the restriction on K

and T presented in Condition (C.11)(ii) is satisfied. If ζK ≤ C
√
K, Condition (C.9)(ii) is

satisfied with r = q/d and K � Nd/(d+2q), then Condition (C.11)(i) is satisfied as long as
q > d/2. If the number of machine L satisfies

L ≤ CN
2q

d+2q+1 , (9)

then α � log2K(Lζ2K/N)1/2 converges to zero and hence is bounded. According to the
discussion before Theorem 2, it suffices to take T proportionally to logN to fulfill Condition
(C.11)(ii) if ζK ≤ C

√
K, K � Nd/(d+2q) and L satisfies (9). When q is large, the restriction

(9) is close to L ≤ CN which is a mild condition on L.
Notice that both the KDI method and SDI method can achieve the minimax rate and

are asymptotically efficient under certain conditions. However, the KDI method requires

much stronger restrictions on L compared to the SDI method. The reason may be that µ̂
(l)
K

for l = 1, 2, · · · , L are not linearly additive. The bias of the resulting estimator depends on

the biases of µ̂
(l)
K for = 1, 2, · · · , L by their average. The bias of µ̂

(l)
K and µ̃K is large if L is

too large because in this case the sample size on every machine is too small.
In addition, if ζK ≤ C

√
K, Condition (C.9)(ii) is satisfied with r = q/d and K �

Nd/(d+2q), then the SDI can achieve the semiparametric efficiency bound under weaker
smoothness conditions compared to the KDI method (q > d/2 for SDI v.s. q > d for KDI).
This is thanks to the moment condition satisfied by the limitation of β̃. Next, we explain
this phenomenon in detail. Let β∗ = arg minβ E[δ(Y − VK(X)Tβ)2]. The proof of Theorem

2 can show that β̃ converges to β∗ and µ̃S − µ has the following expansion

µ̃S − µ = ψN +OP

(
K

N
+

1

K
q
d

√
K

N

)
+ E[VK(X)Tβ∗ −m(X)] (10)

provided ζK ≤ C
√
K and Condition (C.9)(ii) is satisfied with r = q/d. Here E[VK(X)Tβ∗−

m(X)] is the bias term caused by using basis functions to approximate the true conditional

12
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mean function. A natural idea to bound the approximation error is to invoke Jensen’s
inequality, that is,

E[VK(X)Tβ∗ −m(X)] ≤
√

E
[
(VK(X)Tβ∗ −m(X))2

]
.

Note that, under Condition (C.2), we have

E
[(
VK(X)Tβ∗ −m(X)

)2]
= E

[
δ

π(X)

(
VK(X)Tβ∗ −m(X)

)2]
≤ CE

[
δ
(
VK(X)Tβ∗ −m(X)

)2]
≤ CE

[
δ
(
VK(X)Tβ̄ −m(X)

)2]
≤ CE

[(
VK(X)Tβ̄ −m(X)

)2]
(11)

for the β̄ in Condition (C.9)(ii). This implies E[VK(X)Tβ∗−m(X)] ≤ CK−q/d if Condition
(C.2) holds and Condition (C.9)(ii) is satisfied with r = q/d. Combining this bound with
(10), it will conclude that q > d is required to assure the asymptotic efficiency. This
requirement is the same as that of the KDI method. However, we find that β∗ satisfies the
moment condition E

[
δVK(X)

(
Y − VK(X)Tβ∗

)]
= 0 which implies

E
[
δVK(X)

(
m(X)− VK(X)Tβ∗

)]
= 0. (12)

Next, we show how this moment condition can sharpen the bound on the approximation
error and weaken the smoothness condition required for asymptotic efficiency. According
to (12), we have

E
[
δγTVK(X)

(
m(X)− VK(X)Tβ∗

)]
= 0

for any γ. Thus we have

E[VK(X)Tβ∗ −m(X)] = E

[
δ

π(X)

(
VK(X)Tβ∗ −m(X)

)]
= E

[
δ

(
1

π(X)
− VK(X)Tγ

)(
VK(X)Tβ∗ −m(X)

)]
− E

[
δγTVK(X)

(
m(X)− VK(X)Tβ∗

)]
= E

[
δ

(
1

π(X)
− VK(X)Tγ

)(
VK(X)Tβ∗ −m(X)

)]

≤

√√√√E

[
δ

(
1

π(X)
− VK(X)Tγ

)2
]√

E
[
(VK(X)Tβ∗ −m(X))2

]

≤ C

√√√√E

[(
1

π(X)
− VK(X)Tγ

)2
]√

E
[(
VK(X)Tβ̄ −m(X)

)2]
(13)
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for any γ under Condition (C.2) according to (11). By the arbitrariness of γ, we have

E[VK(X)Tβ∗ −m(X)] ≤ C

√√√√E

[(
1

π(X)
− VK(X)Tγ̄

)2
]√

E
[(
VK(X)Tβ̄ −m(X)

)2]
≤ CK−

2q
d

if Conditions (C.2) holds and Condition (C.9)(ii) is satisfied with r = q/d. Combining this
with (10), we conclude that q > d/2 is sufficient to assure the asymptotic efficiency of the
SDI method.

Inequality (13) also implies that the bias caused by the approximation error is small
if one of m(x) and 1/π(x) can be approximated well by the basis functions used. The
phenomenon can benefit the finite sample bias of µ̃S and may provide some insights for
practitioners on basis functions selection. See Section 5.3 for more simulation evidence.

4. A Distributed Tuning Parameter Selection Procedure

For the implementation of the proposed methods, we recommend taking the bandwidth h =
c(L/N)1/(2d+1) in the KDI method and the number of basis functions K = dcNd/(2d+1)e in
the SDI method. Here d·e means to round up. We choose these rates because the conditions
of Theorems 1 and 2 can be satisfied under mild conditions on L and the smoothness of
m(·), π(·) if such rates are used according to the discussion behind Theorems 1 and 2.

The asymptotic normality results of the estimators µ̃K and µ̃S imply that the tuning
parameters h and K affect only the second order term in the asymptotic expansion of
the estimators. Therefore, the value of tuning parameters does not affect the estimators’
convergence rate and asymptotic distribution as long as conditions such as (C.7) and (C.11)
are satisfied. This phenomenon is also discussed in Cheng (1994); Wang and Rao (2002)
and other papers. Thus, the choice of the constant c is not that crucial from the asymptotic
point of view. However, in practice, the performance of the proposed estimators may be
sensitive to the constant c when the sample size is not sufficiently large and the dimension
of covariates is relatively high, as can be seen in the simulation in Section 5.2. Thus we
next provide a selection procedure for h and K. In the following, we use c to denote a
generic tuning parameter whose value may be different in different places and let C be the
candidate set of c. Cross-validation (CV) is one of the most commonly used methods to
select tuning parameters. But it suffers from several problems when directly applying the
CV method to the problem considered here.

The first problem is caused by missing data. When applying the CV method, we first
divide the data set into two parts: the “training data” and the “test data”. Let Itr and
Ite be the index set of training data and test data, respectively. For each c ∈ C, suppose
m̂tr,c(x) is the imputation function based on the training data using the tuning parameter c.
For the KDI method, m̂tr,c(x) is obtained by the Nadaraya-Watson kernel regression similar
to m̂K(x). For the SDI method, m̂tr,c(x) is obtained by the sieve least squares regression
similar to m̂S(x). Then we calculate the criterion based on the squared prediction error

|Ite|−1
∑
i∈Ite

(Yi − m̂tr,c(Xi))
2 , (14)

14
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where we use | · | to denote the cardinal of a set. The classical CV method repeats the
data-splitting procedure for κ times and chooses the c ∈ C that minimizes (14) on average.

The values of Y corresponding to δ = 0 are missing for missing responses problems.
Hence the criterion function (14) is unavailable in practice. The most direct idea is to work
with the observed version of (14)

|Ite,1|−1
∑
i∈Ite,1

(Yi − m̂tr,c(Xi))
2 , (15)

where Ite,1 = {i : i ∈ Ite, δi = 1} is the index set of complete cases in the test data.
Nevertheless, the accuracy of missing data imputation is what we really concern. Similar
to (14), the imputation accuracy can be characterized by

|Ite,0|−1
∑
i∈Ite,0

(Yi − m̂tr,c(Xi))
2 , (16)

where Ite,0 = {i : i ∈ Ite, δi = 0}. Clearly, the criterion (16) is unobservable because
Yi is unavailable for i ∈ Ite,0. To resolve this problem, we integrate out the unobserved
responses by taking conditional expectation and try to approximate (16) with observed
data by approximating its conditional expectation. Conditional on the training data and
{(δi, Xi)}i∈Ite , the expectation of (16) is

|Ite,0|−1
∑
i∈Ite,0

[
(m(Xi)− m̂tr,c(Xi))

2 + σ2(Xi)
]

=

∫ [
(m(x)− m̂tr,c(x))2 + σ2(x)

]
dF̂te,0(x).

(17)

where F̂te,0(x) = |Ite,0|−1
∑

i∈Ite,0 1{Xi ≤ x} is the empirical covariate distribution function

for i ∈ Ite,0. This conditional expectation usually differs from that of (15), which is∫ [
(m(x)− m̂tr,c(x))2 + σ2(x)

]
dF̂te,1(x)

with F̂te,1(x) = |Ite,1|−1
∑

i∈Ite,1 1{Xi ≤ x}, because F̂te,0 6= F̂te,1 in general. To get a better

approximation, we consider a weighted version of (15)∑
i∈Ite,1

wi (Yi − m̂tr,c(Xi))
2 , (18)

where wi is the weight for the i-th observation with i ∈ Ite,1. Conditional on the training
data and {(δi, Xi)}i∈Ite , the expectation of (18) is∫ [

(m(x)− m̂tr,c(x))2 + σ2(x)
]
dF̂wte,1(x), (19)

where F̂wte,1(x) =
∑

i∈Ite,1 wi1{Xi ≤ x} is the weighted empirical covariate distribution

function for i ∈ Ite,1. The quantity (19) is close to (17) if F̂wte,1 is close to F̂te,0. This
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motivates us to choose the weights such that F̂wte,1(x) has moments identical to those of

F̂te,0(x). We use the first and second moments in practice for computation consideration.

For s = 0, 1, let i
(s)
1 , . . . , i

(s)
|Ite,s| be the indices in Ite,s arranged in an ascending order. Let Us

be the matrix whose k-th row is(
1, X

i
(s)
k 1

, . . . , X
i
(s)
k d

, X2

i
(s)
k 1

, X
i
(s)
k 1

X
i
(s)
k 2

, . . . , X
i
(s)
k 1

X
i
(s)
k d

, X2

i
(s)
k 2

, X
i
(s)
k 2

X
i
(s)
k 3

, . . . , X2

i
(s)
k d

)
,

where X
i
(s)
k j

is the j-th element of X
i
(s)
k

for k = 1, . . . , |Ite,s| and s = 0, 1. Let Ū0 =

|Ite,0|−1UT
0 1te,0 where 1te,0 is a |Ite,0|-dimensional vector of 1’s. Then the first and second

moments of F̂wte,1 and F̂te,0 are identical if and only if UT
1 w = Ū0 where w = (wi1 , . . . , wi|Ite,1|)

T

is the vector of weights. The linear system UT
1 w = Ū0 might have multiple solutions. In

practice, we do not want the weights to be too large or too small. Thus among the weight
vectors that solve UT

1 w = Ū0, we prefer the one that is closest to the uniform weight
wuni = |Ite,1|−11te,1. Here 1te,1 is a |Ite,1|-dimensional vector of 1’s. This motivates us to
obtain the weights via solving the following optimizing problem

min
w
‖w − wuni‖2

s.t. UT
1 w = Ū0.

(20)

On the other hand, UT
1 w = Ū0 may have no solution and the feasible set of (20) may

be empty. To mitigate, we relax the constrain in (20) to w ∈ argmin ‖UT
1 w − Ū0‖2. It

is straightforward to verify that w is a minimum point of ‖UT
1 w − Ū0‖2 if and only if

U1U
T
1 w = U1Ū0 and this leads to the problem

min
w
‖w − wuni‖2

s.t. U1U
T
1 w = U1Ū0.

(21)

It is easy to verify that (21) is equivalent to (20) if the feasible set of (20) is non-empty. By
some algebra, the solution of (21) has the following closed form

wuni − U1U
T
1 (U1U

T
1 U1U

T
1 )−(U1U

T
1 wuni − U1Ū0), (22)

where A− denotes the generalized inverse of A for any matrix A. In practice, UT
1 U1 is

usually invertible as long as |Ite,1| > d(d+ 2)/2, that is, U1 has more rows than columns. If
UT
1 U1 is invertible, some algebra can show that the expression (22) can be further simplified

to wuni−U1(U
T
1 U1)

−1(UT
1 wuni− Ū0). In this case, the calculation of the weights is fast with

a computing time of order Θ(N).
Besides the problem caused by missing data, both (15) and (18) are computationally

cumbersome in the distributed data setting. To show this, we consider (15) for illustration.
Suppose m̂tr,c(x) is obtained by kernel regression based on the training data. Then for each
c ∈ C, the computing time and communication complexity for obtaining (15) are Θ(κN2/L)
and Θ(κLN), respectively, where κ is the number of repeated splittings in CV. If m̂tr,c(x)
is obtained by the sieve least squares regression based on the training data, the computing
time and communication complexity become Θ(κNK/L+κK3) and Θ(κLK2), respectively.
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By plugging in K = cNd/(2d+1), the computing time and communication complexity are
Θ(κN (3d+1)/(2d+1)/L + κN3d/(2d+1)) and Θ(κLN2d/(2d+1)), respectively. These computing
and communication costs are all high if N and κ are large.

In this section, we propose a distributed CV method to reduce the communication cost
and the computing time. Specifically, we split the data on the l-th machine into training

and test data for l = 1, . . . , L. Let I
(l)
tr and I

(l)
te be the index set of training data and test

data on the l-th machine. I
(l)
te,1, I

(l)
te,0, U

(l)
1 , U

(l)
0 and Ū

(l)
0 are defined in the same way as Ite,1,

Ite,0, U1 , U0 and Ū0 with the whole data set replaced by the data on the l-th machine.
Then for each c ∈ C, we calculate the criterion

Ql(c) =
∑
i∈I(l)te,1

w
(l)
i

(
Yi − m̂(l)

tr,c(Xi)
)2
,

and choose the constant c which minimizes L−1
∑L

l=1Ql(c). Here the weights w
(l)
i are

obtained via equation (22) with wuni, U1 , U0 and Ū0 replaced by w
(l)
uni, U

(l)
1 , U

(l)
0 and Ū

(l)
0 ,

respectively, where w
(l)
uni = |I(l)te,1|−11

(l)
te,1 and 1

(l)
te,1 is a |Ite,1|-dimensional vector of 1’s. For

the KDI method, m̂
(l)
tr,c(x) is obtained via the kernel regression based on the training data on

the l-th machine with bandwidth c|I(l)tr |−1/(2d+1). For the SDI method, m̂
(l)
tr,c(x) is obtained

by the sieve least squares regression based on the training data on the l-th machine with

dc|I(l)tr |d/(2d+1)e basis functions. At the beginning of this section, we recommend the rates
for h and K according to some theoretical considerations. Thus we determine the rate of

the tuning parameters used in m̂
(l)
tr,c(x) according to the size of the training data and select

the constant in front of the rate here.

In classical CV, the data-splitting procedure is repeated many times to make the selec-
tion more stable. In the proposed distributed CV procedure, we split the data and calculate
the criterion on each machine in parallel. The criteria calculated on different machines are
independent and identically distributed. Thus by taking the average over different machines,
we obtain a stable criterion and we do not need to repeat the data-splitting procedure. In
our exploratory simulation study, little benefit is observed if we repeat the data-splitting
procedure on each machine for several times.

Next, we summarize the above procedures and propose a CV method for selecting c
for the KDI method in Algorithm 3. We refer to the proposed novel CV method as the
distributed weighted cross-validation (DWCV) algorithm. In the following algorithm, we use
half of the data on each machine as the training data and half as the test data. The DWCV
algorithm avoids the high communication cost and the repetition of data-splitting in classical
CV. It also adjusts the bias caused by using observed data to evaluate the missing data
imputation accuracy via a computationally simple weighting procedure. The computing

time of the weight w(l) is of order Θ(N/L) if U
(l)T
1 U

(l)
1 is invertible and of order Θ(N3/L3)

otherwise. We focus on the former case in the computing time analysis because U
(l)T
1 U

(l)
1

is usually invertible as long as n > d(d + 2) and the relationship n > d(d + 2) is likely to
hold for large-scale data set. For each c ∈ C, the computing time and the communication
complexity of the DWCV algorithm for the KDI method are of order Θ(N2/L2) and Θ(L)

if U
(l)T
1 U

(l)
1 is invertible for l = 1, . . . , L. Thus, the DWCV algorithm for the KDI method
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Algorithm 3 DWCV algorithm for the KDI method

1: Initialization: a candidate set C = {c1, . . . , cJ };
2: Split data on the l-th machine into training data of size n/2 with index set I

(l)
tr and test

data of size n/2 with index set I
(l)
te for l = 1, . . . , L;

3: for j = 1, . . . ,J do;
4: For each machine,

5: if U
(l)T
1 U

(l)
1 is invertible then

6: calculate the weight vector

w(l) = w
(l)
uni − U

(l)
1 (U

(l)T
1 U

(l)
1 )−1(U

(l)T
1 w

(l)
uni − Ū

(l)
0 ),

7: else
8: calculate the weight vector

w(l) = w
(l)
uni − U

(l)
1 U

(l)T
1 (U

(l)
1 U

(l)T
1 U

(l)
1 U

(l)T
1 )−(U

(l)
1 U

(l)T
1 w

(l)
uni − U

(l)
1 Ū

(l)
0 );

9: end if
10: Take htr = cj(2/n)1/(2d+1);
11: For each machine, calculate the weighted predicting error

E
(l)
j =

∑
i∈I(l)te,1

w
(l)
i

(
Yi − m̂(l)

tr,c(Xi)
)2
,

where w
(l)
i is the |{k : k ≤ i, k ∈ I(l)te,1}|-th component of w(l) and

m̂
(l)
tr,c(x) =

∑
i∈I(l)tr

Khtr(Xi − x)δiYi∑
i∈I(l)tr

Khtr(Xi − x)δi
;

12: Transmit E
(l)
j to the first machine for l = 2, . . . , L;

13: Calculate Ej = L−1
∑L

l=1E
(l)
j on the first machine;

14: end for
15: Select the tuning parameter cj∗ with j∗ = argminj=1,...,J Ej .

has a much shorter computing time and a much lower communication cost compared to
those of the CV method based on (15) and the kernel regression.

A similar procedure to Algorithm 3 can be used to select the constant c for the SDI
method. Here we make a modification for computation considerations. For the SDI method,
the computing time and communication complexity are relevant to the number of basis func-
tions K and hence the constant c. A larger c results in a longer computing time and higher
communication complexity. See Table 6 in the simulation section for an illustration. Hence
we prefer a smaller c if a larger c does not bring about a significant accuracy improvement.
Thus in the DWCV algorithm for the SDI method, we evaluate the candidate constants
from the smallest to the largest. We stop the loop and select the current c if the weighted
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prediction error does not change significantly from the current c to the next. The procedure
is summarized in Algorithm 4.

Algorithm 4 DWCV algorithm for the SDI method

1: Initialization: a candidate set C = {c1, . . . , cJ } with the numbers arranged in an
ascending order;

2: Split data on the l-th machine into training data of size n/2 with index set I
(l)
tr and test

data of size n/2 with index set I
(l)
te for l = 1, . . . , L;

3: for j = 1 . . . ,J do;

4: if U
(l)T
1 U

(l)
1 is invertible then

5: calculate the weight vector

w(l) = w
(l)
uni − U

(l)
1 (U

(l)T
1 U

(l)
1 )−1(U

(l)T
1 w

(l)
uni − Ū

(l)
0 ),

6: else
7: calculate the weight vector

w(l) = w
(l)
uni − U

(l)
1 U

(l)T
1 (U

(l)
1 U

(l)T
1 U

(l)
1 U

(l)T
1 )−(U

(l)
1 U

(l)T
1 w

(l)
uni − U

(l)
1 Ū

(l)
0 );

8: end if
9: Take Ktr = dcj(n/2)d/(2d+1)e;

10: For each machine, calculate

Σ̂(l) =
2

n

∑
i∈I(l)tr

δiVKtr(Xi)VKtr(Xi)
T,

and

β̂(l) =
(

Σ̂(l)
)−1 2

n

∑
i∈I(l)tr

δiYiVKtr(Xi);

11: For each machine, calculate the weighted predicting error

E
(l)
j =

∑
i∈I(l)te,1

w
(l)
i

(
Yi − m̂(l)

tr (Xi)
)2
,

where w
(l)
i is the |{k : k ≤ i, k ∈ I(l)te,1}|-th component of w(l) and

m̂
(l)
tr,c(x) = VKtr(x)Tβ̂(l);

12: Transmit E
(l)
j to the first machine for l = 2, . . . , L;

13: Calculate Ej = L−1
∑L

l=1E
(l)
j on the first machine;

14: If (Ej−1 − Ej)/Ej−1 < 0.01, set Ek =∞ for k = j . . . ,J and break;
15: end for
16: Select the tuning parameter cj∗ with j∗ = argminj=1,...,J Ej .
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For each c ∈ C, the DWCV algorithm for the SDI method has a computing time and
a communication complexity of order Θ((N/L)(3d+1)/(2d+1) + (N/L)3d/(2d+1)) and Θ(L)

when U
(l)T
1 U

(l)
1 is invertible for l = 1, . . . , L. It can be seen that the DWCV algorithm

for the SDI method makes a significant improvement on both the computing time and the
communication complexity compared to the CV method based on (15) and the sieve least
squares regression.

5. Simulation Study

In this section, simulation studies were conducted to evaluate the performance of the two
proposed distributed nonparametric regression imputation methods. We first examine the
effect of the covariate dimension and machine number on the estimation accuracy and
computation time of the KDI and SDI methods. We then illustrate the performance of
the DWCV algorithm in tuning parameter selection. In addition, we provide simulation
evidence for the bias reduction property of the SDI method discussed at the end of Section
3.2.

5.1 Performance under Different d and L

The d-dimensional covariate X is used to impute the missing response Y in the simulation.
We consider two scenarios with different values of d to evaluate the impact of the covariate
dimension. First, a random vector Z = (Z1, Z2, Z3, Z4, Z5) is generated where Zj ∼ N(0, 1)
for j = 1, 2, 3 and Zj ∼ U(−1, 1) for j = 4, 5. We set X = Z in the first scenario while
X = (Z,Z ′, Z ′′) in the second scenario, where Z ′ and Z ′′ are two independent duplications
of Z. Clearly, d = 5 in the first scenario and d = 15 in the second. In both scenarios, the
response is generated from

Y = 2 + 0.5Z1 + 0.5Z2 + 0.5Z3 + 0.5Z4 + Z5 + ε

with ε ∼ N(0, 1), and the missing mechanism is set to be

P(δ = 1 | Z) = 0.5× exp(Z1 + Z2 + Z3 + Z4 + Z5)

1 + exp(Z1 + Z2 + Z3 + Z4 + Z5)
+ 0.5.

We fix the total sample sizeN = 2×105 and vary the number of machines L = 10, 20, 50, 100,
200, and 500 to evaluate the effect of machine number. The proposed distributed imputation
estimators are compared with three other estimators: the single machine (SGM) estimators
calculated by the classical kernel and sieve methods using the data on a single machine; the
complete-case estimator given by the sample mean of observed responses; and the oracle
estimator given by the sample mean of all responses. The oracle estimator is infeasible in
practice, and here we use it as the gold standard. We generate 200 Monte Carlo random
samples to evaluate the performance of the different estimators in the two scenarios. In the
simulation, the bias and standard error (SE) of the oracle estimator are 0.000 and 0.003,
respectively. The complete-case estimator has a large bias, 0.208, which makes its small
SE, 0.004, meaningless.

A kernel function of order 20 based on Legendre Polynomial (Berlinet, 1993) is used
to implement the kernel regression imputation method. Motivated by the rate given at
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the beginning of Section 4, we use the bandwidth h = c(L logL/N)1/(2d+1). Here we add
a factor of logL as it can improve the finite sample performance of the KDI estimators.
The constant c is taken to be 1.3 when d = 5 and 1.7 when d = 15. Further simulations
on the selection of tuning parameters are presented in the next section. Figure 1 contains
the box plots of kernel-based SGM estimators and KDI estimators with different covariate
dimensions and numbers of machines.
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(a) Kernel-based SGM estimators with d = 5.
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(d) KDI estimators with d = 15.

Figure 1: Box-plots of the kernel-based estimators. Dashed line: the true parameter µ = 2.
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The box plots show that the performance of the KDI estimators is more stable compared
to the kernel-based SGM estimators. The bias and SE of these estimators are calculated in
Table 1.

SGM KDI

d L Bias SE Bias SE

5

10 0.000 0.013 0.000 0.004
20 -0.001 0.017 0.000 0.004
50 -0.006 0.028 -0.001 0.004
100 -0.008 0.038 -0.002 0.004
200 -0.016 0.047 -0.006 0.004
500 -0.035 0.080 -0.017 0.004

15

10 -0.001 0.011 -0.001 0.004
20 -0.013 0.015 -0.013 0.004
50 -0.035 0.025 -0.038 0.004
100 -0.059 0.039 -0.065 0.004
200 -0.098 0.054 -0.100 0.004
500 -0.156 0.086 -0.172 0.004

Table 1: The bias and SE of the kernel-based estimators.

In the first scenario (d = 5), it can be seen that the kernel-based SGM estimators and
KDI estimators have a much smaller bias compared to the complete-case estimator. The
kernel-based SGM estimators have large SE, especially when the number of machines is
large. In contrast, the KDI estimators have comparable performance as the oracle estimator
when the number of machines is no more than 100. The SE of the KDI estimators remains
small even though the number of machines is large. The bias is a little large when L = 500.

In the second scenario (d = 15), the SE of the kernel-based SGM estimators and the
KDI estimators is similar to those in the first scenario. The bias, however, is larger than
that in the first scenario, especially when L is large. Unlike the case of d = 5, the KDI
estimators have comparable performance as the oracle estimator only when L = 10. This
is consistent with the previous discussion on the theoretical results.

For the SDI method, we use the tensor product of polynomials as basis functions and
let K = dcNd/(2d+1)e. We take the constant c to be 0.5 when d = 5 and 0.9 when d = 15.
Figure 2 shows the box plots of sieve-based SGM estimators and SDI estimators with
different covariate dimensions and numbers of machines.

It can be seen that the SDI estimators perform much better than the sieve-based SGM
estimators in both scenarios, especially when L is 100, 200, and 500. The bias and SE of
these estimators are summarized in Table 2.

The SDI estimators perform similarly to the oracle estimator in terms of bias and SE
regardless of how large L is in the first scenario (d = 5). In the second scenario (d = 15),
the bias and SE of the sieve-based SGM and SDI estimators are similar to those in the first
scenario. This implies that the larger covariate dimension has little effect on the accuracy
of the SDI estimators. Moreover, the bias of the SDI estimator is much smaller than that
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(a) Sieve-based SGM estimators with d = 5.
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(c) Sieve-based SGM estimators with d = 15.
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(d) SDI estimators with d = 15.

Figure 2: Box plots of the sieve-based estimators. Dashed line: the true parameter µ = 2.

of the KDI estimators when L is large in the second scenario. This illustrates the capacity
of the SDI method to accommodate a large number of machines.

To further explore the performance of the proposed methods under different data gener-
ation processes (DGPs), we consider another DGP in which the response is generated from
a more complex model

Y = 2 + sin(Z1 + Z2 + Z3) + 2Φ−1(0.5Z4 + 0.5) + 2Φ−1(0.5Z5 + 0.5) + ε,
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SGM SDI

d L Bias SE Bias SE

5

10 0.000 0.011 0.000 0.004
20 0.000 0.015 0.000 0.004
50 -0.001 0.026 0.000 0.004
100 0.001 0.036 0.000 0.004
200 0.000 0.046 0.000 0.004
500 0.007 0.074 0.000 0.004

15

10 0.000 0.011 0.000 0.003
20 0.001 0.014 0.000 0.003
50 0.002 0.023 0.000 0.003
100 0.004 0.036 0.000 0.003
200 -0.002 0.049 0.000 0.003
500 0.009 0.077 0.000 0.003

Table 2: The bias and SE of the sieve-based estimators.

where ε ∼ N(0, 1) and other simulation settings are the same as before. To distinguish
the two settings, we call the previous DGP the linear setting and call the DGP considered
here the nonlinear setting. In the simulation, the bias and standard error (SE) of the
oracle estimator are 0.000 and 0.007, respectively. The complete-case estimator still has
a large bias, 0.326, and a small SE, 0.008. Figure 3 shows the box plots of kernel-based
SGM estimators and KDI estimators with different covariate dimensions and numbers of
machines. Table 3 presents the bias and SE of these estimators.

SGM KDI

d L Bias SE Bias SE

5

10 0.002 0.024 0.002 0.007
20 0.001 0.031 0.002 0.007
50 -0.003 0.055 0.002 0.007
100 -0.004 0.071 0.002 0.007
200 -0.010 0.097 0.001 0.007
500 -0.009 0.157 -0.005 0.007

15

10 0.036 0.024 0.035 0.007
20 0.020 0.033 0.025 0.007
50 -0.018 0.055 -0.001 0.008
100 -0.068 0.080 -0.034 0.007
200 -0.143 0.106 -0.083 0.007
500 -0.217 0.133 -0.173 0.007

Table 3: The bias and SE of the kernel-based estimators in the nonlinear setting.
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(a) Kernel-based SGM estimators with d = 5.
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(c) Kernel-based SGM estimators with d = 15.
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(d) KDI estimators with d = 15.

Figure 3: Box-plots of the kernel-based estimators in the nonlinear setting. Dashed line:
the true parameter µ = 2.

The simulation results for the first scenario (d = 5) are similar to those in the linear
setting. For the second scenario (d = 15), we find that the bias of the KDI estimators
has a drastic change as L changes and is large for most L’s. Combining this with the
performance of the KDI estimators in the linear setting with d = 15, we regard the KDI
method as unreliable when d = 15 under the sample size considered in the simulation.
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The box plots of sieve-based SGM estimators and SDI estimators with different covariate
dimensions and numbers of machines are presented in Figure 4. Table 4 presents the bias
and SE of these estimators.
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(a) Sieve-based SGM estimators with d = 5.

1
.6

1
.8

2
.0

2
.2

2
.4

10 20 50 100 200 500

L

(b) SDI estimators with d = 5.

1
.6

1
.8

2
.0

2
.2

2
.4

L

10 20 50 100 200 500
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(d) SDI estimators with d = 15.

Figure 4: Box plots of the sieve-based estimators in the nonlinear setting. Dashed line: the
true parameter µ = 2.

Similar phenomenons as those under the linear setting can be observed in Fig. 4 and
Table 4. The SDI estimators outperform the SGM estimators for all L and d. By com-
paring the performance of the SDI method under two settings, we find that the bias of
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SGM SDI

d L Bias SE Bias SE

5

10 0.032 0.153 0.007 0.007
20 0.016 0.095 0.006 0.007
50 0.023 0.071 0.006 0.007
100 0.016 0.051 0.005 0.007
200 0.009 0.031 0.005 0.007
500 0.004 0.023 0.005 0.007

15

10 0.033 0.156 0.009 0.007
20 0.016 0.099 0.009 0.007
50 0.023 0.073 0.008 0.007
100 0.021 0.054 0.008 0.007
200 0.018 0.031 0.008 0.007
500 0.018 0.023 0.008 0.007

Table 4: The bias and SE of the sieve-based estimators in the nonlinear setting.

SDI estimators is smaller in the linear setting. This is consistent with our discussion at
the end of Section 3.2. In the linear setting, the approximation error of the basis functions
concerning the true conditional mean function is zero as we use polynomials as the basis
functions, resulting in a small finite sample bias. Further explorations about the impact of
the approximation error on SDI estimators can be found in Section 5.3.

Besides the estimation accuracy, we also evaluated the computation efficiency of the
proposed distributed estimators. We compare the computing time of the KDI and SDI
estimators for different numbers of machines with that of the classical non-distributed es-
timators which are computed using the whole data on one machine. All computations
are performed in the R Programming (R Core Team, 2016) using a windows server with
a 24-core processor and 128GB RAM. Table 5 presents CPU times (in seconds) required
to obtain the proposed distributed estimators and the classical estimators under different
settings with different d.

Table 5 shows that the computing times of KDI and SDI methods decrease as the
number of machines increases. The KDI and SDI methods have a significantly shorter
computing time than the classical regression imputation method. The SDI method has a
shorter computing time than the KDI method when L is no larger than 50. When L is no
smaller than 100, the KDI method is faster. This might be because the computing time of
the KDI method is theoretically proportional to n2 = N2/L2 which decreases at the rate of
1/L2 as L increases and the computing time of the SDI method does not decrease at such
a fast rate.

As seen from Table 5, the computing time of the classical sieve regression imputation
estimator is not that long. Therefore, we consider a larger N = 2× 106 to further demon-
strate the SDI method’s effectiveness. The computing times of the SDI estimators with L =
10, 20, 50, 100, 200, 500 are 559.08, 428.01, 229.62, 80.92, 47.60, 26.34, respectively, while
the computing time of the classical sieve regression imputation estimator is 4003.38. The
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Linear Noninear

L d = 5 d = 15 d = 5 d = 15

KDI

10 310.10 1037.62 220.99 995.49
20 57.44 236.55 37.33 229.99
50 6.58 18.58 4.28 18.30
100 1.68 3.16 1.11 3.18
200 0.45 0.79 0.30 0.80
500 0.09 0.14 0.06 0.14

Non-Dist 42582.79 131884.11 45299.34 132325.88

SDI

10 10.80 34.20 10.82 30.97
20 7.025 19.08 7.01 19.66
50 3.30 10.35 3.32 10.25
100 2.10 6.37 2.04 6.54
200 1.15 3.89 1.16 3.69
500 0.57 2.47 0.54 2.31

Non-Dist 50.42 122.88 49.99 122.22

Table 5: CPU times of the classical non-distributed kernel/sieve estimators and the KDI
and SDI estimators with different L.

proposed SDI method can reduce the computing time from over one hour to a few minutes
when the number of machines is sufficiently large. Comparing this result to those in Table
5, we can see that the improvement in terms of the computational time is more significant
for a larger sample size.

5.2 Tuning Parameter Selection

In this subsection, we evaluate the performance of the proposed distributed CV strategy.
We consider the candidate set C = {0.1, 0.5, 0.9, 1.3, 1.7, 2.1} for c. In this subsection, we
set L = 100 and examine the effect of different c’s and d’s. Table 6 presents the computing
time of the KDI/SDI estimators in the nonlinear setting with d = 5, L = 100 and different
c’s in C.

c 0.1 0.5 0.9 1.3 1.7 2.1

KDI 1.54 1.54 1.55 1.56 1.56 1.51
SDI 0.32 1.79 3.45 6.01 9.51 12.56

Table 6: CPU times of the KDI/SDI estimators in the nonlinear setting with d = 5, L = 100
and different c’s in C.
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From Table 6, the computing time of the KDI estimator is similar for different c, while
that of the SDI estimator is longer for larger c. This verifies the motivation of the preference
in smaller c in Algorithm 4.

Further, we compare the RMSE of the KDI/SDI estimator under the selected c with that
of the KDI/SDI estimators under different c’s in C. Figures 5 and 6 present the simulation
results in the linear and nonlinear settings, respectively.
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Figure 5: Comparison of RMSE in the linear setting with L = 100. Solid line: the RMSE of
KDI and SDI estimators with different c respectively in the linear setting. Dashed
line: the RMSE of KDI and SDI estimators estimator with selected bandwidth
by the proposed DWCV algorithm.
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Figure 6: Comparison of RMSE in the nonlinear setting with L = 100. Solid line: the
RMSE of KDI and SDI estimators with different c in the nonlinear setting.
Dashed line: the RMSE of KDI and SDI estimators with selected bandwidth
by the proposed DWCV algorithm.

As can be seen, the KDI estimator with constant selected via the proposed DWCV
algorithm has the smallest RMSE among estimators with different candidate constants in
both the linear and nonlinear setting when d = 5. When d = 15, the estimator with CV
selected constant still has a performance close to the optimal candidate constant.

The performance of the SDI method is similar for different constants in the linear setting,
which is also similar to the performance of the SDI method with the constant selected by
the proposed DWCV algorithm. In the nonlinear setting, the proposed DWCV algorithm
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is able to select the smallest constant with a nearly optimal performance, which is in line
with our design intention.

In addition, we conducted an ablation study to examine the effectiveness of weighting
and distributed calculation procedure in the proposed DWCV algorithm. We delegate it to
the Appendix due to limited space.

5.3 The Approximation Error of the SDI Method

In this section, we provide further simulation evidence on the phenomenon discussed at the
end of Section 3.2. The simulation in Section 5.1 has shown that the SDI method has a
small bias if m(x) can be approximated well by the basis functions used. In this section,
we show that this is also true if 1/π(x) can be approximated well by the basis functions
used. To this end, we consider another simulation setting which is the same as the nonlinear
setting considered in Section 5.1 except that the missing mechanism is

P(δ = 1 | Z) =
1

1 + (Z1 + Z2 + Z3 + Z4 + Z5 − 0.5)2
.

Here we still consider two scenarios with X = Z (d = 5) and X = (Z,Z ′, Z ′′) (d = 15).
Under the mechanism considered here, 1/π(x) is a polynomial of x; hence, the SDI method
has a small approximation error under this setting according to the analysis at the end of
Section 3.2. We evaluate the performance of the SDI estimators with d = 5 and 15 based
on 200 Monte Carlo random samples. In this simulation, the bias and standard error (SE)
of the oracle estimator are 0.000 and 0.007, respectively. The complete-case estimator has
a bias 0.364 and a SE 0.009, which are both slightly larger than those under the nonlinear
setting in Section 5.1. Moreover, the missing rate is about 55.9%, which is much larger than
the missing rate 25.0% under the nonlinear setting in Section 5.1. The bias and SE of SDI
estimators under this setting are summarized in Table 7.

d = 5 d = 15

L Bias SE Bias SE

10 0.000 0.010 0.002 0.010
20 0.000 0.010 0.002 0.010
50 0.000 0.010 0.003 0.010
100 0.000 0.010 0.004 0.010
200 0.000 0.010 0.005 0.010
500 0.001 0.010 0.007 0.010

Table 7: The bias and SE of the SDI method when 1/π(x) can be approximated well.

Comparing Table 7 with Table 4, we find that the SDI has a much smaller bias here,
especially when d = 5 or L = 10, 20, 50. This verifies the theoretical analysis at the end
of Section 3.2. As illustrated by Tables 2 and 7, a pretty small finite sample bias can be
expected for the SDI method as long as the basis functions used can approximate either
m(x) or 1/π(x) well. Moreover, the SDI method has a larger SE than Table 4, which is not
surprising because the missing rate is much higher under the setting considered here than
that in Section 5.1.
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6. Real Data Analysis

GroupLens Research has collected and made available movie rating data sets on the Movie-
Lens website (https://movielens.org). In this section, we apply our method to a large-
scale movie rating dataset, the ml-25m dataset. The dataset contains 25, 000, 095 ratings
created by 162, 541 users and 1, 093, 360 tag applications across 62, 423 movies. The pa-
rameter of interest is the average rating of the film Pulp Fiction among all users. Less than
half of users (79, 672) create their rating for Pulp Fiction, and ratings of the other users
are missing. The average rating of users who create their rating for Pulp Fiction may be a
biased estimator for the parameter of interest. We create a 10-dimensional covariate vector
to describe each user’s characteristic based on their rating histories to adjust this bias and
assume the MAR missing mechanism. We apply our two distributed methods to compute
the regression imputation estimators. The rates of tuning parameters are the same as those
in Section 5, and the constant c is taken to be 1.3 and 0.9 for the KDI and the SDI method,
respectively. We also compute the complete-case estimator, the classical kernel regression
imputation estimator (µ̂K), and the sieve regression imputation estimator (µ̂S) for compar-
ison. The results are 4.19 (complete-case), 4.12 (µ̂K) and 4.04 (µ̂S), respectively. We use
µ̂K as the benchmark for the kernel-based estimators and use µ̂S as the benchmark for the
sieve-based estimators. In Figure 7, we plot curves of the absolute value of the differences
between the complete-case, KDI, SDI estimators, and their benchmarks. We also plot the
absolute difference curves for the kernel and sieve-based SGM estimators for comparison.
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Figure 7: The absolute value curves of the differences between the estimators and their
benchmarks. Red dotted lines are for the complete-case estimator, and dotted
lines with green triangles are for SGM estimators, and dotted lines with blue
squares are for distributed imputation estimators. The benchmark is µ̂K in (a)
and µ̂S in (b).
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It can be seen that the performance of all the SGM estimators is unstable. The KDI
performs well when L is small, but the performance deteriorates when the number of ma-
chines is large. In contrast, the performance of SDI estimators stays good even when L is
500. The SDI estimators are quite stable and always outperform the SGM estimators. This
again validates the ability of the SDI method to accommodate a large number of machines.

The computing time of the KDI method is 110.58, 26.72, 4.28, 1.11, 0.29, 0.06 seconds
when L = 10, 20, 50, 100, 200, 500, respectively. These are all much shorter than that of the
classical kernel regression imputation estimator (20896.18 seconds). However, the reduction
of computing time is achieved at the cost of some potential accuracy loss. The absolute dif-
ference between the KDI estimators and the classical kernel regression imputation estimator
is at least 0.016. Computation of the classical sieve regression imputation estimator takes
78.17 seconds, which is brought down to 9.86, 5.72, 3.89, 2.66, 2.29, 1.99 seconds by the SDI
method when L = 10, 20, 50, 100, 200, 500, respectively. The SDI method has little accuracy
loss in this problem as the maximum absolute difference between the SDI estimators and the
classical sieve regression imputation estimator is at most 0.001. According to the empirical
evidence in simulations and real data analyses, we recommend using the SDI method with
a large number of machines concerned with the estimation accuracy and computing time.

We also evaluate the performance of the proposed tuning parameter selection procedure
in the MovieLens dataset. We consider the candidate set C = {0.1, 0.5, 0.9, 1.3, 1.7, 2.1} for
c and the number of machine L = 100. The absolute difference between the KDI estimator
under the selected c and the benchmark µ̂K is 0.038. For comparison, we calculate the KDI
estimators under different c’s in C. The absolute differences between the KDI estimator
with c = 0.1, 0.5, 0.9, 1.3, 1.7, 2.1 and the benchmark µ̂K are 2.072, 2.065, 0.351, 0.038, 0.046
and 0.052, respectively. It can be seen that the KDI estimator with constant selected via
the proposed DWCV algorithm is closest to the benchmark µ̂K among the KDI estimators
with different candidate constants. Moreover, the computing time of the KDI estimator
with the CV-selected constant is 3.73 seconds. The time is slightly larger than that of the
KDI estimator with a predetermined constant which is 1.11 when L = 100. The extra
computing time comes from the CV procedure. The computing time is still much shorter
than the classical kernel regression imputation estimator even though the CV procedure is
included.

The absolute difference between the SDI estimator with the CV-selected c and the bench-
mark µ̂S is 0.007. The corresponding absolute differences with c = 0.1, 0.5, 0.9, 1.3, 1.7, 2.1
are 0.007, 0.004, 0.001, 0.010, 0.014 and 0.014, respectively. The SDI estimators with dif-
ferent constants have similar performance, and all of them are close to the benchmark µ̂S.
As we have designed, the proposed DWCV algorithm selects the smallest c in the candidate
set C in this case to reduce the computing time. The computing time of the SDI estimator
with the selected c is 0.78, which is even shorter than the computing time 2.66 of the SDI
estimator with a predetermined constant when L = 100.

7. Concluding Remarks

In this paper, we propose two distributed regression imputation methods for response mean
estimation, namely the KDI and SDI methods. Compared to the classical methods, our
distributed methods can reduce the computational burden with large-scale data significantly.
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The KDI method needs little communication between machines. It can achieve the minimax
rate and is asymptotically normal with asymptotic variance achieving the semiparametric
efficiency bound provided the number of machines L is not too large. The SDI method can
achieve similar statistical properties while accommodating more machines compared to the
KDI method at the expense of more required communication. If the communication cost is
high, the KDI method is recommended and the number of local machines should be limited
to avoid the additional bias of this method. If the communication cost is low, the SDI
method is recommended and more local machines can be used to reduce computing time.
Moreover, according to our simulation results, the SDI method is preferred if the number
of covariates is large.
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Appendix A. Some Lower Bounds

Minimax Lower Bound

Here, we establish a minimax lower bound for the response mean estimation problem with
missing responses. For constants M1,M3,M4 > 0, 0 < M2 < 1 and q > d, let

P1 =

{
P : P is an observational distribution of (δ, Y,X) and under P ,

(i) π(x), f(x), m(x) and their partial derivatives up to order q > 0

is bounded by M1;

(ii) inf
x
π(x) ≥M2; (iii) inf

x
f(x) ≥M3; (iv) sup

x
σ2(x) ≤M4

} (23)

be the set of observational distributions that satisfy the regularity conditions imposed in
Theorem 1. Then we have the following minimax lower bound.

Proposition 3 There are some universal constants CP1, ξ > 0 such that

inf
µ̂

sup
P∈P1

P

(
|µ̂− µ| ≥ CP1√

N

)
≥ ξ,

where the infimum is taken over all estimators for µ based on N i.i.d. observations.

Proof We prove the result by considering a tractable parametric subclass of P1. Let

Ppar =

{
P : P is an observational distribution of (δ, Y,X) and, under P ,

(i) Y ‚ X; (ii) π(x) ≡ 1; (iii) X ∼ U [−1, 1]; (iv) Y ∼ N(µ, 1).

}
Then Ppar is clearly a subset of P1. Under observational distributions in Ppar, there are no
missing responses, and estimating µ becomes a normal mean estimation problem. According
to Theorem 2.2 of Chen et al. (2018), there are some universal constants CP1 , ξ > 0 such
that

inf
µ̂

sup
P∈Ppar

P

(
|µ̂− µ| ≥ CP1√

N

)
≥ ξ.

This implies the result of this proposition because

sup
P∈P1

P

(
|µ̂− µ| ≥ CP1√

N

)
≥ sup

P∈Ppar

P

(
|µ̂− µ| ≥ CP1√

N

)
.

Let the basis functions {vk(x)}∞k=1 be the tensor products of Chebyshev polynomials.
Similarly to (23), for constants 0 < M1,M2 < 1, M3,M4,M5 > 0 and q > d/2, we define the
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set of observational distributions that satisfy the regularity conditions imposed in Theorem
2:

P2 =

{
P : P is an observational distribution of (δ, Y,X) and under P ,

(i) M−11 ≤ σmin(Σ) ≤ σmax(Σ) ≤M1; (ii) inf
x
π(x) ≥M2;

(iii) E[m(X)2] ≤M3; (iv) sup
x
σ2(x) ≤M4;

(v) ∀K, ∃β̄, γ̄ such that E
[(
m(X)− VK(X)Tβ̄

)2] ≤M5K
− 2q

d

and E
[(
π(X)−1 − VK(X)Tγ̄

)2] ≤M5K
− 2q

d

}
.

Then similar minimax lower bound can be obtained by the arguments of Proposition 3.

Semiparametric Efficiency Bound

The semiparametric efficiency bound is a lower bound for the asymptotic variance of a
regular asymptotically linear estimator in a semiparametric problem. See Bickel (1982) for
more introductions and rigorous definitions. For the response mean estimation problem
with missing responses, the semiparametric efficiency bound can be obtained according to
the results of Hahn (1998). Using the notations in this paper, the semiparametric efficiency
bound is

E

[
σ2(X)

π(X)

]
+ Var[m(X)].

A straightforward calculation can verify that Var[ψ] in Theorem 1 and 2 equals the semi-
parametric efficiency bound presented here.

Appendix B. Proof of Theorem 1

Proof Throughout this proof, we always give them the superscript “(l)” for quantities
defined using the data on the l-th machine. With some abuse of notation, we use the same
subscripts {1, . . . , n} to denote the observations on the l-th machine for l = 1, . . . , L. Note
that

√
N(µ̃K − µ) =

√
N

1

L

L∑
l=1

(µ̂
(l)
K − µ).

We begin the proof by decomposing µ̂
(l)
K . Recall that n = N/L. By simple algebra, we have

the following decomposition for l = 1, 2, . . . , L

µ̂
(l)
K =

1

n

n∑
i=1

{δiYi + (1− δi)m(Xi)}

+
1

n

n∑
i=1

(1− δi)(m̂(l)
K (Xi)−m(Xi))

=:R(l) + S(l),

(24)
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where

m̂
(l)
K (x) =

∑n
i=1Kh(Xi − x)δiYi∑n
i=1Kh(Xi − x)δi

,

and Kh(·) = h−dK(·/h). Since R(l) is a mean of i.i.d. random variables whose theoretical
property is easy to derive, the main task is to study S(l). Let

t̂(l)(x) =
1

n

n∑
i=1

Kh(Xi − x)δiYi and ŝ(l)(x) =
1

n

n∑
i=1

Kh(Xi − x)δi.

Define t(x) = m(x)π(x)f(x) and s(x) = π(x)f(x). Then

S(l) =
1

n

n∑
i=1

(1− δi)

(
t̂(l)(Xi)

ŝ(l)(Xi)
− t(Xi)

s(Xi)

)

=
1

n

n∑
i=1

(1− δi)

(
t̂(l)(Xi)− t(Xi)

s(Xi)

)

+
1

n

n∑
i=1

(1− δi)t̂(l)(Xi)

(
1

ŝ(l)(Xi)
− 1

s(Xi)

)
=: S

(l)
1 + S

(l)
2 .

(25)

Note that

S
(l)
1 =

1

n2

∑
i,j

1− δi
s(Xi)

(δjYjKh(Xj −Xi)− t(Xi))

=
1

n2

n∑
i 6=j

1− δi
s(Xi)

(δjYjKh(Xj −Xi)− t(Xi))

+
1

n2

n∑
i=j

1− δi
s(Xi)

(δjYjKh(Xj −Xi)− t(Xi))

:= U
(l)
1 + V

(l)
1 ,

(26)

and

V
(l)
1 = − 1

n2

n∑
i=1

1− δi
s(Xi)

t(Xi).

We have

E[|V (l)
1 |] = O

(
1

n

)
by straightforward calculation. Denote

Hij =
1− δi
s(Xi)

(δjYjKh(Xj −Xi)− t(Xi)).

Then

U
(l)
1 =

1

n2

n∑
i 6=j

Hij
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is a U-statistic. Let

W
(l)
1 = U

(l)
1 − Ǔ

(l)
1 , (27)

where

Ǔ
(l)
1 = E[Hij ] +

{
1

n

n∑
i=1

E[Hij | Zi]− E[Hij ]

}
+

 1

n

n∑
j=1

E[Hij | Zj ]− E[Hij ]

 (28)

and Zi = (δi, δiYi, Xi). By some standard calculations in the literature of nonparametric
kernel regression, we have

E[Hij | Zi] = O(hq), (29)

E[Hij | Zj ] =
δj(1− π(Xj))Yj

π(Xj)
− E[(1− δ)Y ] +O(hq) (30)

and

E[Hij ] = O(hq). (31)

(28), (29), (30) and (31) imply

Ǔ
(l)
1 =

1

n

n∑
i=1

δi(1− π(Xi))Yi
π(Xi)

− E[(1− δ)Y ] +O(hq). (32)

By (26), (27) and (32), we conclude

S
(l)
1 =

1

n

n∑
i=1

δi(1− π(Xi))Yi
π(Xi)

− E[(1− δ)Y ] +W
(l)
1 + V

(l)
1 +O(hq). (33)

It is clear that E[W
(l)
1 ] = 0. In addition, by standard U-statistic theory (Chapter 3 in Shao,

2003), we have E[(W
(l)
1 )2] = O(n−2h−d).

Next, we move on to the term S
(l)
2 . Through Taylor’s expansion, we have

S
(l)
2 = − 1

n

n∑
i=1

(1− δi)
t̂(l)(Xi)

s2(Xi)
(ŝ(l)(Xi)− s(Xi)) +

1

n

n∑
i=1

(1− δi)
t̂(l)(Xi)

s̃3i
(ŝ(l)(Xi)− s(Xi))

2

=: −S(l)
2,1 + S

(l)
2,2

(34)
where s̃i is between s(Xi) and ŝ(l)(Xi). According to (C.4) and (C.6), by the similar

arguments as in the proof of (33), we can decompose S
(l)
2,1 as

S
(l)
2,1 =

1

n

n∑
i=1

δi(1− π(Xi))m(Xi)

π(Xi)
− E[(1− δ)Y ] +W

(l)
2 + V

(l)
2 +O(hq) (35)

where E[W
(l)
2 ] = 0, E[(W

(l)
2 )2] = O(n−2h−2d) and E[|V (l)

2 |] = O(n−1h−d). The “O” are
all uniform in l since data are independent and identically distributed across machines.
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Combining (24), (25), (33), (34) and (35), we have

1

L

L∑
l=1

µ̂
(l)
K =

1

N

N∑
i=1

{
δiYi
π(Xi)

+
π(Xi)− δi
π(Xi)

m(Xi)

}
+

1

L

L∑
l=1

W
(l)
1 +

1

L

L∑
l=1

W
(l)
2

+
1

L

L∑
l=1

V
(l)
1 +

1

L

L∑
l=1

V
(l)
2 +

1

L

L∑
l=1

S
(l)
2,2 +O(hq),

E

( 1

L

L∑
l=1

W
(l)
1

)2
 = O

(
L

N2hd

)
,

E

( 1

L

L∑
l=1

W
(l)
2

)2
 = O

(
L

N2h2d

)
,

E

[∣∣∣∣∣ 1L
L∑
l=1

V
(l)
1

∣∣∣∣∣
]

= O

(
L

N

)
,

and

E

[∣∣∣∣∣ 1L
L∑
l=1

V
(l)
2

∣∣∣∣∣
]

= O

(
L

Nhd

)
.

Thus

1

L

L∑
l=1

µ̂
(l)
K =

1

N

N∑
i=1

{
δiYi
π(Xi)

+
π(Xi)− δi
π(Xi)

m(Xi)

}
+

1

L

L∑
l=1

S
(l)
2,2

+OP

(
L

Nhd

)
+O(hq).

(36)

So it remains to deal with the term
∑L

l=1 S
(l)
2,2/L. Let s∗ = infx s(x). By (C.2) and (C.3),

we have s∗ > 0. For the constant τ in Lemma 4, define the event

E =

{
max
l

sup
x
|ŝ(l)(x)− s(x)| ≤ τ(aN + hq)

}
,

where aN =
√
L logN/(Nhd). For sufficiently large N , we have s̃i ≥ 0.5s∗ on event E .

Notice that

S
(l)
2,2 =

1

n

n∑
i=1

(1− δi)
t̂(l)(Xi)

s̃3i
(ŝ(l)(Xi)− s(Xi))

2

=
1

n

n∑
i=1

(1− δi)
1

s̃3i
(t̂(l)(Xi)− t(Xi))(ŝ

(l)(Xi)− s(Xi))
2

+
1

n

n∑
i=1

(1− δi)
t(Xi)

s̃3i
(ŝ(l)(Xi)− s(Xi))

2.
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Thus on event E , it holds that

|S(l)
2,2| ≤

8

s3∗

1

n

n∑
i=1

|t̂(l)(Xi)− t(Xi)|(ŝ(l)(Xi)− s(Xi))
2

+
8

s3∗

1

n

n∑
i=1

|t(Xi)|(ŝ(l)(Xi)− s(Xi))
2

≤ 8

s3∗
τ2(aN + hq)2

1

n

n∑
i=1

|t̂(l)(Xi)− t(Xi)|

+
8

s3∗

1

n

n∑
i=1

|t(Xi)|(ŝ(l)(Xi)− s(Xi))
2.

This implies

1

L

L∑
l=1

S
(l)
2,2 ≤

8

s3∗
τ2(aN + hq)2

1

N

N∑
i=1

|t̂(l)(Xi)− t(Xi)|

+
8

s3∗

1

N

N∑
i=1

|t(Xi)|(ŝ(l)(Xi)− s(Xi))
2.

(37)

on event E . By Jensen’s inequality, we have

E

[
1

N

N∑
i=1

|t̂(l)(Xi)− t(Xi)|

]
= E

[
|t̂(l)(Xi)− t(Xi)|

]
≤
√

E
[
(t̂(l)(Xi)− t(Xi))2

]
.

(38)

According to (C.1), (C.4), and (C.5), we have

E
[
(t̂(l)(Xi)− t(Xi))

2
]

= E

 1

n2

n∑
j1 6=j2

(δj1Yj1Kh(Xj1 −Xi)− t(Xi))(δj2Yj2Kh(Xj2 −Xi)− t(Xi))


+ E

 1

n2

n∑
j=1

(δjYjKh(Xj −Xi)− t(Xi))
2


= O(h2q) +O

(
1

nhd

)
.

Combing this with (38), we have

1

N

N∑
i=1

|t̂(l)(Xi)− t(Xi)| = OP

(
hq +

√
L

Nhd

)
.

Then (C.6) implies

(aN + hq)2
1

N

N∑
i=1

|t̂(l)(Xi)− t(Xi)| = OP

(
L

Nhd
+ h2q

)
. (39)
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By (C.1), we have supx |t(x)| ≤ ∞. Straightforward calculation can show

E

[
1

N

N∑
i=1

|t(Xi)|(ŝ(l)(Xi)− s(Xi))
2

]
= E

[
|t(Xi)|(ŝ(l)(Xi)− s(Xi))

2
]

≤ inf
x
|t(x)|E

[
(ŝ(l)(Xi)− s(Xi))

2
]

= O

(
L

Nhd
+ h2q

)
.

Combing this with (37) and (39), we have∣∣∣∣∣ 1L
L∑
l=1

S
(l)
2,2

∣∣∣∣∣ ≤ OP
(

L

Nhd
+ h2q

)
(40)

on the event E . In Lemma 4, we prove that P(E)→ 1 under (C.1)–(C.6). Thus (40) implies

1

L

L∑
l=1

S
(l)
2,2 = OP

(
L

Nhd
+ h2q

)
. (41)

Combining (36) and (41), we get

1

L

L∑
l=1

µ̂
(l)
K − µ = ψN +OP

(
L

Nhd
+ hq

)
.

This equality implies (4) under Condition (C.7). The proof of Theorem 1 is then completed.

Lemma 4 Under (C.1)–(C.6), let aN =
√
L logN/(Nhd), then there is some universal

constant τ > 0 such that

P

(
max
l

sup
x
|ŝ(l)(x)− s(x)| > τ(aN + hq)

)
→ 0.

Proof As in the main text, we use C to denote a generic positive constant that may be dif-
ferent in different places. Recall that ŝ(l)(x) = 1

n

∑n
i=1Kh(Xi−x)δi. By some standard cal-

culations in the literature of nonparametric kernel regression, we have maxl supx |E[ŝ(l)(x)]−
s(x)| ≤ τhq for τ above a certain threshold. Hence{

max
l

sup
x
|ŝ(l)(x)− s(x)| > τ(aN + hq)

}
⊂
{

max
l

sup
x
|ŝ(l)(x)− E[ŝ(l)(x)]| > τaN

}
. (42)

Under (C.5), we have |K(x) − K(y)| ≤ M‖x − y‖ for some positive constant M . Hence
|ŝ(l)(x)− ŝ(l)(x)| ≤Mh−d−1‖x−y‖ and |E[ŝ(l)(x)]−E[ŝ(l)(x)]| ≤Mh−d−1‖x−y‖. By (C.3),
X has a bounded support X . By standard results on the covering number of the bounded
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set, there exist x1, . . . , xB where B ≤ Cτ−da−dN h−d(d+1) such that ∀x ∈X , ∃b ∈ {1, . . . , B},
‖x− xb‖ ≤ τaNhd+1/(3M). Hence{

max
l

sup
x
|ŝ(l)(x)− E[ŝ(l)(x)]| > τaN

}
⊂
{

max
l

max
b
|ŝ(l)(xb)− E[ŝ(l)(xb)]| >

τaN
3

}
.

Combining this with (42), we have{
max
l

sup
x
|ŝ(l)(x)− s(x)| > τ(aN + hq)

}
⊂
{

max
l

max
b
|ŝ(l)(xb)− E[ŝ(l)(xb)]| >

τaN
3

}
for sufficiently large N . By (C.5), we have K̄ = supxK(x) < ∞. Thus Kh(Xi − x)δi ≤
K̄h−d. Moreover, Var[Kh(Xi−x)δi] ≤ E[(Kh(Xi−x)δi)

2] ≤ Ch−d. By Bernstein inequality
(Wainwright, 2019) for bounded random variables and the union bound, we have

P

(
max
l

max
b
|ŝ(l)(xb)− E[ŝ(l)(xb)]| >

τaN
3

)
≤ 2LB exp

(
−
τ2a2Nnh

d

18C

)
≤ 2 exp

(
−τ

2 logN

18C
+ logL+ logB

)
.

(43)

for sufficiently large N under (C.6). It is not hard to verify that the rightmost side of the
inequality (43) converges to zero under (C.6) if we take τ to be a sufficiently large constant.
This completes the proof.

Appendix C. Proof of Theorem 2

Proof We define β∗ = Σ−1E[δVK(X)Y ] and γ∗ = Σ−1η where η = E[δVK(X)/π(X)] =
E[VK(X)]. Letm∗S(x) = VK(x)Tβ∗ and w∗S(x) = VK(x)Tγ∗. Clearly, E[δ(m(X)−m∗S(X))2] =
minβ E[δ(m(X)−VK(X)Tβ)2] and E[δ(1/π(X)−w∗S(X))2] = minγ E[δ(1/π(X)−VK(X)Tγ)2].
Then by Condition (C.9)(ii), we have

E
[
δ (m(X)−m∗S(X))2

]
= min

β
E
[
δ
(
m(X)− VK(X)Tβ

)2]
≤ min

β
E
[(
m(X)− VK(X)Tβ

)2]
≤ E

[(
m(X)− VK(X)Tβ̄

)2]
≤ CK−2r,

(44)

and

E

[
δ

(
1

π(X)
− w∗S(X)

)2
]

= min
γ

E

[
δ

(
1

π(X)
− VK(X)Tγ

)2
]

≤ min
γ

E

[(
1

π(X)
− VK(X)Tγ

)2
]

≤ E

[(
1

π(X)
− VK(X)Tγ̄

)2
]

≤ CK−2r.

42



Distributed nonparametric regression imputation

Let m̂S(x) = VK(x)Tβ̂ and m̃S(x) = VK(x)Tβ̃. By the definition of β̂ and v1(x) ≡ 1, we
have (

∑N
i=1 δiYi −

∑N
i=1 δiVK(Xi)

Tβ̂)/N = 0. Thus

µ̂S =
1

N

N∑
i=1

(δiYi + (1− δi)m̂S(Xi)) =
1

N

N∑
i=1

m̂S(Xi)

and

µ̃S − µ̂S =
1

N

N∑
i=1

(1− δi)VK(Xi)
T(β̂ − β̃) ≤ ζK‖β̂ − β̃‖.

Thus to prove the asymptotic normality in Theorem 2, it suffices to prove

√
N(µ̂S − µ)

d→ N(0,Var[ψ]) (45)

and
‖β̂ − β̃‖ = oP

(
(ζK
√
N)−1

)
. (46)

The convergence rate in Theorem 2 can be obtained in the proof of the asymptotic normality
result.

Proof of (45)

Let F (·) be the distribution function of X. Note that µ =
∫
m(x)dF (x), thus we have the

following decomposition of
√
N(µ̂S − µ),

√
N(µ̂S − µ) =

√
N

(
1

N

N∑
i=1

(m̂S(Xi)−m∗S(Xi))−
∫

(m̂S(x)−m∗S(x))dF (x)

)

+
√
N

(
1

N

N∑
i=1

(m∗S(Xi)−m(Xi))−
∫

(m∗S(x)−m(x))dF (x)

)

+
√
N

∫
(m̂S(x)−m∗S(x))dF (x) +

√
N

∫
(m∗S(x)−m(x))dF (x)

+
√
N

(
1

N

N∑
i=1

m(Xi)− µ

)
=: R1 +R2 +R3 +R4 +R5.

First, by Lemma 5 and Condition (C.11)(i), we have

|R1| =

∣∣∣∣∣√N
(

1

N

N∑
i=1

VK(Xi)
T − ηT

)
(β̂ − β∗)

∣∣∣∣∣
≤

∥∥∥∥∥ 1√
N

N∑
i=1

VK(Xi)− η

∥∥∥∥∥ ‖β̂ − β∗‖
= OP

(√
E[‖VK(Xi)− η‖2]‖β̂ − β∗‖

)
= OP(ζK‖β̂ − β∗‖)
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= OP

(√
ζ4K
N

)
= oP(1).

By Condition (C.2) and (44), we have

E[R2
2] = Var[m∗S(X)−m(X)]

≤ E[(m∗S(X)−m(X))2]

= E

[
δ

π(X)
(m∗S(X)−m(X))2

]
≤ CE

[
δ(m∗S(X)−m(X))2

]
≤ C2K−2r.

This implies R2 = OP (K−r) = oP (1).

For R3, we have

R3 =
√
N

∫
(m̂S(x)−m∗S(x))dF (x)

=
√
NηT(β̂ − β∗)

=
1√
N

N∑
i=1

ηTΣ̂−1δiVK(Xi)(Yi −m∗S(Xi)).

Note that
‖Σ̂−1η − Σ−1η‖ = ‖Σ̂−1(η − Σ̂Σ−1η)‖

≤ ‖Σ̂−1‖‖η − Σ̂Σ−1η‖
(47)

and

η − Σ̂Σ−1η =
1

N

N∑
i=1

(η − δiVK(Xi)VK(Xi)
TΣ−1η). (48)

A straightforward calculation can show

E
[
η − δiVK(Xi)VK(Xi)

TΣ−1η
]

= 0 (49)

and

E
[∥∥η − δiVK(Xi)VK(Xi)

TΣ−1η
∥∥2] ≤ E

[∥∥δiVK(Xi)VK(Xi)
TΣ−1η

∥∥2]
= E

[
δ‖VK(X)‖2ηTΣ−1VK(X)VK(X)TΣ−1η

]
≤ ζ2KηTΣ−1η

= ζ2Kγ
∗TΣγ∗

= ζ2KE[w∗S(X)2]

≤ ζ2KE[π(X)−2].
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Then Condition (C.2) implies E[(π(X))−2] is bounded and hence

E
[∥∥η − δiVK(Xi)VK(Xi)

TΣ−1η
∥∥2] = O(ζ2K).

Combining this with (49) and (48), we have

E
[
‖η − Σ̂Σ−1η‖2

]
= O

(
ζ2K
N

)
(50)

Lemma 5 and Conditions (C.8), (C.10) implies Σ̂−1 = OP (1). This together with (47) and

(50) implies ‖Σ̂−1η − Σ−1η‖ = OP

(√
ζ2K/N

)
. Then because∥∥∥∥∥ 1√

N

N∑
i=1

δiVK(Xi)(Yi −m∗S(Xi))

∥∥∥∥∥ = OP

(√
E
[
δ‖VK(X)‖2

(
Y −m∗S(X)

)2])
= OP(ζK),

we have ∣∣∣∣∣R3 −
1√
N

N∑
i=1

ηTΣ−1δiVK(Xi)(Yi −m∗S(Xi))

∣∣∣∣∣
≤ ‖Σ̂−1η − Σ−1η‖

∥∥∥∥∥ 1√
N

N∑
i=1

δiVK(Xi)(Yi −m∗S(Xi))

∥∥∥∥∥
= OP

(√
ζ4K
N

)
= oP(1)

according to Condition (C.11)(i). Moreover, by Conditions (C.4), (C.9)(ii), and (C.11)(i),
we have

ζ2KK
−2r ≤ 1

2

(
ζ4K
N

+NK−4r
)
→ 0,

and hence

E

( 1√
N

N∑
i=1

ηTΣ−1δiVK(Xi)(Yi −m∗S(Xi))−
1√
N

N∑
i=1

δi
π(Xi)

(Yi −m(Xi))

)2


= E

[(
δw∗S(X)(Y −m∗S(X))− δ

π(X)
(Y −m(X))

)2
]

= E

[{(
δw∗S(X)− δ

π(X)

)
(Y −m(X)) + δw∗S(X)(m(X)−m∗S(X))

}2
]

≤ 2E

[(
δw∗S(X)− δ

π(X)

)2

(Y −m(X))2

]
+ 2E

[
{δw∗S(X)(m(X)−m∗S(X))}2

]
≤ C

{
E

[(
δw∗S(X)− δ

π(X)

)2
]

+ ζ2KE
[
(m(X)−m∗S(X))2

]}
≤ CK−2r + Cζ2KK

−2r → 0.
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Thus

1√
N

N∑
i=1

ηTΣ−1δiVK(Xi)(Yi −m∗S(Xi))−
1√
N

N∑
i=1

δi
π(Xi)

(Yi −m(Xi))

= OP


√√√√√E

( 1√
N

N∑
i=1

ηTΣ−1δiVK(Xi)(Yi −m∗S(Xi))−
1√
N

N∑
i=1

δi
π(Xi)

(Yi −m(Xi))

)2



= OP (ζKK
−r)

= oP(1)

according to Condition (C.11)(i).
For the term R4, we have

R4 =
√
N

∫
(m∗S(x)−m(x))dF (x)

=
√
NE

[
δ

π(X)
(m∗S(X)−m(X))

]
=
√
NE

[
δ

(
1

π(X)
− w∗S(X)

)
(m∗S(X)−m(X))

]
+
√
NE[δw∗S(X)(mS∗(X)−m(X))].

By the definition of β∗ and w∗S(x), we have

E[δw∗S(X)(mS∗(X)−m(X))] = E[δγ∗TVK(X)(VK(X)Tβ∗ − Y )] = 0.

Thus by Conditions (C.9)(ii) and (C.11)(i), we have

|R4| =
∣∣∣∣√NE

[
δ

(
1

π(X)
− w∗S(X)

)
(m∗S(X)−m(X))

]∣∣∣∣
≤
√
N

√√√√E

[
δ

(
1

π(X)
− w∗S(X)

)2
]√

E
[
δ
(
m∗S(X)−m(X)

)2]
≤
√
NK−2r → 0.

So far, we have proved

R1 +R2 +R3 +R4 =
1√
N

N∑
i=1

(
δi

π(Xi)
(Yi −m(Xi)) +m(Xi)− µ

)

+OP

(√
ζ4K
N

+ ζKK
−r +

√
NK−2r

)

=
√
NψN +OP

(√
ζ4K
N

+
√
NK−2r

)
,

where the second equality is due to 2ζKK
−r ≤

√
ζ4K/N +

√
NK−2r. Then under Condition

(C.11)(i), (45) follows from the central limit theorem.
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Proof of (46)

For t = 1, . . . , T ,

βt = βt−1 + (Σ̃ + αI)−1(Γ̂− Σ̂βt−1)

= βt−1 + (Σ̃ + αI)−1Σ̂(β̂ − βt−1).

Then we have

βt − β̂ = (I − (Σ̃ + αI)−1Σ̂)(βt−1 − β̂)

= (I − (Σ̃− Σ̂ + Σ̂ + αI)−1Σ̂)(βt−1 − β̂)

= (I − ((Σ̂ + αI)−1(Σ̃− Σ̂) + I)−1(I + αΣ̂−1)−1)(βt−1 − β̂).

Let A = (Σ̂ + αI)−1(Σ̃− Σ̂) and H = ((Σ̂ + αI)−1(Σ̃− Σ̂) + I)−1(I + αΣ̂−1)−1, then

‖βt − β̂‖ ≤ max{1− λmin(H), λmax(H)− 1}‖βt−1 − β̂‖.

If ‖A‖ < 1/2, by the relationships

(I +A)−1 = I −A+ (I +A)−1A2

and

‖(I +A)−1‖ ≤ (1− ‖A‖)−1,

we have

‖(I +A)−1 − I‖ ≤ ‖A‖+ ‖A‖2(1− ‖A‖)−1 =: h(‖A‖) < 1,

(1− h(‖A‖))I � (I +A)−1 � (1 + h(‖A‖))I,

and

(1− h(‖A‖))(I + αΣ̂−1)−1 � H � (1 + h(‖A‖))(I + αΣ̂−1)−1.

Here for two symmetric matrices A and B, A � B means B − A is positive semi-definite.
Then

λmin(H) ≥ 1− h(‖A‖)
1 + αλ−1min(Σ̂)

, λmax(H) ≤ 1 + h(‖A‖)
1 + αλ−1max(Σ̂)

.

Thus

max{1− λmin(H), λmax(H)− 1} ≤ max

{
αλ−1min(Σ̂) + h(‖A‖)

1 + αλ−1min(Σ̂)
,
h(‖A‖)− αλ−1max(Σ̂)

1 + αλ−1max(Σ̂)

}
.

By Lemma 5, we have

‖Σ̃− Σ‖ = OP

(√
ζ2K logK

n

)
and

‖Σ̂− Σ‖ = OP

(√
ζ2K logK

N

)
.
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Because α � log2K

√
ζ2K
n , we have

‖A‖ ≤ ‖Σ̃− Σ̂‖
α+ λmin(Σ̂)

≤ ‖Σ̃− Σ‖+ ‖Σ̂− Σ‖
α+ λmin(Σ)− ‖Σ̂− Σ‖

≤ ‖Σ̃− Σ‖+ ‖Σ̂− Σ‖
α+ CL − ‖Σ̂− Σ‖

= oP

(
min

{
α,

1

logK

})
and h(‖A‖) = oP(min{α, 1/ logK}). Under Condition (C.10), by Lemma 5, λmin(Σ̂) ≥
1/2λmin(Σ) and λmax(Σ̂) ≤ 2λmax(Σ) with probability tending to 1. Thus the inequalities

λmax(H)− 1 ≤ 0

and

max{1− λmin(H), λmax(H)− 1} ≤ 1−
1−min

{
α, 1

logK

}
1 + 2αλmin(Σ)

≤ CN,K (51)

hold with probability tending to 1. By Condition (C.8) and the definition of β∗, we have

‖β∗‖2 ≤ C−1L β∗TΣβ∗

= C−1L E[δβ∗TVK(X)VK(X)Tβ∗]

= C−1L E
[
δm∗S(X)2

]
≤ C−1L E

[
δm(X)2

]
≤ C−1L E

[
m(X)2

]
.

Hence Condition (C.9)(i) implies ‖β∗‖ is bounded and we have ‖β̂‖ = OP(1) according to
Condition (C.10) and Lemma 5. Combining this with (51), we have ‖β̃ − β̂‖ = OP(CTN,K).
So far, the result (7) in Theorem 2 has been established. Under Condition (C.11)(ii), we

have 0.5 logN + log ζK − T logCN,K → −∞ and hence ‖β̃ − β̂‖ = oP

(
(ζK
√
N)−1

)
. This

proves (46), which completes the proof.

Lemma 5 Under Conditions (C.8) and (C.10), we have

‖Σ̂− Σ‖ = OP

(√
ζ2K logK

N

)

and

‖β̂ − β∗‖ = OP

(√
ζ2K
N

)
.
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Proof Under Conditions (C.8) and (C.10), we have E[‖Σ̂ − Σ‖] = O
(√

ζ2K logK/N
)

according to Lemma 6.2 in Belloni et al. (2015). This implies

‖Σ̂− Σ‖ = OP

(√
ζ2K logK

N

)
.

The second statement of the lemma follows from

‖β̂ − β∗‖ =

∥∥∥∥∥Σ̂−1
1

N

N∑
i=1

δiVK(Xi)(Yi −m∗S(Xi))

∥∥∥∥∥
≤ ‖Σ̂−1‖OP

(√
1

N
E
[
‖VK(Xi)‖2 (Y −mS(X))2

])

= OP

(√
ζ2K
N

)
.

Appendix C. Additional Simulation Results

Ablation Study of the DWCV Algorithm

In this section, we conducted an ablative study to evaluate the effect of weights in the
DWCV algorithm. For simplicity, we use “DCV” to indicate that the weight in the DWCV
algorithm is replaced by the uniform weight. We adopt the simulation settings in Section 5.2
and compare the RMSE and computing time of the proposed estimators with the constant
selected by the DCV and DWCV algorithms. The simulation results are presented in Table
8.

DCV DWCV

Method Setting d RMSE time RMSE time

KDI
Linear

5 0.021 8.45 0.005 8.49
15 0.080 24.38 0.077 24.68

Nonlinear
5 0.008 8.46 0.008 8.49
15 0.127 24.63 0.036 24.78

SDI
Linear

5 0.004 3.50 0.004 2.34
15 0.004 4.74 0.004 4.34

Nonlinear
5 0.009 2.03 0.009 2.33
15 0.012 3.58 0.012 4.32

Table 8: RMSE and computing time of the KDI and SDI estimators.

Table 8 shows that the additional time due to the calculation of the weights is almost
negligible for all estimators in all settings. The accuracy of the estimators based on the
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DWCV algorithm is never worse than that based on the DCV algorithm. The DWCV
algorithm can improve the accuracy of the KDI estimators compared to the DCV algorithm.
The RMSE of the KDI estimator based on the DCV algorithm is more than 3.5 times larger
than that of the KDI estimator based on the DWCV algorithm when d = 5 in the linear
setting or d = 15 in the nonlinear setting.
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