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Abstract

We consider a contextual online learning (multi-armed bandit) problem with high-dimensional
covariate x and decision y. The reward function to learn, f(x,y), does not have a particular
parametric form. The literature has shown that the optimal regret is Õ(T (dx+dy+1)/(dx+dy+2)),
where dx and dy are the dimensions of x and y, and thus it suffers from the curse of dimen-
sionality. In many applications, only a small subset of variables in the covariate affect the
value of f , which is referred to as sparsity in statistics. To take advantage of the sparsity
structure of the covariate, we propose a variable selection algorithm called BV-LASSO,
which incorporates novel ideas such as binning and voting to apply LASSO to nonpara-
metric settings. Using it as a subroutine, we can achieve the regret Õ(T (d∗

x+dy+1)/(d
∗
x+dy+2)),

where d∗x is the effective covariate dimension. The regret matches the optimal regret when
the covariate is d∗x-dimensional and thus cannot be improved. Our algorithm may serve
as a general recipe to achieve dimension reduction via variable selection in nonparametric
settings.

Keywords: contextual bandits, nonparametric variable selection, lasso, binning, weighted
voting

1. Introduction

Online learning is a popular paradigm to study dynamic decision making when new infor-
mation can be collected actively to improve the quality of decisions simultaneously. It has
seen numerous applications in the past decades in advertising, retailing, health care and so
on. To accommodate the increasingly complex nature of many modern applications, the
online learning framework has been extended in various directions, including

• A large (sometimes infinite) set of possible decisions. For instance, in dynamic pricing,
a firm sets prices dynamically for a number of products over time, in order to learn
the substitution patterns as well as the demand elasticity, to maximize revenues in
the long run. The candidate decisions are the prices charged for various products,
which are virtually infinite and high-dimensional. The discrete set of decisions used
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in MAB cannot properly capture the nature of dynamic pricing, and researchers have
designed algorithms for continuous and high-dimensional decision variables.

• Contextual information or covariates. Covariates refer to the contextual information
that is available for the decision maker to assess the current situation and make better
decisions. In the example of dynamic pricing, when setting prices for a particular
consumer, the personal information such as age, gender, and address can be used
to infer the shopping habit of the consumer. It allows the firm to extract more
revenues from consumers by price discrimination, but at the same time calls for more
sophisticated decision rules to incorporate the covariates when learning the demand.
The existence of covariates is ubiquitous in practice.

• Modeling the reward function. Learning and maximizing the reward function is the
central goal of online learning. However, when little information is available, it is
sometimes risky to even impose a model of what to learn. In dynamic pricing, it is
tempting to assume that the demand is linear in the prices, and simplify the problem
by learning only the linear coefficients. If the actual demand-price relationship is not
linear, i.e., the model is misspecified, then the decision maker has little hope to find
the optimal decision in the long run.

Next we informally describe the framework of nonparametric contextual bandits (Lu et al.,
2009; Slivkins, 2014) to incorporate those extensions. A formal formulation is introduced
in Section 3. Consider a reward function f(x,y), where x represents the covariate and
y represents the decision. Both x and y can be vectors. The function is nonparametric
and does not have a specific form except for a few general structures such as continuity
and smoothness. In period t, a covariate Xt is generated and observed; the decision maker
makes a decision yt based on Xt as well as the historical information to maximize f(Xt,yt).
The goal is to learn the optimal decision y(Xt) = arg maxy f(Xt,y).

Unfortunately, it has been shown that the problem suffers from the curse of dimension-
ality. In particular, the optimal regret of the problem, a common metric in online learning,
is1 Õ(T (dx+dy+1)/(dx+dy+2)) (see, e.g., Kleinberg et al. 2008; Slivkins 2014), where dx and dy
are the dimensions of x and y, respectively, and T is the length of the learning horizon. In
other words, the difficulty to learn the unknown reward function scales rapidly with dx and
dy. No decision makers are able to break the fundamental limit without imposing additional
assumptions on the reward function f .

On the other hand, in many applications, the information in the covariate x is likely
to contain a great deal of redundancy. That is, out of dx variables in x, many may not
affect the value of f at all. This is referred to as sparsity in statistics. In the example of
dynamic pricing, for instance, the firm may have collected a rich set of personal information
of a consumer (large dx), while only a few key variables such as the income level actually
affect the purchasing behavior. If we use d∗x to denote the effective covariate dimension,
or the number of relevant variables, then the question is, without knowing how many
and which variables are redundant/relevant, can the decision maker achieve the regret
Õ(T (d∗x+dy+1)/(d∗x+dy+2))?

1. We use Õ to indicate asymptotic approximation neglecting logarithmic terms.
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This paper provides an affirmative answer to the above question. Although such dimen-
sion reduction or variable selection has been one of the central topics in statistics for a few
decades and has been well studied, the problem we consider is still very challenging because
of the nonparametric nature of the reward function. In particular, statistical tools that
are commonly used in variable selection such as LASSO (Hastie et al., 2015) are designed
for certain parametric (linear) models. Applied to our nonparametric setting where any
parametric family may be misspecified, it is unclear if they would work at all. Our paper
addresses this challenge and contributes to the literature in the following aspects:

• Through the lens of online learning, we provide a nonparametric variable selection al-
gorithm based on which the online learning can achieve regret Õ(T (d∗x+dy+1)/(d∗x+dy+2)).
In other words, the algorithm facilitates the learning of the decision maker as if s/he is
informed of the sparsity structure of the covariate, i.e., how many and which variables
are relevant, in advance. The regret matches the optimal regret when the covariate is
only d∗x-dimensional and thus cannot be improved. Therefore, we answer the funda-
mental question raised previously: when the covariate is sparse, we are able to identify
the relevant variables and effectively lift the curse of dimensionality in online learning,
even if the reward function is nonparametric.

• Our algorithm has two recipes that contribute to the successful variable selection in
the nonparametric setting. Both may be of independent interest. The first one is
localized LASSO (see Section 4). We partition the covariate space into small bins.
Within each bin, we apply LASSO to the observations. Although LASSO only works
for linear functions, we are able to show that the misspecification error incurred by
approximating an arbitrary function f by linear functions can be controlled in a
localized bin. That is, with properly chosen bin size and parameters, LASSO is able
to identify relevant variables with high probability using the observations inside the
bin despite the misspecification. This serves as the building block of our algorithm.

• Localized LASSO doesn’t completely address the curse of dimensionality. To contain
the approximation error of linear functions, the bin size needs to be small. As a
result, the number of bins in a dx-dimensional space grows exponentially in dx and
there are few observations in each bin. We resolve this issue by our second recipe,
weighted voting (see Section 4). We aggregate the outcomes of variable selection in
each bin and obtain a global set of selected variables. Each bin has a “vote” for
whether a variable is relevant or not, and the weights of their votes depend on their
“predictive power”, which is calculated by our algorithm. For example, the localized
LASSO applied to bin A predicts that x1 is redundant, while bin B predicts the
opposite. If A’s vote carries more weight by our algorithm, possibly because it has
more observations than B, then the algorithm makes a judgment that x1 tends to
be redundant. In this way, all the data in the covariate space are effectively utilized.
The efficient use of data is reflected in our theoretical guarantee: the convergence
rate depends on the number of all observations as if the covariate space hadn’t been
partitioned.

We point out that the nonparametric variable selection algorithm is designed as a sub-
routine to select variables before applying the existing online learning algorithms. The
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algorithm may serve as a general recipe for variable selection in nonparametric settings,
and therefore can be applied to other problems such as supervised learning. Next, we
review the related literature in the domain.

2. Related Literature

Our work is related to the literature studying nonparametric variable selection, contextual
bandits, and dynamic pricing with demand learning. We review the three streams below.

2.1 Nonparametric Variable Selection

In machine learning and statistics, the variable selection problem has been studied exten-
sively. Suppose samples of (Y,X1, . . . , Xdx) can be observed. Variable selection is concerned
with the identification of relevant Xis that matter to the value of Y . Among the various
methods proposed, LASSO is probably the most well-known. It combines computational
efficiency and analytical tractability and is widely used in practice (see Bühlmann and
Van De Geer 2011; Hastie et al. 2015 for a complete bibliography). However, LASSO
assumes that Y depends on (X1, . . . , Xdx) linearly. In general, variable selection is notori-
ously difficult in the nonparametric setting (Xu et al., 2016), when the dependence of Y on
(X1, . . . , Xdx) can be arbitrary. The difficulty lies in the potentially “local” behavior of a
nonparametric function. Some variables may be irrelevant in some regions and affect the
value of Y significantly elsewhere. One idea is to focus on the neighborhood of a given point
and select relevant variables locally. For instance, Lafferty et al. (2008) propose a RODEO
(regularization of derivative expectation operator) algorithm which identifies the relevant
variables by adjusting the bandwidth of a local linear regression. A recent work (Giordano
et al., 2020) improves RODEO by further distinguishing the linear dependent variables from
the nonlinear ones. Bertin et al. (2008) apply LASSO to the observations locally near the
given point. They provide consistency and finite sample bound when selecting variables in
this way.2 Miller et al. (2010) discuss several local variable selection methods. It is not
clear how to obtain a global sparsity structure from these methods, since locally the set
of relevant variables may differ from region to region. The local methods also suffer from
high dimensionality, as the observations in a neighborhood in a high-dimensional space are
rather scarce. Although our algorithm builds on this idea, we provide an approach to ag-
gregate the local predictions and create a global variable selector, which has a much better
performance in high dimensions.

In this literature, the setup in Comminges and Dalalyan (2011) is closest to this study.
They develop a procedure focusing on the Fourier coefficients of the function and show that
the relevant variables can be selected with high probability. Our study differs from theirs
in the assumptions, algorithms, and also theoretical performances. Most importantly, the
goal of our study is to provide an algorithm with theoretical guarantees which can be im-
plemented (See Section 7 for numerical experiments). For their work, it’s acknowledged in
(Giordano et al., 2020) that “the procedure is only of theoretical interest and no implemen-
tation is given”.

2. Part of our algorithm is motivated by this work, but we improve their theoretical performance, see
Remark 4.
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Other papers use the Reproducing Kernel Hilbert Space (RKHS) to represent nonpara-
metric functions and conduct variable selection (Rosasco et al., 2013; Ye and Xie, 2012;
Yang et al., 2016; He et al., 2018). The choice of the kernel crucially determines the class
of the functions. In a recent paper Xu et al. (2016) study the problem assuming the reward
function E[Y ] = f(X1, . . . , Xdx) is convex and sparse. Different from these approaches,
we do not impose kernel structures or shape constraints, and only assume more general
structures such as continuity and smoothness.

Compared to the literature, the objective and method in this study are different. First,
we do not allow dx to scale with the number of observations, which is the focus of many
studies in statistics. Moreover, besides selecting relevant variables, we do not want to re-
cover the functional form f(X1, . . . , Xdx), which is the goal of sparse regression. They allow
us to derive a strong theoretical guarantee and achieve near-optimal regret for online learn-
ing. Second, we provide a method called weighted voting, which effectively aggregates the
information of local variable selections. It improves the localized methods in the literature
and may be of independent interest.

2.2 Contextual Bandits

The literature on contextual bandits studies adaptive data collection and sequential decision-
making (see Bubeck et al. 2012 for a complete bibliography). Many papers in this area
consider linear reward in the covariates (see, e.g., Li et al. 2010). Among them, the spar-
sity structure of the contextual/covariate space has been studied by Carpentier and Munos
(2012); Deshpande and Montanari (2012); Abbasi-Yadkori et al. (2012); Gilton and Wil-
lett (2017). To our knowledge, Bastani and Bayati (2020) is the first to use the LASSO
estimator to identify the sparsity. Under so-called margin conditions, they propose the
“LASSO bandit” algorithm, which obtains the regret O((d∗x)2(log T + log dx)2) almost only
dependent on the effective dimension d∗x, compared with the regret bound O(d3

x log T ) of
linear bandits without sparsity (Goldenshluger and Zeevi, 2013). So the performance im-
proves significantly if d∗x � dx. After that, Wang et al. (2018) improves the regret to
O((d∗x)2(log dx + d∗x) log T ) by adopting minimax concave penalized technique. Addition-
ally, when no margin condition exists, Kim and Paik (2019); Ren and Zhou (2020) develop
LASSO estimator based algorithms achieving the regret Õ(d∗x

√
T ) and Õ(

√
d∗xT ). Recently,

Oh et al. (2021) propose an algorithm solving the issue that the sparsity index d∗x is not avail-
able in practice. However, these methods are not applicable to the nonparametric setting
that we consider in this paper. On one hand, there is no variable selection algorithm that
is as powerful as LASSO in nonparametric settings. On the other hand, variable selection
is particularly important for nonparametric online learning because the regret grows expo-
nentially in the dimension of the covariates dx. As a result, efficient nonparametric variable
selection is both challenging and important. In this paper, we design new algorithms with
a nonparametric setup and theoretically prove that the dependence of the regret on dx can
be reduced to d∗x for online learning.

There are studies on nonparametric contextual bandits with finite arms and continuous
reward functions (Yang et al., 2002; Rigollet and Zeevi, 2010; Perchet et al., 2013; Qian
and Yang, 2016). A similar stream of literature studies the continuum-armed bandits,
where the arm/decision space is continuous just like the contextual space (Agrawal, 1995;
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Kleinberg, 2004; Auer et al., 2007; Kleinberg et al., 2008; Kleinberg and Slivkins, 2010;
Bubeck et al., 2011; Magureanu et al., 2014). A common result in the literature is that
for continuous reward functions3, the regret depends exponentially on dx. For example,
Lu et al. (2009); Slivkins (2014) present a uniform partition and a zooming algorithm for
reward functions that are Lipschitz continuous in both the decision and covariate. Both
algorithms attain near-optimal regret Õ(T 1−1/(dx+dy+2)), where dx, dy are the dimensions
of the covariate and decision space. Recently, Reeve et al. (2018); Guan and Jiang (2018)
develop k-Nearest Neighbour (k-NN) based algorithms to address the dimensionality issue.
Their algorithms automatically take advantage of the situations where the covariates are
supported on a metric space of a lower effective dimension, such as a low-dimensional
manifold embedded in a high-dimensional space. However, they cannot be used to identify
the sparsity structure. Our study attempts to lift the curse of dimensionality in the regret,
particularly the exponential dependence on dx. To the best of our knowledge, this is the
first work to address the dimensionality issue in nonparametric contextual online learning
by taking advantage of the sparsity structure. Note that we formulate the problem for
continuum-armed bandits since the assumption (Lipschitz continuous reward) is relatively
simple and general. Our approach can also be extended to discrete arms, if some technical
conditions, such as the margin condition in (Perchet et al., 2013), are satisfied. Our work
contributes to the contextual bandits by providing a general recipe to mitigate the curse of
dimensionality for online learning.

While we focus on the sparsity in the covariate space, there are recent studies that
focus on the dimension reduction of the decision/arm space (Djolonga et al., 2013; Tyagi
and Gärtner, 2013; Kwon et al., 2017; Kwon and Perchet, 2016). It turns out that if the
reward function f is concave in y, then algorithms can be developed to achieve regret
Õ(dyT

(dx+1)/(dx+2)) (Li et al., 2019; Cesa-Bianchi et al., 2017) that scales linearly instead
of exponentially with dy. Although the approaches are different, our paper can comple-
ment this stream of literature: applying the variable selection algorithm in our paper as a
subroutine, their algorithms can also achieve even smaller regret Õ(T (d∗x+1)/(d∗x+2)) under
covariate sparsity.

2.3 Dynamic Pricing with Demand Learning

Our paper is also related to the literature on personalized dynamic pricing with demand
learning (Besbes and Zeevi, 2009; Keskin and Zeevi, 2014; den Boer and Zwart, 2014; den
Boer, 2015). In this stream of literature, demand functions are typically assumed to be linear
in prices and consumer features (covariates). Qiang and Bayati (2016) show a myopic pricing
policy can exhibit near-optimal revenue performance with regret O(dx log T ). Cohen et al.
(2020) find a multi-dimensional binary search algorithm for adversarial features, which has
regret O(d2

x log(T/dx)). Javanmard and Nazerzadeh (2019) consider the sparsity structure
of features and propose a pricing policy achieving regret O(d∗x log dx log T ). Ban and Keskin
(2021) take into account the feature-dependent price sensitivity and show a minimax regret
O(d∗x

√
T (log dx + log T )). In the studies above, the dependence of regret on dx or d∗x is not

exponential as the demand is assumed to have a parametric (linear) form.

3. For reward functions with a higher order of smoothness, the regret may be lower. See Hu et al. (2020);
Gur et al. (2022).
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Going beyond the parametric setting, Chen and Gallego (2021) propose a nonparametric
pricing policy achieving a near-optimal regret O((log T )2T (2+dx)/(4+dx)), which indeed de-
pends on dx exponentially. A similar dependence is found in network revenue management
(Besbes and Zeevi, 2012) in which the dimension of the decision space dy appears in the
regret O(T (2+dy)/(3+dy)). Therefore, the dimension of the covariate significantly complicates
the learning problem in the nonparametric formulation. Our work proposes a dimension
reduction method that significantly mitigates the dimensionality problem. Although we
formulate the problem for online learning in general, our approach is applicable to dynamic
pricing with consumer features.

3. Problem Formulation

We now formulate the online learning problem. We define the decision and covariate space
as X := [0, 1]dx and Y := [0, 1]dy . Let T = {1, 2, . . . , T} denote the sequence of decision
periods faced by the decision maker. At the beginning of each period t ∈ T , the covariate
Xt ∈ X , drawn independently from some unknown distribution4, is revealed to the decision
maker. Then the decision maker chooses a decision Yt in Y. The reward in period t is a
random variable Zt:

Zt = f(Xt,Yt) + εt,

where f(Xt,Yt) is the mean reward function which is unknown. The noises εt satisfy the
following standard assumption.

Assumption 1 (Sub-Gaussian) The noises {εt}Tt=1 are independent σ sub-Gaussian, i.e.,
for any ξ ≥ 0,

P(εt ≥ ξ) ≤ exp

(
− ξ2

2σ2

)
.

Assumption 1 is widely used in statistics and many classical distributions are sub-
Gaussian, such as any bounded and centered distribution or the normal distribution.

Now we formally define policy and regret which are critical concepts in designing online
learning algorithms.

Policy. Before making decisions in period t, the information revealed to the decision-
maker includes observed covariates {Xs}ts=1, the adopted decisions {Ys}t−1

s=1 and the realized
rewards {Zs}t−1

s=1. A policy πt is defined as a function mapping the past history to the
decision space:

Yt = πt (Xt, Zt−1,Yt−1,Xt−1, Zt−2,Yt−2,Xt−2, . . . , Z1,Y1,X1) .

Regret. If the reward function is known, then the optimal decision and reward given
covariate x are

y∗(x) := arg max
y∈Y

f(x,y), f∗(x) := max
y∈Y

f(x,y),

Since the decision maker does not have access to the unknown reward function, the total
expected reward of any policy π is always lower than

∑T
t=1 E[f∗(Xt)]. A standard perfor-

mance measure of a policy is defined as the expected gap between the reward with known

4. Slivkins (2014) assumes that the covariate arrivals xt are fixed before the first round. We follow Perchet
et al. (2013) and assume that Xts are i.i.d.
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f and the reward under policy π, aggregated over the entire time horizon, i.e.,

Rπ(T ) :=
T∑
t=1

E [f∗(Xt)− f(Xt, πt)] .

For the decision maker, the objective is thus to design a policy that achieves small regret
for a class of functions f .

Remark 1 (Motivating Problem) To motivate the formulation, consider the following
example of personalized dynamic pricing. An online retailer sets personalized prices for
an assortment of products to consumers with observable features such as educational back-
grounds, incomes, occupations, etc. The demand for the products depends not only on the
prices, but also on personal information. The retailer observes the information of each ar-
riving customer (Xt), decides personalized prices (Yt) accordingly, and observes the revenue
(Zt). The revenue (Zt) is the product of demand and prices. If the relationship (f) between
customers’ information, prices and revenue is unknown to the retailer, then it has to be
learned from historical observations and the goal is to maximize the long-run revenue.

A standard assumption in online learning of nonparametric functions is that f(x,y) is
continuous, as it is virtually impossible to learn f if it can be arbitrarily discontinuous.
Therefore, we assume that

Assumption 2 (Continuously Differentiable) The function f(x,y) is continuously
differentiable.

Under a slightly weaker assumption that f(x,y) is Lipschitz continuous in both x and
y, the optimal rate of regret is (see, e.g., Slivkins 2014)

min
π

sup
f
Rπ(T ) ≥ Ω(T 1−1/(2+dx+dy)). (1)

The lower bound here reflects the curse of dimensionality in nonparametric online learning.
The regret grows almost linearly in T for large dx and dy. For example, if dx = dy = 5,

then Rπ(T ) ≥ Ω(T
11
12 ), which is much worse than Ω(

√
T ), the typical lower bound in the

parametric setting. Since the regret in (1) cannot be further improved under the assumption
that f is Lipschitz continuous, the dependence on dimensionality looks dire. We next
introduce a sparsity structure on the covariate space that may remedy the high dimension
dx. In this paper, as we focus on the dimension reduction in the covariate space, we set
dy = 1 in the rest of the paper for the ease of exposition. All the results can be generalized
to the cases where dy > 1.

3.1 Assumptions on the Sparsity Structure

In many practical cases, not all the variables in the covariate have an impact on the value of
f . In other words, out of dx variables in the covariate, many are redundant. Such sparsity
has been one of the central topics in statistics. More precisely, we consider
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Assumption 3 (Sparse Reward Function) There exists d∗x ≤ dx, a subset J = {i1, . . . , id∗x} ⊂
{1, . . . , dx}, and a function g : [0, 1]d

∗
x 7→ R such that for all x = (x1, . . . , xdx) ∈ X and any

y ∈ Y,5 we have
f(x1, . . . , xdx , y) = g(xi1 , . . . , xid∗ , y).

Assumption 3 gives a rigorous definition of sparsity. We refer to the variables in J as
relevant variables and those in Jc := {1, . . . , dx} \ J as redundant variables. With a slight
abuse of notations, we denote J (i) = 1 if i ∈ J and J (i) = 0 otherwise. Since the redundant
variables do not affect f , their partial derivatives are always zero:

Jc =

{
i ∈ {1, 2, . . . , dx} :

∂f(x, y)

∂xi
= 0, ∀x ∈ X ,∀y ∈ Y

}
.

However, in the nonparametric setting, Assumption 3 alone is not sufficient to charac-
terize the sparsity structure. Suppose f changes slightly along the direction of x1, only
when y is in a small region. For example,

f(x, y) = g(x2, . . . , xdx , y)+I(0≤y≤ ε
2

)(3εy2−4y3)x1+I(
ε

2
<y≤ε)(3ε(ε−y)2−4(ε−y)3)x1,

for an arbitrarily small ε > 0. The function f satisfies Assumption 2 if g is continuously
differentiable. We see that x1 plays a role when y ≤ ε, and technically speaking, it is a
relevant variable. However, it is almost impossible for any methods to detect the relevance
of x1, since the partial derivatives ∂f(x, y)/∂x1 diminish for infinitesimal ε. To resolve this
issue, we impose a stronger assumption that ∂f(x, y)/∂xi is non-vanishing for all y ∈ Y
and all i ∈ J .

Assumption 4 (Global Relevance) There exists a constant C > 0 such that∣∣∣∣∂f(x, y)

∂xi

∣∣∣∣ ≥ C, ∀i ∈ J,x ∈ X , y ∈ Y. (2)

Assumption 4 states that the relevant variables must play a global role, not only for all
y ∈ Y, but also for all x ∈ X . Their partial derivatives are non-vanishing everywhere. Note
that Assumption 4 includes functions that do not belong to any parametric family. For
example, the variables are allowed to have complex interactions.

In the literature, some studies impose a similar global structure on the function. For
example, Xu et al. (2016) assume that f is convex and Rosasco et al. (2013); Ye and Xie
(2012); Yang et al. (2016); He et al. (2018) assume f in RKHS. These global assumptions
are typically stronger than Assumption 4.

For certain applications, Assumption 4 may be too strong, especially when some relevant
variables are relevant locally but not globally in X . Considering the dynamic pricing ex-
ample, even the variables that strongly predict consumer behavior are not always relevant.
For instance, the demand for a product may be significantly increased when the income
ranges from “low” to “medium”, while the income level becomes almost irrelevant when it
is above a certain threshold. Technically speaking, the partial derivatives are not always
bounded away from zero, in which case Assumption 4 may fail. To make our approach more
practical, we relax Assumption 4 below.

5. Since dy = 1, we use a scalar y instead of a vector y throughout the paper.
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Assumption 4’ (Local Relevance) There exists a constant C > 0 such that∣∣∣∣∂f(x, y)

∂xi

∣∣∣∣ ≥ C, ∀i ∈ J,x ∈ Hi, y ∈ Y, (3)

where Hi ⊂ X is a hypercube centred at x(i).

Assumption 4’ is much weaker than Assumption 4. For i ∈ J , it assumes non-vanishing
partial derivatives at one point x(i) in the domain, for all y. By Assumption 2, Assump-
tions 4 and 4’ can be satistied by a simpler condition.

Lemma 1 (Generality of Assumptions 4 and 4’) 1. Under Assumptions 2 and

∂f(x, y)

∂xi
6= 0, ∀x ∈ X , y ∈ Y, i ∈ J,

Assumption 4 holds.

2. Suppose Assumptions 2 holds and f is twice-differentiable with respect to x. In addi-
tion, for all i ∈ J , there exists x(i) ∈ X such that

∂f(x(i), y)

∂xi
6= 0, ∀y ∈ Y.

Then Assumption 4’ holds.

Due to Lemma 1, Assumptions 4 and 4’, especially Assumption 4’, hold for most functions
that are used in practice.

For the exposition, we first introduce our algorithm that works for Assumption 4 in
Section 4 and Section 5. Then we show that with some adjustment, the algorithm has the
same theoretical guarantee under Assumption 4’ in Section 6.

3.2 Online Learning with Nonparametric Variable Selection

If the set of relevant variables J were known a priori, then the decision maker would discard
the redundant variables and apply online learning algorithms only for the effective variables
with dimension d∗x. For example, existing algorithms for contextual bandits in nonparamet-
ric settings (Kleinberg, 2004; Lu et al., 2009; Slivkins, 2014) can achieve the near-optimal
regret of the order Õ(T 1−1/(d∗x+3)). (Recall that we set dy = 1.)

We propose a two-phase approach to handle the problem. In particular, we design a
subroutine to select variables before applying the online learning algorithms. We hope to
collect data to provide an estimated set of relevant variables, Ĵ , within the first n < T
periods. If Ĵ = J with high probability and n � T , then the online learning algorithms
can be executed as if J were known and the regret does not deteriorate significantly. We
elaborate this idea below.

Variable Selection Phase. We refer to the first n periods devoted to variable selection
as the variable selection phase. In this phase, the main goal of the algorithm is to correctly
identify the set of relevant variables J with high probability. By Assumption 3, the sparsity

10
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structure remains identical for all y. Therefore, in this phase, the decision maker may simply
use a fixed decision y ∈ Y.

Therefore, the observed reward is generated by

Zt = f(Xt, y) + εt, t = 1, . . . , n. (4)

Our goal is to use {(Xt, Zt)}nt=1 to select relevant variables. We describe the variable
selection algorithm in detail in Section 4.

Online Learning Phase. We refer to the remaining T − n periods as the online
learning phase. Given that the relevant variables in the covariate have been correctly
identified, we may apply the existing algorithms (Kleinberg, 2004; Lu et al., 2009; Slivkins,
2014) for contextual bandits. Denote the expected cumulative regret in the remaining T −n
periods as R2(T − n). On the correctly selected covariate space, the Uniform algorithm in
Kleinberg (2004); Lu et al. (2009) and the Contextual Zooming algorithm in Slivkins (2014)
can achieve regret

R2(T − n) = O
(

(T − n)1−1/(d∗x+3) log(T − n)
)
. (5)

We may use either as a subroutine in the online learning phase.

Remark 2 (Fixed Decision and Separated Phases) It is not uncommon for the de-
cision maker to commit to a fixed decision starting online learning. For instance, when
the market condition shifts and the firm needs to use online learning to learn the new pric-
ing policy, it may start from the incumbent pricing policy, which has proved to perform
reasonably well in the past, before exploring risky policies. This initial phase of “cautious
price stickiness” can be used for variable selection. Moreover, in Section 8.1, we extend
the algorithm to allow the decision y to be sampled from a probability distribution. We also
propose an algorithm that integrates variable selection and online learning. For the ease of
exposition, we focus on the two-phase approach here and defer the extensions to Section 8.1.

Combined Regret. The cumulative regret of the two phases depends on the proba-
bility of successful variable selection in the first phase and the regret of the subroutine in
the second phase. More precisely, the expected cumulative regret of our algorithm over T
periods is

Rπ(T ) ≤ 2n max
x∈X ,y∈Y

|f(x, y)|+ P(Ĵ = J)R2(T − n) + 2 max
x∈X ,y∈Y

|f(x, y)|P(Ĵ 6= J)(T − n).

The first term reflects the regret incurred in the variable selection phase, because f∗(Xt)−
f(Xt, y) ≤ 2 maxx,y |f(x, y)| in a single period. The regret in the online learning phase
combines two scenarios: a “good” event that the variable selection phase correctly identifies
the relevant variables and a “bad” event, where incorrect variable selection leads to linearly
growing regret. The following proposition shows a sufficient condition for the total regret
of both phases to achieve the optimal rate of regret.

Proposition 2 If n ≤ T 1−1/(d∗x+3) and P(Ĵ 6= J) ≤ n−1/(d∗x+2), then we have Rπ(T ) =
O
(
T 1−1/(d∗x+3) log(T )

)
.

11
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The proposition provides a guideline for the algorithmic design of the variable selection
phase. In the next two sections, we elaborate on the details.

Remark 3 (The Case of dy > 1) If the dimension of decision space is dy, then Proposi-
tion 2 can be modified as: If n ≤ T 1−1/(d∗x+dy+2) and P(Ĵ 6= J) ≤ n−1/(d∗x+dy+1), we have
Rπ(T ) = O

(
T 1−1/(d∗x+dy+2) log(T )

)
.

4. Variable Selection for Global Relevance

In this section, we propose a new variable selection algorithm under Assumption 4, which is
referred to as “Binning and Voting LASSO” (BV-LASSO). The algorithm utilizes the idea of
LASSO, a well-known method in statistics and machine learning, to achieve nonparametric
variable selection and thus dimension reduction.

For linear models, LASSO has proved to be extremely successful in practice with strong
theoretical guarantees and computational efficiency (Zhao and Yu, 2005, 2006). If applied
to our data, the standard LASSO estimator solves the following problem:

(θ0,θ
lasso) = arg min

θ0,θ

{
1

n

n∑
t=1

(
Zt − θ0 −XT

t θ
)2

+ 2λ‖θ‖1

}
, (6)

where the hyper-parameter λ penalizes the `1-norm of the parameter θ. The basic intuition
of LASSO is that the `1 loss function creates sparsity. If f is a linear function, then with
properly chosen λ, the estimators θlassoi of redundant variables xi tend to be zero, while the
estimators of relevant variables remain non-zero with high probability. As a result, the set
of relevant variables can be identified from the sign of θlasso.

However, in our setting f is not necessarily linear and LASSO may fail. For example,
consider dx = dy = 1 and f(x1, y) = (x1 − 0.5)2 where X1 has a uniform distribution in
[0, 1]. The LASSO estimator θ1 returns zero, because it is the best linear estimator for the
quadratic function, thus falsely ruling out the relevant variable x1. On the flip side, LASSO
may also return false positives for nonlinear functions, identifying redundant variables as
relevant. For instance, consider dx = 3, dy = 1 and let X1 ∼ U [0, 1], X2 ∼ U [0, 1] ⊥ X1,
X3 = 0.5X1 + 0.5X2. If the reward function is nonlinear f(x1, x2, y) = −x1 + e2x2 , then X3

would be identified as relevant by LASSO. In particular, because of the correlation between
X3 and X2 and the nonlinearity of X2, LASSO would return a linear model with a non-zero
coefficient for X3. Note that this failure occurs even when f satisfies Assumption 4.

Having highlighted the technical difficulties, we introduce two mild technical assump-
tions required for our algorithm.

Assumption 5 (Second-order Smoothness) The function f is twice-differentiable with
respect to x, i.e., there exists L > 0 such that

|f(x1, y)− f(x2, y)−∇xf(x2, y)T (x1 − x2)| ≤ L‖x1 − x2‖2∞,

for all x1,x2 ∈ X , y ∈ Y.

Assumption 5 imposes the smoothness condition of f and is widely adopted in many
problems in statistics and optimization. It allows for a second-order approximation for f

12
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in a small area. An implication of Assumption 5 is that the infinity norm of the Hessian
matrix with respect to x is bounded by 2L.

Next, we impose an assumption on the distribution of the covariate.

Assumption 6 (Regular Covariate) The covariate X ∈ X has a probability density
function µ(x) and there exist µm, µM , Lµ > 0 such that

1. µm ≤ µ(x) ≤ µM for all x ∈ X ,

2. The density function µ is Lµ-Lipschitz, i.e., µ(x) − µ(x′) ≤ Lµ‖x − x′‖∞ for all
x,x′ ∈ X .

Assumption 6 imposes bounded and continuous density functions and is easy to satisfy
in many cases. There is a more general and less interpretable version of Assumption 6,
which we defer to Appendix A.1 for the exposition.

Now that we have introduced all the assumptions, next we propose the BV-LASSO al-
gorithm. Before describing our algorithms in detail, we remark on the information available
to the decision maker initially: the decision maker knows T , dx, σ, µm, µM , and L but
doesn’t know J , Lµ or C. In particular, we do not use the information of d∗x in any step of
the algorithm.

4.1 Binning and Local Linear Approximation

We first partition the covariate space regularly into kdx hypercubes (bins), each with side
length h = 1/k, denoted by

Bh = {Bj | j = 1, 2, . . . , h−dx}.

The intuition is that, although f is nonlinear, it can be approximated by a linear function
in a small bin by the Taylor series expansion. The approximation error can be controlled
by the size of the bins. More importantly, the approximation error becomes small relative
to the statistical error of LASSO when the side length h is small enough.

To formalize the intuition, for a given bin B, we project the function f to the func-
tional vector space spanned by linear functions of the variables for a fixed y (we omit the
dependence on y if it doesn’t cause confusion):

θ0 =

∫
x∈B

f(x, y) dx, θi =

∫
x∈B[f(x1, . . . , xdx , y)− θ0]xi dx∫

x∈B x
2
i dx

, for i = 1, 2, . . . , dx (7)

The projection θ0 +
∑dx

i=1 θixi is the “best” linear approximation for f(x, y) with respect
to the integrated squared error, i.e.,

(θ0, θ1, . . . , θdx) = arg min
θ0,θ1,...,θdx

∫
x∈B

(
f(x1, . . . , xdx , y)− θ0 −

dx∑
i=1

θixi

)2

dx1 . . . dxdx .

If the sparsity structure of the projection maintains that of the original function f , then
we may attempt to run LASSO on the projection and recover the sparsity of f . To do so,
we need to calibrate the approximation error, in order to compare it with the statistical
properties of LASSO later. The following lemma provides such calibration.

13
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Lemma 3 (Linear Approximation Error in a Bin) Suppose (θ0, θ1, . . . , θdx) are the co-
efficients of the linear projection of f in B shown in (7). Under Assumptions 2, 3, 4 and 5,
we have

1. |θi| ≥ C for any i ∈ J and |θi| = 0 for any i /∈ J , where C is a constant satisfying
(2).

2. |f(x, y)− θ0 −
∑dx

i=1 θixi| ≤ (4
√

3 + 1)Ldxh
2 for all x = (x1, . . . , xdx) ∈ B, where the

constant L is presented in Assumption 5.

The first point of the lemma shows that the linear projection maintains the sparsity
structure of f . More importantly, it doesn’t diminish the partial derivatives. The second
point shows that the approximation error of the linear approximation is O(h2). This is
crucial in the subsequent analysis, as we would like to control the bias or the approximation
error of LASSO by the bin size.

Note that the values of the coefficients in the linear approximation in (7) are not used
in the subsequent analysis. We merely check if they are statistically nonzero to identify
the sparsity structure. Using their values directly may lead to biased estimates of the
nonparametric reward function and suboptimal regret.

4.2 Localized LASSO

Next, we apply LASSO to a given bin Bj . Suppose there are nj periods in which the
generated covariate falls in Bj . With a slight abuse of notation, let Xt ∈ Bj for t =
1, 2, . . . , nj . We first normalize the data by defining

Ut := (Xt − CBj )/h (8)

where CBj is the geometric centre of Bj . The LASSO selector for Bj solves the penalized
least square problem and identifies the non-zero coefficients:

Ĵj = supp

{
arg min
θ0,θ

{
1

nj

nj∑
t=1

(
Zt − θ0 −UT

t θ
)2

+ 2λ‖θ‖1

}}
, (9)

where the operator supp selects the subset of θ that are non-zero6. Note that the normaliza-
tion is an affine mapping and thus doesn’t change Ĵj as long as λ is properly scaled. Indeed,
we normalize in order to keep a constant λ that does not scale with h in the analysis.

Our hope is that Ĵj would be identical to J for small h. As shown in the second point
of Lemma 3, the approximation error is O(h2). If LASSO selects the relevant variables for
the linear projection when the approximation error is small, then Ĵj = J because of the
first point of Lemma 3. This intuition is formalized below.

Proposition 4 (Variable Selection by Localized LASSO) For a given bin Bj of side
length h, under Assumptions 1, 2, 3, 4, 5, 6, and h ≤ b3, choosing λ = b2h

2 in (9), we have
7

P
(
Ĵj = J

)
≥ 1− pj , (10)

6. Note that θ0 is the intercept term in LASSO regression. It does not matter whether θ0 is zero.
7. Strictly speaking, the probability here is conditional on the nj covariates falling in Bj . The rigorous

definition is deferred to Appendix B.2.
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where pj := b0 exp(−b1njh4) and the constants b0, b1, b2, and b3 are presented in Section 5.

Remark 4 Bertin et al. (2008) apply LASSO in a neighborhood of a given point to locally
select variables. They prove that the false selection probability converges to zero at the rate
O(− exp(njh

dx+2)). In Proposition 4, we improve the rate to O(− exp(njh
4)). The distinc-

tion between h2 and h4 is caused by the different assumptions on the order of smoothness.

Remark 5 (Alternatives to LASSO) We point out that OLS and thresholding may serve
the same purpose as LASSO. More precisely, one may apply OLS to the data {Ut, Zt}

nj

t=1

and compare the estimated coefficients to a threshold. A variable is identified as relevant
if the absolute value of the coefficient is greater than the threshold. We can prove that this
alternative method can identify the relevant variables in a similar form to (10) with different
constants. In Section 8.2, we provide rigorous proof and discuss the differences between the
two methods.

Proposition 4 provides an accurate characterization of the probability of Ĵj = J . In partic-
ular, h needs to be less than b3, which itself depends on other constants. For example, it
is understandable that if C is large, then J is easier to identify and the requirement b3 can
be larger. Once h is sufficiently small, the probability of Ĵj 6= J diminishes exponentially
in njh

4. Proposition 4 serves as the backbone of the analysis of our algorithm.

Now that we have applied localized LASSO to a single bin, the next question is how to
combine them to identify J . Because of the sheer number of bins (1/hdx), it is very unlikely
that the sets of selected variables Ĵj are identical for all j despite the probability guarantee
in Proposition 4. Next we introduce a scheme to aggregate Ĵj referred to as weighted voting.

4.3 Weighted Voting

After applying LASSO to all the bins, we have h−dx selectors {Ĵj , j = 1, 2, . . . , h−dx}, each
representing a set of relevant variables. A straightforward idea would be to only trust the
bin with the most observations and use the outcome in that bin as the global selector. As n
increases with T , the bin contains at least nhdx observations, and Proposition 4 guarantees
the correct selection with high probability. However, this method performs inefficiently in
terms of data utilization. For small h, any single bin would contain only a tiny fraction of all
the observations {Xt}nt=1. Such waste of data limits its practical use despite its asymptotic
properties.

To fully exploit all the observations, we propose the idea of “weighted voting.” For

variable xi, the outcome of LASSO in bin Bj , Ĵ
(i)
j , is binary. If i ∈ Ĵj , then bin Bj votes

“yes” for xi and Ĵ
(i)
j = 1. Otherwise, the vote is “no” and Ĵ

(i)
j = 0. If a majority of bins

vote “yes”, then xi is likely to be relevant. Moreover, if Bj contains more observations, then
we would expect Ĵj to be more reliable. This intuition is supported by Proposition 4, as
the probability of false selection diminishes in nj . Therefore, we assign more weights to the
votes from the bins with more observations. In this way, all the observations are exploited
as votes from all the bins are aggregated.
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Next, we describe the details of the procedure. For xi, consider the linear combination

of Ĵ
(i)
j over j:

Ĵ (i) =
h−dx∑
j=1

wj Ĵ
(i)
j , (11)

where the weights {wj} satisfy
∑h−dx

j=1 wj = 1 with wj ≥ 0. If Ĵ (i) is greater than 1/2,
implying that xi has a weighted majority of “yes” votes, then we classify it as “relevant”.
Otherwise, we classify it as “redundant”. The key questions to address are (1) how to

properly choose the weights, and (2) how to control the errors, i.e., P
(
Ĵ (i) < 1/2

∣∣J (i) = 1
)

and P
(
Ĵ (i) ≥ 1/2

∣∣J (i) = 0
)

. Proposition 5 answers both questions.

Proposition 5 (Choice of Voting Weights) Suppose n ≥ log(2b0)/(b1h
dx+4), h ≤ b3

and the weights are set to

wj =


log 2 + log pj∑

k:pk≤0.5(log 2 + log pk)
if pj ≤ 0.5

0 if pj > 0.5

,

where pj is defined in Proposition 4. Then under Assumptions 1, 2, 3, 4, 5, and 6, we have

P
(∣∣∣Ĵ (i) − J (i)

∣∣∣ ≥ 1

2

)
≤ exp

{
1

2

(
h−dx(1 + log b0 + log 2)− b1nh4

)}
. (12)

Moreover, the union bound implies

P(Ĵ = J) ≥ 1− dx exp

{
1

2

(
h−dx(1 + log b0 + log 2)− b1nh4

)}
.

Proposition 5 shows the probability guarantee for the global variable selector. Compared to
Proposition 4, the probability bound improves from exp(−njh4) to exp(ah−dx − bnh4) for
some positive constants a and b omitting terms independent of n and h. This is a significant
improvement because on average there are nj ≈ nhdx observations in a bin and we expect
h−dx � n and nj � n. It demonstrates the power of weighted voting as it aggregates all
the available data.

Remark 6 (The Convergence Rate) We provide some intuitions for the convergence
rate O(exp(h−dx − nh4)). It is well known that the false selection probability of LASSO
for linear functions is O(exp(−n)) (Theorem 11.3 in Hastie et al. 2015). Our bound has
an additional term exp(h−dx), because we have to discretize the covariate space into h−dx

bins for the nonparametric setting. Also, there is another term h4 in the convergence rate,
which comes from approximating f by a linear function. There are two inferior alternatives
to weighted voting: (1) If we just focus on a single bin, then roughly nhdx observations
are used. So the convergence rate O(exp(h−dx − nh4+dx)) is much worse than weighted
voting. (2) If we assign the same weight to all the bins, then the votes from bins with fewer
observations may tilt the outcome disproportionately, leading to noisy estimates.
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4.4 BV-LASSO and the Regret Analysis

After binning the observations, applying localized LASSO and weighted voting, the algo-
rithm proceeds to the online learning phase and only focuses on the relevant variables in
Ĵ . Algorithm 1 demonstrates the complete algorithm combining the two phases, which we
refer to as “BV-LASSO and Learning”.

Algorithm 1 BV-LASSO and Learning

1: Input: T, dx, µm, µM , L, σ
2: Tunable parameters: n, h, λ
3: for t = 1, 2, . . . , n do
4: Observe covariate Xt

5: Choose a fixed decision Yt = y
6: Observe Zt {colleting observations in the variable selection phase}
7: end for
8: Partition the covariate space into Bh
9: for j = 1, 2, . . . , h−dx do

10: Ĵj = supp
{

arg minθ0,θ

{
1
nj

∑nj

t=1

(
Zt − θ0 −UT

t θ
)2

+ 2λ‖θ‖1
}}
{applying LASSO

to bin Bj}
11: end for
12: for i = 1, 2, . . . , dx do

13: Ĵ (i) =
∑h−dx

j=1 wj Ĵ
(i)
j {wj defined in Proposition 5}

14: end for
15: Let Ĵ = {i : Ĵ (i) ≥ 0.5} {the set of selected coordinates}
16: for t = n+ 1, n+ 2, . . . , T do
17: Apply contextual bandits algorithm to the variables in Ĵ
18: end for

The regret analysis of the algorithm follows from Proposition 5. Since the false selection
probability decreases exponentially with nh4, BV-LASSO easily meets the rate required in
Proposition 2. For properly chosen parameters, we have

Theorem 6 (Regret of BV-LASSO) Suppose

T ≥ max
{

((3 + log 2 + log b0)/b1)3(1+2/dx) , (b3)−3(dx+2), (log T )3(1+2/dx)
}
, (13)

and Assumptions 1, 2, 3, 4, 5 and 6 hold. Taking n = T 2/3, h = n−1/(2dx+4) = T−1/(3dx+6)

and λ = b2h
2, we have

Rπ(T ) = O
(
T 1−1/(d∗x+3) log(T )

)
.

We have some flexibility in the choice of n as long as it satisfies Proposition 2. In Theorem
6, we choose n as a polynomial of T , where the warm-up periods (13) have a polynomial
dependence on the constants b0, b1, b3. We can also choose n = O(log T ), which will shorten
the variable selection phase. But it comes at the cost of a longer warm-up period that
depends on b0, b1, b3 at a higher order. This is shown in Corollary 7.
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Corollary 7 Suppose

T ≥ max
{

exp
{

(3 + log 2 + log b0)/b1, (b3)−dx
}}

,

and Assumptions 1, 2, 3, 4, 5 and 6 hold. Taking n = (log T )2+4/dx, h = n−1/(2dx+4) =
(log T )−1/dx and λ = b2h

2, we have

Rπ(T ) = O
(
T 1−1/(d∗x+3) log(T )

)
.

Note that the constants b0, b1, b2, b3, similar to Proposition 4, are given in Section 5.
We do point out that to set the values of λ and wj , we need to be able to access some
model parameters (σ, µm, µM , L) and compute those constants. We discuss this point in
Remark 8.

We have shown that BV-LASSO doesn’t significantly increase the regret relative to the
regret incurred in the online learning phase, demonstrated by the optimal rate of regret.
As a general tool, we believe it has potential to be implemented for other nonparametric
variable selection problems outside online learning.

Remark 7 (Smooth Reward Function) Note that the regret achieved in Theorem 6
matches the optimal rate (1) for f that is Lipschitz continuous. But Assumption 5 (second-
order smoothness in x) is stronger and may lower the optimal rate of regret to Õ(T (d∗x+2)/(d∗x+3)).
In the setting of finite-armed contextual bandits, Hu et al. (2020) show the minimax regret to
be Θ(T (d∗x+2)/(d∗x+4)) when the reward functions are second-order smooth in x. Under their
setting, we can use BV-LASSO to select the relevant variables before using their algorithm
to achieve optimal regret. But in the continuum-armed bandit setting, as far as we know,
no online learning algorithms are designed to adapt to smoothness. Since we focus on the
variable selection, we omit the technical subtlety in the paper.

5. Theoretical Analysis

In this section, we provide the detailed analysis for Theorem 6.

5.1 Analysis of Localized LASSO

In this section, we provide the major steps of the proof for Proposition 4. The proof is
related to the variable selection consistency of LASSO (Zhao and Yu, 2006; Meinshausen
et al., 2006; Wainwright, 2009). We use some of the core ideas in proving the theoretical
properties of LASSO and adapt them to the case when f is not necessarily linear.

Notations and Characterizations of LASSO. We rewrite the observations in bin
Bj in the following form:

Zt = f(Xt, y) + εt = ŪT
t θ
∗ + ∆t + εt =: ŪT

t θ
∗ + ρt, (14)

where Ū = (1,U) ∈ Rdx+1 incorporates the constant term, θ∗ is the coefficients of the linear
projection of f in B scaled by h because of the normalization, i.e., θ∗ = (θ0, hθ1, . . . , hθdx)T

where (θ0, . . . , θdx) is the solution to (7), and ∆t := f(Xt, y)− ŪT
t θ
∗ is the approximation
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error. In other words, we combine the random error εt and the approximation error ∆t

into ρt and transform the problem into a linear regression. It is still not a standard linear
regression, as ρt is no longer i.i.d. and does not have a mean zero. We hope to control ∆t

and thus ρt in the subsequent analysis because of Lemma 3.
The new form allows us to utilize the techniques developed for linear regression. More

precisely, we define the design matrix A := (1/
√
nj)(Ū1, . . . , Ūnj )

T and vectorize the obser-

vations Z := (1/
√
nj)(Z1, . . . , Znj )

T and the error term ρ := (1/
√
nj)(ρ1, . . . , ρnj ). Then

(14) can be written as Z = Aθ∗ + ρ. We also introduce the empirical version of the
covariance matrix Ψ defined in Assumption 4, which will be useful in our analysis:

Ψ̂ = ATA =
1

nj

nj∑
i=1

ŪiŪ
T
i .

We also rearrange the order of the variables so that J = {1, . . . , d∗x} and Jc = {d∗x+1, . . . , dx}
and partition the vectors and matrices into “relevant” and “redundant” blocks:

A =
(
A(1)A(2)

)
, θ∗ =

(
θ∗(1)

θ∗(2)

)
, Ψ̂ =

(
Ψ̂11 Ψ̂12

Ψ̂21 Ψ̂22

)
=

(
AT(1)A(1) AT(1)A(2)

AT(2)A(1) AT(2)A(2)

)
, (15)

where the dimensions are clear from the context (e.g., A(1) ∈ Rnj×(d∗x+1) because of the
constant vector e).

It is proved in Lemma 1 of Zhao and Yu (2006) that θ solves (9) if and only if it satisfies
the following KKT (Karush-Kuhn-Tucker) conditions:

(A.i)
T (Z −Aθ) = λ

−−→
sign(θi) if θi 6= 0 (16)∣∣(A.i)T (Z −Aθ)

∣∣ ≤ λ if θi = 0

for all i = 1, 2, . . . , dx. Here
−−→
sign(·) stands for the sign function for each entry of a vector

and A.i stands for the i-column of A. Thus, our goal is to show that any θ satisfying the
above equations has the same signs as θ∗, which in turn matches the signs of the partial
derivatives of f by Lemma 3. The following parts accomplish this goal.

“Good” Events for Sign Consistency. Suppose θ̂ is the LASSO estimator for (9),
or equivalently, a solution to (16). As θ̂ doesn’t have a closed form, we then define a set of
events Ωi, i = 1, . . . , 4, and argue that if ∩4

i=1Ωi occurs, then θ̂ has the same signs as θ∗.
The first two events are defined as

Ω1 :=
{

(1− α)λ ≤ λmin(Ψ̂) ≤ λmax(Ψ̂) ≤ (1 + α)λ
}

Ω2 :=
{
|(Ψ̂21)ik| ≤ (1 + δ)γλ/d∗x, ∀i ∈ Jc, k ∈ J

}
,

where α := 1−γ
2(1+γ) and δ := 1−γ

4γ , and λ, λ, γ are defined in condition two of Assumption 6’,

a weaker version of Assumption 6 (discussed in Appendix A.1). Note that Ψ̂ is the em-
pirical estimate of the conditional covariance matrix Ψ = E[UUT |X ∈ Bj ], given that
X1, . . . , Xnj ∈ Bj . Compared to Assumption 6’, it is clear that Ω1 and Ω2 characterize the

concentration of the empirical covariance matrix Ψ̂ around the mean Ψ. In particular, Ω1
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corresponds to condition one of Assumption 6’ and Ω2 corresponds to condition two. Both
events have error margins α and δ to accommodate the random error.

The events Ω3 and Ω4 are less straightforward to interpret:

Ω3 :=
{∣∣∣(Ψ̂−1

11 A
T
(1)ρ)i − λ(Ψ̂−1

11

−−→
sign(θ∗(1)))i

∣∣∣ ≤ |(θ∗(1))i|, ∀i ∈ J
}

Ω4 :=

{∣∣∣ (Ψ̂21Ψ̂−1
11 A

T
(1)ρ−A

T
(2)ρ

)
i

∣∣∣ ≤ 1

2
(1− γ)λ, ∀i ∈ Jc

}
.

Since LASSO is a shrinkage estimation method, all the estimators θ̂ are biased towards
zero. Roughly speaking, Ω3 guarantees that the estimators for the coefficients of relevant
variables are not shrunk too much, while Ω4 guarantees that the estimators for coefficients
of redundant variables are shrunk sufficiently. The degree of the shrinkage is precisely
controlled by the penalty term λ. After algebraic manipulations, one can show that Ω3∩Ω4

is equivalent to (16). When the joint event ∩4
i=1Ωi occurs, we have

Lemma 8 On the event ∩4
i=1Ωi, the LASSO estimator θ̂ for (9) is unique and

−−→
sign(θ̂) =

−−→
sign(θ∗).

Note that the techniques used in the proof are more or less standard in the LASSO
literature. We present the complete proof in Appendix B.

Probability Bound for “Good” Events. By Lemma 8, we know the LASSO esti-
mator has the desired property under the “good” events. The last step to prove Proposition
4 is to show ∩4

i=1Ωi occurs with high probability.

Lemma 9 Under Assumptions 1, 2, 3, 4, 5, and 6, choosing h ≤ b3 and λ = b2h
2, we have

P(∩4
i=1Ωi) ≥ 1− b0 exp(b1njh

4).

The constants in Lemma 9 are the same as Proposition 4, which are presented below

b0(dx) = 2 max{2(dx + 1), d2
x/4},

b1(dx, µm, µM , L, σ) =
11µm

104(1 + dx/4)
∧ µ2

m/(4608d2
x) ∧ 64L2d2

x/(2σ
2) ∧ 22400µML

2d3
x/σ

2,

b2(dx, µM ) = 64
√

7µM/3Ldx,

b3(dx, µm, µM , Lµ, C) = min
{
Cµm/(768

√
21µmdx), µ2

m/(3dxLµ)
}
.

Their derivations can be found in the proof, which is provided in Appendix B.

Remark 8 The constants µm, µM , Lµ, L, and σ appearing in Proposition 4 are defined
in Assumptions 1, 3, 4, 5, 6 and the constant C is defined in (2) of Assumption 4. To
implement the localized LASSO in a bin, the decision maker needs to know µM , dx and L
to obtain the penalty λ. To get the misidentification probability pj for weighted voting, the
decision maker in addition needs to know µm and σ. The implementation of Algorithm 1
does not need the value of C and Lµ, which appear in the bound for h that is satisfied
automatically if n is large enough.
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The proof of Lemma 9 deviates significantly from the LASSO literature, as the error ρ
is not i.i.d. due to the approximation error. The bound for P(Ω1 ∩Ω2) arises from random
matrix concentration inequalities: the empirical covariance matrix Ψ̂ can be viewed as the
average of independent copies of ŪŪT , whose mean is Ψ. Therefore, we can guarantee
that the spectrum (eigenvalues) and entries of the matrix do not deviate too much from the
mean. The bound for P(Ω3 ∩Ω4) is harder to analyze, as it involves the matrix inverse and
multiplications such as Ψ̂21Ψ̂−1

11 . The left-hand sides of the inequalities in Ω3 and Ω4 are
linear transformations of the error ρ, but the coefficients are not tractable. To analyze Ω3

and Ω4, we use the bounds for the eigenvalues conditional on Ω1. In particular, we exploit
the following inequalities: for a square matrix A and a vector x, we have ‖A‖2 ≤ λmax(A)
and ‖Ax‖2 ≤ ‖A‖2‖x‖2. They help to reduce matrix multiplications to the eigenvalues,
which is explicitly bounded in Ω1. Eventually, we can transform Ω3 and Ω4 to a bound
for a simple linear combination of sub-Gaussian random variables, for which we can apply
standard concentration bounds.

5.2 Analysis of Weighted Voting

Now that we have obtained the probability of making mistakes in selecting relevant variables
in a single bin from Proposition 4, we proceed to analyze the effect of weighted voting, i.e.,

Proposition 5. Note that for a certain variable xi, the outcome of a bin Ĵ
(i)
j can be treated

as a Bernoulli random variable with P(Ĵ
(i)
j = 0|J (i) = 1) < pj and P(Ĵ

(i)
j = 1|J (i) = 0) <

pj . Therefore, Ĵ (i) in (11) is a weighted average of h−dx Bernoulli random variables with
different success probabilities. So the optimal wj doesn’t have a closed form. To analyze
the error probabilities P(Ĵ (i) ≥ ξ|J (i) = 0) or P(Ĵ (i) < ξ|J (i) = 1) for some ξ > 0, we, we
use the concentration inequalities to obtain an upper bound for the error and then calculate
the optimal weights for the upper bound. In particular, we have that for all η > 0,

P(Ĵ (i) ≥ ξ|J (i) = 0) = P(eηĴ
(i) ≥ eηξ|J (i) = 0)

≤ exp(−ηξ)
h−dx∏
j=1

E[exp(ηwjXj)]

≤ exp


h−dx∑
j=1

(eηwj − 1)pj − ηξ

 , (17)

where Xj is a Bernoulli random variable with P(Xj = 1) < pj . The last inequality follows
from the moment generating function of Bernoulli random variables: E[exp(ηXj)] ≤ 1 +
pj(exp(η) − 1) ≤ exp(pj(e

η − 1)). The inequality (17) holds for all non-negative η and
wj . Note that the probability in (17) is conditional on the information of the bins which
X1, . . . , Xn fall in. We omit it here for the ease of exposition, and defer the rigorous analysis
to Appendix C.1. Our objective is to find η and wj that minimize the logarithm of the error,
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i.e.,

min
η,w

V (η,w) :=

h−dx∑
j=1

(eηwj − 1)pj − ηξ

s.t. wj ≥ 0, ∀j ∈ {1, 2, . . . , h−dx},
η ≥ 0,

h−dx∑
j=1

wj = 1.

(18)

Since V → +∞ as η → +∞ and V (η,w) is a continuous function, the global minimum
is obtained in a compact set when η is finite. Therefore, the global minimum necessarily
satisfies the KKT condition, although the objective function V (η,w) may not be convex
in (η,w). Recall that the KKT condition is a necessary condition for all the local minima
and maxima. In the proof of Lemma 10 in Appendix C, we prove that the KKT condition
admits a unique solution. Then the unique solution must be a global minimum for problem
(18).

Lemma 10 (Optimal Weights) The optimal solution η∗,w∗ of the optimization problem
(18) satisfies:

1. η∗ =
∑h−dx

j=1 (log ξ − log pj) I (pj < ξ);

2. If pj < ξ, then w∗j = (log ξ − log pj)/η
∗;

3. If pj ≥ ξ, then w∗j = 0;

4. The optimal value V (η∗,w∗) =
∑h−dx

j=1 (ξ − ξ log ξ − pj + ξ log pj) I (pj < ξ) .

Lemma 10 implies an intuitive structure of the weights. If bin Bj has a high misiden-
tification error pj > ξ, then the variable selection output by Bj is not counted in the
vote (wj = 0). Otherwise, the weight assigned is proportional to log(ξ/pj). Clearly, the
weights are biased toward the bins with higher confidence (smaller pj). Moreover, recall
that pj = b0 exp(−b1njh4). So log(ξ/pj) roughly grows in the order of nj . In other words,
the voting power from Bj is almost proportional to the number of observations nj in each
bin. Therefore, each observation contributes equally to the global selector of the covariates.

Lemma 10 provides a weighting mechanism after the covariates have been generated and
observed (after calculating pj). What about the ex-ante performance of the mechanism?
Note that pj depends on nj , the number of observations in a bin. If the distribution
of X were known, then pj might be estimated. However, this is usually too strong an
assumption in typical learning problems. Instead, we investigate the worst-case scenario in
which V (η,w) attains the maximum for all possible values of pj (or equivalently, nj). Using
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the form of V (η∗,w∗) from Lemma 10, we have

max
n

V (n) :=
h−dx∑
j=1

(ξ − pj − ξ log ξ + ξ log pj)I(pj < ξ)

s.t. pj = b0 exp
(
−b1njh4

)
h−dx∑
j=1

nj = n

nj ∈ N+, ∀j ∈ {1, 2, . . . , h−dx}.

(19)

Note that the discontinuity in the objective function introduced by the indicator I(pj < ξ)
presents a challenge. To address the issue, we treat it as a budget allocation problem.
Then, after analyzing the optimal budget allocation rule, we reformulate it as a concave
optimization problem. The optimal solution is demonstrated in the following lemma.

Lemma 11 (Worst-case Covariate Distribution) The optimal solution n∗ of the op-
timization problem (19) satisfies n∗1 = n∗2 = . . . = n∗

h−dx = nhdx, and the optimal value
satisfies

V (n∗) ≤ ξ
(
h−dx(1 + log b0 − log ξ)− b1nh4

)
. (20)

Lemma 11 shows that the worst case occurs when the covariates are equally distributed
across the bins. Combining Lemma 10 and Lemma 11 and setting ξ = 0.5, we can prove
Proposition 5.

6. BV-LASSO for Local Relevance

In this section, we relax Assumption 4 to Assumption 4’. Recall from the analysis in Section
5 that Assumption 4 plays an important role in the successful variable selection (Proposi-
tion 4). However, the theoretical guarantee only requires that |∂f(x, y)/∂xi| ≥ C always
holds locally in a bin. If this is the case for a large number of bins under Assumption 4’,
then one may still be able to select the variables by weighing the votes from these bins
more, given that there is a mechanism to do so.

To see the intuition, note that Assumption 4’ implies that the hypercube Hi is contained
in the level set of variable i, defined as

Hi ⊂ Ai(C) :=

{
x :

∣∣∣∣∂f(x, y)

∂xi

∣∣∣∣ ≥ C, ∀ y ∈ Y} . (21)

This implies that as h → 0, there are always at least a constant fraction of the h−dx

bins entirely inside Hi, or Ai(C). For those bins, which we refer to as “informative bins”,
|∂f(x, y)/∂xi| ≥ C holds locally and the probability guarantee in Proposition 4 holds for
the bin. On the other hand, for “uninformative bins” which are partially or entirely outside
Ai(C), Assumption 4 fails and we no longer have any theoretical guarantee for the output
of localized LASSO.
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To formalize the idea, given h and the partition Bh, we define the informative area as
the union of informative bins:

Qi(C) := ∪
{
Bj : Bj ⊂ Ai(C), Bj ∈ Bh, j = 1, 2, . . . , h−dx

}
,

while Qci (C) denotes the complimentary area. One would expect that when aggregating the
outputs of localized LASSO from the bins, the BV-LASSO algorithm should still work if
the area of Qi(C) does not vanish for i ∈ J . This is indeed the case, as Hi itself doesn’t
scale with h.

Proposition 12 (Informative Area) Suppose Assumptions 2, 4’, 5 and 6 hold. Then
for the constant C, the hypercubes {Hi}i∈J in Assumption 4’ and h ≤ C/(3L), we have

P (X ∈ Qi(C)) ≥ (1/3)dxP (X ∈ Hi) ≥ µm
(
C

3L

)dx
=: pQ,

for all i ∈ J . Note that pQ ∈ (0, 1] is a constant.

Proposition 12 states that as h→ 0, there are always at least a constant fraction of bins for
which Proposition 4 holds. Under the stronger Assumption 4, we always have pQ = 1. As
we shall see next, as long as pQ is bounded away from zero, our algorithm can be adjusted
to successfully select the relevant variables.

Remark 9 (Intuition of the Informative Area) Although Assumption 4’ is very weak
and sufficient for Proposition 12, one may be concerned that the hypercube Hi is small and
leads to a small pQ, which may affect the performance of the algorithm (see Proposition 13
below). In practice, the level set Ai(C) and informative area Qi(C) can be much larger than
Hi and the value of pQ in Proposition 12 can be too conservative. Nevertheless, since our
algorithm doesn’t need to take pQ as an input, the actual performance may be much better
than the theoretical guarantee.
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Figure 1: An illustration of the level set.

To give some intuition, consider f(x1, x2, y) = exp
(
−15(x1 − 0.5)2 − 15(x2 − 0.5)2

)
,

which is illustrated in the left panel of Figure 1. The partial derivative of x1 and its contour
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map is illustrated in the right panel of Figure 1. If we set C = 0.9, then the level set A1(0.9)
is the area inside the contour line labeled 0.9 and −0.9.

Next consider Q1(0.9) for given h = 0.2 and h = 0.1, which is illustrated in Figure 2.
The bins completely inside A1(0.9) are informative bins (heavily shaded bins) and the bins
fully outside A1(0.9) (lightly shaded bins) are uninformative bins. There are some bins
(white) intersecting with the boundaries of A1(0.9), also counted as uninformative. As
h→ 0, Q1(0.9) approximates A1(0.9) and P(X ∈ Q1(0.9)) converges to P(X ∈ A1(0.9)).

Informative Uninformative Uninformative

Figure 2: An illustration of the informative area.

Note that Proposition 12 guarantees that roughly at least pQn observations fall into
informative bins. If the decision maker knows which bins are informative a priori, s/he can
assign zero weights to uninformative bins and only allows the informative bins to vote, then
the problem is simplified to the problem analyzed in Section 4 with pQn observations. The
challenge, of course, is that the decision maker does not know which bins are informative.
If a majority of bins are uninformative and they vote that the variable is redundant, then
it is hard for the decision maker to screen out the noisy votes. In order to bias toward the
informative bins in the weighted voting, the key is to tune ξ in Lemma 10 and 11. To see
this, note that the threshold ξ balances the false positive probability P(Ĵ (i) ≥ ξ|J (i) = 0)
and the false negative probability P(Ĵ (i) ≤ ξ|J (i) = 1). A smaller ξ leads to a higher
false positive rate and a lower false negative rate. Because uninformative bins tend to vote
“redundant” (or negative) even if i ∈ J , we want to set ξ to be smaller to reduce the
false negative rate, which is biased toward informative bins. That is, a small ξ assigns
more importance to the bins that vote “relevant” and less importance to the bins that vote
“redundant”. For a relevant variable, if ξ is sufficiently small, then the “relevant” votes from
the informative bins eventually outweigh the “redundant” votes. For a redundant variable,
although the importance of “redundant” votes shrinks, there are no bins systematically
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voting “relevant” and the probability is still guaranteed. The next proposition shows the
probability guarantee of the modified voting scheme.

Proposition 13 (Weights Under Local Relevance) Suppose that n ≥ log(2b0)/(b1h
dx+4),

h < min{C/(3L), b3/2} and the weights satisfy 8

wj =


log ξ + log(1− pj)− log pj − log(1− ξ)∑

k:pk≤ξ log ξ + log(1− pk)− log pk − log(1− ξ)
, if pj ≤ ξ

0, if pj > ξ

.

Then, under Assumptions 1, 2, 3, 4’, 5 and 6, the misidentification probability of xi is
bounded by

P(Ĵ (i)≤ξ|J (i) =0)≤exp
{

(2ξ log b0− 2ξ log ξ−(1−ξ) log(1−ξ))h−dx−ξb1h4n
}
, (22)

P(Ĵ (i)≤ξ|J (i) =1)≤exp

{
(2(1−ξ) log b0−ξ log ξ+2(1−ξ) log(1−ξ))h−dx−

(
2pQ

3
−ξ
)
b1h

4n

}
+ exp

(
−2

9
p2
Qn

)
. (23)

From (22) and (23), we can see how ξ balances the false positive and false negative probabili-
ties. The false positive probability P(Ĵ (i) ≥ ξ|J (i) = 0) converges at the rateO(exp(−ξb1h4n))
while the false negative probability P(Ĵ (i) ≤ ξ|J (i) = 1) converges at the rateO(exp(−(2pQ/3−
ξ)b1h

4n)). If the value of pQ is known, then setting ξ = pQ/3 leads to a bound of

exp(−nh4pQ/3) for both probabilities P(Ĵ (i) ≥ ξ|J (i) = 0) and P(Ĵ (i) ≤ ξ|J (i) = 1). If
pQ is unknown, then we may set ξ as a function of n (such as 1/na for a constant a). It
guarantees that for a sufficiently large n (or T ), ξ is less than 2pQ/3.

Corollary 14 Under the conditions of Proposition 13, we have

P(Ĵ=J)≥

 1−dx exp
{

2(log b0−log(
pQ
3 ))h−dx− 1

3pQb1h
4n
}
−dx exp

(
−2

9p
2
Qn
)
, if ξ=

pQ
3 ,

1−dx exp
{

2(log b0+2e−1)h−dx−b1h4n1−a}−dx exp
(
−2

9p
2
Qn
)
, if ξ= 1

na .

Corollary 14 generalizes the theoretical guarantee of Proposition 5 to local relevance
(Assumption 4’). The new bound still guarantees the regret in Theorem 6, which shows in
the following theorem.

Theorem 15 Suppose

T ≥ max
{(

(1+6e−1+4 log b0)/b1
)4.5+6/dx

, (b3)−(4.5dx+6), (log T )4.5+6dx , (3/(2pQ))4.5+6/dx
}
,

(24)
where pQ shows in Proposition 12. Under Assumptions 1, 2, 3, 4’, 5 and 6, then taking
n = T 2/3, h = n−1/(3dx+4), ξ = 0.5n−dx/(3dx+4) and λ = b2h

2, we have

Rπ(T ) = O
(
T 1−1/(d∗x+3) log(T )

)
.

8. We can use the weights here in Proposition 5, but the constants in the bound (22) are much looser.
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We have shown that under the local relevance assumption (Assumption 4’), BV-LASSO
still achieves the optimal rate of regret. But the weaker assumption comes at the cost of a
longer warm-up period (24). Comparing with (13), it has a higher order of dependence on

b0, b1, b3, also an additional term (3/(2pQ))4.5+6/dx , which is added to make sure ξ ≤ 2pQ/3.
Note that the additional term is at most (3/(2pQ))10.5 since dx ≥ 1.

7. Numerical Experiments

In this section, we conduct numerical experiments to validate the theoretical performances
of BV-LASSO. We attempt to address three questions in practice: (1) Can the BV-LASSO
algorithm successfully select relevant variables? (2) How does the BV-LASSO and Learning
algorithm perform against existing algorithms without considering the sparsity structure?
(3) How does BV-LASSO perform when f is a linear function of x? We first introduce the
setups below.

Reward functions. Supposing dx = 3 and d∗x = 1, we consider two functions.9 The
first function is nonlinear:

f1(x, y) = exp
(
−10(x1 − 0.5)2 − 15(x1 − y)2

)
, (25)

where x = (x1, x2, x3) and only x1 is relevant. Note that its optimal decision y∗(x) = x1,
and the optimal value f∗1 (x) = exp(−10(x1 − 0.5)2). The second function is linear with
respect to x1 when y is fixed:

f2(x, y) = 3(1− 2x1)y + 3x1. (26)

When x1 < 0.5, its optimal solution y∗(x) = 1 and f∗2 (x) = 3 − 3x1; when x1 ≥ 0.5, its
optimal solution y∗(x) = 0 and f∗2 (x) = 3x1. At time t, the covariate Xt is independently
sampled from a uniform distribution in [0, 1]3. The noise εt is generated from a Gaussian
distribution N(0, σ2), where we vary the value of σ as a robustness check. Note that f1

satisfies local relevance (Assumption 4’) and f2 doesn’t satisfy global (Assumption 4) or
local relevance.

BV-LASSO inputs. To implement the algorithm, we need to specify a set of hyper-
parameters: T, dx, n, h, λ, ξ. Among them, T and dx are known to the decision-maker; ξ can
be set to 0.5 as the partial derivatives are non-vanishing in most area; n,h are chosen as in
Theorem 6. We also set h = 1/bn1/(2dx+4)c for the bin size. To determine the value of λ,
the l1-penalty in localized LASSO, one is required to know L and µM as in Proposition 4.
To avoid this scenario, we use a heuristic approach by noting that λ = Θ(h2) in Proposition
4. We set λ = cλh

2 for some constant cλ. We vary cλ to better understand the sensitivity
of the algorithm’s performance to the choice.

To choose the weights wj of the bins, if we follow Proposition 5, then the knowledge of
µm, µM , L, σ is required, which is often unknown in practice. Instead, we simply set wj to

be proportional to nj (number of observations in bin Bj), wj = nj/
∑h−dx

j=1 nj , which is still
consistent with Propositions 4 and 5 to a large degree. Our numerical results indicate good
performance.

9. We also consider the setting of larger dx and more complicated functions, seeing Appendix F.
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Variable selection. First, we test the performance of BV-LASSO in terms of variable
selection. The performance of BV-LASSO is affected by n, σ and λ. As n increases, the
space is partitioned more granularly and there are more observations in each bin. Thus, we
expect the performance to improve. The sub-Gaussian parameter σ reflects the signal-to-
noise ratio. The penalty λ controls the balance between false positives and false negatives.
We show the results for varying n in Figure 3 while fixing σ = 2, cλ = 0.22 and show the
results for varying σ ∈ {1, 2, 4} and cλ ∈ {0.1, 0.2, 0.3} in Figure 4.

Figure 3 compares the value of Ĵ of the three variables according to (11) based on the
average of 20 trials, in which only x1 is relevant. The left (right) panel corresponds to
f1(x, y) (f2(x, y)), and the shaded region corresponds to the 95% confidence interval of 20
trials. The results show Ĵ (1) is significantly greater than 0.75 and Ĵ (2), Ĵ (3) are significantly
less than 0.25. Choosing the threshold as ξ = 0.5, the relevant variable can be successfully
selected, even if n is not large. The numerical example demonstrates that the BV-LASSO
algorithm can successfully select relevant variables.

Figure 4 further shows the value of Ĵ for varying σ and cλ. As Ĵ (3) performs similar to
Ĵ (2), we omit Ĵ (3) and display Ĵ (1) (Ĵ (2)) in Figure 4. The indicators Ĵ (1) (Ĵ (2)) for variable
x1 (x2) are displayed in solid (dashed) curves with filled (hollow) markers. The top row
of Figure 4 shows that Ĵ (1) and Ĵ (2) are not sensitive to σ as long as it is in a reasonable
range. The bottom row of Figure 4 shows the impact of cλ.
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Figure 3: Variable selection of BV-LASSO for f1 (left) and f2 (right).

The Regret. Next, we compare the regret of our Algorithm 1 with other learning
algorithms. Our first benchmark is the Uniform algorithm (Kleinberg, 2004; Lu et al.,
2009), which does not learn the sparse structure of the reward function. It incurs regret
O(T (dx+2)/(dx+3) log(T )) or Õ(T 5/6) for functions (25) and (26). Our second benchmark is to
first apply the standard LASSO algorithm to select the variables, and then use the Uniform
algorithm on the selected variables. It is expected to incur regret Õ(T 3/4) for the linear
function (26) and linear regret for the nonlinear function (25) due to model misspecification.

Figure 5 shows the regret of the three algorithms for a range of T values. We note
that each point on the curve displays the average regret of 10 independent trials and the
shaded region around each curve is the 95% confidence interval. The left (right) panel
corresponds to f1(x, y) (f2(x, y)). In both panels, BV-LASSO and Learning outperform the
other benchmarks. As predicted by the theory, the regret of the Uniform algorithm always
grows at rate Õ(T 5/6) while the regret of BV-LASSO grows at Õ(T 3/4). When the function
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Figure 4: Variable selection of BV-LASSO for varying σ and cλ. The left and right panels
demonstrate the result for f1 (25) and f2 (26), respectively.
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Algorithm/BV-LASSO/Standard LASSO.
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is nonlinear, the standard LASSO may fail to identify the relevant variable x1 and incur
large regret. When f is linear, the regret of BV-LASSO and Learning almost coincides with
that of the standard LASSO, which has been proven to be one of the most effective variable
selection methods for the linear setting.

8. Extensions and Discussions

8.1 Extension to Randomized Policies and A Nested Algorithm

So far, we propose the BV-LASSO and Learning algorithm to address the dimensionality
issue in the nonparametric contextual online learning problem. However, the algorithm
has two potential issues which may limit its practical applicability. First, the decisions in
the variable selection phase are required to be fixed. Second, the total periods T need to
be known in advance. We address the first problem by extending the fixed decision to a
randomized policy and address the second problem with a nested algorithm that integrates
variable selection and online learning.

Extension to Randomized Policies. We generalize the fixed decision in (4) to a
randomized policy, where the decision y is sampled from a probability distribution P : Y →
[0, 1]. Hence the decision maker has some flexibility in making decisions in the variable
selection phase. The observed reward is generated by

Zt = f(Xt, Y ) + εt, Y ∼ P. (27)

We define the following mean reward function

fP (x) = EY∼P [f(x, Y )]. (28)

If fP maintains the good properties of f , then we can directly apply BV-LASSO to fP , and
the performance guarantees in Section 4 still hold.

Proposition 16 (Randomized Policy in the Variable Selection Phase) Applying BV-
LASSO to fP defined in (28), where the distribution P is independent of the distribution
generating the covariate x, and under Assumptions 1, 2, 3, 4, 5 and 6, we have Proposition
4, Proposition 5 and Theorem 6.

Extension to a Nested Algorithm. We propose a nested algorithm that divides the
T periods into stages with increasing lengths. In each stage, we implement an independent
BV-LASSO and Learning algorithm. We make two adjustments to improve the performance
of the nested algorithm. First, at every stage m, we choose the side length of the partition
to be hm = 1/m. That is, the partition in the variable selection phase is refined with the
number of stages. In the first few stages, hm is relatively large and a bin can easily collect a
large number of observations. Although the approximation error may be large (Lemma 3),
some significantly relevant variables can already be detected. This adjustment allows the
algorithm to perform reasonably well when T is small and an overly refined partition for
variable selection cannot be afforded. Second, when selecting variables at each stage, we
repeatedly use the observations in the variable selection phases of previous stages. This
adjustment improves the data utilization and reduces the exploration cost. We are able to
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show that the dependence introduced by data reuse doesn’t impact the regret. Algorithm 2
demonstrates the nested algorithm, which we refer to as “Nested BV-LASSO and Learning”.
Note that this algorithm doesn’t require the knowledge of T in advance.

Algorithm 2 Nested BV-LASSO and Learning

1: Input parameters: T, dx, µm, µM , L, σ, l1, . . . , lm, n1, . . . , nm.
2: for m = 1, 2, . . . , do
3: for t = 1, 2, . . . , lm do
4: Observe covariate Xt

5: Apply a fixed decision y or randomized policy P in (27)

6: Observe Z
(m)
t {collecting observations in stage m, Z(m) = {Z(m)

1 , . . . , Z
(m)
lm
}}

7: end for
8: Partition the covariate space into Bhm(hm = 1/m)
9: Apply BV-LASSO to the previous observations Z(1), . . . ,Z(m) and obtain Ĵ (m).

10: for t = 1, 2, . . . , nm do
11: Apply the contextual bandit algorithm for the variables in Ĵ (m).
12: end for
13: end for

The next theorem shows that Algorithm 2 achieves the same order of regret as its base
version, i.e., Algorithm 1.

Theorem 17 Suppose T ≥
(
b421/b3

)3/2
, (log T )dx+4 ≤ T 2/3 and Assumptions 1, 2, 3, 4,

5 and 6 hold. Taking hm = 1/m, lm = (dx + 4)b4m
dx+3, nm = b42m and λm = b2h

2
m in

Algorithm 2, we have

R(T ) = O
(
T 1−1/(d∗x+3) log(T )

)
,

where b4 = (1 + 2 log 2 + log b0 + 2 log dx)/b1.

Note that the nested algorithm is more efficient and practical than a simple doubling
trick of Algorithm 1. We choose hm = 1/m in each stage such that the bins don’t diminish
rapidly and the data can be used more efficiently. Moreover, the choice of hm = 1/m
removes the need of rounding to obtain an integer number of bins. On the contrary, the
doubling trick may encounter redundant stages when 1

2 < h < 1, 1
3 < h < 1

2 , etc. In
Algorithm 2, we address this issue by decoupling the dependence of h on T and making
sure h strictly decreasing as the stage proceeds.

The regret analysis of Algorithm 2 is much more involved than Algorithm 1. Because
we not only have to balance the length of the variable selection phase and the probability of
correct selection, but also have to balance the regret incurred across different stages. In the
proof, we show that with carefully designed hyperparameters lm, nm, the regret incurred in
each stage is optimal, so is the overall regret.

31



Li, Chen and Hong

8.2 Alternative to Localized LASSO

In this subsection, we formally show Remark 5 by introducing the ordinary least square
(OLS) method for the algorithm. The OLS estimator in bin Bj is

(θ0,θ
OLS) = arg min

θ0,θ

{
1

nj

nj∑
t=1

(
Zt − θ0 −UT

t θ
)2}

, (29)

where Ut is defined in (8). Note that OLS has a property similar to the LASSO: if the
linear approximation error is small enough, then the estimators ‖θOLSi ‖ of the redundant
variables xi will be less than the estimators of relevant variables with high probability. So
we choose a threshold r, and classify the variable xi as “relevant” if

∣∣θOLSi

∣∣ ≥ r, otherwise,
we classify it as “redundant”. Proposition 18 shows the theoretical guarantee for the OLS
estimator in a single bin.

Proposition 18 (Variable Selection of OLS) Suppose h ≤ b3 and Assumptions 1, 2,
3, 4, 5, and part one of Assumption 6 hold. For a given bin Bj of side length h, choosing
the threshold r = b2h

2 and selecting Ĵj = {i :
∣∣θOLSi

∣∣ ≥ r} for θOLS in (29), we have

P
(
Ĵj = J

)
≥ 1− pj , (30)

where pj := b0 exp(−b1njh4) and

b0 = 2(dx + 1), b1 = min

{
1

σ2
,

µm
6(4 + dx)

}
, b2 =

4
√

3(4
√

2Ldx + 1)
√
µm

, b3 =

√
µmC

8
√

3(4
√

2Ldx + 1)
.

The OLS estimator has two theoretical advantages over LASSO. First, part two of
Assumption 6, which is imposed to make sure the variable selection consistency of LASSO,
is not required for the OLS estimator. Second, if the number of relevant variables, namely
d∗x, is known in advance, there’s no need to choose the threshold r. Instead, we can just
rank the coefficients

∣∣θOLSi

∣∣ and select the largest d∗x variables as Ĵj . The intuition shows
in Corollary 19.

Corollary 19 (Known d∗x) If d∗x is known, we rank
∣∣θOLSi

∣∣ and seelct the largest d∗x vari-

ables as Ĵj. Under Assumptions 1, 2, 3, 4, 5, part one of Assumption 6, and h ≤ b3, we
have

P
(
Ĵj = J

)
≥ 1− pj , (31)

where pj := b0 exp(−b1njh2) and

b0 = 2(dx + 1), b1 = min

{
µmC

2

768σ2
,

µm
6(4 + dx)

}
, b3 =

C
√
µm

64
√

6Ldx
.

Note that the pj in (31) has a milder dependence on h (exp(−h2)) than that in Proposition
18 (exp(−h4)). Recall that the linear coefficients in (14) are scaled by h: θ∗i = O(Ch) for
i ∈ J and θ∗i = 0 for i ∈ Jc. When d∗x is known, the method in Corollay 19 can be viewed
as choosing the threshold r = O(Ch) in Proposition 18, which will give pj = O(exp(−h2))
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. But in the setting of Proposition 18, we don’t know the value of C. So we choose the
threshold r = O(h2) to make sure it shrinks faster than θ∗i for i ∈ J .

Despite the theoretical property, OLS has a numerical issue: when h is small, some bins
may include a very small number of observations, even less than dx. For numerical stability,
we use LASSO in the numerical experiments.

Remark 10 (Ridge Regression) Ridge regression can also be used for variable selection
in a local area. It replaces the `1-norm term in (6) by its `2-norm. But as ridge regression
does not create sparsity in estimates, directly applying it will not give the selected variables.
A threshold has to be chosen to separate the variables as in OLS. Thus, to apply it, the deci-
sion maker has to carefully choose two hyper-parameters (the threshold and the `2 penalty).
For this reason, we do not recommend using ridge regression.

8.3 Extension to Linear Bandits

In this section, we apply BV-LASSO to a parametric setting where the reward is a linear
function of the covariate. This is referred to as “linear bandits” in the literature. We demon-
strate how to combine the variable selection with algorithms designed for linear bandits such
as Goldenshluger and Zeevi (2013); Bastani and Bayati (2020) to attain near-optimal regret.

Following the work of sparse linear bandits (Bastani and Bayati, 2020; Wang et al.,
2018), we consider discrete arms (decisions) k ∈ [K] instead of a continuous decision. The
mean reward function has a linear form:10

f(x, k) = xTθk, (32)

where θk is the unknown parameter associated with arm k. After assuming f is linear in
x, the Assumption 2, 4, 4’, 5 are automatically satisfied. Assumption 3 becomes:

Assumption 7 (Sparse Parameter) There exists d∗x ≤ dx such that ‖θk‖0 ≤ d∗x for all
k ∈ [K].

Note that the sparsity structure of θk may depend on the arm k. Assumption 7 assumes a
uniform upper bound for the number of relevant variables for all k. The next assumption
is imposed on the distribution of covariates, which is a milder version of Assumption 6’.

Assumption 8 (Regular Covariates for Linear Bandits) The covariance matrix Ψ :=
E[XXT ] satisfies

1. there exist constants λ, λ > 0, such that

λ ≤ λmin (Ψ) ≤ λmax (Ψ) ≤ λ,

where λmax and λmin represent the maximum and minimum eigenvalue of a matrix.

2. For any i ∈ J and j ∈ Jc, there exists a constant γ ∈ [0, 1), such that

(Ψ)ij ≤ γλ/d∗x.
10. For simplicity, we don’t consider the intercept, which could easily be incorporated using a constant term

in x.
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The first condition of Assumption 8 prevents singular covariate distributions. Simi-
lar conditions are imposed in linear bandits (Goldenshluger and Zeevi, 2013; Bastani and
Bayati, 2020). The second condition of Assumption 8 states that the pairwise correlation
between relevant and redundant variables cannot be too high. See more discussion of the
assumption in Appendix A.1.

Algorithm. The algorithm for the linear setting also adopts a two-phase approach. In
the variable selection phase, we try each arm for n periods, then use BV-LASSO to select
relevant variables. Note that there’s no need to partition the covariate space into bins since
function f is linear. In this case, BV-LASSO degenerates to the standard LASSO for vari-
able selection. In the online learning phase, we apply the existing algorithm (Goldenshluger
and Zeevi, 2013; Bastani and Bayati, 2020) for linear bandits on the selected variables.
Algorithm 3 demonstrates the complete algorithm combing the two phases, which we refer
to as “Linear BV-LASSO and Learning”.

Algorithm 3 Linear BV-LASSO and Learning

1: Input: T, dx, λ, λ, γ, C
′, σ

2: Tunable parameters: n, λ
3: for k = 1, 2, . . . ,K do
4: for t = (k − 1)n+ 1, (k − 1)n+ 2, . . . , (k − 1)n+ n do
5: Observe covariate Xt

6: Pull arm k
7: Observe Zt {colleting observations for arm k}
8: end for
9: Ĵk = supp

{
arg minθ0,θ

{
1
n

∑(k−1)n+n
t=(k−1)n+1

(
Zt − θ0 −XT

t θ
)2

+ 2λ‖θ‖1
}}
{applying

LASSO to θk}
10: end for
11: for t = nK + 1, nK + 2, . . . , T do
12: Apply linear bandits algorithm to the variables in Ĵ1, Ĵ2, . . . , ĴK
13: end for

Regret. The regret analysis is similar to Theorem 6. The variable selection phase incurs
regret O(Kn). After that, the sparsity of {θk}Kk=1 can be correctly identified with a high
probability. On the correctly identified {θk}Kk=1, the OLS bandit algorithm in Goldenshluger
and Zeevi (2013); Bastani and Bayati (2020) can achieve regret O((d∗x)3 log T ) under the
so-called margin condition and the arm optimality condition. For the exposition, we defer
the definition of the two conditions in Appendix G.5. For properly chosen n and λ, we have
the following result for the regret bound.

Theorem 20 (Regret for Linear Bandits) Suppose Assumption 1, 7, 8, the margin
condition and the arm optimality condition (Assumptions 9 and 10 in Appendix G.5) hold.

If T ≥ (K log T )/b′1, then taking n = (log T )/b′1 and λ = C′(1+3γ)λ

4(1+γ)
√
dx

, we have

Rπ(T ) = O
(
K
(
dx + (d∗x)3

)
log T +Kd2

x

)
,

where the constants b′1, C
′ are presented in Appendix G.5.
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Comparing with the regret bound O(Kd3
x log T ) of linear bandits without sparsity (Gold-

enshluger and Zeevi, 2013), Algorithm 3 improves it by reducing the growth rate on dx. How-
ever, the regret bound in Theorem 20 is worse than the bound O

(
K(d∗x)2(log T + log dx)2

)
or O(K(d∗x)2(d∗x + log dx) log T ) showed in sparse linear bandits (Bastani and Bayati, 2020;
Wang et al., 2018). That’s because we only use LASSO to select variables instead of fitting
the reward function directly as in Bastani and Bayati (2020); Wang et al. (2018), which
turns out to be less efficient. However, a benefit of our approach is that d∗x doesn’t have to
be known. In summary, although designed for the nonparametric setting, BV-LASSO can
be applied to the linear setting and achieves a regret bound that is slightly worse than the
specifically designed algorithms.

Remark 11 (Another Setting of Linear Bandits) We note that there’s another pop-
ular setting for linear bandits, where the K arms are represented by K different contexts
x(1),x(2), . . . ,x(K), and the reward functions share a single parameter θ (Auer, 2002; Chu
et al., 2011; Kim and Paik, 2019; Ren and Zhou, 2020). Algorithm 3 can be adjusted for
this setting. In the variable selection phase, only pulling one arm is enough to select relevant
variables, as the parameter θ is shared by all the arms. In the online learning phase, we
apply LinUCB (Chu et al., 2011) to the selected variables. We can prove that the adjusted
algorithm achieves regret O

(√
d∗xT + dx log T

)
, which improves the regret bound O(

√
dxT )

in the non-sparse setting (Auer, 2002; Chu et al., 2011). Again, our algorithm may not
outperform the approaches designed for the sparse setting, i.e., O(d∗x log dx

√
T ) (Kim and

Paik, 2019) or O(
√
d∗xT ) (Ren and Zhou, 2020).

Remark 12 (Relation to Batch Bandits) The Algorithm 3 adopts LASSO as a sub-
routine to select variables. Within the subroutine, an arm is pulled for enough periods
to collect data. It’s comparable to the batch-learning setting, where the decision rule in a
batch is fixed. Our subroutine can be directly applied to the existing batch-learning algorithm
(Ren and Zhou, 2020), where the first batch contains more periods than required. After the
first batch, the relevant variables can be successfully selected with a high probability. The
algorithm can then be run on the selected variables in the remaining batches.

9. Conclusions

In this paper, we study the online learning problem with a high-dimensional covariate. In
particular, we address the curse of dimensionality under sparsity as the regret in existing
algorithms scales exponentially in the covariate dimension dx. To our knowledge, it is the
first study that proposes a nonparametric variable selection algorithm that takes advantage
of the sparsity structure of the covariate. For online learning problems, our algorithm
achieves the same order of regret as if the sparsity structure is known in advance. The
BV-LASSO algorithm and its two recipes, localized LASSO and weighted voting, may be
of independent interest in other nonparametric settings.

We conclude by discussing a few limitations of our algorithm and potential future direc-
tions. First, we assume the sparsity structure remains identical for all decisions. One may
consider a setting where different decisions lead to different sparsity structures. Second, the
sparsity structure in this paper is assumed to be on the variables. It would be an interesting
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direction to extend the algorithm to the setting where the reward function can be repre-
sented by a low-dimensional linear subspace. Finally, our algorithm requires the knowledge
of several model parameters that are typically unknown and would ideally be optimized for
specific applications. An interesting research question is to develop data-driven methods to
select these parameters.
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Appendix A. Proofs and Discussions in Section 3

A.1 Discussion about Assumption 6

In this section, we discuss a weaker version of Assumption 6 and use the weaker version in
the proofs of Lemma 8, Lemma 9 and Proposition 4. Recall that U is X being normalized
with regard to a bin, introduced in (8).

Assumption 6’ (Regular Covariates) Given any hypercube B ⊂ X with side length h
such that P(X ∈ B) > 0 and the normalization (8), we assume that the distribution of X
satisfies:

1. The conditional covariance matrix Ψ := E[UUT |X ∈ B] satisfies

0 < λ ≤ λmin (Ψ) ≤ λmax (Ψ) ≤ λ

for some constants λ and λ, where λmax and λmin represent the maximum and mini-
mum eigenvalues of a matrix.

2. For any i ∈ J and j ∈ Jc, there exists a constant γ ∈ [0, 1), which may depend on h,
such that

(Ψ)ij ≤ γλ/d∗x.

We first give a simple example to show the generality of Assumption 6’. If X follows
an independent uniform distribution in X , then Ψ = 1

12Idx .11 It is easy to see that setting
λ = λ = 1

12 and γ = 0 satisfies the assumption.
The first condition of Assumption 6’ prevents singular covariate distributions. If the

covariates are linearly dependent (λ = 0), then the definition of relevant/redundant variables
is ambiguous, as one covariate can be represented by others. In other words, we need
sufficient variations in all the dimensions of X in order to estimate the partial derivatives.
Similar conditions are imposed in the LASSO literature (Bühlmann and Van De Geer, 2011;
Goldenshluger and Zeevi, 2013; Bastani and Bayati, 2020).

The second condition of Assumption 6’ states that the pairwise correlation between
relevant and redundant variables cannot be too high. It’s a sufficient condition for the well-
known “Strong Irrepresentable Condition” for LASSO proposed in (Zhao and Yu, 2006). It
prevents any redundant variable to be fully linearly represented by the relevant variables.
Note that condition two is hard to check in practice since d∗x is unknown. One alternative
is to replace d∗x by dx and make the assumption stronger: (Ψ)ij ≤ γλ/dx.

Next, we show that if the side length h is small enough, Assumption 6 implies Assump-
tion 6’.

Proposition A.1 If Assumption 6 is satisfied and the side length h < µ2
m/(3d

∗
xLµ), then

Assumption 6’ holds with λ = µm/12, λ = µM and γ = 3d∗xLµh/(2µ
2
m).

Proposition A.1 states that the first condition of Assumption 6’ can be implied by
Assumption 6 and the second condition holds automatically when h is sufficiently small, as
the requirement of γ diminishes linearly in h.

11. This is the main reason we consider U instead of X. The conditional covariance matrix of the normalized
covariate is invariant when h changes.
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Proof Let x0 be a vector in Rdx . To show the first condition of Assumption 6’ holds, by the
definition of eigenvalues, we only need to provide upper and lower bounds for xT0 Ψx0/‖x0‖2.
Note that ∫

x∈B
xT0U(x)U(x)Tx0µm dx ≤

∫
x∈B

xT0U(x)U(x)Tx0µ(x) dx

≤
∫
x∈B

xT0U(x)U(x)Tx0µM dx. (A.1)

Since U = (X − CB)/h, we have∫
x∈B

U(x)U(x)T dx =

(
1 0
0 1

12Idx

)
. (A.2)

Then, plugging equation (A.2) into (A.1), we have

µm
12
‖x0‖22 ≤ xT0 Ψx0 =

∫
x∈B

xT0U(x)U(x)Tx0µ(x) dx ≤ µM‖x0‖22.

Thus, the first condition of Assumption 6’ is satisfied by setting λ = µm
12 , λ = µM . To prove

the second condition, note that we have

µmh
dx = µm

∫
x∈B

dx ≤ P(X ∈ B) =

∫
x∈B

µ(x) dx ≤ µMhdx .

Then, for any i ∈ J and j ∈ Jc,

(Ψ)ij = E[Ui(X)Uj(X)|X ∈ B]

=
1

P(X ∈ B)

∫
x∈B

Ui(x)Uj(x)µ(x) dx

=
1

P(X ∈ B)

∫
x∈B

Ui(x)Uj(x) (µ(CB) + µ(x)− µ(CB)) dx

(a)
=

1

P(X ∈ B)

∫
x∈B

Ui(x)Uj(x) (µ(x)− µ(CB)) dx

≤ 1

P(X ∈ B)

∫
x∈B
|Ui(x)| |Uj(x)| |µ(x)− µ(CB)| dx

(b)

≤ 1

P(X ∈ B)

∫
x∈B

1

2
· 1

2
· 1

2
Lµh dx

=
Lµh

dx+1

8P(X ∈ B)

≤ Lµh

8µm
,

where (a) holds by (A.2) and (b) follows from |µ(x) − µ(CB)| ≤ Lµ‖x − CB‖∞ ≤ 1
2Lµh.

Thus, the second condition of Assumption 6’ is satisfied by choosing γ = 3d∗xLµh/(2µ
2
m),

and γ < 1 if h < 2µ2
m/(3d

∗
xLµ).
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A.2 Proof of Lemma 1

We first prove the first point of Lemma 1. For the simplicity of notation, we denote
∂f(x, y)/∂xi as f ′i(x, y). By Assumption 2, f(x, y) are continuously differentiable with
respect to x ∈ X , y ∈ Y. Then f ′i(x, y) is a continuous function for all i ∈ {1, 2, . . . , dx}.
Applying the generalized extreme value theorem 12, we have two constants

Mi = sup
x∈X ,y∈Y

f ′i(x, y), mi = inf
x∈X ,y∈Y

f ′i(x, y),

and there exist x1 ∈ X , y1 ∈ Y such that f ′i(x1, y1) = Mi and x2 ∈ X , y2 ∈ Y such that
f ′i(x2, y2) = mi. By Assumption 4, we know Mi,mi 6= 0 for i ∈ J . Then by Theorem
4.22 on page 93 of Rudin et al. (1964), f ′i(X ,Y) is a connected set. If Mi > 0 > mi,
then o ∈ f ′i(X ,Y) and there exist x3 ∈ X , y3 ∈ Y such that f ′i(x3, y3) = 0, which violates
Assumption 4. Thus, for i ∈ J , we have either Mi > mi > 0 or 0 > Mi > mi. Let
C = mini∈J{|mi|, |Mi|}, we have |f ′i(x, y)| ≥ C for all i ∈ J,x ∈ X and y ∈ Y. Thus, we
prove the existence of C satisfying (2).

Next, we prove the second point in Lemma 1. Since we fix x(i) in X , applying the
generalized extreme value theorem, we have the constants

Mi = sup
y∈Y

f ′i(x(i), y), mi = inf
y∈Y

f ′i(x(i), y).

Let D = mini∈J{|mi|, |Mi|}, like the previous argument, we have |f ′i(x(i), y)| ≥ D for all
i ∈ J and y ∈ Y.

Furthermore, if f is twice-differentiable with respect to x, we will prove that the hy-
percube Hi with side length h = D/(2L) and centred at x(i) satisfies (3). We omit the
argument y when writing f(x, y) as we prove the result for any fixed y. For any x ∈ Hi, we
write x = x(i)+l where l ∈ Rdx and ‖l‖∞ ≤ h/2. Define a function ψ(t) = ∇f(x(i)+tl). As
assumed in Assumption 5, f is twice-differentiable, thus ψ(t) is continuously differentiable.
We have ψ(t) = ψ(0) +

∫ 1
0 ψ
′(t) dt, i.e.,

∇f(x(i) + l) = ∇f(x(i)) +

∫ 1

0
∇2f(x(i) + tl)l dt.

Then moving ∇f(x(i)) to the left-hand-side, and taking infinity norm, we have

∥∥∇f(x(i) + l)−∇f(x(i))
∥∥
∞ =

∥∥∥∥∫ 1

0
∇2f(x(i) + tl)l dt

∥∥∥∥
∞
. (A.3)

According to the definition of infinity norm, for a matrix A, we have

‖A‖∞ = max
x6=0

‖Ax‖∞
‖x‖∞

, and ‖Ax‖∞ ≤ ‖A‖∞‖x‖∞.

Thus, we have ∥∥∇2f(x(i) + tl)l
∥∥
∞ ≤

∥∥∇2f(x(i) + tl)
∥∥
∞ ‖l‖∞ ≤ Lh, (A.4)

12. See Theorem 4.16 on page 89 of Rudin et al. (1964)
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where the last inequality holds by
∥∥∇2f(x(i) + tl)

∥∥
∞ ≤ 2L (Assumption 5) and ‖l‖∞ ≤ h/2.

By (A.3) and (A.4), we have∥∥∇f(x(i) + l)−∇f(x(i))
∥∥
∞ ≤

∫ 1

0

∥∥∇2f(x(i) + tl)l
∥∥
∞ dt ≤

∫ 1

0
Lhdt = Lh = D/2, (A.5)

where the last equality follows from h = D/(2L). We rewrite (A.5) in the form of partial
derivatives: ∣∣∣∂f(x)

∂xi
−
∂f(x(i))

∂xi

∣∣∣ ≤ D/2, ∀i ∈ J,x ∈ Hi. (A.6)

By the previous argument, we have∣∣∣∂f(x(i))

∂xi

∣∣∣ > D, ∀i ∈ J. (A.7)

Combining (A.6) and (A.7), we have∣∣∣∂f(x)

∂xi

∣∣∣ > D/2, ∀i ∈ J,x ∈ Hi.

Finally, let C = D/2, we prove the existence of C and Hi satisfying (3). �

Appendix B. Proofs for Localized LASSO

B.1 Proof of Lemma 3

We first prove the first point of Lemma 3. Without loss of generality, we set the geometric
centre in bin B as zero. Moreover, we omit the argument y when writing f(x, y) as y is
fixed in the proof. In other words, we consider x ∈ B = [−h

2 ,
h
2 ]dx and we have∫

x∈B
xi dx = 0 ∀i ∈ {1, 2, . . . , dx}. (B.8)

For i ∈ J and C > 0, if ∂f(x)
∂xi
≥ C, then

f(x1, . . . , xdx)=

∫ xi

−h/2

∂f(x1, . . . , xi−1, z, xi+1, . . . , xdx)

∂z
dz+f(x1, . . . , xi−1,−

h

2
, xi+1, . . . , xdx)

≥ C · (xi +
h

2
) + f(x1, . . . , xi−1,−

h

2
, xi+1, . . . , xdx), (B.9)

where the first equality holds by the differentiability of f (Assumption 2). By the definition
of θi, we have

θi =

∫
x∈B[f(x1, . . . , xdx)− θ0]xi dx∫

x∈B x
2
i dx

(a)

≥
∫
x∈B(Cx2

i + hCxi/2 + f(x1, . . . , xi−1,−h/2, xi+1, . . . , xdx)xi − θ0xi) dx∫
x∈B x

2
i dx

(b)
=

∫
x∈B Cx

2
i dx∫

x∈B x
2
i dx

= C.
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Nonparametric sparse contextual learning

where (a) follows from (B.9) and (b) holds by (B.8). Following the previous argument, we

have θi ≤ −C if ∂f(x)
∂xi
≤ −C.

If i /∈ J , according to Assumption 3, we have

θi =

∫
x∈B[f(x1, . . . , xdx)− θ0]xi dx∫

x∈B x
2
i dx

=

∫
[−h/2,h/2]d

∗
x (g(x1, . . . , xd∗x)− θ0) dx1 . . . dxd∗x

∫
[−h/2,h/2]dx−d∗x xi dxd∗x+1 . . . dxdx∫

x∈B x
2
i dx1 . . . dxdx

= 0.

In the second equation, we put relevant variables in the first d∗x dimensions and redundant
variables in the remaining dx − d∗x dimensions. The last equality follows from∫

[−h/2,h/2]dx−d∗x xi dxd∗x+1 . . . dxdx = 0 for i /∈ J .

Next, we prove the second point of Lemma 3. Let P (x) = θ0 +
∑dx

i=1 θixi and Q(x) =
f(x)− P (x). We will prove |Q(x)| ≤ (2

√
3 + 1)Ldxh

2 in the following three steps.
First, we claim that there must be a point x0 ∈ B such that f(x0) = P (x0). From the

definition of θ0 (7), we know
∫
x∈B Q(x) dx =

∫
x∈B f(x) dx− θ0 = 0. Also, because Q(x) is

a continuous function from B to R, there must exist a point x0 ∈ B such that Q(x0) = 0.
Second, we approximate Q(x) by the Taylor series expansion at point x0,

|Q(x)−Q(x0)−∇Q(x0)T (x− x0)| ≤ 1

2
‖∇2Q(x0)‖∞‖x− x0‖2∞.

By Q(x0) = 0,∇Q(x0) = ∇f(x0)− θ, ∇2Q(x) = ∇2f(x) and Assumption 5, we have

|f(x)− P (x)− (∇f(x0)− θ)T (x− x0)| ≤ L‖x− x0‖2∞. (B.10)

Third, we provide an upper bound for ‖∇f(x0) − θ‖∞. Recalling the definition of θi
(7), we have

∂f(x)

∂xi

∣∣∣
x=x0

− θi

=

(∫
x∈B

x2
i dx

)−1 ∫
x∈B

∂f(x)

∂xi

∣∣∣∣
x=x0

x2
i dx−

(∫
x∈B

x2
i dx

)−1 ∫
x∈B

(f(x)− θ0)xi dx

=

(∫
x∈B

x2
i dx

)−1 ∫
x∈B

∂f(x)

∂xi

∣∣∣∣
x=x0

x2
i − (f(x)− θ0)xi dx

(a)
=

(∫
x∈B

x2
i dx

)−1 ∫
x∈B

∂f(x)

∂xi

∣∣∣∣
x=x0

x2
i − f(x)xi dx

(b)
=

(∫
x∈B

x2
i dx

)−1 ∫
x∈B

(∫ xi

−h/2

∂f(x)

∂xi

∣∣∣∣
x=x0

− ∂f(x1, . . . , xi−1, z, xi+1, . . . , xdx)

∂z
dz

)
xi dx,

(B.11)

where (a) follows from (B.8) and (b) follows from writing f(x) as the integration of xi’s
partial derivative and (B.8). Then, by the Cauthy-Schwarz inequality, we have (B.11)

≤
(∫

x∈B
x2
i dx

)−1/2
∫

x∈B

(∫ xi

−h/2

∂f(x)

∂xi

∣∣∣∣
x=x0

− ∂f(x1, . . . , xi−1, z, xi+1, . . . , xdx)

∂z
dz

)2

dx

1/2

.
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According to Assumption 5 and following the same argument for (A.5), we have ‖∇f(x0)−
∇f(x)‖∞ ≤ 2Lh. Then, thus∣∣∣∣∣∂f(x)

∂xi

∣∣∣∣
x=x0

− ∂f(x1, . . . , xi−1, z, xi+1, . . . , xdx)

∂z

∣∣∣∣∣ = |(∇f(x0))i − (∇f(x))i| ≤ 2Lh.

(B.12)
By (B.11), (B.12) and xi ≤ h/2, we have

∂f(x)

∂xi

∣∣∣∣
x=x0

− θi ≤
(∫

x∈B
x2
i dx

)−1/2
∫

x∈B

(∫ xi

−h/2
2Lhdz

)2

dx

1/2

≤
(∫

x∈B
x2
i dx

)−1/2(∫
x∈B

4L2h4 dx

)1/2

=

(
48L2hdx+4

hdx+2

)1/2

= 4
√

3Lh

Taking maximum of all i ∈ {1, 2, . . . , dx}, we have

‖∇f(x0)− θ‖∞ ≤ 4
√

3Lh.

Plugging it into (B.10), we have

|f(x)− P (x)| ≤ L‖x− x0‖2∞ + |(∇f(x0)− θ)T (x− x0)|
≤ L‖x− x0‖2∞ + ‖∇f(x0)− θ‖∞‖x− x0‖1
≤ Lh2 + 4

√
3Ldxh

2

≤ (4
√

3 + 1)Ldxh
2.

Hence, we complete the proof of Lemma 3. �

B.2 Proof of Proposition 4

Note that before applying localized LASSO in bin Bj , we observe the covariates {Xt}
nj

t=1

falling into bin Bj . So we define the event

Ω0 = {X1 ∈ Bj , . . . ,Xnj ∈ Bj}.

All the probabilities in the proof is conditional on the event Ω0. By Lemma 3, we know
θ∗ in (7) maintains the sparsity structure of f , i.e.,

J = {i ∈ {1, 2, . . . , dx} : θ∗i 6= 0} .

As in (9), the variable set selected by LASSO is

Ĵj = {i ∈ {1, 2, . . . , dx} : θ̂i 6= 0},
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Nonparametric sparse contextual learning

where θ̂ is the LASSO estimator. If θ̂i has the same sign with θ∗i for all i ∈ {1, 2, . . . , dx},
then we have J = Ĵj . That’s to say, the event {J = Ĵj |Ω0} contains the event {−−→sign(θ̂) =
−−→
sign(θ∗)|Ω0}. Mathematically,

P
(
J = Ĵj |Ω0

)
≥ P

(−−→
sign(θ̂) =

−−→
sign(θ∗)|Ω0

)
(B.13)

By Lemma 8, we know the event {−−→sign(θ̂) =
−−→
sign(θ∗)|Ω0} contains the event {∩4

i=1Ωi|Ω0}.
Thus, we have

P
(−−→

sign(θ̂) =
−−→
sign(θ∗)|Ω0

)
≥ P

(
∩4
i=1Ωi|Ω0

)
. (B.14)

By Lemma 9, we have

P
(
∩4
i=1Ωi|Ω0

)
≥ 1− b0 exp(b1njh

4). (B.15)

Therefore, by (B.13), (B.14) and (B.15), we have

P
(
J = Ĵj |Ω0

)
≥ 1− b0 exp(b1njh

4).

Hence, we complete the proof of Proposition 4. �

B.3 Proof of Lemma 8

Using the notation in Section 5.1, the LASSO estimator (9) can be formulated as

Θ̂ = arg min
θ∈Rdx+1

‖Z −Aθ‖22 + 2λ‖θ‖1. (B.16)

Note that Θ̂ can be a set. By (16), we know that θ ∈ Θ̂ if and only if it satisfies AT(1) (Z −Aθ) = λ
−−→
sign

(
θ(1)

)∣∣∣AT(2) (Z −Aθ)
∣∣∣ � λe (B.17)

where the notation | · | takes the absolute value of every entry, � conducts entry-wise
comparison and e denotes the unit vector in Rdx−d∗x .

We will first prove that on the event Ω1, the LASSO estimator Θ̂ is unique, thus denoted
as θ̂. Let φ(θ) := ‖Z − Aθ‖22 + 2λ‖θ‖1 be the objective function in (B.16). Taking the
second-order derivative, we have φ′′(θ) = 2ATA = 2Ψ̂. Under event Ω1, Ψ̂ is positive
definite, implying that φ(θ) is strongly convex with respect to θ. Therefore, the solution to
(B.16) exists and is unique.

Next, we will prove on the event Ω1 ∩ Ω2 ∩ Ω3 ∩ Ω4, there exists θ ∈ Rdx+1 satisfying−−→
sign

(
θ
)

=
−−→
sign

(
θ∗
)

and θ ∈ Θ̂. Thus, by the uniqueness of the LASSO estimator, we have
−−→
sign

(
θ̂
)

=
−−→
sign

(
θ∗
)
. The proof mainly follows the line of Proposition 1 in Zhao and Yu

(2006). But the notations and details are somewhat different. So we write down the whole
proof.

Let θ(1) ∈ Rd∗x+1 and θ(2) ∈ Rdx−d∗x such that

θ(1) = θ∗(1) + Ψ̂−1
11 A

T
(1)ρ− λΨ̂−1

11

−−→
sign

(
θ∗(1)

)
, θ(2) = θ∗(2) = 0 (B.18)
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Then, on the event Ω3, we have∣∣∣θ(1) − θ∗(1)

∣∣∣ =
∣∣∣Ψ̂−1

11 A
T
(1)ρ− λΨ̂−1

11

−−→
sign

(
θ∗(1)

)∣∣∣ � ∣∣∣θ∗(1)

∣∣∣
The above inequality implies that

−−→
sign

(
θ(1)

)
=
−−→
sign

(
θ∗(1)

)
. Moreover, multiplying both

sides of (B.18) by Ψ̂11, we have

Ψ̂11

(
θ∗(1) − θ(1)

)
+AT(1)ρ = λ

−−→
sign

(
θ∗(1)

)
= λ
−−→
sign

(
θ(1)

)
. (B.19)

Similarly, multiplying both sides of (B.18) by Ψ̂21 yields∣∣∣Ψ̂21

(
θ∗(1) − θ(1)

)
+AT(2)ρ

∣∣∣ =
∣∣∣λΨ̂21Ψ̂−1

11

−−→
sign

(
θ(1)

)
− Ψ̂21Ψ̂−1

11 A
T
(1)ρ+AT(2)ρ

∣∣∣
≤
∣∣∣λΨ̂21Ψ̂−1

11

−−→
sign

(
θ(1)

)∣∣∣+
∣∣∣Ψ̂21Ψ̂−1

11 A
T
(1)ρ−A

T
(2)ρ

∣∣∣ (B.20)

On the event Ω4, the second term in (B.20),
∣∣∣Ψ̂21Ψ̂−1

11 A
T
(1)ρ−A

T
(2)ρ

∣∣∣ � 1
2(1 − γ)λe. On

event Ω1 ∩ Ω2, we show an upper bound for the first term in (B.20)∣∣∣∣(Ψ̂21Ψ̂−1
11

−−→
sign

(
θ(1)

))
j

∣∣∣∣ =

∣∣∣∣∣∣
d∗x∑
k=0

(Ψ̂21)jk

(
Ψ̂−1

11

−−→
sign(θ(1))

)
k

∣∣∣∣∣∣
(a)

≤

 d∗x∑
k=0

(Ψ̂21)2
jk

1/2 ∥∥∥Ψ̂−1
11

−−→
sign(θ(1))

∥∥∥
2

(b)

≤
√
d∗x(1 + δ)γλ/d∗x‖Ψ̂−1

11 ‖2‖
−−→
sign(θ(1))‖2

(c)

≤
√
d∗x(1 + δ)γλ/d∗x ·

√
d∗x

(1− α)λ

=
(1 + δ)γ

1− α
=

1

2
(1 + γ),

where (a) follows from the Cauthy-Schwarz inequality, (b) follows from the definition of Ω2

as well as the matrix inequality ‖AB‖2 ≤ ‖A‖2‖B‖2 and (c) is due to ‖A‖2 ≤ λmax(A) for
square matrices. Combining the two terms in (B.20), we have∣∣∣Ψ̂21

(
θ∗(1) − θ(1)

)
+AT(2)ρ

∣∣∣ � 1

2
(1− γ)λe+

1

2
(1 + γ)λe = λe. (B.21)

By (B.19), (B.21) and θ(2) = θ∗(2) = 0, we have Ψ̂11

(
θ∗(1) − θ(1)

)
+ Ψ̂12

(
θ∗(2) − θ(2)

)
+AT(1)ρ = λ

−−→
sign

(
θ(1)

)∣∣∣Ψ̂21

(
θ∗(1) − θ(1)

)
+ Ψ̂22

(
θ∗(2) − θ(2)

)
+AT(2)ρ

∣∣∣ � λe (B.22)

Notice that (B.17) is equivalent to (B.22) by Z = Aθ∗ + ρ. Therefore, we have found θ
having the same signs with θ∗ and satisfying (B.17). Further by the uniqueness of the

LASSO estimator, we have θ = θ̂ and
−−→
sign

(
θ̂
)

=
−−→
sign

(
θ∗
)
. Hence, we have proved that

on the event Ω1 ∩ Ω2 ∩ Ω3 ∩ Ω4, the LASSO estimator has the same signs with the linear
approximation. �
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B.4 Proof of Lemma 9

In this proof, we will show that Ω1 ∩Ω2 ∩Ω3 ∩Ω4 occurs with a high probability. First, we
adopt matrix concentration inequalities to give a lower bound for P(Ω1). Recalling that Ψ̂
is the empirical estimate of the conditional covariance matrix Ψ in Assumption 6’. For any
constant α ∈ (0, 1), we have

P
(
λmin(Ψ̂) ≤ (1− α)λ

)
≤ P

(
λmin(Ψ̂) ≤ (1− α)λmin(Ψ)

)
≤ (dx + 1)

(
e−α

(1− α)(1−α)

)nλmin(Ψ)/(1+dx/4)

≤ (dx + 1)

(
e−α

(1− α)(1−α)

)nλ/(1+dx/4)

. (B.23)

The first and last inequalities follow from λ ≤ λmin(Ψ̂). The second inequality follows from
Theorem 5.1.1 in Tropp et al. (2015):

Theorem B.1 (Theorem 5.1.1 in Tropp et al. (2015)) Consider a finite sequence of
i.i.d. random Hermitian matrices Mt ∈ R(dx+1)×(dx+1). Assume that

0 ≤ λmin(MtM
T
t ) and λmax(MtM

T
t ) ≤ λM , ∀ t ∈ {1, 2, . . . , n},

and

Ψ = E[MtM
T
t ], Ψ̂ =

1

n

n∑
t=1

MtM
T
t .

Then, we have

P
(
λmin(Ψ̂) ≤ (1− α)λmin(Ψ)

)
≤ (dx + 1)

(
e−α

(1− α)(1−α)

)nλmin(Ψ)/λM

∀α ∈ [0, 1),

P
(
λmax(Ψ̂) ≥ (1 + α)λmax(Ψ)

)
≤ (dx + 1)

(
eα

(1 + α)(1+α)

)nλmax(Ψ)/λM

∀α ≥ 0.

Here, to apply Theorem B.1, we let Mt = Ūt and show an upper bound for λmax(ŪtŪ
T
t ).

Recalling that Ūt is the normalized covariates, the absolute of each entry is less than 1/2
except for the first entry, which is 1. So the `2-norm ‖Ūt‖22 is less than (1 + dx/4). By the
Cauchy-Schwartz inequality, we have

uT ŪtŪ
T
t u =

(
uT Ūt

)2 ≤ ‖u‖22‖Ūt‖22 ≤ (1 + dx/4)‖u‖22

for any u ∈ Rdx+1. Further, considering the characterization of eigenvalues, for a symmetric
matrix A, its largest eigenvalue satisfies

λmax(A) = sup
u

uTAu

‖u‖22
. (B.24)

As a result,

λmax(ŪtŪ
T
t ) = sup

u

uT ŪtŪ
T
t u

‖u‖22
≤ (1 + dx/4).
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So we set the constant λM = 1 + dx/4 in the above theorem. In this way, we obtain the
second inequality of (B.23). Moreover, we have

0 <
e−α

(1− α)(1−α)
≤ e−α2/2 < 1, for α ∈ (0, 1). (B.25)

Similarly, using Theorem B.1, we have an probability bound for λmax(Ψ̂):

P
(
λmax(Ψ̂) ≥ (1 + α)λ

)
≤ P

(
λmax(Ψ̂) ≥ (1 + α)λmax(Ψ)

)
≤ (dx + 1)

(
eα

(1 + α)(1+α)

)nλmax(Ψ)/(1+dx/4)

≤ (dx + 1)

(
eα

(1 + α)(1+α)

)nλ/(1+dx/4)

, (B.26)

and

0 <
eα

(1 + α)(1+α)
< 1, for α ∈ (0, 1). (B.27)

Recall the definition of Ω1, choosing the constant α = 1−γ
2(1+γ) and by (B.23), (B.26), we have

P(Ω1) = P
({

(1− α)λ ≥ λmin(Ψ̂)
}
∪
{
λmax(Ψ̂) ≤ (1 + α)λ

})
≥ 1− P

(
λmin(Ψ̂) ≤ (1− α)λ

)
− P

(
λmax(Ψ̂) ≥ (1 + α)λ

)
≥ 1− 2(dx + 1) exp(−c1n), (B.28)

where

c1(λ, γ, dx)

=
λ

(1 + dx/4)
min

{
− log

(
e−α

(1− α)(1−α)

)
,− log

(
eα

(1 + α)(1+α)

)}
=

λ

(1 + dx/4)
min {α+ (1−α) log(1− α),−α+ (1 + α) log(1 + α)}

=
λ

2(1 + γ)(1 + dx/4)
min

{
1− γ + (3γ + 1) log

(
3γ + 1

2 + 2γ

)
, γ−1 + (3 + γ) log

(
3 + γ

2 + 2γ

)}
.

By (B.25) and (B.27), we have c1 > 0 as γ ∈ [0, 1).
Next, we show the event Ω2 happens with high probability. Recalling

(Ψ̂21)ik =
1

n

n∑
j=1

(Uj)i(Uj)k,

Hoeffding’s inequality13 implies that

P
(∣∣∣(Ψ̂21)ik − (Ψ21)ik

∣∣∣ ≥ δγλ/d∗x) ≤ 2 exp(−2nδ2γ2λ2/(d∗x)2).

13. See Theorem 2.2.6 on page 18 of Vershynin (2018).
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According to Assumption 6’, |(Ψ21)ik| ≤ γλ/d∗x. Thus, we have

P
(∣∣∣(Ψ̂21)ik

∣∣∣ ≥ (1 + δ)γλ/d∗x

)
≤ 2 exp(−2nδ2γ2λ2/(d∗x)2).

Taking the union bound over i ∈ J and k ∈ Jc

P(Ω2) ≥ 1− 2d∗x(dx − d∗x) exp(−c3n), (B.29)

where
c3(γ, λ, d∗x) = 2δ2γ2λ2/(d∗x)2 = (1− γ)2λ2/(8(d∗x)2).

Next, we show an upper bound for the approximation error of the linear projection. We
define the vector

∆ :=
1√
n

(
∆1, . . . ,∆n

)
.

Then by Lemma 3, we have

‖∆‖22 =
1

n

n∑
t=1

(
f(Xt)− ŪT

t θ
∗)2 ≤ 64L2d2

xh
4. (B.30)

So far, we have provided a lower bound for the probability of the event Ω1 ∩ Ω2. It
then suffices to bound the probabilities P(Ωc

3 ∩ Ω1 ∩ Ω2) and P(Ωc
4 ∩ Ω1 ∩ Ω2). Recall the

definition of event Ω4, the term Ψ̂21Ψ̂−1
11 A

T
(1)ρ−A

T
(2)ρ =

(
Ψ̂21Ψ̂−1

11 A
T
(1) −A

T
(2)

)(
∆ + 1√

n
ε
)

is a linear combination of approximation errors ∆ and sub-Gaussian noises ε. Denote

G := Ψ̂21Ψ̂−1
11 A

T
(1) −A

T
(2) = (gjk)d∗x+1≤j≤dx;1≤k≤n, (B.31)

then we have

Ω4 =

{∣∣∣∣G(∆ +
1√
n
ε

)∣∣∣∣ � 1

2
(1− γ)λe

}
.

We want to bound the probability of Ωc
4

Ωc
4 =

dx⋃
j=d∗x+1

{(∣∣∣∣G(∆ +
1√
n
ε

)∣∣∣∣)
j

≥ 1

2
(1− γ)λ

}

⊂
dx⋃

j=d∗x+1

{(∣∣∣∣ 1√
n
Gε

∣∣∣∣)
j

≥ 1

2
(1− γ)λ− (|G∆|)j

}
. (B.32)

Note that by (15) and (B.31), we have

GGT =
(

Ψ̂21Ψ̂−1
11 A

T
(1) −A

T
(2)

)(
A(1)Ψ̂

−1
11 Ψ̂12 −A(2)

)
(by Ψ̂12 = Ψ̂T

21)

= Ψ̂21Ψ̂−1
11 Ψ̂12 − Ψ̂21Ψ̂−1

11 A
T
(1)A(2) −AT(2)A(1)Ψ̂

−1
11 Ψ̂12 +AT(2)A(2) (by Ψ̂−1

11 = AT(1)A(1))

= −AT(2)A(1)Ψ̂11A
T
(1)A(2) +AT(2)A(2) (by Ψ̂12 = AT(1)A(2))

= AT(2)

(
I −A(1)Ψ̂

−1
11 A

T
(1)

)
A(2)

= AT(2)BA(2) (B.33)
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where B := I −A(1)Ψ̂
−1
11 A

T
(1). Notice that B is symmetric and

B2 = I − 2A(1)Ψ̂
−1
11 A

T
(1) +A(1)Ψ̂

−1
11 A

T
(1)A(1)Ψ̂

−1
11 A

T
(1) =

(
I −A(1)Ψ̂

−1
11 A

T
(1)

)
= B.

So B is an idempotent matrix whose eigenvalues are either 0 or 1 (Horn and Johnson, 1990).
Since GGT is a symmetric matrix, using (B.24), we derive an upper bound for λmax(GGT ),

uTGGTu = (A(2)u)TB(A(2)u) (by (B.33))

≤ λmax(B)‖A(2)u‖22 (by (B.24))

= λmax(B)(uT Ψ̂22u)2 (by Ψ̂22 = AT(2)A(2))

≤ λmax(B)λmax(Ψ̂22)‖u‖22 (by (B.24))

≤ λmax(Ψ̂22)‖u‖22 (by λmax(B) ≤ 1) (B.34)

Moreover, on the event Ω1, the eigenvalue of Ψ̂22 = AT(2)A(2) are smaller than (1 + α)λ.

Therefore, (B.34) implies the eigenvalues of GGT are less than (1 +α)λ. This implies that

n∑
k=1

g2
jk = (GGT )jj = eTj GG

Tej ≤ λmax(GGT )‖ej‖22 ≤ (1 + α)λ, (B.35)

for all j ∈ {d∗x + 1, d∗x + 2, . . . , dx}, where ej is the j-th standard basis. Thus, we have

(|G∆|)j =

∣∣∣∣∣
n∑
k=1

gjk∆k

∣∣∣∣∣ ≤
(

n∑
k=1

g2
jk

)1/2

‖∆‖2 ≤
√

(1 + α)λ‖∆‖2. (B.36)

By (B.30), we have ‖∆‖2 ≤ 8Ldxh
2, and so

max
{j=d∗x+1,...,dx}

(|G∆|)j ≤ 8

√
(1 + α)λLdxh

2. (B.37)

Recalling that we choose

λ = 32 ·

√
(3 + γ)λ

(1 + γ)(1− γ)2
Ldxh

2 (B.38)

in Proposition 4, by (B.37), we have

1

2
(1− γ)λ− (|G∆|)j ≥

1

4
(1− γ)λ.

Thus, plugging it into (B.32), we have

Ωc
4 ∩ Ω1 ⊂


dx⋃

j=d∗x+1

{(∣∣∣∣ 1√
n
Gε

∣∣∣∣)
j

≥ 1

4
(1− γ)λ

}⋂Ω1

=


dx⋃

j=d∗x+1

Dj

⋂Ω1. (B.39)
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where Dj :=
(∣∣∣ 1√

n
Gε
∣∣∣)
j
> 1

4(1 − γ)λ. Define the realization of normalized covariates as

Un :=
{
Ū1, Ū2, . . . , Ūn

}
. It provides the full information for the empirical covariance matrix

Ψ̂ and whether Ω1 happens. Note that the covariates and noise are independent, so(
1√
n
Gε

)
j

=

√
1

n

n∑
k=1

gjkεk,

it’s a mean-zero
√

1
n

∑n
k=1 g

2
jkσ sub-Gaussian random variable conditional on Un. So we

have

P(Ωc
4 ∩ Ω1) = E

[
E
[
I(Ωc

4 ∩ Ω1)
∣∣Un]] (by the tower rule)

≤ E
[
E
[
I ({∪jDj})

∣∣Un] · I(Ω1)
]

(by (B.39))

≤ E

E
 dx∑
j=d∗x+1

I (Dj)
∣∣∣Un
 · I(Ω1)

 (by the union bound)

≤
dx∑

j=d∗x+1

E

[
P

((∣∣∣∣ 1√
n
Gε

∣∣∣∣)
j

>
1

4
(1− γ)λ

∣∣∣ Un) I(Ω1)

]

≤
dx∑

j=d∗x+1

E
[
2 exp

(
− (1− γ)2λ2n

32
∑n

k=1 g
2
ikσ

2

)
I(Ω1)

]
(sub-Gaussian)

≤
dx∑

j=d∗x+1

2 exp

(
− (1− γ)2λ2n

32(1 + α)λσ2

)
P(Ω1) (B.40)

where the last inequality follows from (B.35) on the event Ω1. Plugging in the value of
λ (B.38), we have that (B.40) is upper bounded by 2(dx − d∗x) exp

(
−c5nh

4
)
P(Ω1), where

c5 = 64L2d2
x/σ

2.

Similarly, we study event Ω3. The term Ψ̂−1
11 A

T
(1)ρ = Ψ̂−1

11 A
T
(1)

(
∆ + 1√

n
ε
)

is also a linear

combination of approximation errors and sub-Gaussian noises. Denote

H := Ψ̂−1
11 A

T
(1) = (hjk)0≤j≤d∗x;1≤k≤n. (B.41)

We have

Ωc
3 =

d∗x⋃
j=0

{∣∣∣∣∣λ(Ψ̂−1
11

−−→
sign (θ∗1)

)
j
−
(
H

(
∆ +

1√
n
ε

))
j

∣∣∣∣∣ > (∣∣∣θ∗(1)

∣∣∣)
j

}
(B.42)

⊂
d∗x⋃
j=0

{(∣∣∣∣ 1√
n
Hε

∣∣∣∣)
j

>
(∣∣∣θ∗(1)

∣∣∣)
j
− (|H∆|)j − λ

(∣∣∣Ψ̂−1
11

−−→
sign (θ∗1)

∣∣∣)
j

}
. (B.43)

Recall that
(
θ∗(1)

)
j

is the coefficient of j-th relevant variable scaled by h. According to

Lemma 3, its absolute value is greater than Ch.14 Next we analyze the second term of the
right-hand side of (B.43).

14. Without loss of generality, we assume |θ0| ≥ Ch, since it doesn’t matter whether 0 ∈ J or not.

49



Li, Chen and Hong

Note that by (B.41) and (15) we have HHT = Ψ̂−1
11 . On the event Ω1, the eigenvalues

of Ψ̂−1
11 are smaller than 1/ ((1− α)λ). Similar to (B.35), we have

n∑
k=1

h2
jk ≤ λmax(Ψ̂−1

11 ) ≤ 1

(1− α)λ
. (B.44)

Thus, for j ∈ {0, 1, . . . , d∗x}, we have

(|H∆|)j ≤

(
n∑
k=1

h2
jk

)1/2

‖∆‖2 ≤

√
1

(1− α)λ
‖∆‖2.

Since (B.30) ‖∆‖22 ≤ 64L2d2
xh

4, we have

max
j=1,...,d∗x

(|H∆|)j ≤

√
64

(1− α)λ
Ldxh

2.

Moreover, we have(∣∣∣Ψ̂−1
11

−−→
sign

(
θ∗(1)

)∣∣∣)
j
≤
∥∥∥Ψ̂−1

11

−−→
sign

(
θ∗(1)

)∥∥∥
2
≤ 1

(1− α)λ
‖−−→sign(θ∗(1))‖2 ≤

√
d∗x

(1− α)λ
.

Since we choose λ as in (B.38), we have

(|H∆|)j + λ
(∣∣∣Ψ̂−1

11

−−→
sign

(
θ∗(1)

)∣∣∣)
j

≤

4

√
(3 + γ)λd∗x

(1 + γ)(1− γ)2(1− α)λ
+ 1

 8Ldxh
2

√
1

(1− α)λ

≤

5

√
2(3 + γ)λd∗x

(1 + 3γ)(1− γ)2λ

 8Ldxh
2

√
2(1 + γ)

(1 + 3γ)λ

= 80Ldxh
2 ·

√
(3 + γ)(1 + γ)λd∗x

(1 + 3γ)(1− γ)λ
. (B.45)

According to Lemma 3 and definition of θ∗,
(∣∣∣θ∗(1)

∣∣∣)
j
≥ Ch for j ∈ {0, 1, . . . , d∗x}. So if h is

sufficient small such that

h ≤ C(1 + 3γ)(1− γ)λ

160Ldx

√
(3 + γ)(1 + γ)λdx

, 15 (B.46)

then we have (∣∣∣θ∗(1)

∣∣∣)
j
≥ Ch ≥ 160Ldxh

2 ·

√
(3 + γ)(1 + γ)λd∗x

(1 + 3γ)(1− γ)λ
. (B.47)

15. Since d∗x is unknown, we replace d∗x by dx for a more conservative condition for h.
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Combing (B.45) and (B.47), the right-hand side of (B.43) is at least half of
(∣∣∣θ∗(1)

∣∣∣)
j
, i.e.,

(∣∣∣θ∗(1)

∣∣∣)
j
− (|H∆|)j − λ

(∣∣∣Ψ̂−1
11

−−→
sign

(
θ∗(1)

)∣∣∣)
j
≥ 1

2

(∣∣∣θ∗(1)

∣∣∣)
j
>

1

2
Ch. (B.48)

Notice that all the parameters in right-hand side of (B.43) are known constants. So the
validity of (B.48) is assured by choosing a small enough h. As h and λ satisfy (B.43) and
(B.46), we have

Ωc
3 ∩ Ω1 ⊂


d∗x⋃
j=0

{(∣∣∣∣ 1√
n
Hε

∣∣∣∣)
j

>
1

2
Ch

}⋂Ω1.

=


d∗x⋃
j=0

Ej

⋂Ω1 (B.49)

where Ej :=

{(∣∣∣ 1√
n
Hε
∣∣∣)
j
> 1

2Ch

}
. Recalling the independence of covariates and noise, we

have (∣∣∣∣ 1√
n
Hε

∣∣∣∣)
j

=

√
1

n

n∑
k=1

hikεk,

is a mean-zero
√∑n

k=1 h
2
ik/nσ sub-Gaussian random variable conditional on Un. Similar to

(B.40), we have

P(Ωc
3 ∩ Ω1) ≤

d∗x∑
j=0

E
[
P
(
Ej
∣∣Un) I(Ω1)

]
≤

d∗x∑
j=0

E

[
P

((∣∣∣∣ 1√
n
Hε

∣∣∣∣)
j

>
1

2
Ch

∣∣∣ Un) I(Ω1)

]

≤
d∗x∑
j=0

E
[
2 exp

(
− C2h2n

8
∑n

k=1 h
2
ikσ

2

)
I(Ω1)

]
(sub-Gaussian)

≤
d∗x∑
j=0

E
[
2 exp

(
−C

2h2(1− α)λn

8σ2

)
I(Ω1)

]
(by (B.44)) (B.50)

where the last inequality follows from (B.44) on the event Ω1. Plugging the lower bound of
Ch (B.47), we have that (B.50) is upper bounded by 2(dx + 1) exp

(
−c6nh

4
)
P(Ω1), where

c6 =
3200(3 + γ)λL2d3

x

(1− γ)σ2
.
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Until now, we have demonstrated the probability lower bounds for event Ω1, Ω2, Ωc
3∩Ω1

and Ωc
4 ∩ Ω1. We complete the proof by combining them together,

P(Ω1 ∩ Ω2 ∩ Ω3 ∩ Ω4)

= P(Ω1)− P(Ω1 ∩ (Ωc
2 ∪ Ωc

3 ∪ Ωc
4))

= P(Ω1)− P((Ω1 ∩ Ωc
2) ∪ (Ω1 ∩ Ωc

3) ∪ (Ω1 ∩ Ωc
4))

(a)

≥ P(Ω1)− P(Ω1 ∩ Ωc
2)− P(Ω1 ∩ Ωc

3)− P(Ω1 ∩ Ωc
4)

(b)

≥
[
1− 2(dx − d∗x) exp(−c5nh

4)− 2(d∗x + 1) exp(−c6nh
4)
]
P(Ω1)− P(Ωc

2)

(c)

≥
[
1− 2(dx + 1) exp

(
−(c5 ∧ c6)nh4

)]
· [1− 2(dx + 1) exp(−c1n)]

− 2d∗x(dx − d∗x) exp(−c3n)

≥ 1− 4(dx + 1) exp
(
−(c1 ∧ c5 ∧ c6)nh4

)
− 2d∗x(dx − d∗x) exp(−c3n)

≥ 1− 2 max{2(dx + 1), d∗x(dx − d∗x)} exp
(
−(c1 ∧ c3 ∧ c5 ∧ c6)nh4

)
= 1− c7 exp(−c8nh

4),

where c7 = 2 max{2(dx + 1), d∗x(dx−d∗x)} ≤ max{2(dx + 1), d2
x/4}, and c8 = c1∧ c3∧ c5∧ c6.

Note that the inequality (a) holds by the union bound, (b) holds by (B.40), (B.44) and (c)
holds by (B.28), (B.29).

Finally, we define new constants b0, b1, b2, b3 to summarize the results,

b0(dx) := 2 max{2(dx + 1), d2
x/4},

b1(dx, γ, λ, λ, L, σ) := c1 ∧ c3 ∧ c5 ∧ c6

=
{
c1 ∧ (1− γ)2λ2/(8(d∗x)2) ∧ 64L2d2

x/(2σ
2) ∧ 3200(3 + γ)λL2d3

x/
(
(1− γ)σ2

)}
,

c1(dx, γ, λ) :=
λ

2(1+γ)(1+dx/4)
min

{
1−γ+(3γ+1) log

(
3γ+1

2+2γ

)
, γ−1+(3+γ) log

(
3+γ

2+2γ

)}
,

b2(λ, γ, dx) := 32

√
(3 + γ)λ

(1 + γ)(1− γ)2
Ldx,

b3(C, λ, λ, γ, L, dx) :=
C(1 + 3γ)(1− γ)λ

160Ldx

√
(3 + γ)(1 + γ)λdx

. (B.51)

Under Proposition A.1, to guarantee Assumption 6’, we further assume h < µ2
m/(3d

∗
xLµ).

Thus, b3 is required to be less than µ2
m/(3d

∗
xLµ). We can replace λ, λ, γ by µm/12, µM , 0.5.

Given λ = b2h
2, we have

P(∩4
i=1Ωi) ≥ 1− b0 exp(b1njh

4),

where the constants

b0(dx) = 2 max{2(dx + 1), d2
x/4},

b1(dx, µm, µM , L, σ) =
11µm

104(1 + dx/4)
∧ µ2

m/(4608(d∗x)2) ∧ 64L2d2
x/(2σ

2) ∧ 22400µML
2d3
x/σ

2,

b2(dx, µM ) = 64
√

7µM/3Ldx,

b3(dx, µm, µM , Lµ, C) = min
{
Cµm/(768

√
21µmdx), µ2

m/(3d
∗
xLµ)

}
. �
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Appendix C. Proofs for Weighted Voting

C.1 Proof of Proposition 5

Before proceeding the proof, we first define a random variable ∆ which represents the bins
which the covariates X1, . . . ,Xn fall in. More precisely, ∆ has (h−dx)n possible values:

∆1 = {X1 ∈ B1,X2 ∈ B1, . . . ,Xn ∈ B1}, ∆2 = {X1 ∈ B1,X2 ∈ B1, . . . ,Xn ∈ B2}, . . . ,
∆(h−dx )n = {X1 ∈ Bh−dx ,X2 ∈ Bh−dx , . . . ,Xn ∈ Bh−dx}.

The probability mass function of ∆ depends on the distribution of X. The number of
observations {nj}h

−dx

j=1 can be inferred by ∆. For example, P(∆ = ∆1) = (P(X ∈ B1))n,
and when ∆ = ∆1, we have n1 = n, n2 = 0, . . . , nh−dx = 0. So conditional on ∆, we know

the values of {nj}h
−dx

j=1 and {pj}h
−dx

j=1 .
Next, we show the proof of Proposition 5. Conditional on ∆, we rewrite the probability

in (17):

P(Ĵ (i) ≥ ξ|J (i) = 0,∆) = P(eηĴ
(i) ≥ eηξ|J (i) = 0,∆)

≤ exp(−ηξ)E

h−dx∏
j=1

exp(ηwjJ
(i)
j )
∣∣J (i) = 0,∆

 . (C.52)

We claim that for two different bins Bj1 6= Bj2 , the random variables J
(i)
j1

and J
(i)
j2

are
independent conditional on ∆. That’s because the covariates in Bj1 are independent of the
covariates in Bj2 if we know ∆. Thus, we have

(C.52) = exp(−ηξ)
h−dx∏
j=1

E
[
exp(ηwjJ

(i)
j )
∣∣J (i) = 0,∆

]
. (C.53)

By Proposition 4, we have the probability bound for the binary variable J
(i)
j :

P
(
J

(i)
j = 1

∣∣J (i) = 0,∆
)
≤ pj .

Thus,

(C.53) ≤ exp(−ηξ)
h−dx∏
j=1

E [eηwjpj + 1− pj ]

= exp(−ηξ)
h−dx∏
j=1

E [1 + pj(e
ηwj − 1)]

≤ exp(−ηξ)
h−dx∏
j=1

E [exp (pj(e
ηwj − 1))] , (C.54)

which gives the objective in (18). The last inequality follows by 1 + x ≤ ex for x ≥ 0. By
Lemma 10, (C.52), (C.53), (C.54), we have

P(Ĵ (i) ≥ ξ|J (i) = 0,∆) ≤ V (η∗,w∗),
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which is a function of {pj}h
−dx

j=1 . Then, Lemma 11 shows a uniform upper bound for

V (η∗,w∗) for any possible {pj}h
−dx

j=1 . By Lemma 11, we have

P(Ĵ (i) ≥ ξ|J (i) = 0,∆) ≤ exp
{
ξ
(
h−dx(1 + log b0 − log ξ)− b1nh4

)}
, ∀∆.

Thus, we obtain an upper bound for the tail probability

P(Ĵ (i) ≥ ξ|J (i) = 0) =

(h−dx )n∑
i=1

P
(
J

(i)
j = 1

∣∣J (i) = 0,∆
)
P(∆ = ∆i)

≤ exp
{
ξ
(
h−dx(1 + log b0 − log ξ)− b1nh4

)}
.

By the same argument, if J (i) = 1, we have

P(Ĵ (i) ≤ 1− ξ|J (i) = 1) ≤ exp
{
ξ
(
h−dx(1 + log b0 − log ξ)− b1nh4

)}
.

Combining them together, we have

P(
∣∣Ĵ (i) − J (i)

∣∣ ≤ ξ) ≤ exp
{
ξ
(
h−dx(1 + log b0 − log ξ)− b1nh4

)}
. (C.55)

We choose ξ = 0.5 to make the two tail probability equivalent. So the variable xi is classified
as relevant if and only if J (i) ≥ 1/2. And the misidentification probability for xi has the
upper bound

P
(∣∣∣Ĵ (i) − J (i)

∣∣∣ ≥ 1

2

)
≤ exp

{
1

2

(
h−dx(1 + log b0 + log 2)− b1nh4

)}
.

Moreover, by the union bound of all variables, we have the probability lower bound for
successful variable selection

P(Ĵ = J) ≥ 1− dx exp

{
1

2

(
h−dx(1 + log b0 + log 2)− b1nh4

)}
.

Hence, we complete the proof of Proposition 5. �

C.2 Proof of Lemma 10

Since the problem (18) involves minimizing a continuous function over a compact set 16, it
has an global minimal solution. In the proof of Lemma 10, we will prove the KKT condition
admits a unique solution. Since the KKT condition is a necessary condition for all the local
minimums and local maximums, then the unique solution must be the global minimum for
problem (18). Considering the optimal η∗, if η∗ = 0, then V (0,w) = 0 for any w. Next we
study the local optima with η∗ > 0. Finally, we compare the optimal V in the two cases.

Supposing η∗ > 0, by the first-order optimality condition, we have

0 =
∂V (η,w)

∂η
= −ξ +

h−dx∑
j=1

pjwje
ηwj .

16. It’s obvious that V → +∞ as η → +∞, so the minimum is obtained when η is finite.
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Since V (η,w) > 0, we have
h−dx∑
j=1

pjwje
ηwj = ξ. (C.56)

Next, we write down the KKT condition for wj . Let vj , u be the Lagrangian multipliers for

constraints wj ≥ 0 and
∑h−dx

j=1 wj − 1 = 0, we have

∂V (η,w)

∂wj
− vj + u = 0, (C.57)

vjwj = 0, (C.58)

vj ≥ 0, ∀j ∈ {1, 2, . . . , h−dx} (C.59)

h−dx∑
j=1

wj = 1. (C.60)

From (C.58), we know either vj = 0 or wj = 0 for all j. Define a set O including all the
subscript j satisfying wj > 0 and define its cardinality as m,

O := {j : vj = 0, wj > 0}, and m := |O|. (C.61)

For j ∈ O, plugging vj into (C.57), we have that

−u =
∂V (η,w)

∂wj
= ηeηwjpj . (C.62)

It is easy to see that

eηw1p1 = eηw2p2 = . . . = eηwmpm = −u
η
. (C.63)

For j /∈ O, we have wj = 0 so

∑
j∈O

wj =
h−dx∑
j=1

wj = 1. (C.64)

Therefore, plugging (C.63), (C.64) into (C.56), we obtain

eηwjpj = ξ, ∀j ∈ O. (C.65)

Because η > 0 and wj > 0, we have eηwj > 1 and thus

pj < ξ, ∀j ∈ O.

Then, taking natural logarithm of both sides of (C.65), we have

wj = (log ξ − log pj) /η, ∀j ∈ O. (C.66)
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Plugging it into (C.64) and (C.63), we get

η =
∑
j∈O

(log ξ − log pj) , ∀j ∈ O, (C.67)

and
u = −ηξ. (C.68)

For j /∈ O, we have vj ≥ 0, wj = 0. Thus, plugging (C.68) and (C.62) into (C.57), we have

vj =
∂V (η,w)

∂wj
+ u = ηpj + u = η(pj − ξ).

As vj ≥ 0, V (η,w) > 0 and η > 0, we have

pj ≥ ξ, ∀j /∈ O.

Plugging (C.66) and (C.67) into (18), we get a closed-form solution for V (η∗,w∗) if η∗ > 0:

V (η∗,w∗) =

h−dx∑
j=1

(ξ − ξ log ξ − pj + ξ log pj) I (pj < ξ) (C.69)

Therefore, we have prove the KKT condition admits a unique solution.
We define a function

H(p) := ξ log p− p, (C.70)

and

V (η∗,w∗) =
h−dx∑
j=1

(H(pj)−H(ξ)) I(pj < ξ).

Note that H(·) is a concave function, attaining its maximum at ξ. Thus, we have H(pj)−
H(ξ) ≤ 0 and V (η∗,w∗) ≤ 0 = V (0,w). Also, we have V (∞,w) =∞ since there exists at
least a wj ≥ hdx such that eηwj =∞.

Since we have prove that there exists a global minimum for problem (18) when η is finite.
Then the unique solution by KKT must be a local minimum instead of a local maximum.
Otherwise, if it’s a local maximum, then there’s no local minimum or global minimum for
problem (18). Also, since the local minimum solved by KKT is unique, it must be the global
minimum for problem (18).

Combining the above arguments, we have proved that V (η∗,w∗) is the global optimum
for problem (18).

Finally, we give a summary for the optimal solution η∗,w∗ of the optimization problem
(18):

1. η∗ =
∑h−dx

j=1 (log ξ − log pj) I (pj < ξ).

2. If pj < ξ, then w∗i = (log ξ − log pj)/η
∗.

3. If pj ≥ ξ, then w∗i = 0.

4. The optimal value V (η∗,w∗) =
∑h−dx

j=1 (ξ − ξ log ξ − pj + ξ log pj) I (pj < ξ). �
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C.3 Proof of Lemma 11

Recalling the definition of H(·) in (C.70), the objective function of (19) can be rewritten
as

V (n) =

h−dx∑
j=1

(H(pj)−H(ξ)) I(pj < ξ). (C.71)

Note that H(·) is a negative and concave function, attaining its maximum at ξ. Moreover,
H(pj) increases with pj when pj < ξ. Since pj is a monotone decreasing function of nj ,
there exists a threshold

n := max{n : b0 exp(−b1nh4) ≥ ξ}, (C.72)

such that H (pj(nj)) (denoted as H(nj) for simplicity) decreases with nj when nj > n.
In particular, we have n budgets and h−dx bins. We divide all the bins into two groups:
active bins A := {j : I(pj < ξ)} and non-active bins Ac := {j : I(pj ≥ ξ)}. For active
bins, H(nj) decreases as more budgets allocated to the bin. For non-active bins, they only
consume budgets but have no contribution to the objective function (C.71). To maximize
V (n), the non-active bins should consume as much budgets as possible. So their optimal
budgets should equal to the threshold that n∗j = n. Thus, if n ≤ nh−dx (equivalent to

n ≤ log(2b0)/(b1h
dx+4)), then all the bins are non-active bins and n∗j = nhdx , thus we have

V (n) = 1. If n > nh−dx , then there must exist active bins. We assume the cardinality for
active bins is m := |A| and their indices are from 1 to m. Then, we can fully separate the
budgets for active and non-active bins, and reformulate (19) as

max
n

V (n) =
m∑
j=1

H(pj)−H(ξ)

s.t. pj = b0 exp
(
−b1njh4

)
nj ≥ n
m∑
j=1

nj = n− n(h−dx −m)

nj ∈ N+, ∀j ∈ {1, 2, . . . ,m}.

(C.73)

Relaxing nj to R+, it’s a concave and continuous optimization problem. By the KKT
condition, let vj , u be the Lagrangian multipliers for n − nj ≤ 0 and

∑m
j=1 nj = n −

n(h−dx −m), we have

∂V (n)

∂nj
+ vj + u = 0 (C.74)

vj(n− nj) = 0 (C.75)

vj ≥ 0
m∑
j=1

nj + n(h−dx −m) = n. (C.76)
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From (C.75), either vj = 0 or nj = n for all j. Define a set

O := {j : vj = 0, nj > n},

for j ∈ O. Plugging vj = 0 into (C.74), we have

u = −∂V (n)

∂nj
= b1h

4(ξ − pj). (C.77)

By the definition of n in (C.72), nj > n implies pj < ξ. Then u > 0. For k ∈ Oc, we have
vk ≥ 0, nk = n and

u = −∂V (n)

∂nk
− vk = b1h

4(ξ − pk)− vk. (C.78)

In fact, (C.77) and (C.78) cannot hold simultaneously. Recalling that for j ∈ O and k ∈ Oc,
nj > n = nk. Thus we have pj < pk because pj is decreasing in nj . By (C.77) and (C.78),
we have

u = b1h
4(ξ − pj) > b1h

4(ξ − pk) ≥ b1h4(ξ − pk)− vk = u.

That’s to say, either O or Oc is empty. Since we have supposed n > nh−dx , there’s at least
in one bin nj > n. So Oc is empty and (C.77) is satisfied for all j ∈ 1, 2, . . . ,m, further
implying p1 = p2 = . . . = pm. As pj is a strictly decreasing function of nj , by (C.76), we
get the optimal solution

n∗1 = n∗2 = . . . = n∗m =
(
n− n(h−dx −m)

)
/m. (C.79)

Moreover, the optimal value in (C.73) is

V (n) = m(ξ log pj − pj − ξ log ξ + ξ)

≤ mξ(log pj − log ξ + 1)

= ξ
(
−b1h4n+ b1nh

4−dx +
(
log b0 − log ξ + 1− b1h4n

)
m
)
, (C.80)

where the last equality follows from (C.79) and pj = b0 exp(−b1njh4). By the definition of
n in (C.72), we have

log b0 − log ξ + 1− b1h4n > 0,

which implies that the term in (C.80) will increase as m. Therefore, when m = h−dx , the
term in (C.80) attains its maximum, which also gives an upper bound for the optimal V (n∗)
in (19), V (n∗) ≤ ξ

(
h−dx(1 + log b0 − log ξ)− b1nh4

)
. �

Appendix D. Proofs for the Regret Bound

D.1 Proof of Proposition 2

Supposing the dimension of decision space is dy, we prove the stronger version stated in
Remark 3. Recall that the total regret in T periods can be upper bounded by

R(T ) ≤ 2n max
x∈X ,y∈Y

|f(x, y)|+ P(Ĵ = J)R2(T − n) + 2 max
x∈X ,y∈Y

|f(x, y)|P(Ĵ 6= J)(T − n),

58



Nonparametric sparse contextual learning

where n ≤ T (d∗x+dy+1)/(d∗x+dy+2) and P(Ĵ 6= J) ≤ n−1/(d∗x+dy+1). Further relaxing the right-
hand side, we have

R(T ) ≤ 2n max
x∈X ,y∈Y

|f(x, y)|+P(Ĵ = J)R2(T − n)+2 max
x∈X ,y∈Y

|f(x, y)|n−1/(d∗x+dy+1)(T − n)

= 2n max
x∈X ,y∈Y

|f(x, y)|+R2(T ) + 2 max
x∈X ,y∈Y

|f(x, y)|n−1/(d∗x+dy+1)T

= O(T 1−1/(d∗x+dy+2)) +R2(T )

= O
(
T 1−1/(d∗x+dy+2) log(T )

)
.

The first equality follows from P(Ĵ = J) ≤ 1 and T − n ≤ T , the second equality follows

from P(Ĵ 6= J) ≤ n−1/(d∗x+dy+1) ≤
(
T (d∗x+dy+1)/(d∗x+dy+2)

)−1/(d∗x+dy+1)
= O(T−1/(d∗x+dy+2))

and the last equality is supported by (5). �

D.2 Proof of Theorem 6

Recall that the total regret in T periods can be upper bounded by

R(T ) ≤ 2n max
x∈X ,y∈Y

|f(x, y)|+ P(Ĵ = J)R2(T − n) + 2 max
x∈X ,y∈Y

|f(x, y)|P(Ĵ 6= J)(T − n).

where n = T 2/3. Since T ≥ (b3)−3(dx+2) and h = T−1/(3dx+6), we have h ≤ b3. Since

T ≥ ((3 + log 2 + log b0)/b1)3(1+2/dx), we have n ≥ log(2b0)/(b1h
dx+4). Thus, applying

Proposition 5, we have

P(Ĵ 6= J) ≤ dx exp

{
1

2

(
h−dx(1 + log b0 + log 2)− b1nh4

)}
(a)
= dx exp

{
1

2

(
n1/(2+4/dx)(1 + log b0 + log 2)− b1n1/(1+2/dx)

)}
= dx exp

{
1

2
n1/(2+4/dx)

(
(1 + log b0 + log 2)− b1n1/(2+4/dx)

)}
(b)
= dx exp

{
1

2
T 1/(3+6/dx)

(
(1 + log b0 + log 2)− b1T 1/(3+6/dx)

)}
(c)

≤ dx exp

{
1

2
log T

(
(1 + log b0 + log 2)− b1T 1/(3+6/dx)

)}
(d)

≤ dx exp

{
−1

2
log T

}
= dx/

√
T ,

where (a) follows from h = n−1/(2dx+4), (b) follows from n = T 2/3, (c) follows from T ≥
(log T )3(1+2/dx), (d) follows from T ≥ ((3 + log 2 + log b0)/b1)3(1+2/dx).

Further relaxing the right-hand side, we have

R(T ) ≤ 2T 2/3 max
x∈X ,y∈Y

|f(x, y)|+R2(T − n) + 2 max
x∈X ,y∈Y

|f(x, y)|Tdx/
√
T

≤ O
(
T 2/3

)
+R2(T − n) +O(

√
T )

= O(R2(T )).
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Thus, we complete the proof of Theorem 6. �

D.3 Proof of Theorem 7

Recall that the total regret in T periods can be upper bounded by

R(T ) ≤ 2n max
x∈X ,y∈Y

|f(x, y)|+ P(Ĵ = J)R2(T − n) + 2 max
x∈X ,y∈Y

|f(x, y)|P(Ĵ 6= J)(T − n).

where n = (log(T ))(2+4/dx). Since T ≥ exp{(b3)−dx} and h = (log(T ))−1/dx , we have h ≤ b3.
Since T ≥ exp{(3 + log 2 + log b0)/b1}, we have n ≥ log(2b0)/(b1h

dx+4). Thus, applying
Proposition 5, we have

P(Ĵ 6= J) ≤ dx exp

{
1

2

(
h−dx(1 + log b0 + log 2)− b1nh4

)}
.

Further relaxing the right-hand side, we have

R(T ) ≤ 2(log T )(2+4/dx) max
x∈X ,y∈Y

|f(x, y)|+R2(T − n)

+ 2 max
x∈X ,y∈Y

|f(x, y)|dx exp

{
1

2

(
h−dx(1 + log b0 + log 2)− b1nh4

)}
T

≤ 2(log T )6 max
x∈X ,y∈Y

|f(x, y)|+R2(T − n) + 2 max
x∈X ,y∈Y

|f(x, y)|dx exp(− log T )T

= 2(log T )6 max
x∈X ,y∈Y

|f(x, y)|+R2(T − n) + 2 max
x∈X ,y∈Y

|f(x, y)|dx

= O(R2(T )).

The second inequality follows from dx ≥ 1 and T ≥ exp {(3 + log b0 + log 2)/b1}. �

Appendix E. Proofs for Local Relevance

E.1 Proof of Proposition 12

Recall that in the proof of Lemma 1, the hypercube Hi with side length h = C/L and
centred at x(i) satisfies (3). We will show that Qi(C) covers at least (1/3)dx proportion of

Hi, if choosing h ≤ h/3. Note that Hi is covered by Qi(C) and bins intersected with the
boundary of Hi. We consider the worst case that as more areas covered by the intersected
bins as possible. When all the boundaries of the intersected bins exactly coincide with the
boundary of Hi, the intersected bins take up the most proportion of Hi. In this case, 2/3
proportion of each side length is covered by the intersected bins, and (1/3)dx proportion of
Hi is covered by the bins in Qi(C). Then, by Assumption 6, the probability density has a
lower bound µm and

P(X ∈ Qi(C)) ≥ P(X ∈ Hi) ≥ (1/3)dxµm(h/3)dx = µm

(
C

3L

)dx
.

Hence, we complete the proof of Proposition 12. �
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E.2 Proof of Proposition 13

Step one: In the first step, we consider the case that the true indicator J (i) = 0, that is,
xi is redundant. We show an upper bound for the misidentification probability:

P(Ĵ (i) ≥ ξ|J (i) = 0)

= P(eηĴ
(i) ≥ eηξ|J (i) = 0)

≤ e−ηξE
[
eηĴ

(i)∣∣J (i) = 0
]

(by Markov’s inequality)

= e−ηξ
h−dx∏
j=1

E
[
eηwj Ĵ

(i)
j
∣∣J (i) = 0

]
(by the definition of Ĵ (i) (11))

= e−ηξ
h−dx∏
j=1

(1 + (eηwj − 1)pj) (by Ĵ
(i)
j ∼ Bernoulli(pj))

= exp

−ηξ +
h−dx∑
j=1

log (1 + (eηwj − 1)pj)

 (E.81)

Note that the relaxation used in (17) under the global relevance assumption, 1 + pj ≤ epj ,
is proper when pj is closed to zero. But under the local relevance assumption required in
this proposition, some pjs are not close to zero. Such a relaxation is not tight anymore. In
fact, we find that the analysis in Lemma 11 doesn’t go through here. Thus, we provide a
new proof in (E.81): it has a log term in the exponential function and is more challenging
to analyze than (17).

Since (E.81) holds for arbitrary non-negative η and wj , we need to find η, wj to minimize
the probability:

min
η,w

V (η,w) = −ηξ +
h−dx∑
j=1

log (1 + (eηwj − 1)pj)

s.t. wj ≥ 0, ∀j ∈ {1, 2, . . . , h−dx},
η ≥ 0,

h−dx∑
j=1

wj = 1.

(E.82)

Similar to the proof of Lemma 10, we apply the KKT optimality condition. If η∗ = 0,
then V (0,w) = 0 for any w, which is clearly not optimal. So η∗ > 0 and the first-order
condition holds. That implies the optimal η solving

0 =
∂V (η,w)

∂η
= −ξ +

h−dx∑
j=1

wjpje
ηwj

1 + (eηwj − 1)pj
(E.83)
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Next, we write down the KKT condition for wj . Let vj , u be the Lagrangian multipliers for

constraints wj ≥ 0 and
∑h−dx

j=1 wj − 1 = 0, we have

∂V (η,w)

∂wj
− vj + u = 0, (E.84)

vjwj = 0, (E.85)

vj ≥ 0, ∀j ∈ {1, 2, . . . , h−dx}
h−dx∑
j=1

wj = 1. (E.86)

From (E.85), we know that either vj = 0 or wj = 0 for any j. We define a set O for all j
satisfying wj > 0 and define its cardinality as m,

O := {j : vj = 0, wj > 0}, and m := |O|. (E.87)

For j ∈ O, plugging vj = 0 into (E.84), we have

−u =
∂V (η,w)

∂wj
=

ηpje
ηwj

1 + (eηwj − 1)pj
. (E.88)

After a simple transform, we have

p1e
ηw1

1 + (eηw1 − 1)p1
=

p2e
ηw2

1 + (eηw2 − 1)p2
= . . . =

pme
ηwm

1 + (eηwm − 1)pm
= −u/η. (E.89)

Plugging it into (E.83), we have

ξ = −u
η

∑
j∈O

wj = −u
η
. (E.90)

This is because for j /∈ O, we have wj = 0, so

∑
j∈O

wj =
h−dx∑
j=1

wj = 1. (E.91)

By (E.89) and (E.90), we have

ηw1 = ηw2 = . . . = ηwm = log ξ + log(1− pj)− log pj − log(1− ξ). (E.92)

Since ηw1 > 0, we have pj < ξ. Therefore, plugging (E.92), into (E.91), we obtain

η =
∑
j∈O

(log ξ + log(1− pj)− log pj − log(1− ξ)), (E.93)

and

wj =
1

η
(log ξ + log(1− pj)− log pj − log(1− ξ)) , ∀j ∈ O. (E.94)
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For j /∈ O, we have vj ≥ 0, wj = 0. Then, plugging (E.93), (E.90), (E.88) into (E.84), we
have

vj = η(pj − ξ),

and

pj ≥ ξ, ∀j /∈ O.

Plugging (E.93) and (E.94) into (E.82), we have

V (η∗,w∗) =
h−dx∑
j=1

(ξ log pj + (1− ξ) log(1− pj)− ξ log ξ − (1− ξ) log(1− ξ)) I (pj < ξ) .

(E.95)
Therefore, we have prove the KKT condition admits a unique solution, which must be the
global optimum for problem (E.82).

We give a summary for the optimal solution η∗,w∗ of the optimization problem (E.82):

1. η∗ =
∑h−dx

j=1 (log ξ + log(1− pj)− log pj − log(1− ξ)) I (pj < ξ).

2. If pj < ξ, then w∗j = (log ξ + log(1− pj)− log pj − log(1− ξ))/η∗.

3. If pj ≥ ξ, then w∗j = 0.

4. The optimal value V (η∗,w∗) shows in (E.95).

The optimal V of (E.95) depends on pj , which is the probability bound derived in Propo-
sition 4. The condition of Proposition 4 holds since h ≤ b3/2 ≤ b3 and λ = b2h

2. Plugging
pj into (E.95) and because of log(1− pj) < 0, we have

V (η∗,w∗) ≤
h−dx∑
j=1

(ξ log pj − ξ log ξ − (1− ξ) log(1− ξ)) I (pj < ξ)

≤
h−dx∑
j=1

(
−ξb1njh4 + ξ log b0 − ξ log ξ − (1− ξ) log(1− ξ)

)
I (pj < ξ)

≤ (ξ log b0 − ξ log ξ − (1− ξ) log(1− ξ))h−dx − ξb1h4 ·

h−dx∑
j=1

njI (pj < ξ)

 .

(E.96)

The first inequality follows from log(1−pj) < 0; the second follows from pj = b0 exp(−b1njh4).
Since pj is a monotone decreasing function of nj , there exists a threshold

n := max{n : b0 exp(−b1nh4) ≥ ξ}, (E.97)

such that pj < ξ for nj > n. By (E.97), we have

b0 exp(−b1nh4) > ξ =⇒ b1nh
4 ≤ log b0 − log ξ (E.98)
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So we get a lower bound for the last term in (E.96),

h−dx∑
j=1

njI (pj < ξ) ≥ n− h−dxn ≥ n− h−dx(log b0 − log ξ)

b1h4
. (E.99)

Therefore, plugging (E.99) into (E.96), we have

V (η∗,w∗) ≤ (ξ log b0 − ξ log ξ − (1− ξ) log(1− ξ))h−dx − ξb1h4
(
n− h−dxn

)
≤ (ξ log b0 − ξ log ξ − (1− ξ) log(1− ξ))h−dx + ξ(log b0 − log ξ)h−dx − ξb1h4n

= (2ξ log b0 − 2ξ log ξ − (1− ξ) log(1− ξ))h−dx − ξb1h4n.

The second inequality holds by (E.98). Recalling the tail probability in (E.81), we have

P(Ĵ (i) ≥ ξ|J (i) = 0) ≤ exp
{

(2ξ log b0 − 2ξ log ξ − (1− ξ) log(1− ξ))h−dx − ξb1h4n
}
.

(E.100)
So far, we show a tail probability upper bound for the variable xi satisfying J (i) = 0. Note
that the upper bound (E.100) is looser than the upper bound (20) in Lemma 11.

Step two: Next we consider the case when J (i) = 1. We start with the following bound

P(Ĵ (i) ≤ ξ|J (i) = 1) = P(1− Ĵ (i) ≥ 1− ξ|J (i) = 1)

≤ e−η(1−ξ)E
[
exp

(
η
(

1− Ĵ (i)
)) ∣∣J (i) = 1

]
= e−η(1−ξ)

h−dx∏
j=1

E
[
exp

(
ηwj

(
1− Ĵ (i)

j

)) ∣∣J (i) = 1
]

= exp

−η(1− ξ) +

h−dx∑
j=1

log (1 + (eηwj − 1)pj)

 . (E.101)

Notice that (E.101) is the same as (E.81) except that ξ is replaced by 1−ξ. Thus, replacing
ξ by 1− ξ in (E.93) and (E.94), we get the optimal solution for (E.101),

η∗ =
h−dx∑
j=1

(log(1− ξ) + log(1− pj)− log pj − log ξ) I (pj < 1− ξ) , (E.102)

and

w∗j = (log(1− ξ) + log(1− pj)− log pj − log ξ) /η∗ for pj < 1− ξ, (E.103)

w∗j = 0 for pj ≥ 1− ξ. (E.104)

Plugging them into (E.101), we have

V (η∗,w∗) = exp

−η∗(1− ξ) +
h−dx∑
j=1

log
(

1 + (eη
∗w∗j − 1)pj

)
I (pj < 1− ξ)

 (E.105)
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Note that on the event pj < 1− ξ,

log
(

1 + (eη
∗w∗j − 1)pj

)
= log (1 + (exp (log(1− ξ) + log(1− pj)− log pj − log(ξ))− 1) pj)

= log

(
1 +

(
(1− ξ)(1− pj)

pjξ
− 1

)
pj

)
= log(1− pj)− log ξ.

Moreover, for the uninformative bins j ∈ Qc (with a slight abuse, we omit C and i in Qi(C)
and use j to represent Bj), we simply use an upper bound pj ≤ 1 and

log
(

1 + (eη
∗w∗j − 1)pj

)
≤ η∗w∗j . Plugging them to (E.105), we have

log V (η∗,w∗)≤−η∗(1−ξ)+
h−dx∑
j=1

(
η∗w∗j I(j ∈ Qc)+(log(1− pj)−log ξ) I(j ∈ Q)

)
I (pj < 1−ξ) .

Like the previous argument, we define

O := {j : pj < 1− ξ} .

Plugging in the form of η∗ and w∗j from (E.102) and (E.103), we have

log V (η∗,w∗)

≤ −η∗(1− ξ) +

h−dx∑
j=1

(
η∗w∗j I(j ∈ Qc) + (log(1− pj)− log ξ) I(j ∈ Q)

)
I (j ∈ O)

=

h−dx∑
j=1

−(1− ξ) (log(1− ξ) + log(1− pj)− log pj − log ξ) I(j ∈ O)

+(log(1−ξ) + log(1−pj)−log pj−log ξ) I(j∈O ∩Qc)+(log(1− pj)−log ξ) I(j∈O ∩Q).
(E.106)

Recombining the terms in (E.106) by log(1 − ξ), log ξ, log(1 − pj) and log pj , we have
(E.106)

=

h−dx∑
j=1

(−(1− ξ)I(j ∈ O) + I(j ∈ O ∩Qc)) log(1− ξ)

+ ((1− ξ)I(j ∈ O)− I(j ∈ O ∩Qc)− I(j ∈ O ∩Q)) log ξ

+ (−(1− ξ)I(j ∈ O) + I(j ∈ O ∩Qc) + I(j ∈ O ∩Q)) log(1− pj)
+ ((1− ξ)I(j ∈ O)− I(j ∈ O ∩Qc)) log pj .

Further by I(j ∈ O) = I(j ∈ O ∩Q) + I(j ∈ O ∩Qc), (E.106) is simplified to

=
h−dx∑
j=1

(−(1− ξ)I(j ∈ O) + I(j ∈ O ∩Qc)) log(1− ξ)− ξI(j ∈ O ∩Qc) log ξ

+ ξI(j ∈ O) log(1− pj) + ((1− ξ)I(j ∈ O ∩Q)− ξI(j ∈ O ∩Qc)) log pj . (E.107)
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Note that log ξ ≤ 0, log(1− ξ) ≤ 0, log(1− pj) ≤ 0 and I(j ∈ O∩Qc) ≤ I(j ∈ O), we have
(E.107)

≤
h−dx∑
j=1

(−(1− ξ) log(1− ξ)I(j ∈ O))− ξI(j ∈ O ∩Qc) log ξ

+ ((1− ξ)I(j ∈ O ∩Q)− ξI(j ∈ O ∩Qc)) log pj

≤
h−dx∑
j=1

I(j ∈ O) (−ξ log ξ−(1−ξ) log(1−ξ))+((1−ξ)I(j ∈ O ∩Q)− ξI(j ∈ O ∩Qc)) log pj

≤ h−dx (−ξ log ξ−(1−ξ) log(1− ξ))+
h−dx∑
j=1

I(j ∈ O ∩Q)(1− ξ) log pj−I(j ∈ O ∩Qc)ξ log pj .

(E.108)

The last inequality follows from I(j ∈ O) ≤ 1.

Next, we give an upper bound for (E.108). Recalling that Q (Qi(C)) is defined as the
union of bins in Ai(C), then the probability bound in Proposition 4 holds as long as h ≤ b3/2
and λ = b2h

2. Plugging pj = b0 exp
(
−b1njh4

)
into the last two terms, we have

h−dx∑
j=1

I(j ∈ O ∩Q)(1− ξ) log pj − I(j ∈ O ∩Qc)ξ log pj

=

h−dx∑
j=1

(I(j∈ O∩Q)(1−ξ)−I(j∈ O∩Qc)ξ) log b0−(I(j∈O∩Q)(1−ξ)nj−I(j∈O∩Qc)ξnj) b1h4

≤ (1− ξ)h−dx log b0 − (1− ξ)b1h4 ·
h−dx∑
j=1

I(j ∈ O ∩Q)nj + ξb1h
4 ·

h−dx∑
j=1

I(j ∈ Qc)nj .

(E.109)

The last inequality follows from I(j ∈ O ∩Q) ≤ 1 and log b0 ≥ 0.

Notice that
∑h−dx

j=1 I(j ∈ Qc)nj =
∑n

k=1 I(Xk ∈ Qc) is the number of covariates falling
in Qc, which is a binomial distribution. According to Proposition 12, the mean probability
P(X ∈ Qc) < 1 − pQ. Then, applying the Hoeffding’s inequality for binomial random
variable, we have

P

(
n∑
k=1

I(Xk ∈ Qc)− n(1− pQ) ≥ 1

3
pQn

)
≤ e−

2
9
p2Qn. (E.110)

Thus, with probability no less than 1− e−
2
9
p2Qn, we have

h−dx∑
j=1

I(j ∈ Qc)nj ≤ (1− 2

3
pQ)n. (E.111)
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Similar to (E.97) and (E.99) we define the threshold

n := max{n : b0 exp(−b1nh4) ≥ 1− ξ},

and we have

h−dx∑
j=1

I(j ∈ O)nj ≥ n− h−dxn ≥ n−
h−dx

b1h4
(log b0 − log(1− ξ)). (E.112)

By (E.111) and (E.112), we have

h−dx∑
j=1

I(j ∈ O ∩Q)nj ≥
h−dx∑
j=1

I(j ∈ O)nj −
h−dx∑
j=1

I(j ∈ Qc)nj

≥ n− h−dxn− (1− 2

3
pQ)n

=
2

3
pQn− h−dxn

≥ 2

3
pQn−

h−dx

b1h4
(log b0 − log(1− ξ)). (E.113)

Plugging (E.111) and (E.113) into (E.109) also (E.106), we have

log V (η∗,w∗)

≤ h−dx ((1−ξ) log b0−ξ log ξ−(1−ξ) log(1−ξ))+(1−ξ)nb1h4h−dx−
(

2

3
pQ−ξ

)
b1h

4n

≤ h−dx (2(1− ξ) log b0 − ξ log ξ − 2(1− ξ) log(1− ξ))−
(

2

3
pQ − ξ

)
b1h

4n.

Plugging it and (E.110) into (E.101), we have

P(Ĵ (i) ≤ ξ|J (i) = 1)

≤ exp

{
h−dx (2(1− ξ) log b0−ξ log ξ−2(1−ξ) log(1− ξ))−

(
2

3
pQ − ξ

)
b1h

4n

}
+exp

(
−2

9
p2
Qn

)
.

Hence, we complete the proof of Proposition 13. �

E.3 Proof of Theorem 15

Note that we choose n = T 2/3 and

ξ = 0.5n−
dx

3dx+4 = 0.5T−
2dx

9dx+12 . (E.114)

Since T satisfies T ≥
(

3
2pQ

) 9dx+12
2dx , we have

ξ ≤
pQ
3
. (E.115)
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Recall that the total regret in T periods can be upper bounded by

R(T ) ≤ 2n max
x∈X ,y∈Y

|f(x, y)|+ P(Ĵ = J)R2(T − n) + 2 max
x∈X ,y∈Y

|f(x, y)|P(Ĵ 6= J)(T − n).

(E.116)
where n = T 2/3. Since T ≥ (b3)−(4.5dx+6) and h = T−2/(9dx+12), we have h ≤ b3. Since

T ≥
(
(1 + 6e−1 + 4 log b0)/b1

)4.5+6/dx , we have n ≥ log(2b0)/(b1h
dx+4). Thus, applying

Proposition 13, for ξ < 1/2, we have

P(Ĵ 6= J) ≤ dx exp

{
(2(1−ξ) log b0−ξ log ξ+2(1−ξ) log(1−ξ))h−dx−min

{
ξ,

2pQ
3
−ξ
}
b1h

4n

}
+ dx exp

(
−2

9
p2
Qn

)
(a)

≤ dx exp

{
(2 log b0 − 3ξ log ξ)h−dx −min

{
ξ,

2pQ
3
− ξ
}
b1h

4n

}
+ dx exp

(
−2

9
p2
Qn

)
(b)

≤ dx exp
{

(2 log b0 − 3ξ log ξ)ndx/(3dx+4) − ξb1n3dx/(3dx+4)
}

+ dx exp

(
−2

9
p2
Qn

)
(c)

≤ dx exp
{

(2 log b0 − 3ξ log ξ)T 2dx/(9dx+12) − b1T 4dx/(9dx+12)
}

+ dx/
√
T

(d)
= dx exp

{
T 2dx/(9dx+12)

(
2 log b0 − 3ξ log ξ − b1T 2dx/(9dx+12)

)}
+ dx/

√
T

(e)

≤ dx exp
{

log T
(

2 log b0 + 3ξ log(1/ξ)− b1T 2dx/(9dx+12)
)}

+ dx/
√
T

(f)

≤ dx exp

{
−1

2
log T

}
+ dx/

√
T

= 2dx/
√
T ,

where (a) follows from 0 ≤ ξ ≤ 1/2 and 1 − ξ ≥ ξ; (b) follows from h = n−1/(3dx+4),
ξ ≤ pQ

3 and (E.115); (c) follows from n = T 2/3, (E.114) and T ≥ (3/(2pQ))3 (log T )3/2; (e)

follows from T ≥ (log T )4.5+6/dx ; (f) follows from x log(1/x) ≤ e−1 for any x ∈ (0, 1] and

T ≥
(
(1 + 6e−1 + 4 log b0)/b1

)4.5+6/dx .

Further relaxing the right-hand side in (E.116), we have

R(T ) ≤ 2T 2/3 max
x∈X ,y∈Y

|f(x, y)|+R2(T − n) + 4 max
x∈X ,y∈Y

|f(x, y)|Tdx/
√
T

≤ O
(
T 2/3

)
+R2(T − n) +O(

√
T )

= O(R2(T )).

Thus, we complete the proof of Theorem 15. �

Appendix F. More Numerical Experiments

We conduct more numerical experiments where dx is reasonably large (dx = 5, 10). Ad-
ditionally, we focus on the results of variable selection phase since the algorithms used in
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the online learning phase are pretty standard. We omit y in the reward function f for the
exposition and consider more complicated relationships between x and f .

The first function is designed to compare the performances of BV-LASSO and LASSO for
an additive function. It’s an additive combination of linear, discontinuous and polynomial
functions, i.e.,

f3(x1, x2, x3) = x1 + x2 · I(x2 > 0.2) +
√
x3. (F.117)

The second function incorporates compound operators and non-trivial interactions between
covariates, i.e.,

f4(x1, x2, x3, x4) = exp

{
2x1 − 3(x2 + x3 − 1)2 − 1

0.5 + 3x4

}
. (F.118)

Note that f4 is increasing in X1 and X4, but non-monotone (even seemingly symmetric)
in X2, X3. It’s well-known that LASSO does not perform well for a symmetric nonlinear
function. So it’s predictable that applying the standard LASSO is likely to miss X2 and
X3. The third function considers the periodic fluctuant covariates which is a more difficult
task for the standard LASSO, i.e.,

f5(x1, x2, x3, x4) = sin(4x1x2) + sin(2πx1) sin(πx4) + sin(2πx2) cos(πx3). (F.119)

Note that f3, f4, and f5 all satisfy local relevance (Assumption 4’) but not global relevance
(Assumption 4). The effective dimensions d∗x of f3, f4, f5 are 3, 3, 4. We test the algorithm
in the settings where dx = 5, 10 and n = 102, 103, 105, 106.

The side length h is a critical hyper-parameter which balances the approximation error
and statistical error. It should be small enough to guarantee the theoretical performance
of BV-LASSO (see Proposition 5 and 13). However, considering the implementation, when
dx is large but n is limited, h should not be too small. Otherwise, there will be few
observations in each bin, which leads to a poor performance of the localized LASSO. To
make sure enough observations in each bin, we set h = 1/bn1/(dx+4)c, which also satisfies
the theoretical guarantee in Proposition 2 and Theorem 6.

When generating covariates, we consider a non-trivial distribution, where the rele-
vant and redundant variables are not independent. Specifically, the relevant variables
are independently sampled from a uniform distribution in [0, 1]d

∗
x , while a redundant vari-

able is generated by a linear combination of two relevant variables and an independently
sampled external variable. For example, considering d∗x = 3, we first generate relevant
X1, X2, X3 ∼ U [0, 1]3. Then we randomly select two of them, such as X1, X3, and let
X4 = (X1 +X3)/8 + 3X ′4/4, where X ′4 ∼ U [0, 1] is independently sampled.

Table 1 and 2 shows the 95% confidence intervals of Ĵ according to (11) based on the
average of 20 trials. The tables also show Ĵ for various h, ranging from 1, 1/2, 1/3 to
1/bn1/(dx+4)c. Note that when h = 1, BV-LASSO degrades to the standard LASSO.

In the following, we will carefully explain the numerical results in Table 1, and the
results in Table 2 follow the same except for higher dx.

For the function f3, we find that Ĵ (1), Ĵ (2), Ĵ (3) are statistical significantly greater than
Ĵ (4), Ĵ (5). So X1, X2, X3 can be easier distinguished by choosing a suitable ξ. Additionally,
when h = 1/2 or 1/3, we find Ĵ (1), Ĵ (2), Ĵ (3) are less (not greater) than those when h = 1.
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That’s because the standard LASSO outperforms BV-LASSO when f is (approximately)
linear (see Remark 6).

For the function f4, Ĵ (1), Ĵ (4) are significantly greater than Ĵ (5) for all h. But when
h = 1, the confidence intervals of Ĵ (2), Ĵ (3) have overlaps with Ĵ (5). So if just applying
the standard LASSO (h = 1), it’s impossible to distinguish X2, X3 from X5. But when h
becomes smaller (h = 1/2 or 1/3), Ĵ (2), Ĵ (3) becomes larger and Ĵ (5) becomes smaller, also
the lengths of confidence intervals diminish. Thus, when h is small enough, Ĵ (2), Ĵ (3) are
significantly greater than Ĵ (5). So X2, X3 can be successfully screened out by choosing a
constant ξ (such as ξ = 0.4), or choosing ξ diminishing as n.

The result of f5 is similar to that of f4. It’s easy to screen out X1, X2 even if h = 1.
But the relevance of X3, X4 can only be detected when h < 1.

In summary, the numerical results of f4, f5 show the advantage of BV-LASSO, namely,
the relevant variables can be successfully selected even if the function is highly non-linear.
The results also support the theoretical guarantee of BV-LASSO showed in Proposition 13
and Corollary 14.

Computation complexity of BV-LASSO. The overall computation complexity for
implementing BV-LASSO variable selection algorithm is O

(
n1+8/(dx+4)

)
. To see this, we

set the bin size h = 1/(n1/(dx+4)), then we have h−dx = ndx/(dx+4) bins and averagely
there are nh−dx = n4/(dx+4) observations in each bin. Implementing the localized LASSO

in all bins incurs the computing times O
(
h−dx

(
n4/(dx+4)

)3)
= O

(
n1+8/(dx+4)

)
. Then

applying the weighted voting incurs the computing times O(h−dx) = O
(
ndx/(dx+4)

)
. So

the bottleneck of implementing BV-LASSO is the localized LASSO. Fortunately, we can
reduce the running time by using a multi-core computer, as the computing tasks in bins are
independent. We perform BV-LASSO using a PC with 16 GB RAM and Inter Core i7-3770,
8 cores and 3.40 GHz. The last two rows in Table 1 and 2 show the running times of parallel
computing (denoted by P) and non-parallel computing (denoted by N) in seconds. Parallel
computing requires more (less) running time than the non-parallel counterpart when n is
small (large). We also test the setting where n = 107, and observe the running time of
parallel (non-parallel) is 356 (5037) seconds. So when n is large, the BV-LASSO algorithm
can be implemented efficiently by using a parallel computer.
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Table 1: Numerical results for functions f3, f4, f5 when dx = 5. For each function, the
first d∗x variables are relevant, and the remaining are redundant. The values show the 95%
confidence intervals (CI) of Xi, e.g., 0.73 ± 0.04 represents the CI=(0.69, 0.77). The last
two rows show the running times of parallel (P) and non-parallel (N) computing in seconds.

dx = 5
n = 102 n = 103 n = 105

h = 1 h = 1 h = 1/2 h = 1 h = 1/2 h = 1/3

f3

X1 1.00± 0.00 1.00± 0.00 0.73± 0.04 1.00± 0.00 1.00± 0.00 1.00± 0.00
X2 1.00± 0.00 1.00± 0.00 0.77± 0.03 1.00± 0.00 1.00± 0.00 1.00± 0.00
X3 1.00± 0.00 1.00± 0.00 0.58± 0.04 1.00± 0.00 1.00± 0.00 0.96± 0.01
X4 0.05± 0.10 0.05± 0.10 0.05± 0.02 0.00± 0.00 0.01± 0.01 0.02± 0.00
X5 0.00± 0.00 0.10± 0.14 0.05± 0.02 0.05± 0.10 0.01± 0.01 0.02± 0.01

f4

X1 1.00± 0.00 1.00± 0.00 0.71± 0.03 1.00± 0.00 1.00± 0.00 0.88± 0.01
X2 0.65± 0.23 0.45± 0.24 0.55± 0.04 0.30± 0.22 0.69± 0.04 0.68± 0.01
X3 0.45± 0.24 0.45± 0.24 0.58± 0.05 0.40± 0.24 0.65± 0.02 0.68± 0.01
X4 1.00± 0.00 1.00± 0.00 0.52± 0.04 1.00± 0.00 0.98± 0.01 0.69± 0.01
X5 0.45± 0.24 0.40± 0.24 0.25± 0.04 0.20± 0.19 0.13± 0.03 0.16± 0.01

f5

X1 0.90± 0.14 1.00± 0.00 0.59± 0.04 1.00± 0.00 1.00± 0.00 0.96± 0.00
X2 0.65± 0.23 0.95± 0.10 0.60± 0.05 1.00± 0.00 1.00± 0.00 0.82± 0.01
X3 0.50± 0.24 0.50± 0.24 0.57± 0.04 0.40± 0.24 1.00± 0.00 0.68± 0.01
X4 0.60± 0.24 0.50± 0.24 0.52± 0.05 0.25± 0.21 1.00± 0.00 0.58± 0.01
X5 0.45± 0.24 0.35± 0.23 0.27± 0.03 0.30± 0.22 0.15± 0.04 0.16± 0.01

Time
P 2.34 2.34 2.32 2.00 2.04 2.51
U 0.00 0.00 0.02 0.06 0.08 0.27
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Table 2: Numerical results for functions f3, f4, f5 when dx = 10.

dx = 10
n = 103 n = 105 n = 106

h = 1 h = 1 h = 1/2 h = 1 h = 1/2

f3

X1 1.00± 0.00 1.00± 0.00 0.94± 0.00 1.00± 0.00 1.00± 0.00
X2 1.00± 0.00 1.00± 0.00 0.96± 0.00 1.00± 0.00 1.00± 0.00
X3 1.00± 0.00 1.00± 0.00 0.72± 0.01 1.00± 0.00 1.00± 0.00
X4 0.00± 0.00 0.10± 0.14 0.01± 0.00 0.00± 0.00 0.00± 0.00
X5 0.00± 0.00 0.00± 0.00 0.01± 0.00 0.00± 0.00 0.00± 0.00
X6 0.00± 0.00 0.00± 0.00 0.01± 0.00 0.00± 0.00 0.00± 0.00
X7 0.10± 0.14 0.00± 0.00 0.01± 0.00 0.00± 0.00 0.00± 0.00
X8 0.05± 0.10 0.00± 0.00 0.01± 0.00 0.00± 0.00 0.00± 0.00
X9 0.00± 0.00 0.00± 0.00 0.01± 0.00 0.00± 0.00 0.00± 0.00
X10 0.05± 0.10 0.00± 0.00 0.01± 0.00 0.00± 0.00 0.00± 0.00

f4

X1 1.00± 0.00 1.00± 0.00 0.80± 0.01 1.00± 0.00 0.99± 0.00
X2 0.40± 0.24 0.50± 0.24 0.49± 0.01 0.25± 0.21 0.61± 0.01
X3 0.60± 0.24 0.25± 0.21 0.49± 0.01 0.20± 0.19 0.60± 0.01
X4 1.00± 0.00 1.00± 0.00 0.54± 0.01 1.00± 0.00 0.86± 0.00
X5 0.30± 0.22 0.15± 0.17 0.08± 0.00 0.10± 0.14 0.06± 0.00
X6 0.35± 0.23 0.15± 0.17 0.08± 0.00 0.10± 0.14 0.06± 0.00
X7 0.30± 0.22 0.20± 0.19 0.08± 0.00 0.10± 0.14 0.06± 0.00
X8 0.45± 0.24 0.15± 0.17 0.08± 0.00 0.05± 0.10 0.06± 0.00
X9 0.45± 0.24 0.15± 0.17 0.08± 0.00 0.15± 0.17 0.07± 0.00
X10 0.30± 0.22 0.15± 0.17 0.08± 0.00 0.25± 0.21 0.06± 0.00

f5

X1 1.00± 0.00 1.00± 0.00 0.62± 0.00 1.00± 0.00 0.93± 0.00
X2 1.00± 0.00 1.00± 0.00 0.62± 0.01 1.00± 0.00 0.93± 0.00
X3 0.30± 0.22 0.30± 0.22 0.67± 0.01 0.20± 0.19 1.00± 0.00
X4 0.35± 0.23 0.50± 0.24 0.68± 0.01 0.25± 0.21 1.00± 0.00
X5 0.35± 0.23 0.20± 0.19 0.09± 0.00 0.15± 0.17 0.07± 0.00
X6 0.10± 0.14 0.10± 0.14 0.09± 0.00 0.05± 0.10 0.07± 0.00
X7 0.10± 0.14 0.15± 0.17 0.09± 0.01 0.25± 0.21 0.07± 0.00
X8 0.25± 0.21 0.10± 0.14 0.09± 0.00 0.15± 0.17 0.07± 0.00
X9 0.30± 0.22 0.15± 0.17 0.09± 0.00 0.20± 0.19 0.07± 0.00
X10 0.25± 0.21 0.25± 0.21 0.09± 0.01 0.20± 0.19 0.07± 0.00

Time
P 2.32 2.04 2.64 3.76 3.78
U 0.00 0.10 1.15 1.18 9.68
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Appendix G. Proofs for Section 8

G.1 Proof of Proposition 16

If fP satifies Assumptions 2, 3, 5 and Assumption 4, then the proof of Proposition 4 also
goes through for fP . So does Proposition 5, and Theorem 6. We will check these condition
one by one.

Continuously differentiable. We first prove the interchangeability of expectation
and derivative. Considering the variable xi,

∂

∂xi
EP [f(x, Y )] = lim

h→0

EP [f(x+ hei, Y )]− EP [f(x, Y )]

h

(a)
= lim

h→0
EP
[
f(x+ hei, Y )− f(x, Y )

h

]
(b)
= EP

[
lim
h→0

f(x+ hei, Y )− f(x, Y )

h

]
= EP

[
∂

∂xi
f(x, Y )

]
, (G.120)

where ei denotes the unit vector with the i-th entry 1, (a) follows from P is independent of
x, (b) follows from the dominated convergence theorem. So we have

∇fP (x) =
∂

∂x
EP [f(x, Y )] = EP

[
∂

∂x
f(x, Y )

]
. (G.121)

Next, we use (G.121) to show fP is continuously differentiable. For a sequence of xn
converges to x, we have

∇fP (xn) = EP
[
∂

∂x
f(xn, Y )

]
(c)−→ EP

[
∂

∂x
f(x, Y )

]
= ∇fP (x),

where (c) is supported by the bounded convergence theorem since the partial derivative
∂
∂xf(xn, y) is bounded and pointwise converges to ∂

∂xf(x, y) for any y.

Sparse Reward Function. We will show that fP depends on the same set of relevant
variables as in f . By (28), we have

fP (x1, . . . , xdx) = EP [f(x1, . . . , xdx , Y )] = EP [g(xi1 , . . . , xid∗x , Y )] = gP (xi1 , . . . , xid∗x ).

Global Relevance. By Assumption 4, we know that

∂f(x, y)

∂xi
≥ C or ≤ −C, ∀i ∈ J,x ∈ X , y ∈ Y.

So we have ∣∣∣∣∂fP (x)

∂xi

∣∣∣∣ =

∣∣∣∣EP [∂f(x, Y )

∂xi

]∣∣∣∣ ≥ C.
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Second-order Smoothness. For any x1,x2 ∈ X , we have∣∣fP (x1)− fP (x2)−∇fP (x2)T (x1 − x2)
∣∣

(a)
=

∣∣∣∣∣EP [f(x1, Y )]− EP [f(x2, Y )]− EP
[
∂

∂x
f(x2, Y )

]T
(x1 − x2)

∣∣∣∣∣
(b)
=

∣∣∣∣EP [f(x1, y)− f(x1, y)− ∂

∂x
f(x2, Y )T (x1 − x2)

]∣∣∣∣
≤ EP

[∣∣∣∣f(x1, y)− f(x1, y)− ∂

∂x
f(x2, Y )T (x1 − x2)

∣∣∣∣]
(c)

≤ L‖x1 − x2‖2∞,

where (a) follows from (G.120), (b) follows from the independence of x and P , (c) follows
from Assumsption 5. �

G.2 Proof of Theorem 17

We introduce some notations before the proof. Let R(m) denote the regret incurred in
stage m and R2(m) denote the regret incurred in the exploitation phase of stage m. We
also define Mf = maxx∈X ,y∈Y f(x, y), m0 = b1/b3c.

For the stage m ≤ m0, the conditions of Propostion 5 are not satisfied because of hm =
1/m > b3. So there’s no probability guarantee for the BV-LASSO to correctly select the
variables. Then the exploitation phase will incur a linear growing regret R2(m) = O(nm).
While for m > m0, the BV-LASSO correctly selects the variables with a high probablity

and the regret R2(m) = O(nm)P(Ĵm 6= J) + P(Ĵm = J)O(n
1−1/(d∗x+3)
m log(nm)). Thus we

decompose the total regret in T periods into two parts

R(T ) =

m0∑
m=1

lmMf +R2(m) +

M∑
m=m0+1

lmMf +R2(m)

=

M∑
m=1

lmMf +

m0∑
m=1

nmMf +

M∑
m=m0+1

O
(
n(d∗x+2)/(d∗x+3)
m log nm

)
P(Ĵm = J) (G.122)

+ nmMfP(Ĵm 6= J), (G.123)

where M is number of total stages when the algorithm proceeds to period T .
Next we will give upper bound for each term in (G.123). For the ease of notation, we

denote Sm :=
∑m

i=1 li. For the first term in (G.123), by the definition of lm, we have

Sm =
m∑
i=1

li = (dx + 4)b4

m∑
i=1

idx+3 ≤ (dx + 4)b4

∫ m+1

1
xdx+3dx ≤ b4(m+ 1)dx+4. (G.124)

Also, we have for any m,

Sm =
m∑
i=1

li ≥ (dx + 4)b4(1 +

∫ m

1
xdx+3dx) ≥ b4mdx+4. (G.125)
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For the second term in (G.123), we have

m0∑
m=1

nm = b4

m0∑
m=1

2m ≤ b42m0+1 ≤ b421+1/b3 , (G.126)

where the last inequality follows from the definition of m0. The third term in (G.123) is easy
to handle as P(Ĵm = J) ≤ 1. For the last term in (G.123), we use Propsition 5 to bound
P(Ĵm 6= J). The conditions of Proposition 5 are satisfied by (G.125), b4 ≥ log(2b0)/b1 and
m ≥ m0. Thus, we have

P(Ĵm 6= J)
(a)

≤ dx exp

{
1

2

(
h−dxm (1 + log 2 + log b0)− b1Smh4

m

)}
(b)
= dx exp

{
1

2

(
mdx(1 + log 2 + log b0)− b1Smm−4

)}
(c)

≤ dx exp

{
1

2

(
mdx(1 + log 2 + log b0)− (1 + 2 log 2 + log b0 + 2 log dx)mdx

)}
(d)
= dx exp

{
−1

2
mdx (log 2 + 2 log dx)

}
(e)

≤ exp

{
−1

2
m log 2

}
(f)
= (nm/b4)−1/2

(g)

≤ (nm/b4)−1/(d∗x+3), (G.127)

where (a) follows from Proposition 5, (b) follows from hm = 1/m, (c) follows from (G.125)
and definition of b4, (e) follows from dx ≥ 1,mdx ≥ m, (f) follows from the definition
nm = b42m and (g) follows from nm/b4 = 2m ≥ 1 and d∗x ≥ 0. Thus, the last term in

(G.123) has the order O(n
1−1/(d∗x+3)
m ).

Next, we give an upper bound for M . Recall that M is the minimal integer such that

SM +
M∑
m=1

nm ≥ T. (G.128)

We claim that M ≤ log(T/b4). To see this, substituting M by log(T/b4) into the LHS of
(G.128), we have

SM +

M∑
m=1

nm ≥
M∑
m=1

nm ≥ b42M+1 ≥ 2T ≥ T. (G.129)
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At the end, combining (G.123), (G.124), (G.126), (G.127), we have

R(T ) ≤Mfb4(M + 1)dx+4 + 2Mfb421/b3 +

M∑
m=1

O
(
n(d∗x+2)/(d∗x+3)
m log nm

)
+

M∑
m=1

Mfnm(nm/b4)−1/(d∗x+3)

(a)

≤ Mfb4(M + 1)dx+4 + 2Mfb421/b3 +

M∑
m=1

O
(
n(d∗x+2)/(d∗x+3)
m log nm

)
(b)

≤ Mfb4(M + 1)dx+4 + 2Mfb421/b3 +O
(

2(M+1)(d∗x+2)/(d∗x+3) log T
)

(c)

≤ Mfb4(log(T/b4) + 1)dx+4 + 2Mfb421/b3 +O
(
T (d∗x+2)/(d∗x+3) log T

)
(d)
= O

(
T (d∗x+2)/(d∗x+3) log T

)
,

where (a) follows from n
1−1/(d∗x+3)
m = n

(d∗x+2)/(d∗x+3)
m , (b) follows from nm = b42m ≤ T ,

and
∑M

m=1 2m(d∗x+2)/(d∗x+3) = 2(M+1)(d∗x+2)/(d∗x+3)−1
2(d
∗
x+2)/(d∗x+3)−1

≤ 2(M+1)(d∗x+2)/(d∗x+3), (c) follows from

M ≤ log(T/b4), (d) follows from T ≥
(
b421/b3

)3/2
and (log T )dx+4 ≤ T 2/3. �

G.3 Proof of Proposition 18

For simplicity, we use θ̂ instead of θOLS in (29). Recalling the definitions for the design
matrix A and the sample covariance matrix ψ̂ in (15), θ∗ and ρ in (14), we have

θ̂ = (Ψ̂)−1ATZ = θ∗ + (Ψ̂)−1ATρ := θ∗ + Fρ. (G.130)

Then

FF T = (Ψ̂)−1ATA(Ψ̂)−1 = (Ψ̂)−1.

By (B.23), we have

P(λmin(Ψ̂) ≤ (1− α)λ) ≤ (dx + 1)

(
e−α

(1− α)(1−α)

)nλ/(1+dx/4)

. (G.131)

Conditional on the event λmin(Ψ̂) ≤ (1− α)λ, we have

n∑
k=1

f2
ik = (FF T )jj = eTj FF

Tej ≤ λmax(FF T ) = λmax((Ψ̂)−1) = λ−1
min(Ψ̂) ≤ 1

(1− α)λ
.

Next, by equation (G.130), we have

|θ̂i − θ∗i | =
(∣∣F (∆ +

1√
n
ε)
∣∣)

i

. (G.132)
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We give an upper bound for the first term in (G.132),

(|F∆|)i ≤

(
n∑
k=1

f2
ik

)1/2

‖∆‖2 ≤
√
λ−1

min(Ψ̂)‖∆‖2 ≤

√
64

(1− α)λ
Ldxh

2, (G.133)

where the last inequality follows from equation (B.30). The second term in (G.132),(
1√
n
Fε

)
i

=

√
1

n

n∑
k=1

fikεk

is a mean-zero
√

1
n

∑n
k=1 f

2
ikσ sub-Gaussian random variable. Then, setting

r =
8Ldx +

√
2√

(1− α)λ
h2, (G.134)

and conditional on λmin(Ψ̂) ≤ (1− α)λ, we have

P(|θ̂i − θ∗i | ≥ r) = P
((
|F (∆ +

1√
n
ε)|
)
i

≥ r
)

≤ P
((

1√
n
Fε

)
i

≥ r − (|F∆|)i
)

≤ P

((
1√
n
Fε

)
i

≥

√
2

(1− α)λ
h2

)
≤ exp(−nh4/σ2). (G.135)

For i ∈ J , |θ∗i | ≥ Ch; for i /∈ J , θ∗i = 0. Then, if r ≤ 0.5Ch, we can seperate J, Jc. Namely,
when r satisfies (G.134) and

h ≤
√

(1− α)λC

2(8Ldx +
√

2)
,

and setting α = 0.5, λ = µm
12 , we have

P
(
Ĵj = J

)
≥ 1− 2(dx + 1) exp

(
−nh4 min

{
1

σ2
,

µm
6(4 + dx)

})
, (G.136)

where (G.136) follows from (G.131) and (G.135). �

G.4 Proof of Corollary 19

Define a good event G := {
∣∣θ̂i − θ∗i ∣∣ < 0.5Ch, ∀i}. We first show that under the event G,

Ĵj = J . Recalling that for i ∈ J , |θ∗i | ≥ Ch; for i /∈ J , θ∗i = 0. So on the event G, we have

max
j∈Jc
|θ̂j | < 0.5Ch, min

j∈J
|θ̂j | > 0.5Ch,

which implies
min
j∈J
|θ̂j | > max

j∈Jc
|θ̂j |.
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So the variables picked up the d∗x largest estimates is the true relevant set, namely, Ĵj = J .

Next, we give an upper bound for the probability of Gc.

P(Ĵj 6= J) ≤ P(Gc) = P
(
∃i,
∣∣θ̂i − θ∗i ∣∣ ≥ 0.5Ch

)
≤ dxP

(∣∣θ̂i − θ∗i ∣∣ ≥ 0.5Ch
)

(a)
= dxP

((∣∣F (∆ +
1√
n
ε)
∣∣)

i

≥ 0.5Ch

)
(b)

≤ dxP

((
1√
n
Fε

)
i

≥ 0.5Ch−

√
64

(1− α)λ
Ldxh

2

)
, (G.137)

where (a) follows from (G.132), (b) follows from (G.133). Setting α = 0.5, λ = µm
12 , if h is

small enough such that

h <
C
√
µm

64
√

6Ldx
,

then we have √
64

(1− α)λ
Ldxh

2 <
1

4
Ch,

and

(G.137) ≤ dxP
((

1√
n
Fε

)
i

≥ 1

4
Ch

)
≤ dx exp

(
−µmC

2

768σ2
nh2

)
.

Thus, combining with (G.131), we have

P
(
Ĵj = J

)
≥ 1− 2(dx + 1) exp

(
−nh2 min

{
µmC

2

768σ2
,

µm
6(4 + dx)

})
, (G.138)

�

G.5 Proof of Theorem 20

We first show a probability bound for the variable selection, which is parallel to Proposition
4.

Proposition 21 (Variable Selection of LASSO in linear model) Under Assumption

1, 7, 8, choosing λ = C′(1+3γ)λ

4(1+γ)
√
dx

in Algorithm 3, we have the following high probablity bound

P
(
Ĵk = supp{θk}

)
≥ 1− b′0 exp(−b′1n), for k ∈ [K] (G.139)

where C ′ ≤ min{(θk)j : (θk)j 6= 0 for k ∈ [K], j ∈ [dx]} and the constants b′0, b′1 show in
(G.140).

Proof The proof mainly follows the same argument as in Proposition 4. The only difference
is that h = 1 and the approximation error ∆ = 0 since the “best” linear approximation in
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(7) is the true parameter θk in (32). So there’s no need to consider the approximation error
in choosing λ. After choosing

λ =
C ′(1 + 3γ)λ

4(1 + γ)
√
dx
,

we revise the constants c5, c6 in (B.40) and (B.44):

c5 =
C ′2λ2(1− γ)2(1 + 3γ)2

16(1 + γ)(3 + γ)λσ2dx
, c6 =

C ′2(1 + 3γ)λ

16(1 + γ)σ2
,

and the constants b0, b1 in (B.51)

b′0 := 2 max{2(dx + 1), d2
x/4},

b′1 := c1 ∧ c3 ∧ c5 ∧ c6

=

{
c1 ∧ (1− γ)2λ2/(8(d∗x)2) ∧ C

′2λ2(1− γ)2(1 + 3γ)2

16(1 + γ)(3 + γ)λσ2dx
∧ C

′2(1 + 3γ)λ

16(1 + γ)σ2

}
,

c1 :=
λ

2(1+γ)(1+dx/4)
min

{
1−γ+(3γ+1) log

(
3γ+1

2+2γ

)
, γ−1+(3+γ) log

(
3+γ

2+2γ

)}
.

(G.140)

Next, we state the margin condition and arm optimality condition (see Bastani and
Bayati 2020 for more discussion).

Assumption 9 (Margin Condition) There exists a constant C0 > 0 such that for all i
and j in [K] where i 6= j, P

(
0 < |XT (θi − θj)| ≤ κ

)
≤ C0κ for all κ > 0.

Assumption 10 (Arm Optimality Condition) Let Kopt and Ksub be mutually exclusive
sets that include all K arms. Sub-optimal arms i ∈ Ksub satisfy XTθi < maxj 6=iX

Tθj − h
for some h > 0 and every X ∈ X . On the other hand, each optimal arm i ∈ Kopt, has a
corresponding set

Ui :=

{
X
∣∣XTθi > max

j 6=i
XTθj + h

}
.

We assume there exists p∗ > 0 such that mini∈Kopt P(Ui) ≥ p∗. Define Σi := E[XXT |X ∈
Ui] for all i ∈ [K]. Then, there exists φ0 > 0 such that for all i ∈ [K] the minimum
eigenvalue λmin(Σi) ≥ φ0 > 0.

Finally, we prove the upper bound for the combined regret. Recall that the total regret
in T periods can be upper bounded by

R(T ) ≤ 2Knmax
x,k
|xtθk|+ P(∀ k, Ĵk = supp{θk})R2(T −Kn)

+ 2 max
x,k
|xtθk|P(∃k, Ĵk 6= supp{θk})(T −Kn).
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where n = log T/b′1. Then by Proposition 21, we have

P(∀ k, Ĵk = supp{θk}) ≥ 1−Kb′0 exp(−b′1n),

where b′0 = O(d2
x), b′1 = O(1/dx). Further relaxing the right-hand side, we have

R(T ) ≤ 2K log T max
x,k
|xtθk|/b′1 +R2(T −Kn) + 2 max

x,k
|xtθk|Kb′0 exp(−b′1n)T

= O(Kdx log T ) +O(R2(T )) +O(Kd2
x)

= O
(
K
(
dx + (d∗x)3

)
log T +Kd2

x

)
,

where the last equation follows from R2(T ) = O((d∗x)3 log T ). �
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