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Abstract
Based on the Riemannian manifold model, we study the asymptotic behavior of a widely applied
unsupervised learning algorithm, locally linear embedding (LLE), when the point cloud is sampled
from a compact, smooth manifold with boundary. We show several peculiar behaviors of LLE near
the boundary that are different from those diffusion-based algorithms. In particular, we show that
LLE pointwisely converges to a mixed-type differential operator with degeneracy and we calculate
the convergence rate. The impact of the hyperbolic part of the operator is discussed and we propose
a clipped LLE algorithm which is a potential approach to recover the Dirichlet Laplace-Beltrami
operator.

Keywords: Locally linear embedding; manifold learning; manifold with boundary; mixed-type
differential operator; Dirichlet Laplace-Beltrami operator.

1. Introduction

Arguably, unsupervised learning is the holy grail of artificial intelligence. While a lot of challenges
are on different fronts, many attempts have been explored, including ISOMAP (Tenenbaum et al.,
2000), locally linear embedding (LLE) (Roweis and Saul, 2000), Hessian LLE (Donoho and Grimes,
2003), eigenmap (Belkin and Niyogi, 2003), diffusion map (DM) (Coifman and Lafon, 2006), vector
diffusion map (VDM) (Singer and Wu, 2012), t-distributed stochastic neighboring embedding (van
der Maaten and Hinton, 2008), maximal variation unfolding (Weinberger and Saul, 2006), to name
but a few. In this paper, based on the Riemannian manifold model, we study the asymptotic behavior
of LLE when the point cloud is sampled from a compact, smooth manifold with boundary.

LLE is an algorithm based on a rudimentary idea – by well parametrizing the dataset locally,
we can patch all local information to recover the global one. It has been widely applied in different
fields and has been cited more than 15,800 times according to Google Scholar. However, its theo-
retical justification for data points sampled on compact manifolds without boundary was only made
available at the end of 2017 (Wu and Wu, 2018; Malik et al., 2019). Essentially, the established the-
ory says that under the manifold without boundary setup, LLE has several peculiar behaviors that
are different from those of diffusion-based algorithms, including eigenmap and DM. First, unlike
DM, LLE may not behave like a diffusion process since the associated kernel function is not always
positive. Second, it is sensitive to the regularization, and different regularizations lead to different
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differential operators. If the regularization is chosen properly, LLE asymptotically converges to the
Laplace-Beltrami operator without extra probability density function (p.d.f.) estimation, even if the
p.d.f. is not uniform. However, when the regularization is not chosen properly, LLE converges to
a fourth order differential operator in the cases like the spheres. Third, when the regularization is
chosen properly, the convergence of LLE to the Laplace-Beltrami operator is comparable to that of
DM with a proper normalization (Coifman and Lafon, 2006; Singer and Wu, 2017; Cheng and Wu,
2022). Fourth, the kernel associated with LLE is in general not symmetric, and this asymmetric
kernel depends on the curvature and p.d.f. information. Fifth, the kernel depends on the local co-
variance matrix analysis and the Mahalanobis distance, since it is the mix-up of the ordinary kernel
and a special kernel depending on the Mahalanobis distance (Malik et al., 2019).

While several theoretical properties have been discussed in Wu and Wu (2018) and (Malik
et al., 2019), there are more open problems about LLE left. In this paper, we are interested in
exploring the asymptotic behavior of LLE when the manifold has a boundary. First, we show that
asymptotically LLE pointwisely converges to a mixed-type differential operator with degeneracy
and we calculate the convergence rate. Second, after showing that the asymptotic operator near the
boundary involves singular coefficients, we study the 1-dim manifold case and relate the eigenvalue
problem of LLE to a Sturm-Liouville equation. Third, through a series of numerical simulations,
we explore the impact of the hyperbolic part of the operator. In those simulations, we modify the
LLE by clipping certain points that are close to the boundary, which asymptotically is equivalent
to eliminating the hyperbolic part of the operator, then we obtain an algorithm that is potential to
recover the Laplace-Beltrami operator with the Dirichlet boundary condition. This enlightens a new
approach to recovering the Dirichlet Laplace-Beltrami operator. Fourth, we compare LLE with DM
to explain the differences between their behaviors on the boundary.

The paper is organized in the following way. In Section 2, we review the LLE algorithm and
provide some spectral properties of LLE on the linear algebra level. In Section 3, we provide the
manifold model when the boundary is not empty, and develop the asymptotic theory for the LLE
matrix, particularly the associated kernel behavior and its relationship with the geometrical structure
of the manifold. In Section 7, we discuss the clipped LLE which potentially leads to the Laplace-
Beltrami operator with the Dirichlet boundary condition. Numerical simulations of the clipped LLE
are provided. The paper is closed with the discussion in Section 8. Technical proofs are postponed
to the Appendices. For reproducibility purposes, the Matlab code to reproduce figures in this paper
can be downloaded from http://hautiengwu.wordpress.com/code/.

2. Review locally linear embedding

We start with some matrix notations. For p,r ∈N so that r ≤ p, let Ir ∈Rr×r be the identity matrix.

Denote Jp,r =

[
Ir

0

]
∈Rp×r, i.e. the (i, i)-th entry of Jp,r is 1 for i = 1, . . . ,r, and the other entries are

zero. Denote J̄p,r =

[
0
Ir

]
∈ Rp×r, i.e. the (p− r+ i, i) entry of Jp,r is 1 for i = 1, . . . ,r, and the other

entries are zero. Denote Ip,r := Jp,rJ⊤p,r =
[

Ir 0
0 0

]
∈ Rp×p and Īp,r := J̄p,rJ̄⊤p,r =

[
0 0
0 Ir

]
∈ Rp×p.

Finally, for d ≤ r ≤ p, define Jp,r−d := J̄p,p−dJp−d,r−d ∈ Rp×(r−d).
We quickly recall necessary information about LLE and refer readers with interest in more dis-

cussion to (Roweis and Saul, 2000; Wu and Wu, 2018). The key ingredient of LLE is the barycentric
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coordinate, which is a quantity shown in Wu and Wu (2018) to be parallel to the kernel chosen in
the graph Laplacian. Suppose we have the point cloud X = {zi}n

i=1 ⊂ Rp. There are two nearest
neighbor search schemes to proceed. The first one is the ε-radius ball scheme. Fix ε > 0. For
zk ∈ X , assume there are Nk data points, excluding zk, in the ε-radius ball centered at zk. The sec-
ond one is the K-nearest neighbor (KNN) scheme used in the original LLE algorithm (Roweis and
Saul, 2000); that is, for a fixed K ∈ N, find the K neighboring points.

Fix one nearest neighbor search scheme, and denote the nearest neighbors of zk ∈ X as Nk =
{zk,i}Nk

i=1. Then the barycentric coordinate of zk associated with Nk, denoted as wk, is defined as the
solution of the following optimization problem:

wk = argmin
w∈RNk ,w⊤111Nk=1

∥∥∥zk −
Nk

∑
j=1

w( j)zk, j

∥∥∥2
= argmin

w∈RNk ,w⊤111Nk=1
w⊤G⊤

n,kGn,kw ∈ RNk , (2.1)

where 111Nk is a vector in RNk with all entries 1 and

Gn,k :=

 | |
zk,1 − zk . . . zk,Nk − zk

| |

 ∈ Rp×Nk (2.2)

is called the local data matrix. In general, G⊤
n,kGn,k might be singular, and it is suggested in Roweis

and Saul (2000) to stabilize the algorithm by regularizing the equation and solve

(G⊤
n,kGn,k + cINk×Nk)yk = 111Nk , wk =

yk

y⊤k 111Nk

, (2.3)

where c > 0 is the regularizer chosen by the user. As is shown in Wu and Wu (2018), the regularizer
plays a critical role in LLE. With the barycentric coordinate of xk for k = 1, . . . ,n, the LLE matrix,
which is a n×n matrix denoted as W , is defined as

Wki =

{
wk( j) if zi = zk, j ∈ Nk;
0 otherwise.

(2.4)

The barycentric coordinates are invariant under rotation and translation, because the matrix Gn,k is
invariant under translation, and G⊤

n,kGn,k is invariant under rotation. As discussed in Wu and Wu
(2018), the barycentric coordinates can be understood as the projection of 111Nk onto the null space
of G⊤

n,kGn,k .
Suppose rn = rank(G⊤

n,kGn,k). Note that rn = rank(Gn,k)= rank(G⊤
n,kGn,k)= rank(Gn,kG⊤

n,k)≤
min(Nk, p)≤ p and Gn,kG⊤

n,k is positive (semi-)definite. Denote the eigen-decomposition of the ma-
trix Gn,kG⊤

n,k as UnΛnU⊤
n , where Λn = diag(λn,1,λn,2, . . . ,λn,p), λn,1 ≥ λn,2 ≥ ·· · ≥ λn,rn > λn,rn+1 =

· · ·= λn,p = 0, and Un ∈ O(p). Denote

Ic(Gn,kG⊤
n,k) :=UnIp,rn(Λn + cIp×p)

−1U⊤
n , (2.5)

and

Tn,xk := Ic(Gn,kG⊤
n,k)Gn,k111Nk . (2.6)
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Then, it is shown in (Wu and Wu, 2018, Section 2) that the solution to (2.3) is

y⊤k =c−1111⊤Nk
− c−1T⊤

n,xk
Gn,k, (2.7)

and hence

w⊤
k =

111⊤Nk
−T⊤

n,xk
Gn,k

Nk −T⊤
n,xk

Gn,k111Nk

. (2.8)

Note that Nk −T⊤
n,xk

Gn,k111Nk in the denominator of (2.8) is the sum of entries of 111⊤Nk
−T⊤

n,xk
Gn,k in

the numerator, so we could view y⊤k as the “kernel function” associated with LLE, and w⊤
k as the

normalized kernel.
To reduce the dimension of X , it is suggested in Roweis and Saul (2000) to embed X into a

low dimension Euclidean space via

zk 7→ Yk = [v1(k), · · · ,vℓ(k)]⊤ ∈ Rℓ (2.9)

for each zk ∈ X , where ℓ ∈ N is the dimension of the embedded points chosen by the user and
v1, · · · ,vℓ ∈ Rn are eigenvectors of (I −W )⊤(I −W ) corresponding to the ℓ smallest eigenvalues.

2.1 Spectral properties of the LLE matrix

We provide some spectral properties of the LLE matrix. Unlike the graph Laplacian (GL), in gen-
eral, W is not a symmetric matrix or a Markov transition matrix, according to the analysis shown
in Wu and Wu (2018). For A ∈ Rn×n, let σ(A)⊂ C be the spectrum of A and define ρ(A) to be the
spectral radius of A.

Proposition 1 The LLE matrix W ∈ Rn×n satisfies ρ(W )≥ 1.

The proof of the proposition is straightforward. Since W111 = 111, where 111 is an n-dim vector with
all entries 1, 1 ∈ σ(W ). Thus we have that ρ(W )≥ 1. In Appendix A, we construct an example to
show that it is possible for ρ(W )> 1.

Since in general, the LLE matrix W may not be symmetric, the eigenvalues might be complex
and can be complicated. For example, in the null case that 400 points are sampled independently
and identically from a 200-dim Gaussian random vector with 0 mean and identity covariance, the
eigenvalue distribution of W spreads on the complex plane. See Figure 1 for the distribution of such
a dataset.

However, in some special cases, we can well control the imaginary part of the distribution. Con-
sider the symmetric and anti-symmetric parts of W , W+ = (W +W⊤)/2 and W− = (W −W⊤)/2, so
that W =W++W−. By applying the Bauer-Fike theorem with the L2 norm and Holder’s inequal-
ity, for any eigenvalue λ of W , there is a real eigenvalue µ of W+ such that |λ − µ| ≤ ∥W−∥2 ≤√
∥W−∥1∥W−∥∞. Below we show that the imaginary part of eigenvalues of the LLE matrix W is

well controlled under some conditions.

Proposition 2 Denote N = maxk Nk, where Nk = |Nk|. If maxi, j |Wi j −Wji| ≤ Cε

N for some C ≥ 0,
the imaginary part of eigenvalues of the LLE matrix W is of order ε .

4



WHEN LOCALLY LINEAR EMBEDDING HITS BOUNDARY

-0.5 0 0.5 1

Real

-0.1

-0.05

0

0.05

0.1

Im
a
g
in

a
ry

Figure 1: The distribution of eigenvalues of the LLE matrix, where W is constructed with 50 nearest
neighbors. In this example, the top eigenvalue is 1.

Proof Note that W−
i j = 0 if ∥zi − z j∥2 ≥ ε and W−

i j might be nonzero if ∥zi − z j∥2 < ε . Since√
∥W−∥1∥W−∥∞ ≤ N maxi, j |Wi j −Wji|, based on the assumption, the imaginary part of eigenval-

ues of W is bounded by O(ε).

Note that maxi, j |Wi j −Wji| measures the similarity of different ε-neighborhood Nk. Thus, the
assumption that maxi, j |Wi j −Wji| ≤ Cε

N for some C ≥ 0 means that the affinity graph is “not too
imbalanced”. This assumption holds asymptotically under the manifold setup.

Since the KNN scheme and the ε-radius ball scheme are directly related under a suitable ma-
nipulation as is shown in Wu and Wu (2018, Section 5), from now on we fix to the ε-radius ball
scheme in the rest of the paper for the sake of theoretical analysis.

3. Preliminaries for LLE under the manifold with boundary setup

3.1 Main assumptions

In this subsection, we summarize the major assumptions that we need in this paper. First, we have
the following assumption about the manifold M.

Assumption 3.1 Let (M,g) be a d-dimensional compact, smooth Riemannian manifold with bound-
ary isometrically embedded in Rp via ι : M ↪→ Rp. We assume the boundary of M is smooth.

Next, we make the following assumption about the sample points on the manifold M.

Assumption 3.2 Suppose (Ω,F ,P) is a probability space, where P is a probability measure defined
on the Borel sigma algebra F on Ω. Let X be a random variable on (Ω,F ,P) with the range on
(M,g). We assume P := X∗P is absolutely continuous with respect to the volume measure on M
associated with g so that dP= PdV by the Radon-Nikodym theorem, where dV is the volume form
of M and P is a non-negative function defined on M. We call P the probability density function
(p.d.f.) associated with X. We further assume P ∈ C2(M) and 0 < Pm ≤ P(x) ≤ PM for all x ∈ M.
We assume {x1 · · · ,xn} ⊂ M are i.i.d. sampled from P.
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Remark 3 Under the regularity assumption of the boundary and the density function in this model,
in general, the chance to sample a point on the boundary is zero, unless we further assume the
knowledge of the boundary and sample on the boundary. Without the knowledge of the boundary,
an estimate of the boundary is therefore needed. Such estimate has wide applications including the
distance to the boundary estimation and kernel density estimation on a manifold with boundary. We
refer the readers to Berry and Sauer (2017) for a discussion.

Remark 4 We refer the readers to Lee (2012) for a discussion of the differentiability of a function
on the boundary of the manifold. Compared with the P ∈ C5(M) requirement imposed in Wu and
Wu (2018), in this work we only assume P ∈ C2(M). In Wu and Wu (2018), we need P ∈ C5(M)
to explore the regularization effect on the whole algorithm. In this work, since we will fix the
regularization and focus on the boundary, P ∈C2(M) is sufficient.

We adopt the notations in Section 2. Let X = {zi = ι(xi)}n
i=1. Fix ε > 0, we propose the choice

of the parameter for regularization:
c = nε

d+3.

Then, we construct the LLE matrix W by using X and c = nεd+3 as shown in (2.3) and (2.4).

3.2 Manifold with boundary setup

The manifold setup is nowadays standard and has been considered to study several algorithms,
including Eigenmap (Belkin and Niyogi, 2007), DM (Coifman and Lafon, 2006; Trillos et al., 2020),
VDM (Singer and Wu, 2012, 2017), LLE (Wu and Wu, 2018) and several others, like the gradient
estimation (Mukherjee et al., 2010), diffusion on the fiber structure (Lin et al., 2018; Gao, 2021),
Bayesian regression (Yang and Dunson, 2016), extrinsic local regression (Lin et al., 2017), image
processing model (Osher et al., 2017), sensor fusion algorithm (Shnitzer et al., 2018), to name but a
few. Although the manifold model is standard, when the boundary is non-empty, it is less discussed
in the literature. We introduce the following setup for manifold with boundary. See Vaughn et al.
(2019) for a different treatment.

Denote dg(·, ·) to be the geodesic distance associated with g. For ε > 0, define the ε-neighborhood
of ∂M as

Mε = {x ∈ M|dg(x,∂M)< ε}. (3.1)

For the tangent space TxM on x ∈ M, denote ι∗TxM to be the embedded tangent space in Rp

and (ι∗TxM)⊥ be the normal space at ι(x). Let IIx be the second fundamental form of ι(M) at ι(x).
Denote Sd−1 to be the (d − 1)-dim unit sphere embedded in Rp, and |Sd−1| be its volume. Denote
{ei}p

i=1 to be the canonical basis of Rp, where ei is a unit vector with 1 in the i-th entry. Since the
barycentric coordinate is rotational and translational invariant, without loss of generality, when we
analyze local behaviors around x ∈ M in this paper, we implicitly assume that the manifold has been
properly translated and rotated so that ι∗TxM is spanned by e1, . . . ,ed .

We consider the following extension of M and ι(M) (Wong, 2008). By the Whitney extension
Theorem (Whitney, 1992), there is a compact manifold with boundary M̃ and δ > 0 satisfying the
following properties:

1. M̃ is an isometric extension of M.

2. dM̃(∂M, ∂M̃)≥ δ , where dM̃ is the geodesic distance measured in M̃.
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3. M̃ is isometrically embedded in Rp via ι̃ such that ι̃ |M = ι . Thus, ι(M)⊂ ι̃(M̃).

Due to the above extension, we abuse the notation and use expx to denote the exponential map of
M̃ at x ∈ M̃ and the exponential map of M at x ∈ M. Note that when x ∈ Mε , the exponential map
of M at x may not be well defined on ι−1(BRp

ε (ι(x))∩ ι(M)). For example, consider an annulus in
the plane and ι(x) is a point on the inner circle. However, when ε < δ

2 and ε is small enough, we
can make sure that BRp

ε (ι(x))∩ ι̃(M̃) is contained in the interior of ι̃(M̃) and expx is well defined
over ι̃−1(BRp

ε (ι(x))∩ ι̃(M̃)). Since BRp

ε (ι(x))∩ ι(M)⊂ BRp

ε (ι(x))∩ ι̃(M̃), expx is well defined over
ι̃−1(BRp

ε (ι(x))∩ ι(M)). Hence, we conclude that expx is well defined over ι̃−1(BRp

ε (ι(x))∩ ι(M))
for any x in both Mε and M \Mε .

Now, we can handle the ε-ball near the boundary. For x ∈ Mε , define

Dε(x) = (ι̃ ◦ expx)
−1(BRp

ε (ι(x))∩ ι(M))⊂ TxM̃ ,

where TxM̃ is identified with Rd . Denote x∂ := argminy∈∂M d(y,x) and

ε̃x = min
y∈∂M

d(y,x). (3.2)

Due to the smoothness assumption of the boundary, if ε is sufficiently small, such x∂ is unique.
Clearly, we have 0 ≤ ε̃x ≤ ε when x ∈ Mε . Choose the normal coordinates {∂i}d

i=1 around x so that
x∂ = ι̃ ◦ expx(ε̃x∂d). Denote γx(t) to be the unique geodesic with γx(0) = x∂ and γx(ε̃x) = x. We
further rotate ι(M) so that

ed = ι∗
d
dt

γx|ε̃x .

Hence, when x = x∂ ∈ ∂M, ed is the inward normal direction of ι(∂M) at ι(x).
Since M̃ is an isometric extension of M and ι̃ is an extension of ι , for x ∈ M, we use IIx to denote

both the second fundamental form of ι(M) at ι(x) and the second fundamental form of ι̃(M) at
ι̃(x). Recall that the second fundamental form at x is a symmetric bilinear map from TxM×TxM to
(ι∗TxM)⊥. We define IIi j(x) = IIx(∂i,∂ j) for i, j = 1, · · · ,d.

When x is close to the boundary, (ι̃ ◦ expx)
−1(BRp

ε (ι(x))∩ ι(∂M)) is not empty and can be
regarded as the graph of a function. Denote ai j(x∂ ), i, j = 1, . . . ,d−1, to be the second fundamental
form of the embedding of ∂M into M at x∂ . Then there is a domain K ⊂Rd−1 and a smooth function
q defined on K, such that

(ι̃ ◦ expx)
−1(BRp

ε (ι(x))∩ ι(∂M))

=
{ d

∑
l=1

ul
∂l ∈ TxM

∣∣∣(u1, · · · ,ud−1) ∈ K, ud = q(u1, · · · ,ud−1)
}
,

where q(u1, · · · ,ud−1) can be approximated by

ε̃x +
d−1

∑
i, j=1

ai j(x∂ )u
iu j

up to an error depending on a cubic function of u1, . . . ,ud−1. For the sake of self containedness, we
provide a proof of this fact in Lemma 24.

Note that in general the region Dε(x) may not be symmetric with respect to x. We define the
symmetrized region associated with Dε(x).
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Definition 5 For x ∈ Mε and ε > 0 sufficiently small, the symmetrized region associated with Dε(x)
is defined as

D̃ε(x) =
{
(u1, · · ·ud) ∈ TxM̃

∣∣∣ d

∑
i=1

u2
i ≤ ε

2 and ud ≤ ε̃x +
d−1

∑
i, j=1

ai j(x∂ )uiu j

}
.

When x ∈ Mε , D̃ε(x) is symmetric across ∂1, . . . ,∂d−1 since if (u1, · · · ,ui, · · ·ud) ∈ D̃ε(x), then
(u1, · · · ,−ui, · · · ,ud) ∈ D̃ε(x) for i = 1, · · · ,d − 1 by definition. Clearly, the volume of D̃ε(x) is
an approximation of that of Dε(x) up to the third order error term. See Corollary 25 for details. For
x ̸∈ Mε and ε sufficiently small, define the symmetric region associated with Dε(x) as

D̃ε(x) =
{
(u1, · · ·ud) ∈ TxM̃

∣∣∣ d

∑
i=1

u2
i ≤ ε

2
}
⊂ TxM̃. (3.3)

3.3 The augmented vectors and the kernels associated with LLE

Before we define the augmented vectors and the kernels associated with LLE, we recall the defini-
tion of the local covariance matrix. For x ∈ M, we call

Cx := E[(ι(X)− ι(x))(ι(X)− ι(x))⊤χBRp
ε (ι(x))(ι(X))] ∈ Rp×p (3.4)

the local covariance matrix at ι(x) ∈ ι(M), which is the covariance matrix considered for the local
principal component analysis (PCA) (Singer and Wu, 2012; Cheng and Wu, 2013). In this paper, we
use the following symbols for the local covariance matrix. For x ∈ M, suppose rank(Cx) = r ≤ p.
Clearly, r depends on x, but we ignore x for simplicity. Denote the eigen-decomposition of Cx as
Cx =UxΛxU⊤

x , where Ux ∈ O(p) is composed of eigenvectors and Λx is a diagonal matrix with the
associated eigenvalues λ1 ≥ λ2 ≥ ·· · ≥ λr > λr+1 = · · ·= λp = 0. The theoretical property of local
PCA on the manifold without boundary has been studied in a sequence of works, like Nadler (2008);
Singer and Wu (2012); Tyagi et al. (2013); Cheng and Wu (2013); Kaslovsky and Meyer (2014);
Little et al. (2017); Wu and Wu (2018); Dunson and Wu (2021), and the companion property near
the boundary will be discussed in Section D.

In this work, the regularizer in (2.3) we have interest in is c = nεd+3. For the sake of self-
containedness, we provide an intuitive explanation for the choice of the regularizer when M has no
boundary based on the results in Wu and Wu (2018). Under Assumptions 3.1 and 3.2, let X =
{zi = ι(xi)}n

i=1. Let Gn,k be the local data matrix constructed from X as defined in (2.2). Then, as
n → ∞, we expect

1
n

Gn,kG⊤
n,k →Cxk ,

where Cxk is the local covariance matrix at ι(xk). In Wu and Wu (2018), the authors show that the
first d eigenvalues of Cxk are of order εd+2, while the rest p− d eigenvalues are bounded by εd+4

when ε is sufficiently small. Those p−d eigenvalues include the extrinsic geometric information,
e.g. the second fundamental form of ι(M). Hence, if ε is chosen properly based on n, we expect that
the first d eigenvalues of Gn,kG⊤

n,k are of order nεd+2, while the rest p− d eigenvalues containing
the extrinsic geometric information are bounded by nεd+4. Suppose we choose c = nεd+3 in (2.5).
Then last p− d diagonal terms of Λn + cIp×p are dominated by c but less than the first d diagonal
terms. Hence, we can eliminate the impact of the extrinsic geometry of ι(M) in (2.5). Since the
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Laplace Beltrami operator only depends on the intrinsic geometry of M, we choose c = nεd+3 to
construct the LLE matrix in (2.4) and (2.8) in order to recover the operator. When the boundary is
non-empty, since our focus is the boundary effect, we fix this regularizer so that points away from
the boundary have a good control.

Definition 6 Define the augmented vector at x ∈ M as

T(x)⊤ = E[(ι(X)− ι(x))χBRp
ε (ι(x))(ι(X))]⊤UxIp,r(Λx + ε

d+3Ip×p)
−1U⊤

x ∈ Rp , (3.5)

which is a Rp-valued vector field on M.

The nomination of T(x) comes from analyzing the kernel associated with LLE. It has been shown
in Wu and Wu (2018, Corollary 3.1) that the kernel associated with LLE is not symmetric and is
defined as

Kε(x,y) := χBRp
ε (ι(x))(ι(y))− [(ι(y)− ι(x))χBRp

ε (ι(x))(ι(y))]
⊤T(x) . (3.6)

We call T(x) the augmented vector since it augments the symmetric 0−1 kernel K(x,y)= χBRp
ε (ι(x))(ι(y))

by the inner product of T(x) and [(ι(y)− ι(x))χBRp
ε (ι(x))(ι(y))]. Notice that the vector Tn,xk defined

in (2.6) is a discretization of T(x) and the theoretical justification is provided in Appendix G.

3.4 Empirical estimation of the regularizer

In Wu and Wu (2018), the authors propose to choose the regularizer in LLE as c = nεd+3 based on
the asymptotic analysis. However, in practice, the dimension of the manifold d is unknown. While
it is possible to estimate the dimension, it is usually a challenging mission. We thus need a practical
way to determine the regularizer without estimating the dimension. In this subsection, we provide
empirical estimators of c without estimating the dimension of the underlying manifold given a finite
sample X = {zi = ι(xi)}n

i=1 satisfying Assumptions 3.1 and 3.2, and the estimator is asymptotically
equal to nεd+3 up to a constant. Suppose z,z′ ∈ Rp. Define Kε(z,z′) = exp(−∥z−z′∥Rp

ε
), where ε

is the same bandwidth in the ε radius ball scheme of LLE. We suggest considering the following
empirical regularizer

c̃ = ε
3median

(
n

∑
j=1

Kε(zi,z j)

)
, (3.7)

where the median is evaluated over all zi ∈X . The construction of the above estimator is motivated
by the kernel density estimation. Suppose z = ι(x) for x ∈ M. It is shown in Berry and Sauer (2017)
that if nεd → ∞ and ε → 0 as n → ∞, then c̃(z) → C(x)P(x)nεd+3, where C(x) depends on d and
dg(x,∂M) if x is sufficient close to the boundary, and C(x) only depends on d if x is away from the
boundary. This estimator is easy to implement and does not require an estimation of d. We shall
mention that although we choose the squared exponential kernel for the density estimation, more
general kernels can be applied to construct the estimator. We refer the readers to Wu and Wu (2022)
for a discussion.

9
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4. Asymptotic analysis of LLE under the manifold with boundary setup

In this section, we provide the asymptotic analysis of LLE under the manifold with boundary setup.
With the ε-radius ball scheme, the asymptotic analysis is achieved in the following 4 steps. We also
summarize the main results of each step as follows.

Step 1: In subsection 4.1, we study the augmented vector T(x) for x ∈ M. We show that the
vectors T(x) form a smooth vector field on ι(M). The geometry of the vector field can be intuitively
described as follows. The vector T(x) almost points toward the normal direction of ι(M) in the
interior region x ∈ M \ Mε . However, in Mε , T(x) leans towards the tangent direction of ι(M)
gradually. It is worth noting that the restriction of the tangent components of T(x) on ι(∂M) forms
an inward normal vector field of ι(∂M).

Step 2: Since T(x) is the major ingredient in the definition of the kernel function Kε(x,y),
where x,y ∈ M, in subsection 4.2, we explore the properties of Kε(x,y) by using the properties of
T(x) that we derive in the previous subsection. Obviously, based on the definition, Kε(x,y) = 0
when ι(y) ̸∈ BRp

ε (ι(x)). We show that Kε(x,y) is approximately equal to 1 when x ∈ M \Mε and
ι(y) ∈ BRp

ε (ι(x)). However, when x ∈ Mε , Kε(x,y) is not symmetric and may be negative.

Step 3: In subsection 4.3, we provide the variance analysis. First, we use Kε(x,y) to define an
integral operator Qε on C(M). For f ∈ C2(M), let f⃗ be the discretization of f over {x1, · · · ,xn} ⊂
M. Let W be the LLE matrix. Then, we show that [(W − I) f⃗ ](k) converges to Qε f (xk) at the

rate O
( √

log(n)
n1/2εd/2−1

)
regardless the xk in M \Mε or Mε . Hence, the result implies that the pointwise

convergence rate of LLE is the same for manifolds with or without boundary.

Step 4: In subsection 4.4, we provide the bias analysis. We define a second order mixed-type
differential operator Dε . We show that for f ∈C3(M), Qε f (x)/ε2 can be approximated by Dε f (x)
for all x ∈ M. The final result connecting [(W − I) f⃗ ](k) and Dε f (xk) is achieved by combining the
variance and the bias analysis.

4.1 Properties of the augmented vector on manifold with boundary

The main challenge to analyze LLE is dealing with the augmented vector. It involves three main
players in the data structure, the p.d.f., the curvature, and the boundary if the boundary is not empty.
Clearly, when x is close to the boundary, the term E[(ι(X)− ι(x))χBRp

ε (ι(x))(ι(X))] in T(x) includes
the geometry of the boundary, and the integration will depend on the p.d.f.. On the other hand,
while a manifold can be locally well approximated by an affine space, the curvature appears in the
eigenvalues of the local covariance matrix. Hence, the term (Λx +εd+3Ip×p)

−1 in T(x) involves the
curvature. Dealing with these terms requires a careful asymptotic analysis. To alleviate the heavy
notation toward this goal, we consider the following functions, and their role will become clear
along the theory development.

10
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Definition 7 Suppose ε is sufficiently small. We define the following functions on [0,∞), where
|Sd−2|
d−1 is defined to be 1 when d = 1.

σ0(t) :=

{
|Sd−1|

2d + |Sd−2|
d−1

∫ t
ε

0 (1− x2)
d−1

2 dx for 0 ≤ t ≤ ε

|Sd−1|
d for t > ε

(4.1)

σ1,d(t) :=

{
− |Sd−2|

d2−1 (1− ( t
ε
)2)

d+1
2 for 0 ≤ t ≤ ε

0 otherwise

σ2(t) :=


|Sd−1|

2d(d+2) +
|Sd−2|
d2−1

∫ t
ε

0 (1− x2)
d+1

2 dx for 0 ≤ t ≤ ε

|Sd−1|
d(d+2) otherwise

σ2,d(t) :=


|Sd−1|

2d(d+2) +
|Sd−2|
d−1

∫ t
ε

0 (1− x2)
d−1

2 x2dx for 0 ≤ t ≤ ε

|Sd−1|
d(d+2) otherwise

σ3(t) :=

{
− |Sd−2|

(d2−1)(d+3)(1− ( t
ε
)2)

d+3
2 for 0 ≤ t ≤ ε

0 otherwise

σ3,d(t) :=

{
− |Sd−2|

(d2−1)(d+3)(2+(d +1)( t
ε
)2)(1− ( t

ε
)2)

d+1
2 for 0 ≤ t ≤ ε

0 otherwise

Note that these functions are of order 1 when t ≤ ε . These seemingly complicated formulas
share a simple geometric picture. If R is the region between the unit sphere and the hyperspace
xd = t

ε
in Rd with coordinates {x1, · · · ,xd}, where 0 ≤ t ≤ ε , then σ0(t), σ1,d(t), σ2(t), σ2,d(t),

σ3(t) and σ3,d(t) are expansions of the integrals of 1, xd , x2
1, x2

d , x2
1xd and x3

d over R respectively.
All the above functions are differentiable of all orders except when t = ε . The regularity of the
functions at t = ε depends on d. For example σ0(t) is at least C0 at t = ε and the other functions are
at least C1 at t = ε .

With these notations, the behavior of T(x), particularly when x is near the boundary, can be fully
described.

Proposition 8 Decompose T(x) = Ttan(x)+Tper(x), where Ttan(x) is the tangential component of
T(x) and Tper(x) is the normal component of T(x); that is, Ttan(x)∈ ι∗TxM and Tper(x)∈ (ι∗TxM)⊥.
If x ∈ Mε , then

Ttan(x) =
σ1,d(ε̃x)

σ2,d(ε̃x)

1
ε

ed +O(1)

Tper(x) =
P(x)

2

[(
σ2(ε̃x)−

σ1,d(ε̃x)

σ2,d(ε̃x)
σ3(ε̃x)

) d−1

∑
j=1

II j j(x)

+
(

σ2,d(ε̃x)−
σ1,d(ε̃x)

σ2,d(ε̃x)
σ3,d(ε̃x)

)
IIdd(x)

]
1
ε
+O(1).

11
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If x ∈ M \Mε , then

Ttan(x) =Jp,d
∇P(x)
P(x)

+O(ε)

Tper(x) =
P(x)

2

[
|Sd−1|

d(d +2)

d

∑
j=1

II j j(x)
]

1
ε
+O(1).

The proof is postponed to Appendix E. The above proposition says that when x ∈ Mε , both
the tangent and normal components of T(x) are of order 1

ε
, and the normal component depends on

the extrinsic curvature of the manifold at ι(x). An interesting observation is that a construction of
the inward normal vector field on ι(∂M) is naturally encoded in the LLE algorithm. In particular,
Ttan(x) on ι(∂M) forms an inward normal vector field on ι(∂M) with an order O(1) perturbation.
Moreover, the magnitude of Ttan(x) on Mε only depends on the distance from x to the boundary and
it is independent of the p.d.f.. On the other hand, when x ∈ M \Mε , T(x) is of order 1

ε
in the normal

direction of M \Mε with an order O(1) perturbation in the tangential direction. With the theorem
developed in Wu and Wu (2018) for the augmented vector field away from the boundary, we have
the full knowledge of the augmented vector field.

At last, in Figure 2, we provide a visualization of the augmented vector field in a 2-dim manifold
parametrized by (x,y,x2 − y3), where x2 + y2 ≤ 1. We sample the manifold in the following way.
First, uniformly sample 20,000 points independently on [−1,1]× [−1,1], and keep points with
norm less and equal to 1. The i-th point is then constructed by the parametrization. Clearly, the
sampling is not uniform. The LLE matrix is constructed with the ε-radius ball nearest neighbor
search scheme with ε = 0.2.

Figure 2: The T vector field. The sampled point cloud is plotted in gray. Left: the black points
indicates points satisfies 0.98 ≤ x2 +y2 ≤ 1, and the T on those points are marked in red.
Right: the T on points with x2 + y2 < 0.98 are marked in red.

Remark 9 Another work that constructs a normal vector field on the boundary of a manifold is
Berry and Sauer (2017). Inspired by the kernel density estimation, the authors propose an inward
normal vector field by using F⃗(ι(x)) = E[(ι(X)− ι(x))K(∥ι(X)−ι(x)∥Rp

h )] ∈ Rp, where K : [0,∞)→

12



WHEN LOCALLY LINEAR EMBEDDING HITS BOUNDARY

[0,∞) has an exponential decay and h is the bandwidth. Since the construction originates from the
kernel density estimation, when x ∈ ∂M, the magnitude of the vector field depends on the p.d.f..

4.2 Properties of the kernel on manifold with boundary

With the above knowledge of the augmented vector field near the boundary, the behavior of the
kernel near the boundary can be well quantified.

Proposition 10 Let Kε(x,y) be the kernel function defined in (3.6). Fix x ∈ M, we summarized the
properties of Kε(x,y) as follows.

1. Suppose x ̸∈Mε . When ι(y)∈BRp

ε (ι(x)), Kε(x,y) = 1−O(ε). Otherwise Kε(x,y) = 0. Hence,
Kε(x,y)≥ 0, when ε is sufficiently small. The implied constant in O(ε) depends on the mini-
mum and C1 norm of P and the maximum of second fundamental form of the manifold.

2. If x ∈ Mε and ι(y) ∈ BRp

ε (ι(x)), when ε is sufficiently small,

Kε(x,y) = 1−
σ1,d(ε̃x)ud

σ2,d(ε̃x)ε
+O(ε), (4.2)

where the coordinate ud of y is defined in Definition 5. The implied constant in O(ε) depends
on the minimum and C1 norm of P and the maximum of second fundamental form of the
manifold. Otherwise Kε(x,y) = 0. Hence, we have

inf
x,y

Kε(x,y) = 1− |Sd−2|
d −1

2d(d +2)
(d +1)|Sd−1|

+O(ε)< 0

when ε is sufficiently small, where |Sd−2|
d−1 is defined to be 1 when d = 1.

3. For any x ∈ M, we have
EKε(x,X) =C(x)εd +O(εd+1), (4.3)

where C(x)>C > 0, and C is a constant depending only on d and P. Hence, EKε(x,X)> 0
for all x ∈ M when ε is sufficiently small. The implied constant in O(εd+1) depends on the C1

norm of P and the maximum of second fundamental form of the manifold.

This proposition provides several facts about LLE. First, the assumption of Proposition 2 is satis-
fied when the manifold is boundary free, since the higher order error terms depend on various curva-
tures of M and M is smooth and compact. So, the eigenvalues of the LLE matrix in the boundary-free
manifold setup have well controlled imaginary parts. However, when the boundary is not empty, we
may lose this control. Second, the kernel function behaves differently when x is near the boundary
and away from the boundary. When x is away from the boundary, the kernel is non-negative. How-
ever, when x is close to the boundary, then it is possible that Kε(x,y) is negative. In particular, when
x ∈ ∂M, ι(y) ∈ BRp

ε (ι(x)), the geodesic distance between x and y is ε +O(ε2) and the minimizing
geodesic between x and y is perpendicular to ∂M, then Kε(x,y) = 1− |Sd−2|

d−1
2d(d+2)

(d+1)|Sd−1| +O(ε) < 0.
Although it is possible that Kε(x,y) is negative, EKε(x,X) is always positive if ε is small enough.
See Figure 3 for an illustration of the kernel associated with LLE, where the manifold, the sampling
scheme, and the LLE matrix are the same as that in Figure 2, expect ε = 0.1.
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Figure 3: The kernel function associated with LLE. The sampled point cloud is plotted in gray.
Left: the kernel function Kε , where ε = 0.1, on two points, one is close to the boundary
(indicated by the red circle, with the zoomed in enhanced visualization), and one is away
from the boundary. It is clear that the kernel close to the boundary changes sign, while
the kernel away from the boundary is positive. Right: the EKε(x,X). It is clear that the
expectations of the kernel at all points are positive.

4.3 Variance analysis of LLE on manifold with boundary

Define the integral operator from C(M) to C(M):

Qε f (x) :=
E[Kε(x,X) f (X)]

EKε(x,X)
− f (x) , (4.4)

where f ∈C(M). We now show that when the boundary is not empty, the LLE matrix W converges
to the integral operator Qε when n → ∞. The proof of the theorem is postponed to Appendix G.

Theorem 11 (Variance analysis) Suppose f ∈C2(M). Suppose ε = ε(n) so that
√

log(n)
n1/2εd/2+1 → 0 and

ε → 0 as n → ∞. We have with probability greater than 1−n−2 that for all k = 1, . . . ,n,

Nk

∑
j=1

yk( j) =
EKε(xk,X)

εd+3 +O
( √log(n)

n1/2εd/2+3

)
(4.5)

n

∑
j=1

[W − In×n]k j f (x j) = Qε f (xk)+O
( √log(n)

n1/2εd/2−1

)
, (4.6)

where yk is defined in (2.3). The implied constants in the error terms depend on C2 norm of f , C1

norm of P and the L∞ norm of maxi, j=1,...,d ∥IIi j(x)∥.

Note that the order of the variance does not depend on the location of x j. By combining (4.5)
and (4.3) in Proposition 10, we know that if n is sufficiently large, the sum of all components of yk
is positive. This result restates the fact that wk defined in (2.8) does not blow up.
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4.4 Bias analysis of LLE on manifold with boundary and the main result

In this subsection, we study the integral operator Qε by relating it to the following differential
operator.

Definition 12 Fix ε > 0. Define a differential operator on C2(M) as

Dε f (x) = φ1(ε̃x)
d−1

∑
i=1

∂
2
ii f (x)+φ2(ε̃x)∂

2
dd f (x)+V (x)∂d f (x) , (4.7)

where φ1 and φ2 are functions defined on [0,∞) by

φ1(t) =
1
2

σ2,d(t)σ2(t)−σ3(t)σ1,d(t)
σ2,d(t)σ0(t)−σ2

1,d(t)
, (4.8)

φ2(t) =
1
2

σ2
2,d(t)−σ3,d(t)σ1,d(t)

σ2,d(t)σ0(t)−σ2
1,d(t)

, (4.9)

and V is a function on M defined by

V (x) =
σ1,d(ε̃x)

P(x)
(
σ2,d(ε̃x)σ0(ε̃x)−σ2

1,d(ε̃x)
) . (4.10)

Next, we take a closer look at coefficients of Dε .

Proposition 13 Fix ε > 0. We have the following properties of coefficients of the differential oper-
ator Dε .

1. φ1(t)> 0. When t ≥ ε ,

φ1(t) =
1

2(d +2)
. (4.11)

Moreover, φ1(t) is differentiable of all orders at all t > 0 except at t = ε , where it is at least
first order differentiable.

2. φ2(0)< 0. If t ≥ ε , then

φ2(t) =
1

2(d +2)
. (4.12)

Moreover, φ2(t) is differentiable of all orders at all t > 0 except at t = ε , where it is at least
first order differentiable. Hence, there is a set S ⊂ Mε diffeomorphic to ∂M and φ2(ε̃x)
vanishes on S . Denote the geodesic distance from x ∈S to ∂M as t∗(x). t∗(x) depends only
on ε and d. In fact, δ1ε < t∗(x)< δ2ε , where

δ1 =

(
1−
[1+ (d2−1)|Sd−1|

2d(d+2)|Sd−2|

1+
√

2
d+3

] 2
d+1
) 1

2

, (4.13)

δ2 =

(
1−
[
(d2 −1)|Sd−1|

4d(d +2)|Sd−2|
+

1
d +3

] 2
d+1
) 1

2

< 1 (4.14)

and δ2 → 0 as d → ∞.
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3. V (x)≤ 0. Moreover, V (x) = O(ε2) is differentiable of all orders at all x except when ε̃x = ε ,
where it is at least differentiable of the first order. If x ∈ Mε satisfies ε̃x ≥ ε , in other words,
x ∈ M\Mε , then V (x) = 0. In particular, if P(x) is constant, then V (x) is an increasing
function of ε̃x.

Denote Mw to be the interior subset of the region between S and ∂M on M. Denote Me to be
the interior subset of M\Mw on M. Clearly, Mw is a strict subset of Mε . According to Proposition
13, Dε is of hyperbolic type over Mw, of elliptic type over Me, and degenerate over S . We thus
call Mw the wave region, Me the elliptic region, and S the degenerate region. We conclude that the
operator Dε is a mixed-type differential operator with degeneracy.

Remark 14 In fact, t∗ is the solution of the following nonlinear equation of t:

( |Sd−1|
2d(d +2)

+
|Sd−2|
d −1

∫ t
ε

0
(1− x2)

d−1
2 x2dx

)2

=
|Sd−2|2

(d2 −1)2(d +3)

[
2+(d +1)

( t
ε

)2][
1−
( t

ε

)2]d+1
, (4.15)

where t > 0

We have the following theorem describing how Qε is related to Dε when ε is sufficiently small.
The proof is postponed to Appendix F.

Theorem 15 (Bias analysis) Suppose f ∈C3(M) and P ∈C2(M). We have

Qε f (x) = Dε f (x)ε2 +O(ε3) . (4.16)

By combining the bias and variance analyses, we have the following pointwise convergence result.

Theorem 16 Suppose f ∈ C3(M) and P ∈ C2(M). Suppose ε = ε(n) so that
√

log(n)
n1/2εd/2+1 → 0 and

ε → 0 as n → ∞. We have with probability greater than 1−n−2 that for all k = 1, . . . ,n,

n

∑
j=1

[W − In×n]k j f (x j) = Dε f (x)ε2 +O(ε3)+O
( √log(n)

n1/2εd/2−1

)
, (4.17)

where the implied constants in the error terms depend on the C2 norm of f , the C1 norm of P, and
the L∞ norm of maxi, j=1,...,d ∥IIi j(x)∥.

Note that when M is a manifold without boundary, then Dε = 1
2(d+2)∆. Hence, the above the-

orem is consistent with the result in Wu and Wu (2018) when M has no boundary. However, the
regularizer in Wu and Wu (2018) is chosen as c = nεd+ρ , where ρ may be different than 3. The
main result there is presented in different cases capturing the interaction between ρ and different
local covariance matrix structures. In contrast, the above theorem is much simpler as we only focus
on the case when ρ = 3.
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4.5 Relationship between W − I and (W − I)⊤(W − I)

In this paper and Wu and Wu (2018), we focus on studying the asymptotic behavior of W − I.
However, in the original LLE algorithm, it is the eigenvector of the matrix (W − I)⊤(W − I) that
is used to reduce the dimension of X . We shall clarify the relationship between W − I and (W −
I)⊤(W − I) from two aspects – spectral geometry and linear algebra.

Recall that when a manifold is compact without boundary, based on the spectral embedding
results (Bérard et al., 1994; Bates, 2014; Portegies, 2016), the eigenfunctions of −∆ can be applied
to construct an embedding of the manifold in a Euclidean space, and the embedding is almost
isometric if both eigenfunctions and eigenvalues are properly used. Therefore, if we could obtain
eigenpairs of ∆ from the database X sampled from a manifold, we could recover the manifold
via this spectral embedding. However, it is not clear what the eigenvectors of (W − I)⊤(W − I) or
W − I mean directly from the algorithm. An immediate approach to answering this question is via
the pointwise convergence. In Wu and Wu (2018), if M is a compact manifold without boundary,
W − I pointswisely converges to the operator ε2

2(d+2)∆. In Theorem 16 of the current work, we
show that the same result holds over the region M \Mε when ∂M ̸= /0, and near the boundary the
asymptotic behavior is complicated with degeneracy. Hence, one may guess that (W − I)⊤(W − I)
will pointwisely converge to ε4

4(d+2)2 ∆2 over the data points in the region M \Mε . However, it is in
general not true, particularly when the sampling is nonuniform. It is because the nonsymmetry of
W −I plays an important role in eliminating the impact of nonuniform distribution of the point cloud
on M (Wu and Wu, 2018), and we lose such property if we consider (W − I)⊤(W − I). Consider the
following analysis of (W − I)⊤(W − I) in a simple manifold for an illustration. In contrast to the
operator Qε , we define a new integral operator from C(M) to C(M):

Q̄ε f (x) :=
E[Kε(X ,x) f (X)]

EKε(X ,x)
− f (x) , (4.18)

where f ∈C(M). By the law of large number, we would have

n

∑
j=1

[W − In×n]
⊤
k j f (x j)→ Q̄ε f (xk)

and
n

∑
i=1

[W − In×n]
⊤
ki

n

∑
j=1

[W − In×n]i j f (x j)→ (Q̄ε(Qε f ))(xk)

as n → ∞. Now, suppose ι(M) = [−1,1] ⊂ R and let X = {ι(xi)}n
i=1, where {x1,x2, · · · ,xn} are

i.i.d. sampled following a p.d.f. P ∈ C2(M). Then, for any ε small enough, suppose ι(xk) ∈
[−1+ ε,1− ε], for any f ∈C5(M), we have

(Q̄ε(Qε f ))(xk) =
1
9

(1
4

f ′′′′(xk)+
f ′′′(xk)P′(xk)

P(xk)

)
+O(ε) , (4.19)

where f⃗ = [ f (x1), . . . , f (xn)]
⊤. The detailed calculation of (4.19) is postponed to Appendix H. In

this result, although the manifold is flat and there is no extrinsic geometric information involved,
asymptotically (W − I)⊤(W − I) involves not only the desired ∆2 but also the sampling distribution.
This says that even if we do not consider the boundary, the asymptotic differential operator is more
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complicated than the bi-Laplacian ∆2. A similar result can be derived when M is a general manifold
without boundary, but we omit details here.

Based on the above discussion, we could reasonably conjecture that the eigenvectors of W − I
approximate the eigenfunctions of ∆ when ∂M = /0 and the eigenfunctions of more complicated
second order differential operator with degeneracy when ∂M ̸= /0, and the eigenvectors of (W −
I)⊤(W − I) approximate the eigenfunctions of more complicated fourth order differential operator.
To prove these conjectures, we need to establish the spectral convergence results, which is out of the
scope of this paper. Note that previous work on spectral convergence of graph Laplacian (Dunson
et al., 2021; Calder et al., 2022; Wormell and Reich, 2021) mainly focuses on symmetric kernel
matrices, except the work discussing the kNN kernel construction Calder et al. (2022). However,
these kernels are a priori assigned, so their approaches cannot be directly applied to study W − I.
Specifically, the LLE matrix is not only nonsymmetric but also determined by the dataset. We need
different analysis tools to establish the spectral convergence. On the other hand, a complete under-
standing of the original LLE is certainly via understanding (W − I)⊤(W − I). We shall mention that
even for bi-Laplacian to which (W − I)⊤(W − I) pointwisely converges under special conditions, it
is still challenging to derive the spectral convergence. Note that it is still an active research field to
study bi-Laplacian and its spectral behavior (Chang et al., 1999; Cuccu and Porru, 2009). To sum
up, with the help of pointwise convergence results, we could conjecture the spectral behavior of
W − I and (W − I)⊤(W − I), and their behaviors are different in general.

From the linear algebra perspective, there are several interesting relationships between (W −
I)⊤(W − I) and W − I. First, W − I is a sparse matrix and in general sparser than (W − I)⊤(W − I).
Since (W − I)⊤(W − I) is symmetric, its eigendecomposition always exists, while W − I is not
always diagonalizable. Second, eigenvalues of (W −I)⊤(W −I) are the square of the singular values
of W − I and the eigenvectors of (W − I)⊤(W − I) are the same as the right singular vectors of the
W − I. While W − I is in general not diagonalizable, based on Proposition 10 under the manifold
setup, the conditions in Proposition 2 are satisfied, which says that when the sample size of the data
is large enough, W − I is close to the symmetric matrix W+W⊤

2 − I and the imaginary parts of the
eigenvalues of W − I are small. Note that even if W − I is diagonalizable, the right singular vectors
of W − I are different from the right eigenvectors of W − I. It echos what we discuss above —
under the boundary-free manifold setup, we conjecture that the eigenvectors of W − I approximate
the eigenfunctions of ∆, while the eigenvectors of (W − I)⊤(W − I), and hence the singular vectors
of W − I, approximate the eigenfunctions of a fourth order differential operator that involves the
nonuniform sampling information. Third, we shall mention that numerically we consistently found
that under the manifold setup, when n is sufficiently large, the leading eigenvectors of W − I recover
the corresponding eigenfunctions of ∆. Note that a theoretical justification of this numerical finding
is part of the spectral convergence conjecture listed above. Therefore, if we consider W − I for
the dimension reduction purpose, we propose to use the real parts of the top eigenvectors of W − I
corresponding to the leading eigenvalues listed in the decreasing order of their real parts to define the
embedding. We provide a numerical comparison of the embedding by W − I and (W − I)⊤(W − I)
in Figure 4, where we nonuniformly sample 3513 points from the unit disk on R2 (shown on the top
left subfigure superimposed with the radius as the color), construct W with the ε = 0.04 radius ball
and the regularizer nε5, and embed the data using the top 2 non-trivial eigenvectors of W − I (shown
on the top middle subfigure) and (W − I)⊤(W − I) (shown on the top right subfigure). Note that in
the top middle and right subfigures, the original radius of each point is superimposed as the color,
which indicates how the embedding behaves. The top three nontrivial eigenvectors of W − I are
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shown in the middle panel, and the top three nontrivial eigenvectors of (W − I)⊤(W − I) are shown
in the bottom panel. In this example, we see that the embeddings by W − I and (W − I)⊤(W − I)
are different. Based on the analysis in the current work, it is not surprising that the embedding
by W − I is impacted by the boundary, but it is interesting to see that (W − I)⊤(W − I) is less
impacted by the boundary. The nonuniform sampling also plays a role here. While we do not
show it here, we found that when the sampling from the unit disk is uniform, the embeddings by
W − I and (W − I)⊤(W − I) are similar, which suggests the interaction between the sampling and
boundary. The above interesting findings warrant further study of the behavior of (W − I)⊤(W − I)
from various aspects to fully understand how LLE functions.

Figure 4: Top left subfigure: the original dataset uniformly sampled from the unit disk superim-
posed with the radius as the color. Top middle (right respectively) subfigure: the em-
bedding by the top two nontrivial eigenvectors of W − I ((W − I)⊤(W − I) respectively),
where the radius of the original radius of each point is superimposed as the color. The top
three nontrivial eigenvectors of W − I are shown in the middle panel, and the top three
nontrivial eigenvectors of (W − I)⊤(W − I) are shown in the bottom panel.
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5. Exploration of LLE on 1-dim manifold with boundary

In this section, we further explore the LLE matrix W . In Theorem 16, we show that the matrix
W − I converges pointwisely to the differential operator Dε . Then, we illustrate how the differential
operator Dε looks like in the 1 dimensional case.

Corollary 17 Let M be a regular smooth curve in Rp. Let γ(t) : [0,a] → Rp be the arclength
parametrization. Let P(t) be the probability density function. Then, we have, for f ∈C2(M),

Dε f (t) =


− 1

12(1−4( t
ε
)+( t

ε
)2) f ′′(t)+ 6ε2(ε−t)

P(t)(ε+t)3 f ′(t) if t ∈ [0,ε];
1
6 f ′′(t) if t ∈ [ε,a− ε];
− 1

12(1−4(a−t
ε
)+(a−t

ε
)2) f ′′(t)− 6ε2(ε+t−a)

P(t)(ε+a−t)3 f ′(t) if t ∈ [a− ε,a].

Specifically, Dε f (t) degenerates to 2
√

3
P(t) f ′(t) at t = (2−

√
3)ε and t = a− (2−

√
3)ε .

This corollary comes from a direct expansion of the formula in Definition 12. Note that ed is
in the outward normal direction by definition. Therefore, ∂d f (t) = − f ′(t), when t ∈ [0,ε]. And
∂d f (t) = f ′(t), when t ∈ [a− ε,a]. To study the spectral property of Dε , it is natural to consider
converting Dε into the Sturm-Liouville (SL) form by the integrating factor. However, due to the
degeneracy of aε , several technical details need to be taken care of. Here we provide a summary of
known facts about the SL theory (Naı̈mark, 1967, Chapter V).

Fix a > 0. The SL problem on (0,a) is finding a complex function f (x) defined on (0,a) that
solves

−(p(x) f (x)′)′+q(x) f (x) = λw(x) f (x), (5.1)

where p(x), q(x) and w(x) are measurable real functions on (a,b) and λ is a complex number. The
SL problem is called regular if 1/p, q, and w are all functions in L1(a,b); otherwise, it is called
singular. A complex function f (x) is a solution of the SL problem (5.1), if f [0](x) and f [1](x) exist,
where f [0](x) := f (x) (respectively f [1](x) := p(x) f ′(x)) is the zero (respectively first) order quasi-
derivative of f , and are absolutely continuous on any compact subinterval of (a,b). It is worth
noting that in general f ′(x) may not be absolutely continuous.

It is stated in (Naı̈mark, 1967, Chapter V) that for x0 ∈ (0,a) and complex numbers c0 and c1,
there exists a unique solution to the regular SL problem with f [0](x0) = c0 and f [1](x0) = c1. As
an eigenvalue problem, by (Atkinson, 1964), given boundary conditions A1 f [0](0)+A2 f [1](0) = 0
and B1 f [0](a)+B2 f [1](a) = 0 with A2

1 +A2
2 > 0 and B2

1 +B2
2 > 0, if the SL problem is regular and

p > 0 and w > 0 on (0,a), then the eigenvalues are discrete and bounded from below; that is,
we have eigenvalues −∞ < λ0 < λ1 < λ2 < .. . so that λn → ∞ as n → ∞. Moreover, if fn is the
corresponding eigenvalues of λn, then fn has exactly n zeros in (0,a).

Now we come back to the challenge. Suppose P(t) = 1/a; that is, the sampling is uniform. By
Corollary 17, when ε is sufficiently small, the second order ordinary differential equation

Dε f (t) = Aε(t) f ′′(t)+Bε(t) f ′(t) (5.2)

dominates. Note that Aε(t)> 0 on the elliptic region ((2−
√

3)ε,a− (2−
√

3)ε), and Aε(t)< 0 on
the wave region [0,(2−

√
3)ε)∪ (a− (2−

√
3)ε,a], while Bε(t)≥ 0 on [0,a].

To convert Dε into the SL form, we define two more functions over t ∈ [0,ε]. First,

g(t) :=
∣∣t − (2−

√
3)ε
∣∣(4+2

√
3)aε
∣∣t − (2+

√
3)ε
∣∣(4−2

√
3)aε

(t + ε)8aεe
[ 12aε3

(ε+t)2
+ 12aε2

ε+t ]
,
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over t ∈ [0,ε]. Clearly, g(t)> 0. Moreover, g is continuous and is smooth except at t = (2−
√

3)ε .
Second,

h(t) :=
∣∣t − (2−

√
3)ε
∣∣(4+2

√
3)aε−1∣∣t − (2+

√
3)ε
∣∣(4−2

√
3)aε−1

(t + ε)8aεe
[ 12aε3

(ε+t)2
+ 12aε2

ε+t ]
,

over t ∈ [0,ε]. By a direct check, we know that h(t) > 0 on [0,(2−
√

3)ε)∪ ((2−
√

3)ε,ε] and
h(t)→ ∞ when t → (2−

√
3)ε since (4+2

√
3)aε −1 < 0. With g and h, define

p(t) :=


−g(t) if t ∈ [0,(2−

√
3)ε];

g(t) if t ∈ [(2−
√

3)ε,ε];
g(ε) if t ∈ [ε,a− ε];
g(a− t) if t ∈ [a− ε,a− (2−

√
3)ε];

−g(a− t) if t ∈ [a− (2−
√

3)ε,a]

(5.3)

on [0,a] and

w(t) :=


h(t) if t ∈ [0,ε];
h(ε) if t ∈ [ε,a− ε];
h(a− t) if t ∈ [a− ε,a].

(5.4)

on [0,a]. We have the following proposition summarizing the behavior of p and w.

Proposition 18 Suppose ε is sufficiently small. The defined function p satisfies the following prop-
erties.

1. p(t) > 0 on the elliptic region ((2 −
√

3)ε,a − (2 −
√

3)ε), p(t) < 0 on the wave region
[0,(2−

√
3)ε)∪ (a− (2−

√
3)ε,a], and p(t) = 0 when t = (2−

√
3)ε or t = a− (2−

√
3)ε .

2. p(t) is C1 on [0,a] except at t = (2−
√

3)ε and t = a− (2−
√

3)ε . In particular, p′(t)→ ∞

as t → (2−
√

3)ε from right or t → a− (2−
√

3)ε from left; p′(t)→−∞ as t → (2−
√

3)ε
from left or t → a− (2−

√
3)ε from right.

3. p(t) is absolutely continuous.

4. 1/p ∈ L1 on [0,a].

The defined function w satisfies the following properties.

1. w(t) is C1 on [0,a] except at t = (2−
√

3)ε and t = a− (2−
√

3)ε .

2. w(t)→ ∞ as t → (2−
√

3)ε or t → a− (2−
√

3)ε .

3. w ∈ L1 on [0,a].

The defined functions p and w are related to Aε and Bε and satisfy the following properties.

1. p(t)
w(t) = Aε(t) and p′(t)

w(t) = Bε(t), when t ̸= (2−
√

3)ε and t ̸= a− (2−
√

3)ε .

2. p(t)
w(t) → Aε(t) and p′(t)

w(t) → Bε(t) when t → (2−
√

3)ε or t → a− (2−
√

3)ε .
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With this proposition, we conclude that except at t = (2−
√

3)ε and t = a− (2−
√

3)ε , the
following relationship holds:

Aε(t) f ′′(t)+Bε(t) f ′(t) =
p(t)
w(t)

f ′′(t)+
p′(t)
w(t)

f ′(t) =
(p(t) f ′(t))′

w(t)
. (5.5)

Also, the corresponding eigenvalue problem

−(p(t) f ′(t))′ = λw(t) f (t), (5.6)

is regular when ε is small enough. If f is a solution to the above problem, then f is absolutely
continuous, and hence it is differentiable almost everywhere. Moreover, p(t) f ′(t) is absolutely
continuous and p(t) is differentiable and nonzero except at t = (2−

√
3)ε and t = a− (2−

√
3)ε .

By the quotient rule f is twice differentiable almost everywhere.
With p(t) defined in (5.3), define

Hp := { f [0](t) and f [1](t) are absolutely continuous on [0,a]}.

With the above discussion, we have the following corollary based on Atkinson (1964) that are
related to understanding the spectrum of the LLE matrix.

Corollary 19 Suppose we impose the Dirichlet boundary condition for the eigenvalue problem,
Dε f (t) = λ f (t), over the elliptic region [(2−

√
3)ε,a− (2−

√
3)ε]; that is,

f ((2−
√

3)ε) = f (a− (2−
√

3)ε) = 0.

Then the eigenvalues are discrete and bounded from above; that is, the eigenvalues are ∞ > λ0 >
λ1 > λ2 > .. . so that λn →−∞ as n → ∞. If fn ∈ Hp is the corresponding eigenfunctions of λn, then
fn has exactly n zeros in ((2−

√
3)ε,a− (2−

√
3)ε).

We mention that this corollary is only for theoretical interest but not for practical interest since we
need extra steps to “clip” the wave region and impose the Dirichlet boundary condition when we
only have a point cloud. Also, the above conclusion may not hold when P(t) is not uniform. In fact,
it is not hard to show that if P(t) behaves like t + ε in [0,ε], then the corresponding SL problem is
singular.

6. A comparison of LLE and DM

We provide a comparison of LLE and DM (Coifman and Lafon, 2006) on a manifold with smooth
boundary. Recall that, unlike LLE, when we run DM, the affinity matrix is defined by composing a
fixed kernel function chosen by the user with the distance between pairs of sampled points. Below
we summarize the bias analysis result of DM using our notations for a further comparison when the
manifold has a non-empty boundary. A full calculation can be found in Coifman and Lafon (2006);
Singer and Wu (2017). To simplify the comparison, we consider the Gaussian kernel H(t) = e−t2

.
More general kernels can be considered, and we refer the reader with interest to, e.g., (Coifman
and Lafon, 2006; Singer and Wu, 2017). Also, see (Vaughn, 2020) for more relevant results. For
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x,y ∈ M, we define Hε(x,y) = exp(−∥ι(x)−ι(y)∥2

ε2 ), where ε > 0 is the bandwidth. For 0 ≤ α ≤ 1, we
define the α-normalized kernel as

Hε,α(x,y) :=
Hε(x,y)

pα
ε (x)pα

ε (y)
,

where pε(x) := E[Hε(x,X)]. With the α-normalized kernel Hε,α , for f ∈ C3(M), the diffusion
operator associated with the α-normalized DM is

Hε,α f (x) :=
E[Hε,α(x,X) f (X)]

E[Hε,α(x,X)]
. (6.1)

The behavior of the operator Hε,α is summarized below.

Theorem 20 (Bias analysis of Diffusion map) Let (M,g) be a d-dimensional compact, smooth
Riemannian manifold isometrically embedded in Rp, with a non-empty smooth boundary. Suppose
f ∈C3(M) and P ∈C2(M). If α = 1, we have

Hε,α f (x) =
σ1,d(ε̃x)

σ0(ε̃x)
∂d f (x)ε +

[
ψ1(ε̃x)

d−1

∑
i=1

∂
2
ii f (x)+ψ2(ε̃x)∂

2
dd f (x)

]
ε

2 (6.2)

+U(ε̃x)∂d f (x)ε2 +O(ε3),

where ψ1,ψ2 and U are scalar value functions defined on [0,∞) so that

ψ1(t) :=
1
2

σ2(t)
σ0(t)

, ψ2(t) :=
1
2

σ2,d(t)
σ0(t)

,

U(t) = 0 if t ≥ ε , U(ε̃x) depends on the second fundamental form of ∂M in M at x, and U(ε̃x) is
independent of P. In fact,

U(ε̃x) =

∫
D̃ε (x) uddu∫
D̃ε (x) 1du

−
σ1,d(ε̃x)

σ0(ε̃x)
ε , (6.3)

where
∫

D̃ε (x) uddu∫
D̃ε (x) 1du is a function depending on ε̃x and the second fundamental form of ∂M as a codi-

mension 1 submanifold embedded in M at x by Definition 5.

Compared with the differential operator Dε associated with LLE, the differential operator asso-
ciated with DM has a very different behavior. First, in DM, when ε > 0 is finite, asymptotically the
first order differential operator exists in the ε order (Coifman and Lafon, 2006), which suggests that
the boundary condition is Neumann. In Vaughn (2020), it is shown that the graph Laplacian con-
verges in the weak sense to the Laplace-Beltrami operator with the Neumann boundary condition.
With this boundary condition, the spectral convergence of DM when the boundary is non-empty
without a convergence rate was provided in Singer and Wu (2017) as a special case when the con-
sidered group action is SO(1). Another spectral convergence result when the boundary exists can
be found in Peoples and Harlim (2021). Note that when the boundary is empty, more spectral con-
vergence results with a convergence rate can be found in Von Luxburg et al. (2008); Trillos et al.
(2020); Dunson et al. (2021), while none provide the rate is optimal to our knowledge. Second,
the coefficients of the second order differential operator, ψ1 and ψ2, do not change sign and do not
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degenerate over the whole manifold. Third, in DM, there is an extra first order differential operator
in the ε2 order. As a result, in addition to what has been explored in Wu and Wu (2018), we see
more differences between LLE and DM.

While LLE and DM are different, they are intimately related. Here we provide a brief explo-
ration for this relationship from the kernel perspective. Observe that we can rewrite the kernel as

E[K(x,X) f (X)]

EK(x,X)
=

E[χBRp
ε (ι(x))(ι(X))− (ι(X)− ι(x))⊤T(x)χBRp

ε (ι(x))(ι(X))] f (X)

E[χBRp
ε (ι(x))(ι(X))− (ι(X)− ι(x))⊤T(x)χBRp

ε (ι(x))(ι(X))]

=
E[1

2 χBRp
ε (ι(x))(ι(X))− 1

2(ι(X)− ι(x))⊤T(x)χBRp
ε (ι(x))(ι(X))] f (X)

E[1
2 χBRp

ε (ι(x))(ι(X))− 1
2(ι(X)− ι(x))⊤T(x)χBRp

ε (ι(x))(ι(X))]
,

which means that the kernel function is an “average” of two functions,

K1(x,y) := χBRp
ε (ι(x))(ι(y))

and
K2(x,y) :=−(ι(y)− ι(x))⊤T(x)χBRp

ε (ι(x))(ι(y)).

We can thus consider the following kernel generalizing the LLE kernel:

K(α)(x,y) = αK1(x,y)+(1−α)K2(x,y),

where α ∈ [0,1]. Note that K1 can be viewed as a 0− 1 kernel that is commonly used in DM, so
when α = 1, we recover the DM. When α = 1/2, it is clear that K(1/2) is the LLE kernel. When
α = 0, we get a different kernel with different behavior. Recall Definition 6. We have

K2(x,y) =−E[(ι(X)− ι(x))χBRp
ε (ι(x))(ι(X))]⊤Ip,r(Cx + cIp×p)

−1Ip,r(ι(y)− ι(x))

=
∫

BRp
ε (ι(x))

(ι(z)− ι(x))⊤Ip,r(Cx + cIp×p)
−1Ip,r(ι(y)− ι(x))dz . (6.4)

As discussed in Malik et al. (2019), since Ip,r(Cx + cIp×p)
−1Ip,r can be viewed as the “regularized

precision matrix”, we can view (ι(z)− ι(x))⊤Ip,r(Cx + cIp×p)
−1Ip,r(ι(y)− ι(x)) as the local Ma-

halanobis distance between z and y, or the distance between the latent variables related to z and
y. Thus, when α = 0, the kernel comes from averaging out the pairwise local Mahalanobis dis-
tance, and hence depends on the local geometric structure. The relationship between the second
fundamental form of M at x and the latent space will be explored in the future work.

It is natural to ask if we can “alleviate” the impact of the wave region by choosing different α .
To answer this question, we briefly discuss the behavior of E[Kα(x,X) f (X)] with different choices
of α , particularly when α < 1. Let us take a more careful look at the case when α = 1/2; that
is, the kernel for LLE; particularly, we look into the reason why LLE does not have the Neurman
boundary condition, and why LLE is independent of the nonuniform density function from the
kernel perspective. We have

E[K(1/2)(x,X) f (X)] =
1
2
E[( f (X)− f (x))χBRp

ε (ι(x))(ι(X))] (6.5)

− 1
2
E[(ι(X)− ι(x))( f (X)− f (x))χBRp

ε (ι(x))(ι(X))]⊤T(x).
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Recall the behavior of the two terms on the right hand side. By a direct calculation, we know
E[( f (X)− f (x))χBRp

ε (ι(x))(ι(X))] becomes P(x)σ1,d(ε̃x)∂d f (x)εd+1 +O(εd+2), when x ∈ Mε , and
[1

2 P(x)∆ f (x) + ∇ f (x) · ∇P(x)]εd+2 + O(εd+3) when x ̸∈ Mε . Note that this is the behavior of
the kernel K(1). On the other hand, E[(ι(X)− ι(x))( f (X)− f (x))χBRp

ε (ι(x))(ι(X))]⊤T(x) becomes
P(x)σ1,d(ε̃x)∂d f (x)εd+1 +O(εd+2) when x ∈ Mε , and ∇ f (x) ·∇P(x)εd+2 +O(εd+3) when x ̸∈ Mε .
Note that this is the behavior of the kernel K(0). As a result, when x ∈ Mε , since the common term
P(x)σ1,d(ε̃x)∂d f (x)εd+1 cancels, there is no such Neumann boundary behavior when α = 1/2 as
that in DM. When x ̸∈ Mε , then the common term ∇ f (x) ·∇P(x)εd+2 cancels. Hence, the behavior
of LLE in the interior of the manifold is independent of the density function.

However, it is worth noting that one cannot remove the wave region Mw through adjusting α

after the above analysis – since both E[( f (X)− f (x))χBRp
ε (ι(x))(ι(X))] and E[(ι(X)− ι(x))( f (X)−

f (x))χBRp
ε (ι(x))(ι(X))]⊤T(x) are dominated by P(x)σ1,d(ε̃x)∂d f (x)εd+1 when x is near the boundary,

if α ̸= 1/2, the first order term remains.

7. Clipped LLE matrix

Based on the above theoretical results, we provide an immediate application. The Laplace-Beltrami
operator with the Dirichlet boundary condition is widely used in various fields, like in the analysis
of stochastic dynamics. For example, in Georgiou et al. (2017) the eigenfunctions of the Laplace-
Beltrami operators with the Neumann and Dirichlet boundary conditions are used together to recon-
struct the conformational space of a stochastic gradient system. According to the developed theory
in Theorem 16, the asymptotic operator in general behaves well away from the boundary. We thus
consider the following modification of LLE that echos the theoretical development in Section 3 and
this algorithm is a potential candidate to recover the Laplace-Beltrami operator with the Dirichlet
boundary condition on manifold with boundary.

For a given sampling set X = {xi}n
i=1, due to the ε-radius nearest neighbor scheme, assume we

can divide the LLE matrix W ∈ Rn×n into blocks according to four portions, the interior, transition,
wave-boundary and non-wave-boundary portions. The interior portion XI := {xi ∈X : d(xi,∂M)>
2ε} that includes points far away from the boundary, the wave-boundary portion Xw := {xi ∈ X :
xi ∈ Mw ∪ ∂M} that includes points in the wave region, XB := {xi ∈ X : xi ∈ Mε\(Mw ∪ ∂M)}
and the transition portion XT := {xi ∈ X : ε ≤ d(xi,∂M)≤ 2ε} that includes the remaining points
touching the other three portions. The W matrix is thus divided into

W =


Www WwB WwT 0
WBw WBB WBT 0
WTw WT B WT T WT I

0 0 WIT WII

 ,

where Www ∈R|Xw|×|Xw| represents the wave-boundary portion of the LLE matrix, WBB ∈R|XB|×|XB|

represents the non-wave-boundary portion of the LLE matrix, WT T ∈ R|XT |×|XT | represents the
transition portion of the LLE matrix, WII ∈ R|XI |×|XI | represents the interior portion of the LLE
matrix, and the other submatrices represent the interaction of the four portions of the LLE matrix.
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Construct a new matrix Wr ∈ Rn′×n′ , where n′ = n−|Xw|, by restricting W to Y ; that is,

Wr =

WBB WBT 0
WT B WT T WT I

0 WIT WII

 .

We call Wr the clipped LLE matrix for simplicity. Note that in general the matrix Wr is not symmet-
ric, not a transition matrix, and the rows may not sum to 1. We shall emphasize that this algorithm
depends on the knowledge of the wave region. In general, we need an algorithm to detect the wave
region from a point cloud.

Below we see some numerical results. We uniformly and independently sample points from
M1 := [0,1] ⊂ R1. The LLE matrix is constructed with the ε-radius scheme, where ε = 0.01. The
first 5 eigenfunctions are shown in the top panel of Figure 5. Note that the first eigenfunction is
constant, and the second eigenfunction is linear, and both are with eigenvalue 1; that is, these two
eigenfunctions form the null space of I−W . The other eigenfunctions “look like” the eigenfunctions
of the Laplace-Beltrami operator with the Dirichlet boundary condition, but higher eigenfunctions
become “irregular” when getting closer to the boundary. Next, consider another 1-dim curve M2
embedded in R3 that is parametrized by t → (t, log(0.5+ t),cos(πt))⊤ ∈ R3, where t ∈ [0,1]. We
uniformly and independently sample 8,000 points from [0,1] and mapped them to M2. Denote
the sampled points X := {xi}8,000

i=1 ⊂ R3. Note that the sample is not uniform. The LLE matrix
W ∈ R8,000×8,000 is constructed with the ε-radius scheme, where ε = 0.01, and hence the clipped
LLE matrix Wr. The first 10 eigenfunctions of Wr constructed from M1 and M2 are shown in the
middle and bottom panels in Figure 5. According to Corollary 17 and the discussion in Subsection
5, the asymptotic operator is well behaved in [(2−

√
3)ε,1− (2−

√
3)ε]. This theoretical finding

fits the numerical results – the eigenfunctions are all 0 at the “boundary points” (2−
√

3)ε and
1− (2−

√
3)ε .

Second, we uniformly sample points from a unit disk, M3 ⊂ R2, by keeping points with norm
less than or equal to 1 from 20,000 points sampled uniformly and independently from [−1,1]×
[−1,1]. The LLE matrix is constructed with the ε-radius ball nearest neighbor search scheme, where
ε = 0.1. The first 20 eigenfunctions are shown in Figure 6. The first eigenfunction is constant,
and the second and third eigenfunctions are linear, and these three eigenfunctions are associated
with eigenvalue 1. These three eigenfunctions form the null space of I −W . We can see three
types of eigenfunctions – those of the first type “look like” the eigenfunctions of the Laplace-
Beltrami operator with the Dirichlet boundary condition, those of the second type “look like” the
eigenfunctions of the Laplace-Beltrami operator restricted to the “rim” near the boundary, which is
topologically a closed manifold S1, and those of the third type “look like” the mix-up of the first two
types. Next, we explore the clipped LLE matrix on the unit disk M3 ⊂ R2 with the same uniform
sampling scheme. For M3, we remove rows and columns associated with points with norm greater
than 1− (2−

√
3)ε , where ε = 0.1. The first 20 eigenfunctions are shown in Figure 7. It is clear

that compared with those shown in Figure 6, all eigenfunctions are 0 at the “boundary”.
Next, the first 20 eigenfunctions of the LLE matrix and the clipped LLE matrix of the surface

shown in Figures 2 and 3 with the same sampling scheme are shown in Figures 8 and 9. It is clear
that while the first 3 eigenfunctions of the LLE matrix behave like constant or linear functions,
the other eigenfunctions are not easy to describe. However, all eigenfunctions of the clipped LLE
matrix are zero on the “boundary”, which behaves like the eigenfunctions of the Laplace-Beltrami
operator with the Dirichlet boundary condition.
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The above examples are all manifolds without interesting topological structure since they can
all be parametrized by one chart. In the final example we show a two dimensional manifold with
non-trivial topology. Consider a torus embedded in R3, which is parametrized by

Φ : (θ ,φ) 7→ ((3+1.2cos(θ))cos(φ),(3+1.2cos(θ))sin(φ),1.2sin(φ))⊤ ∈ R3,

where θ ,φ ∈ [0,2π). The manifold M4 is defined as

M4 = {Φ(θ ,φ) : θ ,φ ∈ [0,2π) and (3+1.2cos(θ))cos(φ)>−3.4} ;

that is, M4 is a truncated torus with the boundary diffeomorphic to S1. We sample uniformly 25,000
points on [0,2π]× [0,2π], and remove points associated with (3+1.2cos(θ))cos(φ)>−3.4. Note
that this is a nonuniform sampling scheme from M4. Then, establish the LLE matrix and the clipped
LLE matrix with ε = 0.3. The results are shown in Figures 10 and 11. Again, it is clear that the
eigenfunctions of the clipped LLE matrix are zero on the “boundary”.

With these numerical results, we conjecture that if we clip the wave region, the operator Dε

over M\(Mw ∪ ∂M) asymptotically converges to the Laplace-Beltrami operator with the Dirichlet
boundary condition over M\(Mw ∪ ∂M) in the spectral sense when ε → 0.1 We will explore this
problem in our future work.

8. Discussion and Conclusion

In this paper, we provide an exploration of LLE when the manifold has boundary. We mention
several interesting problems that we will explore in our future work.

First, the distribution of the LLE matrix eigenvalues under the null case has an interesting distri-
bution behavior, which rings the bell of the interaction between kernel random matrix and random
matrix theory. Recently, the spectral behavior of graph Laplacian has been studied from the random
matrix perspective in Ding and Wu (2022). However, due to the non-symmetric nature of the LLE
matrix, such an approach cannot be directly applied. Understanding the behavior of LLE will pave
the road toward statistical inference of unsupervised manifold learning.

Second, the potential Dirichlet boundary condition associated with the clipped LLE matrix and
its relationship with the Neuman boundary condition associated with the GL suggest exploring
the Dirichlet-to-Neumann map and Schur’s complement as a future direction. Moreover, from the
practical perspective, when we do not know where is the wave region, we shall design an effective
algorithm to determine all points from the wave region, so that we can clip the LLE matrix.

Third, as is shown in Theorem 16, LLE converges pointwisely to a mixed-type differential
operator with degeneracy, which is an SL equation with a peculiar structure in the one-dimensional
case. In other words, we have a degenerate mixed-type differential equation and the boundary
condition is not known a priori. Understanding the spectral behavior of this operator is of interest
on its own from the theoretical perspective and it might be necessary in order to explore the spectral
behavior of LLE when there is a boundary.

Fourth, the spectral convergence of LLE is so far an open problem to our knowledge. To attack
this problem, we shall again compare the original proposed (W − I)⊤(W − I) and W − I considered

1. In the 1-dim case, this is related to a different differential equation, the Kimura equation Epstein and Mazzeo (2013),
that shares the same degeneracy on the boundary. In the Kimura equation, the boundary condition is adaptively
encoded in the functional space that we search for the eigenfunctions.
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in this paper and (Wu and Wu, 2018). Assume first that ∂M = /0. We may learn from what has been
done in the literature. To study the spectral convergence of DM (Trillos et al., 2020; Dunson et al.,
2021), we need at least two pieces of information. The first one is the knowledge of the spectral
behavior of the asymptotic differential operator, and the second one is the pointwise convergence
result. The pointwise convergence result of W − I has been studied in Wu and Wu (2018) when
∂M = /0, which is generalized to the case ∂M ̸= /0 in this paper. It might be intuitive to conclude that
since the spectral behavior of the Laplace-Beltrami operator has been well known, when ∂M = /0,
we may easily obtain the spectral convergence of W − I. However, since the matrix W − I is not
symmetric, the associated integral operator of LLE is not self-adjoint. Thus, we cannot directly
apply the same method in Trillos et al. (2020); Dunson et al. (2021) to prove the spectral convergence
of W −I, and new tools are needed. Moreover, since the fourth order differential operator is involved
in (W − I)⊤(W − I) via a pointwise convergence analysis, and its spectral behavior is less well
known, it is more challenging to study the spectral convergence of (W −I)⊤(W −I). The situation is
certainly more complicated when ∂M ̸= /0 since the associated kernel, the integral operator behavior,
and the asymptotic differential operator are all different. Even for W − I, it is still an open problem
as mentioned above as the third point, not to mention (W − I)⊤(W − I) and if the nearest neighbor
scheme is taken into consideration. A further systematic pointwise and spectral convergence study
of (W − I)⊤(W − I) is thus needed to advance the field.
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Figure 5: Top: The first 5 eigenfunctions of the LLE matrix for a point cloud sampled from the
[0,1] interval are plotted with different colors. The dashed vertical gray lines indicate ε

and 1− ε . It is clear that the third, fourth, and fifth eigenfunctions “look like” the eigen-
functions of the Laplace-Beltrami operator with the Dirichlet boundary condition, but
higher eigenfunctions become “irregular” when getting closer to the boundary. Middle:
the first 10 eigenfunctions of the clipped LLE matrix Wr for a point cloud sampled from
M1 = [0,1] are plotted with different colors. The dashed vertical gray lines indicate ε

and 1− ε . Bottom: the first 10 eigenfunctions of the clipped LLE matrix Wr for a point
cloud sampled from the curve M3 ⊂ R3 are plotted with different colors. The dashed
vertical gray lines indicate ε and 1− ε . Compared with those eigenfunctions of M1, the
amplitude of higher eigenfunctions of M3 becomes less constant, which is expected due
to the nonuniform sampling effect. It is clear that these eigenfunctions “look like” the
eigenfunctions of the Laplace-Beltrami operator with the Dirichlet boundary condition
without the “irregularity” behavior close to the boundary observed in the top panel.
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Figure 6: The first 20 eigenfunctions of the LLE matrix for a point cloud sampled from the unit
disk are plotted from top left to bottom right. It is clear that some eigenfunctions (indi-
cated by red arrows) “look like” the eigenfunctions of the Laplace-Beltrami operator with
the Dirichlet boundary condition combined with the eigenfunctions of Laplace-Beltrami
operator of the “rim” near the boundary. Note that the “rim” near the boundary is close
to S1 in the Gromov-Hausdorff sense.
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Figure 7: The first 20 eigenfunctions of the clipped LLE matrix for a point cloud sampled from the
unit disk are plotted from top left to bottom right. It is clear that all eigenfunctions “look
like” the eigenfunctions of the Laplace-Beltrami operator with the Dirichlet boundary
condition.
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Figure 8: The first 9 eigenfunctions of the LLE matrix for a point cloud sampled from the surface
in Figures 2 and 3 are plotted from top left to bottom right. To enhance the visualization,
the boundary of the surface is colored by red. It is clear that the first three eigenfunctions
are either constant or linear, while the behavior of other eigenfunctions is not easy to
describe, while compared with those shown in Figure 6.
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Figure 9: The first 9 eigenfunctions of the clipped LLE matrix for a point cloud sampled from the
surface in Figures 2 and 3 are plotted from top left to bottom right. To enhance the visu-
alization, the boundary of the surface is colored by red. It is clear that all eigenfunctions
are zero on the boundary, and the behavior “looks like” the eigenfunctions of the Laplace-
Beltrami operator with the Dirichlet boundary condition.
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Figure 10: The first 9 eigenfunctions of the LLE matrix for a point cloud sampled from the truncated
torus M4 are plotted from top left to bottom right. To enhance the visualization, the
boundary of the truncated torus is colored by red.
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Figure 11: The first 9 eigenfunctions of the clipped LLE matrix for a point cloud sampled from the
truncated torus M4 are plotted from top left to bottom right. To enhance the visualization,
the boundary of the truncated torus is colored by red. It is clear that all eigenfunctions
are zero on the “boundary”.
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Appendix A. Examples for Proposition 1

To show that it is possible ρ(W ) = 1, consider the following example. Let n= 2m, where m≥ 2 is an
integer. Suppose X = {z1,z2, · · · ,zn} is a uniform grid of S1 ⊂R2 so that zi =(cos(2π(i−1)

n ),sin(2π(i−1)
n )),

where i= 1, · · · ,n. We choose ε so that Nk only contains two data points (cos(2π(i−2)
n ),sin(2π(i−2)

n ))
and (cos(2πi

n ),sin(2πi
n )). Fix zk, and zk,1 and zk,2 are the two data points in Nk. Without loss of gen-

erality, we assume that zk = (0,0), zk,1 = (a,b) and zk,2 = (−a,b). Hence, Gn,k at zk is

Gn,k =

[
a −a
b b

]
, (A.1)

and the solution y⊤k = [yk,1,yk,2] to the regularized equation (2.3) with the regularizer c > 0 satisfies[
a2 +b2 + c −a2 +b2

−a2 +b2 a2 +b2 + c

][
ȳ1
ȳ2

]
=

[
1
1

]
. (A.2)

Therefore, we have yk,1 = yk,2, w⊤
k = [1/2,1/2], and

Wki =

{
1/2 if zi = zk, j ∈ Nk;
0 otherwise.

(A.3)

Suppose λ0 ≤ λ1 ≤ ·· · ≤ λn−1 are the eigenvalues of W . Then λ0 =−1, λn−1 = 1 and λ2i−1 = λ2i =

cos(π(m−i)
m ) for i = 1, · · · ,m−1.

We provide another example to show that in general it is possible that ρ(W ) > 1. Consider a
point cloud with ten points in R3, (−0.56,−0.34,1.03),
(−0.51,0.32,−0.02), (−0.53,−1.47,−0.57), (1.34,0.47,−0.15), (1.01,−1.56,1.22),
(−0.55,−1,−0.07), (0.09,−1.04,−0.2), (−1.27,2.07,−0.9), (1.26,−0.71,−1.2), and
(1.46,0,0.61). The LLE matrix of this point cloud with 5 nearest neighbors and the regularizer
c = 10−3 has an eigenvalue −2.4233.

Appendix B. Technical lemmas for some geometric quantities

In this section we collect several technical lemmas for some geometric quantities we will encounter
in the proof. They might be also useful for other works when the manifold with boundary setup is
considered.

For the manifold with boundary, denoted as M, with the isometric embedding ι into Rp, we
consider the extensions M̃ and ι̃ introduced in Section 3.2. Let expx be the exponential map of M̃
at x ∈ M̃. Recall that expx is well defined over ι̃−1(BRp

ε (ι(x))∩ ι(M)) for any x ∈ M. For x ∈ M,
we use IIx to denote both the second fundamental form of ι(M) at ι(x) and the second fundamental
form of ι̃(M) at ι̃(x). The first three lemmas are basic facts about expx, the normal coordinate, and
the volume form. The proof of these three lemmas can be found in Singer and Wu (2012).

Lemma 21 Fix x∈M. Consider the extension M̃. If we use the Cartesian coordinate to parametrize
TxM̃, the volume form has the following expansion

dV =

(
1− 1

6

d

∑
i, j=1

Ricx(i, j)uiu j +O(u3)

)
du, (B.1)

where u = ∑
d
i=1 uiei ∈ TxM̃, Ricx(i, j) = Ricx(ei,e j).
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Lemma 22 Fix x ∈ M. Consider the extensions M̃ and ι̃ . For u ∈ TxM̃ with ∥u∥ sufficiently small,
we have the following Taylor expansion:

ι̃ ◦ expx(u)− ι̃(x) = ι̃∗u+
1
2

IIx(u,u)+O(∥u∥3). (B.2)

In the next Lemma, we compare the geodesic distance and the Euclidean distance.

Lemma 23 Fix x ∈ M. Consider the extensions M̃ and ι̃ . If we use the polar coordinate (t,θ) ∈
[0,∞)×Sd−1 to parametrize TxM̃, when t > 0 is sufficiently small and t̃ = ∥ι̃ ◦ expx(θ t)− ι̃(x)∥Rp ,
then

t̃ = t − 1
24

∥IIx(θ ,θ)∥2t3 +O(t4) (B.3)

t = t̃ +
1

24
∥IIx(θ ,θ)∥2t̃3 +O(t̃4) ,

where θ ∈ Sd−1 ⊂ TxM̃.

The following lemma describes a parametrization of the boundary set. This parametrization is
needed when we analyze the LLE matrix near the boundary.

Lemma 24 Fix x ∈ Mε . Consider the extensions M̃ and ι̃ .

(ι̃ ◦ expx)
−1(BRp

ε (ι(x))∩ ι(∂M)) (B.4)

=
{ d

∑
l=1

ul
∂l ∈ TxM̃

∣∣∣(u1, · · · ,ud−1) ∈ K, ud = q(u1, · · · ,ud−1)
}
,

where

q(u1, · · · ,ud−1) = ε̃x +
d−1

∑
i, j=1

ai j(x∂ )u
iu j +O(∥u∥3), (B.5)

and ai j(x∂ ) is the second fundamental form of the embedding of ∂M in M at x∂ .

Proof Note that (ι̃ ◦ expx)
−1(BRp

ε (ι(x))∩ ι(∂M)) is a hypersurface with boundary in TxM. Since
∂M is smooth, by the implicit function theorem, if ε is small enough,

(ι̃ ◦ expx)
−1(BRp

ε (ι(x))∩ ι(∂M)) (B.6)

=
{ d

∑
l=1

ul
∂l ∈ TxM̃

∣∣∣(u1, · · · ,ud−1) ∈ K, ud = q(u1, · · · ,ud−1)
}

for a smooth function q of u1, · · · ,ud−1. By Taylor’s expansion, we have

q(u1, · · · ,ud−1) = ε̃x +
d−1

∑
i, j=1

ai j(x)uiu j +O(∥u∥3), (B.7)

where the first order disappears since the tangent space of (ι̃ ◦ expx)
−1(BRp

ε (ι(x))∩ ι(∂M)) in TxM
at exp−1

x (x∂ ) is perpendicular to ud direction by Gauss’s lemma, and ai j(x) is the coefficient of the
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second order expansion. Due to the smoothness of the manifold, ai j(x) is smooth along the mini-
mizing geodesic from x∂ to x. Also, when x = x∂ , ai j(x∂ ) is the second fundamental form of the
embedding of ∂M in M at x∂ . Therefore, by another Taylor’s expansion, ai j(x) = ai j(x∂ )+O(ud),
the conclusion follows.

Next Lemma describes the discrepancy between
∫

Dε (x) f (u)du and
∫

D̃ε (x) f (u)du. Note that the
order of the discrepancy does not dependent on the location of x.

Corollary 25 Fix x ∈ M. When ε > 0 is sufficiently small, we have∣∣∣∣∫Dε (x)
du−

∫
D̃ε (x)

du
∣∣∣∣= O(εd+2). (B.8)

Proof Based on Lemma 23 and the definition of D̃ε(x), the distance between the boundary of Dε(x)
and the boundary of D̃ε(x) is of order ε3. The volume of the boundary D̃ε(x) is of order εd−1. Hence
the volume difference between D̃ε(x) and Dε(x) is of order εd−1 · ε3 = εd+2. The conclusion fol-
lows.

Appendix C. Technical lemmas for the kernel analysis

To have a closer look at the kernel, we need the following quantities. First, we introduce some
notations. For v ∈ Rp, denote

v = [[v1, v2]] ∈ Rp , (C.1)

where v1 ∈ Rd forms the first d coordinates of v and v2 ∈ Rp−d forms the last p−d coordinates of
v. Thus, for v = [[v1, v2]] ∈ Tι(x)Rp, v1 = J⊤p,dv is the coordinate of the tangential component of v on
ι∗TxM and v2 = J̄⊤p,p−dv is the coordinate of the normal component of v associated with a chosen
basis of the normal bundle. Define

Ni j(x) := J̄⊤p,p−dIIi j(x).

Note that Ni j(x) =N ji(x).

Definition 26 (Moments) For x ∈ M, consider the following moments that capture the geometric
asymmetry:

µv(x,ε) :=
∫

D̃ε (x)

d

∏
i=1

uvi
i du ,

where v = [v1, . . . ,vd ]
⊤ describes the moment order.

In next lemma, we quantitatively describe all the moments up to the third order. This Lemma
tells us that when x /∈ Mε (when x is far away from the boundary), all odd order moments disappear
due to the symmetry of the integration domain. However, when x ∈ Mε , it no longer holds – the
integration domain becomes asymmetric, and the odd moments no longer disappear. Therefore, we
can show that µ0(x,ε), µed (x,ε), µ2ei(x,ε) and µ2ei+ed (x,ε) are all the non-trivial moments needed
in analyzing LLE. The proof follows from the symmetry argument and a straightforward integration,
so we omit it here.
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Lemma 27 [Symmetry] Suppose ε is sufficiently small. Then, the moments up to order three can
be quantitatively described as follows. In fact, µ0(x,ε), µed (x,ε), µ2ei and µ2ei+ed (x,ε) for all
i = 1, · · · ,d are the only non-trivial moments. And they are continuous functions of x on M. Define
|Sd−2|
d−1 = 1 when d = 1, we have

1. Zero order moment, µ0
If x ∈ Mε , µ0 is an increasing function of ε̃x and

µ0(x,ε) =
|Sd−1|

2d
ε

d +
∫

ε̃x

0

|Sd−2|
d −1

(ε2 −h2)
d−1

2 dh+O(εd+1).

If x ̸∈ Mε , then

µ0(x,ε) =
|Sd−1|

d
ε

d .

In general, the following bound holds for µ0(x,ε):

|Sd−1|
2d

ε
d +O(εd+1)≤ µ0(x,ε)≤

|Sd−1|
d

ε
d .

2. First order moment, µei

If x ∈ Mε , µed is an increasing function of ε̃x and

µed (x,ε) =−|Sd−2|
d2 −1

(ε2 − ε̃
2
x )

d+1
2 +O(εd+2).

If x ̸∈ Mε , then
µed (x,ε) = 0.

In general, µed (x,ε) is of order εd+1. For the rest of the moments, µei = 0, for i = 1, · · · ,d−1.

3. Second order moment, µei+e j

If x ∈ Mε , µ2ei is an increasing function of ε̃x for i = 1, · · · ,d. We have

µ2ei(x,ε) =
|Sd−1|

2d(d +2)
ε

d+2 +
∫

ε̃x

0

|Sd−2|
d2 −1

(ε2 −h2)
d+1

2 dh+O(εd+3),

for i = 1, · · · ,d −1, and

µ2ed (x,ε) =
|Sd−1|

2d(d +2)
ε

d+2 +
∫

ε̃x

0

|Sd−2|
d −1

(ε2 −h2)
d−1

2 h2dh+O(εd+3) .

If x ̸∈ Mε , then

µ2ei(x,ε) =
|Sd−1|

d(d +2)
ε

d+2.

In general, the following bounds hold for µ2ei(x,ε), where i = 1, · · · ,d:

|Sd−1|
2d(d +2)

ε
d+2 +O(εd+3)≤ µ2ei(x,ε)≤

|Sd−1|
d(d +2)

ε
d+2,

For the rest of the moments, µei+e j = 0, whenever i ̸= j.
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4. Third order moment, µei+e j+ek

If x ∈ Mε , µ2ei+ed is an increasing function of ε̃x and

µ2ei+ed (x,ε) =− |Sd−2|
(d2 −1)(d +3)

(ε2 − ε̃
2
x )

d+3
2 +O(εd+4),

for i = 1, · · ·d −1, and

µ3ed (x,ε) =− |Sd−2|
(d2 −1)(d +3)

(ε2 − ε̃
2
x )

d+1
2 (2ε

2 +(d +1)ε̃2
x )+O(εd+4).

If x ̸∈ Mε , then
µ3ed (x,ε) = 0.

In general, µ2ei+ed (x,ε) is of order εd+3. And µei+e j+ek = 0, for the rest of the cases.

Below, we relate those non-trivial moments described in the previous lemma to those σ func-
tions in Definition 7. The proof follows from a straightforward change of variable, so we omit the
details.

Corollary 28 The relationship between the non-trivial moments in Lemma 27 and the functions σ

defined in Definition 7 satisfies:

µ0(x,ε) = σ0(ε̃x)ε
d +O(εd+1)

µed (x,ε) = σ1,d(ε̃x)ε
d+1 +O(εd+2).

µ2ei(x,ε) = σ2(ε̃x)ε
d+2 +O(εd+3),

for i = 1, · · ·d −1, and

µ2ed (x,ε) = σ2,d(ε̃x)ε
d+2 +O(εd+3) .

Moreover,

µ2ei+ed (x,ε) = σ3(ε̃x)ε
d+3 +O(εd+4),

for i = 1, · · ·d −1, and

µ3ed (x,ε) = σ3,d(ε̃x)ε
d+3 +O(εd+4).

Next, we prove the following lemma about the ratio between the volumes of d − 1 sphere and
d −2 sphere. We need it to study the relation between different σ functions later.

Lemma 29 For d ∈ N, we have

(d +1)2(d +3)
8d2(d +2)2 <

|Sd−2|2

(d −1)2|Sd−1|2
<

(d +1)2

4d2(d +2)
, (C.2)

where |Sd−2|
d−1 is defined as 1 when d = 1.
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Proof The inequality can be verified by a straightforward calculation for d ≤ 6.

Next, we show that |Sd−2|2
|Sd−1|2 < (d2−1)2

4d2(d+2) for d > 6. Note that |Sd−2|2
|Sd−1|2 =

Γ( d
2 )

2

πΓ( d−1
2 )2 . Hence, it suffices

to prove Γ( d
2 )

2

Γ( d−1
2 )2 <

π(d2−1)2

4d2(d+2) . In Kershaw (1983), it is proved that for all x > 0 and 0 < s < 1,

(x+
s
2
)1−s <

Γ(x+1)
Γ(x+ s)

< e(1−s)ψ(x+ 1+s
2 ), (C.3)

where ψ(y) = Γ′(y)
Γ(y) . Choose x = d

2 −1 and s = 1
2 , then Γ( d

2 )
2

Γ( d−1
2 )2 < eψ( d

2−
1
4 ). Hence, it suffice to show

that

eψ( d
2+

1
4 ) <

π(d2 −1)2

4d2(d +2)
. (C.4)

Actually, we have eψ(y) < y for any postive y. The conclusion follows by verifying d
2 +

1
4 < π(d2−1)2

4d2(d+2)
for d > 6.

At last, we show that (d2−1)2(d+3)
8d2(d+2)2 < |Sd−2|2

|Sd−1|2 , which is equivalent to π(d2−1)2(d+3)
8d2(d+2)2 <

Γ( d
2 )

2

Γ( d−1
2 )2 . By

(C.3), with x = d
2 − 1 and s = 1

2 , we have d
2 −

3
4 <

Γ( d
2 )

2

Γ( d−1
2 )2 . The conclusion follows by verifying

π(d2−1)2(d+3)
8d2(d+2)2 < d

2 −
3
4 for d large.

We calculate some major ingredients that we are going to use in the proof of the main theorem.
Specifically, we calculate the first two order terms in E[χBRp

ε (ι(x))(ι(X))], E[( f (X)− f (x))χBRp
ε (ι(x))(ι(X))],

and the first two order terms in the tangent component of E[(ι(X)− ι(x))χBRp
ε (ι(x))(ι(X))] and

E[(ι(X)− ι(x))( f (X)− f (x))χBRp
ε (ι(x))(ι(X))]. This long Lemma is the generalization of (Wu and

Wu, 2018, Lemma B.5) to the boundary. In particularly, when x /∈ Mε , we recover (Wu and Wu,
2018, Lemma B.5).

Lemma 30 Fix x ∈ M and f ∈ C3(M). When ε > 0 is sufficiently small, the following expansions
hold.

1. E[χBRp
ε (ι(x))(ι(X))] satisfies

E[χBRp
ε (ι(x))(ι(X))] = P(x)µ0(x,ε)+∂dP(x)µed (x,ε)+O(εd+2) .

2. E[( f (X)− f (x))χBRp
ε (ι(x))(ι(X))] satisfies

E[( f (X)− f (x))χBRp
ε (ι(x))(ι(X))] = P(x)∂d f (x)µed (x,ε)

+
d

∑
i=1

(
P(x)

2
∂

2
ii f (x)+∂i f (x)∂iP(x))µ2ei(x,ε)+O(εd+3) .

3. The vector E[(ι(X)− ι(x))χBRp
ε (ι(x))(ι(X))] satisfies

E[(ι(X)− ι(x))χBRp
ε (ι(x))(ι(X))] = [[v1,v2]] ,
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where

v1 =P(x)µed (x,ε)J
⊤
p,ded +

d

∑
i=1

(
∂iP(x)µ2ei(x,ε)

)
J⊤p,dei +O(εd+3)

v2 =
P(x)

2

d

∑
i=1

Nii(x)µ2ei(x,ε)+O(εd+3).

4. The vector E[(ι(X)− ι(x))( f (X)− f (x))χBRp
ε (ι(x))(ι(X))] satisfies

E[(ι(X)− ι(x))( f (X)− f (x))χBRp
ε (ι(x))(ι(X))] = [[v1,v2]] ,

where

v1 =P(x)
d

∑
i=1

(
∂i f (x)µ2ei(x,ε)

)
J⊤p,dei

+
d−1

∑
i=1

[
∂i f (x)∂dP(x)+∂d f (x) ∂iP(x)+P(x)∂ 2

id f (x)
]
µ2ei+ed (x,ε)J⊤p,dei

+
d

∑
i=1

([
∂i f (x)∂iP(x)+

P(x)
2

∂
2
ii f (x)

]
µ2ei+ed (x,ε)

)
J⊤p,ded +O(εd+4),

v2 =P(x)
d−1

∑
i=1

∂i f (x)Nid(x)µ2ei+ed (x,ε)

+
P(x)

2
∂d f (x)

d

∑
i=1

Nii(x)µ2ei+ed (x,ε)+O(εd+4).

Proof We use the extensions M̃ and ι̃ introduced in Section 3.2. For any x ∈ M, let expx be the
exponential map of M̃. First, we calculate E[χBRp

ε (ι(x))(ι(X))].

E[χBRp
ε (ι(x))(ι(X))] (C.5)

=
∫

Dε (x)

(
P(x)+

d

∑
i=1

∂iP(x)ui +O(u2)
)(

1−
d

∑
i, j=1

1
6
Ricx(i, j)uiu j +O(u3)

)
du

=P(x)
∫

D̃ε (x)
du+

∫
D̃ε (x)

d

∑
i=1

∂iP(x)uidu+O(εd+2)

=P(x)µ0(x,ε)+∂dP(x)µed (x,ε)+O(εd+2) ,

where the second equality holds by applying Corollary 25 that the error of changing domain from
Dε(x) to D̃ε(x) is of order εd+2. We use Lemma 27 in the last step. Note that P(x) is bounded away
from 0.

Second, we calculate E[( f (X)− f (x))χBRp
ε (ι(x))(ι(X))]. Note that when ε is sufficiently small,

we have

f ◦ expx(u)− f (x) =
d

∑
i=1

∂i f (x)ui +
1
2

d

∑
i, j=1

∂
2
i j f (x)uiu j +O(u3), (C.6)
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which is of order ε for u ∈ Dε(x). By a direct expansion, we have

E[( f (X)− f (x))χBRp
ε (ι(x))(ι(X))] (C.7)

=
∫

Dε (x)
(

d

∑
i=1

∂i f (x)ui +
1
2

d

∑
i, j=1

∂
2
i j f (x)uiu j +O(u3))(P(x)+

d

∑
i=1

∂iP(x)ui +O(u2))

× (1−
d

∑
i, j=1

1
6
Ricx(i, j)uiu j +O(u3))du ,

which by Corollary 25 and Lemma 27 becomes

∫
Dε (x)

[
P(x)

d

∑
i=1

∂i f (x)ui +
P(x)

2

d

∑
i, j=1

∂
2
i j f (x)uiu j +

d

∑
i=1

∂i f (x)ui

d

∑
j=1

∂ jP(x)u j +O(u3)
]
du

=P(x)∂d f (x)
∫

D̃ε (x)
uddu+

d

∑
i=1

(
P(x)

2
∂

2
ii f (x)+∂i f (x)∂iP(x))

∫
D̃ε (x)

u2
i du+O(εd+3)

=P(x)∂d f (x)µed (x,ε)+
d

∑
i=1

(
P(x)

2
∂

2
ii f (x)+∂i f (x)∂iP(x))µ2ei(x,ε)+O(εd+3) .

Note that the leading term in the integral is of order ε , so the error of changing the domain from
Dε(x) to D̃ε(x) is of order εd+3.

Third, by a direct expansion, we have

E[(ι(X)− ι(x))χBRp
ε (ι(x))(ι(X))] (C.8)

=
∫

Dε (x)
(ι̃∗u+

1
2

IIx(u,u)+O(u3))(P(x)+
d

∑
i=1

∂iP(x)ui +O(u2))

× (1−
d

∑
i, j=1

1
6
Ricx(i, j)uiu j +O(u3))du ,

which is a vector in Rp. We then find the tangential part and the normal part of E[(ι(X)−ι(x))χBRp
ε (ι(x))(ι(X))]

respectively. The tangential part is

∫
Dε (x)

(ι̃∗u+O(u3))(P(x)+
d

∑
i=1

∂iP(x)ui +O(u2)) (C.9)

× (1−
d

∑
i, j=1

1
6
Ricx(i, j)uiu j +O(u3))du

=
∫

D̃ε (x)
(ι̃∗u+O(u3))(P(x)+

d

∑
i=1

∂iP(x)ui +O(u2))

× (1−
d

∑
i, j=1

1
6
Ricx(i, j)uiu j +O(u3))du+O(εd+3) ,
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where the equality holds by Corollary 25. Similarly, by Corollary 25, the normal part is

∫
Dε (x)

(
1
2

IIx(u,u)+O(u3))(P(x)+
d

∑
i=1

∂iP(x)ui +O(u2)) (C.10)

× (1−
d

∑
i, j=1

1
6
Ricx(i, j)uiu j +O(u3))du

=
∫

D̃ε (x)
(
1
2

IIx(u,u)+O(u3))(P(x)+
d

∑
i=1

∂iP(x)ui +O(u2))

× (1−
d

∑
i, j=1

1
6
Ricx(i, j)uiu j +O(u3))du+O(εd+4)

since the leading term P(x)IIx(u,u) is of order ε2 on Dε(x). As a result, by putting the tangent part
and normal part together, E[(ι(X)− ι(x))χBRp

ε (ι(x))(ι(X))] = [[v1,v2]], where

v1 =J⊤p,d
[
P(x)

∫
D̃ε (x)

ι̃∗udu+
∫

D̃ε (x)
ι̃∗u

d

∑
i=1

∂iP(x)uidu+O(εd+3)
]

(C.11)

=

(
P(x)

∫
D̃ε (x)

uddu
)

J⊤p,ded +
d

∑
i=1

(
∂iP(x)

∫
D̃ε (x)

u2
i du
)

J⊤p,dei +O(εd+3)

=P(x)µed (x,ε)J
⊤
p,ded +

d

∑
i=1

∂iP(x)µ2ei(x,ε)J
⊤
p,dei +O(εd+3)

and

v2 =
P(x)

2
J̄⊤p,p−d

∫
D̃ε (x)

IIx(u,u)du+O(εd+3) =
P(x)

2

d

∑
i=1

Nii(x)µ2ei(x,ε)+O(εd+3).

Finally, we evaluate E[(ι(X)− ι(x))( f (X)− f (x))χBRp
ε (ι(x))(ι(X))] and then find the tangential part

and the normal part. By a direct expansion,

E[(ι(X)− ι(x))( f (X)− f (x))χBRp
ε (ι(x))(ι(X))] (C.12)

=
∫

Dε (x)
(ι̃∗u+

1
2

IIx(u,u)+O(u3))(
d

∑
i=1

∂i f (x)ui +
1
2

d

∑
i, j=1

∂
2
i j f (x)uiu j +O(u3))

×
(
P(x)+

d

∑
i=1

∂iP(x)ui +O(u2)
)(

1−
d

∑
i, j=1

1
6
Ricx(i, j)uiu j +O(u3)

)
du.

The tangential part is

∫
Dε (x)

(ι̃∗u+O(u3))
( d

∑
i=1

∂i f (x)ui +
1
2

d

∑
i, j=1

∂
2
i j f (x)uiu j +O(u3)

)
(C.13)

×
(
P(x)+

d

∑
i=1

∂iP(x)ui +O(u2)
)(

1−
d

∑
i, j=1

1
6
Ricx(i, j)uiu j +O(u3)

)
du.
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The leading term P(x)ι̃∗u∑
d
i=1 ∂i f (x)ui is of order ε2 on Dε(x), therefore the error of changing

domain from Dε(x) to D̃ε(x) is of order εd+4. The normal part is

∫
Dε (x)

(
1
2

IIx(u,u)+O(u3))
( d

∑
i=1

∂i f (x)ui +
1
2

d

∑
i, j=1

∂
2
i j f (x)uiu j +O(u3)

)
(C.14)

×
(
P(x)+

d

∑
i=1

∂iP(x)ui +O(u2)
)(

1−
d

∑
i, j=1

1
6
Ricx(i, j)uiu j +O(u3)

)
du.

The leading term P(x)IIx(u,u)∑
d
i=1 ∂i f (x)ui is of order ε3 on Dε(x). Therefore, the error of changing

domain from Dε(x) to D̃ε(x) is of order εd+5. Putting the above together, E[(ι(X)− ι(x))( f (X)−
f (x))χBRp

ε (ι(x))(ι(X))] = [[v1,v2]], where by the symmetry of D̃ε(x) we have

v1 =J⊤p,d

[
P(x)

∫
D̃ε (x)

ι̃∗u
d

∑
i=1

∂i f (x)uidu+
∫

D̃ε (x)
ι̃∗u

d

∑
i=1

∂i f (x)ui

d

∑
j=1

∂ jP(x)u jdu (C.15)

+
P(x)

2

∫
D̃ε (x)

ι̃∗u
d

∑
i, j=1

∂
2
i j f (x)uiu jdu+O(εd+4)

]

=P(x)
d

∑
i=1

(
∂i f (x)

∫
D̃ε (x)

u2
i du
)

J⊤p,dei

+
d−1

∑
i=1

[
∂i f (x)∂dP(x)+∂d f (x) ∂iP(x)+P(x)∂ 2

id f (x)
]∫

D̃ε (x)
u2

i udduJ⊤p,dei

+
d

∑
i=1

([
∂i f (x)∂iP(x)+

P(x)
2

∂
2
ii f (x)

]∫
D̃ε (x)

u2
i uddu

)
J⊤p,ded +O(εd+4)

=P(x)
d

∑
i=1

∂i f (x)µ2ei(x,ε)J⊤p,dei

+
d−1

∑
i=1

[
∂i f (x)∂dP(x)+∂d f (x) ∂iP(x)+P(x)∂ 2

id f (x)
]
µ2ei+ed (x,ε)J⊤p,dei

+
d

∑
i=1

[
∂i f (x)∂iP(x)+

P(x)
2

∂
2
ii f (x)

]
µ2ei+ed (x,ε)J⊤p,ded +O(εd+4) ,

and

v2 =
P(x)

2
J̄⊤p,p−d

d

∑
i=1

∂i f (x)
∫

D̃ε (x)
IIx(u,u)uidu+O(εd+4)

=P(x)
d−1

∑
i=1

∂i f (x)Nid(x)µ2ei+ed (x,ε)+
P(x)

2
∂d f (x)

d

∑
i=1

Nii(x)µ2ei+ed (x,ε)+O(εd+4).
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Appendix D. Structure of the local covariance matrix under the manifold setup

In this section we provide detailed analysis for the local covariance matrix Cx =E[(ι(X)−ι(x))(ι(X)−
ι(x))⊤χBRp

ε (ι(x))(ι(X))]. This Lemma could be viewed as the generalization of (Wu and Wu, 2018,
Proposition 3.2) in the sense that when x /∈ Mε , the result is reduced to that of (Wu and Wu, 2018,
Proposition 3.2). To handle the boundary effect, we only need to calculate the first two order terms
in eigenvalues and orthonormal eigenvectors of Cx.

Lemma 31 Fix x ∈ M. Suppose that rank(Cx) = r, there is a choice of ed+1, · · · ,ep so that we have
e⊤i IIx(e j,e j) = 0 for all i = r+1, · · · , p and j = 1, · · ·d. We have

Cx =P(x)

M(0)(x,ε) 0 0
0 0 0
0 0 0

+
M(11)(x,ε) M(12)(x,ε) 0

M(21)(x,ε) 0 0
0 0 0

 (D.1)

+

[
O(εd+4) O(εd+4)

O(εd+4) M(3)(x,ε)+O(εd+5)

]
,

where M(0) is a d×d diagonal matrix with the m-th diagonal entry µ2em(x,ε). M(11) is a symmetric

d×d matrix. M(12) ∈Rd×(r−d). M(21)=M(12)⊤. In particular, when x ̸∈Mε ,

M(11)(x,ε) M(12)(x,ε) 0
M(21)(x,ε) 0 0

0 0 0

=

0. M(3)(x,ε) is diagonal (p−d)× (p−d) matrix and is of order εd+4. The first d eigenvalues of Cx

are
λi = P(x)µ2ei(x,ε)+λ

(1)
i (x,ε)+O(εd+4), (D.2)

where i = 1, . . . ,d. And λ
(1)
i (x,ε) = O(εd+3). If x ̸∈ Mε , λ

(1)
i (x,ε) = 0. The last p−d eigenvalues

of Cx are λi = O(εd+4), where i = d +1, . . . , p.
The corresponding orthonormal eigenvector matrix is

X(x,ε) = X(x,0)+X(x,0)S(x,ε)+O(ε2), (D.3)

where

X(x,0) =

X1(x) 0 0
0 X2(x) 0
0 0 X3(x)

 , S(x,ε) =

S11(x,ε) S12(x,ε) S13(x,ε)
S21(x,ε) S22(x,ε) S23(x,ε)
S31(x,ε) S32(x,ε) S33(x,ε)

 , (D.4)

X1 ∈ O(d), X2 ∈ O(r−d) and X3 ∈ O(p− r). The matrix S(x,ε) is divided into blocks the same as
X(x,0). Moreover, S(x,ε) is an antisymmetric matrix with 0 on the diagonal entries. In particular,
if x ̸∈ Mε , S(x,ε) = 0.

The proof is essentially the same as that of (Wu and Wu, 2018, Proposition 3.2), except that
when x is close to the boundary, the integral domain is no longer symmetric.
Proof By definition, the (m,n)-th entry of Cx is

e⊤mCxen =
∫

Dε (x)
(ι(y)− ι(x))⊤em(ι(y)− ι(x))⊤enP(y)dV (y). (D.5)
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By the expression

ι̃ ◦ expx(u)− ι̃(x) = ι̃∗u+
1
2

IIx(u,u)+O(u3) , (D.6)

we have

(ι(y)− ι(x))⊤em(ι(y)− ι(x))⊤en

= (e⊤m ι̃∗u)(e⊤n ι̃∗u)+
1
2
(e⊤m ι̃∗u)(e⊤n IIx(u,u))+

1
2
(e⊤mIIx(u,u))(e⊤n ι̃∗u)+O(u4).

Thus, (D.5) is reduced to

e⊤mCxen =
∫

Dε (x)

(
(e⊤m ι̃∗u)(e⊤n ι̃∗u)+

1
2
(e⊤m ι̃∗u)(e⊤n IIx(u,u))+

1
2
(e⊤mIIx(u,u))(e⊤n ι̃∗u)

+
1
4
[e⊤mIIx(u,u)e⊤n IIx(u,u)]+O(u5)

)
(D.7)

×
(
P(x)+∇uP(x)+O(u2)

)(
1−

d

∑
i, j=1

1
6
Ricx(i, j)uiu j +O(u3)

)
du.

For 1 ≤ m,n ≤ d, (e⊤m ι̃∗u)(e⊤n ι̃∗u) = umun. Moreover, e⊤n IIx(u,u) and e⊤mIIx(u,u) are zero, so

e⊤mCxen (D.8)

=
∫

Dε (x)
(umun +O(u4))

(
P(x)+∇uP(x)+O(u2)

)
×
(
1−

d

∑
i, j=1

1
6
Ricx(i, j)uiu j +O(u3)

)
du

=P(x)
∫

D̃ε (x)
umundu+

∫
D̃ε (x)

umun

d

∑
k=1

uk∂kP(x)du+O(εd+4).

where we use Lemma 25 to handle the error of changing domain from Dε(x) to D̃ε(x), which is
O(εd+4). By the symmetry of domain D̃ε(x), if 1 ≤ m = n ≤ d,

M(0)
m,n =

∫
D̃ε (x)

u2
mdu = µ2em(x,ε) (D.9)

and M(0)
m,n is 0 otherwise.

Next,

M(11)
m,n =

∫
D̃ε (x)

umun

d

∑
k=1

uk∂kP(x)du (D.10)

So, by the symmetry of domain D̃ε(x), we have

M(11)
m,n =


∂dP(x)µ2em+ed (x,ε) 1 ≤ m = n ≤ d,
∂nP(x)µ2en+ed (x,ε) m = d, 1 ≤ n ≤ d,
∂mP(x)µ2em+ed (x,ε) n = d, 1 ≤ m ≤ d,
0 otherwise.

(D.11)
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For d +1 ≤ m ≤ p and d +1 ≤ n ≤ p, we have

e⊤mCxen =
∫

Dε (x)

(1
4
[e⊤mIIx(u,u)e⊤n IIx(u,u)]+O(u5)

)
(P(x)+O(u))(1+O(u))du (D.12)

=
P(x)

4

∫
D̃ε (x)

e⊤mIIx(u,u)e⊤n IIx(u,u)du+O(εd+5).

Hence, we have

M(3)
m−d,n−d(x,ε) =

P(x)
4

∫
D̃ε (x)

e⊤mIIx(u,u)e⊤n IIx(u,u)du. (D.13)

Since M(3)
m−d,m−d(x,ε) is symmetric, we can choose ed+1, · · · ,ep so that it is diagonal. Then M(3)

m−d,m−d(x,ε)=
0 implies ∫

D̃ε (x)
(e⊤mIIx(u,u))2du = 0. (D.14)

Note that since e⊤mIIx(u,u) is a quadratic form of u, we have e⊤mIIx(u,u) = 0. Since Cx has rank r,
M(3)

m−d,m−d(x,ε) = 0 for m= r+1, · · · , p, and e⊤mIIx(ei,e j) = 0 for m= r+1, · · · , p and i, j = 1, · · · ,d.
For 1 ≤ m ≤ d and n ≥ d,

e⊤mCxen =
∫

Dε (x)

(1
2
(e⊤m ι̃∗u)(e⊤n IIx(u,u))+O(u4)

)(
P(x)+∇uP(x)+O(u2)

)
(D.15)

×
(
1−

d

∑
i, j=1

1
6
Ricx(i, j)uiu j +O(u3)

)
du

=
P(x)

2

∫
Dε (x)

um(e⊤n IIx(u,u))du+O(εd+4) .

We use Lemma 25 to handle the error of changing domain from Dε(x) to D̃ε(x), which is O(εd+5).
Hence, for 1 ≤ m ≤ d and d +1 ≤ n ≤ r,

M(12)(x)m,n−d =
P(x)

2

∫
D̃ε (x)

um(e⊤n IIx(u,u))du . (D.16)

By symmetry of Cx, we have M(21) = M(12)⊤.
For 1 ≤ m ≤ d and r+1 ≤ n ≤ p,

e⊤mCxen =
P(x)

2

∫
D̃ε (x)

um(e⊤n IIx(u,u))du+O(εd+4) = O(εd+4) . (D.17)

For 1 ≤ n ≤ d and r+1 ≤ m ≤ p, e⊤mCxen = O(εd+4) by symmetry.

Based on Lemma 27,

M(0)(x,ε) 0 0
0 0 0
0 0 0

 is of order εd+2 and

M(11)(x,ε) M(12)(x,ε) 0
M(21)(x,ε) 0 0

0 0 0


is of order εd+3. Note that the entries of

M(11)(x,ε) M(12)(x,ε) 0
M(21)(x,ε) 0 0

0 0 0

 are integrals of odd-order
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polynomials over D̃ε(x). Hence, the matrix is 0 when x ̸∈ Mε . By applying the perturbation theory
(see, for example, (Wu and Wu, 2018, Appendix A)), the first d eigenvalues of Cx are

λi = P(x)µ2ei(x,ε)+λ
(1)
i (x,ε)+O(εd+4), (D.18)

for i = 1, . . . ,d and any x ∈ M, where {λ
(1)
i (x,ε)} are of order εd+3. The calculation of {λ

(1)
i (x,ε)}

depends on M(11)(x,ε) and whether µ2ei(x,ε) are the same. Moreover, λi = O(εd+4) for i = d +
1, . . . , p.

Suppose that rank(Cx) = r, based on the perturbation theory (see, for example, (Wu and Wu,
2018, Appendix A)), the orthonormal eigenvector matrix of Cx is in the form

X(x,ε) =

X1(x) 0 0
0 X2(x) 0
0 0 X3(x)

+
X1(x) 0 0

0 X2(x) 0
0 0 X3(x)

S(x,ε)+O(ε2), (D.19)

where X1(x) ∈ O(d), X2(x) ∈ O(r−d) and X3(x) ∈ O(p− r). And

S(x,ε) =

S11(x,ε) S12(x,ε) S13(x,ε)
S21(x,ε) S22(x,ε) S23(x,ε)
S31(x,ε) S32(x,ε) S33(x,ε)

 .
S(x,ε) is an antisymmetric matrix with 0 on the diagonal entries. It is of order ε and depends on
those terms of Cx of order εd+2, order εd+3 and higher orders. In particular,

X1(x)S12(x,ε) =−[P(x)M(0)(x,ε)]−1M(12)(x,ε)X2.

And a straightforward calculation shows that

e⊤i Jp,dX1(x)S12(x,ε) =−µ2ei+ed (x,ε)
µ2ei(x,ε)

N⊤
id(x)Jp−d,r−dX2(x), (D.20)

for i = 1, · · · ,d −1, and

e⊤d Jp,dX1(x)S12(x,ε) =−1
2

d

∑
j=1

µ2e j+ed (x,ε)
µ2ed (x,ε)

N⊤
j j(x)Jp−d,r−dX2(x). (D.21)

If x ̸∈ Mε , S(x,ε) = 0. Moreover, if among first µ2e1 , · · · ,µ2ed , there are 1 ≤ k ≤ d distinct ones,
then there is a choice of the basis in the tangent space of M so that

X1(x) =


X (1)

1 (x) 0 · · · 0
0 X (2)

1 (x) · · · 0

0 0
. . . 0

0 0 · · · X (k)
1 (x)

 , (D.22)

where each X (i)
1 (x) is an orthogonal matrix corresponding to the same of µ2ei . The conclusion fol-

lows.
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Appendix E. Analysis on the augmented vector T(x)

We now calculate T(x). For our purpose, we need an asymptotic expansion up to the first two
orders for the tangent component of T(x) and to the first order for the normal component when ε is
sufficiently small.

Lemma 32 T(x) = [[v(−1)
1 + v(0)1,1 + v(0)1,2 + v(0)1,3 + v(0)1,4,v

(−1)
2 ]]+ [[O(ε),O(1)]], where

v(−1)
1 =

µed (x,ε)
µ2ed (x,ε)

J⊤p,ded ,

v(0)1,1 =
∇P(x)
P(x)

,

v(0)1,2 = − εd+3µed (x,ε)
P(x)(µ2ed (x,ε))2 J⊤p,ded , (E.1)

v(0)1,3 = −
d

∑
i=1

∂iP(x)µed (x,ε)µ2ei+ed (x,ε)
P(x)µ2ei(x,ε)µ2ed (x,ε)

J⊤p,dei ,

v(0)1,4 =
P(x)

2εd+3

d−1

∑
i=1

d

∑
j=1

[(µed (x,ε)µ2e j+ed (x,ε)
µ2ed (x,ε)

−µ2e j(x,ε)
)µ2ei+ed (x,ε)

µ2ei(x,ε)
N⊤

j j(x)
]
Nid(x)J⊤p,dei

+
P(x)

4εd+3

d

∑
i=1

d

∑
j=1

[(µed (x,ε)µ2e j+ed (x,ε)
µ2ed (x,ε)

−µ2e j(x,ε)
)µ2ei+ed (x,ε)

µ2ed (x,ε)
N⊤

j j(x)
]
Nii(x)J⊤p,ded ,

and

v(−1)
2 =

P(x)
2εd+3

d

∑
j=1

(
µ2e j(x,ε)−

µed (x,ε)µ2e j+ed (x,ε)
µ2ed (x,ε)

)
N j j. (E.2)

Note that by Lemma 27, v(−1)
1 is of order ε−1 when x ∈ Mε and 0 when x /∈ Mε ; v(0)1,2 is of order

1 since µed (x,ε) is of order εd+1 and µ2ei(x,ε) is of order εd+2 for i = 1, . . . ,d. Moreover, when
x /∈ Mε , we have µed (x,ε) = 0 and µ2ei+ed (x,ε) = 0. Hence, v(0)1,2 = 0,v(0)1,3 = 0 and v(0)1,4 = 0. Similarly,

v(−1)
2 is of order ε−1.

Proof Recall that

T(x)⊤ =
r

∑
i=1

E[(ι(X)− ι(x))χBRp
ε (ι(x))(ι(X))]⊤βiβ

⊤
i

λi + εd+3 . (E.3)

To show the proof, we evaluate the terms in T(x) one by one.
Based on Lemma 31, the first d eigenvalues are λi = P(x)µ2ei(x,ε) + λ

(1)
i (x,ε) + O(εd+4),

where i = 1, . . . ,d, and the corresponding eigenvectors are

βi =

[
X1(x)J⊤p,dei

0(p−d)×1

]
+

[
X1(x)S11(x,ε)J⊤p,dei +O(ε2)

O(ε)

]
, (E.4)

where X1(x) ∈ O(d). For i = d +1, . . . ,r, λi = O(εd+4), and the corresponding eigenvectors are

βi =

[
0d×1

Jp−d,r−dX2(x)J⊤p,r−dei

]
+

[
X1(x)S12(x,ε)J⊤p,r−dei +O(ε2)

O(ε)

]
, (E.5)
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where X2(x) ∈ O(r−d).
By Lemma 30, we have

E[(ι(X)− ι(x))χBRp
ε (ι(x))(ι(X))] = [[v1,v2]] , (E.6)

where

v1 =P(x)µed (x,ε)J
⊤
p,ded +

d

∑
i=1

∂iP(x)µ2ei(x,ε)J
⊤
p,dei +O(εd+3), (E.7)

v2 =
P(x)

2

d

∑
i=1

Nii(x)µ2ei(x,ε)+O(εd+3).

Next, we calculate E[(ι(X)− ι(x))χBRp
ε (ι(x))(ι(X))]⊤βi , for i = 1, . . . ,d. Note that the normal com-

ponent of βi is of order ε and the normal component of E[(ι(X)− ι(x))χBRp
ε (ι(x))(ι(X))] is of order

εd+2, so they will only contribute in the O(εd+3) term. Therefore, for i = 1, . . . ,d, the first two order
terms of E[(ι(X)− ι(x))χBRp

ε (ι(x))(ι(X))]⊤βi are

E[(ι(X)− ι(x))χBRp
ε (ι(x))(ι(X))]⊤βi

=
(
P(x)µed (x,ε)

)(
e⊤d Jp,dX1(x)J⊤p,dei

)
+
(
P(x)µed (x,ε)

)(
e⊤d Jp,dX1(x)S11(x,ε)J⊤p,dei

)
+

d

∑
j=1

(
∂Pj(x)µ2e j(x,ε)

)(
e⊤j Jp,dX1(x)J⊤p,dei

)
+O(εd+3).

By putting the above expressions together, a direct calculation shows that the normal component

of ∑
d
i=1

E[(ι(X)−ι(x))χ
BRp

ε (ι(x))
(ι(X))]⊤βiβ

⊤
i

λi+εd+3 is of order 1 and the tangent component of

∑
d
i=1

E[(ι(X)−ι(x))χ
BRp

ε (ι(x))
(ι(X))]⊤βiβ

⊤
i

λi+εd+3 is of order ε−1:

P(x)µed (x,ε)
d

∑
i=1

(e⊤d Jp,dX1(x)J⊤p,dei)X1(x)J⊤p,dei

λi + εd+3 (E.8)

+
d

∑
i=1

∑
d
j=1(∂Pj(x)µ2e j(x,ε))(e

⊤
j Jp,dX1(x)J⊤p,dei)X1(x)J⊤p,dei

λi + εd+3

+P(x)µed (x,ε)
d

∑
i=1

(e⊤d Jp,dX1(x)S11(x,ε)J⊤p,dei)X1(x)J⊤p,dei

λi + εd+3

+P(x)µed (x,ε)
d

∑
i=1

(e⊤d Jp,dX1(x)J⊤p,dei)X1(x)S11(x,ε)J⊤p,dei

λi + εd+3 +O(ε) ,

where the first term is of order ε−1, the second to the fourth terms are of order 1 since µed (x,ε) is of
order εd+1, µ2ei(x,ε) is of order εd+2 for i = 1, . . . ,d, S11(x,ε) is of order ε and λi is of order εd+2

for i = 1, . . . ,d. Note that above formula involves λi and S11(x,ε). We are going to express those
terms by µ2ei and µ2ei+ed . In the following paragraph, we prepare some necessary ingredients to

simplify the formula of tangent component of ∑
d
i=1

E[(ι(X)−ι(x))χ
BRp

ε (ι(x))
(ι(X))]⊤βiβ

⊤
i

λi+εd+3 . Recall that from
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(D.22),

X1(x) =


X (1)

1 (x) 0 · · · 0
0 X (2)

1 (x) · · · 0

0 0
. . . 0

0 0 · · · X (k)
1 (x)

 ,

1≤ k ≤ d. Here different X (i)
1 corresponds to different µ2ei . Each X (i)

1 is an orthogonal matrix. By re-
ordering the basis {e1, · · · ,ed} of the tangent space TxM, we suppose that among µ2e1(x,ε), · · · ,µ2ed−1(x,ε),
the first t terms of them are different from µ2ed . Define

X1,1(x) :=


X (1)

1 (x) 0 · · · 0
0 X (2)

1 (x) · · · 0

0 0
. . . 0

0 0 · · · X (k−1)
1 (x)

 . (E.9)

Hence, we have

X1(x) =
[

X1,1(x) 0
0 X1,2(x)

]
,

where X1,1(x) ∈ O(t), X1,2 ∈ O(d − t), and 0 ≤ t ≤ d −1. Divide M(11)(x,ε) in (D.1) and S11(x,ε)

in (D.4) corresponding to
[

X1,1(x) 0
0 X1,2(x)

]
:

M(11)(x,ε) =

[
M(11)

1 (x,ε) M(11)
2 (x,ε)

M(11)
3 (x,ε) M(11)

4 (x,ε)

]
, S11(x,ε) =

[
S11,1(x,ε) S11,2(x,ε)
S11,3(x,ε) S11,4(x,ε)

]
.

Recall that

M(11)
m,n =


∂dP(x)µ2em+ed (x,ε) 1 ≤ m = n ≤ d,
∂nP(x)µ2en+ed (x,ε) m = d,1 ≤ n ≤ d,
∂mP(x)µ2em+ed (x,ε) n = d,1 ≤ m ≤ d,
0 otherwise.

(E.10)

By the perturbation theory (see, e.g., (Wu and Wu, 2018, Appendix A)), λ
(1)
t+1(x,ε), · · · ,λ

(1)
d (x,ε)

are the eigenvalues of M(11)
4 (x,ε) and X1,2(x) is the orthonormal eigenvector matrix of M(11)

4 (x,ε).
We have

S11,2(x,ε) = X⊤
1,1(x)[P(x)µ2ed (x,ε)It×t −Λ]−1M(11)

2 (x,ε)X1,2(x) , (E.11)

where

Λ =

P(x)µ2e1(x,ε) · · · 0

0
. . . 0

0 · · · P(x)µ2et (x,ε)

 ,
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Next, we simplify the terms in equation (E.8) one by one. We start from the first one. Recall that
based on the structure of X1, we have e⊤d Jp,dX1(x)J⊤p,dei = 0 for i = 1, · · · , t. Hence,

P(x)µed (x,ε)
d

∑
i=1

(e⊤d Jp,dX1(x)J⊤p,dei)X1(x)J⊤p,dei

λi + εd+3 (E.12)

=P(x)µed (x,ε)
d

∑
i=t+1

(e⊤d Jp,dX1(x)J⊤p,dei)X1(x)J⊤p,dei

P(x)µ2ed (x,ε)+λ
(1)
i (x,ε)+ εd+3 +O(εd+4)

=P(x)µed (x,ε)
d

∑
i=t+1

[
1

P(x)µ2ed (x,ε)
−

λ
(1)
i (x,ε)+ εd+3

(P(x)µ2ed (x,ε))2 +O(ε−d)

]
× (e⊤d Jp,dX1(x)J⊤p,dei)X1(x)J⊤p,dei

=
µed (x,ε)
µ2ed (x,ε)

d

∑
i=t+1

(e⊤d Jp,dX1(x)J⊤p,dei)X1(x)J⊤p,dei

− µed (x,ε)
P(x)(µ2ed (x,ε))2

d

∑
i=t+1

λ
(1)
i (x,ε)(e⊤d Jp,dX1(x)J⊤p,dei)X1(x)J⊤p,dei

− εd+3µed (x,ε)
P(x)(µ2ed (x,ε))2

d

∑
i=t+1

(e⊤d Jp,dX1(x)J⊤p,dei)X1(x)J⊤p,dei +O(ε).

Note that we use (D.2) in the first step. Moreover, we have

µed (x,ε)
µ2ed (x,ε)

d

∑
i=t+1

(e⊤d Jp,dX1(x)J⊤p,dei)X1(x)J⊤p,dei =
µed (x,ε)
µ2ed (x,ε)

J⊤p,ded (E.13)

and

εd+3µed (x,ε)
P(x)(µ2ed (x,ε))2

d

∑
i=t+1

(e⊤d Jp,dX1(x)J⊤p,dei)X1(x)J⊤p,dei =
εd+3µed (x,ε)

P(x)(µ2ed (x,ε))2 J⊤p,ded . (E.14)

By using the eigen-decomposition of M(11)
4 (x,ε), we have

e⊤k Jp,d

d

∑
i=t+1

λ
(1)
i (x,ε)(e⊤d Jp,dX1(x)J⊤p,dei)X1(x)J⊤p,dei (E.15)

=
d

∑
i=t+1

λ
(1)
i (x,ε)(e⊤d Jp,dX1(x)J⊤p,dei)(e⊤k Jp,dX1(x)J⊤p,dei)

=
d

∑
i=t+1

λ
(1)
i (x,ε)(e⊤d Jp,dX1(x)J⊤p,dei)(e⊤i Jp,dX⊤

1 (x)J⊤p,dek)

=∂kP(x)µ2ek+ed (x,ε)
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for t +1 ≤ k ≤ d and this quantity is 0 if 1 ≤ k ≤ d. Thus, if we sum up the above terms, we have

P(x)µed (x,ε)
d

∑
i=1

(e⊤d Jp,dX1(x)J⊤p,dei)X1(x)J⊤p,dei

λi + εd+3 (E.16)

=
µed (x,ε)
µ2ed (x,ε)

J⊤p,ded −
εd+3µed (x,ε)

P(x)(µ2ed (x,ε))2 J⊤p,ded

−
d

∑
j=t+1

∂ jP(x)µed (x,ε)µ2e j+ed (x,ε)
P(x)(µ2ed (x,ε))2 J⊤p,de j +O(ε) .

Next, we simplify the second term in (E.8). Recall the description of X1 (e.g. (D.22)). We have
d

∑
i=1

(
e⊤j Jp,dX1(x)J⊤p,dei

)
X1(x)J⊤p,dei

µ2ei(x,ε)
=

1
µ2e j(x,ε)

J⊤p,de j. (E.17)

Hence,
d

∑
i=1

∑
d
j=1
(
∂Pj(x)µ2e j(x,ε)

)(
e⊤j Jp,dX1(x)J⊤p,dei

)
X1(x)J⊤p,dei

λi + εd+3 (E.18)

=
d

∑
i=1

∑
d
j=1
(
∂Pj(x)µ2e j(x,ε)

)(
e⊤j Jp,dX1(x)J⊤p,dei

)
X1(x)J⊤p,dei

P(x)µ2ei(x,ε)+λ
(1)
i (x,ε)+ εd+3 +O(εd+4)

=
d

∑
j=1

∂Pj(x)µ2e j(x,ε)
P(x)

d

∑
i=1

(
e⊤j Jp,dX1(x)J⊤p,dei

)
X1(x)J⊤p,dei

µ2ei(x,ε)
+O(ε)

=
∇P(x)
P(x)

+O(ε) .

At last, we simplify the third and the last terms in (E.8) together, because we need to use the
antisymmetric property of S11(x,ε).

P(x)µed (x,ε)
d

∑
i=1

(e⊤d Jp,dX1(x)S11(x,ε)J⊤p,dei)X1(x)J⊤p,dei

λi
(E.19)

+P(x)µed (x,ε)
d

∑
i=1

(e⊤d Jp,dX1(x)J⊤p,dei)X1(x)S11(x,ε)J⊤p,dei

λi

=µed (x,ε)
d

∑
i=1

[
(e⊤d Jp,dX1(x)S11(x,ε)J⊤p,dei)X1(x)J⊤p,dei

µ2ei(x,ε)+λ
(1)
i (x,ε)/P(x)+ εd+3 +O(εd+4)

+
(e⊤d Jp,dX1(x)J⊤p,dei)X1(x)S11(x,ε)J⊤p,dei

µ2ei(x,ε)+λ
(1)
i (x,ε)/P(x)+ εd+3 +O(εd+4)

]
= v̄+O(ε) ,

where we denote

v̄ :=µed (x,ε)
d

∑
i=1

[
(e⊤d Jp,dX1(x)S11(x,ε)J⊤p,dei)X1(x)J⊤p,dei

µ2ei(x,ε)
(E.20)

+
(e⊤d Jp,dX1(x)J⊤p,dei)X1(x)S11(x,ε)J⊤p,dei

µ2ei(x,ε)

]
.
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We now simplify v̄. Note that, for 1 ≤ k ≤ d,

e⊤k Jp,d v̄

=µed (x,ε)
d

∑
i=1

( d

∑
j=1

e⊤d Jp,dX1(x)J⊤p,de j
e⊤j Jp,dS11(x,ε)J⊤p,dei

µ2ei(x,ε)

)
e⊤k Jp,dX1(x)J⊤p,dei

+ µed (x,ε)
d

∑
i=1

e⊤d Jp,dX1(x)J⊤p,dei
( d

∑
j=1

e⊤k Jp,dX1(x)J⊤p,de j
e⊤j Jp,dS11(x,ε)J⊤p,dei

µ2ei(x,ε)

)
=µed (x,ε)

d

∑
j=1

e⊤d Jp,dX1(x)J⊤p,de j
( d

∑
i=1

e⊤k Jp,dX1(x)J⊤p,dei
e⊤j Jp,dS11(x,ε)J⊤p,dei

µ2ei(x,ε)

)
+ µed (x,ε)

d

∑
j=1

e⊤d Jp,dX1(x)J⊤p,de j
( d

∑
i=1

e⊤k Jp,dX1(x)J⊤p,dei
e⊤i Jp,dS11(x,ε)J⊤p,de j

µ2e j(x,ε)

)
=µed (x,ε)

d

∑
j=1

e⊤d Jp,dX1(x)J⊤p,de j

×
[ d

∑
i=1

e⊤k Jp,dX1(x)J⊤p,dei

( 1
µ2e j(x,ε)

− 1
µ2ei(x,ε)

)
e⊤i Jp,dS11(x,ε)J⊤p,de j

]
.

In the last step, we use the fact that S11(x,ε) is antisymmetric. Based on the structure of X1(x),
e⊤d Jp,dX1(x)J⊤p,de j = 0 for j = 1, · · · , t, e⊤k Jp,dX1(x)J⊤p,dei = 0, for k = 1, · · · , t and i = t + 1, · · · ,d
and e⊤k Jp,dX1(x)J⊤p,dei = 0 for k = t +1, · · · ,d and i = 1, · · · , t. We can further simplify v̄ as

e⊤k Jp,d v̄ = µed (x,ε)
d

∑
j=t+1

e⊤d Jp,dX1(x)J⊤p,de j (E.21)

×
[ t

∑
i=1

e⊤k Jp,dX1(x)J⊤p,dei

( 1
µ2ed (x,ε)

− 1
µ2ei(x,ε)

)
e⊤i Jp,dS11(x,ε)J⊤p,de j

]
,

for k = 1, · · · , t, and

e⊤k Jp,d v̄

=µed (x,ε)
d

∑
j=t+1

e⊤d Jp,dX1(x)J⊤p,de j (E.22)

×
[ d

∑
i=t+1

e⊤k Jp,dX1(x)J⊤p,dei

( 1
µ2ed (x,ε)

− 1
µ2ei(x,ε)

)
e⊤i Jp,dS11(x,ε)J⊤p,de j

]
=0,

for k = t +1, · · · ,d, where we use the fact that µ2et+1(x,ε) = · · ·= µ2ed (x,ε).
Next, we focus on the case when 1 ≤ k ≤ t. By (E.11), for 1 ≤ i ≤ t and t +1 ≤ j ≤ d, we have

e⊤i Jp,dS11(x,ε)J⊤p,de j =
t

∑
l=1

e⊤i Jp,dX⊤
1 (x)J⊤p,del

×
d

∑
m=t+1

(e⊤l Jp,dM(11)(x,ε)J⊤p,dem)(e⊤mJp,dX1(x)J⊤p,de j)

P(x)µ2ed (x,ε)−P(x)µ2el (x,ε)
. (E.23)
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Note by Lemma 31, if 1 ≤ l ≤ t, and t +1 ≤ m < d, then e⊤l Jp,dM(11)(x,ε)J⊤p,dem = 0. And

e⊤l Jp,dM(11)(x,ε)J⊤p,ded = ∂lP(x)µ2el+ed (x,ε). (E.24)

Hence,

e⊤i Jp,dS11(x,ε)J⊤p,de j = e⊤j Jp,dX⊤
1 (x)J⊤p,ded

×
t

∑
l=1

e⊤i Jp,dX⊤
1 (x)J⊤p,del

∂lP(x)µ2el+ed (x,ε)
P(x)µ2ed (x,ε)−P(x)µ2el (x,ε)

. (E.25)

We substitute above equation into (E.21),

e⊤k Jp,d v̄

=µed (x,ε)
d

∑
j=t+1

(e⊤d Jp,dX1(x)J⊤p,de j)(e⊤j Jp,dX⊤
1 (x)J⊤p,ded)

[ t

∑
i=1

e⊤k Jp,dX1(x)J⊤p,dei

×
( 1

µ2ed (x,ε)
− 1

µ2ei(x,ε)

) t

∑
l=1

e⊤i Jp,dX⊤
1 (x)J⊤p,del

∂lP(x)µ2el+ed (x,ε)
P(x)µ2ed (x,ε)−P(x)µ2el (x,ε)

]
=µed (x,ε)

[ t

∑
i=1

e⊤k Jp,dX1(x)J⊤p,dei

( 1
µ2ed (x,ε)

− 1
µ2ei(x,ε)

)
×

t

∑
l=1

e⊤i Jp,dX⊤
1 (x)J⊤p,del

∂lP(x)µ2el+ed (x,ε)
P(x)µ2ed (x,ε)−P(x)µ2el (x,ε)

]
=µed (x,ε)

[ t

∑
l=1

t

∑
i=1

(e⊤k Jp,dX1(x)J⊤p,dei)(e⊤i Jp,dX⊤
1 (x)J⊤p,del)

( 1
µ2ed (x,ε)

− 1
µ2ei(x,ε)

)
× ∂lP(x)µ2el+ed (x,ε)

P(x)µ2ed (x,ε)−P(x)µ2el (x,ε)

]
=µed (x,ε)

[
(

1
µ2ed (x,ε)

− 1
µ2ek(x,ε)

)
t

∑
l=1

t

∑
i=1

(e⊤k Jp,dX1(x)J⊤p,dei)(e⊤i Jp,dX⊤
1 (x)J⊤p,del)

× ∂lP(x)µ2el+ed (x,ε)
P(x)µ2ed (x,ε)−P(x)µ2el (x,ε)

]
,

where we use the fact that

d

∑
j=t+1

(e⊤d Jp,dX1(x)J⊤p,de j)(e⊤j Jp,dX⊤
1 (x)J⊤p,ded) = 1 (E.26)

in the second step and the fact that

(e⊤k Jp,dX1(x)J⊤p,dei)(e⊤i Jp,dX⊤
1 (x)J⊤p,del) ̸= 0 (E.27)

only if e⊤k Jp,dX1(x)J⊤p,dei and e⊤i Jp,dX⊤
1 (x)J⊤p,del are entries in the block X (m)

1 in (E.9) corresponding
to µ2ek in the fourth step. Note that

t

∑
i=1

(e⊤k Jp,dX1(x)J⊤p,dei)(e⊤i Jp,dX⊤
1 (x)J⊤p,del) = 1, (E.28)
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if 1 ≤ k = l ≤ t and is 0 otherwise.
Hence, we have

e⊤k Jp,d v̄ =−∂kP(x)µed (x,ε)µ2ek+ed (x,ε)
P(x)µ2ek(x,ε)µ2ed (x,ε)

, (E.29)

for 1 ≤ k ≤ t, and e⊤k Jp,d v̄ = 0, for t +1 ≤ k ≤ d. If we sum up equations (E.16) (E.18) and (E.29),

the tangent component of ∑
d
i=1

E[(ι(X)−ι(x))χ
BRp

ε (ι(x))
(ι(X))]⊤βiβ

⊤
i

λi+εd+3 becomes

µed (x,ε)
µ2ed (x,ε)

J⊤p,ded +
∇P(x)
P(x)

− εd+3µed (x,ε)
P(x)(µ2ed (x,ε))2 J⊤p,ded (E.30)

−
d

∑
i=t+1

∂iP(x)µed (x,ε)µ2ei+ed (x,ε)
P(x)(µ2ed (x,ε))2 J⊤p,dei

−
t

∑
i=1

∂iP(x)µed (x,ε)µ2ei+ed (x,ε)
P(x)µ2ei(x,ε)µ2ed (x,ε)

J⊤p,dei +O(ε)

=
µed (x,ε)
µ2ed (x,ε)

J⊤p,ded +
∇P(x)
P(x)

− εd+3µed (x,ε)
P(x)(µ2ed (x,ε))2 J⊤p,ded

−
d

∑
i=1

∂iP(x)µed (x,ε)µ2ei+ed (x,ε)
P(x)µ2ei(x,ε)µ2ed (x,ε)

J⊤p,dei +O(ε),

where we use µ2et+1(x,ε) = · · ·= µ2ed (x,ε) in the last step.

We now finish calculating the tangent component of ∑
d
i=1

E[(ι(X)−ι(x))χ
BRp

ε (ι(x))
(ι(X))]⊤βiβ

⊤
i

λi+εd+3 . Next,

we need to calculate both the tangent and the normal component of ∑
r
i=d+1

E[(ι(X)−ι(x))χ
BRp

ε (ι(x))
(ι(X))]⊤βiβ

⊤
i

λi+εd+3

Note that for i = d +1, . . . ,r,

E[(ι(X)− ι(x))χBRp
ε (ι(x))(ι(X))]⊤βi (E.31)

=P(x)µed (x,ε)
(
e⊤d Jp,dX1(x)S12(x,ε)J⊤p,r−dei

)
+

P(x)
2

d

∑
j=1

µ2e j(x,ε)N
⊤
j j(x)Jp−d,r−dX2(x)J⊤p,r−dei +O(εd+3),

where both terms are of order εd+2. Since λi = O(εd+4), εd+3 dominates the eigenvalues. For
i = d +1, . . . ,r, we have

E[(ι(X)− ι(x))χBRp
ε (ι(x))(ι(X))]⊤βi

λi + εd+3 =
E[(ι(X)− ι(x))χBRp

ε (ι(x))(ι(X))]⊤βi

εd+3 +O(εd+4)
(E.32)

=P(x)
µed (x,ε)

εd+3

(
e⊤d Jp,dX1(x)S12(x,ε)J⊤p,r−dei

)
+

P(x)
2

d

∑
j=1

µ2e j(x,ε)
εd+3 N⊤

j j(x)Jp−d,r−dX2(x)J⊤p,r−dei +O(1).

Similarly, we need to express the above formula in terms of µ2ei(x,ε) and µ2ei+ed (x,ε). The sim-
plification here mainly relies on the perturbation formula equations (D.20) and (D.21) which relates
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S12(x,ε) with the second fundamental form of the manifold at x. First of all, a direct calculation
shows that

r

∑
i=d+1

E[(ι(X)− ι(x))χBRp
ε (ι(x))(ι(X))]⊤βiβ

⊤
i

λi + εd+3

=
r

∑
i=d+1

E[(ι(X)− ι(x))χBRp
ε (ι(x))(ι(X))]⊤βiβ

⊤
i

εd+3 +O(εd+4)

=
[[ r

∑
i=d+1

[
P(x)

µed (x,ε)
εd+3

(
e⊤d Jp,dX1(x)S12(x,ε)J⊤p,r−dei

)]
X1(x)S12(x,ε)J⊤p,r−dei

+
r

∑
i=d+1

[
P(x)

2

d

∑
j=1

µ2e j(x,ε)
εd+3 N⊤

j j(x)Jp−d,r−dX2(x)J⊤p,r−dei

]
X1(x)S12(x,ε)J⊤p,r−dei +O(ε),

r

∑
i=d+1

[
P(x)

µed (x,ε)
εd+3

(
e⊤d Jp,dX1(x)S12(x,ε)J⊤p,r−dei

)]
Jp−d,r−dX2(x)J⊤p,r−dei

+
r

∑
i=d+1

[
P(x)

2

d

∑
j=1

µ2e j(x,ε)
εd+3 N⊤

j j(x)Jp−d,r−dX2(x)J⊤p,r−dei

]
Jp−d,r−dX2(x)J⊤p,r−dei +O(1)

]]
=
[[ r

∑
i=d+1

{
P(x)

2εd+3

d

∑
j=1

[(
µ2e j(x,ε)−

µed (x,ε)µ2e j+ed (x,ε)
µ2ed (x,ε)

)
N⊤

j j(x)
]
Jp−d,r−dX2(x)J⊤p,r−dei

}
×X1(x)S12(x,ε)J⊤p,r−dei +O(ε),

r

∑
i=d+1

{
P(x)

2εd+3

d

∑
j=1

[(
µ2e j(x,ε)−

µed (x,ε)µ2e j+ed (x,ε)
µ2ed (x,ε)

)
N⊤

j j(x)
]

× Jp−d,r−dX2(x)J⊤p,r−dei

}
Jp−d,r−dX2(x)J⊤p,r−dei +O(1)

]]
,

where we use (D.21) in the last step. To simplify the tangent and normal components of

∑
r
i=d+1

E[(ι(X)−ι(x))χ
BRp

ε (ι(x))
(ι(X))]⊤βiβ

⊤
i

λi+εd+3 , we need the following formula. Suppose v ∈ Rr−d , G ∈
Rd×(r−d) with e⊤i Jp,dG = w⊤

i for i = 1, · · · ,d. By Lemma 31, X2(x) ∈ O(r − d). We can repre-
sent the inner product between v and wi in orthonormal basis formed by the column vectors of
X2(x).

r

∑
i=d+1

[
v⊤X2(x)J⊤p,r−dei

]
GX2(x)J⊤p,r−dei =

d

∑
i=1

v⊤wiJ⊤p,dei. (E.33)
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By (D.20), the tangent component of ∑
r
i=d+1

E[(ι(X)−ι(x))χ
BRp

ε (ι(x))
(ι(X))]⊤βiβ

⊤
i

λi+εd+3 is

r

∑
i=d+1

{
P(x)

2εd+3

d

∑
j=1

[(
µ2e j(x,ε)−

µed (x,ε)µ2e j+ed (x,ε)
µ2ed (x,ε)

)
N⊤

j j(x)
]
Jp−d,r−dX2(x)J⊤p,r−dei

}
×X1(x)S12(x,ε)J⊤p,r−dei

=
P(x)

2εd+3

d−1

∑
i=1

d

∑
j=1

[(µed (x,ε)µ2e j+ed (x,ε)
µ2ed (x,ε)

−µ2e j(x,ε)
)

µ2ei+ed (x,ε)
µ2ei(x,ε)

N⊤
j j(x)

]
× Jp−d,r−dJ⊤p−d,r−dNid(x)J⊤p,dei

+
P(x)

4εd+3

d

∑
i=1

d

∑
j=1

[(µed (x,ε)µ2e j+ed (x,ε)
µ2ed (x,ε)

−µ2e j(x,ε)
)µ2ei+ed (x,ε)

µ2ed (x,ε)
N⊤

j j(x)
]

× Jp−d,r−dJ⊤p−d,r−dNii(x)J⊤p,ded

=
P(x)

2εd+3

d−1

∑
i=1

d

∑
j=1

[(µed (x,ε)µ2e j+ed (x,ε)
µ2ed (x,ε)

−µ2e j(x,ε)
)µ2ei+ed (x,ε)

µ2ei(x,ε)
N⊤

j j(x)
]
Nid(x)J⊤p,dei

+
P(x)

4εd+3

d

∑
i=1

d

∑
j=1

[(µed (x,ε)µ2e j+ed (x,ε)
µ2ed (x,ε)

−µ2e j(x,ε)
)µ2ei+ed (x,ε)

µ2ed (x,ε)
N⊤

j j(x)
]
Nii(x)J⊤p,ded ,

where in the first step we apply equations (D.20), (D.21) and (E.33). In the last step, e⊤mII(ei,e j) = 0
for m = r+1, · · · , p, and i, j = 1, · · · ,d. Hence,

N⊤
j j(x)Jp−d,r−dJ⊤p−d,r−dNii(x) =N⊤

j j(x)Nii(x). (E.34)

By Lemma 31, we have X2(x) ∈ O(r − d), and e⊤mII(e j,e j) = 0 for m = r + 1, · · · , p, and j =
1, · · · ,d. Hence, (E.33) implies that

r

∑
i=d+1

[N⊤
j j(x)Jp−d,r−dX2(x)J⊤p,r−dei]Jp−d,r−dX2(x)J⊤p,r−dei =N j j. (E.35)

We use it to simplify the normal component ∑
r
i=d+1

E[(ι(X)−ι(x))χ
BRp

ε (ι(x))
(ι(X))]⊤βiβ

⊤
i

λi+εd+3 . We have

r

∑
i=d+1

E[(ι(X)− ι(x))χBRp
ε (ι(x))(ι(X))]⊤βiβ

⊤
i

λi + εd+3

=
[[ P(x)

2εd+3

d−1

∑
i=1

d

∑
j=1

[(µed (x,ε)µ2e j+ed (x,ε)
µ2ed (x,ε)

−µ2e j(x,ε)
)µ2ei+ed (x,ε)

µ2ei(x,ε)
N⊤

j j(x)
]
Nid(x)J⊤p,dei

+
P(x)

4εd+3

d

∑
i=1

d

∑
j=1

[(µed (x,ε)µ2e j+ed (x,ε)
µ2ed (x,ε)

−µ2e j(x,ε)
)

µ2ei+ed (x,ε)
µ2ed (x,ε)

N⊤
j j(x)

]
×Nii(x)J⊤p,ded +O(ε),

P(x)
2εd+3

d

∑
j=1

(
µ2e j(x,ε)−

µed µ2e j+ed

µ2ed

)
N j j +O(1)

]]
.
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By summing up ∑
d
i=1

E[(ι(X)−ι(x))χ
BRp

ε (ι(x))
(ι(X))]⊤βiβ

⊤
i

λi+εd+3 and ∑
r
i=d+1

E[(ι(X)−ι(x))χ
BRp

ε (ι(x))
(ι(X))]⊤βiβ

⊤
i

λi+εd+3 , we
have the conclusion.

Appendix F. Bias analysis on the kernel of LLE and the associated integral operator

F.1 Proof of Proposition 10

1. When x ∈ M \Mε , µed = 0. By Lemma 32, T(x) = [[O(1),O(ε−1)]]. If ι(y) ∈ BRp

ε (ι(x)),
ι(y)− ι(x) = [[O(ε),O(ε2)]]. So, (ι(y)− ι(x))⊤T(x) = O(ε) and Kε(x,y) = 1−O(ε) > 0
when ε is small enough.

2. When x ∈ Mε , T(x) = [[
µed (x,ε)
µ2ed (x,ε)

J⊤p,ded +O(1),O(ε−1)]] and

ι(y)− ι(x) =[[
d

∑
i=1

uiei +O(∥u∥3),O(∥u∥2)]] = [[
d

∑
i=1

uiei +O(ε3),O(ε2)]]. (F.1)

Therefore, by Corollary 28,

Kε(x,y) = 1−
σ1,d(ε̃x)ud

σ2,d(ε̃x)ε
+O(ε). (F.2)

By definition, −σ1,d(ε̃x)
σ2,d(ε̃x)

> 0 and it is a decreasing function of ε̃x. Therefore, to discuss the
infimum of Kε(x,y), it is sufficient to consider the case when x ∈ ∂M, i.e. when ε̃x = 0. If
ε̃x = 0, then

Kε(x,y) = 1+
[2d(d +2)|Sd−2|
(d2 −1)|Sd−1|ε

+O(1)
]
ud +O(ε). (F.3)

Hence, let u∗d = infud where the infimum is taken over x ∈ ∂M and ι(y) ∈ BRp

ε (ι(x)), then if
ε is small enough,

inf
x,y

Kε(x,y) = 1+
[2d(d +2)|Sd−2|
(d2 −1)|Sd−1|ε

+O(1)
]
u∗d +O(ε). (F.4)

Obviously, u∗d =−ε +O(ε2). Therefore, infx,y Kε(x,y) = 1− 2d(d+2)|Sd−2|
(d2−1)|Sd−1| +O(ε). It is worth

to note that 2d(d+2)|Sd−2|
(d2−1)|Sd−1| > 1 by Lemma 29.

3. By Lemma 25 and part (1)

EKε(x,X)

=
∫

D(x)
(1− µed (x,ε)ud

µ2ed (x,ε)
+O(ε))(P(x)+O(u))(1+O(u2))du

=
∫

D̃(x)
(1− µed (x,ε)ud

µ2ed (x,ε)
+O(ε))(P(x)+O(u))(1+O(u2))du+O(εd+2)

=P(x)
∫

D̃(x)
1−

σ1,d(ε̃x)ud

σ2,d(ε̃x)ε
du+O(εd+1)
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Since −σ1,d(ε̃x)
σ2,d(ε̃x)

> 0 and it is a decreasing function of ε̃x, it suffice to show that if x ∈ ∂M, then∫
D̃(x) 1− µed (x,ε)ud

µ2ed (x,ε)
du ≥C(d)εd .

If x ∈ ∂M, then 1− σ1,d(ε̃x)ud
σ2,d(ε̃x)ε

= 1+ 2d(d+2)|Sd−2|ud
(d2−1)|Sd−1ε

, and

∫
D̃(x)

1−
σ1,d(ε̃x)ud

σ2,d(ε̃x)ε
du

≥ |Sd−2|
d −1

∫ 0

−ε

[1+
2d(d +2)|Sd−2|ud

(d2 −1)|Sd−1|ε
](ε2 −u2

d)
d−1

2 dud

=ε
d |Sd−2|

d −1

∫ 1

0
[1− 2d(d +2)|Sd−2|a

(d2 −1)|Sd−1|
](1−a2)

d−1
2 da

=ε
d[ |Sd−2|

d −1

∫ 1

0
(1−a2)

d−1
2 da− |Sd−2|

d −1
2d(d +2)|Sd−2|
(d2 −1)|Sd−1|

∫ 1

0
a(1−a2)

d−1
2 da

]
=ε

d[ |Sd−1|
2d

− 2d(d +2)|Sd−2|2

(d2 −1)2|Sd−1|
]
.

We have thus finished the proof since |Sd−1|
2d − 2d(d+2)|Sd−2|2

(d2−1)2|Sd−1| > 0 for any d following from
Lemma 29.

F.2 Proof of Proposition 13

When d = 1, the differentiability follows from the direct calculation. For d > 1, the differentiability
follows from the fundamental theorem of calculus. The rest of the statements follow directly from
the definition of σ , except φ1(ε̃x)> 0 and φ2(ε̃x)< 0 when ε̃x = 0.

We now prove φ1(ε̃x)> 0. When ε̃x = 0,

σ2,d(0)σ2(0)−σ3(0)σ1,d(0) =
|Sd−1|2

4d2(d +2)2 −
|Sd−2|2

(d2 −1)2(d +3)
, (F.5)

which is positive since we have proved |Sd−2|2
|Sd−1|2 <

(d2−1)2

4d2(d+2) in Lemma 29. Note that σ2,d(ε̃x)σ2(ε̃x)−
σ3(ε̃x)σ1,d(ε̃x) is increasing when 0 ≤ ε̃x ≤ ε . Hence, σ2,d(ε̃x)σ2(ε̃x)−σ3(ε̃x)σ1,d(ε̃x) > 0. Simi-
larly, we can show that σ2,d(ε̃x)σ0(ε̃x)−σ2

1,d(ε̃x)> 0. Therefore, we conclude that φ1(ε̃x)> 0.

Next, we study φ2. To prove φ2(ε̃x)< 0 when ε̃x = 0, it suffices to show σ2
2,d(0)−σ3,d(0)σ1,d(0)<

0 since we have shown σ2,d(ε̃x)σ0(ε̃x)−σ2
1,d(ε̃x)> 0 above. When ε̃x = 0, we have

σ
2
2,d(0)−σ3,d(0)σ1,d(0) =

|Sd−1|2

4d2(d +2)2 −
2|Sd−2|2

(d2 −1)2(d +3)
, (F.6)

which is negative due to |Sd−2|2
|Sd−1|2 > (d2−1)2(d+3)

8d2(d+2)2 proved in Lemma 29. We now check that σ2
2,d(ε̃x)−

σ3,d(ε̃x)σ1,d(ε̃x) > 0 when ε̃x = ε . Since σ2
2,d(ε̃x)−σ3,d(ε̃x)σ1,d(ε̃x) is an increasing continuous

function of ε̃x, there is a unique t∗ = t∗(x) ∈ (0, ε̃x) such that σ2
2,d(ε̃x)−σ3,d(ε̃x)σ1,d(ε̃x) = 0, and
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hence φ2(t∗) = 0. We thus have

[ |Sd−1|
2d(d +2)

+
|Sd−2|
d −1

∫ t∗
ε

0
(1− z2)

d−1
2 z2dz

]2
(F.7)

=
|Sd−2|2

(d2 −1)2(d +3)

(
2+(d +1)

( t∗

ε

)2
)(

1−
( t∗

ε

)2
)d+1

.

Since t∗ does not depend on x, the set S is diffeomorphic to ∂M when ε is sufficiently small. Since
0 < t∗

ε
< 1, (F.7) becomes

[ |Sd−1|
2d(d +2)

+
|Sd−2|
d −1

∫ t∗
ε

0
(1− z2)

d−1
2 zdz

]2
>

2|Sd−2|2

(d2 −1)2(d +3)

(
1−
( t∗

ε

)2
)d+1

, (F.8)

which is equivalent to

|Sd−1|
2d(d +2)

+
|Sd−2|
d2 −1

(
1−
(
1−
( t∗

ε

)2) d+1
2
)
>

√
2

d +3
|Sd−2|
d2 −1

(
1−
( t∗

ε

)2
) d+1

2
. (F.9)

If we isolate t∗ in the above equation, we have the lower bound for t∗:(
1−
[1+ (d2−1)|Sd−1|

2d(d+2)|Sd−2|

1+
√

2
d+3

] 2
d+1
) 1

2

ε < t∗. (F.10)

Note that by Lemma 29, (d2−1)|Sd−1|
2d(d+2)|Sd−2| <

√
2

d+3 , so 1−
[

1+ (d2−1)|Sd−1 |
2d(d+2)|Sd−2 |

1+
√

2
d+3

] 2
d+1

> 0.

Next, we find the upper bound of t∗. Since t∗
ε
< 1, by (F.7), we have,

[ |Sd−1|
2d(d +2)

+
|Sd−2|
d −1

∫ t∗
ε

0
(1− z2)

d−1
2 z3dx

]2
(F.11)

<
|Sd−2|2

(d2 −1)2(d +3)

(
2+(d +1)

( t∗

ε

)2
)(

1−
( t∗

ε

)2
)d+1

,

which is equivalent to

|Sd−1|
2d(d +2)

+
|Sd−2|

(d2 −1)(d +3)

(
2−
(
1−
( t∗

ε

)2) d+1
2
)(

2+(d +1)
( t∗

ε

)2
)

(F.12)

<
|Sd−2|

(d2 −1)
√

d +3

(
2+(d +1)

( t∗

ε

)2
) 1

2
(

1−
( t∗

ε

)2
) d+1

2
.

If we isolate t∗ in the above equation, we have the lower bound,

t∗ <

(
1−
[
(d2 −1)|Sd−1|

4d(d +2)|Sd−2|
+

1
d +3

] 2
d+1
) 1

2

ε. (F.13)

By Lemma 29 and the upper bound, t∗ → 0 as d → ∞.
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F.3 Proof of Theorem 15

In this proof, we caluclate the first two order terms in Rε f (x). First, we are going to calcu-
late E[χBRp

ε (ι(x))(ι(X))]−E[(ι(X)− ι(x))χBRp
ε (ι(x))(ι(X))]⊤T(x) and show that it is dominated by

the order εd terms. Then we are going to calculate E[( f (X)− f (x))χBRp
ε (ι(x))(ι(X))]−E[(ι(X)−

ι(x))( f (X)− f (x))χBRp
ε (ι(x))(ι(X))]⊤T(x) and show that it is dominated by the order εd+2 terms.

Hence their ratio is dominated by the order ε2 terms.
By Lemma 30 and Lemma 32, we have

E[χBRp
ε (ι(x))(ι(X))] = P(x)µ0(x,ε)+O(εd+1), (F.14)

E[(ι(X)− ι(x))χBRp
ε (ι(x))(ι(X))] = [[P(x)µed (x,ε)J

⊤
p,ded +O(εd+2),O(εd+2)]],

and T(x) = [[v(−1)
1 + v(0)1,1 + v(0)1,2 + v(0)1,3 + v(0)1,4,v

(−1)
2 ]]+ [[O(ε),O(1)]], where

v(−1)
1 =

µed (x,ε)
µ2ed (x,ε)

J⊤p,ded , v(0)1,1 =
∇P(x)
P(x)

, (F.15)

and v(0)1,2, v(0)1,3, v(0)1,4 and v(−1)
2 are defined in Lemma 32. Moreover, v(0)1,2, v(0)1,3 and v(0)1,4 are of order 1

and v(−1)
2 is of order ε−1. Hence,

E[χBRp
ε (ι(x))(ι(X))]−E[(ι(X)− ι(x))χBRp

ε (ι(x))(ι(X))]⊤T(x) (F.16)

=P(x)
[
µ0(x,ε)−

µed (x,ε)
2

µ2ed (x,ε)

]
+O(εd+1) ,

=P(x)
[

µ0(x,ε)µ2ed (x,ε)−µed (x,ε)
2

µ2ed (x,ε)

]
+O(εd+1) ,

where the leading term in above expression is of order εd by Lemma 27. Based on Lemma 30, we
have

E[( f (X)− f (x))χBRp
ε (ι(x))(ι(X))] (F.17)

=P(x)∂d f (x)µed (x,ε)+
d

∑
i=1

[P(x)
2

∂
2
ii f (x)+∂i f (x)∂iP(x)

]
µ2ei(x,ε)+O(εd+3),

and
E[(ι(X)− ι(x))( f (X)− f (x))χBRp

ε (ι(x))(ι(X))] = [[v1,v2]] , (F.18)

where

v1 =P(x)
d

∑
i=1

(
∂i f (x)µ2ei(x,ε)

)
J⊤p,dei

+
d−1

∑
i=1

[
∂i f (x)∂dP(x)+∂d f (x) ∂iP(x)+P(x)∂ 2

id f (x)
]
µ2ei+ed (x,ε)J⊤p,dei

+
d

∑
i=1

([
∂i f (x)∂iP(x)+

P(x)
2

∂
2
ii f (x)

]
µ2ei+ed (x,ε)

)
J⊤p,ded +O(εd+4),

v2 =P(x)
d−1

∑
i=1

∂i f (x)Nid(x)µ2ei+ed (x,ε)+
P(x)

2
∂d f (x)

d

∑
i=1

Nii(x)µ2ei+ed (x,ε)+O(εd+4).
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Therefore, we have

E[(ι(X)− ι(x))( f (X)− f (x))χBRp
ε (ι(x))(ι(X))]⊤T(x) (F.19)

=P(x)
d

∑
i=1

(
∂i f (x)µ2ei(x,ε)

)
v(−1)⊤

1 J⊤p,dei

+P(x)
d

∑
i=1

(
∂i f (x)µ2ei(x,ε)

)
v(0)⊤1,1 J⊤p,dei

+P(x)
d

∑
i=1

(
∂i f (x)µ2ei(x,ε)

)
[v(0)1,2 + v(0)1,3 + v(0)1,4]

⊤J⊤p,dei

+
d−1

∑
i=1

[
∂i f (x)∂dP(x)+∂d f (x) ∂iP(x)+P(x)∂ 2

id f (x)
]
µ2ei+ed (x,ε)v(−1)⊤

1 J⊤p,dei

+
d

∑
i=1

[
∂i f (x)∂iP(x)+

P(x)
2

∂
2
ii f (x)

]
µ2ei+ed (x,ε)v(−1)⊤

1 J⊤p,ded

+P(x)
d−1

∑
i=1

∂i f (x)µ2ei+ed (x,ε)v
(−1)⊤
2 Nid(x)

+
P(x)

2
∂d f (x)

d

∑
i=1

µ2ei+ed (x,ε)v
(−1)⊤
2 Nii(x)+O(εd+3) .

Note that by Lemma 27, the first term is of order εd+1 and the second to seventh terms are of order
εd+2. Furthermore, we can simplify the first and the second term as:

P(x)
d

∑
i=1

(
∂i f (x)µ2ei(x,ε)

)
v(−1)⊤

1 J⊤p,dei = P(x)∂d f (x)µed (x,ε) (F.20)

P(x)
d

∑
i=1

(
∂i f (x)µ2ei(x,ε)

)
v(0)⊤1,1 J⊤p,dei =

d

∑
i=1

∂i f (x)∂iP(x)µ2ei(x,ε) .

Next we calculate E[( f (X)− f (x))χBRp
ε (ι(x))(ι(X))]−E[(ι(X)−ι(x))( f (X)− f (x))χBRp

ε (ι(x))(ι(X))]⊤T(x).
Clearly, the common terms, P(x)∂d f (x)µed (x,ε) and ∑

d
i=1 ∂i f (x)∂iP(x)µ2ei(x,ε), are canceled, and
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hence only terms of order εd+2 are left in the difference; that is, we have

E[( f (X)− f (x))χBRp
ε (ι(x))(ι(X))]−E[(ι(X)− ι(x))( f (X)− f (x))χBRp

ε (ι(x))(ι(X))]⊤T(x)

=
P(x)

2

d

∑
i=1

∂
2
ii f (x)µ2ei(x,ε)−P(x)

d

∑
i=1

(
∂i f (x)µ2ei(x,ε)

)
[v(0)1,2 + v(0)1,3 + v(0)1,4]

⊤J⊤p,dei

−
d−1

∑
i=1

[
∂i f (x)∂dP(x)+∂d f (x) ∂iP(x)+P(x)∂ 2

id f (x)
]
µ2ei+ed (x,ε)v(−1)⊤

1 J⊤p,dei

−
d

∑
i=1

[
∂i f (x)∂iP(x)+

P(x)
2

∂
2
ii f (x)

]
µ2ei+ed (x,ε)v(−1)⊤

1 J⊤p,ded

−P(x)
d−1

∑
i=1

∂i f (x)µ2ei+ed (x,ε)v
(−1)⊤
2 Nid(x)

− P(x)
2

∂d f (x)
d

∑
i=1

µ2ei+ed (x,ε)v
(−1)⊤
2 Nii(x)+O(εd+3) .

Next, we simplify the above expression. Note that v(−1)⊤
1 J⊤p,dei =

µed (x,ε)
µ2ed (x,ε)

if i = d, and it is 0
otherwise. Hence,

−
d−1

∑
i=1

[
∂i f (x)∂dP(x)+∂d f (x) ∂iP(x)+P(x)∂ 2

id f (x)
]
µ2ei+ed (x,ε)v(−1)⊤

1 J⊤p,dei = 0

and by definition of v(0)1,3 and v(−1)
1 , we have

P(x)µ2ei(x,ε)v
(0)⊤
1,3 J⊤p,dei +∂iP(x)µ2ei+ed (x,ε)v(−1)⊤

1 J⊤p,ded = 0 . (F.21)

For i = 1, · · · ,d −1, by definition of v(0)1,4 and v(−1)
2 , we have

P(x)µ2ei(x,ε)v(0)⊤1,4 J⊤p,dei +P(x)µ2ei+ed (x,ε)v
(−1)⊤
2 Nid(x) = 0 (F.22)

and

P(x)µ2ed (x,ε)v(0)⊤1,4 J⊤p,ded +
P(x)

2

d

∑
i=1

µ2ei+ed (x,ε)v
(−1)⊤
2 Nii(x) = 0. (F.23)

Moreover, we have v(0)⊤1,2 J⊤p,dei =− µed (x,ε)ε
d+3

P(x)(µ2ed (x,ε))
2 if i = d, and it is 0 otherwise. Therefore,

E[( f (X)− f (x))χBRp
ε (ι(x))(ι(X))]−E[(ι(X)− ι(x))( f (X)− f (x))χBRp

ε (ι(x))(ι(X))]⊤T(x)

=
P(x)

2

d

∑
i=1

∂
2
ii f (x)

[
µ2ei(x,ε)−µ2ei+ed (x,ε)

µed (x,ε)
µ2ed (x,ε)

]
+∂d f (x)

(µed (x,ε)ε
d+3

µ2ed (x,ε)

)
.

65



WU AND WU

Therefore, the ratio

E[( f (X)− f (x))χBRp
ε (ι(x))(ι(X))]−E[(ι(X)− ι(x))( f (X)− f (x))χBRp

ε (ι(x))(ι(X))]⊤T(x)
E[χBRp

ε (ι(x))(ι(X))]−E[(ι(X)− ι(x))χBRp
ε (ι(x))(ι(X))]⊤T(x)

(F.24)

=
d

∑
i=1

∂
2
ii f (x)

[
µ2ei(x,ε)µ2ed (x,ε)−µ2ei+ed (x,ε)µed (x,ε)

2µ0(x,ε)µ2ed (x,ε)−2µed (x,ε)2

]
+∂d f (x)

µed (x,ε)ε
d+3

P(x)
(
µ0(x,ε)µ2ed (x,ε)−µed (x,ε)2

) +O(ε3).

And the conclusion follows by substituting terms and in Corollary 28.

Appendix G. Variance analysis on LLE

For simplicity of notations, for each xk, denote

fff := ( f (xk,1), f (xk,2), . . . , f (xk,N))
⊤ ∈ RN .

By a direct expansion of equations (2.5), (2.6), (2.8) and c = nεd+3, we have

n

∑
j=1

[W − In×n]k j f (x j) =
111⊤N fff −111⊤N G⊤

n,kUnIp,rn(Λn +nεd+3Ip×p)
−1U⊤

n Gn,k fff

N −111⊤N G⊤
n,kUnIp,rn(Λn +nεd+3Ip×p)−1U⊤

n Gn,k111N
− f (xk), (G.1)

which can be rewritten as gn,1
gn,2

, where

gn,1 :=
1

nεd

N

∑
j=1

( f (xk, j)− f (xk))− [
1

nεd

N

∑
j=1

(xk, j − xk)]
⊤UnIp,rn(

Λn

nεd + ε
3Ip×p)

−1

×U⊤
n [

1
nεd

N

∑
j=1

(xk, j − xk)( f (xk, j)− f (xk))]

gn,2 :=
N

nεd − [
1

nεd

N

∑
j=1

(xk, j − xk)]
⊤UnIp,rn(

Λn

nεd + ε
3Ip×p)

−1U⊤
n [

1
nεd

N

∑
j=1

(xk, j − xk)] .

The goal is to relate the finite sum quantity gn,1
gn,2

to Qε f (xk) := g1
g2

, where

g1 =E
[

1
εd χBRp

ε (ι(xk))
(X)( f (X)− f (xk))

]
−E

[
1
εd (ι(X)− ι(xk))χBRp

ε (ι(xk))
(X)

]⊤
(G.2)

×

(
UIp,r

(
Λ

εd + ε
3Ip×p

)−1

U⊤

)
E
[

1
εd (ι(X)− ι(xk))χBRp

ε (ι(xk))
(X)( f (X)− f (xk))

]
and

g2 =E
[

1
εd χBRp

ε (ι(xk))
(X)

]
−E

[
1
εd (ι(X)− ι(xk))χBRp

ε (ι(xk))
(X)

]⊤
(G.3)

×

(
UIp,r

(
Λ

εd + ε
3Ip×p

)−1

U⊤

)
E
[

1
εd (ι(X)− ι(xk))χBRp

ε (ι(xk))
(X)

]
.
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We now control the size of the fluctuation of the following four terms

1
nεd

N

∑
j=1

1 (G.4)

1
nεd

N

∑
j=1

( f (xk, j)− f (xk)) (G.5)

1
nεd

N

∑
j=1

(xk, j − xk) (G.6)

1
nεd

N

∑
j=1

(xk, j − xk)( f (xk, j)− f (xk)) (G.7)

as a function of n and ε by the Bernstein type inequality. Here, we put ε−d in front of each term to
normalize the kernel so that the computation is consistent with the existing literature, like (Cheng
and Wu, 2013; Singer and Wu, 2017).

The size of the fluctuation of these terms are controlled in the following Lemmas. The term
(G.4) is the usual kernel density estimation, so we have the following lemma.

Lemma 33 Suppose ε = ε(n) so that
√

log(n)
n1/2εd/2+1 → 0 and ε → 0 as n → ∞. We have with probability

greater than 1−n−2 that for all k = 1, . . . ,n,∣∣∣∣∣ 1
nεd

N

∑
j=1

1−E
1
εd χBRp

ε (xk)
(ι(X))

∣∣∣∣∣= O
(√log(n)

n1/2εd/2

)
.

Denote Ω0 to be the event space that above Lemma is satisfied. The behavior of (G.5) is sum-
marized in the following Lemma.

Lemma 34 Suppose ε = ε(n) so that
√

log(n)
n1/2εd/2+1 → 0 and ε → 0 as n → ∞. We have with probability

greater than 1−n−2 that for all k = 1, . . . ,n,∣∣∣∣∣ 1
nεd

N

∑
j=1

( f (xk, j)− f (xk))−E
1
εd ( f (X)− f (xk))χBRp

ε (xk)
(ι(X))

∣∣∣∣∣= O
( √log(n)

n1/2εd/2−1

)
.

Proof By denoting

F1, j =
1
εd ( f (x j)− f (xk))χBRp

ε (xk)
(x j), (G.8)

we have
1

nεd

N

∑
j=1

( f (xk, j)− f (xk)) =
1
n

n

∑
j ̸=k, j=1

F1, j. (G.9)

Define a random variable

F1 :=
1
εd ( f (X)− f (xk))χBRp

ε (xk)
(ι(X)). (G.10)
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Clearly, when j ̸= k, F1, j can be viewed as randomly sampled i.i.d. from F1. Note that we have

1
n

n

∑
j ̸=k, j=1

F1, j =
n−1

n

[
1

n−1

n

∑
j ̸=k, j=1

F1, j

]
. (G.11)

Since n−1
n → 1 as n → ∞, the error incurred by replacing 1

n by 1
n−1 is of order 1

n , which is negligible
asymptotically, we can simply focus on analyzing 1

n−1 ∑
n
j=1, j ̸=i F1, j. We have by Lemma 27 and

Lemma 30,

E[F1] =O(ε) if x ∈ Mε (G.12)

E[F1] =O(ε2) if x ̸∈ Mε

and

E[F2
1 ] =

d

∑
i=1

P(xk)(∂i f (xk))
2
µ2ei(xk,ε)ε

−2d +O(ε−d+3), (G.13)

By Lemma 27, |Sd−1|
2d(d+2)ε

−d+2 +O(ε−d+3)≤ µ2ei(xk,ε)ε
−2d ≤ |Sd−1|

d(d+2)ε
−d+2, therefore, in any case,

σ
2
1 := Var(F1)≤

|Sd−1|∥P∥L∞

d(d +2)
ε
−d+2 +O(ε−d+3). (G.14)

With the above bounds, we could apply the large deviation theory. First, note that the random
variable F1 is uniformly bounded by

c1 = 2∥ f∥L∞ε
−d , (G.15)

so we apply Bernstein’s inequality to provide a large deviation bound. Recall Bernstein’s inequality

Pr

{
1

n−1

n

∑
j ̸=k, j=1

(F1, j −E[F1])> η1

}
≤ e

− nη2
1

2σ2
1 + 2

3 c1η1 , (G.16)

where η1 > 0. Note that E[F1] = O(ε), if xk ∈ Mε and E[F1] = O(ε2), if xk ̸∈ Mε . Hence, we assume
η1 = O(ε2+s), where s > 0. Then c1η1 = O(ε−d+2+s). If ε is small enough, 2σ2

1 +
2
3 c1η1 ≤Cε−d+2

for some constant C which depends on f and P. We have,

nη2
1

2σ2
1 +

2
3 c1η1

≥ nη2
1 εd−2

C
. (G.17)

Suppose n is chosen large enough so that

nη2
1 εd−2

C
≥ 3log(n) ; (G.18)

that is, the deviation from the mean is set to

η1 ≥ O
( √log(n)

n1/2εd/2−1

)
. (G.19)
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Note that by the assumption that η1 = O(ε2+s), we know that η1/ε2 =

√
log(n)

n1/2εd/2+1 → 0. It implies that
the deviation greater than η1 happens with probability less than

exp

(
− nη2

1

2σ2
1 +

2
3 c1η1

)
≤ exp

(
−nη2

1 εd−2

C

)
= exp(−3log(n)) = 1/n3. (G.20)

As a result, by a simple union bound, we have

Pr

{
1

n−1

n

∑
j ̸=k, j=1

(F1, j −E[F1])> η1

∣∣∣k = 1, . . . ,n

}
≤ ne

− nη2
1

2σ2
1 + 2

3 c1η1 ≤ 1/n2. (G.21)

Denote Ω1 to be the event space that the deviation 1
n−1 ∑

n
j ̸=k, j=1(F1, j −E[F1]) ≤ η1 for all i =

1, . . . ,n, where η1 is chosen in (G.19) is satisfied.

Lemma 35 Suppose ε = ε(n) so that
√

log(n)
n1/2εd/2+1 → 0 and ε → 0 as n → ∞. We have with probability

greater than 1−n−2 that for all k = 1, . . . ,n,

e⊤i

[
1

nεd

N

∑
j=1

(xk, j − xk)−E
1
εd (ι(X)− ι(xk))χBRp

ε (xk)
(ι(X))

]
= O

( √log(n)
n1/2εd/2−1

)
, (G.22)

where i = 1, . . . ,d. And

e⊤i

[
1

nεd

N

∑
j=1

(xk, j − xk)−E
1
εd (ι(X)− ι(xk))χBRp

ε (xk)
(ι(X))

]
= O

( √log(n)
n1/2εd/2−2

)
, (G.23)

where i = d +1, . . . , p.

Proof Fix xk. By denoting

1
nεd

N

∑
j=1

(xk, j − xk) =
1
n

n

∑
j ̸=k, j=1

p

∑
ℓ=1

F2,ℓ, jeℓ. (G.24)

where
F2,ℓ, j :=

1
εd e⊤ℓ (x j − xk)χBRp

ε (xk)
(x j), (G.25)

and we know that when j ̸= k, F2,ℓ, j is randomly sampled i.i.d. from

F2,ℓ :=
1
εd e⊤ℓ (ι(X)− ι(xk))χBRp

ε (xk)
(ι(X)). (G.26)

Similarly, we can focus on analyzing 1
n−1 ∑

n
j=1, j ̸=i F2,ℓ, j since n−1

n → 1 as n → ∞. By Lemma 30 we
have

E[F2,ℓ] =


(
P(x)µed (x,ε)ε

−d)e⊤ℓ ed +
d

∑
i=1

(
∂iP(x)µ2ei(x,ε)ε

−d)e⊤ℓ ei +O(εd+3) when ℓ= 1, . . . ,d

P(x)ε−d

2
e⊤ℓ

d

∑
i=1

Nii(x)µ2ei +O(εd+3) when ℓ= d +1, . . . , p.
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In other words, by Lemma 27, for ℓ = 1, . . . ,d we have E[F2,ℓ] = O(ε) if xk ∈ Mε , and E[F2,ℓ] =
O(ε2) if xk ̸∈ Mε . Moreover, E[F2,ℓ] = O(ε2) for ℓ= d+1, . . . , p. By (D.8) we have, for ℓ= 1, . . . ,d

E[F2
2,ℓ]≤Cℓε

−d+2 +O(ε−d+3), (G.27)

and Cℓ depends on ∥P∥L∞ . For ℓ= d +1, . . . , p,

E[F2
2,ℓ]≤Cℓε

−d+4 +O(ε−d+5), (G.28)

and Cℓ depends on ∥P∥L∞ and second fundamental form of M.
Thus, we conclude that

σ
2
2,ℓ ≤Cℓε

−d+2 +O(ε−d+3) when ℓ= 1, . . . ,d (G.29)

σ
2
2,ℓ ≤Cℓε

−d+4 +O(ε−d+5) when ℓ= d +1, . . . , p .

Note that for ℓ= d +1, . . . , p, the variance is of higher order than that of ℓ= 1, . . . ,d.
With the above bounds, we could apply the large deviation theory. For ℓ= 1, . . . ,d, the random

variable F2,ℓ is uniformly bounded by c2,ℓ = 2ε−d+1. Since E[F2,ℓ] = O(ε) if xk ∈ Mε , and E[F2,ℓ] =
O(ε2) if xk ̸∈ Mε , we assume η2,ℓ = O(ε2+s), where s > 0. Then c2,ℓη2,ℓ = O(ε−d+3+s). If ε is
small enough, 2σ2

2,ℓ+
2
3 c2,ℓη2,ℓ ≤ Cε−d+2 for some constant C which depends on P and manifold

M. We have
nη2

2,ℓ

2σ2
2,ℓ+

2
3 c2,ℓη2,ℓ

≥
nη2

2,ℓε
d−2

C
. (G.30)

Suppose n is chosen large enough so that

nη2
2,ℓε

d−2

C
≥ 3log(n) ; (G.31)

that is, the deviation from the mean is set to

η2,ℓ ≥ O
( √log(n)

n1/2εd/2−1

)
. (G.32)

Note that by the assumption that η2,ℓ = O(ε2+s), we know that η2,ℓ/ε2 =

√
log(n)

n1/2εd/2+1 → 0. Thus, when
ε is sufficiently smaller and n is sufficiently large, the exponent in Bernstein’s inequality

Pr

{
1

n−1

n

∑
j ̸=k, j=1

(F2,ℓ, j −E[F2,ℓ])> η2,ℓ

}
≤ exp

(
−

nη2
2,ℓ

2σ2
2,ℓ+

2
3 c2,ℓη2,ℓ

)
≤ 1

n3 . (G.33)

By a simple union bound, for ℓ= 1, . . . ,d, we have

Pr

{∣∣∣∣∣1n n

∑
j ̸=k, j=1

F2,ℓ, j −E[F2,ℓ]

∣∣∣∣∣> η2,ℓ

∣∣∣k = 1, . . . ,n

}
≤ 1/n2. (G.34)

For ℓ = d + 1, . . . , p, the random variable F2,ℓ is uniformly bounded by c2,ℓ = 2ε−d+1. Since
E[F2,ℓ] = O(ε2) for ℓ = d + 1, . . . , p, we assume η2,ℓ = O(ε3+s), where s > 0. Then c2,ℓη2,ℓ =
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O(ε−d+4+s). If ε is small enough, 2σ2
2,ℓ+

2
3 c2,ℓη2,ℓ ≤Cε−d+4 for some constant C which depends

on M and P. We have,
nη2

2,ℓ

2σ2
2,ℓ+

2
3 c2,ℓη2,ℓ

≥
nη2

2,ℓε
d−4

C
. (G.35)

Suppose n is chosen large enough so that

nη2
2,ℓε

d−4

C
= 3log(n) ; (G.36)

that is, the deviation from the mean is set to

η2,ℓ = O
( √log(n)

n1/2εd/2−2

)
. (G.37)

Note that by the assumption that β1 = O(ε3+s), we know that η2,ℓ/ε3 =

√
log(n)

n1/2εd/2+1 → 0.
By a similar argument, for ℓ= d +1, . . . , p, we have

Pr

{∣∣∣∣∣1n n

∑
j ̸=k, j=1

F2,ℓ, j −E[F2,ℓ]

∣∣∣∣∣> η2,ℓ

∣∣∣k = 1, . . . ,n

}
≤ 1/n2. (G.38)

Denote Ω2 to be the event space that the deviation
∣∣∣1

n ∑
n
j ̸=k, j=1 F2,ℓ, j −E[F2,ℓ]

∣∣∣ ≤ η2,ℓ for all
ℓ= 1, . . . , p and k = 1, . . . ,n, where η2,ℓ are chosen in (G.32) and (G.37). Next Lemma summarizes
behavior of (G.7) and can be proved similarly as Lemma 35.

Lemma 36 Suppose ε = ε(n) so that
√

log(n)
n1/2εd/2+1 → 0 and ε → 0 as n → ∞. We have with probability

greater than 1−n−2 that for all k = 1, . . . ,n,

e⊤i

[
1

nεd

N

∑
j=1

(xk, j − xk)( f (xk, j)− f (xk))−E
1
εd (ι(X)− ι(xk))( f (X)− f (xk))χBRp

ε (xk)
(ι(X))

]
=O

( √log(n)
n1/2εd/2−2

)
,

where i = 1, . . . ,d, and

e⊤i

[
1

nεd

N

∑
j=1

(xk, j − xk)( f (xk, j)− f (xk))−E
1
εd (ι(X)− ι(xk))( f (X)− f (xk))χBRp

ε (xk)
(ι(X))

]
=O

( √log(n)
n1/2εd/2−3

)
,

where i = d +1, . . . , p.

Denote Ω3 to be the event space that Lemma 36 is satisfied. In the next two lemmas, we
describe the behavior of 1

nεd Gn,kG⊤
n,k. The proofs are the same as Lemma E.4 in Wu and Wu (2018)

with ρ = 3.
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Lemma 37 Suppose ε = ε(n) so that
√

log(n)
n1/2εd/2+1 → 0 and ε → 0 as n → ∞. We have with probability

greater than 1−n−2 that for all k = 1, . . . ,n,∣∣∣e⊤i ( 1
nεd Gn,kG⊤

n,k −
1
εd Cxk

)
e j

∣∣∣= O
( √log(n)

n1/2εd/2−2

)
, (G.39)

where i, j = 1, . . . ,d. ∣∣∣e⊤i ( 1
nεd Gn,kG⊤

n,k −
1
εd Cxk

)
e j

∣∣∣= O
( √log(n)

n1/2εd/2−4

)
, (G.40)

where i, j = 1+1, . . . , p.∣∣∣e⊤i ( 1
nεd Gn,kG⊤

n,k −
1
εd Cxk

)
e j

∣∣∣= O
( √log(n)

n1/2εd/2−3

)
, (G.41)

otherwise.

Lemma 38 rn ≤ r and rn is a non decreasing function of n. If n is large enough, rn = r. Suppose

ε = ε(n) so that
√

log(n)
n1/2εd/2+1 → 0 and ε → 0 as n → ∞. We have with probability greater than 1−n−2

that for all k = 1, . . . ,n,∣∣∣e⊤i [Ip,rn

(
Λn

nεd + ε
3Ip×p

)−1
− Ip,r

(
Λ

εd + ε
3Ip×p

)−1]
ei

∣∣∣= O
( √log(n)

n1/2εd/2+2

)
(G.42)

for i = 1, . . . ,r and

Un =UΘ+

√
log(n)

n1/2εd/2−2UΘS+O
( log(n)

nεd−4

)
, (G.43)

where S ∈ o(p), and Θ ∈ O(p). Θ commutes with Ip,r(
Λ

εd + ε3Ip×p)
−1.

Denote Ω4 to be the event space that Lemma 38 is satisfied. In the proofs of Lemma 32 and
Theorem 15, we need the order εd+3 terms of the eigenvalues {λi} of Cx for i = 1, · · · ,d and we
need the order ε term of the eigenvectors {βi} of Cx for i = 1, · · · , p. We also use the fact that {λi}
of Cx for i = d +1, · · · , p are of order εd+4, so that we can calculate the leading terms (order ε2) of

Qε f (x) for all x ∈ M. Since
√

log(n)
n1/2εd/2+1 → 0, the above two lemmas imply that the differences between

the first d eigenvalues of 1
nεd Gn,kG⊤

n,k and 1
εd Cxk are less than O(ε3). The differences between the

rest of the eigenvalues of 1
nεd Gn,kG⊤

n,k and 1
εd Cxk are less than O(ε4). In other words, we can make

sure that the rest of the eigenvalues of 1
nεd Gn,kG⊤

n,k are of order ε4. Moreover Un and UΘ differ by
a matrix of order ε3. Consequently, in the following proof, we can show that the deviation between
∑

n
j=1[W − In×n]k j f (xk, j) and Qε f (xk) is less than ε2 for all xk.

Proof [Proof of Theorem 11.] Denote Ω := ∩i=0,...,4Ωi. By a direct union bound, the probability
of the event space Ω is great than 1− n−2. Below, all arguments are conditional on Ω. Based on
previous lemmas, we have, for k = 1, . . . ,n,

1
nεd

N

∑
j=1

1 = E
1
εd χBRp

ε (xk)
(ι(X))+O

(√log(n)
n1/2εd/2

)
, (G.44)
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1
nεd

N

∑
j=1

( f (xk, j)− f (xk)) = E
1
εd ( f (X)− f (xk))χBRp

ε (xk)
(ι(X))+O

( √log(n)
n1/2εd/2−1

)
, (G.45)

and

1
nεd

N

∑
j=1

(xk, j − xk) = E
1
εd (ι(X)− ι(xk))χBRp

ε (xk)
(ι(X))+E1 , (G.46)

where E1 ∈Rp, e⊤i E1 = O
( √

log(n)
n1/2εd/2−1

)
for i = 1, . . . ,d, and e⊤i E1 = O

( √
log(n)

n1/2εd/2−2

)
for i = d+1, . . . , p.

Moreover, we have

1
nεd

N

∑
j=1

(xk, j − xk)( f (xk, j)− f (xk)) (G.47)

=E
1
εd (ι(X)− ι(xk))( f (X)− f (xk))χBRp

ε (xk)
(ι(X))+E2,

where E2 ∈Rp. e⊤i E2 = O
( √

log(n)
n1/2εd/2−2

)
for i = 1, . . . ,d, and e⊤i E2 = O

( √
log(n)

n1/2εd/2−3

)
for i = d+1, . . . , p.

Therefore, we have

UnIp,rn

(
Λn

nεd + ε
3Ip×p

)−1
U⊤

n −UIp,r

(
Λ

εd + ε
3Ip×p

)−1
U⊤

=
(

UΘ+

√
log(n)

n1/2εd/2−2UΘS+O
( log(n)

nεd−4

))(
Ip,r

(
Λ

εd + ε
3Ip×p

)−1
+O

( √log(n)
n1/2εd/2+2

))
×
(

UΘ+

√
log(n)

n1/2εd/2−2UΘS+O(
log(n)
nεd−4 )

)⊤
−UIp,r

(
Λ

εd + ε
3Ip×p

)−1
U⊤.

=

√
log(n)

n1/2εd/2−2UΘ

(
SIp,r

(
Λ

εd + ε
3Ip×p

)−1
+ Ip,r

(
Λ

εd + ε
3Ip×p)

−1S⊤
)

Θ
⊤U⊤

+O
( √log(n)

n1/2εd/2+2

)
Ip×p +

[
higher order terms

]
.

Define a p× p matrix

E3 =

√
log(n)

n1/2εd/2−2UΘ

[
SIp,r

(
Λ

εd + ε
3Ip×p

)−1
+ Ip,r

(
Λ

εd + ε
3Ip×p

)−1
S⊤
]
Θ

⊤U⊤ (G.48)

+O
( √log(n)

n1/2εd/2+2

)
Ip×p .
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We have

[
1

nεd

N

∑
j=1

(xk, j − xk)]
⊤UnIp,rn(

Λn

nεd + ε
3Ip×p)

−1U⊤
n [

1
nεd

N

∑
j=1

(xk, j − xk)( f (xk, j)− f (xk))]

=[E
1
εd (ι(X)− ι(xk))χBRp

ε (xk)
(ι(X))+E1]

⊤[UIp,r(
Λ

εd + ε
3Ip×p)

−1U⊤+E3 +higher order terms]

× [E
1
εd (ι(X)− ι(xk))( f (X)− f (xk))χBRp

ε (xk)
(ι(X))+E2]

=E
1
εd (ι(X)− ι(xk))χBRp

ε (xk)
(ι(X))⊤[UIp,r(

Λ

εd + ε
3Ip×p)

−1U⊤]

×E
1
εd (ι(X)− ι(xk))( f (X)− f (xk))χBRp

ε (xk)
(ι(X))

+E ⊤
1 UIp,r(

Λ

εd + ε
3Ip×p)

−1U⊤E
1
εd (ι(X)− ι(xk))( f (X)− f (xk))χBRp

ε (xk)
(ι(X))

+E
1
εd (ι(X)− ι(xk))χBRp

ε (xk)
(ι(X))⊤E3E

1
εd (ι(X)− ι(xk))( f (X)− f (xk))χBRp

ε (xk)
(ι(X))

+E
1
εd (ι(X)− ι(xk))χBRp

ε (xk)
(ι(X))⊤UIp,r(

Λ

εd + ε
3Ip×p)

−1U⊤E2 +higher order terms .

Note that

E
1
εd (ι(X)− ι(xk))χBRp

ε (xk)
(ι(X))⊤UIp,r(

Λ

εd + ε
3Ip×p)

−1U⊤E2 = Tι(xk)E2 . (G.49)

When x ∈ Mε

Tι(xk)E2 =[[O(ε−1),O(ε−1)]] ·
[[

O
( √log(n)

n1/2εd/2−2

)
,O
( √log(n)

n1/2εd/2−3

)]]
= O

( √log(n)
n1/2εd/2−1

)
.

When x ̸∈ Mε

Tι(xk)E2 =[[O(1),O(ε−1)]] ·
[[

O
( √log(n)

n1/2εd/2−2

)
,O
( √log(n)

n1/2εd/2−3

)]]
= O

( √log(n)
n1/2εd/2−2

)
.

Moreover, when xk ∈ Mε or xk ∈ M \ Mε by a similar calculation as in Lemma 32, UIp,r(
Λ

εd +

ε3Ip×p)
−1U⊤E 1

εd (ι(X)− ι(xk))( f (X)− f (xk))χBRp
ε (xk)

(ι(X)) = [[O(1),O(1)]]. Hence,
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εd + ε
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−1U⊤E
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εd (ι(X)− ι(xk))( f (X)− f (xk))χBRp

ε (xk)
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( √log(n)
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)
.

Next, we calculate E 1
εd (ι(X)−ι(xk))χBRp

ε (xk)
(ι(X))⊤E3E 1

εd (ι(X)−ι(xk))( f (X)− f (xk))χBRp
ε (xk)

(ι(X)).
By a straightforward calculation, we can show that it is dominated by

O
( √log(n)

n1/2εd/2+2

)
E

1
εd (ι(X)− ι(xk))χBRp

ε (xk)
(ι(X))⊤E

1
εd (ι(X)− ι(xk))( f (X)− f (xk))χBRp

ε (xk)
(ι(X)).

Hence, when xk ∈ Mε ,

E
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)
.
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When xk ̸∈ Mε ,

E
1
εd (ι(X)−ι(xk))χBRp

ε (xk)
(ι(X))E3E

1
εd (ι(X)−ι(xk))( f (X)− f (xk))χBRp

ε (xk)
(ι(X))=O

( √log(n)
n1/2εd/2−2

)
.

In conclusion for k = 1, · · · ,n, we have[ 1
nεd

N

∑
j=1

(xk, j − xk)
]⊤

UnIp,rn

(
Λn

nεd + ε
3Ip×p

)−1
U⊤

n

[ 1
nεd

N

∑
j=1

(xk, j − xk)( f (xk, j)− f (xk))
]

=E
1
εd (ι(X)− ι(xk))χBRp

ε (xk)
(ι(X))⊤

[
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Λ

εd + ε
3Ip×p)

−1U⊤
]

×E
1
εd (ι(X)− ι(xk))( f (X)− f (xk))χBRp

ε (xk)
(ι(X))+O

( √log(n)
n1/2εd/2−1

)
.

A similar argument shows that for k = 1, · · · ,n,[ 1
nεd

N

∑
j=1

(xk, j − xk)
]⊤

UnIp,rn

(
Λn

nεd + ε
3Ip×p
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[ 1
nεd

N
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(G.50)

=E
1
εd (ι(X)− ι(xk))χBRp

ε (xk)
(ι(X))⊤

[
UIp,r

(
Λ

εd + ε
3Ip×p

)−1
U⊤
]
E

1
εd (ι(X)− ι(xk))χBRp

ε (xk)
(ι(X))

+O
(√log(n)

n1/2εd/2

)
.

By Theorem 15, g1 has order O(ε2) and g2 has order 1. Hence, we have

n

∑
j=1

[W − In×n]k j f (xk, j) =
g1 +O

( √
log(n)

n1/2εd/2−1

)
g2 +O

(√log(n)
n1/2εd/2

) = Qε f (xk)+O
( √log(n)

n1/2εd/2−1

)
. (G.51)

Appendix H. Detailed calculation of (4.19)

We show that the operator Q̄ε f (x) may not approximate the Laplace-Beltrami operator in the interior
of ι(M) = [−1,1]⊂ R. Let x,y ∈ M such that ι(x) ∈ [−1+ ε,1− ε]. Since M is 1-dimensional and
is embedded in R, the local covariance matrix Cx has rank 1. Suppose P ∈ C2(M) and ε > 0 is
small enough. By (Wu and Wu, 2018, Lemma SI.6, Case 0) and the fact that K(x,y) = 0 when
|ι(x)− ι(y)| ≥ ε , we have

K(x,y) =
(

1− P′(x)
P(x)

(ι(y)− ι(x))+O(ε2)

)
χBR

ε (ι(x)). (H.1)

Hence,

K(y,x) =
(

1− P′(y)
P(y)

(ι(x)− ι(y))+O(ε2)

)
χBR

ε (ι(x)). (H.2)
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Without loss of generality, consider ι(x)= 0. Let γ(t) : [−1,1]→M be the arclength parametrization
of M with γ(0) = x. Suppose f ∈C3(M). Then, by a straightforward expansion in the parametriza-
tion γ(t), we have

Q̄ε f (x) :=
E[Kε(X ,x)[ f (X)− f (x)]]

EKε(X ,x)

=

∫
ε

−ε

(
1+ (P◦γ)′(t)

(P◦γ)(t) t +O(ε2)
)(
( f ◦ γ)′(0)t + ( f◦γ)′′(0)

2 t2 +O(t3)
)
(P◦ γ)(t)dt∫

ε

−ε

(
1+ (P◦γ)′(t)

(P◦γ)(t) t +O(ε2)
)
(P◦ γ)(t)dt

(H.3)

The numerator of (H.3) can be expanded as

∫
ε

−ε

(
1+

(P◦ γ)′(t)
(P◦ γ)(t)

t +O(ε2)
)(
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2

t2 +O(t3)
)
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=( f ◦ γ)′(0)
∫

ε

−ε
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ε
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2

∫
ε

−ε
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−ε
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)
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dt +O(ε4)

=
2
3
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2
3
( f ◦ γ)′(0)(P◦ γ)′(0)ε3 +

1
3
( f ◦ γ)′′(0)(P◦ γ)(0)ε3 +O(ε4)

=
(4

3
( f ◦ γ)′(0)(P◦ γ)′(0)+

1
3
( f ◦ γ)′′(0)(P◦ γ)(0)

)
ε

3 +O(ε4).

The denominator of (H.3) can be expanded as

∫
ε

−ε

(
1+

(P◦ γ)′(t)
(P◦ γ)(t)

t +O(ε2)
)
(P◦ γ)(t)dt = 2(P◦ γ)(0)ε +O(ε2).

Hence, we have

Q̄ε f (x) =

[
4
3( f ◦ γ)′(0)(P◦ γ)′(0)+ 1

3( f ◦ γ)′′(0)(P◦ γ)(0)
]
ε3 +O(ε4)

2(P◦ γ)(0)ε +O(ε2)
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=
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2
3
( f ◦ γ)′(0)(P◦ γ)′(0)

P◦ γ)(0)
+

1
6
( f ◦ γ)′′(0)

)
ε

2 +O(ε3)

=

(
1
6

f ′′(x)+
2
3

f ′(x)P′(x)
P(x)
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ε
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Recall that Qε f (x) = 1
6 f ′′(x)ε2 +O(ε3). However, since the kernel is not symmetric, Q̄ε does not

approximate the Laplace-Beltrami operator ∆. Moreover, when f ∈C5(M), we conclude that

Q̄εQε f (x) =
1
9

(
1
4

f ′′′′(x)+
f ′′′(x)P′(x)

P(x)

)
ε

4 +O(ε5).
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