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Abstract

Regularized regression models are well studied and, under appropriate conditions, offer
fast and statistically interpretable results. However, large data in many applications are
heterogeneous in the sense of harboring distributional differences between latent groups.
Then, the assumption that the conditional distribution of response Y given features X is the
same for all samples may not hold. Furthermore, in scientific applications, the covariance
structure of the features may contain important signals and its learning is also affected by
latent group structure. We propose a class of mixture models for paired data pX,Y q that
couples together the distribution of X (using sparse graphical models) and the conditional
Y |X (using sparse regression models). The regression and graphical models are specific
to the latent groups and model parameters are estimated jointly. This allows signals in
either or both of the feature distribution and regression model to inform learning of latent
structure and provides automatic control of confounding by such structure. Estimation
is handled via an expectation-maximization algorithm, whose convergence is established
theoretically. We illustrate the key ideas via empirical examples. An R package is available
at https://github.com/k-perrakis/regjmix.

Keywords: distribution shifts, heterogeneous data, joint learning, latent groups, mixture
models, sparse regression

1. Introduction

Regularized regression models usually assume homogeneity in the sense that the same con-
ditional distribution of a response Y given features X is taken to hold for all samples. In
the presence of latent groups that might have different underlying conditional distributions,
regression modeling may be confounded, possibly severely. Similarly, covariance structure
among features can be an important signal in scientific applications but its learning may
be strongly affected by latent group structure.
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These issues are a concern whenever data might harbour unrecognized distributional
shifts or group structure, an issue that is increasingly prominent in an era of large and often
heterogeneous data. Furthermore, for heterogeneous data the two aspects – the distribution
of features X and the conditional Y | X – are related in practice, since either or both may
contain signals relevant to detecting and modeling group structure, which in turn is essential
to overall estimation. Motivated by such heterogeneous data settings with paired data of
the form pX,Y q, in this paper we study a class of joint mixture models that couple together
both aspects – sparse graphical models for X and parsimonious regression models for Y | X
– in one framework. Specifically, in high-level notation, we consider models of the form

Z „ τZ

X | Z“k „ pXpµk,Σkq

Y | X,Z“k „ pY pgpX
Tβkq, σ

2
kq

(1)

where Z Pt1, . . . ,Ku is a latent indicator of group membership with distribution τZ , pW pm, sq
denotes the probability distribution of a random variable W with location m and scale s,
and gp¨q is a link function. This work focuses on the familiar and important case where
both X and Y are normally distributed and g is the identity function. However, the key
ideas apply to any model of the general form in Eq. (1).

In this context the presence of group structure has the following consequences:

• Confounding due to latent groups. Associations between components of X and Y may
be entirely different “globally” (with Z marginalized out) vs. “locally” (conditionally
on Z) with regression coefficients differing even in signs and sparsity patterns.

• Ambiguous group structure in feature space. Clustering the X’s alone may lead to clus-
ter labels which do not capture the relevant structure, as instances of group signal in
X may be unrelated to Y (e.g. clustering gene expression data may yield well-defined
clusters; however, these may not relate to a specific biological/medical response).

• Group-specific signal in regression coefficients. Nonidentical coefficients or feature im-
portance across groups provide a potentially useful discriminant signal for identifying
the group structure itself. This signal cannot be detected by clustering the X’s.

Two common strategies given paired data pX,Y q are: (S1) ignore any potential group-
ing and fit one regression model using the entire data and (S2) cluster the X’s and then
fit separate regression models to the group-specific data. Strategy (S1) is risky, since the
resulting regression coefficients may be entirely incorrect if latent group structure is present
(e.g. due to Simpson’s paradox and related phenomena). Also, when the modeling aspect is
of importance, under (S1) evaluation of predictive loss is not a satisfactory guide for model
assessment, since prediction error may be apparently small despite severe model misspeci-
fication. Strategy (S2), although in some ways safer, is also not guaranteed to protect from
such effects, unless the resulting group structure obtained from clustering the X’s is correct
with reference to the overall problem; this may not hold in general. Furthermore, since (S2)
models the X data alone, it cannot exploit any signal in the conditionals Y | X to guide
the clustering. A common variant of (S2) is to perform a dimension reduction on X, such
as PCA, and cluster on the reduced space. This, however, does not resolve the problem as
the major principal components may not be predictive of Y ; see e.g. Jolliffe (1982).

2



Regularized Joint Mixtures

1.1 Related work and contribution

For discrete latent variables Z a standard way of approaching such heterogeneous problems
is via mixture models. The literature on mixtures is vast; below we summarize related
work according to model structure, covering the most popular approaches for the case of
continuous responses.

Mixtures for X|Z. The most commonly used and extensively studied approach within
this category is the Gaussian mixture model (GMM); see e.g., McLachlan and Peel (2000).
GMMs have undergone a series of novel developments focusing on parsimonious modeling of
the covariance matrices such as parametrizations based on eigenvalue decomposition (Ban-
field and Raftery, 1993; Celeux and Govaert, 1995; Fraley and Raftery, 2002), factorizations
based on factor analysis models (McNicholas and Murphy, 2008), and extensions to sparse
graphical model estimation (Anandkumar et al., 2012; Städler et al., 2017; Fop et al., 2019),
among others. These approaches differ from ours in that they consider only the X signal
and do not include a regression component, thus, inheriting the potential drawbacks of
strategy (S2).

Mixtures for Y |X,Z. Finite mixtures of regression (FMR) models belong in this category.
Similarly to GMMs, Gaussian FMRs have been studied and developed extensively, allowing
for flexible modeling designs (see e.g. Früwirth-Schnatter, 2005) and regularized estimation
(Khalili and Jiahua, 2007; Städler et al., 2010; Khalili and Lin, 2013). FMRs focus on the
relationship between Y and X without including a generative probability model for X. Our
approach is motivated by settings in which the X distribution itself is of interest and may
be confounded by latent group structure. Furthermore, under FMRs a new X 1 cannot be
allocated to one specific group and thereby used to obtain a group-specific prediction.

Mixtures for Y,Z|X. Mixtures of experts (MoE; Dayton and Macready, 1988; Jacobs et al.,
1991; Jordan and Jacobs, 1994; Jacobs, 1997) jointly model the response and latent allo-
cations. MoEs consist of expert networks (these are models that predict Y from X) and
a discriminative model (the gating network) that chooses among the experts. The parsi-
monious covariance parametrizations for GMMs (Banfield and Raftery, 1993; Celeux and
Govaert, 1995; Fraley and Raftery, 2002) have been introduced within the MoE framework
initially in Dang and McNicholas (2015) for the special case where the same set of predictors
enter the expert and gating networks, and, more recently, in Murphy and Murphy (2020)
for the general case where different predictors are allowed to enter in the two networks; the
latter work also introduces an additional noise component for outlier detection. Regularized
MoE approaches include those of Khalili (2010) and Chamroukhi and Huynh (2018), among
others. MoEs include FMRs as a special case in the absence of a gating network. Also,
similarly to FMRs, MoEs condition upon features and, thus, lack a generative model for
X. However, unlike with FMRs, group-specific prediction of the response is possible under
MoEs, as the learned gating network can be used to allocate new feature observations.

Mixtures for Y,X|Z. A first approach within this category is profile regression (Molitor
et al., 2010; Liverani et al., 2015). Under profile regression X and Y are conditionally in-
dependent given the latent group indicator Z. Specifically, the component Y |Z involves a
regression model including a “profile” parameter (capturing the effect of X) plus additional
co-variates, while the component X|Z is some multivariate distribution (e.g. Gaussian). A
second approach, more relevant to our work, is the cluster weighted model (CWM) mixture
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introduced by Ingrassia et al. (2012). In this case, we have a linear model component for
Y |X,Z and a multivariate distribution component for X|Z, following the hierarchical struc-
ture of Eq. (1). As illustrated, in Ingrassia et al. (2012) Gaussian CWMs lead to the same
family of probability distributions generated by GMMs (see also below) and under specific
conditions include FMRs and MoEs as special cases. Extensions of CWMs accommodate
the use of GLMs and mixed-type data (Ingrassia et al., 2015; Punzo and Ingassia, 2016),
parsimonious parametrizations (similarly to GMMs and MoEs) of covariances (Dang et al.,
2017) and latent factor structures for the feature matrix (Subedi et al., 2013), among others.

The class of models proposed here – henceforth, referred to as regularized joint mixture
(RJM) models – belong to the latter category of mixtures. Specifically, the model speci-
fication (the likelihood part of the model) is of a CWM type, but the resulting clustering
and parameter learning process under RJMs is different due to regularization. CWMs rely
on maximum-likelihood (ML) estimation and in this case under the normal-normal setting
with identity link (as considered here), Eq. (1) is equivalent to a GMM on the concatenated
matrix rX,Y s as shown in Ingrassia et al. (2012). However, under RJMs, the equivalence
to the GMM no longer holds, because the regression and graphical model parts are treated
differently (below we include comparisons with direct Gaussian mixture modeling of the
concatenated matrix rX,Y s). We view regularization as essential for delivering a usable so-
lution to the problem. In many cases the number of features p may be on the same order as
sample size n, or larger, and at the group level the sample sizes are of course smaller; hence
without suitable regularization both the regression and graphical models will typically be
ill-behaved. In the specific implementation we propose, we use the graphical lasso (Friedman
et al., 2008a) for graphical model estimation, while for the regression part we consider: (i)
the Bayesian lasso (Park and Casella, 2008) and (ii) the normal-Jeffreys prior (Figueiredo,
2001). We note that other choices would be possible within the general framework, sub-
ject to computational considerations and appropriate handling of tuning parameters. In
summary, the merits of RJMs are the following:

(i) Learns latent group structure by combining information from the distribution over
X and the regression of Y on X within a principled framework;

(ii) Provides group-specific feature importance and graphical models with explicit
sparsity patterns;

(iii) Applicable in p ą n settings;

(iv) Allows group-specific prediction for the response given a new feature vector X 1.

1.2 Motivation

Given the large literature on mixture models, it is important to clarify at the outset why
the models we study are needed. We are motivated by applications in which latent group
structure may be important and where aspects such as (potentially group specific) feature
importance and covariance structure among the X’s play a role.

To take one example, in biomedicine there is much interest in latent disease subtypes.
These will often have subtype-specific covariance patterns, due to differences in underlying
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regulatory networks, and the analyst may want to understand subtype-specific disease bi-
ology and feature importance. Focusing on only the X’s may be insufficient, because this
does not account for the response Y (and there may be many ways of clustering X not rel-
evant to the Y of interest). For example, if X are data on human subjects and Y a cancer
phenotype, many instances of cluster structure in X may be unrelated to the cancer setting.
In addition, focusing solely on differences in regression models Y |X means that subgroup
recovery is difficult or impossible if these differences are not large enough. Similarly, in
data-driven marketing, latent customer subgroups may have different covariance structure
among features and at the same time manifest differences in regression models linking such
features to responses (such as revenue per customer). The formulation we propose includes
both sources of information in one model and thereby allows for subgroup identification and
parameter estimation that accounts for both aspects.
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Figure 1: Examples for two subgroups. Each panel shows a specific level of difference in the
regression models, quantified by the difference ∆β in regression coefficients. The difference
in the feature distributions is controlled via a simple mean shift ∆µ.

Figure 1 shows simple illustrative examples to bring out some of these points. We
emphasize that this is for illustrative purposes only, intended to highlight some interesting
contrasts (full empirical results appear in Section 5 below). In these examples, we consider
settings in which there may be either or both of an X signal difference (in the figure this is a
simple mean shift ∆µ, but the models we propose are general and for multivariate X allow
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also for differences in covariance structure) and a difference in subgroup-specific regression
coefficients (∆β). For this initial illustration we consider two latent groups, each with sample
size equal to 100, and ten potential predictors, but with only one predictor having an effect (a
non-zero regression coefficient) on the response; full details of the simulations can be found
in Appendix A. Results in terms of subgroup identification, as quantified by Rand Index, are
summarized in Figure 2. When there is no difference in regression models (∆β “ 0), MoEs
cannot detect any structure (since the X distribution is not modelled). On the other hand,
with a stronger difference in regression models (∆β “ 1), MoE outperforms a Gaussian
mixture (on the X’s), since the latter does not model the regression part. The approach
we propose models both aspects in a unified framework, hence works well regardless of
where the signal lies. Furthermore, and as shown in detail via empirical examples below, by
accounting for the latent structure, RJM is able to detect subgroup-specific sparsity patterns
whilst avoiding Simpson’s paradox-like effects that could otherwise arise. Later, we show
detailed empirical results, including an example, based on cancer data, that highlights some
of these points, and in particular how subgroup identification benefits from joint modeling,
relative to simply clustering X (or clustering the stacked vector pX,Y q) or using MoE.
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Figure 2: Role of signal location in subgroup identification. The difference ∆β in regression
coefficients represents the signal from the regression models, from no signal (left panel), to
a strong signal (right panel). In each panel the signal in the feature distribution increases
from left to right via a simple mean shift ∆µ.

The remainder of the paper is structured as follows. In Section 2 we lay out the model
specification and discuss the regularization methods under consideration as well as efficient
tuning strategies. Computational and theoretical details of the expectation-maximization
(EM) optimization are covered in Section 3. In Section 4 we discuss prediction using RJMs
and discuss how predictive measures can potentially be used for cluster selection. In Section
5 we present empirical examples, focusing initially on small-scale simulations and then
proceeding to larger scale semi-synthetic experiments and applications to real data. The
paper concludes with a discussion in Section 6.

2. The RJM model
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2.1 Model specification

Let y denote an n-dimensional vector of outputs or responses and X an nˆp feature matrix.
Samples are indexed by i “ 1, . . . , n. Let K denote the number of groups and zi P t1 . . .Ku
represent the true (latent) group indicator for the sample point pyi,xiq with Prpzi “ kq “ τk.
The group-specific parameters are θk “ pθXk ,θ

Y
kq
T with θXk and θYk being the parameters

governing respectively the marginal distribution of X and the regression model of Y on X.
We allow for group-specific parameters, but assume that samples are independent and

identically distributed within groups. The joint distribution of pyi,xiq in group k is

ppyi,xi|θk, zi “ kq “ ppyi|θ
Y
k ,xi, zi “ kqppxi|θ

X
k , zi “ kq. (2)

The features are modeled as p-dimensional multivariate normal so that θXk “ pµk, vecpΣkqq
T ,

where µk is the mean and Σk the p ˆ p covariance matrix. For the responses, we specify
a normal linear regression model, with parameters θYk “ pαk,βk, σ

2
kq
T , where αk is the

intercept, βk the vector of regression coefficients and σ2
k the error variance. Inclusion of the

intercept is necessary in the present setting, because it is not possible to center the response
appropriately when the group labels are unknown. Thus, we have that

ppxi|θ
X
k , zi “ kq ” ppxi|µk,Σk, zi “ kq “ Nppxi|µk,Σkq (3)

and
ppyi|θ

Y
k ,xi, zi “ kq ” ppyi|αk,βk, σ

2
k,xi, zi “ kq “ Npyi|αk ` xTi βk, σ

2
kq. (4)

Marginalizing out the latent variables leads to a mixture representation of the form

ppy,X|θ, τ q “
n
ź

i“1

K
ÿ

k“1

ppyi|θ
Y
k ,xi, zi “ kqppxi|θ

X
k , zi “ kqτk, (5)

where θ “ pθ1, . . . ,θKq
T and τ “ pτ1, . . . , τKq

T .

2.2 Regularization and priors

Given the likelihood function of θ and τ in (5) we consider general solutions of the form

θ̂, τ̂ “ arg max
θ,τ

#

log ppy,X|θ, τ q `
K
ÿ

k“1

penpθ˚Xk q `
K
ÿ

k“1

penpθ˚Yk q

+

, (6)

where penp¨q denotes a penalty function, and θ˚Xk and θ˚Yk are parameter subsets that we
wish to penalize. The particular parameters we penalize are the group-specific covariances
and regression vectors; hence, θ˚Xk ” vecpΣkq and θ˚Yk ” βk in (6) (although under one
approach below we consider θ˚Yk ” pβk, σ

2
kq
T ). Penalization is required because the corre-

sponding ML estimates may be ill-behaved or ill-defined and we are interested in group-
specific feature importance and conditional independence structure.

In general, tuning of penalty parameters is challenging in the latent group setting. The
common approach, based on cross-validation (CV), needs to be handled with care when the
estimation of parameters requires iterative procedures converging to (local) maxima, such
as the EM algorithm. Specifically, performing CV at each iteration of the algorithm would
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change the penalty and, thus, also change the objective function at each iteration. A brute-
force solution to the problem would be to pre-specify a grid of values for the penalty and
select the value that optimizes a specific criterion. However, apart from open issues related
to the range and length of the grid, this would also be a computationally burdensome task,
requiring multiple EM processes (each with multiple starts) for each point at the grid.

Given these considerations, we argue that more viable strategies are the following; (i)
using “universal penalties” from existing literature, (ii) using CV in a stepwise manner,
and (iii) considering the penalties as free parameters under estimation. The first strategy
is advisable to use for parameters whose learning is not the main goal of the analysis, but
for which regularization is required in order to attain workable, non-spurious solutions.
Universal penalties which satisfy certain theoretical requirements (see e.g., Donoho and
Johnstone, 1994; Städler and Mukherjee, 2013) typically work well to that end. On the other
hand, for the main parameters of interest, whose learning (e.g. estimation, sparsity patterns)
is of importance, the second and third strategies seem to be more appropriate as they offer
more specific, application-driven solutions. In short, the stepwise CV approach entails
adjusting the penalties a few times during the EM and running the algorithm sufficiently
long in order to reach local maxima after the last adjustment. The last strategy, requires
maximizing the objective with respect to the penalties and, thus, requires the introduction of
a prior distribution. Within this framework one could ideally (yet not necessarily) consider
properties of the prior; for instance, its behavior under small and/or large samples and
the consequent effect on shrinkage, among others. From a pragmatic perspective, the prior
choice is linked to more realistic considerations relating to the maximization required in the
EM algorithm. For instance, the half-Cauchy prior, which is a standard choice for penalties
(Polson and Scott, 2012) in fully Bayesian implementations based on posterior sampling,
may not be necessarily convenient to work with within an EM framework.

We proceed with a description of the penalty functions, discussing our choices from both
penalized likelihood and Bayesian viewpoints, and explaining our reasoning for the way that
penalty parameters are tuned based on the aforementioned strategies. For the remainder
of this Section, it is convenient to discuss the corresponding solutions under known group
labels. For the subset of datapoints where zi “ k, let us denote the nk ˆ 1 response by
yk and the nk ˆ p predictor matrix by Xk for k “ 1, . . . ,K. We emphasize that this is
for expositional clarity only; the actual solutions under latent group labels are, of course,
obtained iteratively via the EM algorithm presented in Section 3.

2.2.1 Regularization of Σk

For the regularization of Σk we use the graphical lasso (Meinshausen and Bühlmann, 2006;
Yuan and Lin, 2007; Friedman et al., 2008a). The graphical lasso induces sparsity in the in-
verse covariance matrix Ωk “ Σ´1

k for group k. In this case we have penpθ˚Xk q ” penpΩkq “

´ζ}Ωk}1 in (6), where ζ ą 0 controls the strength of regularization and } ¨}q is the Lq norm.
For known group labels the graphical lasso estimate would be

pΩk “ arg max
ΩkPM`

!

log |Ωk| ´ tr
`

ΩkŜk
˘

´ ζ}Ωk}1

)

, (7)

where M` is the space of positive definite matrices and Ŝk is the ML covariance estimate
of Xk. The solution in (7) is equivalent to the posterior mode under a likelihood as in (3)
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and a prior distribution of the following form

ppΩk|ψq9

«

p
ź

j“1

Exppωkjj |ψ{2q

p
ź

jăl,l“2

DEpωkjl|0, ψ
´1q

ff

1tΩkPM`u, (8)

where 1t¨u is the indicator function, Expp¨|rq is the exponential distribution with rate r ą 0
and DEp¨|µ, bq is the double exponential distribution with location µ P R and scale b ą 0.
The connection between (7) and the corresponding posterior mode under the likelihood in
(3) and the prior in (8) is that for any given value of ζ we have that ψ “ nkζ (Wang, 2012).

For the graphical lasso penalty, we use the “universal” threshold ψ̃ “
?

2n log p{2 derived
from the logical arguments developed in Städler and Mukherjee (2013). Note that here we
use n instead of nk as the group labels will be unknown. The reason for choosing the
universal-threshold approach for the graphical lasso is that we are less interested in the
sparsity pattern of Ωk itself. Rather, we mainly want a well-behaved estimate that allows
group structure to be effectively accounted for.

2.2.2 Regularization of βk

The lasso approach. We consider a scaled version of the lasso (Tibshirani, 1996), where
the penalty in (6) is given by penpθ˚Yk q ” penpβk, σ

2
kq “ λk}βk}1{σk with λk ą 0. Here

we introduce group specific penalty parameters λk, unlike previously, where parameter ψ is
common across groups. This type of lasso regularization has been studied by Städler et al.
(2010) in the context of FMR; a setting where the role of the scaling of variance parameters
is much more important than in standard homogeneous regression, as the σk’s may differ
and the grouping is not fixed. If the groups were known, the lasso estimate would be

α̂k, β̂k, σ̂
2
k “ arg min

αk,βk,σ
2
k

#

}yk ´ αk1nk
´Xkβk}

2
2

2σ2
k

` λk
}βk}1
σk

` pnk ` p` 2q log σk

+

, (9)

where 1q denotes a q-dimensional vector of ones. The solution in (9), which is slightly
different than the one in Städler et al. (2010), corresponds to the posterior mode under
the Bayesian lasso formulation (Park and Casella, 2008), that specifies independent double
exponential priors for the regression coefficients conditional on the error variance which is
assigned the scale-invariant Jeffreys prior. Namely,

ppβk|σ
2
k, λkq “

p
ź

j“1

λk
2σk

exp

˜

´ λk
|βkj |

σk

¸

and ppσ2
kq9

1

σ2
k

, (10)

with the correspondence to (9) completed when ppαkq91. We propose two methods for
handling λk; the fixed-penalty lasso (FLasso) based on a plug-in estimate and the random-
penalty lasso (RLasso) based on the construction of a suitable prior.

FLasso. This approach is essentially a two-step tuning procedure. We start with initial
estimates, λ̂p0qk obtained by minimizing the CV mean squared error based on some prior
clustering of the data. Then, at a certain iteration we re-calculate the CV estimates and fix
each group penalty to the new estimate λ̂p1qk for all further EM iterations. Specifically, we
fix the parameter after the first iteration where the group assignments do not change. From
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a Bayesian perspective the FLasso approach can be viewed as an empirical Bayes method
as we use the data in order to plug-in λ̂p0qk and λ̂p1qk in the prior of βk appearing in (10). The
monotonic behaviour of the EM may be disrupted at the re-estimation iteration, but after
that point it will hold.

RLasso. In this approach we propose placing a prior distribution on λk so that this pa-
rameter will be automatically updated during the EM. We construct the prior so that it
satisfies the requirement of supporting no penalization asymptotically (λk Ñ 0 as nÑ8).
A suitable prior for our purposes is the Pareto distribution whose scale parameter is also
the lower bound of its support. Specifically, we have a prior distribution with scale an ą 0
and shape bn ą 0 (parameters are defined to depend on n) of the following form

ppλkq “ bna
bn
n λ

´pbn`1q
k , (11)

where λk P ran,8q. In our setting parameter an does need to be specified explicitly
and is regarded to be decreasing in n, while the shape parameter is specified as bn “
pp´ 1q ´ c

a

2K log p{n for some c P p0, 1s. The rationale for these choices and further de-
tails are discussed in Appendix B. As shown next, RLasso will lead to a reasonable update
for λk during the M-step.

The normal-Jeffreys approach. The normal-Jeffreys (NJ) prior (Figueiredo, 2001) con-
sists of independent improper priors; in our context the prior is given by

ppβkq “

p
ź

j“1

ppβkjq 9

p
ź

j“1

|βkj |
´1. (12)

For known group labels with ppαk, σ
2
kq9 1{σ2

k the corresponding penalized estimate is

α̂k, β̂k, σ̂
2
k “ arg min

αk,βk,σ
2
k

#

}yk ´ αk1nk
´Xkβk}

2
2

2σ2
k

`

p
ÿ

j“1

log |βkj | ` pnk ` 2q log σk

+

. (13)

Here penpθ˚Yk q ” penpβkq “
řp
j“1 log |βkj |. The NJ is well known in the shrinkage-prior

literature (Griffin and Brown, 2005; Carvalho et al., 2010; Polson and Scott, 2010). As
with most shrinkage priors, (12) can be expressed as a scale-mixture of normals; namely,
ppβkj |skjq “ p2πskjq

´1{2 expp´β2
kj{2skjq with πpskjq9 s

´1
kj and, therefore, we have that

ş

ppβkj |skjqπpskjqdskj 9 |βkj |
´1. As the mixing distribution lacks a hyper-parameter the

prior is characterized by the absence of a “global” scale parameter. Also, due to heavy tails
small coefficients are shrunk a lot, while large signals remain relatively unaffected; similarly
to other heavy-tailed priors (Carvalho et al., 2010; Griffin and Brown, 2005). Figueiredo
(2003) and Bae and Mallick (2004) show that the NJ prior strongly induces sparsity and
yields good performance in terms of selection.

The use of the NJ prior is appealing for the RJM framework. Handling penalties is
cumbersome in our setting and the NJ prior provides an attractive “tuning-free” alternative.
In general, shrinkage priors which lack a global scale parameter fail to capture the average
signal density of the data (Carvalho et al., 2010); however, despite this potential shortcoming
of the NJ prior the potential benefits are worth exploring. Also, the posterior mode under

10
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(12) is easy to find through the use of an EM algorithm where the scaling parameters skj
are considered latent (Figueiredo, 2003). This additional latent structure can be easily
incorporated in our EM without additional computational costs. In fact, the corresponding
NJ-EM update is in closed-form, which is not the case in the lasso approach.

3. The RJM-EM algorithm

In this Section we present first the expectation and maximization steps of the proposed EM
algorithm. We then prove that under certain conditions on the regularization the proposed
algorithm converges towards a critical point of the likelihood function.

3.1 The EM steps

The E-Step. Irrespective of regularization approach, the group-membership probabilities
of the mixture model in (5) at iteration t of the algorithm are calculated as

m
ptq
ki ”

xPrpzi “ k|yi,xi,θ
ptq
k q “

ppyi|θ
Y ptq
k ,xi, zi “ kqppxi|θ

Xptq
k , zi “ kqτ

ptq
k

ř

k ppyi|θ
Y ptq
k ,xi, zi “ kqppxi|θ

Xptq
k , zi “ kqτ

ptq
k

, (14)

for i “ 1, . . . , n, with the distributions appearing in the right-hand side of (14) defined in

(3) and (4). Let us define some quantities that will be used throughout; namely, n
ptq
k “

řn
i“1m

ptq
ki , m

ptq
k “ pm

ptq
k1 , . . . ,m

ptq
knq

T and M
ptq
k “ diagpm

ptq
k q.

A convenient feature of the RJM design is that due to the hierarchical structure of the
model the objective function can be split into separate simple parts; specifically,

Qpθ, τ ,λ|θptq, τ ptq,λptqq “ QY pθY ,λ|θY ptq,λptqq `QXpθX |θXptqq `QZpτ |τ ptqq, (15)

where θY “ pθY1 , . . . ,θ
Y
Kq

T and θX “ pθX1 , . . . ,θ
X
Kq

T . Here, by λ we denote the vector of
group penalty parameters of the regression component. Depending upon regularization ap-
proach, the elements of vector λ at iteration t are fixed in FLasso, free and under estimation

in RLasso and absent in NJ; respectively having λptq “ pλ̂
pt˚q
1 , . . . , λ̂

pt˚q
K qT (where t˚ “ t0, 1u

with zero and one corresponding to the initial CV estimate and the re-estimated CV value;

see FLasso in Section 2.2.2), λptq “ pλ
ptq
1 , . . . , λ

ptq
K q

T and λptq “ ∅.

Starting in reverse order from the right-hand side of (15) we have that

QZpτ |τ ptqq “
K
ÿ

k“1

n
ptq
k log τk, (16)

while the second component of the objective function is given by

QXpθX |θXptqq “
1

2

K
ÿ

k“1

«

n
ÿ

i“1

m
ptq
ki

«

log |Ωk| ´ pxi ´ µkq
TΩkpxi ´ µkq

ff

´ ψ̃}Ωk}1

ff

, (17)

where ψ̃ “
?

2n log p{2. The last component QY in (15) depends on regularization method.
We define two distinct functions QY

lasso and QY
NJ. For lasso we use the re-parametrization

11
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χk “ αk{σk, φk “ βk{σk and ρk “ σ´1
k (Städler et al., 2010), resulting in

QY
lassopθ

Y ,λ|θY ptq,λptqq “
K
ÿ

k“1

«

´
pρky ´ χk1n ´Xφkq

TM
ptq
k pρky ´ χk1n ´Xφkq

2

´ λk}φk}1 ` pn
ptq
k ` p` 2q log ρk ` fpλkq

ff

, (18)

which is convex. Here f ptqpλkq “ 0 for FLasso and fpλkq “ c
a

2K log p{n log λk for RLasso.
Under the NJ approach the corresponding objective is given by

QY
NJpθ

Y |θY ptqq “ ´
1

2

K
ÿ

k“1

«

py ´ αk1n ´Xβkq
TM

ptq
k py ´ αk1n ´Xβkq

σ2
k

` βTkV
ptq
k βk

` pn
ptq
k ` 2q log σ2

k

ff

, (19)

where V
ptq
k “ diag

´

1{β
2ptq
k1 , . . . , 1{β

2ptq
kp

¯

. This matrix arises from the second underlying

latent structure (the latent scale parameters) in the EM; details are provided in Appendix
C. As we will see below, matrix Vk will in fact provide the final sparse estimate of βk, as
some of its diagonal entries go to infinity during the EM; consequently, the diagonal entries
of Uk “ V´1

k that go to zero correspond to the coefficients that are set equal to zero.

The M-Step. From (16) we have that the group probabilities are updated as

τ
pt`1q
k “n

ptq
k {n. (20)

Concerning parameter block θXk , from (17) we obtain the following updating equations

µ
pt`1q
k “

řn
i“1m

ptq
ki xi

n
ptq
k

, (21)

Ω
pt`1q
k “ arg max

Ωk

!

log |Ωk| ´ tr
`

ΩkS
ptq
k

˘

´ ζ
ptq
k }Ωk}1

)

, (22)

where in (22) we have that S
ptq
k “ n

´ptq
k

řn
i“1m

ptq
ki pxi ´ µ

pt`1q
k qpxi ´ µ

pt`1q
k qT and penalty

given by ζ
ptq
k “ ψ̃{n

ptq
k “

a

2n log p{p2n
ptq
k q. For the lasso objective in (18) the FLasso group

penalties are simply λ
pt`1q
k “ λ̂

pt˚q
k , while the RLasso update is

λ
pt`1q
k “

cK1{2

}φ
ptq
k }1

c

2 log p

n
“

cK1{2

}β
ptq
k }1

˜

σ
ptq
k

c

2 log p

n

¸

. (23)

Note that the RLasso update is a scaled version of the optimal universal penalty under
orthonormal predictors (quantity inside the parenthesis in (23)) and that the scaling depends

12
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on the sparsity of the coefficients and on c. For the components of θYk , the updates are as
follows

ρ
pt`1q
k “

yTM
ptq
k pχ

ptq
k 1n `Xφ

ptq
k q `

c

´

yTM
ptq
k pχ

ptq
k 1n `Xφ

ptq
k q

¯2
` 4yTM

ptq
k ypn

ptq
k ` p` 2q

2yTM
ptq
k y

,

(24)

χ
pt`1q
k “

pρ
pt`1q
k y ´Xφ

ptq
k q

Tm
ptq
k

n
ptq
k

, (25)

φ
pt`1q
k “ arg min

φk

1

2
}M

1{2ptq
k pρ

pt`1q
k y ´ χ

pt`1q
k 1n ´Xφkq}

2
2 ` λ

pt`1q
k }φk}1. (26)

Finally, the EM updates of θYk under the NJ prior are the following

σ
2pt`1q
k “

`

y ´ α
ptq
k 1n ´Xβ

ptq
k

˘T
M
ptq
k

`

y ´ α
ptq
k 1n ´Xβ

ptq
k

˘

n
ptq
k ` 2

, (27)

α
pt`1q
k “

py ´Xβ
ptq
k q

Tm
ptq
k

n
ptq
k

, (28)

β
pt`1q
k “

´

XTM
ptq
k X` σ

2pt`1q
k V

ptq
k

¯´1
XTM

ptq
k

´

y ´ α
pt`1q
k 1n

¯

. (29)

As remarked previously, in practice we work with U
ptq
k “ V

´1ptq
k Specifically, we have two

available options for βk; the first is suited for the n ą p case and is given by

β
pt`1q
k “ U

1
2
ptq

k

´

σ
2pt`1q
k Ip `U

1
2
ptq

k XTM
ptq
k XU

1
2
ptq

k

¯´1
U

1
2
ptq

k XTM
ptq
k

´

y ´ α
pt`1q
k 1n

¯

, (30)

while the second, which is faster to compute when n ă p, is given by

β
pt`1q
k “ σ

´2pt`1q
k U

ptq
k

”

Ip´XT
´

σ
2pt`1q
k M

´1ptq
k `XU

ptq
k XT

¯´1
XU

ptq
k

ı

XTM
ptq
k

´

y´α
pt`1q
k 1n

¯

(31)
Additional details on practical implementation appear in Appendix D.

3.2 Convergence guarantees

3.2.1 Preliminaries

The proposed EM algorithm is an expectation/conditional-maximization (ECM) as intro-
duced by Meng and Rubin (1993). Let us recall some elements of their formalism. We
call ξ P Ξ the variable optimised in the M step. The corresponding optimised function is
Qpξ|ξptqq, where ξptq is the value of the parameter after t ECM steps. Then, the exact M
step is defined as

ξpt`1q :“ arg max
ξPΞ

Qpξ|ξptqq . (32)

13
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When the optimisation in (32) is inconvenient, Meng and Rubin (1993) proposed to replace
it by S P N˚ successive block-wise updates (“conditional maximization”; CM). Given S
constraint functions tgspξqu

S
s“1, the CM step is decomposed into the S intermediary steps:

ξpt`s{Sq :“ arg max
ξPΞ;gspξq“gspξ

pt`ps´1q{Sqq

Qpξ|ξptqq , (33)

for s “ 1, ..., S. In their theorems 2 and 3, Meng and Rubin (1993) provide conditions under
which all limit points of any ECM sequence are critical points of the observed likelihood.
We propose a reformulation of their theorem 3, where we list explicitly all the required
conditions.

Theorem 1 (Theorem 3 of Meng and Rubin (1993)) With r P N˚, let Ξ be a subset
of the Euclidean space Rr. Let

 

ξptq
(

tPN P ΞN be an ECM sequence that has an observed log-
likelihood called Lpξq as its objective function. The initial term ξp0q is such that Lpξp0qq ą
´8. Let Qpξ|ξptqq be the corresponding expected complete likelihood that is conditionally
maximised at each CM step, with constraints functions tgspξqu

S
s“1. Finally, call Ξ˝ the

interior of Ξ, and assume that:

• Each conditional maximisation in the CM step (33) has a unique optimum

• @s, gspξq is differentiable and the gradient ∇gspξq P Rrˆds is of full rank on Ξ˝

•
ŞS
s“1

 

∇gspθqu|u P Rds
(

“ t0u

• The condition (6)-(10) of Wu (1983):

(6) Ξξp0q :“
!

ξ P Ξ|Lpξq ě Lpξp0qq
)

is compact for any Lpξp0qq ą ´8

(7) L is continuous on Ξ and differentiable on Ξ˝

(9) Ξξp0q Ď Ξ˝

(10) Qpξ1|ξ2q is continuous in both ξ1 and ξ2.

Then all limit points of
 

ξptq
(

tPN are stationary points of the objective Lpξq.

Note that condition (8) of Wu (1983):

(8) The sequence
 

Lpξptqq
(

t
is upper bounded for any ξp0q P Ξ

is verified as a direct consequence of (6) and (7) and is actually not an additional condition.

3.2.2 Main results

Here, we apply the convergence Theorem 1 to the proposed ECM algorithm for the RJM
model. First we show that without modification, our ECM verifies almost all the hypotheses
of Theorem 1. In particular the ones specific to the ECM procedure, as laid out by Meng
and Rubin (1993). Then, we provide conditions on the ECM penalization under which the
remaining, more restrictive, regularity hypotheses in Wu (1983) are also verified.

In our case, the optimization variable is ξ :“ pµ,Ω,φ,χ,ρ,λ, τ q P Ξ. Where the
closure of the parameter set Ξ is Ξ “ RKp ˆ SppRq` ˆ RKp ˆ RK ˆ R`K ˆ R`K ˆ

14
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SK Ă RKpp2`2p`3q, with SppRq` the cone of positive semi-definite matrices of size p
and SK :“

 

τ P r0, 1sK |
ř

k τk “ 1
(

. Its interior is Ξ˝ “ RKp ˆ SppRq`` ˆ RKp ˆ RK ˆ
R˚`

K
ˆ R˚`

K
ˆ S˝K , with SppRq`` the open cone of positive definite matrices of size p and

S˝K :“
 

τ Ps0, 1rK |
ř

k τk “ 1
(

. The ECM sequence takes its values in Ξ. With the proper
priors, the parameters Ω,ρ,λ, and τ cannot take values on the border of their respective
sets during an ECM sequence. In such a scenario, the ECM sequence lives in Ξ˝ and we
can simply consider that Ξ “ Ξ˝, which helps with several of the hypotheses. To ensure
this property, it is sufficient to set the regularization such that the objective Lpξq is infinite
everywhere on the border. This objective is the penalized observed log-likelihood function:

Lpξq “
n
ÿ

i“1

log

˜

K
ÿ

k“1

ppyi|θ
Y
k ,xi, zi “ kqppxi|θ

X
k , zi “ kqτk

¸

´ penpξq

“

n
ÿ

i“1

log
K
ÿ

k“1

exp

˜

´
1

2

ˆ

pyiρk ´ χk ´ xTi φkq
2 ´ 2 log ρk

` ‖xi ´ µk‖
2
Ωk
´ log |Ωk|

´ 2 log τk ` pp` 1q log 2π `
2

n
penpξq

˙

¸

,

(34)

where ‖xi ´ µk‖
2
Ωk

:“ pxi ´ µkq
TΩkpxi ´ µkq. The form penpξq for the penalty term is

a generalization of the separable penalty
ř

k penpθ˚Xk q `
ř

k penpθ˚Yk q proposed in Eq. (6).

With the posterior weights m
ptq
ki “

xPrpzi “ k|yi,xi, ξ
ptqq as defined in the E-step (14), we

can define the function Qpξ|ξptqq to maximise in the CM step:

Qpξ|ξptqq “
n
ÿ

i“1

K
ÿ

k“1

´
1

2
m
ptq
ki

ˆ

pyiρk ´ χk ´ xTi φkq
2 ´ 2 log ρk

` ‖xi ´ µk‖
2
Ωk
´ log |Ωk|

´ 2 log τk ` pp` 1q log 2π `
2

n
penpξq

˙

.

(35)

The conditional maximization of this function is carried out in Eq. (20) to (26), for one
specific version of the penalty penpξq. As required by Theorem 1, each of these optmizations
is uniquely defined. This property is penalty dependent. Hence, in general it is required to
use penalties/priors on the parameters that lead to uni-modal posterior distributions.

On the other hand, the general structure of the conditional updates is independent of the
penalty. Indeed, we propose a block-type update where each block is updated conditionally
to all other being fixed. The order of the updates is: τ Ñ µ Ñ Ω Ñ λ Ñ ρ Ñ χ Ñ φ.

15



Perrakis, Lartigue, Dondelinger and Mukherjee

This correspond to constraint functions of the form:

g1pξq “ ξzτ :“ pµ,Ω,λ,ρ,χ,φq ,

g2pξq “ ξzµ :“ pτ ,Ω,λ,ρ,χ,φq ,

g3pξq “ ξzΩ :“ pτ ,µ,λ,ρ,χ,φq ,

g4pξq “ ξzλ :“ pτ ,µ,Ω,ρ,χ,φq ,

g5pξq “ ξzρ :“ pτ ,µ,Ω,λ,χ,φq ,

g6pξq “ ξzχ :“ pτ ,µ,Ω,λ,ρ,φq ,

g7pξq “ ξzφ :“ pτ ,µ,Ω,λ,ρ,χq .

(36)

When the joint optimization in several consecutive blocks is possible, usually because they
are separate in the objective, this approach can be simplified by “fusing” the corresponding
blocks. For instance, in Eq (20) to (24), we perform a joint optimization in τ ,µ,Ω,λ,ρ
under the constraint that φ,χ is fixed. Then, in Eq (25), an optimization on χ with λ,ρ,φ
fixed. Finally, in Eq (26), an optimization on φ with λ,ρ,χ fixed. Note that in this case,
the optimization in τ ,µ,Ω is a true M step and is independent on the other parameters.
Hence, once this block has been updated in the first step, constraining it to remain fixed in
the subsequent steps is unnecessary.

The functions gspξq defined in (36) are obviously differentiable on Ξ with gradients of
the form:

∇gspξq “
“

0dsˆd1 . . . 0dsˆds´1 Ids 0dsˆds`1 . . . 0dsˆdS
‰T
P Rrˆds ,

which are of rank ds (full rank), with r :“
ř

s ds “ Kpp2`2p`3q. We can also see that there
is no “overlap” between their non-zero components, which results in the desired property
that

ŞS
s“1

 

∇gspθqu|u P Rds
(

“ t0u. As a consequence, as long as the penalty is chosen
such that the posterior distribution in each parameter is unimodal, the algorithm verifies
the three “ECM-specific” conditions for convergence introduced by Meng and Rubin (1993).

Among the basic conditions identified by Wu (1983), some are also systematically verified
by our algorithm with little assumption on the penalty; namely:

(7) The model part of Lpξq is always continuous and differentiable in Ξ “ Ξ˝. Hence, this
property is guaranteed for Lpξq as long as the penalty term is also continuous and
differentiable.

(9) Ξξp0q :“
!

ξ P Ξ|Lpξq ě Lpξp0qq
)

Ď Ξ “ Ξ˝.

(10) Qpξ1|ξ2q is continuous in ξ1 for the same reason that Lpξq is continuous in ξ. The
dependency of Qpξ1|ξ2q on ξ2 is entirely through the terms ppzi “ k|yi,xi, ξ2q “

ppyi,xi, zi “ k|ξ2q{
ř

l ppyi,xi, zi “ l|ξ2q which are continuous in ξ2 for the same reason
that the likelihood is.

The final missing hypothesis is (6), the compacity of the level lines of the likelihood
function. This property is much more restrictive and requires specific hypotheses on the
regularization. The following theorem synthesizes every observation made so far and pro-
vides sufficient conditions to verify the final hypothesis.
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Theorem 2 (Convergence of the ECM algorithm for RJMs) Consider an ECM se-
quence

 

ξptq
(

tPN P ΞN with objective function the observed log-likelihood Lpξq of the RJM
model (34). The initial term ξp0q is such that Lpξp0qq ą ´8 and the conditional maximiza-
tion step of the expected complete likelihood Qpξ|ξptqq in Eq. (35) is conducted using the
block-wise scheme defined by the constraint function gspξq in Eq. (36). Assume that the
regularization term penpξq is continuous, differentiable and such that each of the block max-
imizations is unique (uni-modal posterior). Assume additionally that there exists a positive
constant δ ą 0 such that

penpξq ě δ
K
ÿ

k“1

`

log τ´1
k ` ‖µk‖` ‖Ωk‖` log

ˇ

ˇΩ´1
k

ˇ

ˇ` fλpλkq ` ρk ` log ρ´1
k ` |χk| ` ‖φk‖

˘

,

(37)
where fλ is a lower bounded function on R˚` such that fλpxq ÝÑ

xÑ0
`8 and fλpxq ÝÑ

xÑ`8
`8.

Then, Theorem 1 applies and all limit points of
 

ξptq
(

tPN are stationary points of the objec-
tive Lpξq.

Remark 3

• The norms ‖.‖ on each parameters in Eq. (45) (in Appendix E) are unspecified since
all norms are equivalent in finite dimension.

• For fλ, the lower bound on the penalty in λk, a function such as fλpxq “ x´ log x is
suitable.

Sketch of proof: The full details of the proof can be found in Appendix E, providing
here a brief proof sketch. We prove that under the assumptions of Theorem 2, all the
hypotheses of Theorem 1 are met, which yields the desired convergence result.

As previously discussed, all the hypotheses of Theorem 1, save for hypothesis (6), of
Wu (1983) are organically verified within the RJM model. Provided that Lpξq is infinite
on the border of Ξ, we can safely take Ξ “ Ξ˝, and then the few required assumptions
on the penalty are verified: it is continuous, differentiable and such that each of the block
maximizations is unique. Hence, all the efforts of the proof are spent on proving that Lpξq
is infinite on the border of Ξ and that hypothesis (6) is verified. This is done all at once;
thanks to the control (45), we are able to define an increasing family Ξm of compacts of
Ξ˝ such that the log-likelihood Lpξq on any point of ΞzΞm is as low as desired with a well
chosen compact Ξm. With this result, we have that (i) Lpξq is ´8 outside of Ξ˝ and (ii)
Ξξp0q :“

 

ξ P Ξ|Lpξq ě Lpξp0qq
(

is compact for any Lpξp0qq ą ´8 (hypothesis (6)), allowing
us to conclude.

4. Prediction and cluster selection

An interesting feature of RJMs relates to prediction. Specifically, a new observation x˚PRp
can be allocated to a cluster via the quantities π̂˚k 9 τ̂kϕppx

˚|µ̂k, Σ̂kq, where τ̂k, µ̂k and Σ̂k

are EM estimates for k “ 1, . . . ,K. A simple prediction of y˚ then follows via ŷ˚“α̂k̃ `

x˚T β̂k̃, where k̃“ arg maxk π̂k and α̂k̃ and β̂k̃ are the corresponding EM estimates.
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Although not our primary focus in this paper, it is interesting to briefly consider the
idea of setting K based on predictive loss. In more detail, let G denote the set of the
number of clusters under consideration, so that the cluster indicator under model g P G
is kg “ 1, . . . ,Kg. Under each model g we can obtain cluster allocations for a subset of
held-out test data y˚ and X˚. Denote by y˚kg the n˚kg ˆ 1 test-response vector and by X˚

kg
the n˚kg ˆ p test-feature matrix assigned to group kg “ 1, . . . ,Kg conditional on g. Then,

the solution for the “best” group-wise predictive model (in an `2 sense) is given by

ĝpred “ arg min
gPG

#

1

Kg

Kg
ÿ

kg“1

›

›y˚kg ´ α̂kg1n˚kg
´X˚T

kg
β̂kg

›

›

2

2

n˚kg

+

. (38)

This effectively sets K to minimize predictive loss and connects in a way supervised and
unsupervised learning, providing a simple and quite natural way of determining the number
of clusters based on a “guided” search that aims to optimize prediction of y.

Of course, standard approaches for inferring the number of clusters, such as information
criteria, can be used within the RJM framework. For instance, using BIC (Schwarz, 1978)
in our case translates in selecting the number of clusters as

ĝBIC “ arg max
gPG

!

2 log ppy,X|θg, τ gq ´ logpnqνg

)

, (39)

where νg is the number of elements in θg that are not set equal to zero. Similarly, for AIC
(Akaike, 1974) we have

ĝAIC “ arg max
gPG

!

2 log ppy,X|θg, τ gq ´ 2νg

)

. (40)

5. Empirical examples

In this Section we present results from simulation experiments, starting with a small-scale
simulation in Section 5.1 which allows us to evaluate and visualize easily the various learning
aspects of RJMs. In Section 5.2 we use data from The Cancer Genome Atlas in semi-
synthetic examples of much larger scale, providing detailed comparisons with baseline and
various oracle-type approaches. All simulations are based on data-generating mechanisms
which are multivariate generalizations of three elementary problems which are depicted in
Figure 3, the purpose of which is to facilitate understanding of more complex multivariate
problems as the ones in Section 5.2 via illustration of simpler univariate analogues. Finally,
in Section 5.3 we show results using fully empirical data.

5.1 Small-scale simulations

Set-up. We consider two groups (K “ 2) with total n “ 100 and balanced groups, i.e.
nk “ 50 for k P t1, 2u. The number of predictors is p “ 10, where in each group only the first
predictor (xk1) has a non-zero coefficient, i.e. only βk1 ‰ 0 for k P t1, 2u. The covariates
are generated as Xk „ Nppµk,Σkq, with µ1 “ p0, . . . , 0qT and µ2 “ p1, . . . , 1qT being
of dimensionality p ˆ 1. For the covariances we consider two scenarios: an uncorrelated-
scenario with diagonal covariances of the form Σ1 “ Σ2 “ Ip and a correlated-scenario with
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Figure 3: Some interesting cases of group structure. Univariate analogues of problems
considered in the empirical examples (all of which are multivariate) in order to illustrate
the key ideas. Shown are two latent groups with some separation between the group-
wise means of a single feature x˚. Three specific cases, that differ with respect to the
regression model linking y and x˚, are shown: equal-intercept/unequal-slope (Case A);
unequal-intercept/equal-slope (Case B); and equal intercept and slope (Case C).

non-diagonal covariances, where each variable xkj , for j “ 2, . . . , p, is again Gaussian noise,
but the signal variable xk1 is generated as xk1 „ Nnk

`

1.5xk3 ` 0.5xk5 ´ 0.7xk7, 0.5Ink

˘

.
The response of each group is generated as yk „ Nnk

`

1nk
αk`xk1βk1, σ

2
kInk

˘

. Specification
of the slopes and intercepts is based on the three cases of Figure 3; see Table 3 (Appendix
F). Finally, the error variance σ2

k of each group is set to fix signal strength in a label-oracle
sense, namely so that the correlation between test data (for test group sample sizes of 250)
and predictions from a lasso model is approximately 0.8 when group labels are known. The
results that follow are from 50 repetitions of each simulation. We focus on regression signal
detection, estimation of coefficients and group assignment performance.

Signal detection and estimation. The variable inclusion frequencies over 50 repetitions
of the simulations for the uncorrelated scenario are presented in Figure 4. RJM-NJ performs
better overall as it detects influential effects almost all of the times, while the inclusion rates
of non-influential effects are much lower than 50%. RJM-FLasso is effective in detecting
the signals but produces much denser solutions. RJM-RLasso solutions are sparser in com-
parison to FLasso; we note, however, that RLasso tends to over-shrink the coefficients of
the influential predictors as well. The inclusion frequencies for the correlated scenario are
similar (Appendix F, Figure 12). Violin plots of slope estimates are presented in Appendix
F (Figure 13, uncorrelated scenario; Figure 14, correlated scenario), while the correspond-
ing plots for intercepts are presented in Figures 15 and 16. The NJ estimates are overall
more accurate. In all comparisons we include results from mixtures of experts obtained
from R package MoEClust (Murphy and Murphy, 2020), which performs simultaneous se-
lection for experts, gates and covariance structures using forward search model selection
based on BIC. In terms of variable selection MoE performs exceptionally well under case A
and yields similar results to RJM-NJ under cases B and C (see Figures 4 and 12). As for
estimation, MoE leads to overall accurate slope and intercept estimates in case A, however,

19



Perrakis, Lartigue, Dondelinger and Mukherjee

the corresponding estimates in cases B and C have a higher variance in comparison to RJM
estimates (see Figures 13 to 16, Appendix F).
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Figure 4: First simulation, uncorrelated scenario. Variable inclusion frequencies (over 50
repetitions) for signal variables (in green) and non-signal variables (in red) for regression
cases A, B and C. Horizontal black lines correspond to a frequency of 0.5.

Latent group assignment. A natural question is whether including the regression part of
the model within a unified framework provides any gains with respect to simply clustering
the X matrix. In practice, between-group differences in means may be subtle. Hence, we
consider in particular performance as the magnitude of the mean difference varies; i.e., we
set µ1 “ 0p and µ2 “ 0p ` d1p with d “ h ¨ U , where h defines a grid ranging from 0.1
to 1 with a step size of 0.05 and UPt´1,`1u is a uniformly random sign. Hence, |d| is a
measure of the strength of the mean signal. We compare to k-means, hierarchical clustering,
GMMs and MoEs as implemented in R using the default options of kmeans, hclust, mclust
(Scrucca et al., 2016) and MoEClust respectively; for the latter two using the BIC-optimal
model. In addition, for the clustering approaches we use as input: (i) only X and (ii) X
together with y stacked in one data matrix. For these simulations we use 20 repetitions.

One standard-error plots of adjusted Rand index averages as functions of |d| are shown
in Figure 5. As seen, in case A, RJMs generally outperform all methods except of MoE; the
latter performs better for lower values of |d|, while RJMs perform better for higher values.
In cases B and C (where RJM is over-parameterized) our methods remain competitive in
the uncorrelated scenario, while lead to better overall results in the correlated scenario. On
the other hand, MoE is not effective under cases B and C, which as argued in Section 1
(recall Figure 2) is to be expected when there are no differences in regression coefficients.
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Figure 5: First simulation, cases A (top), B (middle) and C (bottom). One standard-error
plots of adjusted Rand index averages (from 20 repetitions) vs absolute distance (|d|) of the
group-wise covariate means under the uncorrelated scenario (left) and correlated scenario
(right).
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5.2 Semi-synthetic simulations based on real cancer data

The simulations presented below are based on data from the The Cancer Genome Atlas
(TCGA, https://cancergenome.nih.gov). The rationale is to anchor the simulation in
real covariance structures. Specifically, we use data previously used in Taschler et al. (2019),
consisting of gene expression values from four cancer types; breast (BRCA), kidney renal
clear cell (KIRC), lung adenocarcinoma (LUAD) and thyroid (THCA). Our strategy is to
treat the cancer type as hidden: this allows us to test our approaches in the context of
differential covariance structure as seen in a real group-structured problem whilst having
access to true gold-standard labels.

Table 1: Second simulation. Intercept values and slope-generating mechanisms for the two
groups under the three cases illustrated in Figure 3. [TNpµ, σ2, l, uq denotes a truncated
normal distribution, where µ P R, σ2 ą 0 and l, u are the respective lower and upper
truncation bounds, while mTNpµ, σ2, a, bq denotes the specific mixture of TNpµ, σ2,´8, aq
and TNpµ, σ2, b,8q with a ă b and mixing parameter equal to 0.5; i.e., a truncated normal
with support everywhere except in (a, b)].

Case Group Intercept
Slopes

Common locations Disjoint locations

A
1

α1 “ α2 “ 0
β˚1 „ TNp0, σ̃2,´8,´0.1q β˚1 „ mTNp0, σ̃2,´0.1, 0.1q

2 β˚2 „ TNp0, σ̃2, 0.1,8q β˚2 „ mTNp0, σ̃2,´0.1, 0.1q

B
1 α1 “ 0

β˚1 “ β˚2 „ mTNp0, σ̃2,´0.1, 0.1q
β˚1 „ mTNp0, σ̃2,´0.1, 0.1q

2 α2 “ 1 β˚2 „ mTNp0, σ̃2,´0.1, 0.1q

C
1

α1 “ α2 “ 0 β˚1 “ β˚2 „ mTNp0, σ̃2,´0.1, 0.1q
β˚1 „ mTNp0, σ̃2,´0.1, 0.1q

2 β˚2 „ mTNp0, σ̃2,´0.1, 0.1q

Set-up. In these experiments we use covariates from two cancer types; namely, the BRCA
and KIRC groups. For all simulations we use n “ 250, balanced group sample sizes, i.e.
nk “ 125 for k “ 1, 2, and varying dimensionality for the features; namely, i) p “ 100 (n ą p
problem), ii) p “ 250 (n “ p problem) and iii) p “ 500 (n ă p problem). We consider sparse
problems where the percentage of non-zero coefficients (β˚) is s “ 4% and the setting in
which some of the non-zero coefficients are at common locations and others are at disjoint
locations across the two groups (placing half the non-zero coefficients at common locations).
Specification of the common-location β˚k’s will determine the three general cases depicted
initially in Figure 3. To rule out very small coefficients, we draw from a truncated normal
distribution, with support excluding the interval p´0.1, 0.1q. Group specific intercept values
and slope-generating mechanisms (based on Figure 3), are summarized in Table 1. Given
the matrices Xk, the intercepts αk and the sparse vectors βk the response is generated as
yk „ Nnk

pmk, Ink
σ2
yq, where mk “ Ink

αk ` Xkβk for k “ 1, 2 and σ2
y “ 1. The scale

parameter σ̃2 in Table 1 is tuned so that the overall signal-to-noise under each case is
approximately equal to three; i.e. Varpmq{σ2

y « 3 and m “ pm1,m2q
T .

Performance is evaluated as a function of the absolute distance |d| between the group-
wise feature means µ1 and µ2. We initially normalize the features, so that µ1 “ µ2 “ 0,
and consider again the case where each element of µ2 is shifted by d “ h ¨ u, where h P
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t0.1, 0.2, . . . , 0.8, 0.9u and u is a random uniform sign. Each simulation is repeated 20 times
using random subsamples of features from the original data. Here we present results for
the n ă p setting (p “ 500); results for p P t100, 250u can be found in Appendix G. For
the regression questions addressed below our aim is to compare RJM with the “clustering-
then-regression” approach. Obviously, a range of regression methods could be used in the
second step. As the simulations are sparse and linear by design, to ensure that the simple
“clustering-then-regression” approach is not disadvantaged we use lasso in the second step.

Group assignment. We compare to the same methods considered in Section 5.1, except
of MoEClust as the dimensionalities are too large for a forward model search for optimal
selection of expert and gating functions. Figure 6 presents error plots of adjusted Rand
index averages. In general, we observe a phase-transition type of behaviour as all methods
improve as |d| increases. However, the transition is faster with RJM which outperforms the
other methods and stabilizes relatively quickly to correct assignment. For p “ 500 lasso-
based RJM outperforms the NJ variant for cases B and C, however, for p “ t100, 250u all
RJM methods perform equally well more or less; see Figures 17 and 18 in Appendix G.
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Figure 6: Second simulation, p “ 500, group assignment. Average adjusted Rand Index
as a function of the absolute distance (|d|) of the group-wise covariate means, for cases A
(left), B (center) and C (right). [Error bars indicate standard errors from 20 repetitions.]

Variable selection. For this comparison we initially set a benchmark model called the
label-oracle-lasso, under which the true group labels are assumed known and we fit separate
lasso regressions via glmnet (Friedman et al., 2008b). We also consider a cluster-lasso
model which involves separate regressions based on estimated group labels. This approach
involves an initial clustering step: we give an advantage to the cluster-lasso by using, for each
dimension considered, the clustering approach that performs best (hclust for p “ 100 and
Mclust for p P t250, 500u). Naturally, the cluster-lasso will be equivalent to the oracle-lasso
when group assignment is perfect.

We summarize results via the area under the ROC curve (AUC) based on the ranking of
the absolute values of the coefficients. In particular, we consider the difference between
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the AUC from oracle-lasso and AUC from competing methods (cluster-lasso and RJM
approaches). One standard-error plots for p “ 500 are presented in Figure 7. As expected
cluster-lasso yields smaller selection loss (approaching oracle-lasso) as the separation of
group-wise means increases, but so do the RJM methods. RJM-FLasso is overall better
and even seems to result in slightly improved selection in comparison to the oracle-lasso as
|d| increases, possibly due to the fact that RJM uses weighted estimation based on the entire
sample. Importantly, RJM methods overall outperform the common cluster-lasso approach
in low and/or medium magnitude regions of |d|. These results illustrate the nontrivial
gains possible from a unified treatment of the various aspects of the model vs. the simple
approach of clustering followed by sparse regression. For the simulations with p “ 100 and
p “ 250 see Figures 19 and 20 (Appendix G), respectively.
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Figure 7: Second simulation, p “ 500, variable selection. AUC loss from oracle-lasso as a
function of the absolute distance (|d|) of the group-wise covariate means, for cases A (left),
B (center) and C (right). [Error bars indicate standard errors from 20 repetitions.]

Estimation. Comparisons are made again with respect to the label-oracle-lasso; this time
we consider the increase in root mean squared error (RMSE) resulting from the fact that
the group labels are unknown. Here we also consider the pooled-lasso; a “naive” model
which does not take into account group structure. This allows us to investigate the effect
of ignoring group structure under each case in Table 1; this is of particular interest in Case
A where the common-location coefficients have opposite signs.

Results for the p “ 500 are summarized in Figure 8. We use standardized coefficients
for the calculation of RMSE in order to have a common scale across simulations and cases.
As expected, under Case A the pooled-lasso model performs poorly, while RJM methods
provide overall better estimates than cluster-lasso. Under cases B and C, cluster-lasso and
RJM which are over-parameterized (common-location effects are equal) perform more or less
the same and are in general comparable to the pooled-lasso which is under-parameterized
(due to the disjoint-location effects). The p “ 100 and p “ 250 cases are shown in Appendix
G (Figures 21 and 22); results are in general similar with the difference that cluster-lasso
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performs better when |d| « 1 and RJM-RLasso performs overall worse. Overall, our illus-
trations suggest that the RJM-FLasso is the most stable method, followed by RJM-NJ.
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Figure 8: Second simulation, p “ 500, estimation. Increase in RMSE relative to the oracle-
lasso as a function of the absolute distance (|d|) of the group-wise covariate means, under
group one (top) and group two (bottom), and for cases A (left), B (center) and C (right).
[Error bars indicate standard errors from 20 repetitions.]

Selection of number of clusters. In Appendix H we further consider the case where the
number of clusters is not known a-priori in simulation experiments which take into account
all four cancer types. Results on cluster selection using the predictive approach described
in Section 4 are shown in Figure 23.

5.3 Real cancer data example

In this Section we consider a fully non-synthetic example, where both features and response
are real empirical data. The general strategy is as follows. We use the TCGA data as
introduced above, with gene expression levels treated as features. Specifically, we include
all four cancer types used in the previous section, selecting via stratified random sampling
n “ 250 samples in total. Stratified sampling ensures that the cancer-type proportions are
preserved; specifically the dataset under consideration consists of 102 BRCA, 51 KIRC, 49
LUAD and 48 THCA observations (abbreviations as previously introduced). A total of p “
100 gene expression levels (selected at random from all genes) are used in these experiments.
As before, in the applications that follow the true labels (i.e., the cancer type indicator)
are treated as latent and hence not used in analysis, but only to evaluate performance. As
responses, we use one of the p “ 100 gene expression levels, with the remaining forming
the feature set. This procedure has the advantage of allowing us to consider many different
responses (genes) whilst entirely eschewing synthetic data generation. We first show a
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illustrative example using one particular gene as response and then show results from all
responses considered.

Illustrative analysis for a particular response gene (NAPSA). We consider the
gene NAPSA (napsin A aspartic peptidase) (gene ID 9476) to illustrate the set-up. For this
illustrative analysis we assume that the cancer types are given so that it is known a priori
that there are four classes. This particular gene is used to illustrate the approach as it is
informative with respect to hidden group structure, as shown in Figure 9 (left panel), but
not to the extent of fully revealing the class structure. Heatmaps of the sample covariance
matrices of the remaining 99 genes under each cancer type are presented in Figure 9 (panels
in the right); these generally indicate slight differences in covariance structures.
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Figure 9: Real data example, data visualization for single, illustrative response. Plot (a) of
response gene NAPSA in the four cancer types, and heatmaps of feature covariances in (b)
BRCA, (c) KIRC, (d) LUAD and (e) THCA cancer types.

For evaluation of clustering performance we compare to the same methods as in Section
5.1, including again MoE as implemented in package MoEclust; however, for computa-
tional convenience, we use the option of a classification-EM algorithm, which is a faster
but generally sub-optimal algorithm (although we note that initial tests suggested a gain
in clustering performance for this dataset). We further consider k-medoids, fuzzy c-means
(implemented via par and fanny in package cluster, respectively) and clustered support
vector machines (clustSVM, package SwarmSVM; Gu and Han, 2013). Finally, for the purely
cluster-oriented approaches (k-means/medoids, fuzzy c-means, hclust and mclust) we use
as input the concatenated matrix containing the response and the predictor genes. Table 2
shows the resulting adjusted Rand index under each method (for k-means and clustSVM,
which are highly sensitive to initialization, the values are averages from 100 runs). As seen,
RJMs clearly outperform the other approaches.

Figure 10 shows the resulting regression coefficient estimates (396 in total given the four
cancer types), from the three RJM variants, ranked in absolute value from highest to lowest
(non-zero values in green; zero values in red). Consistent with the results presented in
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Table 2: Real data application, clustering performance. Adjusted Rand index values for
the ten methods under consideration using gene NAPSA as response variable.

Methods and clustering performance

Method k-means k-medoids fuzzy c-means hclust clustSVM
Adj. Rand Index 0.43 0.44 0.59 0.51 0.42

Method mclust MoEclust RJM-NJ RJM-FLasso RJM-RLasso
Adj. Rand Index 0.29 0.55 0.72 0.68 0.75

Section 5.1, we observe again that RJM-NJ results in the most parsimonious model (fewer
than 100 predictors), followed by RJM-RLasso (around 100 predictors), while RJM-FLasso
includes the most predictors (more than 100). We also observe that the lasso variants tend
to shrink the coefficients of influential predictors more than RJM-NJ; this is also generally
anticipated as the NJ prior has heavier tails in comparison to the Bayesian lasso prior.
Finally, the forward search of MoEclust included a few predictors in the gating networks,
but resulted in entirely sparse expert networks as all regression coefficients were set to zero.
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Figure 10: Real data application, regression performance. Absolute values of RJM regres-
sion coefficients ranked in decreasing order, using gene NAPSA as response variable. Green
points indicate non-zero coefficients; red points, coefficients that are set equal to zero.

Performance over all responses. Above we considered a specific gene to illustrate the
key ideas; here we show results from all responses. That is, we consider in turn each of the
genes as response, treating all others as features. Thus, there are 100 problems considered
in total (each with the same four latent subgroups). In this case, the input for the purely
clustering methods is the data matrix of the predictor variables.
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Violin plots of the resulting adjusted Rand index values from the ten methods are
presented in Figure 11. These results, spanning one hundred different responses, support
the results seen above, as the three RJM variants consistently perform relatively well over
most of the responses and the results are broadly in line with some of the results in Sections
5.1 and 5.2. In Appendix I, we further consider BIC-based model selection; as shown there,
RJMs select more frequently the correct number of groups in comparison to GMMs and
MoEs.
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Figure 11: Real data application, clustering performance. Violin plots of adjusted Rand
index values from TCGA-based experiments spanning a hundred different responses (see
text for details).

5.4 Summary

Broadly speaking the RJM variants performed similarly to one another in terms of cluster-
ing/group assignment. In several situations they outperformed the other methods compared
with, while, at the same time, they tended to remain competitive across the range of sce-
narios tested. Also, RJM can improve selection for the number of groups when this is not
known at the outset. There were some differences between the RJM variants with respect
to regression modelling. The NJ approach tended to perform well, in terms of variable se-
lection and estimation, in sparse settings characterized by moderate to strong signals, while
the lasso approaches yielded relatively denser models overall.

6. Discussion

We introduced a class of regularized mixture models that jointly deal with sparse covariance
structure and sparse regression in the context of latent groups. We showed that principled
joint modeling of these two aspects leads to gains with respect to simpler decoupled or pooled
strategies and that exploiting established `1-penalized tools and related Bayesian approaches
leads to practically applicable solutions. The RJM methods presented in this paper are
implemented as an R package regjmix, available at https://github.com/k-perrakis/

regjmix. Future research directions include extensions to generalized linear models and
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mixed models. Below we discuss some additional aspects and point to specific directions
for future work.

Distribution shifts and shift-robust learning. By accounting for data heterogeneity,
RJMs help to guard against (potentially severe) confounding of multivariate regression
models by hidden group structure. This has interesting connections to distribution shifts in
machine learning and shift-robust learning; see e.g. Recht et al. (2018); Heinze-Deml and
Meinshausen (2021). In particular, we think RJM would be a useful tool for shift-robust
learning, since it could be used to block paired data pX,Y q into distributionally non-identical
groups which could in turn be used to train and test predictors in a shift-robust fashion,
facilitating shift-robust learning under unknown distributional regimes.

Choice of regularization. In this work we used the graphical lasso approach for covariance
estimation, mainly motivated by certain biomedical applications where network models
are of interest. However, the general RJM strategy could be used with other kinds of
multivariate models (e.g. factor models). For the regression coefficients we considered:
(i) the Bayesian lasso prior under two strategies (FLasso/RLasso) and (ii) the NJ prior.
For practitioners seeking the closest analogue to the popular lasso approach based on cross-
validation in the non-latent regression setting, we recommend FLasso. When it is preferable
to use a shrinkage prior with heavier tails we recommend using NJ, which can be very
effective in detecting sparsity patterns without over-shrinking large coefficients. In general,
our main goal was to explore some of the available regularization options, but we note
that the RJM model is fairly modular in the sense that other methods from the penalized
likelihood or the Bayesian literatures – recent reviews provided by Desboulets (2018) and
van Erp et al. (2019), respectively – can be used within the same framework. Of course,
specifics will depend upon approach; for instance, the elastic-net (Zou and Hastie, 2005) and
the adaptive lasso (Zou, 2006) are fairly easy to incorporate at present, while other methods
such as the horseshoe estimator (Carvalho et al., 2010) require further investigation.

High-dimensional issues. RJM remains effective when p ą n, but a general issue when
jointly modeling pY,Xq is that for relatively large p cluster allocation will be mainly guided
by X. In the empirical examples RJM outperformed mclust (recall that without regular-
ization RJM is equivalent to a GMM); to provide some intuition about that let us consider
the two regularization steps. The first on the covariance matrix of X can be viewed as p
lasso regressions (Meinshausen and Bühlmann, 2006) that essentially discard non-influential
relationships among features. The second discards non-influential predictor effects on the
response. Overall this sparsification may be viewed as a dimensionality reduction, which
mitigates over-emphasis on X. One idea for handling this issue as p grows larger is to con-
sider explicit weighting of the effect of X, e.g. by replacing the multivariate normal in (3)
with a density of the form Nppxi|µk,Σkq

1{δ, where the “power-parameter” (δ ą 1) would
inflate the covariance. While from a computational standpoint the proposed framework is
scalable and can also handle the p ą n case, in very high dimensions it would become com-
putationally burdensome. This can be potentially addressed via high-dimensional projec-
tions. Finally, although our EM convergence result is general, there remain open theoretical
questions concerning rates of convergence and optimality of the estimators themselves.
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Appendix A. Simulations for Section 1.2

The simulation results presented in Section 1.2 are based on 20 repetitions where we consider
two groups (K “ 2) with total n “ 200 and a balanced design, i.e. nk “ 100 for k P t1, 2u.
The number of predictors is p “ 10. In each group only one predictor (x˚k) has a non-
zero coefficient (β˚k ), and this predictor is chosen randomly over the 20 repetitions. The
three cases in Figures 1 and 2 correspond to: (i) β˚1 “ β˚2 “ 0.5 (plots on the left), (ii)
β˚1 “ 0.5, β˚2 “ 1 (plots on the middle), and (iii) β˚1 “ 0.5, β˚2 “ 1.5 (plots on the right).
The features are generated as Xk „ N10pµk, 0.5Ipq. That is, the two feature groups share
the same diagonal covariance structure, but we let the mean vectors to vary. Specifically,
the first mean vector is always µ1 “ p0, . . . , 0qT , while for the second mean vector we
consider again three cases (which lead to the variability with respect to the x-axis of the
plots in Figure 2); namely, (i) µ2 “ p0, . . . , 0qT , (ii) µ2 “ p0.5, . . . , 0.5qT and (iii) µ2 “

p1, . . . , 1qT . The response of each group is generated as yk „ Nnk

`

x˚kβ
˚
k , σ

2
kInk

˘

, where
σ2
k “ Varpx˚kβ

˚
k q{5 for k P t1, 2u. The regularized joint mixture model is based on the

normal-Jeffreys prior discussed in Section 2.2.2. For the implementation of the Gaussian
mixture and mixture-of-experts models we used R packages mclust (Scrucca et al., 2016)
and MoEClust (Murphy and Murphy, 2020), respectively, using the default model-search
options, selecting the BIC-optimal model.

Appendix B. Justification for the RLasso Pareto prior

We generally want the Pareto prior to be such that it will not penalize the regression
coefficients asymptotically. Under the prior in (11) the mode of λk is an, while the prior
mean is given by

Epλkq “ an
bn

bn ´ 1
,

for bn ą 1 and the prior variance by

Varpλkq “ a2
n

bn
pbn ´ 1q2pbn ´ 2q

for bn ą 2. Given that an Ñ 0 as n Ñ 8, in order to meet our requirement we want
bn Ñ C ą 2 as nÑ 8; to that end, we specify bn “ pp´ 1q ´ c

a

2K log p{n, for c P p0, 1s.
Explicit specification of an is not required as it does not affect the posterior mode; any
decreasing function of n (subject to an ą 0) will satisfy the recuirement. As for c, we
recommend setting it equal to mint

a

2p{3n, 1u as a default option.
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Appendix C. Objective function under the NJ prior

The hierarchical form of the NJ prior is βk|Sk „ Npp0,Skq, where Sk “ diagpsk1, . . . , skpq
assuming latent skj with πpskjq9s

´1
kj for k “ 1, . . . ,K and j “ 1, . . . , p. The conditional

distribution of any s (dropping momentarily subscripts k, j for simplicity) is

pps|βq “
qpsq

ż

qpsqds

, with qpsq “ ppβ|sqs´1 and

ż

qpsqds “ |β|´1.

Given this, it follows that

Es|βrs´1s “

ż

s´1pps|βqds “ β´2 (41)

This result will be needed in the derivation of the E-step below. The joint prior of βk and
σ2
k is ppβ,σ2|Sq “ ppβ|Sqppσ2q9

śK
k“1 exp

`

´ 1
2β

T
k S´1

k βk
˘

1
σ2
k
. The objective under the NJ

prior presented in Eq. (19) in the main paper, is derived as follows.

QY
NJpθ

Y |θY ptqq “Ez,S|y,X,θY ptq

“

log fpy|X, z,α,β,σ2q ` log πpβ|Sq ` log πpσ2q
‰

“Ez|y,X,θY ptq

“

log fpy|X, z,α,β,σ2q
‰

` ES|βptq
“

log πpβ|Sq
‰

` log πpσ2q

“
ÿ

i

Ez|y,X,θY ptq

“

log fpyi|xi, zi,α,β,σ
2q
‰

` ES|βptq
“

log πpβ|Sq
‰

` log πpσ2q

“

n
ÿ

i“1

K
ÿ

k“1

m
ptq
ki

#

´
1

2σ2
k

pyi ´ αk ´ xTi βkq
2 ´

1

2
log σ2

k

+

(42)

`

K
ÿ

k“1

#

E
Sk|β

ptq
k

«

´
1

2
βTk S´1

k βk

ff+

´

K
ÿ

k“1

!

log σ2
k

)

“

K
ÿ

k“1

#

´
1

2σ2
k

py ´ αk1n ´Xβkq
TM

ptq
k py ´ αk1n ´Xβkq ´

n
ptq
k

2
log σ2

k

+

`

K
ÿ

k“1

#

´
1

2
βTk ESk|β

ptq
k

“

S´1
k

‰

βk

+

´

K
ÿ

k“1

!

log σ2
k

)

(43)

“

K
ÿ

k“1

#

´
1

2σ2
k

py ´ αk1n ´Xβkq
TM

ptq
k py ´ αk1n ´Xβkq ´

n
ptq
k ` 2

2
log σ2

k

+

`

K
ÿ

k“1

#

´
1

2
βTkV

ptq
k βk

+

(44)

“´
1

2

K
ÿ

k“1

#

py ´ αk1n ´Xβkq
TM

ptq
k py ´ αk1n ´Xβkq

σ2
k

` βTkV
ptq
k βk

` pn
ptq
k ` 2q log σ2

k

+

,
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where m
ptq
ki appearing in (42) is given in (14) in the main paper, M

ptq
k “ diagpm

ptq
k q with

m
ptq
k “ pm

ptq
k1 , . . . ,m

ptq
knq

T and V
ptq
k “ diag

´

1{β
2ptq
k1 , . . . , 1{β

2ptq
kp

¯

. The transition from (43) to

(44) is due to (41).

Appendix D. Details and implementation of the EM

For the graphical lasso optimization in (22) in the main paper we use the efficient R package
glassoFast (Sustik and Calderhead, 2012). For the lasso optimizations in (26) we use

glmnet (Friedman et al., 2008b) with penalty equal to λ
pt`1q
k {n

ptq
k .

We initialize the algorithm via a simple clustering of the data. For this we use R package
mclust. Through the resulting group assignments we obtain initial estimates θXp0qk and θY p0qk .
In order to initiate EMs from different starting points we add random perturbations to µp0qk ,
βp0qk and σ2p0q

k and positive random perturbations to the diagonal elements of Σp0q

k . The
multiple EMs can be easily run in parallel. As a default option we use ten EM starts.

For the termination of the algorithm we use a combination of two criteria that are
commonly used in practice. The first is to simply set a maximum number pT q of EM
iterations. Empirical results suggest that the option T “ 20 is sufficient. The second
criterion takes into account the relative change in the objective function in (15); namely,
the algorithm is stopped when

ˇ

ˇ

ˇ

ˇ

ˇ

Qpθ, τ ,λ|θptq, τ ptq,λptqq

Qpθ, τ ,λ|θpt´1q, τ pt´1q,λpt´1qq
´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ď ε

using as default option ε “ 10´6. Moreover, the algorithm is stopped, and results are
discarded, when the sample size of a certain group becomes prohibitively small for estima-
tion. We define this criterion as a function of total sample size and the number of groups.

Specifically, we terminate if mink n
ptq
k ď n{p10Kq.

Appendix E. Proof of Theorem 2

We need to prove that with our model and under the assumptions of Theorem 2, all the
hypotheses of Theorem 3 of Meng and Rubin (1993) (Theorem 1) are met.

As discussed throughout section 3.2.2 in the main paper, under the RJM model, the
following conditions are sufficient to verify all the hypotheses of Theorem 4.1 except for
hypothesis 6: the penalty is continuous, differentiable, such that each of the block maximi-
sation is unique and Lpξq infinite on the border of Ξ. The first three conditions are already
assumptions of our Theorem. Hence, it remains only to be shown that Lpξq is infinite on
the border of Ξ and that hypothesis (6) is met. Both are very similar properties, we prove
both of them together. For this task, we make use of the “penalty lower bound assumption”
of our Theorem, recalled in Eq. (45).

penpξq ě δ
K
ÿ

k“1

`

log τ´1
k ` ‖µk‖` ‖Ωk‖` log

ˇ

ˇΩ´1
k

ˇ

ˇ` fλpλkq ` ρk ` log ρ´1
k ` |χk| ` ‖φk‖

˘

.

(45)
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To begin with, we have:

Lpξq “
n
ÿ

i“1

log
K
ÿ

k“1

exp

˜

´
1

2

ˆ

pyiρk ´ χk ´ xTi φkq
2 ´ 2 log ρk

` ‖xi ´ µk‖
2
Ωk
´ log |Ωk|

´ 2 log τk ` pp` 1q log 2π `
2

n
penpξq

˙

¸

.

Let

fi,kpξq “ pyiρk ´ χk ´ xTi φkq
2 ´ 2 log ρk ` ‖xi ´ µk‖

2
Ωk
´ log |Ωk| ´ 2 log τk `

2

n
penpξq .

Such that

Lpξq “ ´
npp` 1q log 2π

2
`

n
ÿ

i“1

log
K
ÿ

k“1

exp

ˆ

´
1

2
fi,kpξq

˙

. (46)

From Eq. (45) and the fact that pyiρk ´ χk ´ xTi φkq
2 ě 0 and ‖xi ´ µk‖

2
Ωk
ě 0, we have:

fi,kpξq ě
2

n
δ
K
ÿ

l“1

´

´ p1`
n

δ
1l“kq log τl ` ‖µl‖` ‖Ωl‖´ p1`

n

2δ
1l“kq log |Ωl|

` fλpλlq ` ρl ´ p1`
n

δ
1l“kq log ρl ` |χl| ` ‖φl‖

¯

“
2

n
δ
K
ÿ

l“1

´

fτk,lpτlq ` f
µ
k,lpµlq ` f

Ω
k,lpΩlq ` f

λ
k,lpλlq ` f

ρ
k,lpρlq ` f

χ
k,lpχlq ` f

φ
k,lpφlq

¯

.

(47)

Where:

fτk,lpτlq :“ ´p1`
n

δ
1l“kq log τl ,

fµk,lpµlq :“ ‖µl‖ ,

fΩ
k,lpΩlq :“ ‖Ωl‖´ p1`

n

2δ
1l“kq log |Ωl| ,

fλk,lpλlq :“ fλpλlq ,

fρk,lpρlq :“ ρl ´ p1`
n

δ
1l“kq log ρl ,

fχk,lpχlq :“ |χl| ,

fφk,lpφlq :“ ‖φl‖ .

(48)

The dependency on k, l is denoted in the indices of all these functions for the sake of
uniformity, although only fτk,l, f

Ω
k,l and fρk,l actually depend on k and l. We recall that, with

a ą 0, the function x ÞÑ x ´ a log x, is lower bounded on R˚`, and converges towards `8
both when x Ñ 0 and when x Ñ `8. To analyse fΩ

k,l, it is convenient to consider the

nuclear norm for ‖Ωk‖ and rewrite the whole as: fΩ
k,lpΩlq “

ř

j ψl,j ´ p1`
n
2δ1l“kq logψl,j ,

with tψl,ju
p
j“1 the eigenvalues of Ωl.
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With these observations at hand, note that all the functions in (48) can be lower bounded
by the same constant c ą ´8, valid for all values of k and l. They also all converge towards
`8 on the boundary of their respective sets of definition.

For m ą 0, we define Ξm as the compact subset of Ξ such that ξ P Ξm ðñ ξ P Ξ and
@k “ 1, ...,K :

τk ě
1

m
,

‖µk‖ ď m,

ψmaxpΩkq ď m,

ψminpΩkq ě
1

m
,

1

m
ď λk ď m,

1

m
ď ρk ď m,

|χk| ď m,

‖φk‖ ď m.

(49)

It is clear that @m ą 0, Ξm Ď Ξ˝.

With all these objects defined, we can finish the proof. For any real number A ą ´8,
let us show that there exists M ą 0 such that @ξ P ΞzΞM , Lpξq ă A. First consider the
following: for any real number B ą ´8, there exists a mB ą 0 such that, for all k and l:

if τl ă
1

mB
, then fτk,lpτlq ą B ,

if ‖µl‖ ą mB, then fµk,lpµlq ą B ,

if ψmaxpΩlq ą mB, then fΩ
k,lpΩlq ą B ,

if ψminpΩlq ă
1

mB
, then fΩ

k,lpΩlq ą B ,

if λl ă
1

mB
or λl ą mB, then fλk,lpλlq ą B ,

if ρl ă
1

mB
or ρl ą mB, then fρk,lpρlq ą B ,

if |χl| ą mB, then fχk,lpχlq ą B ,

if ‖φl‖ ą mB, then fφk,lpφlq ą B .

(50)

If ξ P ΞzΞmB , then by definition of the sets Ξm (49), there exist at least one l P t1, ...,Ku
such that at least one of the above scenarios is realised. By injecting the resulting lower
bound into the inequality (47), we get:

@k, fi,kpξq ą
2

n
δpB ` p7K ´ 1qcq .
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Then, from Eq. (46):

Lpξq “ ´
npp` 1q log 2π

2
`

n
ÿ

i“1

log
K
ÿ

k“1

exp

ˆ

´
1

2
fi,kpξq

˙

ă ´
npp` 1q log 2π

2
`

n
ÿ

i“1

log
K
ÿ

k“1

exp

ˆ

´
1

n
δpB ` p7K ´ 1qcq

˙

“ ´
npp` 1q log 2π

2
` n logK ´ δpB ` p7K ´ 1qcq .

Since δ ą 0, then there exists BA ą 0 such that for all B ě BA:

´
npp` 1q log 2π

2
` n logK ´ δpB ` p7K ´ 1qcq ă A .

As a consequence, M :“ mBA
is such that @ξ P ΞzΞM , Lpξq ă A. In other words

tξ P Ξ|Lpξq ě Au Ď ΞM .
We have proven that for any A ą ´8, there exists M ą 0 such that tξ P Ξ|Lpξq ě Au Ď

ΞM . Since the Ξm are compacts, this means that the closed set tξ P Ξ|Lpξq ě Au is also
a compact, hence hypothesis (6) of Wu (1983) is verified. Moreover, since Ξm Ď Ξ˝, this
means that the log-likelihood goes to ´8 on the border of Ξ. Hence no EM sequence will
take values on the border, hence we can safely consider that Ξ “ Ξ˝. With these last two
hypotheses verified, we can apply Theorem 3 of Meng and Rubin (1993) and benefit from
the convergence guarantees.

Appendix F. Further results from Section 5.1

Table 3: First simulation. Intercept and slope parameter values for the two groups under
the three cases illustrated in Figure 3 in the main paper.

Case Group Intercept Slope

A
1 0 -1
2 0 -1

B
1 0 -1
2 1 -1

C
1 0 -1
2 0 -1
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Figure 12: First simulation, correlated scenario. Variable inclusion frequencies (under 50
repetitions) for signal variables (in green), correlated noise variables (in black) and un-
correlated noise variables (in red) for regression cases A, B and C. Horizontal black lines
correspond to a frequency of 0.5.
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Figure 13: First simulation, uncorrelated scenario. Violin plots of MoEclust and RJM slope
estimates (from 50 repetitions) for cases A, B and C. Horizontal black lines correspond to
the true slopes.
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Figure 14: First simulation, correlated scenario. Violin plots of MoEclust and RJM slope
estimates (from 50 repetitions) for cases A, B and C. Horizontal black lines correspond to
the true slopes.
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Figure 15: First simulation, uncorrelated scenario. Violin plots of MoEclust and RJM inter-
cept estimates (from 50 repetitions) for cases A, B and C. Horizontal black lines correspond
to the real intercepts.
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Figure 16: First simulation, correlated scenario. Violin plots of MoEclust and RJM intercept
estimates (from 50 repetitions) for cases A, B and C. Horizontal black lines correspond to
the real intercepts.
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Appendix G. Further results from Section 5.2
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Figure 17: Second simulation, p “ 100, group assignment. Average adjusted Rand Index
as a function of the absolute distance (|d|) of the group-wise covariate means, for cases A
(left), B (center) and C (right). [Error bars indicate standard errors from 20 repetitions.]
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Figure 18: Second simulation, p “ 250, group assignment. Average adjusted Rand Index
as a function of the absolute distance (|d|) of the group-wise covariate means, for cases A
(left), B (center) and C (right). [Error bars indicate standard errors from 20 repetitions.]
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Figure 19: Second simulation, p “ 100, variable selection. AUC loss from oracle-lasso as a
function of the absolute distance (|d|) of the group-wise covariate means, for cases A (left),
B (center) and C (right). [Error bars indicate standard errors from 20 repetitions.]
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Figure 20: Second simulation, p “ 250, variable selection. AUC loss from oracle-lasso as a
function of the absolute distance (|d|) of the group-wise covariate means, for cases A (left),
B (center) and C (right). [Error bars indicate standard errors from 20 repetitions.]
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Figure 21: Second simulation, p “ 100, regression coefficients estimation. Increase in RMSE
relative to the oracle-lasso as a function of the absolute distance (|d|) of the group-wise
covariate means, under group one (top) and group two (bottom), and for cases A (left), B
(center) and C (right). [Error bars indicate standard errors from 20 repetitions.]
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Figure 22: Second simulation, p “ 250, regression coefficients estimation. Increase in RMSE
relative to the oracle-lasso as a function of the absolute distance (|d|) of the group-wise
covariate means, under group one (top) and group two (bottom), and for cases A (left), B
(center) and C (right). [Error bars indicate standard errors from 20 repetitions.]
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Appendix H. Selection of number of groups in Section 5.2

Here we consider all four cancer types (BRCA, KIRC, LUAD, THCA) and provide some
results on cluster selection under unknown number of groups using the predictive approach
described in Section 4. We consider three simulation settings where the respective true
number of groups is g˚ “ 2 (using the BRCA and KIRC cancer types), g˚ “ 3 (BRCA,
KIRC, LUAD) and g˚ “ 4 (further including THCA). For each setting we fit RJM models
with two, three and four components. The simulations are along the lines of Section 5.2
considering Case A of Table 1 for p “ 100. The conditions outlined in Table 1 for the
β˚j ’s at the common locations are used again for g˚ P t3, 4u. Here we use the real group-
sample proportions as they occur in the TCGA data set and assume that sample size grows
with number of groups (for the simulations to be on an equal basis). Specifically, we set
n “ 250 ˆ g˚. The resulting group sample sizes for g˚ P t2, 3, 4u are pn1 “ 335, n2 “ 165q,
pn1 “ 382, n2 “ 188, n3 “ 180q and pn1 “ 410, n2 “ 200, n3 “ 200, n4 “ 190q, respectively.
We use 80% of the samples for training and 20% for testing.
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0
5

10
20

True no. of clusters: 2
Detection rate: 54%
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0
5

10
15

20
25

True no. of clusters: 4
Detection rate: 50%
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Figure 23: Second simulation, cluster selection. Barplots of selected clusters (50 repetitions)
using the predictive approach in Section 4. Correct identification is highlighted in green;
true number of clusters and detection rate of the correct model is annotated in each panel.

Figure 23 shows barplots of the selected number of clusters resulting from 50 repetitions
of the simulations. As seen, the correct model is selected in majority under all cases. The
detection rate of the correct model is also annotated in each panel of Figure 23. Here,
RJM-NJ is slightly better with average overall detection rate of 59%, while RLasso and
FLasso have 56% and 55%, respectively.
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Appendix I. Selection of number of groups in Section 5.3

Here we present additional results concerning performance including a model selection step.
The setting is as in Section 5.3 in the main text except that sample size is equal to 200.
In particular, treating in turn each of the genes as response, with all others considered as
features. A model selection step is included over the number of clusters, selecting between
models with g P t2, 3, 4u components based on BIC. Here we compare with GMMs (mclust)
and an MoE implementation from package flexmix (Grün and Leisch, 2008). Under the
latter method we use elastic-net regularization (Zou and Hastie, 2005) in the expert net-
works and intercept-only multinomial gating functions (the latter is better than allowing 99
predictors to enter the gating functions in the absence of regularization for this part of the
model). We note that results from MoEclust are not presented here as this method (based
on incremental forward model search) never selected the correct model with four clusters.
Results from the 100 attempts are summarized in Table 4.

Table 4: TCGA data application, performance including a model selection step. Number
of times, out of 100 applications to the TGCA data, that the methods selected two, three
and four clusters based on BIC. Each time a different gene expression was used as response
variable with the predictor matrix containing the remaining 99 gene expressions. The correct
number of clusters is four corresponding to the four cancer types included in the dataset.

Methods and cluster selection

Estimated number of clusters ĝ “ 2 ĝ “ 3 ĝ “ 4

GMM (mclust) 5 91 4
MoE (flexmix) 18 67 15
RJM-NJ 17 18 65
RJM-FL 16 17 67
RJM-RL 17 19 64
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