
Journal of Machine Learning Research 24 (2023) 1-44 Submitted 6/21; Revised 3/23; Published 4/23

MARS: A Second-Order Reduction Algorithm for
High-Dimensional Sparse Precision Matrices Estimation

Qian Li qianxa.li@connect.polyu.hk
Department of Applied Mathematics
The Hong Kong Polytechnic University
Hung Hom, Kowloon, Hong Kong

Binyan Jiang by.jiang@polyu.edu.hk
Department of Applied Mathematics
The Hong Kong Polytechnic University
Hung Hom, Kowloon, Hong Kong

Defeng Sun defeng.sun@polyu.edu.hk

Department of Applied Mathematics

The Hong Kong Polytechnic University

Hung Hom, Kowloon, Hong Kong

Editor: Genevera Allen

Abstract

Estimation of the precision matrix (or inverse covariance matrix) is of great importance
in statistical data analysis and machine learning. However, as the number of parameters
scales quadratically with the dimension p, the computation becomes very challenging when
p is large. In this paper, we propose an adaptive sieving reduction algorithm to generate a
solution path for the estimation of precision matrices under the `1 penalized D-trace loss,
with each subproblem being solved by a second-order algorithm. In each iteration of our
algorithm, we are able to greatly reduce the number of variables in the problem based
on the Karush-Kuhn-Tucker (KKT) conditions and the sparse structure of the estimated
precision matrix in the previous iteration. As a result, our algorithm is capable of handling
data sets with very high dimensions that may go beyond the capacity of the existing
methods. Moreover, for the sub-problem in each iteration, other than solving the primal
problem directly, we develop a semismooth Newton augmented Lagrangian algorithm with
global linear convergence rate on the dual problem to improve the efficiency. Theoretical
properties of our proposed algorithm have been established. In particular, we show that
the convergence rate of our algorithm is asymptotically superlinear. The high efficiency
and promising performance of our algorithm are illustrated via extensive simulation studies
and real data applications, with comparison to several state-of-the-art solvers.

Keywords: adaptive sieving reduction strategy, precision matrix, semismooth Newton
method, sparsity, solution path

1. Introduction

The estimation of high dimensional sparse precision matrices has been a central topic in
statistical learning and machine learning (Li et al., 2019; Du et al., 2020), with a wide range
of applications such as genomics (Wille et al., 2004; Li and Gui, 2006), image analysis (Li,

c©2023 Qian Li, Binyan Jiang, and Defeng Sun.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v24/21-0699.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v24/21-0699.html

Li, Jiang, and Sun

2009), among others. Owing to the fast development of data engineering and technology,
modern data sets are oftentimes having much higher dimensions than before, and the esti-
mation of the precision matrices becomes more challenging as the number of variables scales
quadratically with respect to the dimension p. For example, in the breast cancer data set
studied in our numerical experiments, p is equal to 22, 283, and the number of variables is
nearly 250 million. Many existing algorithms or solvers could easily fail to produce a mean-
ingful estimator in this case. Highly efficient algorithms with sound theoretical guarantees
are thus in great need of meeting the computation requirement of the time.

Consider the p-dimensional Gaussian distributed random variable X = (X1, · · · , Xp) ∼
N (µ,Σ), where µ ∈ Rp and Σ ∈ Rp×p are the mean vector and the covariance matrix,
respectively. Assume that the covariance matrix Σ is nonsingular. The precision matrix
Θ (also known as the concentration matrix) is defined as the inverse of Σ, i.e., Θ = Σ−1.
It is well known that the conditional independence in the Gaussian distribution is directly
reflected in the zero components of the precision matrix (Lauritzen, 1996, Proposition 5.2).
Specifically, for any 1 ≤ i 6= j ≤ p, Θij = 0 if and only if Xi is conditionally independent
of Xj given all other random variables Xk, k 6= i, j, 1 ≤ k ≤ p. In many applications,
the conditional independence structure of the variables is usually represented as a graph
G = (V,E), where V denotes the p nodes and the edge set E ⊆ V × V denotes the set of
conditional dependent pairs of the nodes. Thus, the graph G can be well recovered if the
zeros in the precision matrix can be consistently identified.

So far, many methods have been proposed to estimate the sparse precision matrix in the
high-dimensional setting (p � n, where n corresponds to the sample size). Meinshausen
and Bühlmann (2006) estimated the conditional independence restrictions separately for
each node in G through a sequence of lasso penalized least squares regression models. Yuan
(2010) studied the above regression models via a Dantzig selector. Later, Cai et al. (2011)
proposed a constrained `1 minimization approach and established the convergence rates in
statistical analysis under different norms. However, among the methods mentioned above,
none of them are truly treating the precision matrix as a matrix form. There is another
well-known estimator called the lasso penalized Gaussian likelihood estimator (Yuan and
Lin, 2007; Banerjee et al., 2008; Friedman et al., 2008), also known as graphical lasso or
glasso. Given the sample covariance matrix Σ̂ ∈ Sp and a regularization parameter λ > 0,
the glasso estimator is obtained by minimizing the l1 penalized log-likelihood function:

min
Ω∈Sp+

{
tr(ΩΣ̂)− logdet(Ω) + λ ‖Ω‖1

}
, (1)

where Sp+ is the space of p × p real symmetric positive definite matrices, tr(·) and ‖·‖1
are the trace and `1-norm, respectively. Researchers have designed different optimization
algorithms to solve this problem. Some first-order methods have been applied to solve
(1), such as the block coordinate descent method (Banerjee et al., 2008; Friedman et al.,
2008) and the alternating linearization method (Scheinberg et al., 2010). To solve the
graphical lasso problem more efficiently, some second-order methods such as the quadratic
approximation method (Hsieh et al., 2014) and the Newton-like methods (Oztoprak et al.,
2012) were also developed. However, these two methods may not be the best choice. For
the quadratic approximation method, the computational complexity could be up to O(p3)
per-iteration. As for the Newton-like methods, the algorithms are more or less heuristic

2

MARS: A Second-Order Algorithm for Precision Matrices Estimation

and the related convergence properties are yet to be explored. We note that the graphical
lasso model brings challenges to the calculation because its objective function contains a log
determinant term. Although Witten et al. (2011) provides a strategy to further improve the
efficiency by identifying the block diagonal structure, which has been implemented in the
glasso package, such a strategy can easily fail in practice, especially when the regularization
parameter is small. The total computation time on the breast cancer data set shown in
Table 7 can further support such an argument.

Recently, an `1-penalized D-trace loss estimator was proposed in Zhang and Zou (2014)
and Liu and Luo (2015). This new estimator is obtained by solving a convex composite op-
timization problem, which involves a quadratic loss function with an `1-regularized penalty:

min
Ω∈Sp

{
1

2
tr(ΩΣ̂ΩT)− tr(Ω) + λ ‖Ω‖1,off

}
, (2)

where Sp is the space of p × p real symmetric matrices and ‖·‖1,off is the off-diagonal `1-
norm, i.e., ‖Ω‖1,off =

∑
i 6=j |Ωi,j |. In this paper, we will show that the solutions obtained

by our proposed algorithm to the optimization problem (2) are asymptotically positive
definite. This key property makes it valid for us to replace the constraint Ω ∈ Sp+ with
a much simpler constraint Ω ∈ Sp. Zhang and Zou (2014) derived the convergence rates
in statistical analysis of this estimator and showed that it could be comparable with the
graphical lasso model. Clearly, the loss function in problem (2) is simpler than the one in
the graphical lasso model, which could bring great efficiency to calculation. In particular,
when dealing with the big data where the dimension is very large, computational efficiency
owing to the simple form of the loss function would be a favourable feature for practical
applications. However, the existing popular methods for solving (2) are first-order methods,
such as the coordinate descent method (Liu and Luo, 2015) and the alternating direction
method of multipliers (ADMM) (Zhang and Zou, 2014; Wang and Jiang, 2020). These
first-order methods encounter challenges in solving (2) even up to a moderate accuracy.

In order to design an efficient algorithm, in this paper, we first propose an adaptive
sieving reduction strategy to solve the model (2) by sequentially solving some reduced
problems with much smaller dimensions than the original problem. In addition, we point
out that this strategy is powerful for generating a solution path, as a better initial point
usually leads to a positive impact. The reduced problem is obtained by exploiting the
sparsity of the optimal solution. More precisely, based on the KKT conditions of the
original problem, we can construct a non-zero index set with any given initial solution, and
then make all components outside this index set zero. This leads to the form of the reduced
problem as

min
Ω∈Sp

{
1

2
tr(ΩΣ̂ΩT)− tr(Ω) + λ ‖Ω‖1,off − 〈∆,Ω〉 | ΩĪ = 0

}
, (3)

where ∆ ∈ Sp is an error matrix satisfying ‖∆‖ ≤ ε for some small ε > 0, ‖·‖ is the
Frobenius norm and Ī is the zero components index set. Note that the existence of ∆
means that the minimization problem is solved inexactly, and ∆ does not need to be given
in prior but is automatically obtained when the problem is solved inexactly. As can be seen
from (3), the dimension of the reduced problem is exactly equal to (|I|+ p)/2. In general,
the dimension of the reduced problem may not be larger than p + n(n − 1)/2 to ensure

3

Li, Jiang, and Sun

the statistical validity of the estimation in some cases. Therefore, our algorithm is not
only significantly efficient, but also can solve the problem of insufficient storage space for
massive data to a certain extent. Then, we design an efficient second-order based algorithm,
or more precisely, a semismooth Newton based augmented Lagrangian algorithm, to solve
the dual problem of (3). In this paper, we focus on estimating the precision matrices
in the high dimension setting (i.e., p � n). Thus, the scale of the dual problem of (6)
is much smaller. More importantly, due to the facts that the piecewise linear-quadratic
structure of the primal problem provides an asymptotically superlinear convergence rate
of the augmented Lagrange method (Li et al., 2018), and the dual problem is strongly
convex, our algorithm only needs a few iterations to obtain a desirable solution. Besides,
the per-iteration computational and memory complexities of our algorithm are comparable
to or even better than the ones of first-order algorithms, such as ADMM. In addition, we
provide a technique to determine the maximum λ. This technique limits the choice of λ
to avoid unnecessary waste of time in generating a solution path. In subsequent numerical
experiments, we shall see that our algorithm significantly outperforms several state-of-the-
art solvers and is competent to handle huge-scale problems.

We highlight the main contributions of this paper as follows:

1. We develop a dual approach for the precision matrix estimation. By equivalently
rewriting the primal problem under the high-dimensional setting where p is much
large than n, we obtain a dual problem where the dimension of a dual variable is p×n
instead of p× p. Such an approach can fundamentally improve the efficiency when n
is much smaller than p.

2. This is the first attempt to implement the adaptive sieving strategy and the semis-
mooth Newton augmented Lagrangian algorithm for variables with matrix forms.
The adaptive sieving strategy enables us to solve the original problem by solving
some reduced subproblems, which can be remarkably smaller in dimension than the
original problem. Therefore, some time-consuming operations in the main loop can
be avoided, for example, the multiplication of two p × n matrices is changed to the
multiplication of two vectors of a much lower dimension. More importantly, although
we are adopting a second-order method for solving the subproblems, the per-iteration
computational complexity of our proposed algorithm is comparable to the first-order
algorithms, such as ADMM. The promising numerical performance of our algorithm
is also theoretically justified by the global linear convergence rate and asymptotically
superlinear convergence rate we established.

3. We have developed a R package 1 for applications to estimate the sparse precision
matrix effectively. Compared to other existing solvers/packages, our algorithm is
much more efficient and is able to handle data sets with much higher dimensions. For
instance, on a publicly available breast cancer data set, our algorithm can be up to
more than 20 times faster than the popular glasso package (Friedman et al., 2008;
Witten et al., 2011) for estimating a precision matrix with five-fold cross-validation
included.

1. The R package can be found on https://github.com/QianLI-QL/MARS.

4

https://github.com/QianLI-QL/MARS
https://github.com/QianLI-QL/MARS

MARS: A Second-Order Algorithm for Precision Matrices Estimation

The remaining subsequent arrangements are as follows. For better discussions in later
sections, we will first of all introduce some notation and present some preliminary results
of the piecewise linear quadratic function in Section 2. In Section 3, we will develop an
adaptive sieving reduction strategy for generating solution paths. In Section 4, we derive
an inexact augmented Lagrangian method (ALM) to solve the dual problem of the inner
problem in Section 3. Then for the subproblem in the inexact ALM, we design a semismooth
Newton algorithm to obtain an expected solution. In Section 5, we will summarize the
connections between the proposed algorithms in Sections 3 and 4, as well as discuss the
computational and memory complexities of the proposed algorithm. In Section 6, after
introducing some algorithms, by comparing with the introduced algorithms and several
state-of-the-art solvers, we will demonstrate the promising performance of our algorithm
through some numerical experiments and the analysis of two real data sets. We conclude
our paper in Section 7.

Notation Throughout this paper, X and Y represent two finite-dimensional real Euclidean
spaces. We use 〈·, ·〉 to denote the inner product and its induced Frobenius norm by
‖·‖F . Specifically, let X = (Xij)1≤i≤p, 1≤j≤n and Y = (Yij)1≤i≤p, 1≤j≤n be two real ma-

trices, 〈X,Y 〉 = tr
(
XTY

)
=
∑

i,j XijYij and ‖X‖F =
(∑

i,j X
2
ij

)1/2
, where XT denotes

the transpose of X. The `1 norm is denoted by ‖·‖1, i.e., ‖X‖1 =
∑

ij |Xij |, and the
spectral norm is denoted by ‖·‖(2). The Jacobian of F : X → Y at X ∈ DF is de-

noted as F ′(X), where DF = {X | F (·) is differentiable at X}. We also use “◦” to de-
note the Hadamard product, i.e., (X ◦ Y)ij = XijYij and sup {·} to denote the supre-
mum. The cardinal number of a real vector or matrix V is denoted by |V |, but for a
one-component variable v, |v| denotes its absolute value. The point-to-set distance is de-
fined by dist(Y,C) := infY ′∈C ‖Y − Y ′‖ , ∀Y ∈ Y and ∀C ⊂ Y, while when C is empty, it
is +∞ by convention.

2. Preliminaries

In this section, we will introduce some notation for later use. Followed by some technical
results on the convex piecewise linear quadratic (PLQ) function and its subdifferential,
which will be the key to establishing the global linear convergence rate of the proposed
inexact augmented Lagrangian method later.

Let f : X → (−∞,+∞] be a closed and proper convex function. For any given X ∈ X ,
let Proxf (X) be the unique optimal solution of the Moreau-Yosida regularization of f at
X ∈ X :

Hf (X) := min
Y ∈X

{
f(Y) +

1

2
‖Y −X‖2F

}
.

The mapping Proxf (·) is called the proximal point mapping of f . In addition, Proxf (·) is
globally Lipschitz continuous with modulus 1 (Lemaréchal and Sagastizábal, 1997). For later
use, we present some useful properties of the Moreau-Yosida regularization here. From The-
orem 2.26 of Rockafellar and Wets (1998), we know that Hf (·) is continuously differentiable,
and furthermore, the gradient of Hf (·) at X ∈ X is known as in the form of ∇Hf (X) =
X−Proxf (X). Another important and useful result is the Moreau decomposition (Moreau,

5

Li, Jiang, and Sun

1962), which is, any X ∈ X has the decomposition X = Proxf (X) + Proxf∗(X), where f∗

is the Fenchel conjugate of f and is defined by

f∗(Y) = sup {〈Y,X〉 − f(X) | X ∈ X} , Y ∈ X .

It can be shown that the pointwise supremum function of a collection of convex (closed)
functions is convex (closed). Thus, f∗ is always convex and closed.

Next, we begin our discussion with the definition of the PLQ function. A continuous
function f : D → R defined on a set D ⊆ X is PLQ (Rockafellar and Wets, 1998, Section
10.E), if D can be represented as the union of finitely many polyhedral sets {Di}m̄i=1, relative
to each of which f(x) = qi(x), x ∈ Di with qi being a quadratic function. A useful conclusion
on the more generally piecewise quadratic function is provided in Sun (1986, Proposition
2.2.4). It indicates that a closed proper convex function f is PLQ on D, if and only if the
graph of Ff : D ⇒ Y is polyhedral, where Ff denotes the subdifferential of f . Moreover,
following the work in Robinson (1981) about polyhedral multifunctions, we discuss some
continuous properties of Ff in the remaining of this section.

The following definition is given in Robinson (1981). This can be viewed as an extension
of the Lipschitz condition of the real-valued function to multifunctions.

Definition 1 Let F : Y ⇒ X be a multifunction. If there exists κ ≥ 0 such that for some
neighborhood N(ȳ) of ȳ and for all y ∈ N(ȳ),

F (y) ⊂ F (ȳ) + κ ‖y − ȳ‖Bx,

with Bx = {x | ‖x‖ ≤ 1}, then F is said to be locally upper Lipschitzian at the point ȳ with
modulus κ.

Since the graph of Ff : D ⊆ X → Y is polyhedral, it then follows from Proposition 1
of Robinson (1981) that F−1

f is locally upper Lipschitzian at each ȳ ∈ Ff (D) with some
modulus κ ≥ 0. An interesting consequence of this result is given as follows.

Proposition 2 Suppose that F−1
f (0) is nonempty. There exist κ ≥ 0 and a neighborhood

N0 of the origin such that, for all x ∈ D ⊆ X ,

dist(x, F−1
f (0)) ≤ κdist(0, Ff (x) ∩N0). (4)

Proof The nonemptiness of F−1
f (0) implies that, for any x ∈ D, if Ff (x) ∩ N0 = ∅, the

inequality (4) holds automatically. We then consider the case that Ff (x) ∩N0 6= ∅. By the
fact that F−1

f is locally upper Lipschitzian at 0 with modulus κ, we know that there are
some neighborhood N0 of the origin such that, for any ỹ ∈ N0,

F−1
f (ỹ) ⊂ F−1

f (0) + κ ‖ỹ‖Bx.

Since Ff (x) is convex and closed for any x ∈ D (Rockafellar, 1970, Theorem 19.1), there
exists y ∈ Ff (x) ∩N0 with

‖y‖ = dist(0, Ff (x) ∩N0).

6

MARS: A Second-Order Algorithm for Precision Matrices Estimation

Note that x ∈ F−1
f (y) and y ∈ N0. Therefore,

dist(x, F−1
f (0)) ≤ κdist(0, Ff (x) ∩N0).

This completes the proof.

Remark 3 From Proposition 2, we know that there exists ε > 0 such that for any x ∈ D
with dist(0, Ff (x)) ≤ ε we have dist(x, F−1

f (0)) ≤ κdist(0, Ff (x)), which is consistent with
the corollary introduced by Robinson (1981).

Following Lemma 2, the next lemma shows that a more general inequality holds for any
point x arbitrarily chosen on the effective domain of Ff .

Lemma 4 Suppose that F−1
f (0) is nonempty. For any r > 0, there exists κ ≥ 0 such that

dist(x, F−1
f (0)) ≤ κdist(0, Ff (x)), ∀x ∈ D satisfying dist(x, F−1

f (0)) ≤ r. (5)

Proof From Lemma 2, we know that there exists κ1 ≥ 0 and some neighborhood N0 of
the origin such that for all x ∈ D, the inequality (4) holds. Then, for any x ∈ D satisfying
dist(x, F−1

f (0)) ≤ r, if Ff (x) ∩N0 6= ∅, we readily have

dist(x, F−1
f (0)) ≤ κ1 dist(0, Ff (x) ∩N0) = κ1 dist(0, Ff (x)),

otherwise, there exists δ̄ > 0 satisfying dist(0, Ff (x)) ≥ δ̄, such that

dist(x, Ff) ≤ κ2 dist(0, Ff (x)),

where κ2 ≥ r/δ̄. Then, let κ = max{κ1, κ2}. This completes the proof.

3. An adaptive sieving reduction strategy

In this section, based on the work of Lin et al. (2020), we will develop an adaptive sieving
reduction strategy to generate solution paths by solving the problem (2). The main idea
of this strategy is to solve problem (2) by solving some reduced problems with remarkably
smaller dimensions compared to the original problem (2). As a result, under sparse and
high dimensional settings, this strategy can greatly improve the algorithm efficiency, while
also saving a lot of storage space. Since our algorithm is designed for Matrix estimation via
an Adaptive sieving Reduction strategy and a Semismooth Newton augmented Lagrangian
algorithm (in Section 4), we call our algorithm MARS.

As we mentioned in the introduction, we will develop a dual approach to solve problem
(2). To facilitate the designing of the dual approach, we write problem (2) equivalently as

min
Ω∈Sp

{
1

2
‖ΩA‖2F − 〈Ω, Ip〉+ λ ‖Ω‖1,off

}
, (6)

7

Li, Jiang, and Sun

where A is a real matrix with rank n such that AAT = Σ̂. Note that instead of applying
the singular value decomposition (SVD) on Σ̂, the matrix A can be efficiently obtained by
applying a thin SVD on the p×n dimensional centered data matrix. The thin SVD requires
significantly less space and time than the full SVD, especially in the high-dimensional set-
ting. Without loss of generality, we assume that A is a p× n matrix with rank n. For later
use, we denote θ(Ω) := ‖Ω‖1,off , ∀Ω ∈ Sp. Moreover, we further denote the optimal solution
set of (6) by Θλ, and the associated proximal residual mapping by

Rλ(Ω) := Ω− Proxλθ(Ω− h(Ω)), ∀Ω ∈ Sp,

where h(Ω) := 1
2(ΩΣ̂ + Σ̂Ω)− Ip with Ip being the p dimensional identity matrix, and δBλ

is the indicator function with Bλ = {Z ∈ Sp | Zii = 0, |Zij | ≤ λ, i, j = 1, · · · , p, i 6= j},
i.e., δBλ(Z) = 0 for any Z ∈ Bλ and δBλ(Z) = +∞ otherwise. By the KKT conditions, we

know that Ω̃ ∈ Θλ if and only if Rλ(Ω̃) = 0.
Detailed steps of our adaptive sieving reduction strategy are given in Algorithm 1. For

a sequence of positive regularization parameters sorted in descending order, we first solve
problem (6) inexactly with λ equal to the largest parameter to obtain an approximate
solution with a given tolerable error ε ≥ 0 and the corresponding index set for the non-zero
components. Then, for the subsequent smaller λ, we continuously use the KKT conditions
to perform adaptive sieving to obtain a new non-zero components index set, while updating
its solution until a desirable solution is obtained. Such a procedure is performed for all
the regularization parameters until the algorithm stops (we will show that the while loop
can terminate in a finite number of iterations in the proof of Theorem 6). Note that the
existence of ∆0 and {∆l

i} in Steps 1 and 10 in Algorithm 1 means that the minimization
problems are solved inexactly. Both of them are not given in prior but are automatically
obtained when the original minimization problems are solved inexactly.

Before establishing the convergence of Algorithm 1, we present the following proposition
to interpret the connection between the optimal solution in Step 1 of Algorithm 1 and an
approximate solution of (6).

Proposition 5 The optimal solution Ω∗(λ) of

min
Ω∈Sp

{
1

2
‖ΩA‖2F − 〈Ω, Ip〉+ λ ‖Ω‖1,off − 〈∆,Ω〉

}
(7)

with ‖∆‖F ≤ ε/
√

2 can be equivalently found by

Ω∗(λ) = Proxλθ(Ω̂(λ)− h(Ω̂(λ))), (8)

where Ω̂(λ) is an approximate solution of

min
Ω∈Sp

{
1

2
‖ΩA‖2F − 〈Ω, Ip〉+ λ ‖Ω‖1,off

}
(9)

such that ∥∥∥Rλ(Ω̂(λ))
∥∥∥
F
≤ ε
√

2
(

1 + ‖Σ̂‖F
) . (10)

8

MARS: A Second-Order Algorithm for Precision Matrices Estimation

Algorithm 1 An adaptive sieving reduction strategy for generating a solution path.

Require:
A real matrix A ∈ Rp×n and a tolerance constant ε ≥ 0;
A sequence of regularization parameters λ0 > λ1 > · · · > λk > 0 with λmax ≥ λ0;

Ensure:
A solution path: Ω∗(λ0),Ω∗(λ1), · · · ,Ω∗(λk);

1: Initialization:
For λ0 > 0, solve

Ω∗(λ0) ∈ argminΩ∈Sp

{
1

2
‖ΩA‖2F − 〈Ω, Ip〉+ λ0 ‖Ω‖1,off − 〈∆0,Ω〉

}
,

where ∆0 ∈ Sp is an error matrix such that ‖∆0‖F ≤ ε. Then let

I∗(λ0) := {(i, j) | Ω∗(λ0)ij 6= 0, i, j = 1, · · · , p};

2: Main loop:
3: for i = 1; i < k + 1; i+ + do
4: Set Ω0(λi) = Ω∗(λi−1) and I0(λi) = I∗(λi−1);
5: Calculate Rλi(Ω

0(λi)) and set l = 0;
6: while

∥∥Rλi(Ωl(λi))
∥∥
F
> ε do

7: l + +;
8: Create J l(λi) by

J l(λi) =

(i, j) ∈ Īl−1(λi) | −
(
h(Ωl−1(λi))

)
ij
/∈ λi

(
∂θ(Ωl−1(λi)) +

ε

λi
√

2|Īl−1(λi)|
B∞

)
ij

 ,

where Ī l−1(λi) denotes the complement of I l−1(λi) and B∞ is the infinity norm
unit ball;

9: Update I l(λi) = I l−1(λi) ∪ J l(λi);
10: Solve

Ωl(λi) ∈ argminΩ∈Sp

{
1

2
‖ΩA‖2F − 〈Ω, Ip〉+ λi ‖Ω‖1,off −

〈
∆l
i,Ω
〉
| ΩĪl(λi)

= 0

}
,

where ∆l
i ∈ Sp is an error vector such that

∥∥∆l
i

∥∥
F
≤ ε/
√

2 and (∆l
i)Īl(λi) = 0;

11: Compute Rλi(Ω
l(λi));

12: end while
13: Set Ω∗(λi) = Ωl(λi), I

∗(λi) = I l(λi) and ∆i = ∆l
i;

14: end for
15: return Ω∗;

Proof Let Ω̃(λ) be an optimal solution of problem (9). Note that this solution satisfies
Rλ(Ω̃(λ)) = 0. Let {Ωi} be a sequence that converges to Ω̃(λ). We then define

∆i :=Rλ(Ωi) + h
(
Proxλθ(Ω

i − h(Ωi))
)
− h(Ωi)

=Ωi − Proxλθ(Ω
i − h(Ωi)) + h

(
Proxλθ(Ω

i − h(Ωi))
)
− h(Ωi).

9

Li, Jiang, and Sun

Since h is continuously differentiable, from Lemma 4.5 of Du (2015), we have limi→∞
∥∥∆i

∥∥
F

=

0. This implies the existence of Ω̂(λ) satisfying the inequality (10). Beginning with the def-
inition of Rλ, we have Rλ(Ω̂(λ)) = Ω̂(λ)−Proxλθ(Ω̂(λ)−h(Ω̂(λ))). By combining this with
equation (8), we obtain

Rλ(Ω̂(λ))− h(Ω̂(λ)) ∈ λ∂θ(Ω∗(λ)).

Now, let us define
∆ := Rλ(Ω̂(λ)) + h(Ω∗(λ))− h(Ω̂(λ)). (11)

It can be seen that
∆ ∈ h(Ω∗(λ)) + λ∂θ(Ω∗(λ)),

which means that Ω∗(λ) is an optimal solution of (7) with the given ∆. Besides, we have

‖∆‖F =
∥∥∥Rλ(Ω̂(λ)) + h(Ω∗(λ))− h(Ω̂(λ))

∥∥∥
F
≤
(

1 +
∥∥∥Σ̂
∥∥∥
F

)∥∥∥Rλ(Ω̂(λ))
∥∥∥
F
≤ ε/
√

2.

This completes the proof.

Proposition 5 presents the connection between Ω∗(λ) and Ω̂(λ). The proof above also
explains how to obtain the error matrix ∆. Specifically, when an approximate solution Ω̂(λ)
is obtained and the inequality (10) is satisfied, the error matrix ∆ satisfying ‖∆‖F ≤ ε/

√
2

can be constructed by (11). Note that the inequality (10) can be used as the stopping
criterion for Algorithm 2 presented in Section 4.1. Next, we show the convergence properties
of Algorithm 6 in the following theorem.

Theorem 6 The solution path {Ω∗(λi) | i = 0, 1, · · · , k} generated by Algorithm 1 are
approximate optimal solutions of a sequence of problems in the form of

min
Ω∈Sp

{
1

2
‖ΩA‖2F − 〈Ω, Ip〉+ λi ‖Ω‖1,off

}
with ‖Rλi(Ω∗(λi))‖F ≤ ε, i = 0, 1, · · · , k.

Proof We first show that the index set J l(λi) is nonempty whenever
∥∥Rλi(Ωl(λi))

∥∥
F
> ε.

Suppose that J l(λi) = ∅. Then we have

−
(
h(Ωl−1(λi))

)
ij
∈ λi

(
∂θ(Ωl−1(λi)) +

ε

λi
√

2|Ī l−1(λi)|
B∞

)
ij

, ∀ (i, j) ∈ Ī l−1(λi).

Thus, there is a matrix ∆̂l
i ∈ Sp with (∆̂l

i)Il−1(λi) = 0 and
∥∥∥∆̂l

i

∥∥∥
∞
≤ ε√

2|Īl−1(λi)|
such that

−
(
h(Ωl−1(λi))− ∆̂l

i

)
ij
∈ λi

(
∂θ(Ωl−1(λi))

)
ij
, ∀ (i, j) ∈ Ī l−1(λi). (12)

Since Ωl−1(λi) is an optimal solution of

min
Ω∈Sp

{
1

2
‖ΩA‖2F − 〈Ω, Ip〉+ λi ‖Ω‖1,off −

〈
∆l−1
i ,Ω

〉
| ΩĪl−1(λi)

= 0

}
,

10

MARS: A Second-Order Algorithm for Precision Matrices Estimation

where ∆l−1
i is an error matrix with

∥∥∥∆l−1
i

∥∥∥
F
≤ ε/

√
2 and (∆l−1

i)Īl−1(λi)
= 0, by the KKT

conditions, we know that there exists Λ ∈ Sp with ΛIl−1(λi) = 0 such that0 ∈ h(Ωl−1(λi))−∆l−1
i + λi∂θ(Ω

l−1(λi))− Λ,(
Ωl−1(λi)

)
Īl−1(λi)

= 0.
(13)

Then, combining (12) and (13), we obtain

−h(Ωl−1(λi)) + ∆̃l−1
i ∈ λi∂θ(Ωl−1(λi)),

where ∆̃l−1
i ∈ Sp with (∆̃l−1

i)Il−1(λi) = (∆l−1
i)Il−1(λi) and (∆̃l−1

i)Īl−1(λi)
= (∆̂l−1

i)Īl−1(λi)
.

This means

Ωl−1(λi) = Proxλiθ(Ω
l−1(λi)− h(Ωl−1(λi)) + ∆̃l−1

i).

Therefore, we have∥∥∥Rλi(Ωl−1(λi))
∥∥∥
F

=
∥∥∥Ωl−1(λi)− Proxλiθ(Ω

l−1(λi)− h(Ωl−1(λi)))
∥∥∥
F
≤
∥∥∥∆̃l−1

i

∥∥∥
F
≤ ε,

where the first inequality follows from the property that the proximal mapping is globally
Lipschitz continuous with modulus 1. Hence, a contradiction is found. Thus, J l(λi) 6= ∅
if and only if

∥∥Rλi(Ωl(λi))
∥∥ > ε. Since the total number of components of Ω is finite, the

while loop in Algorithm 1 will terminate in a finite number of iterations. Additionally, by
the KKT conditions, we have Ω∗(λ0) = Proxλ0θ(Ω

∗(λ0))− h(Ω∗(λ0))) + ∆0). Thus

‖Rλ0(Ω∗(λ0))‖F ≤ ‖∆0‖F ≤ ε,

which completes the proof.

We provide two more remarks for Algorithm 1 as follows.

Remark 7 Determination of λmax in the “Input” of Algorithm 1. Assume that the solu-
tion set to (6) is nonempty. We can set

λmax = max
i<j

{
1

2
|Σ̂ij/Σ̂ii + Σ̂ij/Σ̂jj |

}
.

If λ ≥ λmax, the optimal solution of (6) is a diagonal matrix Ω∗ with Ω∗ii = 1/Σ̂ii, i =
1, · · · , p. This can be easily verified by the KKT conditions. This result favors the efficiency
of Algorithm 1 because it makes it possible to skip solving the problem in Step 1 of Algorithm
1. Practically, we can directly set λ0 to λmax and correspondingly set Ω∗(λ0) = Ω∗ in Step
1 of Algorithm 1.

Remark 8 Direct extension to the relaxed lasso. Since we have defined the non-zero com-
ponents set Ī in Algorithm 1, we can easily insert the relaxed lasso (Meinshausen, 2007)
into our algorithm after Step 13 to obtain a solution with a better prediction accuracy.

11

Li, Jiang, and Sun

In the remaining of this section, we will discuss the statistical consistency and the
asymptotic positive definiteness of solutions generated by Algorithm 1. The discussion
of statistical properties here will focus on two cases. The first one is the case where the
samples are independent and identically distributed (i.i.d.) sub-Gaussian random variables
(a random variable Z ∈ R is called sub-Gaussian (Ravikumar et al., 2011) with parameter
σs ∈ (0,+∞), if E[Z] = 0 and E [exp{wZ}] ≤ exp

{
σ2
sw

2/2
}
, ∀w ∈ R). The second case is

for i.i.d. observations of random variables with bounded moments, in particular, satisfying
a polynomial-type tail bound.

Before proceeding to the main discussion, we present some notation and describe some
assumptions. Suppose that the true precision matrix Θ is sparse and its minimum eigenvalue
γmin(Θ) > r with some r > 0. For the associated graph, we denote the maximum node
degree and the number of edges by d and s, respectively. Then, let sθ = min{

√
s+ p, d} to

describe the sparse level of Θ. Similarly to the assumption in Section 3.3 of Ravikumar et al.

(2011), we assume in addition that the parameters κΓ =
∥∥∥Γ−1

Ψ,Ψ

∥∥∥
1,∞

, κΣ = ‖Σ‖1,∞, κ∗ =

maxi Σii, and α are constants (not scaling with p and d), where ‖X‖1,∞ = maxi
∑

j |Xij |
for a matrix X. Assume that the following irrepresentability condition holds:

max
v∈Ψ

∥∥Γv,Ψ(ΓΨ,Ψ)−1
∥∥

1
= 1− α, 0 < α ≤ 1, (14)

where Ψ is the support set of Θ, Ψ is its complement, and Γ = 1
2Σ ⊕ Σ (⊕ denotes the

Kronecker matrix sum). We are now ready to present the following propositions.

Proposition 9 Consider a zero-mean random variable X = (X1, · · · , Xp) with covariance

Σ such that each Xi/Σ
1/2
ii is sub-Gaussian with parameter σs > 0. Assume that the ir-

representability condition (14) holds and the samples are drawn independently. Choose

λn = C1

√
η log p/n for some η > 2 and n > C2(sθd/r)

2η log p with the scalars C1 and C2

sufficiently large. Then, with probability greater than 1− 1/pη−2, we have∥∥∥Ω∗(λn)−Θ
∥∥∥

(2)
≤ Cssθd

√
η log p/n,

where Ω∗(λn) is generated by Algorithm 1 with a small enough tolerance ε ≥ 0, and Cs > 0
depends only on κΓ, κΣ, κ∗, α, and σs.

Proof Let Θ
λn

be the optimal solution set of (6) with regularization parameter λn, and

Θ̂(λn) be arbitrarily chosen from Θ
λn

. For simplicity, we will use Θ̂ and Ω∗ to represent

Θ̂(λn) and Ω∗(λn), respectively, in this proof. By Theorem 6, we have that
∥∥∥R

λn
(Ω∗)

∥∥∥
F
≤ ε.

We will then verify that there is ι > 0 such that
∥∥∥Ω∗ − Θ̂

∥∥∥
(2)
≤ ιε. It is reasonable to assume

that
∥∥∥R

λn
(Ω∗)

∥∥∥
F
> 0, since if it is not, Ω∗ is exactly an optimal solution of (6), and so the

inequality holds automatically.
Define Ω̂ := Ω∗ − R

λn
(Ω∗) = Proxλθ(Ω

∗ − h(Ω∗)). This implies that 0 ∈ ∂λθ(Ω̂) +

h(Ω∗) − R
λn

(Ω∗) and thus dist(0, ∂λθ(Ω̂) + h(Ω∗)) ≤ ε. Moreover, since λθ is piecewise
linear quadratic, ∂λθ is locally upper Lipschitzian at Ω∗. By Definition 1, for a small

12

MARS: A Second-Order Algorithm for Precision Matrices Estimation

enough ε, there exist κ1 ≥ 0 and some neighborhood N(Ω∗) of Ω∗ such that Ω̂ ∈ N(Ω∗)
and ∂λθ(Ω̂) ⊂ ∂λθ(Ω∗) + κ1εB. Consequently,

dist(0, ∂λθ(Ω∗) + h(Ω∗) + κ1εB) ≤ dist(0, ∂λθ(Ω̂) + h(Ω∗)) ≤ ε.

Besides, it can be verified that dist(0, ∂λθ(Ω∗) + h(Ω∗))− κ1ε ≤ dist(0, ∂λθ(Ω∗) + h(Ω∗) +
κ1εB). Thus, we have dist(0, ∂λθ(Ω∗) + h(Ω∗)) ≤ (1 + κ1)ε. Moreover, by Lemma 4, we
obtain that, for some κ2 ≥ 0,

dist(Ω∗,Θ
λn

) ≤ κ2dist(0, ∂λθ(Ω∗) + h(Ω∗)) ≤ κ2(1 + κ1)ε.

The closeness of Θ
λn

follows from the fact that the graph of ∂λθ+h is polyhedral and thus

closed (Rockafellar, 1970, Theorem 19.1). As a result, we can always choose Θ̂ ∈ Θ
λn

such

that
∥∥∥Ω∗ − Θ̂

∥∥∥
F

= dist(Ω∗,Θ
λn

) ≤ ιε, where ι = κ2(1 + κ1) ≥ 0. Then, we know that∥∥∥Ω∗ − Θ̂
∥∥∥

(2)
≤
∥∥∥Ω∗ − Θ̂

∥∥∥
F
≤ ιε.

Consequently, we have that

‖Ω∗ −Θ‖(2) ≤
∥∥∥Ω∗ − Θ̂

∥∥∥
(2)

+
∥∥∥Θ̂−Θ

∥∥∥
(2)
≤ Cssθd

√
η log p/n,

where the first inequality comes from the triangular inequality, and the second inequality
follows from Zhang and Zou (2014, Theorem 2) and the fact that ε can be chosen propor-
tional to sθd

√
η log p/n. This completes the proof.

Using similar arguments as in the proof of Proposition 9 and Theorem 3 in Zhang and
Zou (2014), we can obtain the following proposition for the polynomial-type tails case.

Proposition 10 Consider a random variable X = (X1, · · · , Xp) with covariance Σ such

that each Xi/Σ
1/2
ii has finite 4q̃-th moments, i.e.there exist q̃ > 0 and Kq̃ ∈ R such that

E[Xi/Σ
1/2
ii]4q̃ ≤ Kq̃. Assume that the irrepresentability condition (14) holds and the samples

are drawn independently. Choose λn = C3

√
pη/q̃/n for some η > 2 and n > C4(sθd/r)

2pη/q

with the scalars C3 and C4 sufficiently large. Then, with probability greater than 1−1/pη−2,
we have ∥∥∥Ω∗(λn)−Θ

∥∥∥
(2)
≤ Cpsθd

√
pη/q̃/n,

where Ω∗(λn) is generated by Algorithm 1 with a small enough tolerance ε ≥ 0, and Cp > 0
depends only on κΓ, κΣ, κ∗, α, and Kq̃.

Remark 11 The probabilistic models assumed in Propositions 9 and 10 here are mainly
used to establish the statistical consistency and the asymptotic positive definiteness of the
solution. For example, for the sub-Gaussian case, when sθd

√
η log p/n → 0, the estimated

solution Ω∗(λn) would be positive definite with probability tending to 1. Thereby making
it possible to consider the problem without the positive definite constraint for Ω. Besides,

13

Li, Jiang, and Sun

assuming that n is the same as the statement of Theorem 2 in Zhang and Zou (2014),
then the positive definite property of the optimal solution estimated by the D trace estimator
can be guaranteed. Moreover, if the estimated solution is not positive definite, a common
remedy is to add a matrix πIp with a small π > |γmin(Ω∗(λ̄n))| to obtain a positive definite
estimation.

4. A semismooth Newton augmented Lagrangian method

In this section, we will develop a semismooth Newton augmented Lagrangian method for
solving the minimization problems in Steps 1 and 10 of Algorithm 1. In order to implement
the adaptive sieving reduction strategy more efficiently, we will define some linear operators
which allow us to reformulate the original problem into a neater form by removing the
zero components. After that, we shall derive an inexact augmented Lagrangian algorithm
(ALM) for solving the dual of the original problem and a semismooth Newton algorithm
(SSN) for solving its inner problems. We also analyze the global linear convergence rate
and the asymptotically superlinear convergence rate of the proposed algorithm.

After introducing a matrix W ∈ Rp×n, for any λ ∈ {λi, i = 0, 1, · · · , k}, we can rewrite
the original problems in Steps 1 and 10 as follows,

min
Ω,W

{
1

2
‖W‖2F − 〈Ω, Ip〉+ λ ‖Ω‖1,off |W − ΩA = 0, Ω ∈ SĪ(λ)

}
, (15)

where SĪ(λ) := {Ω ∈ Sp | Ωij = 0, (i, j) ∈ Ī(λ)}. Note that the number of nonzero
components in the upper triangle (including the diagonal) of Ω is less than or equal to t :=
(|I(λ)|+p)/2. Since we are dealing with a problem that is designed for a sparse estimation,
t will not be very large. In practical applications, in order to ensure the statistical validity
of the estimated solution, t is generally no greater than p+ n(n− 1)/2.

We will then describe how to solve the problem (15) efficiently with using the constraint
Ω ∈ SĪ(λ). As the zero value will not contribute to the computation, we will construct a
linear operator to remove the zero components in Ω and preserve their index information.
Using this operator, we can reformulate the problem (15) as a problem with a much smaller
dimension. Then, when solving the reformulated problem, the operation widely used in
the algorithm described later is the multiplication of two t-dimensional vectors, while the
multiplications of p × n matrices are required when directly solving the original problem.
Thus, the complexity of the multiplication reduces from O(p2n) to O(tn). Now, let us start
with the preparation. Define a linear operator LĪ(λ) : Sp → Rt as follows: for any Ω ∈ Sp, let
ω = LĪ(λ)(Ω) be the vector of the remaining components of svec(Ω) with those components

Ωij , (i, j) ∈ Ī(λ) being removed, where svec(Ω) is the vectorized components of the upper
triangular (including the diagonal) of Ω. For ease of notation, we will use L to represent LĪ(λ)

throughout this paper. Correspondingly, we define the generalized inverse L† : Rt → Sp of L
as follows: for any vector ω ∈ Rt, let Ω = L†(ω) be a p× p symmetric matrix, where all the
components Ωij , (i, j) ∈ Ī(λ) are equal to 0 and the remaining vectorized upper triangular
(including the diagonal) components are exactly ω. For later use, we further denote

e1 := L(Ip), e2 := 2L(E − Ip), e3 := e1 + e2/4, e4 := e1 + e2,

14

MARS: A Second-Order Algorithm for Precision Matrices Estimation

where E is the p-dimensional all-one matrix. Let L∗ and (L†)∗ denote the adjoints of L and
L†, respectively. For any vector v ∈ Rt, by the definition of the adjoint operator, we have
〈L(Ω), v〉 = 〈Ω, L∗(v)〉. Then we immediately have

L∗(v) = L†(v ◦ e3).

Similarly, for any matrix V ∈ Sp, we know

(L†)∗(V) = L(V) ◦ e4.

We also define another linear operator S : Rp×n → Rt by S(Y) := 1
2L(Y AT +AY T), ∀Y ∈

Rp×n, whose adjoint S∗ : Rt → Rp×n is given by

S∗(v) = L∗(v)A, ∀ v ∈ Rt.

Then, we put a negative sign in front of the objective function of problem (15). Following
that, we rewrite this problem with the operators defined above and introducing another
variable x ∈ Rt with x = ω ◦ e4, ω = L(Ω). Consequently, we have the following equivalent
problem:

(P) max
x∈Rt

{
−
(

Γ(x) :=
1

2
‖S∗(x)‖2F − 〈x, e1〉+ λ/2 ‖x ◦ e2‖1

)}
,

whose dual is

(D) min
Y ∈Rp×n, z∈Rt

{
1

2
‖Y ‖2F + δbλ(z) | S(Y) + z = e1

}
,

where δbλ is an indicator function with bλ = {z ∈ Rt | e1 ◦ z = 0, |zi| ≤ λ, i = 1, · · · , t}.
The KKT system corresponding to (D) is

Y − S∗(x) = 0,

0 ∈ ∂(δbλ(z))− x,
S(Y) + z − e1 = 0,

(Y, z, x) ∈ Rp×n × Rt × Rt.

As mentioned earlier, we solve (P) by solving its dual, provided that the KKT system is
nonempty (Rockafellar, 1970, Corollary 28.3.1). For any (Y, z, x) ∈ Rp×n × Rt × Rt, the
Lagrangian function for (D) is L(Y, z, x) = 1

2 ‖Y ‖
2
F + δbλ(z)− 〈S(Y) + z − e1, x〉 . For any

given constant σ > 0, the augmented Lagrangian function associated with (D) is given by,
∀Y × z × x ∈ Rp×n × Rt × Rt,

Lσ(Y, z;x) =
1

2
‖Y ‖2F + δbλ(z)− 〈S(Y) + z − e1, x〉+

σ

2
‖S(Y) + z − e1‖2F .

Next, we introduce the semismooth Newton augmented Lagrangian method in the fol-
lowing two subsections.

15

Li, Jiang, and Sun

Algorithm 2 An inexact augmented Lagrangian method for solving (D).

Require:
A given parameter σ0 > 0;
An initial point (Y 0, z0, x0) ∈ Rp×n × Rt × Rt; An integer k = 0;

Ensure:
Approximate optimal solution (Ŷ , ẑ, x̂);

1: while Stopping criteria are not satisfied do
2: Compute

(Y k+1, zk+1) ≈ arg min{Ψk(Y, z) := Lσk(Y, z;xk)}; (16)

3: Compute xk+1 = xk − σk
(
S(Y k+1) + zk+1 − e1

)
and update σk+1 ↑ σ∞ ≤ ∞;

4: Update Ŷ = Y k+1, ẑ = zk+1, x̂ = xk+1;
5: k + +;
6: end while

4.1 An inexact augmented Lagrangian algorithm

In this subsection, we will develop an inexact ALM for solving (D), and establish the global
linear convergence rate and asymptotically superlinear convergence rate of the proposed
algorithm. We remark that some standard stopping criteria are used for analyzing the
convergence rate of our algorithm here since the inner problem is solved inexactly. A
semismooth Newton algorithm to solve the inner problems of the inexact ALM together
with the implementable stopping criteria will be introduced in the next subsection.

Details of the inexact ALM are provided in Algorithm 2. For later use, we define two
maximal monotone operators TΓ and Tl as follows

TΓ(x) := ∂Γ(x), Tl(Y, z, x) := {(Y ′, z′, x′) | (Y ′, z′,−x′) ∈ ∂L(Y, z, x)}.

To establish the global linear convergence rate of Algorithm 2, we shall analyze that TΓ and
Tl globally satisfy the error bound condition given in Li et al. (2018). Since the objective
function Γ in (P) is PLQ, we know that TΓ and T −1

Γ are both polyhedral by Sun (1986,
Proposition 2.2.4). It then follows from Lemma 4 that TΓ satisfies the condition (5) for TΓ

with some modulus κγ ≥ 0 when the optimal solution set O := T −1
Γ (0) of (P) is nonempty.

In addition, following a similar argument, one can easily obtain that the operator Tl satisfies
the condition (5) with some modulus κl ≥ 0 when the KKT system associated with (P)
and (D) is nonempty.

Now, we are ready to proceed with the analysis of the convergence properties of Algo-
rithm 2. Since we solve the inner problem (16) inexactly, we use the following standard
stopping criterion introduced in Rockafellar (1976) to obtain an approximated solution:

Ψk(Y
k+1, zk+1)− infΨk ≤ ε2k/2σk,

∞∑
k=0

εk ≤ αε <∞. (17)

16

MARS: A Second-Order Algorithm for Precision Matrices Estimation

Besides, for analyzing the convergence rate, we need to introduce the following two stopping
criteria (Rockafellar, 1976):

(S1) Ψk(Y
k+1, zk+1)− infΨk ≤ (θ2

k/2σk)
∥∥∥xk+1 − xk

∥∥∥2
,

∞∑
k=0

θk < +∞,

(S2) dist(0, ∂Ψk(Y
k+1, zk+1)) ≤ (θ′k/σk)

∥∥∥xk+1 − xk
∥∥∥ , 0 ≤ θ′k → 0.

Further discussions on how to implement these criteria into our algorithm in solving the
subproblem will be provided at the end of the next subsection. Based on Rockafellar
(1976); Li et al. (2018); Zhang et al. (2020) and Lemma 4, the following theorem establishes
convergence results for the primal sequence {xk} and the dual sequence {(yk, zk)} generated
by the inexact ALM.

Theorem 12 Suppose that the solution set to (P) is nonempty and the initial point x0 ∈ Rt
satisfies dist(x0,O) ≤ r − αε, where αε is given in (17). Let {(Y k, zk, xk)} be any infinite
sequence generated by Algorithm 2 satisfying stopping criteria (17) and (S1). Then, the
sequence {xk} converges to an optimal solution x∗ ∈ O, and for all k ≥ 0,

dist(xk+1,O) ≤ ζkdist(xk,O), (18)

where ζk = (κγ(θk + 1)(κ2
γ + σ2

k)
−1/2 + θk)(1− θk)−1 and ζk → ζ∞ = κγ(κ2

γ + σ2
∞)−1/2 < 1

when k → ∞. In addition, the sequence {Y k, zk} converges to the unique optimal solution
(Y ∗, z∗) to (D). Furthermore, if the stopping criterion (S2) is satisfied, then for all k ≥ 0,∥∥∥(Y k+1, zk+1)− (Y ∗, z∗)

∥∥∥ ≤ ζ ′k ∥∥∥xk+1 − xk
∥∥∥ , (19)

where ζ ′k = κl(1 + θ′k)/σk and ζ ′k → ζ ′∞ = κl/σ∞ as k →∞.

Proof Since the solution set to (P) is nonempty, the optimal value of (P) is finite. Besides,
the effective domain of the quadratic function in the objective function of (P) is Rt and the
objective function in (D) is strongly convex. Then, according to Fenchel’s duality theorem
(Rockafellar, 1970, Corollary 31.2.1), the solution set to (D) is nonempty and the optimal
values of (P) and (D) are equal to each other and also finite. This implies that the KKT
system associated with (P) and (D) is nonempty. The uniqueness of the optimal solution
of (D) is obtained directly by the strong convexity of (D). Then, from Rockafellar (1976,
Theorem 4), we have that the sequence {(Y k, zk)} is bounded. The results under stopping
criteria (17) and (S1) can be obtained directly from Lemma 4, Lemma 4.1 in Zhang et al.
(2020), and Theorem 5 in Rockafellar (1976). The remaining result follows from Theorem
3.3 in Li et al. (2018). This completes the proof.

Remark 13 Suppose that {θk} in (S1) and {θ′k} in (S2) are both nonincreasing for all
k ≥ 0. Since {σk} is nondecreasing, we know that {ζk} and {ζ ′k} are nonincreasing. Thus,
if we choose σ0 large enough such that ζ0, ζ

′
0 < 1, we have ζk, ζ

′
k < 1, ∀ k ≥ 0. Then, from

Theorem 12, we know that Algorithm 2 enjoys a global linear convergence rate. If σ∞ =

17

Li, Jiang, and Sun

+∞, from (18), the sequence {xk} generated by Algorithm 2 will converge Q-superlinearly.
Combing this with (19), we know that the sequence {(yk, zk)} converges R-superlinearly.
Thus, according to Theorem 12, we can say that our algorithm converges asymptotically
superlinearly.

4.2 A semismooth Newton algorithm for solving the subproblem in Algorithm
2

In this subsection, we will develop a semismooth Newton (SSN) algorithm for solving (16),
and introduce the implementations of the stopping criteria used in the previous subsection.
Given σ > 0 and x ∈ Rt, the problem is to find an optimal solution for minY,zΨ(Y, z),

∀ (Y, z) ∈ Rp×n×Rt. Since Ψ is strongly convex, there is a unique optimal solution (Y, z̄) ∈
Rp×n × Rt and it can be obtained by solving min

Y
{inf
z

Ψ(Y, z)}. For any Y ∈ Rp×n, we first

denote ψ(Y) := infz Ψ(Y, z). That is

ψ(Y) =
1

2
‖Y ‖2F −

1

2σ
‖x‖2F + σ inf

z

{
σ−1δbλ(z) +

1

2
‖z − (x/σ − S(Y) + e1)‖2F

}
.

Thus, we can obtain (Y , z̄) simultaneously by

Y = arg minψ(Y), z̄ = Proxδbλ (x/σ − S(Y) + e1). (20)

Define f(Y) := x/σ − S(Y) + e1, ∀Y ∈ Rp×n and G(v) := infz σ
−1δBλ(z) + 1

2 ‖z − v‖
2
F ,

∀ v ∈ Rt. Notice that ∇G is continuously differentiable (Rockafellar and Wets, 1998, Theo-
rem 2.26). We then have

∇ψ(Y) = Y − σS∗ (∇G(f(Y))) ,

where ∇G(f(Y)) = Proxφ(f(Y)) with φ(v) = λ/2 ‖v ◦ e4‖1, ∀ v ∈ Rt. Therefore, Y can be
obtained by finding a root of

∇ψ(Y) = 0. (21)

For later use, we define ∂̂2ψ(Y) as follows:

V ∈ ∂̂2ψ(Y) ⇔ ∃u ∈ U such that V (D) ∈ ∂2ψ(Y)(D), ∀D ∈ Rp×n,

where ∂2ψ(Y) is the generalized Hessian of ψ at Y , and U := ∂Proxφ(f(Y)) is the Clarke
subdifferential of Proxφ(f(·)) at Y (Clarke, 1983). Besides,

∂̂2ψ(Y)(D) = {D + σL†(S(D) ◦ u ◦ e3)A | u ∈ U}, ∀D ∈ Rp×n. (22)

It then follows from Clarke (1983, Proposition 2.3.3 and Theorem 2.6.6) that ∂2ψ(Y)(D) =
∂̂2ψ(Y)(D), ∀D ∈ Rp×n. Now, we can introduce our SSN algorithm for solving (21) in
Algorithm 3.

It is well known that continuous piecewise affine functions and twice continuously dif-
ferentiable functions are all strongly semismooth everywhere. Besides, the composition
preserves the (strongly) semismooth (Fischer, 1997). Since Proxλ‖·‖1 is Lipschitz continu-
ous piecewise affine and S∗ is differentiable, we know that ∇ψ(·) is strongly semismooth.
Now, we are ready to state the convergence result of SSN in the following theorem.

18

MARS: A Second-Order Algorithm for Precision Matrices Estimation

Algorithm 3 A semismooth Newton algorithm for solving (21).

Require:
Given parameters µ ∈ (0, 1/2), η̄ ∈ (0, 1), τ ∈ (0, 1], and δ ∈ (0, 1);
An initial point Y 0 ∈ Rp×n and a given x ∈ Rt;
An integer j = 0;

Ensure:
Approximate optimal solution Ŷ ;

1: while Stopping criteria are not satisfied do
2: Choose uj ∈ ∂Proxφ(x/σ − S(Y j) + e1). For D ∈ Rp×n, let VjD := D + σL†(S(D) ◦

uj ◦ e3)A. Solve the equation

VjD +∇ψ(Y j) = 0

by the conjugate gradient algorithm to find Dj such that∥∥VjDj +∇ψ(Y j)
∥∥ ≤ min(η̄,

∥∥∇ψ(Y j)
∥∥1+τ

); (23)

3: (Line search) Set αj = δmj , where mj is the first nonnegative integer m such that

ψ(Y j + δmjDj) ≤ ψ(Y j) + µδmj
〈
∇ψ(Y j), Dj

〉
;

4: Set Y j+1 = Y j + αjD
j and update Ŷ = Y k+1;

5: j + +;
6: end while

Theorem 14 Let the sequence {Y k} generated by Algorithm 3. Then {Y k} converges to
the unique optimal solution Y ∈ Rp×n of the problem in (20) and the convergence is of order
1 + τ , that is ∥∥∥Y j+1 − Y

∥∥∥ = O

(∥∥∥Y j − Y
∥∥∥1+τ

)
,

where τ is defined in (23).

Proof From (22), we know that Vj ∈ ∂̂2ψ(Y j), ∀ j ≥ 0. Besides, all Vj , j ≥ 0 are self-
adjoint positive definite. Because ∇ψ(·) is strongly semismooth, the stated conclusion can
be derived by following the proofs of Theorem 3.5 in Zhao et al. (2010).

Theorem 14 shows that the convergence rate of SSN is of order 1 + τ . This implies that
SSN can converge quadratically if τ = 1. However, in practice, we often set τ to be smaller,
such as 0.1 or 0.2, for computational considerations.

We then discuss how to implement the stopping criteria (17), (S1), and (S2) into Algo-
rithm 3 to guarantee the convergence results as discussed in Section 4.1. Since ψ is strongly

19

Li, Jiang, and Sun

convex with a parameter τc > 0, we can obtain

Ψk(Y
k+1, zk+1)− infΨk = ψk(Y

k+1)− infψk ≤ 1/(2τc)
∥∥∥∇ψk(Y k+1)

∥∥∥2

and (∇ψk(Y k+1), 0) ∈ ∂Ψk(Y
k+1, Zk+1). As a result, in practical implementation, we can

replace the stopping criteria (17), (S1) and (S2) to the following implementable criteria

∥∥∥∇ψk(Y k+1)
∥∥∥ ≤√τc/σkεk, ∞∑

k=0

εk <∞,

∥∥∥∇ψk(Y k+1)
∥∥∥ ≤ √τcσkθk ∥∥∥∥1

2
Y k+1AT +

1

2
A(Y k+1)T + zk+1 − c

∥∥∥∥ , ∞∑
k=0

θk < +∞,

∥∥∥∇ψk(Y k+1)
∥∥∥ ≤ θ′k ∥∥∥∥1

2
Y k+1AT +

1

2
A(Y k+1)T + zk+1 − c

∥∥∥∥ , 0 ≤ θ′k → 0.

In other words, the stopping criteria (17), (S1), and (S2) will be satisfied when
∥∥∇ψk(Y k+1)

∥∥
is small enough.

5. Some further discussions

Our main purpose in this section is to discuss the computational and memory complexities
of MARS compared to some state-of-the-art algorithms to demonstrate its performance.
Before that, to facilitate the discussion, we will describe the overall structure of MARS by
connecting the three algorithms it contains.

As we mentioned in the introduction, the three algorithms presented in the two sections
above comprise MARS. For clarity, an illustration is provided in Figure 1 to connect the
three algorithms. This figure demonstrates how MARS generates a precision matrix solution
path. Specifically, we need to solve the `1 penalized D-trace estimator for a collection of
given regularization parameters {λi}, i = 0, 1, · · · , k. For each λi, Algorithm 1 enables the
generation of a precision matrix by solving some reduced subproblems with a considerably
smaller dimension than the original problem. Following that, Algorithm 2 solves each
reduced subproblem, whereas the challenging problems (16) are solved by Algorithm 3.
Note that, while MARS is designed to generate a solution path, it is also able to efficiently
solve problems with a single regularization parameter (extensive numerical experiments
can be found in Section 6.2.2). We point out that in this case we can set λ0 in Step 1
of Algorithm 1 to λmax as described in Remark 7, and thus obtain Ω∗(λ0) without much
effort.

Next, we discuss the convergence properties of the proposed three algorithms. The con-
clusions reached in Sections 3 and 4 concerning this are summarized below. In the proof
of Theorem 6, we know that Algorithm 1 can terminate in a finite number of iterations;
Theorem 12 shows that Algorithm 2 is asymptotically superlinearly convergent; According
to Theorem 14, the local convergence rate of Algorithm 3 is at least superlinear (capable
of reaching a quadratic convergence rate). For Algorithm 1, one may be concerned that it
needs a large number of iterations in real applications. In fact, from the extensive numer-
ical experiments we have conducted, we found that for each regularization parameter, it

20

MARS: A Second-Order Algorithm for Precision Matrices Estimation

Figure 1: The overall structure of MARS

usually obtained a solution satisfying the stopping criterion within 3 steps. For some large
regularization parameters, the while loop in Algorithm 1 stops even after one iteration.
The sensible worst-case iteration complexity of the inexact ALM (Algorithm 2) and the
semismooth Newton method (Algorithm 3) are still not very clear, although they have been
widely used to solve different problems. We leave these two topics for further research in the
future. We point out that, due to the close connection between the proximal point method
and ALM (Rockafellar, 1976), for the exact ALM, the result in Güler (1991) indicates that
the convergence rate in terms of the objective function value of the primal problem (P) is

O

(
1∑k−1

j=0 σj

)
,

where {σj} is a given nondecreasing sequence. This suggests that its convergence rate is at
least O(1/k) and it can be arbitrarily fast. For the inexact ALM, there is no such result
yet to the best of our knowledge. However, the fast convergence rate has been proved in
Theorem 12. The numerical experiments presented in the next section also demonstrate the
superior performance of the inexact ALM, where Algorithm 2 could reach a satisfied solution
within a few iterations (typically no more than 7). Besides, the empirical performance of
Algorithm 3 is promising due to its super-fast local convergence rate (up to quadratic). As
a piece of evidence, in most of the simulation studies we conducted, the required Newton
steps are not larger than 5. We want to emphasize that the semismooth Newton method
is the key to the success of the designed algorithm. On the one hand, the performance of
the inexact ALM highly depends on the accuracy of the obtained solution to (20). On the
other hand, as we will show in the following paragraph, the per-iteration computational and
memory complexities are comparable to or even better than the ones of some first-order
methods, such as ADMM.

From the detailed steps of our algorithms, we can see that the vast majority of the
computations in Algorithm 1 are contained in solving the reduced subproblems, and al-
most all of the computations in Algorithm 2 are contained in solving its subproblems (16).
Therefore, based on the connections among the three algorithms shown in Figure 1, we may
conclude that Algorithm 3 is responsible for a significant portion of the computations in
MARS. Then, for simplicity, we only discuss the per-iteration computational complexity of
Algorithm 3 here. We know that in each iteration of Algorithm 3, a Newton equation is

21

Li, Jiang, and Sun

Table 1: The per-iteration complexities of the most internal algorithms of MARS, SSNAL,
iADMM, and eADMM.

MARS SSNAL iADMM eADMM

Complexity O(4wmn
√
κm) O((3p2 + ws)n

√
κs) O(4p2n

√
κi) O(6p2n+ 2n2p+ Cs)

1. The parameter wm = 2t− p denotes the cardinality of the nonzero index set I as given in
(15), ws is the number of nonzero elements in Uj (defined in Step 4 of Algorithm 4), and
Cs is the average per-iteration computational complexity of the SVD decomposition and the
construction of two matrices Λ1 and Λ2 in Algorithm 6.
2. The parameters κm, κs, and κi are the condition numbers of the matrices in the linear
systems solved by the CG algorithm in MARS, SSNAL, and iADMM respectively.
3. Under the sparse and high dimensional settings, due to wm and ws representing the number
of nonzero elements in the generated precision matrix, they both are far smaller than p2.

solved using the conjugate gradient (CG) algorithm, and a line search step is applied to
determine the step size. Then, according to the convergence result of the CG algorithm in
Shewchuk (1994, Chapter 10), we know that the computational complexity of CG in each it-
eration of Algorithm 3 is O(4wmn

√
κm), where wm = 2t−p is the cardinality of the nonzero

index set I as given in (15), and κm is the condition number of the corresponding matrix in
the Newton system and it contributes to measuring the maximum iteration number of CG.
According to the numerical experiments we performed in Section 6, the iteration number
of CG is usually small (about 5), and the semismooth Newton algorithm takes a unit step
in most of the cases (i.e., the iteration number of the line search seldom exceeds 2). Thus,
as shown by the numerical results, we may conclude that the per-iteration complexity of
Algorithm 3 is O(4wmn

√
κm). For comparison, the per-iteration complexities of the most

internal algorithms for SSNAL, iADMM, and eADMM (see Section 6.1 for details) are also
listed in Table 1. Recall that, t is the dimension of problem (P) and it is far smaller than
p(p+ 1)/2 under the sparse and high-dimensional settings. Therefore, MARS can be much
more efficient than other algorithms. As can be seen from Algorithms 2 and 3, the memory
complexity of our algorithm is O(pn+ t). Under the sparse and high-dimensional settings,
pn is generally greater than t, and so the memory complexity is O(pn) instead of the usual
O(p2) (such as in eADMM).

From the above discussion, we know that the computational and memory complexities
of our algorithm are satisfactory compared to other algorithms, which also explains the
promising performance of our algorithm given in the next section.

6. Numerical experiments

In this section, we will conduct several tests to illustrate the performance of our MARS.
For comparison, we consider several popular solvers including scio (Liu and Luo, 2015),
EQUAL (Wang and Jiang, 2020), glasso (Friedman et al., 2008), and QUIC (Hsieh et al.,
2014). We point out that the main reason we compare MARS with “glasso” and “QUIC”
(which are designed for the graphical lasso model) is to provide users with a more intuitive
demonstration that there is an alternative and more efficient choice for estimating the

22

MARS: A Second-Order Algorithm for Precision Matrices Estimation

precision matrix with our developed package. Since the existing popular methods are mainly
first-order methods and the stopping criteria of those algorithms are different from each
other and also ours, for better comparison, we will also introduce some other algorithms for
solving (6) in Section 6.1. Specifically, we will introduce a second-order algorithm, namely a
semismooth Newton augmented Lagrangian method (SSNAL), and two kinds of alternating
direction methods of multipliers (ADMM), where one is derived by solving the sub-problem
inexactly (iADMM) and the other derived by solving it exactly (eADMM). The numerical
experiments here are divided into two parts by the source of the data. The first part is
conducted for some random data generated by five given models, and the second part uses
data derived from real-world applications.

Before proceeding to the experiments, we provide some explanations about our MARS.
For any vector ν ∈ Rt, we can choose the i-th component of u ∈ ∂Proxφ(ν) as

ui =

{
0, if di 6= 0 & |νi| ≤ λ,
1, otherwise,

i = 1, 2, . . . , t.

This is because the components of νp := Proxφ(ν) can be found by

νpi =

{
sign(νi) ·max{|νi| − λ , 0}, if di 6= 0,

νi, if di = 0,
i = 1, 2, . . . , t.

In our MARS, we use the relative KKT residual

η =
‖R(Ω)‖F

1 + ‖h (Ω)‖F + ‖Ω‖F
to measure the accuracy of the generated solution Ω. That is, we use η to decide whether
our MARS should be stopped. Unless otherwise specified, we set the stopping tolerance
to 10−4 for all the solvers/algorithms except EQUAL in the following experiments. Based
on several tests, the stopping tolerance of EQUAL is set to 10−6. The reason for such
an adjustment is that their stopping criterion is determined by the distance between two
solutions in two consecutive iterations, and a slightly larger stopping tolerance may cause
the generated solution to be too far from the optimal solution set, in terms of the relative
KKT residual. Moreover, from the test results in Section 6.3, we found that even if the
stopping tolerance is set to 10−6, the relative KKT residuals of some solutions obtained by
EQUAL are still not less than 10−3 (we also try to set the stopping tolerance to 10−5, but
none of the associated relative KKT residuals is less than 5 × 10−2. More details can be
found from Appendix A).

All the numerical results are obtained by running Microsoft R Open 4.0.2 on a Win-
dows workstation (Intel(R) Core(TM) i7-10700 CPU @2.90GHz 2.00GHz RAM 32GB). For
simplicity, we will use R to represent Microsoft R Open 4.0.2.

6.1 Some other algorithms

In this subsection, we will introduce some other algorithms to compare the performance with
our MARS. The first algorithm is the SSNAL, which is similar to our algorithm, but does
not use the adaptive sieving reduction strategy. For later use, we define a linear operator

23

Li, Jiang, and Sun

S : Rp×n → Sp by S(Y) = 1
2(Y AT +AY T), ∀Y ∈ Rp×n, whose conjugate S∗ is in the form

of S∗(Ω) = ΩA, ∀Ω ∈ Sp. By putting a negative sign in front of the objective function of
the original problem (6), we obtain

max
Ω∈Sp

{
−
(

1

2
‖ΩA‖2F − 〈Ω, Ip〉+ λ ‖Ω‖1,off

)}
, (24)

whose dual is

min
Y ∈Rp×n,Z∈Sp

{
1

2
‖Y ‖2F + δBλ(Z) | 1

2
(Y AT +AY T) + Z = Ip

}
. (25)

Let σ > 0 be given. The augmented Lagrangian function associated with (25) is given by

Lmσ (Y,Z; Ω) =
1

2
‖Y ‖2F + δBλ(Z)− 〈S(Y) + Z − Ip,Ω〉+

σ

2
‖S(Y) + Z − Ip‖2F .

For any Y ∈ Rp×n, we define ψm(Y) := infZ Lmσ (Y,Z; Ω). Then, we can obtain a unique
optimal solution (Y,Z) of minY,Z Lmσ (Y,Z; Ω) by

Y = arg minψm(Y), Z = ProxδBλ (Ω/σ − S(Y) + Ip). (29)

Similar to the arguments in Section 4.2, we have

∇ψm(Y) = Y − σProxθ(Ω/σ − S(Y) + Ip)A, ∀Y ∈ Rp×n (30)

and
∂̂2ψm(Y)(D) = {D + σS(D) ◦ U)A | U ∈ U}, ∀D ∈ Rp×n,

where U = ∂Proxθ(Ω/σ−S(Y) + Ip). Now, we are ready to introduce the detailed steps of
SSNAL in Algorithm 4.

Next, we will introduce an iADMM for solving (25). Given Z, Ω ∈ Sp, we define

ψa(Y) := Lmσ (Y,Z; Ω) =
1

2
‖Y ‖2F +

σ

2
‖S(Y)− C‖2F + δBλ(Z)− 1

2σ
‖Ω‖2F ,

where C = Ω/σ + Ip − Z. The gradient of ψa(·) at Y ∈ Rp×n is

∇ψa(Y) = Y + S(Y)A− σCA. (31)

Then the optimal solution Ya = argminY ψ
a(Y) can be found by finding a root of ∇ψa(Y) =

0, which can be rewritten as

(Ip + σS∗S)(Y) = σCA, ∀Y ∈ Rp×n. (32)

We then use the conjugate gradient method to find a solution of (32). Detailed steps of
iADMM are provided in Algorithm 5.

For introducing the eADMM, we need equivalently rewrite (24) to be

max
Ω,M∈Sp

{
−
(

1

2
‖MA‖2F − 〈Ω, Ip〉+ λ ‖Ω‖1,off

)
|M − Ω = 0

}
, (33)

24

MARS: A Second-Order Algorithm for Precision Matrices Estimation

Algorithm 4 An SSNAL for solving (25).

Require:
Given parameters σ0 > 0, µ ∈ (0, 1/2), η̄ ∈ (0, 1), τ ∈ (0, 1], and δ ∈ (0, 1);
An initial point (Y 0, Z0,Ω0) ∈ Rp×n × Sp × Sp; An integer k = 0;

Ensure:
Approximate optimal solution (Ŷ , Ẑ, Ω̂);

1: while Stopping criteria are not satisfied do
2: An integer j = 0; Set an initial value Y0 = Y k for the inner loop;
3: while Stopping criteria of the inner problem are not satisfied do
4: Choose Uj ∈ ∂Proxθ(Ω

k/σ−S(Yj) + Ip). For D ∈ Rp×n, let VjD := D+ σ(S(D) ◦
Uj)A. Solve the equation

VjD +∇ψm(Yj) = 0 (26)

by the conjugate gradient algorithm to find Dj such that

‖VjDj +∇ψm(Yj)‖ ≤ min(η̄, ‖∇ψm(Yj)‖1+τ); (27)

5: (Line search) Set αj = δmj , where mj is the first nonnegative integer m such that

ψm(Yj + δmjDj) ≤ ψm(Yj) + µδmj 〈∇ψm(Yj), Dj〉 ; (28)

6: Set Yj+1 = Yj + αjDj and update Y k+1 = Yj+1;
7: j + +;
8: end while
9: Compute Zk+1 = ProxδBλ (Ωk/σk − S(Y k+1) + Ip);

10: Compute Ωk+1 = Ωk − σk
(
S(Y k+1) + Zk+1 − Ip

)
and update σk+1 ↑ σ∞ ≤ ∞;

11: Update Ŷ = Y k+1, Ẑ = Zk+1, Ω̂ = Ωk+1;
12: k + +;
13: end while

whose dual is

min
V, Z∈Sp

{
1

2
‖V A‖2F + δBλ(Z) | 1

2
(V Σ̂ + Σ̂V) + Z = Ip

}
. (34)

This reformulation is designed for implementing the conclusion in Wang and Jiang (2020).
We point out that, the main difference between (25) and (34) is that the dimensions of
variables Y and V are p × n and p × p respectively. Under the high-dimensional setting,
it can be easily seen that solving (25) can be much more efficient than solving (34). But,
when p is relatively small, eADMM could be more efficient than other algorithms. Then, we
shall start introducing eADMM. Given σ > 0, for any V,Z ∈ Sp, the augmented Lagrangian
function associated with (34) is given by

Leσ(V,Z; Ω) =
1

2
‖V A‖2F + δBλ(Z)− 〈T (V) + Z − Ip,Ω〉+

σ

2
‖T (V) + Z − Ip‖2F ,

25

Li, Jiang, and Sun

Algorithm 5 An inexact ADMM for solving (25).

Require:
Given parameters σ > 0 and π ∈ (0, (1 +

√
5)/2); An initial point (Y 0, Z0,Ω0) ∈

Rp×n × Sp × Sp; An integer k = 0;
Ensure:

Approximate optimal solution (Ŷ , Ẑ, Ω̂);
1: while Stopping criteria are not satisfied do
2: Use conjugate gradient method to find an optimal solution Y k+1 such that

Y k+1 ≈ argminY ∈Rp×nψ
a(Y).

3: Compute Zk+1 = ProxδBλ (Ωk/σ − S(Y k+1) + Ip);

4: Compute Ωk+1 = Ωk − πσ
(
S(Y k+1) + Zk+1 − Ip

)
;

5: Update Ŷ = Y k+1, Ẑ = Zk+1, Ω̂ = Ωk+1;
6: k + +;
7: end while

where T (V) := 1
2(V S + SV). Likewise, given Z,Ω ∈ Sp, we define

ψe(V) := Leσ(V,Z; Ω) =
1

2
‖V A‖2F +

σ

2
‖T (V)− C‖2F + δBλ(Z)− 1

2σ
‖Ω‖2F ,

where C = Ω/σ + Ip − Z. Then the optimal solution Ve of arg minψe(V) can be obtained
by solving

V/σ + T (V)− C = 0. (35)

Algorithm 6 An exact ADMM for solving (34).

Require:
Given parameters σ > 0 and π ∈ (0, (1 +

√
5)/2); An initial point (V 0, Z0,Ω0) ∈

Sp × Sp × Sp; An integer k = 0;
Ensure:

Approximate optimal solution (V̂ , Ẑ, Ω̂);
1: Calculate Λ1 and Λ2;
2: while Stopping criteria are not satisfied do
3: Update Ck = Ωk/σ + Ip − Zk;
4: Compute V k+1 using formula (36);
5: Compute Zk+1 = ProxδBλ (Ωk/σ − T (V k+1) + Ip);

6: Compute Ωk+1 = Ωk − πσ
(
T (V k+1) + Zk+1 − Ip

)
;

7: Update Ŷ = Y k+1, Ẑ = Zk+1, Ω̂ = Ωk+1;
8: k + +;
9: end while

By applying the thin SVD to the sample covariance matrix, we can obtain V ∈ Rp×n
and Λ = diag(τ1, · · · , τm) with τ1, · · · , τm ≥ 0 such that Σ̂ = VΛVT and VTV = In. After

26

MARS: A Second-Order Algorithm for Precision Matrices Estimation

calculating Λ1 and Λ2 by

Λ1 = diag

{
τ1

τ1 + 2/σ
, · · · , τm

τm + 2/σ

}
,

Λ2 =

{
τiτj(τi + τj + 4/σ)

(τi + 2/σ)(τj + 2/σ)(τi + τj + 2/σ)

}
m×m

,

we then have

Ve = σ
(
C − CVΛ1VT − VΛ1VTC + V(Λ2 ◦ (VTCV))VT

)
. (36)

Then, we give the detailed steps of eADMM in Algorithm 6.

6.2 Simulation studies

In this subsection, we will present two group tests to illustrate the performance of MARS on
some synthetic data generated by five different models. At first, we will demonstrate that
the performance of the D-trace loss estimator is comparable to the negative log-likelihood-
based estimator. Then, extensive numerical experiments were conducted to show the high
efficiency and promising performance of MARS compared to some state-of-art solvers. Ad-
ditionally, we will test MARS on some higher dimension data sets where existing solvers
may fail to generate solutions or be significantly time-consuming.

In all the simulation studies, the data were generated from the following five different
models:

1. Θij = 0.2, if i 6= j and 1 ≤ |i− j| ≤ 2; Θii = 1; Θij = 0 otherwise.

2. Θij = 0.2, if i 6= j and 1 ≤ |i− j| ≤ 4; Θii = 1; Θij = 0 otherwise.

3. Θ = diag{Θ0, · · · ,Θ0} with Θ0 ∈ S5, the off-diagonal components are equal to 0.2
and the diagonal is all 1; Θij = 0 otherwise.

4. Θij = 0.2|i−j|.

5. Θij = 0.2, if the remainder after division of i by
√
p is not equal to 0 and j = i+ 1;

Θij = 0.2, if j = i+
√
p; Θii = 1; Θij = 0 otherwise.

We point out that Models 1, 2, and 5 are derived from Zhang and Zou (2014).

6.2.1 Statistical performance

In this part, we will show the performance of the `1 penalized D-trace estimator solved by
MARS and others, as well as the performance of the graphical lasso estimator, to illustrate
the comparable performance among them.

For the last model, the sample dimension p must satisfy that
√
p is an integer. Thus,

we set p = 1000 in Models 1 to 4, p = 1024 in Model 5, and n = 400 for all the models.
In the test, the estimated precision matrix for each random sample is chosen by five-fold
cross-validation. The test results conducted by 100 replications are shown in Table 2.
The performance among different algorithms is compared in terms of seven quantities: the

27

Li, Jiang, and Sun

Table 2: Average performance among different methods for precision matrix estimation
with 100 replications, p = 1000 in Models 1 to 4, p = 1024 in Model 5 and n =
400 for all the Models.

Frobenius Spectral Infinity TP TN soff s̄off

mean | sd mean | sd mean | sd mean | sd mean | sd mean mean

Model 1

MARS 10.9437 | 0.0433 0.8193 | 0.0119 1.0949 | 0.0280 0.8134 | 0.0069 0.9947 | 0.0001 8353.36 8351.84
SSNAL 10.9469 | 0.0438 0.8195 | 0.0119 1.0947 | 0.0280 0.8134 | 0.0069 0.9947 | 0.0001 8375.55 8350.06
iADMM 10.9460 | 0.0433 0.8195 | 0.0119 1.0949 | 0.0280 0.8148 | 0.0070 0.9945 | 0.0001 8528.64 8348.64
eADMM 10.9460 | 0.0433 0.8195 | 0.0119 1.0949 | 0.0280 0.8148 | 0.0070 0.9945 | 0.0001 8529.00 8349.04
scio 11.2131 | 0.0424 0.8315 | 0.0117 1.0782 | 0.0237 0.7697 | 0.0065 0.9964 | 0.0001 6399.24 6396.24
glasso 11.2632 | 0.0346 0.8287 | 0.0081 1.2692 | 0.0374 0.8111 | 0.0065 0.9903 | 0.0002 12724.18 12717.21

Model 2

MARS 17.2284 | 0.0372 1.6560 | 0.0094 1.9535 | 0.0282 0.5399 | 0.0052 0.9944 | 0.0001 9390.04 9388.16
SSNAL 17.2320 | 0.0372 1.6564 | 0.0094 1.9534 | 0.0282 0.5399 | 0.0051 0.9944 | 0.0001 9407.36 9382.32
iADMM 17.2295 | 0.0372 1.6561 | 0.0094 1.9536 | 0.0282 0.5427 | 0.0050 0.9942 | 0.0001 9624.22 9377.70
eADMM 17.2295 | 0.0372 1.6561 | 0.0094 1.9536 | 0.0282 0.5427 | 0.0050 0.9942 | 0.0001 9625.02 9377.74
scio 17.4139 | 0.0363 1.6704 | 0.0092 1.9402 | 0.0236 0.4965 | 0.0052 0.9962 | 0.0001 7208.28 7204.52
glasso 17.3500 | 0.0300 1.6623 | 0.0064 2.1461 | 0.0480 0.5721 | 0.0052 0.9883 | 0.0003 15757.24 15748.44

Model 3

MARS 12.6053 | 0.0964 0.9441 | 0.0117 1.0930 | 0.0247 0.4480 | 0.0351 0.9978 | 0.0007 3461.28 3459.78
SSNAL 12.6059 | 0.0961 0.9441 | 0.0117 1.0928 | 0.0247 0.4498 | 0.0329 0.9978 | 0.0007 3486.69 3473.66
iADMM 12.6056 | 0.0957 0.9442 | 0.0117 1.0931 | 0.0248 0.4508 | 0.0332 0.9977 | 0.0007 3528.22 3473.72
eADMM 12.6057 | 0.0959 0.9442 | 0.0117 1.0931 | 0.0248 0.4508 | 0.0332 0.9977 | 0.0007 3528.30 3473.78
scio 12.8151 | 0.0246 0.9555 | 0.0103 1.0715 | 0.0142 0.3708 | 0.0089 0.9991 | 0.0001 1710.32 1709.18
glasso 12.7205 | 0.0376 0.9425 | 0.0099 1.1469 | 0.0319 0.4338 | 0.0151 0.9976 | 0.0005 3583.68 3581.24

Model 4

MARS 7.7640 | 0.0493 0.5496 | 0.0115 0.7630 | 0.0332 0.0064 | 0.0001 0.9973 | 0.0001 4289.52 4288.96
SSNAL 7.7651 | 0.0493 0.5496 | 0.0115 0.7629 | 0.0331 0.0064 | 0.0001 0.9973 | 0.0001 4367.77 4347.22
iADMM 7.7642 | 0.0493 0.5497 | 0.0115 0.7631 | 0.0331 0.0065 | 0.0001 0.9972 | 0.0001 4414.12 4347.84
eADMM 7.7642 | 0.0493 0.5497 | 0.0115 0.7631 | 0.0331 0.0065 | 0.0001 0.9972 | 0.0001 4414.08 4347.86
scio 7.9572 | 0.0492 0.5570 | 0.0120 0.7479 | 0.0267 0.0054 | 0.0001 0.9982 | 0.0001 3341.48 3339.84
glasso 7.7360 | 0.0516 0.5459 | 0.0094 0.8877 | 0.0399 0.0096 | 0.0003 0.9943 | 0.0003 7458.78 7454.63

Model 5

MARS 8.0015 | 0.0603 0.6061 | 0.0145 0.9493 | 0.0358 0.9893 | 0.0021 0.9938 | 0.0001 10389.18 10386.06
SSNAL 8.0058 | 0.0603 0.6064 | 0.0145 0.9493 | 0.0358 0.9893 | 0.0021 0.9932 | 0.0001 11059.55 10378.32
iADMM 8.0000 | 0.0604 0.6060 | 0.0145 0.9494 | 0.0358 0.9904 | 0.0019 0.9935 | 0.0001 10662.36 10385.10
eADMM 8.0002 | 0.0604 0.6060 | 0.0145 0.9494 | 0.0358 0.9904 | 0.0019 0.9935 | 0.0001 10663.20 10384.46
scio 8.3156 | 0.0613 0.6213 | 0.0147 0.9294 | 0.0325 0.9825 | 0.0026 0.9963 | 0.0001 7747.98 7745.16
glasso 8.2708 | 0.0559 0.6212 | 0.0111 1.1149 | 0.0560 0.9951 | 0.0015 0.9881 | 0.0002 16319.38 16310.56

28

MARS: A Second-Order Algorithm for Precision Matrices Estimation

Frobenius norm (Frobenius), the spectral norm (Spectral) and the infinity norm (Infinity)
between the estimated precision matrix and the true precision matrix, the ratio (TP) of
correctly estimated non-zero components, the ratio (TN) of correctly estimated zero com-
ponents, the number (soff) of the off-diagonal non-zero components and the number (s̄off) of
the off-diagonal components whose absolute values are greater than 10−5 in the estimated
solution.

By comparing the first five quantities of the results in Table 2, we can see that the
performance among the first four algorithms is similar to each other. The reason is that
they are using the same estimator and stopping criteria. The performance of these four
algorithms is slightly better than that of both scio and glasso in most cases. We point out
that the main difference between our MARS and scio is that scio estimates the precision
matrix column by column. As for the sparsity of the estimated solutions, the results are
quite different. Specifically, scio always generates more sparse solutions compared with
others and the solutions obtained by glasso are less sparse than others for all the cases.
MARS can generate more sparse solutions when compared with SSNAL and two kinds of
ADMM, and more importantly, it can generate solutions with fewer small-value components.
In other words, we do not need to artificially remove some components with insignificant
values. In addition, all the estimated precision matrices in this test are nonsingular.

6.2.2 Computational performance

In this part, we will demonstrate the computational performance of MARS compared with
some state-of-art solvers for both a solution path and also some single regularization prob-
lems. Furthermore, we will test our MARS on some higher dimension data sets to charac-
terize the ability of MARS to handle higher size data.

For simplicity, here we still use the same five models to generate random data. We set
p = 2000 in Models 1-4, p = 2025 in Model 5, and set n to 50 and 100. Then, we use 10
equally decreasing regularization parameters to demonstrate the performance of different
algorithms. The regularization parameters are chosen by a pretest such that the oracle
sparsity of the precision matrix lies in the sparsity of those ten generated solutions, and the
sparsity levels of the solutions from different algorithms are close. Specifically, we start the
test with λmax and decrease it by 0.01 until the sparsity of the associated solution is less than
the oracle sparsity, and then use the 10 smallest regularization parameters for the following
tests. It can be seen from Figure 2 that under the same regularization parameter range,
the estimated solutions obtained by different algorithms are similar in sparsity, except for
scio, which tends to get more sparse solutions. For the test on Model 4 with n = 50 and
p = 2000, the sparsities of the solutions for some smaller regularization parameters obtained
by glasso and QUIC are slightly different from that of MARS, SNNAL, and the two ADMMs.
However, the difference in quantity is not large, see Figure 2 for details. The corresponding
mean and standard deviation (sd) of the computation time for solving a solution path with
the 10 parameters are shown in Table 3 (the relative KKT residuals (η) are listed in Table
9 in Appendix B). We can see that MARS can be up to 25 times faster than glasso and 10
times faster than SSNAL. Besides, for each λ, we list the statistical performance of MARS
and glasso in Table 11 in Appendix B. To compare the computation efficiency of different
methods with a single regularization parameter, we also test the problems under the 10

29

Li, Jiang, and Sun

Figure 2: Average number of s̄off for 10 different regularization parameters with 10 replica-
tions. p is set to 2000 in Models 1-4, and 2025 in Model 5. The horizontal axis
is the λ index, and the vertical axis is the number of off-diagonal elements whose
absolute value is greater than 10−5.

30

MARS: A Second-Order Algorithm for Precision Matrices Estimation

Table 3: Average computation time (seconds) of different algorithms and 10 regularization
parameters with 10 replications under Models 1-5 (p = 2000 for Models 1-4 and
p = 2025 for Model 5). The times listed in this table are the total time to obtain
estimated precision matrices for the 10 regularization parameters.

Model 1 Model 2 Model 3 Model 4 Model 5
mean | sd mean | sd mean | sd mean | sd mean | sd

problems solved sequentially (warm-started for each subsequent regularization parameter)

n
=

50

MARS 2.84 | 0.12 3.59 | 0.14 2.68 | 0.13 6.77 | 0.25 2.96 | 0.14
SSNAL 24.23 | 1.11 33.81 | 0.83 24.8 | 0.86 46.19 | 1.71 31.15 | 1.83
iADMM 153.66 | 1.44 157.07 | 1.37 155.58 | 1.26 166.24 | 1.11 166.51 | 3.98
eADMM 276.14 | 6.08 318.4 | 5.74 275.12 | 10.01 353.27 | 7.4 324.26 | 13.63
scio# 45.88 | 0.62 46.54 | 0.31 45.86 | 0.7 228.93 | 12.07 48.03 | 0.7
EQUAL# 84.13 | 1.26 102.79 | 2.03 83.38 | 0.98 133.43 | 3.23 86.36 | 2.05
glasso(1e-3) 51.13 | 0.97 80.53 | 5.12 50.87 | 0.85 176.14 | 5.11 45.53 | 1.04
QUIC# 7.65 | 0.36 9.36 | 0.16 7.43 | 0.07 14.71 | 0.76 7.69 | 0.11

n
=

10
0

MARS 3.35 | 0.38 4.55 | 0.05 3.16 | 0.02 7.28 | 0.18 3.54 | 0.15
SSNAL 24.56 | 2.93 26.24 | 0.47 21.73 | 0.49 34.83 | 0.44 26.39 | 1.25
iADMM 116.87 | 9.35 121.41 | 1.26 110.4 | 1.13 124.92 | 0.99 126.65 | 0.94
eADMM 167.19 | 4.98 175.22 | 1.78 160.72 | 2.05 203.17 | 1.77 177.44 | 1.74
scio# 47.39 | 5.21 46.37 | 0.74 45.76 | 0.79 48.01 | 0.46 47.72 | 0.63
EQUAL# 42.69 | 0.98 50.81 | 0.49 40.07 | 0.21 61.68 | 0.35 48.2 | 0.57
glasso(1e-3) 46.17 | 3.46 95.2 | 7.35 41.54 | 0.89 150.71 | 7.67 50.27 | 4.3
QUIC# 7.3 | 1.02 9.06 | 0.13 6.69 | 0.11 13.15 | 0.25 7.75 | 0.15

problems solved independently (cold-started for each subsequent regularization parameter)

n
=

50

MARS 4.63 | 0.26 6.37 | 0.27 4.82 | 0.19 11.76 | 0.52 5.1 | 0.21
SSNAL 38.6 | 0.66 53.51 | 0.62 44.08 | 1.20 68.54 | 0.53 43.69 | 1.98
iADMM 298.54 | 1.98 305.43 | 3.28 298.8 | 2.61 336.61 | 3 319.75 | 3.26
eADMM 528.30 | 4.36 591.72 | 8.14 616.26 | 3.29 528.12 | 6.2 592.57 | 6.22
scio# 46.01 | 0.68 47.66 | 0.94 46.12 | 0.83 216.71 | 9.61 47.88 | 0.85
EQUAL# 270.91 | 1.61 268.12 | 1.22 272.18 | 1.46 287.32 | 0.91 288.26 | 1.66
glasso(1e-3) 148.47 | 4.31 232.31 | 2.98 145.68 | 4.87 361.98 | 7.52 131.26 | 3.82
QUIC# 11.04 | 0.35 13.27 | 0.43 10.88 | 0.36 22.01 | 1.85 11.79 | 0.66

n
=

10
0

MARS 5.5 | 0.11 7.74 | 0.22 5.34 | 0.15 12.42 | 0.15 6.52 | 0.17
SSNAL 32.43 | 0.36 37.37 | 0.57 30.31 | 0.36 48.52 | 0.52 40.85 | 0.86
iADMM 240.56 | 1.99 225.71 | 2.31 240.81 | 1.71 218.42 | 1.03 249.7 | 3.43
eADMM 381.09 | 1.36 332.7 | 3.37 364.37 | 3.04 342.43 | 2.79 380.1 | 2.09
scio# 46.24 | 0.37 46.88 | 0.79 46.27 | 0.69 48.64 | 0.38 49.11 | 0.45
EQUAL# 163.35 | 1.69 164.52 | 1.31 160.54 | 1.16 166.48 | 1.75 178.81 | 0.7
glasso(1e-3) 128.6 | 3.06 216.83 | 2.76 123.16 | 2.66 298.55 | 3.15 143.83 | 4.4
QUIC# 8.55 | 0.09 10.62 | 0.15 8.42 | 0.14 15.31 | 0.14 9.59 | 0.36

1 The symbol “#” indicates that the average relative KKT residuals do not reach the stopping
tolerance of 10−4.
2 The notation “glasso(1e-3)” means an inputted stopping tolerance of 10−3, the associated solution
is already reached the stopping tolerance of 10−4 for this test, see Table 9 in Appendix B for details.

31

Li, Jiang, and Sun

regularization parameters without using any prior information (cold-started). The average
computation times are also reported in Table 3. It can be seen that MARS can be up to
32 times faster than glasso and 9 times faster than SSNAL. From the results above, we can
conclude that MARS is significantly more efficient than others both in generating a solution
path and in solving the problem with a single regularization parameter.

Next, we conduct tests for generating a solution path with 50 regularization parameters.
The regularization parameter interval is 50 equally decreasing values from 1 to λmin, which
is the same as in the previous test. After observing the test results in Table 4, we found
that MARS, SSNAL, glasso, and EQUAL are much more efficient than other algorithms,
so when p is set to 3000 in Models 1 to 4, and 3025 in Model 5, we will only focus on the
comparison among these four algorithms. Besides, due to the out-of-memory error of glasso
and less efficiency of EQUAL, we will only test MARS and SSNAL in subsequent higher
dimension tests. For fairness of comparison, in all tests where p is less than 5000, we did
not use Remark 7 to narrow the range of λ path for MARS, SSNAL, iADMM, and eADMM
and the generated data are all standardized in the first beginning. It can be seen from Table
4 that MARS is significantly faster than other algorithms. Especially, when p is larger, the
computation time of MARS could be roughly 1/10 of that of glasso and SSNAL.

6.3 Real data analysis

In this subsection, we will use some real data sets to demonstrate the promising performance
of our MARS for generating a solution path. The publicly available data sets we are going
to use include a prostate data set (https://web.stanford.edu/~hastie/CASI_files/
DATA/prostate.html) and a breast cancer data set (Hess et al., 2006), which can be found
on (https://bioinformatics.mdanderson.org/public-datasets/). The prostate data
set contains two groups, the first one is 6033 genetic activity measurements of 50 control
subjects and the other is that of 52 prostate cancer subjects. Thus, the number of variables
contained in the precision matrix that needs to be estimated is more than 18 million. As for
the breast cancer data set, it contains the measurements of 22283 genes with 133 subjects,
where 99 of them are labeled as residual disease (RD) and the remaining 34 subjects are
labeled as pathological complete response (pCR). For this data set, the estimated precision
matrix contains about 250 million parameters.

After standardizing the two groups of the prostate data set, we use MARS, SSNAL,
EQUAL, and scio to generate solution paths for the two groups separately. We should note
that, when λ is too small, there may not exist optimal solutions for the precision matrix
estimator. Therefore, before going further to the main comparison tests, we should conduct
some pretests to find a suitable smallest λ. The performance of the estimations generated
by different algorithms is concluded in Table 5. Since η is to measure the accuracy of the
generated solution, we notice that when λ is larger, the estimated solutions generated by scio
perform very well, but when λ gradually becomes smaller, its estimated solutions are not
desired, which can also be observed from the associated objective value. The performance
of EQUAL is the opposite, that is, it performs better when λ is smaller. We should point
out that even if the stopping tolerance of EQUAL has been set to be 10−6, none of the
generated solutions makes η less than 10−3. Thus, by comparing the objective value and
η, we conclude that MARS and SSNAL can outperform both EQUAL and scio since all

32

https://web.stanford.edu/~hastie/CASI_files/DATA/prostate.html
https://web.stanford.edu/~hastie/CASI_files/DATA/prostate.html
https://web.stanford.edu/~hastie/CASI_files/DATA/prostate.html
https://web.stanford.edu/~hastie/CASI_files/DATA/prostate.html
https://bioinformatics.mdanderson.org/public-datasets/
https://bioinformatics.mdanderson.org/public-datasets/

MARS: A Second-Order Algorithm for Precision Matrices Estimation

Table 4: Average computation time (seconds) of different algorithms with 50 regularization
parameters and 10 replications for generating a solution path.

Model 1 Model 2 Model 3 Model 4 Model 5
mean | sd mean | sd mean | sd mean | sd mean | sd

Models 1 to 4: p = 2000; Model 5: p = 2025

n
=

5
0

MARS(1e-4) 6.78 | 0.22 7.32 | 0.18 6.39 | 0.13 10.64 | 0.37 7.61 | 0.13
MARS(1e-8) 13.59 | 1.67 15.33 | 0.67 11.93 | 0.76 27.79 | 1.57 15.95 | 0.98
SSNAL 41.57 | 1.97 45.24 | 1.94 39.96 | 1.41 66.01 | 2.12 51.43 | 1
iADMM 242.65 | 6.83 260.9 | 7.55 237.81 | 6.2 297.62 | 7.93 286.6 | 6
eADMM 440.09 | 6.28 439.84 | 12.72 417.39 | 12.85 581.59 | 16.75 470.29 | 14.46

scio# 225.61 | 1.88 226.54 | 1.76 226.13 | 1.75 390.91 | 13.12 236.39 | 2.17

EQUAL# 103.76 | 4.15 127.98 | 0.75 102.78 | 2.24 167.17 | 1.95 117.45 | 1.57
glasso(1e-3) 50.44 | 0.39 78.67 | 7.08 49.82 | 0.73 145.97 | 5.02 57.94 | 1.1
glasso(1e-4) 92.04 | 0.99 136.63 | 1.68 90.7 | 1.62 224.05 | 1.71 107.26 | 1.96

QUIC# 24.95 | 0.17 26.58 | 0.14 24.87 | 0.37 30.71 | 0.89 27.56 | 0.4

n
=

1
0
0

MARS(1e-4) 7.17 | 0.24 8.4 | 0.36 6.98 | 0.18 11.2 | 0.32 8.11 | 0.34
MARS(1e-8) 14.19 | 1.23 20.2 | 1.8 13.92 | 0.99 29.02 | 1.21 17.39 | 1.1
SSNAL 32.67 | 1.83 38.01 | 1.89 30.89 | 1.46 45.21 | 1.55 42.63 | 1.67
iADMM 139.63 | 4.03 152.38 | 3.87 133.35 | 2.85 165.33 | 5.86 176.43 | 3.7
eADMM 179.79 | 7.63 208.62 | 11.41 178.69 | 7.98 228.48 | 8.45 224.87 | 4.31

scio# 229.94 | 2.49 228.34 | 0.98 228.96 | 1.39 228.04 | 0.97 236.28 | 1.18

EQUAL# 48.54 | 1.26 59.96 | 0.91 48.03 | 0.59 71.12 | 1 55.8 | 1.6
glasso(1e-3) 47.84 | 7.57 89.34 | 4.11 48.43 | 8.67 122.91 | 7.43 52.34 | 7.29
glasso(1e-4) 72.72 | 1.04 110.16 | 1.62 69.49 | 0.93 165.18 | 7.7 77.69 | 1.47

QUIC# 24.39 | 0.32 26 | 0.12 24.21 | 0.24 28.73 | 0.26 26.39 | 0.18

Models 1 to 4: p = 3000; Model 5: p = 3024

n
=

5
0

MARS(1e-4) 13.99 | 0.77 16.4 | 0.69 14.48 | 0.65 20.47 | 0.74 15.47 | 0.63
MARS(1e-8) 26.58 | 2.74 36.72 | 2.12 26.99 | 2.37 50.5 | 3.07 29.64 | 2.15
SSNAL 91.14 | 3.68 117.92 | 4.09 93.07 | 2.54 144.3 | 4.33 104.6 | 4.63

EQUAL# 258.29 | 2.85 344.63 | 5.24 261.65 | 13.18 432.73 | 10.04 272.97 | 3.48
glasso(1e-3) 146.51 | 2.3 260.34 | 2.5 145.85 | 2.74 419.1 | 22.35 164.27 | 2.69
glasso(1e-4) 271.12 | 6.34 497.62 | 5.07 269.1 | 4.9 691.6 | 9.53 306.98 | 5.72

n
=

1
0
0

MARS(1e-4) 15.24 | 0.74 17.42 | 0.87 15.36 | 0.72 19.41 | 0.82 17.13 | 1
MARS(1e-8) 30.68 | 2.69 39.1 | 3.69 29.4 | 2.2 45.08 | 2.7 33 | 2.98
SSNAL 71.42 | 3.65 87.63 | 2.6 69.48 | 1.64 96.58 | 4.8 96.36 | 4.02

EQUAL# 133.33 | 0.7 159.65 | 4.39 132.13 | 1.04 183.01 | 0.96 146.28 | 0.94
glasso(1e-3) 133.15 | 1.41 247.69 | 1.4 127.63 | 1.04 325.16 | 1.75 140.07 | 4.02
glasso(1e-4) 244.54 | 2.88 374.9 | 4.36 233.46 | 1.68 481.69 | 3.39 255.37 | 7.79

Models 1 to 4: p = 5000; Model 5: p = 5041

n
=

5
0 MARS(1e-4) 22.14 | 0.68 28.17 | 1.15 22.53 | 0.85 35.7 | 1.87 24.51 | 1.79

MARS(1e-8) 55.4 | 7.57 75.15 | 8.43 59.67 | 5.96 107.86 | 9.6 63.66 | 6.9
SSNAL 218.99 | 5.15 299.27 | 7.52 221.99 | 10.28 366.03 | 5.89 233.71 | 6.59

n
=

1
0
0 MARS(1e-4) 18.66 | 1.17 23.71 | 1.76 20.02 | 1.17 33.08 | 0.95 25.15 | 1.22

MARS(1e-8) 50.02 | 5.83 72.22 | 5.86 59.36 | 7.34 102.32 | 6.29 66.58 | 5.79

SSNAL 147.6 | 5.19 179.6 | 9.08 156.94 | 6.73 231.67 | 7.94 207.09 | 5.12
1 The symbol “#” indicates that the average relative KKT residuals do not reach the stopping tolerance of

10−4.
2 The notation “glasso(1e-3)” means an inputted stopping tolerance of 10−3, the associated solution is

already reached the stopping tolerance of 10−4 for this test, see Table 10 in Appendix B for details. We

also show results for MARS and glasso with inputted stopping tolerances of 10−8 and 10−4 respectively, for

obtaining solutions with relative KKT residuals smaller than 10−8.
3 In the last test, due to out of memory of glasso and less efficiency of EQUAL, these two solvers were not
tested.

33

Li, Jiang, and Sun

T
a
b

le
5:

T
h

e
o
b

jectiv
e

va
lu

es
an

d
th

e
relativ

e
K

K
T

resid
u

als
(η

)
of

p
ath

s
of

estim
ated

p
recision

m
atrices

gen
erated

b
y

d
iff

eren
t

a
lg

o
rith

m
s

fo
r

th
e

p
ro

sta
te

d
ata

set.

λ

c
o
n
tro

l
g
ro

u
p

c
a
n
c
e
r

g
ro

u
p

O
b

je
c
tiv

e
v
a
lu

e
η

O
b

je
c
tiv

e
v
a
lu

e
η

M
A

R
S
|

S
S
N

A
L
|

E
Q

U
A

L
|

sc
io

M
A

R
S
|

S
S
N

A
L
|

E
Q

U
A

L
|

sc
io

M
A

R
S
|

S
S
N

A
L
|

E
Q

U
A

L
|

sc
io

M
A

R
S
|

S
S
N

A
L
|

E
Q

U
A

L
|

sc
io

0
.9

9
-3

0
1
6
.5

0
|

-3
0
1
6
.5

0
|

9
2
4
.6

8
|

-3
0
1
6
.5

0
6
.4

7
e
-0

6
|

4
.8

0
e
-0

6
|

5
.0

5
e
-0

2
|

2
.0

5
e
-0

7
-3

0
1
6
.5

0
|

-3
0
1
6
.5

0
|

-1
9
6
4
.8

0
|

-3
0
1
6
.5

0
9
.3

6
e
-0

6
|

6
.9

5
e
-0

6
|

3
.4

0
e
-0

2
|

2
.3

3
e
-0

7
0
.9

8
-3

0
1
6
.5

0
|

-3
0
1
6
.5

0
|

-8
6
1
.7

0
|

-3
0
1
6
.5

3
3
.3

1
e
-0

5
|

3
.1

5
e
-0

5
|

3
.8

9
e
-0

1
|

3
.4

4
e
-0

7
-3

0
1
6
.5

0
|

-3
0
1
6
.5

0
|

-1
9
6
6
.8

5
|

-3
0
1
6
.5

6
4
.3

3
e
-0

5
|

4
.1

1
e
-0

5
|

3
.4

1
e
-0

2
|

4
.6

9
e
-0

7
0
.9

7
-3

0
1
6
.5

0
|

-3
0
1
6
.5

0
|

-1
7
9
8
.6

8
|

-3
0
1
6
.6

3
7
.5

6
e
-0

5
|

7
.4

3
e
-0

5
|

3
.5

4
e
-0

2
|

5
.4

4
e
-0

7
-3

0
1
6
.5

0
|

-3
0
1
6
.5

0
|

-2
4
4
8
.1

4
|

-3
0
1
6
.7

2
9
.8

4
e
-0

5
|

9
.6

7
e
-0

5
|

6
.3

9
e
-0

2
|

6
.8

6
e
-0

7
0
.9

6
-3

0
1
6
.8

3
|

-3
0
1
6
.5

2
|

-1
8
0
2
.1

2
|

-3
0
1
6
.8

3
4
.8

6
e
-0

6
|

9
.4

0
e
-0

5
|

3
.5

6
e
-0

2
|

7
.0

4
e
-0

7
-3

0
1
7
.0

4
|

-3
0
1
6
.6

8
|

-2
4
4
7
.9

0
|

-3
0
1
7
.0

5
7
.3

0
e
-0

6
|

9
.4

3
e
-0

5
|

6
.4

0
e
-0

2
|

7
.9

9
e
-0

7
0
.9

5
-3

0
1
7
.1

0
|

-3
0
1
6
.9

4
|

-2
3
5
1
.8

9
|

-3
0
1
7
.1

9
9
.5

4
e
-0

5
|

7
.8

0
e
-0

5
|

7
.2

2
e
-0

2
|

8
.5

1
e
-0

7
-3

0
1
7
.5

8
|

-3
0
1
7
.2

4
|

-2
4
5
6
.8

0
|

-3
0
1
7
.5

9
1
.0

4
e
-0

5
|

8
.7

3
e
-0

5
|

6
.3

1
e
-0

2
|

1
.0

1
e
-0

6
0
.9

4
-3

0
1
7
.7

5
|

-3
0
1
7
.5

3
|

-2
3
5
6
.6

8
|

-3
0
1
7
.7

5
3
.3

9
e
-0

6
|

7
.1

8
e
-0

5
|

7
.1

8
e
-0

2
|

1
.0

3
e
-0

6
-3

0
1
8
.4

0
|

-3
0
1
8
.0

6
|

-2
7
0
0
.0

2
|

-3
0
1
8
.4

1
1
.1

5
e
-0

5
|

8
.5

4
e
-0

5
|

2
.2

0
e
-0

2
|

1
.2

1
e
-0

6
0
.9

3
-3

0
1
8
.5

5
|

-3
0
1
8
.2

2
|

-2
3
7
1
.4

5
|

-3
0
1
8
.5

5
7
.2

0
e
-0

6
|

9
.9

2
e
-0

5
|

7
.0

4
e
-0

2
|

5
.6

3
e
-0

5
-3

0
1
9
.5

7
|

-3
0
1
9
.2

3
|

-2
6
9
8
.9

8
|

-3
0
1
9
.5

8
1
.1

6
e
-0

5
|

8
.5

0
e
-0

5
|

2
.2

2
e
-0

2
|

1
.3

5
e
-0

6
0
.9

2
-3

0
1
9
.6

6
|

-3
0
1
9
.3

9
|

-2
6
4
5
.2

3
|

-3
0
1
9
.6

6
8
.6

2
e
-0

6
|

8
.1

2
e
-0

5
|

2
.3

3
e
-0

2
|

1
.2

1
e
-0

4
-3

0
2
1
.1

4
|

-3
0
2
0
.7

9
|

-2
7
0
4
.3

1
|

-3
0
2
1
.1

5
1
.1

7
e
-0

5
|

8
.5

3
e
-0

5
|

2
.2

2
e
-0

2
|

1
.4

9
e
-0

6
0
.9

1
-3

0
2
1
.1

3
|

-3
0
2
0
.9

0
|

-2
6
4
3
.2

8
|

-3
0
2
1
.1

3
7
.9

8
e
-0

6
|

7
.4

8
e
-0

5
|

2
.3

5
e
-0

2
|

1
.8

2
e
-0

4
-3

0
2
3
.1

6
|

-3
0
2
2
.8

0
|

-2
8
5
8
.8

2
|

-3
0
2
3
.1

7
1
.2

4
e
-0

5
|

8
.5

5
e
-0

5
|

2
.5

0
e
-0

2
|

1
.5

8
e
-0

6
0
.9

-3
0
2
3
.0

2
|

-3
0
2
2
.8

0
|

-2
6
4
8
.9

8
|

-3
0
2
3
.0

1
8
.7

4
e
-0

6
|

7
.2

2
e
-0

5
|

2
.3

5
e
-0

2
|

2
.4

7
e
-0

4
-3

0
2
5
.6

9
|

-3
0
2
5
.3

2
|

-2
8
5
8
.3

4
|

-3
0
2
5
.7

0
1
.1

7
e
-0

5
|

8
.5

9
e
-0

5
|

2
.5

4
e
-0

2
|

1
.7

0
e
-0

6
0
.8

9
-3

0
2
5
.3

9
|

-3
0
2
5
.1

8
|

-2
8
3
2
.4

2
|

-3
0
2
5
.3

7
8
.1

1
e
-0

6
|

7
.0

4
e
-0

5
|

2
.7

0
e
-0

2
|

3
.2

8
e
-0

4
-3

0
2
8
.7

7
|

-3
0
2
8
.4

0
|

-2
8
6
0
.1

7
|

-3
0
2
8
.7

8
1
.1

6
e
-0

5
|

8
.6

0
e
-0

5
|

2
.5

5
e
-0

2
|

1
.0

4
e
-0

5
0
.8

8
-3

0
2
8
.3

0
|

-3
0
2
8
.0

9
|

-2
8
3
3
.9

4
|

-3
0
2
8
.2

7
8
.6

9
e
-0

6
|

6
.9

5
e
-0

5
|

2
.7

3
e
-0

2
|

4
.0

0
e
-0

4
-3

0
3
2
.4

6
|

-3
0
3
2
.0

8
|

-2
8
6
3
.9

8
|

-3
0
3
2
.4

7
1
.2

2
e
-0

5
|

8
.6

3
e
-0

5
|

2
.5

6
e
-0

2
|

1
.1

3
e
-0

4
0
.8

7
-3

0
3
1
.7

9
|

-3
0
3
1
.6

0
|

-2
8
3
7
.7

5
|

-3
0
3
1
.7

5
1
.5

1
e
-0

5
|

6
.8

8
e
-0

5
|

2
.7

4
e
-0

2
|

4
.8

1
e
-0

4
-3

0
3
6
.8

1
|

-3
0
3
6
.4

2
|

-2
9
3
1
.8

6
|

-3
0
3
6
.7

7
1
.1

7
e
-0

5
|

8
.6

9
e
-0

5
|

1
.4

0
e
-0

2
|

4
.2

0
e
-0

4
0
.8

6
-3

0
3
5
.9

4
|

-3
0
3
5
.7

4
|

-2
9
1
2
.4

3
|

-3
0
3
5
.8

6
1
.1

2
e
-0

5
|

6
.8

4
e
-0

5
|

1
.4

9
e
-0

2
|

6
.0

8
e
-0

4
-3

0
4
1
.8

8
|

-3
0
4
1
.4

9
|

-2
9
3
9
.4

4
|

-3
0
4
1
.7

1
1
.1

7
e
-0

5
|

8
.6

7
e
-0

5
|

1
.3

9
e
-0

2
|

7
.9

6
e
-0

4
0
.8

5
-3

0
4
0
.7

7
|

-3
0
4
0
.5

8
|

-2
9
1
8
.3

8
|

-3
0
4
0
.6

1
1
.5

7
e
-0

5
|

6
.7

9
e
-0

5
|

1
.4

9
e
-0

2
|

8
.3

4
e
-0

4
-3

0
4
7
.7

3
|

-3
0
4
7
.3

4
|

-2
9
9
5
.4

9
|

-3
0
4
6
.9

1
1
.3

0
e
-0

5
|

8
.6

5
e
-0

5
|

1
.0

5
e
-0

2
|

1
.6

8
e
-0

3
0
.8

4
-3

0
4
6
.3

6
|

-3
0
4
6
.1

6
|

-2
9
8
9
.6

4
|

-3
0
4
6
.1

3
9
.4

7
e
-0

6
|

6
.7

6
e
-0

5
|

1
.1

2
e
-0

2
|

9
.7

1
e
-0

4
-3

0
5
4
.4

1
|

-3
0
5
4
.0

1
|

-3
0
0
2
.9

3
|

-3
0
5
0
.9

4
1
.1

9
e
-0

5
|

8
.6

4
e
-0

5
|

1
.0

8
e
-0

2
|

3
.7

3
e
-0

3
0
.8

3
-3

0
5
2
.7

3
|

-3
0
5
2
.5

4
|

-2
9
9
3
.4

6
|

-3
0
5
1
.8

0
1
.6

0
e
-0

5
|

6
.7

3
e
-0

5
|

1
.2

0
e
-0

2
|

1
.8

1
e
-0

3
-3

0
6
1
.9

7
|

-3
0
6
1
.5

7
|

-3
0
0
8
.8

0
|

-3
0
5
7
.5

4
1
.1

5
e
-0

5
|

8
.6

2
e
-0

5
|

1
.1

4
e
-0

2
|

3
.7

0
e
-0

3
0
.8

2
-3

0
5
9
.9

5
|

-3
0
5
9
.7

7
|

-2
9
9
7
.8

2
|

-2
9
9
2
.1

7
1
.7

4
e
-0

5
|

6
.7

0
e
-0

5
|

1
.3

0
e
-0

2
|

5
.8

0
e
-0

2
-3

0
7
0
.4

3
|

-3
0
7
0
.0

4
|

-3
0
2
0
.9

6
|

-3
0
1
5
.1

5
1
.9

7
e
-0

5
|

8
.6

1
e
-0

5
|

9
.5

9
e
-0

3
|

3
.6

1
e
-0

2
0
.8

1
-3

0
6
8
.0

6
|

-3
0
6
7
.8

8
|

-3
0
1
4
.4

2
|

-8
0
6
.7

6
1
.8

2
e
-0

5
|

6
.6

7
e
-0

5
|

1
.0

0
e
-0

2
|

4
.2

5
e
-0

1
-3

0
7
9
.8

9
|

-3
0
7
9
.4

8
|

-3
0
4
0
.9

7
|

-2
5
3
4
.5

7
1
.3

5
e
-0

5
|

8
.5

9
e
-0

5
|

7
.7

5
e
-0

3
|

1
.4

7
e
-0

1
0
.8

-3
0
7
7
.1

1
|

-3
0
7
6
.9

3
|

-3
0
5
7
.8

8
|

1
1
7
0
.6

3
1
.8

4
e
-0

5
|

6
.6

6
e
-0

5
|

5
.8

6
e
-0

3
|

4
.6

0
e
-0

1
-3

0
9
0
.3

4
|

-3
0
8
9
.9

4
|

-3
0
6
7
.8

0
|

-4
6
4
.8

4
2
.0

7
e
-0

5
|

8
.5

6
e
-0

5
|

5
.6

4
e
-0

3
|

2
.4

9
e
-0

1
0
.7

9
-3

0
8
7
.1

3
|

-3
0
8
6
.9

5
|

-3
0
6
9
.0

2
|

4
.4

9
e
+

0
3

1
.9

0
e
-0

5
|

6
.6

2
e
-0

5
|

6
.0

6
e
-0

3
|

4
.3

6
e
-0

1
-3

1
0
1
.8

7
|

-3
1
0
1
.4

6
|

-3
0
8
1
.1

8
|

9
8
6
1
.7

9
1
.3

8
e
-0

5
|

8
.5

5
e
-0

5
|

5
.7

9
e
-0

3
|

3
.6

0
e
-0

1
0
.7

8
-3

0
9
8
.1

5
|

-3
0
9
7
.9

8
|

-3
0
6
6
.0

0
|

1
.2

4
e
+

0
4

1
.8

6
e
-0

5
|

6
.5

9
e
-0

5
|

1
.0

6
e
-0

2
|

4
.2

2
e
-0

1
-3

1
1
4
.4

8
|

-3
1
1
4
.0

8
|

-3
0
8
4
.2

8
|

6
.0

0
e
+

0
4

2
.5

1
e
-0

5
|

8
.5

2
e
-0

5
|

8
.9

7
e
-0

3
|

4
.7

5
e
-0

1
0
.7

7
-3

1
1
0
.2

3
|

-3
1
1
0
.0

5
|

-3
0
8
5
.5

8
|

3
.1

3
e
+

0
4

1
.8

5
e
-0

5
|

6
.5

7
e
-0

5
|

7
.6

4
e
-0

3
|

4
.2

1
e
-0

1
-3

1
2
8
.2

6
|

-3
1
2
7
.8

4
|

-3
1
0
2
.0

8
|

1
.7

3
e
+

0
5

3
.0

6
e
-0

5
|

8
.5

0
e
-0

5
|

7
.1

0
e
-0

3
|

5
.1

8
e
-0

1
0
.7

6
-3

1
2
3
.3

9
|

-3
1
2
3
.2

1
|

-3
1
0
6
.1

5
|

7
.2

3
e
+

0
4

1
.8

2
e
-0

5
|

6
.5

4
e
-0

5
|

5
.1

3
e
-0

3
|

4
.2

9
e
-0

1
-3

1
4
3
.2

0
|

-3
1
4
2
.7

7
|

-3
1
2
4
.5

3
|

3
.7

2
e
+

0
5

2
.9

1
e
-0

5
|

8
.4

6
e
-0

5
|

4
.9

4
e
-0

3
|

5
.3

2
e
-0

1
0
.7

5
-3

1
3
7
.6

7
|

-3
1
3
7
.4

9
|

-3
1
2
1
.6

4
|

1
.5

4
e
+

0
5

3
.0

2
e
-0

5
|

6
.5

5
e
-0

5
|

4
.3

5
e
-0

3
|

4
.3

8
e
-0

1
-3

1
5
9
.4

0
|

-3
1
5
8
.9

1
|

-3
1
4
4
.8

8
|

6
.8

4
e
+

0
5

2
.5

3
e
-0

5
|

9
.0

4
e
-0

5
|

3
.7

5
e
-0

3
|

5
.3

4
e
-0

1
0
.7

4
-3

1
5
3
.1

2
|

-3
1
5
2
.9

3
|

-3
1
3
9
.4

8
|

3
.1

2
e
+

0
5

1
.9

5
e
-0

5
|

6
.4

8
e
-0

5
|

4
.2

6
e
-0

3
|

4
.5

2
e
-0

1
-3

1
7
6
.8

7
|

-3
1
7
6
.3

2
|

-3
1
6
4
.7

5
|

1
.1

5
e
+

0
6

2
.6

0
e
-0

5
|

8
.6

4
e
-0

5
|

3
.7

5
e
-0

3
|

5
.3

2
e
-0

1
0
.7

3
-3

1
6
9
.7

8
|

-3
1
6
9
.5

7
|

-3
1
4
4
.1

3
|

5
.5

4
e
+

0
5

3
.6

3
e
-0

5
|

6
.5

0
e
-0

5
|

8
.0

5
e
-0

3
|

4
.5

8
e
-0

1
-3

1
9
5
.6

8
|

-3
1
9
5
.0

4
|

-3
1
7
2
.2

7
|

1
.8

2
e
+

0
6

4
.8

1
e
-0

5
|

8
.8

3
e
-0

5
|

7
.5

2
e
-0

3
|

5
.2

9
e
-0

1
0
.7

2
-3

1
8
7
.7

3
|

-3
1
8
7
.4

6
|

-3
1
6
2
.3

6
|

9
.2

2
e
+

0
5

4
.1

6
e
-0

5
|

6
.7

5
e
-0

5
|

6
.1

2
e
-0

3
|

4
.6

2
e
-0

1
-3

2
1
5
.8

7
|

-3
2
1
5
.1

2
|

-3
1
9
0
.1

2
|

2
.7

7
e
+

0
6

5
.5

4
e
-0

5
|

9
.0

5
e
-0

5
|

6
.3

3
e
-0

3
|

5
.2

5
e
-0

1
0
.7

1
-3

2
0
6
.9

6
|

-3
2
0
6
.6

5
|

-3
1
8
8
.8

4
|

1
.5

5
e
+

0
6

2
.6

9
e
-0

5
|

6
.9

3
e
-0

5
|

4
.0

8
e
-0

3
|

4
.7

2
e
-0

1
-3

2
3
7
.5

1
|

-3
2
3
6
.5

9
|

-3
2
2
0
.1

3
|

4
.0

6
e
+

0
6

4
.1

2
e
-0

5
|

9
.3

8
e
-0

5
|

3
.7

9
e
-0

3
|

5
.2

1
e
-0

1
0
.7

-3
2
2
7
.6

1
|

-3
2
2
7
.1

7
|

-3
2
0
4
.0

6
|

2
.5

8
e
+

0
6

6
.8

6
e
-0

5
|

7
.2

8
e
-0

5
|

6
.1

5
e
-0

3
|

4
.8

5
e
-0

1
-3

2
6
0
.8

2
|

-3
2
5
9
.5

2
|

-3
2
4
4
.1

8
|

5
.7

6
e
+

0
6

2
.4

1
e
-0

5
|

9
.7

7
e
-0

5
|

3
.8

2
e
-0

3
|

5
.1

5
e
-0

1
0
.6

9
-3

2
4
9
.7

0
|

-3
2
4
9
.0

8
|

-3
2
2
9
.7

9
|

4
.0

1
e
+

0
6

6
.1

5
e
-0

5
|

7
.7

2
e
-0

5
|

3
.7

1
e
-0

3
|

4
.9

3
e
-0

1
-3

2
8
5
.6

1
|

-3
2
8
4
.1

6
|

-3
2
7
1
.6

8
|

8
.0

7
e
+

0
6

3
.7

9
e
-0

5
|

8
.6

2
e
-0

5
|

3
.7

0
e
-0

3
|

5
.1

1
e
-0

1
0
.6

8
-3

2
7
3
.4

8
|

-3
2
7
2
.4

3
|

-3
2
5
7
.1

5
|

6
.0

7
e
+

0
6

2
.3

7
e
-0

5
|

8
.3

0
e
-0

5
|

3
.5

9
e
-0

3
|

4
.9

9
e
-0

1
-3

3
1
2
.6

0
|

-3
3
1
0
.3

4
|

-3
2
8
5
.9

8
|

1
.1

3
e
+

0
7

3
.1

2
e
-0

5
|

8
.7

0
e
-0

5
|

7
.4

9
e
-0

3
|

5
.0

8
e
-0

1
0
.6

7
-3

2
9
8
.9

0
|

-3
2
9
7
.2

8
|

-3
2
8
9
.1

7
|

9
.1

3
e
+

0
6

2
.4

5
e
-0

5
|

8
.9

9
e
-0

5
|

3
.3

1
e
-0

3
|

5
.0

7
e
-0

1
-3

3
4
2
.1

7
|

-3
3
3
8
.1

8
|

-3
3
1
0
.6

2
|

1
.5

6
e
+

0
7

3
.5

4
e
-0

5
|

9
.1

4
e
-0

5
|

6
.3

4
e
-0

3
|

5
.0

7
e
-0

1
0
.6

6
-3

3
2
6
.1

9
|

-3
3
2
3
.7

0
|

-3
3
1
0
.9

3
|

1
.3

8
e
+

0
7

2
.9

1
e
-0

5
|

9
.7

8
e
-0

5
|

5
.4

0
e
-0

3
|

5
.1

8
e
-0

1
-3

3
7
4
.6

2
|

-3
3
6
7
.7

8
|

-3
3
4
9
.7

1
|

2
.1

6
e
+

0
7

3
.8

3
e
-0

5
|

9
.9

2
e
-0

5
|

3
.5

8
e
-0

3
|

5
.0

6
e
-0

1
0
.6

5
-3

3
5
5
.7

3
|

-3
3
5
2
.0

1
|

-3
3
3
0
.8

9
|

2
.0

5
e
+

0
7

3
.1

5
e
-0

5
|

9
.3

7
e
-0

5
|

6
.4

4
e
-0

3
|

5
.2

8
e
-0

1
-3

4
1
0
.8

0
|

-3
4
0
0
.7

7
|

-3
3
7
0
.4

1
|

2
.9

7
e
+

0
7

4
.8

1
e
-0

5
|

9
.1

6
e
-0

5
|

7
.0

3
e
-0

3
|

5
.0

7
e
-0

1
0
.6

4
-3

3
8
8
.7

0
|

-3
3
8
2
.0

7
|

-3
3
7
0
.9

0
|

3
.0

8
e
+

0
7

3
.9

7
e
-0

5
|

9
.8

8
e
-0

5
|

3
.5

3
e
-0

3
|

5
.4

0
e
-0

1
-3

4
5
3
.0

1
|

-3
4
3
6
.0

3
|

-3
4
2
4
.1

2
|

4
.0

5
e
+

0
7

5
.2

8
e
-0

5
|

9
.0

7
e
-0

5
|

2
.1

3
e
-0

3
|

5
.0

8
e
-0

1
0
.6

3
-3

4
2
6
.3

3
|

-3
4
1
5
.4

9
|

-3
3
9
9
.6

3
|
−

4
.3

9
e
-0

5
|

8
.5

5
e
-0

5
|

5
.7

7
e
-0

3
|
−

-3
5
0
1
.9

8
|

-3
4
7
4
.0

7
|

-3
4
4
5
.5

3
|
−

6
.0

0
e
-0

5
|

9
.9

2
e
-0

5
|

7
.4

5
e
-0

3
|
−

0
.6

2
-3

4
6
9
.2

5
|

-3
4
4
9
.8

8
|

-3
4
2
9
.1

9
|
−

5
.3

8
e
-0

5
|

9
.8

6
e
-0

5
|

5
.7

9
e
-0

3
|
−

-3
5
5
6
.0

3
|

-3
5
1
9
.0

0
|

-3
4
7
5
.9

3
|
−

6
.7

2
e
-0

5
|

9
.9

8
e
-0

5
|

6
.8

6
e
-0

3
|
−

T
h
e

sy
m

b
o
l

“−
”

in
d
ic

a
te

s
o
u
t

o
f

m
e
m

o
ry

.

34

MARS: A Second-Order Algorithm for Precision Matrices Estimation

the η are smaller than the set tolerance 10−4. Although both MARS and SSNAL can
generate satisfactory solutions, from Table 6, we find that MARS is much more efficient.
In particular, the computation time of SSNAL to generate the solution path is more than
14 times that of MARS in the Control group and more than 18 times that of MARS in
the Cancer group. This can also be seen in Figure 3, which illustrates that MARS has
high efficiency in generating solutions for each λ. Besides, we obtain the final precision
matrix estimations of the two different groups through 5-fold cross-validation, and the
corresponding graphs are shown in Figure 4. From this figure, we can clearly see that the
genes of the control group and the cancer group have different connections.

Table 6: The computation time (seconds) of different algorithms for generating a solution
path with the prostate data set.

MARS SSNAL EQUAL scio

control group 113.6 1629.88 1325.67* 5690.73+
cancer group 112.43 2108.06 1273.22* 5949.71+

1. The symbol “∗” indicates that none of the relative KKT
residuals of EQUAL is less than 10−3.
2. The symbol “+” indicates that, due to out of memory, the
time here does not include the time for generating estima-
tions by scio with the two smallest λ.

Figure 3: The computation time of MARS and SSNAL for each λ with the prostate data
set.

Next, we will test the performance of MARS and glasso on the breast cancer data set.
We follow the same assumption stated in Cai et al. (2011) that this gene measurements
data are normally distributed with N(µk,Σ), k = 1, 2, where Σ is the same for RD group

35

Li, Jiang, and Sun

Figure 4: The estimated graphs chosen by five-fold cross-validation generated by MARS
with the prostrate data set.

and pCR group, but the means are different. Some two-sample t-tests are performed with
given p-value tolerances, which are set to 0.005, 0.01, 0.05, 0.1, and 1, to obtain the most
significant genes (with a smaller p-value). Under those set p-values, the numbers of chosen
genes are 1228, 1646, 3640, 5418, and 22283 respectively. Note that, the last one contains
all the genes with nearly 250 million parameters. We point out that, the λ paths for all
the tests, except the test with p-value tolerance 0.05, are set from λmin to 1 by 0.01, where
λmin is decided by some pre-tests with the D-trace estimator. When the p-value tolerance
is set to 0.05, if the gap between two subsequent regularization parameters in the path is
0.01, glasso will fail due to insufficient memory, so we set the λ gap for this test to 0.02.
The regularization parameters for each test are chosen by five-fold cross-validation, and the
total computation times are concluded in Table 7. The stopping tolerance for MARS and
glasso is set to 10−4 to ensure that all the relative KKT residuals are less than 10−4. The
estimated graphs obtained by MARS and glasso with p-value tolerance 0.005, 0.01, and
0.01 can be found in Figure 5. From this figure, we notice that the graphs obtained by
MARS and glasso are similar to each other, but the times taken by MARS are obviously
less than those taken by glasso. Especially when the p-value tolerance is 0.05, the total
computation time of glasso is more than 20 times that of MARS. Besides, Figure 5 also
shows the estimated graphs obtained by MARS when the p-value tolerances are 0.1 and 1,
but the figure for the latter one only plots the connections among the most significant 5418
genes.

7. Conclusions

In this paper, we have derived an efficient second-order algorithm for high-dimensional
sparse precision matrices estimation under the `1-penalized D-trace loss. By using a dual
approach and adopting an adaptive sieving reduction strategy, our algorithm is capable

36

MARS: A Second-Order Algorithm for Precision Matrices Estimation

Table 7: Test results of MARS and glasso on the breast cancer data sets with different
p-value tolerances.

p-value tolerance No. of genes
time (mins) including cross-validation

No. of λ
MARS glasso

0.005 1228 20.26 71.51 63
0.01 1646 23.06 159.79 60
0.05 3640 58.32 1257.81 28
0.1 5418 150.54 − 54
1 22283 553.35 − 29

The symbol “−” indicates out of memory.

Figure 5: The estimated graphs for the breast cancer data set chosen by five-fold cross-
validation with using MARS and glasso under different p-value tolerances.

37

Li, Jiang, and Sun

of handling large-scale data sets. The theoretical properties of our algorithm have been
well established. In particular, we have shown that our algorithm enjoys a global linear
convergence rate and converges asymptotically superlinearly. Numerical results have further
convincingly demonstrated the promising performance and high efficiency of our algorithm
when compared with other state-of-the-art solvers. For instance, our algorithm can be up
to 20 times faster than glasso for some subsets of a breast cancer data set with much less
storage requirement.

We conclude by pointing out that our algorithm is not only designed for sparse precision
matrix estimation but also can be extended to solve other matrix-form problems under a
penalized quadratic loss function. More specifically, our algorithm can be extended to solve
problems of the following form:

min
Ω∈Sp

{
1

2
tr(ΩΣ̂ΩT)− tr(Q̂Ω) + penλ(Ω)

}
, (37)

where penλ(Ω) is a penalty term to encourage different structures. The algorithm we derived
in this paper can be viewed as a special case with Q̂ = Ip, and penλ(Ω) = λ ‖Ω‖1,off . With

different choices of Σ̂ and Q̂, the quadratic loss (37) outputs sparse solutions for different
statistical analysis such as canonical vectors for Fisher’s LDA (Gaynanova et al., 2016),
sparse canonical correlation analysis, and sparse sliced inverse regression (Tan et al., 2018).
This is left for future work.

Acknowledgments

Jiang’s research is supported in part by the National Natural Science Foundation Grant for
Young Scholars (Grant Number 12001459). Sun’s research is supported in part by the Hong
Kong Research Grant Council under grant number 15303720, and the CAS AMSS-PolyU
Joint Laboratory of Applied Mathematics. The authors would like to thank the action
editor and the three anonymous referees for their constructive comments and suggestions
to improve the quality of this paper. Thanks also go to Dr. Yancheng Yuan at The Hong
Kong Polytechnic University for his many helpful suggestions on the revision of this paper.

38

MARS: A Second-Order Algorithm for Precision Matrices Estimation

Appendix A. Performance of EQUAL

This is the test performance of EQUAL, in terms of the objective value and relative KKT
residual (η), for generating solution paths on the prostrate data sets under different stopping
tolerances, which are set to be 10−5 and 10−6 respectively.

Table 8: Test performance of the estimated solution paths with different stopping tolerances
by using EQUAL on the prostate data set.

λ

control group cancer group

EQUAL (1e-6) EQAUL (1e-5) EQUAL (1e-6) EQAUL (1e-5)

objective value η objective value η objective value η objective value η

0.99 924.68 5.05e-02 276912.70 5.16e-01 -1964.80 3.40e-02 264907.50 5.03e-01
0.98 -861.70 3.89e-01 21190.85 1.30e-01 -1966.85 3.41e-02 263387.60 5.06e-01
0.97 -1798.68 3.54e-02 20554.88 1.31e-01 -2448.14 6.39e-02 18529.18 1.36e-01
0.96 -1802.12 3.56e-02 9137.18 9.49e-02 -2447.90 6.40e-02 7894.90 8.70e-02
0.95 -2351.89 7.22e-02 9518.00 9.85e-02 -2456.80 6.31e-02 8194.18 8.98e-02
0.94 -2356.68 7.18e-02 9696.31 1.01e-01 -2700.02 2.20e-02 8304.20 9.18e-02
0.93 -2371.45 7.04e-02 9670.20 1.03e-01 -2698.98 2.22e-02 8225.00 9.29e-02
0.92 -2645.23 2.33e-02 9444.32 1.04e-01 -2704.31 2.22e-02 7962.94 9.30e-02
0.91 -2643.28 2.35e-02 9029.55 1.03e-01 -2858.82 2.50e-02 7530.24 9.22e-02
0.90 -2648.98 2.35e-02 8442.32 1.01e-01 -2858.34 2.54e-02 6943.96 9.04e-02
0.89 -2832.42 2.70e-02 2736.37 2.65e-01 -2860.17 2.55e-02 2018.53 3.05e-01
0.88 -2833.94 2.73e-02 2927.30 2.55e-01 -2863.98 2.56e-02 2186.41 2.92e-01
0.87 -2837.75 2.74e-02 3034.11 2.49e-01 -2931.86 1.40e-02 2280.82 2.84e-01
0.86 -2912.43 1.49e-02 3051.66 2.47e-01 -2939.44 1.39e-02 2295.27 2.81e-01
0.85 -2918.38 1.49e-02 2977.98 2.49e-01 -2995.49 1.05e-02 2226.93 2.82e-01
0.84 -2989.64 1.12e-02 2814.58 2.53e-01 -3002.93 1.08e-02 2076.93 2.88e-01
0.83 -2993.46 1.20e-02 2566.14 2.62e-01 -3008.80 1.14e-02 1850.30 2.98e-01
0.82 -2997.82 1.30e-02 2240.63 2.76e-01 -3020.96 9.59e-03 1554.29 3.14e-01
0.81 -3014.42 1.00e-02 1848.97 2.96e-01 -3040.97 7.75e-03 1198.97 3.37e-01
0.80 -3057.88 5.86e-03 1404.33 3.24e-01 -3067.80 5.64e-03 796.57 3.67e-01
0.79 -3069.02 6.06e-03 -480.09 5.09e-02 -3081.18 5.79e-03 -942.61 4.70e-02
0.78 -3066.00 1.06e-02 -236.76 5.41e-02 -3084.28 8.97e-03 -714.84 4.97e-02
0.77 -3085.58 7.64e-03 -41.10 5.71e-02 -3102.08 7.10e-03 -528.46 5.22e-02
0.76 -3106.15 5.13e-03 89.13 5.97e-02 -3124.53 4.94e-03 -401.82 5.43e-02
0.75 -3121.64 4.35e-03 141.05 6.16e-02 -3144.88 3.75e-03 -345.45 5.59e-02
0.74 -3139.48 4.26e-03 110.25 6.29e-02 -3164.75 3.75e-03 -363.44 5.68e-02
0.73 -3144.13 8.05e-03 -2.31 6.32e-02 -3172.27 7.52e-03 -455.55 5.70e-02
0.72 -3162.36 6.12e-03 -191.14 6.27e-02 -3190.12 6.33e-03 -616.71 5.65e-02
0.71 -3188.84 4.08e-03 -2316.43 5.47e-02 -3220.13 3.79e-03 -837.45 5.51e-02
0.70 -3204.06 6.15e-03 -2231.19 6.00e-02 -3244.18 3.82e-03 -2394.92 5.10e-02
0.69 -3229.79 3.71e-03 -2140.55 6.55e-02 -3271.68 3.70e-03 -2338.51 5.46e-02
0.68 -3257.15 3.59e-03 -2048.69 7.11e-02 -3285.98 7.49e-03 -2279.14 5.85e-02
0.67 -3289.17 3.31e-03 -1958.72 7.68e-02 -3310.62 6.34e-03 -2220.84 6.23e-02
0.66 -3310.93 5.40e-03 -1873.05 8.23e-02 -3349.71 3.58e-03 -2166.39 6.62e-02
0.65 -3330.89 6.44e-03 -1793.58 8.77e-02 -3370.41 7.03e-03 -2117.65 7.00e-02
0.64 -3370.90 3.53e-03 -1721.91 9.27e-02 -3424.12 2.13e-03 -2075.66 7.36e-02
0.63 -3399.63 5.77e-03 -1659.54 9.72e-02 -3445.53 7.45e-03 -2040.94 7.71e-02
0.62 -3429.19 5.79e-03 -1607.92 1.01e-01 -3475.93 6.86e-03 -2013.80 8.04e-02

Appendix B. Supplementary tables

This section is a supplement to the numerical experiments in Section 6.2. Specifically, two
tables list the KKT residuals and one table provides the statistical performance of the
generated solutions by MARS and glasso corresponding to the tests performed in Section
6.2.2.

References

Onureena Banerjee, Laurent El Ghaoui, and Alexandre d’Aspremont. Model selection
through sparse maximum likelihood estimation for multivariate Gaussian or binary data.
Journal of Machine Learning Research, 9:485–516, 2008.

39

Li, Jiang, and Sun

Table 9: Average relative KKT residuals (η) of different algorithms with 10 regularization
parameters and 10 replications.

Model 1 Model 2 Model 3 Model 4 Model 5
mean | sd mean | sd mean | sd mean | sd mean | sd

Models 1 to 4: p = 2000; Model 5: p = 2025

n
=

5
0

MARS 3.56E-05 | 8.84E-06 3.85E-05 | 6.73E-06 3.31E-05 | 6.88E-06 3.73E-05 | 6.66E-06 3.61E-05 | 4.87E-06
SSNAL 6.87E-05 | 7.16E-06 5.74E-05 | 7.61E-06 6.79E-05 | 6.13E-06 6.12E-05 | 8.03E-06 6.38E-05 | 7.44E-06
iADMM 9.12E-05 | 3.29E-06 9.31E-05 | 2.44E-06 9.05E-05 | 3.67E-06 9.48E-05 | 3.11E-06 9.08E-05 | 2.33E-06
eADMM 9.48E-05 | 3.42E-06 9.37E-05 | 3.52E-06 9.54E-05 | 2.58E-06 9.51E-05 | 2.88E-06 9.37E-05 | 3.80E-06
scio 3.94E-03 | 3.66E-04 3.50E-02 | 3.20E-02 3.96E-03 | 5.93E-04 2.79E-01 | 6.61E-02 3.50E-03 | 3.27E-04
EQUAL 1.58E-03 | 4.06E-05 1.07E-03 | 9.52E-05 1.58E-03 | 3.92E-05 7.16E-04 | 3.18E-05 1.60E-03 | 2.55E-04
glasso(1e-3) 1.71E-05 | 1.28E-06 3.70E-05 | 5.87E-06 1.58E-05 | 9.21E-07 3.59E-05 | 5.39E-06 1.54E-05 | 1.44E-06
QUIC 6.53E-02 | 2.56E-05 6.25E-02 | 2.98E-05 6.54E-02 | 2.48E-05 5.82E-02 | 2.45E-05 6.62E-02 | 2.90E-05

n
=

1
0
0

MARS 3.23E-05 | 5.84E-06 3.64E-05 | 4.13E-06 2.95E-05 | 3.91E-06 4.36E-05 | 7.38E-06 3.07E-05 | 5.96E-06
SSNAL 5.36E-05 | 7.29E-06 5.99E-05 | 5.69E-06 6.04E-05 | 7.03E-06 5.84E-05 | 6.39E-06 6.42E-05 | 9.51E-06
iADMM 8.51E-05 | 3.81E-06 8.99E-05 | 2.30E-06 9.00E-05 | 3.38E-06 9.15E-05 | 3.59E-06 8.78E-05 | 4.70E-06
eADMM 8.02E-05 | 6.43E-06 8.42E-05 | 6.99E-06 8.14E-05 | 4.46E-06 8.84E-05 | 5.95E-06 8.37E-05 | 6.41E-06
scio 1.42E-03 | 9.31E-05 3.56E-03 | 1.87E-04 1.22E-03 | 8.86E-05 9.92E-03 | 3.79E-04 1.94E-03 | 1.12E-04
EQUAL 2.11E-03 | 5.80E-04 1.49E-03 | 1.72E-04 2.61E-03 | 4.12E-05 9.88E-04 | 4.77E-05 1.44E-03 | 3.83E-04
glasso(1e-3) 1.20E-05 | 1.38E-06 1.47E-05 | 5.38E-06 9.37E-06 | 8.78E-07 1.50E-05 | 5.23E-06 2.21E-05 | 3.94E-06
QUIC 6.53E-02 | 3.54E-05 6.14E-02 | 2.93E-05 6.54E-02 | 3.69E-05 5.76E-02 | 1.91E-05 6.66E-02 | 2.87E-05

Table 10: Average relative KKT residuals (η) of different algorithms with 50 regularization
parameters and 10 replications for generating a solution path.

Model 1 Model 2 Model 3 Model 4 Model 5
mean | sd mean | sd mean | sd mean | sd mean | sd

Models 1 to 4: p = 2000; Model 5: p = 2025

n
=

5
0

MARS(1e-4) 9.75E-06 | 4.72E-06 1.08E-05 | 5.23E-06 1.02E-05 | 5.49E-06 1.23E-05 | 5.83E-06 1.15E-05 | 6.31E-06
MARS(1e-8) 1.59E-09 | 2.47E-09 1.70E-09 | 2.46E-09 1.13E-09 | 1.82E-09 2.39E-09 | 2.96E-09 1.23E-09 | 1.72E-09
SSNAL 2.60E-05 | 7.15E-06 2.72E-05 | 5.50E-06 2.65E-05 | 6.38E-06 3.00E-05 | 6.30E-06 2.91E-05 | 5.91E-06
iADMM 5.13E-05 | 6.41E-06 5.06E-05 | 5.91E-06 5.16E-05 | 5.69E-06 5.56E-05 | 5.54E-06 8.47E-05 | 5.84E-06
eADMM 7.62E-05 | 5.67E-06 7.33E-05 | 5.06E-06 7.66E-05 | 5.38E-06 7.88E-05 | 4.26E-06 6.46E-05 | 2.25E-05
scio 7.05E-04 | 4.70E-05 9.81E-03 | 6.74E-03 6.87E-04 | 6.92E-05 4.18E-02 | 9.85E-03 9.57E-04 | 1.67E-04
EQUAL 4.17E-03 | 1.42E-04 4.10E-03 | 7.55E-05 4.16E-03 | 1.22E-04 4.05E-03 | 8.07E-05 5.01E-03 | 9.77E-05
glasso(1e-3) 3.36E-06 | 1.75E-07 6.57E-06 | 1.89E-06 3.21E-06 | 2.70E-07 5.34E-06 | 9.74E-07 4.47E-06 | 2.70E-07
glasso(1e-4) 2.74E-09 | 1.19E-09 1.12E-08 | 1.79E-09 2.27E-09 | 7.05E-10 1.88E-08 | 2.98E-09 4.56E-09 | 1.63E-09
QUIC 1.01E-01 | 6.16E-05 9.93E-02 | 4.22E-05 1.01E-01 | 4.85E-05 9.73E-02 | 3.06E-05 1.00E-01 | 4.05E-05

n
=

1
0
0

MARS(1e-4) 7.76E-06 | 3.14E-06 8.10E-06 | 4.74E-06 7.12E-06 | 3.57E-06 7.73E-06 | 3.03E-06 8.78E-06 | 3.69E-06
MARS(1e-8) 1.13E-09 | 1.75E-09 2.55E-09 | 3.19E-09 1.38E-09 | 2.11E-09 2.69E-09 | 3.22E-09 1.55E-09 | 2.58E-09
SSNAL 1.93E-05 | 4.41E-06 1.80E-05 | 6.76E-06 1.80E-05 | 4.04E-06 1.82E-05 | 3.95E-06 2.31E-05 | 4.56E-06
iADMM 5.20E-05 | 6.74E-06 4.86E-05 | 5.97E-06 6.15E-05 | 6.13E-06 6.16E-05 | 5.25E-06 6.87E-05 | 3.65E-06
eADMM 7.51E-05 | 4.61E-06 7.89E-05 | 6.68E-06 8.52E-05 | 7.39E-06 8.13E-05 | 5.90E-06 8.28E-05 | 9.00E-06
scio 2.14E-04 | 1.60E-05 5.49E-04 | 1.72E-05 1.91E-04 | 7.85E-06 1.50E-03 | 5.89E-05 3.05E-04 | 1.28E-05
EQUAL 2.16E-03 | 1.07E-04 2.13E-03 | 8.15E-05 1.71E-03 | 2.97E-04 1.91E-03 | 3.55E-04 3.84E-03 | 7.89E-05
glasso(1e-3) 1.69E-06 | 8.35E-07 1.37E-06 | 4.56E-07 1.34E-06 | 8.73E-07 1.41E-06 | 7.12E-07 3.21E-06 | 1.51E-06
glasso(1e-4) 1.41E-09 | 3.90E-10 9.10E-09 | 1.04E-09 1.19E-09 | 5.89E-10 7.09E-09 | 6.08E-09 6.12E-09 | 2.99E-09
QUIC 1.25E-01 | 8.06E-05 1.23E-01 | 6.32E-05 1.26E-01 | 4.94E-05 1.22E-01 | 4.32E-05 1.25E-01 | 6.87E-05

Models 1 to 4: p = 3000; Model 5: p = 3024

n
=

5
0

MARS(1e-4) 1.17E-05 | 6.69E-06 1.09E-05 | 5.15E-06 1.10E-05 | 5.14E-06 1.06E-05 | 5.17E-06 1.16E-05 | 6.28E-06
MARS(1e-8) 8.22E-10 | 1.15E-09 1.68E-09 | 2.17E-09 1.04E-09 | 1.35E-09 2.15E-09 | 2.69E-09 1.12E-09 | 1.70E-09
SSNAL 2.87E-05 | 6.39E-06 2.74E-05 | 5.60E-06 2.69E-05 | 5.58E-06 2.72E-05 | 4.88E-06 2.99E-05 | 6.50E-06
EQUAL 1.73E-02 | 1.71E-04 1.72E-02 | 1.41E-04 1.74E-02 | 1.77E-04 1.72E-02 | 1.26E-04 7.76E-03 | 7.05E-05
glasso(1e-3) 1.94E-06 | 2.13E-07 7.27E-06 | 3.20E-07 1.92E-06 | 1.70E-07 6.66E-06 | 1.99E-06 2.60E-06 | 1.88E-07
glasso(1e-4) 1.10E-09 | 4.73E-10 1.04E-08 | 1.44E-09 1.09E-09 | 4.02E-10 1.98E-08 | 1.70E-09 1.75E-09 | 5.53E-10

n
=

1
0
0

MARS(1e-4) 7.34E-06 | 4.30E-06 8.18E-06 | 3.32E-06 6.24E-06 | 2.54E-06 8.00E-06 | 3.79E-06 8.62E-06 | 4.22E-06
MARS(1e-8) 1.30E-09 | 1.80E-09 2.09E-09 | 2.20E-09 1.67E-09 | 1.97E-09 2.51E-09 | 2.65E-09 1.44E-09 | 1.79E-09
SSNAL 1.86E-05 | 5.24E-06 2.00E-05 | 4.64E-06 1.64E-05 | 3.74E-06 1.91E-05 | 4.03E-06 2.30E-05 | 5.13E-06
EQUAL 1.00E-02 | 7.08E-05 9.99E-03 | 1.45E-04 1.00E-02 | 5.45E-05 1.00E-02 | 5.95E-05 5.02E-03 | 5.31E-05
glasso(1e-3) 1.83E-06 | 1.44E-07 2.66E-06 | 1.55E-07 1.62E-06 | 1.04E-07 1.85E-06 | 1.64E-07 3.44E-06 | 3.85E-07
glasso(1e-4) 9.11E-10 | 2.32E-10 6.45E-09 | 9.30E-10 1.00E-09 | 5.32E-10 4.19E-09 | 8.91E-10 3.38E-09 | 1.41E-09

Models 1 to 4: p = 5000; Model 5: p = 5041

n
=

5
0 MARS(1e-4) 2.56E-05 | 2.66E-05 2.62E-05 | 2.73E-05 2.53E-05 | 2.74E-05 2.41E-05 | 2.45E-05 2.48E-05 | 2.64E-05

MARS(1e-8) 2.58E-09 | 5.28E-09 3.14E-09 | 5.73E-09 3.07E-09 | 5.53E-09 4.51E-09 | 6.81E-09 2.69E-09 | 5.05E-09
SSNAL 6.35E-05 | 2.34E-05 6.20E-05 | 2.49E-05 6.18E-05 | 2.35E-05 6.40E-05 | 2.39E-05 6.54E-05 | 2.44E-05

n
=

1
0
0 MARS(1e-4) 2.58E-05 | 2.54E-05 2.77E-05 | 2.84E-05 2.25E-05 | 2.15E-05 2.35E-05 | 2.25E-05 2.38E-05 | 2.64E-05
MARS(1e-8) 3.86E-09 | 7.62E-09 5.54E-09 | 9.14E-09 5.34E-09 | 8.51E-09 6.39E-09 | 1.04E-08 2.38E-05 | 2.64E-05
SSNAL 5.90E-05 | 2.38E-05 6.34E-05 | 2.39E-05 6.04E-05 | 2.26E-05 6.16E-05 | 2.52E-05 2.38E-05 | 2.64E-05

40

MARS: A Second-Order Algorithm for Precision Matrices Estimation

Table 11: Average performance of MARS and glasso for precision matrix estimation with
10 replications, p = 2000 in Models 1 to 4, p = 2025 in Model 5 and n = 100 for
all the Models.

Frobenius Spectral Infinity TP TN

λ MARS glasso MARS glasso MARS glasso MARS glasso MARS glasso

M
o
d

el
1

0.39 17.8652 17.9603 0.8009 0.8273 1.0085 1.3293 0.2078 0.2735 0.9999 0.9976
0.38 17.8623 17.8964 0.8010 0.8217 1.0369 1.2258 0.2108 0.2601 0.9999 0.9983
0.37 17.8601 17.8616 0.8010 0.8175 1.0672 1.1529 0.2142 0.2485 0.9998 0.9988
0.36 17.8608 17.8455 0.8009 0.8138 1.1053 1.0927 0.2189 0.2388 0.9998 0.9992
0.35 17.8668 17.8404 0.8005 0.8107 1.1545 1.0463 0.2241 0.2306 0.9996 0.9994
0.34 17.8843 17.8418 0.7995 0.8083 1.2146 1.0111 0.2305 0.2244 0.9995 0.9996
0.33 17.9217 17.8468 0.7978 0.8064 1.2929 0.9811 0.2386 0.2191 0.9992 0.9998
0.32 17.9934 17.8527 0.7948 0.8049 1.3887 0.9562 0.2484 0.2143 0.9988 0.9998
0.31 18.1249 17.8585 0.7901 0.8039 1.5140 0.9355 0.2600 0.2109 0.9983 0.9999
0.30 18.3653 17.8636 0.7863 0.8030 1.6736 0.9189 0.2729 0.2079 0.9975 0.9999

M
o
d

el
2

0.37 25.2683 25.5038 1.5978 1.6069 1.8957 2.4224 0.1200 0.1787 0.9998 0.9952
0.36 25.2679 25.3890 1.5965 1.6059 1.9380 2.2680 0.1225 0.1674 0.9998 0.9966
0.35 25.2712 25.3194 1.5944 1.6049 1.9831 2.1440 0.1259 0.1573 0.9996 0.9976
0.34 25.2816 25.2801 1.5914 1.6041 2.0465 2.0522 0.1299 0.1483 0.9995 0.9983
0.33 25.3057 25.2597 1.5870 1.6035 2.1240 1.9759 0.1345 0.1407 0.9992 0.9988
0.32 25.3540 25.2510 1.5807 1.6028 2.2233 1.9155 0.1405 0.1346 0.9988 0.9992
0.31 25.4439 25.2497 1.5718 1.6022 2.3426 1.8659 0.1482 0.1300 0.9983 0.9995
0.30 25.6103 25.2527 1.5588 1.6018 2.4956 1.8288 0.1569 0.1260 0.9976 0.9996
0.29 25.9087 25.2573 1.5410 1.6014 2.7017 1.8008 0.1675 0.1225 0.9965 0.9998
0.28 26.4441 25.2624 1.5159 1.6011 2.9820 1.7759 0.1801 0.1201 0.9950 0.9998

M
o
d

el
3

0.39 17.8914 18.1370 0.8136 0.8689 1.0042 1.3512 0.2020 0.2286 0.9999 0.9976
0.38 17.8951 18.0416 0.8152 0.8585 1.0412 1.2528 0.2028 0.2227 0.9999 0.9983
0.37 17.9014 17.9802 0.8168 0.8501 1.0859 1.1779 0.2039 0.2174 0.9999 0.9988
0.36 17.9123 17.9416 0.8185 0.8430 1.1359 1.1219 0.2055 0.2138 0.9998 0.9992
0.35 17.9309 17.9182 0.8206 0.8372 1.1937 1.0725 0.2074 0.2103 0.9996 0.9995
0.34 17.9622 17.9041 0.8226 0.8322 1.2611 1.0296 0.2103 0.2074 0.9995 0.9996
0.33 18.0146 17.8959 0.8246 0.8282 1.3430 0.9951 0.2139 0.2055 0.9992 0.9998
0.32 18.1027 17.8914 0.8263 0.8249 1.4367 0.9653 0.2174 0.2039 0.9988 0.9999
0.31 18.2506 17.8890 0.8272 0.8222 1.5589 0.9383 0.2226 0.2028 0.9983 0.9999
0.30 18.5006 17.8879 0.8305 0.8197 1.7281 0.9165 0.2286 0.2020 0.9976 0.9999

M
o
d

el
4

0.35 12.8997 14.4898 0.5041 0.6159 0.8595 0.9917 0.0017 0.0106 0.9997 0.9912
0.34 12.9286 13.9230 0.5066 0.5903 0.9222 1.0178 0.0019 0.0083 0.9995 0.9935
0.33 12.9863 13.5258 0.5201 0.5719 1.0010 1.0512 0.0022 0.0064 0.9992 0.9952
0.32 13.0933 13.2578 0.5495 0.5570 1.0949 1.0881 0.0026 0.0050 0.9988 0.9966
0.31 13.2840 13.0846 0.5895 0.5449 1.2165 1.1292 0.0032 0.0040 0.9983 0.9976
0.30 13.6198 12.9775 0.6428 0.5353 1.3899 1.1789 0.0040 0.0032 0.9976 0.9983
0.29 14.1996 12.9152 0.7129 0.5277 1.6303 1.2332 0.0051 0.0026 0.9964 0.9988
0.28 15.1780 12.8824 0.8060 0.5218 1.9698 1.3015 0.0067 0.0022 0.9950 0.9992
0.27 16.8252 12.8679 0.9323 0.5171 2.4021 1.3992 0.0088 0.0019 0.9930 0.9995
0.26 19.5567 12.8643 1.1073 0.5135 2.9720 1.5332 0.0117 0.0017 0.9902 0.9996

M
o
d

el
5

0.40 17.6002 16.7998 0.7941 0.7680 1.8083 1.2191 0.2586 0.4523 1.0000 0.9982
0.39 17.5471 16.8997 0.7932 0.7689 1.5643 1.1496 0.2712 0.4226 0.9999 0.9988
0.38 17.4861 17.0110 0.7924 0.7711 1.3577 1.0987 0.2870 0.3954 0.9999 0.9992
0.37 17.4176 17.1229 0.7919 0.7739 1.1903 1.0605 0.3044 0.3686 0.9998 0.9994
0.36 17.3458 17.2298 0.7922 0.7771 1.0519 1.0304 0.3217 0.3460 0.9998 0.9996
0.35 17.2755 17.3286 0.7936 0.7804 0.9448 1.0010 0.3424 0.3242 0.9996 0.9998
0.34 17.2150 17.4170 0.7969 0.7835 0.8668 0.9723 0.3652 0.3059 0.9994 0.9998
0.33 17.1790 17.4945 0.8038 0.7864 0.8042 0.9476 0.3906 0.2883 0.9992 0.9999
0.32 17.1918 17.5599 0.8165 0.7889 0.7541 0.9244 0.4162 0.2722 0.9988 0.9999
0.31 17.2962 17.6145 0.8374 0.7910 0.7137 0.9056 0.4435 0.2594 0.9982 1.0000

The regularization parameters are the same as in the experiments in Section 6.2.2.

41

Li, Jiang, and Sun

Tony Cai, Weidong Liu, and Xi Luo. A constrained `1 minimization approach to sparse
precision matrix estimation. Journal of the American Statistical Association, 106(494):
594–607, 2011.

Frank H. Clarke. Optimization and Nonsmooth Analysis. John Wiley and Sons, 1983.

Changde Du, Changying Du, Lijie Huang, Haibao Wang, and Huiguang He. Structured
neural decoding with multitask transfer learning of deep neural network representations.
IEEE Transactions on Neural Networks and Learning Systems, 2020.

Mengyu Du. An inexact alternating direction method of multipliers for convex composite
conic programming with nonlinear constraints. PhD thesis, Department of Mathematics,
National University of Singapore, Singapore, 2015.

Andreas Fischer. Solution of monotone complementarity problems with locally lipschitzian
functions. Mathematical Programming, 76(3):513–532, 1997.

Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Sparse inverse covariance estima-
tion with the graphical lasso. Biostatistics, 9(3):432–441, 2008.

Irina Gaynanova, James G. Booth, and Martin T. Wells. Simultaneous sparse estimation of
canonical vectors in the p� N setting. Journal of the American Statistical Association,
111(514):696–706, 2016.

Osman Güler. On the convergence of the proximal point algorithm for convex minimization.
SIAM Journal on Control and Optimization, 29(2):403–419, 1991.

Kenneth R. Hess, Keith Anderson, W. Fraser Symmans, Vicente Valero, Nuhad Ibrahim,
Jaime A. Mejia, Daniel Booser, Richard L. Theriault, Aman U. Buzdar, Peter J. Dempsey,
et al. Pharmacogenomic predictor of sensitivity to preoperative chemotherapy with pa-
clitaxel and fluorouracil, doxorubicin, and cyclophosphamide in breast cancer. Journal
of Clinical Oncology, 24(26):4236–4244, 2006.

Cho-Jui Hsieh, Mátyás A Sustik, Inderjit S. Dhillon, and Pradeep Ravikumar. QUIC:
quadratic approximation for sparse inverse covariance estimation. Journal of Machine
Learning Research, 15(1):2911–2947, 2014.

Steffen L. Lauritzen. Graphical Models, volume 17. Clarendon Press, 1996.

Claude Lemaréchal and Claudia Sagastizábal. Practical aspects of the Moreau-Yosida regu-
larization: theoretical preliminaries. SIAM Journal on Optimization, 7(2):367–385, 1997.

Hongzhe Li and Jiang Gui. Gradient directed regularization for sparse Gaussian concen-
tration graphs, with applications to inference of genetic networks. Biostatistics, 7(2):
302–317, 2006.

Stan Z. Li. Markov Random Field Modeling in Image Analysis. Springer Science & Business
Media, 2009.

42

MARS: A Second-Order Algorithm for Precision Matrices Estimation

Xudong Li, Defeng Sun, and Kim-Chuan Toh. A highly efficient semismooth Newton aug-
mented lagrangian method for solving lasso problems. SIAM Journal on Optimization,
28(1):433–458, 2018.

Yang Li, Jun Hu, Chengxin Zhang, Dong-Jun Yu, and Yang Zhang. Respre: high-accuracy
protein contact prediction by coupling precision matrix with deep residual neural net-
works. Bioinformatics, 35(22):4647–4655, 2019.

Meixia Lin, Yancheng Yuan, Defeng Sun, and Kim-Chuan Toh. Adaptive sieving
with PPDNA: Generating solution paths of exclusive lasso models. arXiv preprint
arXiv:2009.08719, 2020.

Weidong Liu and Xi Luo. Fast and adaptive sparse precision matrix estimation in high
dimensions. Journal of Multivariate Analysis, 135:153–162, 2015.

Nicolai Meinshausen. Relaxed lasso. Computational Statistics & Data Analysis, 52(1):
374–393, 2007.

Nicolai Meinshausen and Peter Bühlmann. High-dimensional graphs and variable selection
with the lasso. Annals of Statistics, 34(3):1436–1462, 2006.

Jean J. Moreau. Fonctions convexes duales et points proximaux dans un espace hilbertien.
Comptes rendus hebdomadaires des séances de l’Académie des sciences, 255:2897–2899,
1962.

Figen Oztoprak, Jorge Nocedal, Steven Rennie, and Peder A. Olsen. Newton-like methods
for sparse inverse covariance estimation. Advances in Neural Information Processing
Systems, 25:755–763, 2012.

Pradeep Ravikumar, Martin J. Wainwright, Garvesh Raskutti, and Bin Yu. High-
dimensional covariance estimation by minimizing `1-penalized log-determinant diver-
gence. Electronic Journal of Statistics, 5:935–980, 2011.

Stephen M. Robinson. Some continuity properties of polyhedral multifunctions. In Mathe-
matical Programming at Oberwolfach, pages 206–214. Springer, 1981.

Ralph T. Rockafellar. Convex Analysis. Princeton University Press, 1970.

Ralph T. Rockafellar. Augmented lagrangians and applications of the proximal point algo-
rithm in convex programming. Mathematics of Operations Research, 1(2):97–116, 1976.

Ralph T. Rockafellar and Roger J-B Wets. Variational Analysis, volume 317. Springer
Science & Business Media, 1998.

Katya Scheinberg, Shiqian Ma, and Donald Goldfarb. Sparse inverse covariance selection via
alternating linearization methods. Advances in Neural Information Processing Systems,
23, 2010.

Jonathan Richard Shewchuk. An introduction to the conjugate gradient method without
the agonizing pain, 1994.

43

Li, Jiang, and Sun

Jie Sun. On monotropic piecewise quadratic programming. PhD thesis, Department of
Mathematics, University of Washington, 1986.

Kean Ming Tan, Zhaoran Wang, Han Liu, and Tong Zhang. Sparse generalized eigenvalue
problem: Optimal statistical rates via truncated rayleigh flow. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 80(5):1057–1086, 2018.

Cheng Wang and Binyan Jiang. An efficient ADMM algorithm for high dimensional pre-
cision matrix estimation via penalized quadratic loss. Computational Statistics & Data
Analysis, 142:106812, 2020.

Anja Wille, Philip Zimmermann, Eva Vranová, Andreas Fürholz, Oliver Laule, Stefan
Bleuler, Lars Hennig, Amela Prelić, Peter von Rohr, Lothar Thiele, et al. Sparse graph-
ical Gaussian modeling of the isoprenoid gene network in arabidopsis thaliana. Genome
Biology, 5(11):1–13, 2004.

Daniela M. Witten, Jerome H. Friedman, and Noah Simon. New insights and faster com-
putations for the graphical lasso. Journal of Computational and Graphical Statistics, 20
(4):892–900, 2011.

Ming Yuan. High dimensional inverse covariance matrix estimation via linear programming.
Journal of Machine Learning Research, 11:2261–2286, 2010.

Ming Yuan and Yi Lin. Model selection and estimation in the Gaussian graphical model.
Biometrika, 94(1):19–35, 2007.

Teng Zhang and Hui Zou. Sparse precision matrix estimation via lasso penalized D-trace
loss. Biometrika, 101(1):103–120, 2014.

Yangjing Zhang, Ning Zhang, Defeng Sun, and Kim-Chuan Toh. An efficient Hessian based
algorithm for solving large-scale sparse group lasso problems. Mathematical Programming,
179(1):223–263, 2020.

Xinyuan Zhao, Defeng Sun, and Kim-Chuan Toh. A Newton-CG augmented lagrangian
method for semidefinite programming. SIAM Journal on Optimization, 20(4):1737–1765,
2010.

44

	Introduction
	Preliminaries
	An adaptive sieving reduction strategy
	A semismooth Newton augmented Lagrangian method
	An inexact augmented Lagrangian algorithm
	A semismooth Newton algorithm for solving the subproblem in Algorithm 2

	Some further discussions
	Numerical experiments
	Some other algorithms
	Simulation studies
	Statistical performance
	Computational performance

	Real data analysis

	Conclusions
	Performance of EQUAL
	Supplementary tables

