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Abstract

Network data are ubiquitous in modern machine learning, with tasks of interest includ-
ing node classification, node clustering and link prediction. A frequent approach begins
by learning an Euclidean embedding of the network, to which algorithms developed for
vector-valued data are applied. For large networks, embeddings are learned using stochas-
tic gradient methods where the sub-sampling scheme can be freely chosen. Despite the
strong empirical performance of such methods, they are not well understood theoretically.
Our work encapsulates representation methods using a subsampling approach, such as
node2vec, into a single unifying framework. We prove, under the assumption that the
graph is exchangeable, that the distribution of the learned embedding vectors asymptoti-
cally decouples. Moreover, we characterize the asymptotic distribution and provided rates
of convergence, in terms of the latent parameters, which includes the choice of loss function
and the embedding dimension. This provides a theoretical foundation to understand what
the embedding vectors represent and how well these methods perform on downstream tasks.
Notably, we observe that typically used loss functions may lead to shortcomings, such as a
lack of Fisher consistency.
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1. Introduction

Network data are commonplace in modern-day data analysis tasks. Some examples of
network data include social networks detailing interactions between users, citation and
knowledge networks between academic papers, and protein-protein interaction networks,
where the presence of an edge indicates that two proteins in a common cell interact with
each other. With such data, there are several types of tasks we may be interested in. Within
a citation network, we can classify different papers as belonging to particular subfields (a
community detection task; e.g Fortunato, 2010; Fortunato and Hric, 2016). In protein-
protein interaction networks, it is too costly to examine whether every protein pair will
interact together (Qi et al., 2006), and so given a partially observed network we are interested
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in predicting the values of the unobserved edges. As users join a social network, they are
recommended individuals who they could interact with (Hasan and Zaki, 2011).

A highly successful approach to solve network prediction tasks is to first learn an em-
bedding or latent representation of the network into some manifold, usually a Euclidean
space. A classical way of doing so is to perform principal component analysis or dimension
reduction on the Laplacian of the adjacency matrix of the network (Belkin and Niyogi,
2003). This originates from spectral clustering methods (Pothen et al., 1990; Shi and Ma-
lik, 2000; Ng et al., 2001), where a clustering algorithm is applied to the matrix formed
with the eigenvectors corresponding to the top k-eigenvalues of a Laplacian matrix. One
shortcoming is that for large data sets, computing the SVD of a large matrix to obtain
the eigenvectors becomes increasingly computationally restrictive. Approaches which scale
better for larger data sets originate from natural language processing (NLP). DeepWalk
(Perozzi et al., 2014) and node2vec (Grover and Leskovec, 2016) are both network embed-
ding methods which apply embedding methods designed for NLP, by treating various types
of random walks on a graph as “sentences”, with nodes as “words” within a vocabulary. We
refer to Hamilton et al. (2017b) and Cai et al. (2018) for comprehensive overviews of algo-
rithms for creating network embeddings. See Agrawal et al. (2021) for a discussion on how
such embedding methods are related to other classical methods such as multidimensional
scaling, and embedding methods for other data types.

To obtain an embedding of the network, each node or vertex of the network (say u) is
represented by a single d-dimensional vector ωu ∈ Rd, which are learned by minimizing a loss
function between features of the network and the collection of embedding vectors. There
are several benefits to this approach. As the learned embeddings capture latent information
of each node through a Euclidean vector, we can use traditional machine learning methods
(such as logistic regression) to perform a downstream task. The fact that the embeddings lie
within a Euclidean space also means that they are amenable to (stochastic) gradient based
optimization. One important point is that, unlike in an i.i.d setting where subsamples are
essentially always obtained via sampling uniformly at random, here there is substantial
freedom in the way in which subsampling is performed. Veitch et al. (2018) shows that this
choice has a significant influence in downstream task performance.

Despite their applied success, our current theoretical understanding of methods such as
node2vec are lacking. We currently lack quantitative descriptions of what the embedding
vectors represent and the information they contain, which has implications for whether the
learned embeddings can be useful for downstream tasks. We also do not have quantitative
descriptions for how the choice of subsampling scheme affects learned representations. The
contributions of our paper in addressing this are threefold:

a) Under the assumption that the observed network arises from an exchangeable graph,
we describe the limiting distribution of the embeddings learned via procedures which
depend on minimizing losses formed over random subsamples of a network, such as
node2vec (Grover and Leskovec, 2016). The limiting distribution depends both on
the underlying model of the graph and the choice of subsampling scheme, and we
describe it explicitly for common choices of subsampling schemes, such as uniform
edge sampling (Tang et al., 2015) or random-walk samplers (Perozzi et al., 2014;
Grover and Leskovec, 2016).
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b) Embedding methods are frequently learned via minimizing losses which depend on
the embedding vectors only through their pairwise inner products. We show that this
restricts the class of networks for which an informative embedding can be learned,
and that networks generated from distinct probabilistic models can have embeddings
which are asymptotically indistinguishable. We also show that this can be fixed by
changing the loss to use an indefinite or Krein inner product between the embedding
vectors. We illustrate on real data that doing so can lead to improved performance
in downstream tasks.

c) We show that for sampling schemes based upon performing random walks on the
graph, the learned embeddings are scale-invariant in the following sense. Suppose that
we have two identical copies of a network generated from a sparsified exchangeable
graph, and on one we delete each edge with probability p ∈ (0, 1). Then in the limit
as the number of vertices increases to infinity, the asymptotic distributions of the
embedding vectors trained on the two networks will be asymptotically distinguishable.
We highlight that this may provide some explanation as to the desirability of using
random walk based methods for learning embeddings of sparse networks.

1.1 Motivation

We note that several approaches to learn network embeddings (Perozzi et al., 2014; Tang
et al., 2015; Grover and Leskovec, 2016) do so by performing stochastic gradient updates of
the embedding vectors ωi ∈ Rd by updates

ωi ←− ωi−η
∂L
∂ωi

where L = −
∑

(i,j)∈P

log σ
(
〈ωi, ωj〉

)
−
∑

(i,j)∈N

log
{

1−σ
(
〈ωi, ωj〉

)}
. (1)

Here σ(x) = (1 + e−x)−1 is the sigmoid function, the sets P and N are pairs of nodes
which are chosen randomly at each iteration (referred to as positive and negative samples
respectively) and η > 0 is a step size. The goal of the objective is to force pairs of vertices
within P to be close in the embedding space, and those within N to be far apart. At
the most basic level, we could just have that P consists of edges within the graph and N
non-edges, so that vertices which are disconnected from each other are further apart in the
embedding space than those which are connected. In a scheme such as node2vec, P arises
through a random walk on the network, and N arises by choosing vertices according to a
unigram negative sampling distribution for each vertex in the random walk P.

For simplicity, assume that the only information available for training is a fully observed
adjacency matrix (aij)i,j of a network G of size n. Moreover, we let P and N be random
sets which consist only of pairs of vertices which are connected (aij = 1) and not connected
(aij = 0) respectively. In this case, if we write S(G) = P ∪ N , then the algorithm scheme
described in (1) arises from trying to minimize the empirical risk function (which depends
on the underlying graph G)

Rn(ω1, . . . , ωn) :=
∑
i 6=j

P
(
(i, j) ∈ S(G) | G

)
`
(
〈ωi, ωj〉, aij

)
(2)

with a stochastic optimization scheme (Robbins and Monro, 1951), where we write `(y, x) =
−x log σ(y)− (1− x) log(1− σ(y)) for the cross entropy loss.
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This means that the optimization scheme in (1) attempts to find a minimizer (ω̂1, . . . , ω̂n)
of the function Rn(ω1, . . . , ωn) defined in (2). We ask several questions about these mini-
mizers where there is currently little understanding:

Q1: To what extent is there a unique minimizer to the empirical risk (2)?

Q2: Does the distribution of the learnt embedding vectors (ω̂1, . . . , ω̂n) change as a result
of changing the underlying sampling scheme? If so, can we describe quantitatively
how?

Q3: During learning of the embedding vectors, are we using a loss which limits the in-
formation we can capture in a learned representation? If so, can we fix this in some
way?

Answering these questions allow us to evaluate the impact of various heuristic choices
made in the design of algorithms such as node2vec, where our results will allow us to
describe the impact with respect to downstream tasks such as edge prediction. We go into
more depth into these questions below, and discuss in Section 1.5 how our main results help
address these questions.

1.1.1 Uniqueness of minimizers of the empirical risk

We highlight that the loss and risk functions in (1) and (2) are invariant under any joint
transformation of the embedding vectors ωi → Qωi by an orthogonal matrix Q. As a result,
we can at most ask whether the gram matrix Ωij = 〈ωi, ωj〉 induced by the embedding
vectors is uniquely characterized. This is challenging as the embedding dimension d is sig-
nificantly less than the number of vertices n - even for networks involving millions of nodes,
the embedding dimensions used by practitioners are of the order of magnitude of hundreds.
As a result the gram matrix is rank constrained. Consequently, when reformulating (2)
to optimize over the matrix Ω, the optimization domain is non-convex, meaning answering
this question is non-trivial. Answering this allows us to understand whether the embed-
ding dimension fundamentally influences the representation we are learning, or instead only
influences how accurately we can learn such a representation.

1.1.2 Dependence of embeddings on the sampling scheme choice in learning

While we know that random-walk schemes such as node2vec are empirically successful, there
has been little discussion as to how the representation learnt by such schemes compares to
(for example) schemes where we sample vertices randomly and look at the induced subgraph.
This is useful for understanding their performance on downstream tasks such as community
detection or link prediction. Another useful example is for when embeddings are used for
causal inference (Veitch et al., 2019), where there is the needed to validate assumptions
that the embeddings containing information relevant to the prediction of propensity scores
and expected outcomes. A final example arises in methods which try and attempt to “de-
bias” embeddings through the use of adaptive sampling schemes (Rahman et al., 2019), to
understand what extent they satisfy different fairness criteria.

We are also interested in understanding how the hyperparameters of a sampling scheme
affect the expected value and variance of gradient estimates when performing stochastic
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gradient descent. The distinction is important, as the expected value influences the em-
pirical risk being minimized - therefore the underlying representation - and the variance
the speed at which an optimization algorithm converges (Dekel et al., 2012). When using
stochastic gradient descent in an i.i.d data setting, the mini-batch size does not effect the
expected value of the gradient estimate given the observed data, but only its variance, which
decreases as the mini-batch size increases. However, for a scheme like node2vec, it is not
clear whether hyperparameters such as the random walk length, or the unigram parameter
affect the expectation or variance of the gradient estimates (conditional on the graph G).

1.1.3 Information-limiting loss functions

One important property of representations which make them useful for downstream tasks are
their ability to differentiate between different graph structures. One way to examine this
is to consider different probabilistic models for a network, and to then examine whether
the resulting embeddings are distinguishable from each other. If they are not, then this
suggests some information about the network has been lost in learning the representation.
By examining the range of distributions which have the same learned representation, we
can understand this information loss and the effect on downstream task performance.

1.2 Overview of results

1.2.1 Embedding methods implicitly fit graphon models

We highlight that the loss in (2) is the same as the loss obtained by maximizing the log-
likelihood formed by a probabilistic model for the network of the form

aij |ωi, ωj ∼ Bernoulli
(
σ(〈ωi, ωj〉)

)
independently for i 6= j

ωi ∼ Unif(C) independently for i ∈ [n],
(3)

using stochastic gradient ascent. Here C ⊆ Rd is a closed set corresponding to a constrained
set for the embedding vectors. In the limit as the number of vertices increases to infinity,
such a model corresponds to an exchangeable graph (Lovász, 2012), as the infinite adjacency
matrices are invariant to a permutation of the labels of the vertices.

In an exchangeable graph, each vertex u has a latent feature λu ∼ Unif[0, 1], with
edges arising independently with auv |λu, λv ∼ Bernoulli(W (λu, λv)) for a function W :
[0, 1]2 → [0, 1] called a graphon; see Lovász (2012) for an overview. Such models can be
thought of as generalizations of a stochastic block model (Holland et al., 1983), which have
a correspondence to when the function W is a piecewise constant function on sets Ai ×Aj
for some partition (Ai)i∈[k] of [0, 1], with the partitions acting as the different communities
within the SBM. If πi is the size of Ai, and we write Wij for the value of W (l, l′) on Ai×Aj ,
this is equivalent to the usual presentation of a stochastic block model

c(u)
i.i.d∼ Categorical(π), auv | c(u), c(v)

indep∼ Bernoulli(Wc(u),c(v)). (4)

where c(i) is the community label of vertex u. One can also consider sparsified exchangeable
graphs, where for a graph on n vertices, edges are generated with probability Wn(λu, λv) =
ρnW (λu, λv) for a graphon W and a sparsity factor ρn → 0 as n → ∞. This accounts for
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the fact that most real world graphs are not “dense” and do not have the number of edges
scaling as O(n2); in a sparsified graphon, the number of edges now scales as O(ρnn

2).
For the purposes of theoretical analysis, we look at the minimizers of (2) when the

network G arises as a finite sample observation from a sparsified exchangeable graph whose
graphon is sufficiently regular. We then examine statistically the behavior of the minimizers
as the number of vertices grows towards infinity. As embedding methods are frequently used
on very large networks, a large sample statistical analysis is well suited for this task. One
important observation is that even when the observed data is from a sparse graph, embedding
methods which fall under (3) are implicitly fitting a dense model to the data. As we know
empirically that embedding methods such as node2vec produce useful representations in
sparse settings, we introduce the sparsity to allow some insight as to how this can occur.

1.2.2 Types of results obtained

We now discuss our main results, with a general overview followed by explicit examples. In
Theorems 10 and 19, we show that under regularity assumptions on the graphon, in the
limit as the number of vertices increases to infinity, we have for any sequence of minimizers
(ω̂1, . . . , ω̂n) to Rn(ω1, . . . , ωn) that

1

n2

∑
i,j

∣∣〈ω̂i, ω̂j〉 −K(λi, λj)
∣∣ = Op(rn) (5)

for a function K : [0, 1]2 → R we determine, and rate rn → 0. Both K and rn depend on the
graphon W and the choice of sampling scheme. The rate also depends on the embedding
dimension d; we note that our results may sometimes require d → ∞ as n → ∞ in order
for rn → 0, but will always do so sub-linearly with n. As a result (5) allows us to guarantee
that on average, the inner products between embedding vectors contain some information
about the underlying structure of the graph, as parameterized through the graphon function
W . One notable application of this type of result is that it allows us to give guarantees
for the asymptotic risk on edge prediction tasks, when using the values Sij = 〈ω̂i, ω̂j〉 as
scores to threshold for whether there is the presence of an edge (i, j) in the graph. Our
results apply to sparsified exchangeable graphs whose graphons are either piecewise constant
(corresponding to a stochastic block model), or piecewise Hölder continuous.

To show how our results address the questions introduced in Section 1.1, and to highlight
the connection with using the embedding vectors for edge prediction tasks, we give explicit
examples (with minimal additiional notation) of results which can be obtained from the
main theorems of the paper. For the remainder of the section, suppose that

`(y, x) := −x log(σ(y))− (1− x) log(1− σ(y))
(

with σ(y) =
ey

1 + ey

)
denotes the cross-entropy loss function (where y ∈ R and x ∈ {0, 1}). We consider graphs
which arise from a sub-family of stochastic block models - frequently called SBM(p, q, κ)
models - where a graph of size n is generated via the probabilistic model

c(u)
i.i.d∼ Unif({1, . . . , κ}), auv | c(u), c(v)

indep∼

{
Bernoulli(ρnp) if c(u) = c(v),

Bernoulli(ρnq) if c(u) 6= c(v).
(6)

6



Asymptotics of Network Embeddings Learned via Subsampling

Here ρn is a sparsifying sequence. For our results below, we will consider the cases when
ρn = 1 or ρn = (log n)2/n (so ρn → 0 in the second case). With regards to the choice of
sampling schemes, we consider two choices:

i) Uniform vertex sampling: A sampling scheme where we select 100 vertices uniformly
at random, and then form a loss over the induced sub-graph formed by these vertices.

ii) node2vec: The sampling scheme in node2vec where we use a walk length of 50, select
1 negative samples per vertex using a unigram distribution with α = 0.75. (See either
Grover and Leskovec (2016), or Algorithm 4 in Section 4, for more details.)

Recall that defining a sampling scheme and a loss function induces a empirical risk as given
in (2), with the sampling scheme defining sampling probabilities P((u, v) ∈ S(G) | G). Below
we will give theorem statements for two types of empirical risks, depending on how we
combine two embedding vectors ωu and ωv to give a scalar. The first uses a regular positive
definite inner product 〈ωu, ωv〉, and the second uses a Krein inner product, which takes the
form 〈ωu, Sωv〉 where S is a diagonal matrix with entries {+1,−1}.

Supposing we have embedding vectors ωu ∈ R2d, we consider the risks

Rn(ω1, . . . , ωn) :=
∑
i 6=j

P
(
(i, j) ∈ S(G) | G

)
`
(
〈ωi, ωj〉, aij

)
, (7)

RBn (ω1, . . . , ωn) :=
∑
i 6=j

P
(
(i, j) ∈ S(G) | G

)
`
(
〈ωi, Sd ωj〉, aij

)
, (8)

where Sd = diag(Id,−Id) ∈ R2d×2d and Id ∈ Rd×d is the d-dimensional identity matrix.
With this, we are now in a position to state results of the form given in (5). As it is
easier to state results when using the second risk RBn (ω1, . . . , ωn), we will begin with this,
and state two results corresponding to either the uniform vertex sampling scheme, or the
node2vec sampling scheme. We then discuss implications of the results afterwards.

Theorem 1 Suppose that we use the uniform vertex sampling scheme described above, we
choose the embedding dimension d = 2κ, and ρn = 1 for all n. Then for any sequence of
minimizers (ω̂1, . . . , ω̂n) to RBn (ω1, . . . , ωn), we have that

1

n2

∑
i,j

∣∣〈ω̂i, Sd ω̂j〉 −Kc(i),c(j)

∣∣→ 0

in probability as n→∞, where K ∈ Rκ×κ is the matrix

Klm =

{
log(p/(1− p)) if l = m,

log(q/(1− q)) if l 6= m

Theorem 2 Suppose in Theorem 1 we instead use the node2vec sampling scheme described
earlier, and now either ρn = 1 or ρn = (log n)2/n. Then the same convergence guarantee
holds, except now the matrix K ∈ Rκ×κ takes the form

Klm = log
( pκ

1.02(1− ρnp)(p+ (κ− 1)q

)
if l = m,

= log
( qκ

1.02(1− ρnq)(p+ (κ− 1)q

)
if l 6= m.
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With these two results, we make a few observations:

i) In our convergence theorems, we say that for any sequence of minimizers, the
matrix (〈ω̂i, Sd ω̂j〉)i,j will have the same limiting distribution. Although here we
explicitly choose d = 2κ, d can be any sequence which which diverges to infinity
(provided it does so sufficiently slowly) and have the same result hold. Consequently,
this suggests that up to symmetry and statistical error, the minimizers of the empirical
risk will be essentially unique, giving an answer to Q1.

ii) For different sampling schemes, we are able to give a closed form description of the
limiting distribution of the matrices (〈ω̂i, Sd ω̂j〉)i,j , and we can see that they are
different for different sampling schemes. This affirms Q2 as posed above in the positive.
One interesting observation from the Theorems 1 and 2 is the dependence on the
sparsity factor. While a uniform vertex sampling scheme does not work well in the
sparsified setting (and so we give convergence results only when ρn = 1) in node2vec
the representation remains stable in the limit when ρn → 0.

iii) Theorem 1 tells us that if we use a uniform sampling scheme, then using the Krein
inner product during learning and the Sij = 〈ω̂i, Sdω̂j〉 as scores, we are able to
perform edge prediction up to the information theoretic threshold.

iv) If in Theorem 2 we instead let the walk length in node2vec to be of length k, the 1.02
term in the limiting distribution for node2vec would be replaced by 1 + k−1. This
means that in the limit k → ∞, the limiting distribution is independent of the walk
length. We discuss later in Section 4.1 the roles of the hyperparameters in node2vec,
and argue that the walk length places a role in only reducing the variance of gradient
estimates.

So far we have only given results for minimizers of the loss RBn (ω1, . . . , ωn). We now
give an example of a convergence result for Rn(ω1, . . . , ωn), and afterwards discuss how this
result addresses Q3 as posed above.

Theorem 3 Suppose the graph arises from a SBM(p, q, 2) model. Let σ−1(y) = log(y/(1−
y) denote the inverse sigmoid function. Suppose that we use the uniform vertex sampling
scheme described above, the embedding dimension satisfies d ≥ 2 and ρn = 1. Then for any
sequence of minimizers (ω̂1, . . . , ω̂n) to Rn(ω1, . . . , ωn), we have that

1

n2

∑
i,j

∣∣〈ω̂i, ω̂j〉 −Kc(i),c(j)

∣∣ = op(1) where K =

(
K11 K12

K12 K11

)
and the values of K11 and K12 depend on p and q as follows:

a) If p ≥ q and p+ q ≥ 1, then K11 = σ−1(p) and K12 = σ−1(q);

b) If p ≥ q and p+ q < 1, then K11 = −K12 = σ−1((1 + p− q)/2);

c) If p < q and p+ q ≥ 1, then K11 = K12 = σ−1((p+ q)/2);

d) Otherwise, K11 = K12 = 0.
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From the above theorem we can see that the representation produced is not an invertible
function of the model from which the data arose. For example in the regime where p ≥ q
and p + q < 1, the representation depends only on the size of the gap p − q, and so one
can choose different values of (p, q) for which the limiting distribution is the same. This
answers the first part of Q3. (We discuss this further in Section 3.4; see the discussion after
Proposition 20.) In contrast, this does not occur in Theorem 1 - the representation learned
is an invertible function of the underlying model. Theorem 3 also highlights that, when
using only the regular inner product during training and scores Sij = 〈ω̂i, ω̂j〉, there are
regimes (such as when p < q) where the scores produced will be unsuitable for purposes of
edge prediction.

The fundamental difference between Theorems 1 and 3 is that the risk RBn (ω1, . . . , ωn)
we consider in Theorem 1 arises by making the implicit assumption that the network arises
from a probabilistic model aij |ωi, ωj ∼ Bernoulli

(
σ(〈ωi, Sd ωj〉)

)
. This means the inverse-

logit matrix of edge probabilities are not constrained to be positive-definite, whereas using
〈ωi, ωj〉 as in (3) to give Rn(ω1, . . . , ωn) places a positive-definite constraint on this matrix.
This can be interpreted as a form of model misspecification of the data generating process.
To address the information loss which occurs when parameterizing the loss through inner
products 〈ωi, ωj〉, we can fix this by replacing it with a Krein inner product. This gives
an answer to the second part of Q3. We later demonstrate that making this change can
lead to improved performance when using the learned embeddings for downstream tasks on
real data (Section 5.2), suggesting these findings are not just an artefact of just the type of
models we consider.

1.3 Related works

There is a large literature looking at embeddings formed via spectral clustering methods
under various network models from a statistical perspective; see e.g Ma et al. (2021); Deng
et al. (2021) for some recent examples. For models supporting a natural community struc-
ture, these frequently take the form of giving guarantees on the behavior of the embed-
dings, and then argue that using a clustering method with the embedding vectors allows
for weak/strong consistency of community detection. See Abbe (2017) for an overview of
the information theoretic thresholds for the different type of recovery guarantees.

Lei and Rinaldo (2015) consider spectral clustering using the eigenvectors of the ad-
jacency matrix for a stochastic block model. Rubin-Delanchy et al. (2017) consider spec-
tral embeddings using both the adjacency matrix and Laplacian matrices from models
arising from generative models of the form Aij |Xi, Xj ∼ Bernoulli(〈Xi, Ip,qXj〉) where
Ip,q = diag(Ip,−Iq)) and the Xi ∈ Rd are i.i.d random variables with p, q, d known and
fixed - such graphs are referred to frequently as dot product graphs. These allow for a
broader class of models than stochastic block models, such as mixed-membership models.
The q = 0 case was considered by Tang and Priebe (2018), with central limit theorem re-
sults given in Levin et al. (2021); see Athreya et al. (2018) for a broader review of statistical
analyses of various methods on these graphs. In Lei (2021), they consider similar models
where Aij |Zi, Zj ∼ Bernoulli(〈Zi, Zj〉K) where K is a Krein space (formally, this is a direct
sum of Hilbert spaces equipped with an indefinite inner product, formed by taking the dif-
ference of the inner products on the summand Hilbert spaces), with their results applying
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to non-negative definite graphons and graphons which are Hölder continuous for exponents
β > 1/2. They then discuss the estimation of the Zi using the eigendecomposition of the
adjacency matrix (which we have noted can be viewed as a type of embedding) from a
functional data analysis perspective. We note that in our work we do not directly assume
a model of such a form, but some of our proofs use some similar ideas.

With regards to embeddings learned via random walk approaches such as node2vec
(Grover and Leskovec, 2016), there are a few works which study modified loss functions.
To be precise, these suppose that each vertex u has two embedding vectors ωu ∈ Rd and
ηu ∈ Rd, with terms of the form 〈ωi, ωj〉 replaced in the loss with 〈ωi, ηj〉, and ωu, ηu are
allowed to vary independently with each other. Qiu et al. (2018) study several different
embedding methods within this context (including those involving random walks) where
they explicitly write down the closed form of the minimizing matrix (〈ωi, ηj〉)ij for the loss
having averaged over the random walk process when d ≥ n and n is fixed. In order to be
always able to write down explicitly the minimizing matrix, they rely on the assumption
that d ≥ n and that ηj and ωj are unconstrained of each other, so that the matrix (〈ωi, ηj〉)ij
is unconstrained. This avoids the issues of non-convexity in the problem. We note that in
our work we are able to handle the case where we enforce the constraints ηj = ωj (as in the
original node2vec paper) and d� n, so we address the non-convexity.

Zhang and Tang (2021) then considers the same minimizing matrix as in Qiu et al. (2018)
for stochastic block models, and examines the best rank d approximation (with respect to
the Frobenius norm) to this matrix, in the regime where n→∞ and d is less than or equal
to the number of communities. We comment that our work gives convergence guarantees
under broad families of sampling schemes, including - but not limited to - those involving
random walks, and for general smooth graphons rather than only stochastic block models.
Veitch et al. (2018) discusses the role of subsampling as a model choice, within the context of
specifying stochastic gradient schemes for empirical risk minimization for learning network
representations, and highlights the role they play in empirical performance.

1.4 Notation and nomenclature

For this section, we write µ for the Lebesgue measure, int(A) the interior of a set A and
cl(A) as the closure of A. We say that a partition Q of X ⊆ Rd, written Q = (Q1, . . . , Qκ),
is a finite collection of pairwise disjoint, connected sets whose union is X, and µ(int(Q)) > 0
and µ(cl(Q) \ int(Q)) = 0 for all Q ∈ Q. For a partition Q of X, we define

Q⊗2 := {Qi ×Qj : Qi, Qj ∈ Q},

which gives a partition of X2. A refinement Q′ of Q is a partition Q′ where for every
Q′ ∈ Q′, there exists a (necessarily unique) Q ∈ Q such that Q′ ⊆ Q.

We say a function f : X → R is Hölder(X,β,M), where X ⊆ [0, 1]d is closed and
β ∈ (0, 1], M > 0 are constants, if

|f(x)− f(y)| ≤M‖x− y‖β2 for all x, y ∈ X.

We say a function f : X → R is piecewise Hölder(X,β,M,Q) if the following holds: for any
Q ∈ Q, the restriction f |Q admits a continuous extension to cl(Q), with this extension being

10
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Hölder(cl(Q), β,M). Similarly, we say that a function f : X → R is piecewise continuous
on Q if for every Q ∈ Q, f |Q admits a continuous extension to cl(Q).

For a graph G = (V, E) with vertex set V ⊆ N and edge set E , we let A = (auv)u,v∈V
denote the adjacency matrix of G, so auv = 1 iff (u, v) ∈ E . Here we consider undirected
graphs with no self-loops, so (u, v) ∈ E ⇐⇒ (v, u) ∈ E ; we count (u, v) and (v, u) together
as one edge. For such a graph, we let

• E[G] =
∑

u<v auv = 1
2

∑
u6=v auv denote the number of edges of G;

• deg(u) =
∑

v auv denotes the degree of the vertex u, so
∑

u deg(u) = 2E[G].

A subsample S(G) of a graph G is a collection of vertices V(S(G)), along with a symmetric
subset of the adjacency matrix of G restricted to V(S(G)); that is, a subset of (auv)u,v∈V(S(G)).
The notation (i, j) ∈ S(G) therefore refers to whether aij is an element of the aforementioned
subset of (auv)u,v∈V(S(G)).

In the paper, we consider sequences of random graphs (Gn)n≥1 generated by a sequence
of graphons (Wn)n≥1. A graphon is a symmetric measurable function W : [0, 1]2 → [0, 1].
To generate these graphs, we draw latent variables λi ∼ U [0, 1] independently for i ∈ N,
and then for i < j set

a
(n)
ij |λi, λj ∼ Bernoulli(Wn(λi, λj))

independently, and a
(n)
ji = a

(n)
ij for j < i. We then let Gn be the graph formed with

adjacency matrix A(n) restricted to the first n vertices. Unless mentioned otherwise, we
understand that references to λi and aij - now dropping the superscript (n) - refer to the
above generative process. For a graphon W , we will denote

• EW =
∫ 1

0

∫ 1
0 W (l, l′) dl dl′ for the edge density of W ;

• W (λ, ·) =
∫ 1

0 W (λ, y) dy for the degree function of W ;

• EW (α) =
∫ 1

0 W (λ, ·)α dλ, so EW (1) = EW .

Given a sequence of random graphs (Gn)n≥1 generated in the above fashion, we define the
random variables En := E[Gn] and degn(u) for the number of edges, and degrees of a vertex
u in Gn, respectively.

For triangular arrays of random variables (Xn,k) and (Yn,k), we say thatXn,k = op;k(Yn,k)
if for all ε > 0, δ > 0, there exists Nε,δ(k) such that for all n ≥ Nε,δ(k) we have that
P
(
|Xn,k| > δ|Yn,k|

)
< ε. If Nδ,ε(k) can be chosen uniformly in k, then we simply write

Xn,k = op(Yn,k). We use similar notation for Op(·), ωp(·) (where Xn = ωp(Yn) iff Yn =
op(Xn)), Ωp(·) (where Xn = Ωp(Yn) iff Yn = Op(Xn)) and Θp(·) (where Xn = Θp(Yn) iff
Xn = Op(Yn) and Yn = Op(Xn)). For non-stochastic quantities, we use similar notation,
except that we drop the subscript p. Throughout, we use the notation | · | to denote the
measure of sets; specifically, if A ⊆ N then |A| is the number of elements of the set A, and
if A ⊆ R then |A| or µ(A) is the Lebesgue measure of the set A. Similarly, for sequences
and functions, we use ‖ · ‖p to denote the `p or Lp norms respectively. The notation [n]
indicates the set of integers {1, . . . , n}.

11
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1.5 Outline of paper

In Section 2, we discuss the main object of study in the paper, and the assumptions we
require throughout. The assumptions concern the data generating process of the observed
network, the behavior of the subsampling scheme used, and the properties of the loss func-
tion used to learn embedding vectors. Section 3 consist of the main theoretical results of the
paper, giving a consistency result for the learned embedding vectors under different subsam-
pling schemes. Section 4 gives examples of subsampling schemes which our approach allows
us to analyze, and highlights a scale invariance property of subsampling schemes which
perform random walks on a graph. In Section 5, we demonstrate on real data the benefit in
using an indefinite or Krein inner product between embedding vectors, and demonstrate the
validity of our theoretical results on simulated data. Proofs are deferred to the appendix,
with a brief outline of the ideas used for the main results given in Appendix B.

2. Framework of analysis

We consider the problem of minimizing the empirical risk function

Rn(ω1, . . . , ωn) =
∑

i,j∈[n],i 6=j

P
(
(i, j) ∈ S(Gn)

∣∣Gn) `(B(ωi, ωj), aij) (9)

where we have that

i) the embedding vectors ωi ∈ Rd are d-dimensional (where d is allowed to grow with
n), with ωi corresponding to the embedding of vertex i of the graph;

ii) ` : R× {0, 1} → [0,∞) is a non-negative loss function;

iii) B : Rd × Rd → R is a (bilinear) similarity measure between embedding vectors; and

iv) S(Gn) refers to a stochastic subsampling scheme of the graph Gn, with Gn representing
a graph on n vertices.

We now discuss our assumptions for the analysis of this object, which relate to a generative
model of the graph Gn, the loss function used, and the properties of the subsampling scheme.
For purposes of readability, we first provide a simplified set of assumptions, and give a
general set of assumptions for which our theoretical results hold in Appendix A.

2.1 Data generating process of the network

We begin by imposing some regularity conditions on the data generating process of the
network. Recall that we assume the graphs (Gn)n≥1 are generated from a graphon process

with latent variables λi
i.i.d∼ Unif[0, 1] and generating graphon Wn(l, l′) = ρnW (l, l′), where

W is a graphon and ρn is a sparsity factor which may shrink to zero as n→∞.

Remark 4 The above assumption corresponds to the graph Gn being an exchangeable graph.
Parameterizing such graphs through a graphon W : [0, 1]2 → R and one dimensional latent
variables λi ∼ U [0, 1] is a canonical choice as a result of the Aldous-Hoover theorem (e.g
Aldous, 1981), and is extensive in the network analysis literature. However, this is not the
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Asymptotics of Network Embeddings Learned via Subsampling

only possible choice for the latent space. More generally we could consider some probability
measure Q on Rq, and a symmetric measurable function W̃ : (Rq)2 → [0, 1], where the graph
is generated by assigning a latent variable λ̃i ∼ Q independently for each vertex, and then
joining vertices i < j with an edge independently of each other with probability W̃ (λ̃i, λ̃j).

From a modelling perspective a higher dimensional latent space is desirable; an inter-
esting fact is that any such graph is equivalent in law to one drawn from a graphon with
latent variables λi ∼ U [0, 1] (Janson, 2009, Theorem 7.1). As a simple illustration of this
fact, suppose that users in a social network graph have characteristics xi ∈ {0, 1}q for some
q ∈ N, and that two individuals i and j are connected in the network (independently of any

other pair of users) with probability W̃ (xi, xj), which depends only on their characteristics.
Assuming that the xi are drawn i.i.d from a distribution p(x) on [0, 1]q, we can always
simulate such a distribution by partitioning [0, 1] according to the probability mass function
p(x), drawing a latent variable λi ∼ U [0, 1], and then assigning xi to the value correspond-
ing to the part of the partition of [0, 1] for which λi landed in. Letting φ : [0, 1] → {0, 1}q
denote this mapping, the model is then equivalent to a one with a graphon W (φ(λi), φ(λj)).
Consequently, our results will be presented mostly in terms of graphons W : [0, 1]2 → [0, 1].
However, they can be extended with relative ease to graphons with higher dimensional latent
spaces, which we discuss further in Section 3.3.

Assumption 1 (Regularity + smoothness of the graphon) We suppose that the se-
quence of graphons (Wn = ρnW )n≥1 generating (Gn)n≥1 are, up to weak equivalence of
graphons (Lovász, 2012), such that i) the graphon W is piecewise Hölder([0, 1]2, βW , LW ,
Q⊗2) for some partition Q of [0, 1] and constants βW ∈ (0, 1], LW ∈ (0,∞); ii) there exist
constants c1, c2 > 0 such that W ≥ c1 and 1 − ρnW ≥ c2 a.e; and iii) the sparsifying
sequence (ρn)n≥1 is such that ρn = ω(log(n)/n).

Remark 5 We will briefly discuss the implications of the above assumptions. The smooth-
ness assumptions in a) are standard when assuming networks are generated from graphon
models (e.g Wolfe and Olhede, 2013; Gao et al., 2015; Klopp et al., 2017; Xu, 2018). The
assumption in b) that W is bounded from below is strong, and is weakened in the most general
assumptions listed in Appendix A. This, along with the assumption that ρn = ω(log(n)/n),
implies that the degree structure of Gn is regular, in that the degrees of every vertex are
roughly of the same order, and will grow to infinity as n does; this is a limitation in that
real world networks do not always exhibit this type of behavior, and have either scale-free
or heavy-tailed degree distributions (e.g Albert et al., 1999; Broido and Clauset, 2019; Zhou
et al., 2020). Regardless of the sparsity factor, graphon models will tend to have structural
deficits; for example, they tend to not give rise to partially isolated substructures (Orbanz,
2017). We note that assumptions on the sparsity factor where nρn grows like (log n)c for
some c ≥ 1, remain standard when using graphons as a tool for theoretical analyses (e.g
Wolfe and Olhede, 2013; Borgs et al., 2015; Klopp et al., 2017; Xu, 2018; Oono and Suzuki,
2021). Future work could extend our results to generalizations of graphon models, such as
graphex models (Veitch and Roy, 2015; Borgs et al., 2019), which better account for issues
of sparsity and regularity of graphs.
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2.2 Assumptions on the loss function and B(ω, ω′)

We now discuss our assumptions on the loss function `(y, x), which we follow with a dis-
cussion as to the form of the functions B(ω, ω′).

Assumption 2 (Form of the loss function) We assume that the loss function is equal
to the cross-entropy loss

`(y, x) := −x log
(
σ(y)

)
− (1− x) log

(
1− σ(y)

)
for y ∈ R, x ∈ {0, 1}, (10)

where σ(y) := (1 + e−y)−1 is the sigmoid function.

We note that our analysis can be extended to loss functions of the form

`(y, x) := −x log
(
F (y)

)
− (1− x) log

(
1− F (y)

)
,

where F corresponds to a distribution which is continuous, symmetric about 0 and strictly
log-concave. This includes the probit loss (Assumption BI), or more general classes of
strictly convex functions `(y, x) which include the squared loss `(y, x) = (y− x)2 (Assump-
tion B). We now discuss the form of B(ω, ω′).

Assumption 3 (Properties of the similarity measure B(ω, ω′)) Supposing we have
embedding vectors ω, ω′ ∈ Rd, we assume that the similarity measure B is equal to one
of the following bilinear forms:

i) B(ω, ω′) = 〈ω, ω′〉 (i.e a regular or definite inner product) or

ii) B(ω, ω′) = 〈ω, Id1,d−d1ω′〉 = 〈ω[1:d1], ω
′
[1:d1]〉 − 〈ω[(d1+1):d], ω

′
[(d1+1):d]〉 for some d1 ≤ d

(i.e an indefinite or Krein inner product);

where Ip,q = diag(Ip,−Iq), ωA = (ωi)i∈A for A ⊆ [d], and [a : b] = {a, a+ 1, . . . , b}.

2.3 Assumptions on the sampling scheme

We now introduce our assumptions on the sampling scheme. For most subsampling schemes,
the probability that the pair (i, j) is part of the subsample S(Gn) depends only on local
features of the underlying graph Gn. We formalize this notion as follows:

Assumption 4 (Strong local convergence) There exists a sequence (fn(λi, λj , aij))n≥1

of σ(W )-measurable functions, with E[fn(λ1, λ2, a12)2] <∞ for each n, such that

max
i,j∈[n],i 6=j

∣∣∣n2P((i, j) ∈ S(Gn)|Gn)

fn(λi, λj , aij)
− 1
∣∣∣ = Op(sn)

for some non-negative sequence sn = o(1).

We refer to the fn as sampling weights. This condition implies that the probability
that (i, j) is sampled depends approximately on only local information, namely the latent
variables λi, λj and the value of aij , i.e that

P
(
(i, j) ∈ S(Gn) | Gn

)
≈ fn(λi, λj , aij)

n2
for all i, j ∈ [n]. (11)
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As a result of the concentration of measure phenomenon, many sampling frameworks satisfy
this condition (see Section 4). This includes those used in practice, such as uniform vertex
sampling, uniform edge sampling (Tang et al., 2015), along with “random walk with unigram
negative sampling” schemes like those of Deepwalk (Perozzi et al., 2014) and node2vec
(Grover and Leskovec, 2016). In particular, we are able to give explicit formulae for the
sampling weights in these scenarios. We also impose some regularity conditions on the
conditional averages of the sampling weights.

Assumption 5 (Regularity of the sampling weighs) We assume that, for each n, the
functions

f̃n(l, l′, 1) := fn(l, l′, 1)Wn(l, l′) and f̃n(l, l′, 0) := fn(l, l′, 0)(1−Wn(l, l′))

are piecewise Hölder([0, 1]2, β, Lf ,Q⊗2). Q is the same partition as in Assumption 1, but the
exponents β and Lf may differ from that of βW and LW in Assumption 1. We moreover
suppose that f̃n(l, l′, 1) and f̃n(l, l′, 0) are uniformly bounded in L∞([0, 1]2), are are also
uniformly bounded below and away from zero.

Remark 6 For all the sampling schemes we consider, the conditions on f̃n(l, l′, 1) and
f̃n(l, l′, 0) will follow from Assumption 1 and the formulae for the sampling weights we derive
in Section 4; in particular, the exponent β will be a function of βW and the particular choice
of sampling scheme. To illustrate this, if we suppose that we use a random walk scheme
with unigram negative sampling (Perozzi et al., 2014) as later described in Algorithm 4, we
show later (Proposition 26) that

f̃n(λ, λ′, 1) =
2kW (λ, λ′)

EW
(12)

f̃n(λ, λ′, 0) =
l(k + 1)(1− ρnW (λ, λ′))

EWEW (α)

{
W (λ, ·)W (λ′, ·)α +W (λ, ·)αW (λ′, ·)

}
(13)

where k, l and α ∈ (0, 1] are hyperparameters of the sampling scheme. In particular, if
W is piecewise Hölder with exponent β, then we show (Lemma 82) that f̃n(λ, λ′, 1) and
f̃n(λ, λ′, 0) will be piecewise Hölder with exponent αβ.

3. Asymptotics of the learned embedding vectors

In this section, we discuss the population risk corresponding to the empirical risk (9), show
that any minimizer of (9) converges to a minimizer of this population risk, and then discuss
some implications and uses of this result.

3.1 Convergence of empirical risk to population risk

Given the empirical risk (9), and assuming that the embedding vectors are constrained to lie
within a compact set Sd = [−A,A]d for some A, our first result shows that the population
limit analogue of (9) has the form

In[K] :=

∫
[0,1]2

{
f̃n(l, l′, 1)`(K(l, l′), 1) + f̃n(l, l′, 0)`(K(l, l′), 0)

}
dldl′, (14)
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where the domain consists of functions K(l, l′) = B(η(l), η(l′)) for functions η : [0, 1]→ Sd.
We can interpret η as giving embedding vectors η(λ) for vertices with latent feature λ, with
K(λ, λ′) then measuring the similarity between two vertices with latent features λ and λ′.
We write

Z(Sd) :=
{
K : K(l, l′) = B(η(l), η(l′)) for η : [0, 1]→ Sd

}
(15)

for all such functions K which are represented in this fashion. We then have that the
minimized empirical risk Rn(ωn) converges to the minimized population risk In[K]:

Theorem 7 Suppose that Assumptions 1, 2, 3, 4 and 5 hold. Let Sd = [−A,A]d be the
d-dimensional hypercube of radius A. Then we have that, writing ωn = (ω1, . . . , ωn),∣∣∣ min

ωn∈(Sd)n
Rn(ωn)− min

K∈Z(Sd)
In[K]

∣∣∣ = Op

(
sn +

d3/2E[f2
n]1/2

n1/2
+

(log n)1/2

nβ/(1+2β)

)
,

where we write

E[f2
n] = E[fn(λ1, λ2, a12)2] =

∫
[0,1]2
{fn(l, l′, 1)2Wn(l, l′) + fn(l, l′, 0)2(1−Wn(l, l′))} dldl′.

In the case where f̃n(l, l′, 1) and f̃n(l, l′, 0) are piecewise constant on a partition Q⊗2 where
Q is of size κ, we have∣∣∣ min

ωn∈(Sd)n
Rn(ωn)− min

K∈Z(Sd)
In[K]

∣∣∣ = Op

(
sn +

d3/2E[f2
n]1/2

n1/2
+

(log κ)1/2

n1/2

)
,

The proof can be found in Appendix C (with Theorem 30 stating a more general result
under the assumptions listed in Appendix A), with a proof sketch in Appendix B.

Remark 8 The error term above consists of three parts. The sn term relates to the fluctua-
tions of the empirical sampling probabilities to the sampling weights f̃n(l, l′, 1) and f̃n(l, l′, 0).
The second term arises as the penalty for getting uniform convergence of the loss functions
when averaged over the adjacency assignments. The final term arises from using a stochastic
block approximation for the functions f̃n(l, l′, 1) and f̃n(l, l′, 0), and optimizing the tradeoff
between the number of blocks for approximating these functions, and the relative error in
the proportion of the λi in a block versus the size of the block.

Remark 9 Typically for random walk schemes we have that sn = O((log(n)/nρn)1/2) and
E[f2

n] = O(ρ−1
n ) under Assumption 1, and so the error term is of the form

Op

((max{log n, d3}
nρn

)1/2
+
( log n

n2β/(1+2β)

)1/2)
.

One affect of this is that as ρn decreases in magnitude, the permissable embedding dimen-
sions decrease also; we also always require that d� n in order for the rate rn → 0.
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3.2 Convergence of the learned embedding vectors

We now argue that the minimizers of (9) converge in an appropriate sense to a minimizer
of In[K] over a constraint set which depends on the choice of similarity measure B(ω, ω′).
Before considering any constrained estimation of In[K], we highlight that depending on the
form of `(y, x), we can write down a closed form to the unconstrained minimizer of In[K]
over all (symmetric) functions K. When `(y, x) is the cross-entropy loss, by minimizing the
integrand of In[K] point-wise, the unconstrained minimizer of In[K] will equal

K∗n,uc := σ−1
( f̃n(l, l′, 1)

f̃n(l, l′, 1) + f̃n(l, l′, 0)

)
where σ−1(x) = log

( x

1− x

)
. (16)

As f̃n(l, l′, 1) and f̃n(l, l′, 0) are proportional to Wn(l, l′) and 1 −Wn(l, l′) respectively, we
are learning a re-weighting of the original graphon. As a special case, if the sampling
formulae are such that fn(l, l′, 1) = fn(l, l′, 0) (so the probability that a pair of vertices
is sampled is asymptotically independent of whether they are connected in the underlying
graph) then (16) simplifies to the equation K∗n,uc = σ−1(Wn). This is the case for a sampling
scheme which samples vertices uniformly at random and then returns the induced subgraph
(Algorithm 1). Otherwise, K∗n,uc will still depend on Wn, but may not be an invertible
transformation of Wn; for example, for a random walk sampler with walk length k, one
negative sample per positively sampled vertex, and a unigram negative sampler with α = 1
(Algorithm 4), we get that

K∗n,uc = log
( W (λi, λj)EW (1 + k−1)

(1− ρnW (λi, λj))W (λi, ·)W (λj , ·)

)
. (17)

As a result of Theorem 7, we posit that when taking d→∞ as n→∞, the embedding
vectors learned via minimizing (9) will converge to a minimizer of In[K] when K is con-
strained to the “limit” of the sets Z(Sd) in (15) as d→∞. As this set depends on B(ω, ω′),
whether B(ω, ω′) is a positive-definite inner product (or not) corresponds to whether K is
constrained to being non-negative definite (or not) in the following sense: suppose K allows
an expansion of the form

K(l, l′) =

∞∑
i=1

µi(K)φi(l)φi(l
′) (as a limit in L2([0, 1]2)) (18)

for some numbers (µi(K))i≥1 and orthonormal functions (φi)i≥1. Then, are the µi all non-
negative - in which case K is non-negative definite - or not? We prove in Appendix H that
as a consequence of our assumptions, we can write

K∗n,uc(l, l
′) =

∞∑
i=1

µi(K
∗
n,uc)φn,i(l)φn,i(l

′) (as a limit in L2([0, 1]2)) (19)

where for each n the collection of functions (φn,i)i≥1 are orthonormal. With this, we begin
with giving a convergence guarantee when µi(K

∗
n,uc) ≥ 0 for all i, n ≥ 1. In this case,

K∗n,uc is the limiting distribution of the inner products of the embedding vectors learned via
minimizing (9).
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Theorem 10 Suppose that Assumptions 1, 2, 4 and 5 hold. Also suppose that Assumption 3
holds with B(ω, ω′) = 〈ω, ω′〉 with ω ∈ Rd. Finally, suppose that in (19) the µi(K

∗
n,uc) are

non-negative for all n, i ≥ 1. Then there exists A′ sufficiently large such that whenever
A ≥ A′, for any sequence of minimizers (ω̂1, . . . , ω̂n) ∈ arg minωn∈([−A,A]d)n Rn(ωn), we
have that

1

n2

∑
i,j∈[n]

∣∣〈ω̂i, ω̂j〉 −K∗n,uc(λi, λj)∣∣ = Op(r̃
1/2
n )

where r̃n = sn +
d3/2E[f2

n]1/2

n1/2
+

(log n)1/2

nβ/(1+2β)
+
( log n

n

)β/2
+ d−1/2−β.

In the case where the f̃n(l, l′, 1) and f̃n(l, l′, 0) are piecewise constant on a fixed partition
Q⊗2 for all n, where Q is a partition of [0, 1] into κ parts, then K∗n,uc is piecewise constant
on Q⊗2 also, there exists q ≤ κ such that, then provided d ≥ q, the above convergence result
holds with

r̃n = sn +
d3/2E[f2

n]1/2

n1/2
+

(log κ)1/2

n1/2
.

See Theorem 66 in Appendix D for the proof, with the latter theorem holding under more
general regularity conditions. We highlight that in the above theorem, one can also take
B(ω, ω′) = 〈ω, Id,d′ω′〉 with ω ∈ Rd+d′ and Id,d′ = diag(Id,−Id′) and have the convergence
theorem also hold, with the d3/2 term being replaced by a (d+ d′)3/2 term.

Remark 11 In the above bound for r̃n, the first three terms correspond to the terms in the
convergence of the loss function as in Theorem 7. The fourth term arises from relating the
matrix (K∗n,uc(λi, λj))i,j back to the function K∗n,uc. The fifth term arises from the error
in considering the difference between K∗n,uc and the best rank d approximation to K∗n,uc; in
particular, if K∗n,uc is actually finite rank in that µi(K

∗
n,uc) = 0 for all i ≥ q, for some q free

of n, then provided d ≥ q we can discard the d−1/2−β term, and so under the conditions in
which the rate in Theorem 7 converges to zero, the rate in Theorem 10 also goes to zero as
n→∞.

In general, from the above result we can argue that there exists a sequence of embedding
dimensions d = d(n) such that r̃n → 0 as n→∞, albeit possibly at a slow rate (by choosing
e.g d = (log n)c for c very small). If the f̃n(l, l′, 1) and f̃n(l, l′, 0) are piecewise constant
on a partition of size κ, then it is in fact possible to obtain consistency as soon as d = κ
and d′ = 0. Here, there is a tradeoff between choosing d large enough so that we get a
good rank d approximation to K∗n,uc, and keeping the capacity of the optimization domain
sufficiently small that the convergence of the minimal loss values is quick (see Remark 13
for a discussion of choosing d optimally).

We finally note that in the statement of Theorem 10 the constant A is held fixed; it is
however possible to take A = O(log n) and have the bound r̃n increase only by a multiplicative
factor of O((log n)c) for some constant c.

In the case where some of the µi(K
∗
n,uc) are negative, we can obtain a similar result which

gives convergence to K∗n,uc, although now choosing B(ω, ω′) = 〈ω, Id1,d2ω′〉 is necessary. We
show later in Proposition 20 an example of a two community SBM which highlights the
necessity of using a Krein inner product.
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Theorem 12 Suppose that Assumptions 1, 2, 3, 4 and 5 hold. Given an embedding dimen-
sion d = d(n), pick d1 and d2 = d−d1 in B(ω, ω′) = 〈ω, Id1,d2ω′〉 where Id,d′ = diag(Id,−Id′),
such that d1 is equal to the number of non-negative values out of the d absolutely largest val-
ues of µi(K

∗
n,uc) in (19). Then there exists A′ sufficiently large such that whenever A ≥ A′,

for any sequence of minimizers (ω̂1, . . . , ω̂n) ∈ arg minωn∈([−A,A]d)n Rn(ωn), we have that

1

n2

∑
i,j∈[n]

∣∣B(ω̂i, ω̂j)−K∗n,uc(λi, λj)〉
∣∣ = Op(r̃

1/2
n )

where r̃n = sn +
d3/2E[f2

n]1/2

n1/2
+

(log n)1/2

nβ/(1+2β)
+
( log n

n

)β/2
+ d−β.

In the case where the f̃n(l, l′, 1) and f̃n(l, l′, 0) are piecewise constant on a fixed partition
Q⊗2 for all n, where Q is a partition of [0, 1] into κ parts, then there exists q ≤ κ for which,
as soon as d = d1 + d2 ≥ q, we have that the above convergence result holds with

r̃n = sn +
d3/2E[f2

n]1/2

n1/2
+

(log κ)1/2

n1/2
.

Remark 13 The d−β term above is the analogue of the d−1/2−β term in Theorem 10, which
arises from the fact that the decay of the µi(K

∗
n,uc) as a function of i is quicker when we can

guarantee that they are all positive. Consequently, we have analogous remarks for that if the
µi(K

∗
n,uc) are all zero for i ≥ κ, then as soon as min{d1, d2} ≥ κ, this term will disappear.

Similarly, the d−β term arises from looking at the best rank d approximation to K∗n,uc. As
the eigenvalues can be positive and negative, the choice of d1 and d2 means we choose the
top d eigenvalues (by absolute value) for any given d, and so we can obtain the d−β rate. To
see how the rates of convergence are affected by the optimal choice of embedding dimension
d, when sn = O((log(n)/nρn)1/2) and E[f2

n] = O(ρ−1
n ), optimizing over d gives

r̃n =
( log n

nρn

)1/2
+
( log n

n2β/(1+2β)

)1/2
+
( log n

n

)β/2
+ (nρn)−β/(3+2β),

and so the last term will tend to dominate in the sparse regime.

To summarize, Theorems 10 and 12 characterize the distribution of pairs of embedding
vectors, through the similarity measure B(ω, ω′) used for training. They show that the
distribution of embedding vectors asymptotically decouple in that, in an average sense,
the distribution of B(ω̂i, ω̂j) depends only on the latent features (λi, λj) for the respective
vertices. Moreover, when we have a cross-entropy loss and the similarity measure B(ω, ω′)
is correctly specified, we can explicitly write down the limiting distribution in terms of
the sampling formulae corresponding to the choice of sampling scheme, and the original
generating graphon.

3.3 Extension to graphons on higher dimensional latent spaces

As discussed earlier in Remark 4, it is possible to consider graphons more generally as func-
tions W : (Rq)2 → [0, 1] with latent variables λi drawn from some probability distribution
on Rq. As these can always be made equivalent to graphons W : [0, 1]2 → [0, 1], there is a
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natural question as to whether our results can be applied to higher dimensional graphons.
To illustrate that we can do so, here we illustrate what occurs when we have a graphon
with latent variables λi ∼ U([0, 1]q) independently for some q ∈ N, with a graphon function
W : ([0, 1]q)2 → [0, 1]:

Assumption 6 (Graphon with high dimensional latent factors) Suppose that the
(Gn)n≥1 are generated by a sequence of graphons (Wn = ρnW )n≥1 where; the latent pa-
rameters λi ∼ Unif([0, 1]q) for some q ∈ N; the graphon W : ([0, 1]q)2 → [0, 1] is symmetric
and piecewise Hölder(([0, 1]q)2, βW , LW ,Q⊗2) for some partition Q of [0, 1]; there exist con-
stants 0 < c < C < 1 such that c ≤ W ≤ C a.e; and ρn = ω(log(n)/n). Moreover, we
suppose that the functions

f̃n(l, l′, 1) := fn(l, l′, 1)Wn(l, l′) and f̃n(l, l′, 0) := fn(l, l′, 0)(1−Wn(l, l′)),

defined for l, l′ ∈ [0, 1]q, are piecewise Hölder([0, 1]q)2, β, Lf ,Q⊗2) for some exponent β; are
uniformly bounded above; and uniformly bounded below and away from zero.

To apply our existing results, we will make use of the following theorem.

Theorem 14 Let W be a graphon on [0, 1]q which is Hölder(([0, 1]q)2, β, L). Then there
exists an equivalent graphon W ′ on [0, 1] which is Hölder([0, 1], βq−1, L′) where L′ depends
only on L and q. Moreover, for any p ∈ [1,∞] and function f : [0, 1] → R we have that
‖f(W )‖Lp(([0,1]q)2) = ‖f(W ′)‖Lp([0,1]2).

Proof [Proof of Theorem 14] The first part is simply Theorem 2.1 of Janson and Olhede
(2021), which uses the fact that there exists a measure preserving map φ : [0, 1] → [0, 1]q

which is Hölder(q−1, Cq) for some constant Cq, in which case W φ(x, y) := W (φ(x), φ(y))
is equivalent to W and is Hölder([0, 1], βq−1, LCq). The second part then follows by the
change of variables formulae and the fact that φ is measure preserving.

In this setting, the population risk (14) is now of the form

In[K] :=

∫
([0,1]q)2

{
f̃n(l, l′, 1)`(K(l, l′), 1) + f̃n(l, l′, 0)`(K(l, l′), 0)

}
dl dl′. (20)

We can now obtain analogous versions of Theorems 7 and 12 as follows:

Theorem 15 Suppose that Assumptions 2, 3, 4 and 6 hold. Writing Sd = ([−A,A]d)n, we
get that ∣∣∣ min

ωn∈(Sd)n
Rn(ωn)− min

K∈Z(Sd)
In[K]

∣∣∣ = Op

(
sn +

d3/2E[f2
n]1/2

n1/2
+

(log n)1/2

nβ/(q+2β)

)
.

The proof of Theorem 15 follows immediately by Theorem 7 and Theorem 14.
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Theorem 16 Suppose that Assumptions 2, 3 and 6 hold, and that we use Algorithm 4
(random walk + unigram negative sampling) for the sampling scheme with α ∈ (0, 1], so
that β = βWα in Assumption 6. Under the same assumptions on the choice of the em-
bedding dimension d = d(n) as given in Theorem 12, it follows that there exists A′ suffi-
ciently large such that whenever A ≥ A′, for any sequence of minimizers (ω̂1, . . . , ω̂n) ∈
arg minωn∈([−A,A]d)n Rn(ωn), we have that

1

n2

∑
i,j∈[n]

∣∣B(ω̂i, ω̂j)−K∗n,uc(λi,λj)
∣∣ = Op(r̃

1/2
n )

where

r̃n =
( log(n)

nρn

)1/2
+

d3/2

(nρn)1/2
+

(log n)1/2

nβ/(q+2β)
+
( log n

n

)β/2q
+ d−β/q,

K∗n,uc(λi,λj) = log
( 2W (λi,λj)EW (α)(1 + k−1)−1

l(1− ρnW (λi,λj)) · {W (λi, ·)W (λj , ·)α +W (λi, ·)αW (λj , ·)}

)
.

See page 78 for the proof of Theorem 16.

Remark 17 We note that the rates of convergence in Theorems 15 and 16 depend on the
dimension of the latent parameters. This cannot be avoided by our proof strategy - if we
manually modified the proof, rather than simply applying Theorem 14, we would still end up
with the same rates of convergence. For example, part of our bounds depend on the decay
of the eigenvalues of the operator K∗n,uc, which under our smoothness assumptions will have

eigenvalues µd decay as O(d−β/q) (Birman and Solomyak, 1977). We highlight that such
dependence on the latent dimension is common for other tasks involving networks, such as
graphon estimation (Xu, 2018), and such dependence commonly arises in non-parametric
estimation tasks (Tsybakov, 2008).

Remark 18 We highlight that there is some debate as to the types of graphs which can
arise from latent variable models when the latent dimension is high (Seshadhri et al., 2020;
Chanpuriya et al., 2020). We highlight that this is distinct from matters of what embedding
dimensions should be chosen when fitting an embedding model, as methods such as node2vec
are not necessarily trying to recover exactly the latent variables used as part of a generative
model. For example, from Theorem 16 above, if we suppose that W (λi,λj) = ρn〈λi,λj〉
and substitute this into the given formula for K∗n,uc, we can see that K∗n,uc(λi,λj) is not a
function of 〈λi,λj〉 due to the W (λi, ·)W (λj , ·)α terms in the denominator.

3.4 Importance of the choice of similarity measure

Theorem 10 only applies when the µi(K
∗
n,uc) in (19) are all non-negative, and Theorem 12

only applies to the case where we have some negative µi(K
∗
n,uc) and we make the choice of

B(ω, ω′) = 〈ω, Id1,d2ω′〉. We now study the case where there are some negative µi(K
∗
n,uc)

and we choose B(ω, ω′) = 〈ω, ω′〉.
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Theorem 19 Suppose that Assumptions 1, 2, 4 and 5 hold, and suppose that Assumption 3
holds with B(ω, ω′) = 〈ω, ω′〉 denoting the inner product on Rd. Define

Z≥0
d (A) :=

{
K(l, l′) = 〈η(l), η(l)〉 : η : [0, 1]→ [−A,A]d

}
, Z≥0 := cl

( ⋃
d≥1

Z≥0(A)),

where the closure is taken in a suitable topology (see Appendix D.2). Note that the set Z≥0

does not depend on A (see Lemma 55). Then there exists a unique minimizer K∗n to In[K]
over Z≥0. Under some further regularity conditions (see Theorem 66), there exists A′ and
a sequence of embedding dimensions d = d(n), such that whenever A ≥ A′, for any sequence
of minimizers (ω̂1, . . . , ω̂n) ∈ arg minωn∈([−A,A]d)n Rn(ωn), we have that

1

n2

∑
i,j∈[n]

∣∣〈ω̂i, ω̂j〉 −K∗n(λi, λj)
∣∣ = op(1).

If moreover we know that f̃n(l, l′, 1) and f̃n(l, l′, 0) are piecewise constant on a fixed partition
Q⊗2 for all n, where Q is a partition of [0, 1] into κ parts, then K∗n is also piecewise constant
on the partition Q⊗2, and can be calculated exactly via a finite dimensional convex program.

In the case where we select B(ω, ω′) = 〈ω, ω′〉, we now argue that this leads to a lack of
injectivity - it will not be possible to distinguish two different graph distributions from the
learned embeddings alone. As a consequence, there is necessarily some information about
the network lost, the importance of which depends on the downstream task at hand. For
example, suppose the graph is generated by a two-community stochastic block model with
even sized communities, with within-community edge probability p and between-community
edge probability q. We then have the following:

Proposition 20 Suppose that the graphon Wn(·, ·) corresponds to a SBM with two commu-
nities of equal size, such that the within-community edge probability is p and the between-
community edge probability is q; i.e that

Wn(l, l′) =

{
p if (l, l′) ∈ [0, 1/2)2 ∪ [1/2, 1]2,

q if (l, l′) ∈ [0, 1/2)× [1/2, 1] ∪ [1/2, 1]× [0, 1/2);

and that we learn embeddings using a cross entropy loss and a uniform vertex subsampling
scheme (Algorithm 1 in Section 4). Then the global minima of In[K] over Z≥0 is given by

K∗(l, l′) =

{
K∗11 if (l, l′) ∈ [0, 1/2)2 ∪ [1/2, 1]2

K∗12 if (l, l′) ∈ [0, 1/2)× [1/2, 1] ∪ [1/2, 1]× [0, 1/2)

where

a) if p ≥ q and p+ q ≥ 1, then K∗11 = σ−1(p), K∗12 = σ−1(q);

b) if p ≥ q and p+ q < 1, then K∗11 = −K∗12 = σ−1(1+p−q
2 );

c) if p < q and p+ q ≥ 1, then K∗11 = K∗12 = σ−1(p+q2 );
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d) otherwise, K∗11 = 0, K∗12 = 0.

The proof is given in Appendix E (page 82). With this, we make a few remarks.
Lack of injectivity: As mentioned earlier, we can have multiple graphons W for which

the minima of In[K] over non-negative definite K are identical; for instance, note that in
the above example when p > q and p+ q < 1, then the minima of In[K] over non-negative
definite K depends only on the gap p− q.

Loss of information: In the case where p > q and p+ q < 1, Theorem 19 and Proposi-
tion 20 tell us that the embedding vectors learned via minimizing (9) will satisfy

1

n2

∑
i,j

∣∣∣〈ω̂i, ω̂j〉 −K∗(λi, λj)∣∣∣ = op(1)

where K∗(λi, λj) =

{
σ−1

(1+p−q
2

)
if (λi, λj) ∈ [0, 1/2)2 ∪ [1/2, 1]2

−σ−1
(1+p−q

2

)
otherwise.

In particular, the generating graphon cannot be directly recovered from K∗ as it only
identified up to the value of p−q. Despite this, we note thatK∗ still preserves the community
structure of the network, in that K∗(λi, λj) > 0 if and only if λi and λj belong to the same
community. It therefore follows that asymptotically, on average the learned embedding
vectors corresponding to vertices in the same community are positively correlated, whereas
those in opposing communities are negatively correlated.

When the minima is a constant function (such as when q > p above), the limiting
distribution K∗ contains no usable information about the underlying graphon, and therefore
neither do the inner products of the learned embedding vectors. We discuss when this occurs
for general graphon models in Proposition 71. In all, this highlights the advantage in using
a Krein inner product between embedding vectors, as these issues are avoided. Later in
Section 5.2 we observe empirically the benefits of making such a choice.

3.5 Application of embedding convergence: performance of link prediction

We discuss the asymptotic performance of embedding methods when used for a link pre-
diction downstream task. Consider the scenario where we make a partial observation
Aobs = (Aobs

ij ) of an underlying network A = (Aij), with the property that if Aobs
ij = 1

then Aij = 1, but if Aobs
ij = 0, we do not know whether Aij = 1 or Aij = 0. For exam-

ple, this model is appropriate for when we are wanting to predict the future evolution of a
network. The task is then to make predictions about A using the observed data Aobs.

In the context above, link prediction algorithms frequently use the network Aobs to
produce a score Sij corresponding to the likelihood of whether the pair (i, j) is an edge in
the network A. The scores are usually interpreted so that the larger Sij is, the more likely
it will occur that Aij = 1. We consider metrics to evaluate performance of the form

D(S,B) =
1

n(n− 1)

∑
i 6=j

d(Sij , Bij) (21)

when using the scores S to predict the presence of edges in a network B. We write d(s, b)
for a discrepancy measure between the predicted score s and an observed edge or non-edge
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b in the test set. For example, in the case where

dτ (s, b) := b1
[
s ≥ τ ] + (1− b)1

[
s < τ ] (22)

is a zero-one loss (having thresholded the scores by τ to obtain a {0, 1}-valued prediction),
(21) becomes the misclassification error. Smoother losses can be obtained by using

d(s, b) = −b log(σ(s))− (1− b) log(1− σ(s)), or (23)

d(s, b) = max{0, 1− (2b− 1)s} (provided s ∈ (0, 1)) (24)

i.e the softmax cross-entropy or hinge losses respectively. Given a network embedding
with embedding vectors ωv for each vertex v, one frequent way of producing scores is to
let Sij = B(ωi, ωj) where B(·, ·) is a similarity measure as in Assumption 3. By applying
Theorems 10, 12 or 19, we can begin to analyze the performance of a link prediction method
using scores produced by embeddings learned via minimizing (9).

Proposition 21 Let An be the set of symmetric adjacency matrices on n vertices with
no self-loops. Suppose that (Aobs,(n))n≥1 is a sequence of adjacency matrices drawn from a
graphon process satisfying the conditions in one of Theorems 10, 12 or 19, with (ω̂1, . . . , ω̂n)
denoting the embedding vectors learned via minimizing (9) using Aobs,(n). Let K∗n be the

minimal value of In[K] which appears in the aforementioned convergence theorems, and r̃
1/2
n

the corresponding convergence rate. Recall that B(ω, ω′) denotes the similarity measure in
Assumption 3. Write Ωn = (B(ω̂i, ω̂j))i,j and Kn = (K∗n(λi, λj))i,j for the scoring matrices
formed by using the learned embeddings from minimizing (9) and K∗n respectively. Then we
have that for any loss function d(s, b) which is Lipschitz in s for a ∈ {0, 1} that

sup
B∈An

∣∣∣D(Ωn, B)−D(K∗n, B)
∣∣∣ = op(1).

When Dτ (S,B) denotes (21) using the zero-one loss dτ (s, b) with threshold τ , further assume
that there exists a finite set E ⊆ R for which

lim
ε→0

sup
τ∈R\E

sup
n∈N

∣∣{(l, l′) ∈ [0, 1]2 : K∗n(l, l′) ∈ [τ − ε, τ + ε]
)}∣∣ = 0. (25)

Then for any sequence εn → 0 with εn = ω(r̃
1/2
n ) as n→∞, we have that

sup
τ∈R\E

sup
B∈An

∣∣∣Dτ (Ωn, B)−Dτ+εn(K∗n, B)
∣∣∣ p→ 0 as n→∞.

See Appendix E (page 80) for a proof.

Remark 22 We note that examples of loss functions d(s, b) which are Lipschitz include
the hinge loss (24), along with any ‘clipped’ version of the softmax cross entropy loss (23),
where the scores are truncated so that the loss does not become unbounded as s → ±∞.
A sufficient condition for the regularity condition (25) to hold is that the total number of
jumps in the distribution functions associated to the K∗n for all n is finite; for example, this
occurs if K∗n is a piecewise constant function.
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We now illustrate a use of the theorem above, in the context of the censoring example
introduced at the beginning of the section. Suppose that the network A is generated via a
graphon W . We then calculate that

P
(
Aobs
ij = 1 |λi, λj

)
= P

(
Aobs
ij = 1 |Aij = 1, λi, λj)W (λi, λj)

independently across all pairs (i, j) (as the probability that Aobs = 1 given Aij = 0 is
zero). If we further have that P

(
Aobs
ij = 1 |Aij = 1, λi, λj) = g(λi, λj) for some symmetric,

measurable function g : [0, 1]2 → [0, 1], then Aobs also has the law of an exchangeable
graph. As a simple example, we could consider g(λi, λj) = p, corresponding to edges being
randomly deleted from A.

If we instead assume that Aobs has the law of an exchangeable graph with graphon W̃ ,
then we can calculate that

P(Aij = 1 |λi, λj) = W̃ (λi, λj) + P
(
Aij = 1 |Aobs

ij = 0, λi, λj
)
(1− W̃ (λi, λj))

independently across all pairs (i, j). Again, if P
(
Aij = 1 |Aobs

ij = 0, λi, λj
)

= g̃(λi, λj), then
A will have the law of an exchangeable graph too. For example, in the context of the social
network example, one may suppose that the likelihood of an edge forming between two
vertices is linked to the proportion of users who they are both connected with, or that it is
linked to their respective degrees. We could then hypothesize that e.g

g̃(λi, λj) =

∫ 1

0
W̃ (λi, y)W̃ (y, λj) dy or g̃(λi, λj) = W̃ (λi, ·)W̃ (λj , ·).

If either of the conditions hold, we can switch between using g̃ or g by using g̃ = (1 −
g)W (1− gW )−1 and g = W̃ (W̃ + g̃(1− W̃ ))−1 respectively.

Now suppose that we learn an embedding using the network Aobs to produce a scoring
matrix S (as described above) to make predictions about A. Moreover assume that in (9)
we use the cross-entropy loss, a Krein inner product for the bilinear from B(ω, ω′), and that
Aobs satisfies the conditions in Theorem 12. This implies that the optimal value of In[K]

(where f̃n(l, l′, 1) and f̃n(l, l′, 0) are functions of W̃ , and so we make the dependence on

W̃ explicit) is given by K∗n,uc as in (16). Provided the number of vertices in Aobs is large,
Proposition 21 tells us that D(S,A) will be approximately equal to D(K∗n,uc, A). When
d(s, a) is the softmax cross-entropy loss, we then get that

D(K∗n,uc, A) ≈ −
∫

[0,1]2

{
W (l, l′) log

( f̃n(l, l′, 1)[W̃ ]

f̃n(l, l′, 1)[W̃ ] + f̃n(l, l′, 0)[W̃ ]

)
(26)

+ (1−W (l, l′)) log
( f̃n(l, l′, 0)[W̃ ]

f̃n(l, l′, 1)[W̃ ] + f̃n(l, l′, 0)[W̃ ]

)}
dldl′.

With the expression on the right hand side, it is then possible to numerically investigate
for which network models W (given a fixed entropy) will a particular choice of sampling
scheme be effective in combating particular types of censoring. This is because once the
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entropy of W has been fixed, minimizing the RHS in (26) corresponds to minimizing the
KL divergence DKL(PW || P̃W̃ ) between the measures with densities

PW (l, l′, x) := W (l, l′)
[
1−W (l, l′)

]1−x
and P̃

W̃
(l, l′, x) =

f̃n(l, l′, 1)[W̃ ]x
[
f̃n(l, l′, 0)[W̃ ]

]1−x
f̃n(l, l′, 1)[W̃ ] + f̃n(l, l′, 0)[W̃ ]

defined for (l, l′) ∈ [0, 1]2 and x ∈ {0, 1}.

4. Asymptotic local formulae for various sampling schemes

In this section we show that frequently used sampling schemes satisfy the strong local
convergence assumption (Assumption 4) and give the corresponding sampling formulae and
rates of convergence. We leave the corresponding proofs to Appendix F. We begin with a
scheme which simply selects vertices of the graph at random.

Algorithm 1 (Uniform vertex sampling) Given a graph Gn and number of samples k,
we select k vertices from Gn uniformly and without replacement, and then return S(Gn) as
the induced subgraph using these sampled vertices.

Proposition 23 Suppose that Assumption 1 holds. Then for Algorithm 1, Assumptions 4
and 5 hold with

fn(λi, λj , aij) = k(k − 1),

sn = 0, E[f2
n] = ρnk

2(k − 1)2 and β = βW .

We now consider uniform edge sampling (e.g Tang et al., 2015), complemented with a
unigram negative sampling regime (e.g Mikolov et al., 2013). We recall from the discussion
in Section 1.1 that a negative sampling scheme is intended to force pairs of vertices which
are negatively sampled to be far apart from each other in an embedding space, in contrast
to those which are positively sampled.

Algorithm 2 (Uniform edge sampling with unigram negative sampling) Given a
graph Gn, number of edges to sample k and number of negative samples l per ‘positively’
sampled vertex, we perform the following steps:

i) Form S0(Gn) by sampling k edges from Gn uniformly and without replacement;

ii) We form a sample set of negative samples Sns(Gn) by drawing, for each u ∈ V(S0(Gn)),
l vertices v1, . . . , vl i.i.d according to the unigram distribution

Ugα
(
v | Gn

)
=

P
(
v ∈ V(S0(Gn)) | Gn)α∑

u∈Vn P
(
u ∈ V(S0(Gn)) | Gn)α

and then adjoining (u, vi)→ Sns(Gn) if auvi = 0.

We then return S(Gn) = S0(Gn) ∪ Sns(Gn).
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Proposition 24 Suppose that Assumption 1 holds. Then for Algorithm 2, Assumptions 4
and 5 hold with

fn(λi, λj , aij) =


2k

EWρn
if aij = 1,

2kl

EWEW (α)

{
W (λi, ·)W (λj , ·)α +W (λj , ·)W (λi, ·)α

}
if aij = 0;

with sn = (log(n)/nρn)1/2, E[f2
n] = O(ρ−1

n ), and β = βW min{α, 1}.

Alternatively to using a unigram distribution for negative sampling, one other approach
is to select edges (such as via uniform sampling as above), and then return the induced
subgraph as the entire sample.

Algorithm 3 (Uniform edge sampling and induced subgraph negative sampling)
Given a graph Gn and number of edges k to sample, we perform the following steps:

i) Form S0(Gn) by sampling k edges from Gn uniformly and without replacement;

ii) Return S(Gn) as the induced subgraph formed from all of the vertices u ∈ V(S0(Gn)).

Proposition 25 Suppose that Assumption 1 holds. Then for Algorithm 3, Assumptions 4
and 5 hold with

fn(λi, λj , aij) =


4k

EWρn
+

4k(k − 1)W (λi, ·)W (λj , ·)
E2
W

if aij = 1,

4k(k − 1)W (λi, ·)W (λj , ·)
E2
W

if aij = 0;

with sn = (log(n)/nρn)1/2, β = βW , and E[f2
n] = O(ρ−1

n ).

We can also consider random walk based sampling schemes (see e.g. Perozzi et al., 2014).

Algorithm 4 (Random walk sampling with unigram negative sampling) Given a
graph Gn, a walk length k, number of negative samples l per positively sampled vertex,
unigram parameter α and an initial distribution π0(· | Gn), we

i) Select an initial vertex ṽ1 according to π0;

ii) Perform a simple random walk on Gn of length k to form a path (ṽi)i≤k+1, and report
(ṽi, ṽi+1) for i ≤ k as part of S0(Gn);

iii) For each vertex ṽi, we select l vertices (ηj)j≤l independently and identically according
to the unigram distribution

Ugα(v | Gn) =
P
(
ṽi = v for some i ≤ k | Gn

)α∑
u∈Vn P

(
ṽi = u for some i ≤ k | Gn

)α
and then form Sns(Gn) as the collection of (ṽi, ηj) which are non-edges in Gn;
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and then return S(Gn) = S0(Gn) ∪ Sns(Gn).

In the above scheme, there is freedom in how we can specify the initial vertex of the
random walk. Here we will do so using the stationary distribution of a simple random walk
on Gn, namely π0(v | Gn) = degn(v)/2En, as this simplifies the analysis of the scheme.

Proposition 26 Suppose that Assumption 1 holds. Then for Algorithm 3 with choice of
initial distribution π0(v | Gn) = degn(v)/2En, Assumptions 4 and 5 hold with

fn(λi, λj , aij) =


2k

EWρn
if aij = 1,

l(k + 1)

EWEW (α)

{
W (λi, ·)W (λj , ·)α +W (λj , ·)W (λi, ·)α

}
if aij = 0;

with sn = (log(n)/nρn)1/2, E[f2
n] = O(ρ−1

n ), and β = βW min{α, 1}.

One important property of the samplers discussed in Algorithms 2, 3 and 4 is that they
are essentially invariant to the scale of the underlying graph, in that the dominating parts
of the expressions for the f̃n(l, l′, x) are free of the sparsity factor ρn. We write this down
for the random walk sampler.

Lemma 27 For Algorithm 4, under the conditions of Proposition 26 we get that

f̃n(λi, λj , 1) =
2kW (λi, λj)

EW

f̃n(λi, λj , 0) =
l(k + 1)

EWEW (α)

{
W (λi, ·)W (λj , ·)α +W (λi, ·)αW (λj , ·)

}
· (1− ρnW (λi, λj)).

In particular, we have that f̃n(λi, λj , 1) is free of ρn, and

f̃n(λi, λj , 0) =
l(k + 1)

EWEW (α)

{
W (λi, ·)W (λj , ·)α +W (λi, ·)αW (λj , ·)

}
· (1 +O(ρn))

Remark 28 We note that in algorithmic implementations of negative sampling schemes in
practice, there is usually not an explicit check for whether the negatively sampled edges are
non-edges in the original graph. This is done for the reason that graphs encountered in the
real world are frequently sparse, and so the check would take up computational time while
only having a small effect on the learnt embeddings. This would correspond to removing the
(1− ρnW (λi, λj)) factor in the above formula for f̃n(λi, λj , 1), and so Lemma 27 reaffirms
the above reasoning.

4.1 Expectations and variances of random-walk based gradient estimates

Throughout we have studied the empirical risk Rn(ω1, . . . , ωn) induced through using a
stochastic gradient scheme to learn a network embedding, given a subsampling scheme
S(G). Subsampling schemes used by practitioners (such as in node2vec) depend on some
choice of hyperparameters. These are selected either via a grid-search, or by using default
suggestions - for example, the unigram sampler in Algorithm 4 is commonly used with
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α = 0.75, as recommended in Mikolov et al. (2013). A priori, the role of such parameters
is not obvious, and so we give some insights into the role of particular hyperparameters
within the random walk scheme described in Algorithm 4. We focus on the expected value
and variance of the gradient estimates used during training.

To illustrate the importance of these two values, we discuss first what happens in a
traditional empirical risk minimization setting, where given data x1, . . . , xn ∈ Rp where n
is large and a loss function L(x; θ), we try to optimize over θ the empirical loss function
Ln(θ) :=

∑n
i=1 L(xi; θ) by using a stochastic gradient scheme. More specifically, we obtain

a sequence (θt)t≥1 via

θt = θt−1 − ηtGt where E[Gt] = ∇Ln(θ)

given an initial point θ0, step sizes ηt and a random gradient estimate Gt. We then run this
for a sufficiently large number of iterations t such that θt ≈ arg minθ Ln(θ); see e.g Robbins
and Monro (1951). For the empirical risk minimization setting detailed above, one common
approach has Gt take the form

Gt =
1

m

m∑
l=1

∇L(x̃m; θt−1)

where x̃l are sampled i.i.d uniformly from {x1, . . . , xn} for each l ∈ [m]. We then get
E[Gt] = ∇Ln(θt−1) for any choice of m, and Var(‖Gt‖2) = O(m−1) when assuming that the
gradient of L is bounded. In general, the variance of the gradient estimates determines the
speed of convergence of a stochastic gradient scheme - the smaller the variance, the quicker
the convergence (Dekel et al., 2012) - and so choosing a larger batch size k should leave
to better convergence. Importantly, when comparing two gradient estimates, we cannot
make a bona-fide comparison of their variances without ensuring that they have similar
expectations, as otherwise the two schemes are optimizing different empirical risks.

In the network embedding setting, to form a gradient estimate we could take independent
subsamples S1(G), . . . , Sm(G) and average over these, to get an estimator which (when
averaging over the subsampling process) gives an unbiased estimator of the gradient of
the empirical risk Rn(ω1, . . . , ωn). This also has the variance of the gradient estimates
decaying as O(m−1). A more interesting question is to study what occurs when we only
use one subsampling scheme S(G) per gradient estimate - as in practice - and vary the
hyperparameters. For example, in the random walk scheme Algorithm 4, as a consequence of
Proposition 26, under the assumptions of Theorem 12, the matrix B(ω̂i, ω̂j) is approximately
equal to

K∗n,uc(λi, λj) = log
( 2W (λi, λj)EW (α)(1 + k−1)−1

l(1− ρnW (λi, λj)) · {W (λi, ·)W (λj , ·)α +W (λi, ·)αW (λj , ·)}

)
,

which is essentially free of the random walk length k once k is sufficiently large. A natural
question is to therefore ask what the role of k is in such a setting. In the result below, we
highlight that the role of k leads to producing gradient estimates with reduced variance.
The proof is given on page 95.
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Proposition 29 Let S(Gn) be a single instance of the subsampling scheme described in
Algorithm 4 given a graph Gn. Define the random vector

Gi =
1

k

∑
j∈Vn\{i}

1
[
(i, j) ∈ S(Gn)

]
ωj`
′(〈ωi, ωj〉, aij)

so E[Gi|Gn] = k−1∇ωiRn(ω1, . . . , ωn). Supposing that Assumptions 1, 2 and 3 hold, then
we have that, writing sn = (log(n)/nρn)1/2,

E[Gi|Gn] =
1

n2

∑
j∈Vn\{i}

{ 2aij
EWρn

+
l(1 + k−1)H(λi, λj)(1− aij)

EWEW (α)

}
ωj`
′(〈ωi, ωj〉, aij) · (1 + op(sn))

for some function H(λi, λj) free of k, and letting Gir be the r-th component of Gi, we have
that

Var[Gir | Gn] = Op

( 1

nk

)
uniformly over all i and r. In particular, the representation learned by Algorithm 4 is
approximately invariant to the walk length k for large k, as guaranteed by Theorem 12; the
gradients are asymptotically free of the walk length k when k and n are large; and the `∞
norm of the variance of the gradients decays as Op(1/nk).

5. Experiments

We perform experiments1 on both simulated and real data, illustrating the validity of our
theoretical results. We also highlight that the use of a Krein inner product 〈ω,diag(Ip,−Iq)ω′〉
between embedding vectors can lead to improved performance when using the learned em-
beddings for downstream tasks.

5.1 Simulated data experiments

To illustrate our theoretical results, we perform two different sets of experiments on sim-
ulated data. The first demonstrates some potential limitations of using the regular inner
product between embedding vectors in the empirical risk being optimized. The second
demonstrates the validity of the sampling formulae for different sampling schemes.

For the first experiment, we consider generating networks with n vertices, where each
vertex is given a latent vector Zi ∼ N(0, I(p++p−)) drawn independently (where p+, p− ∈ N),
with edges formed between vertices independently with probability

P(Aij = 1|Zi, Zj) = σ
(
Bp+,p−(Zi, Zj)

)
for i < j.

Here σ(x) = (1 + e−x)−1 is the sigmoid function, and Br,s(ω, ω
′) = 〈ω,diag(Ir,−Is)ω′〉 for

any r, s ≥ 1. We simulate twenty networks for each possible combination of: n = 200, 400,
800, 1200, 1600, 2400, 3200, or 4800; and (p+, p−) equal to (4, 0), (4, 4), (8, 0), or (8, 8).
We then train each network using a constant step-size SGD method with a uniform vertex

1. Code is available at https://github.com/aday651/embed-asym-experiments.
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Figure 1: Simulation results for recovery of latent variables for different similarity measures
B(ω, ω′) for generating the network and for learning. The x-axis are the number of vertices,
and the y-axis is the calculated value of (27). The results for each of the 20 runs per
experiment are displayed translucently, with the average across these simulation runs given
in bold.

sampler for 40 epochs2, using a similarity measure Bq+,q− between embedding vectors for
various values of (q+, q−). Some are equal to (p+, p−), so that the similarity measure used
for the data generating process and training are identical. Some are greater than (p+, p−),
so the data generating process still falls within the constraints of the model. Finally, we
also let some be less than (p+, p−), in which case the data generating process falls outside
the specified model class for learning. With the learned embeddings (ω̂1, . . . , ω̂n) we then
calculate the value of

1

n2

∑
i,j∈[n]

∣∣∣Bq+,q−(ω̂i, ω̂j)−Bp+,p−(Zi, Zj)
∣∣∣. (27)

In words, we are computing the average L1 error between the estimated edge logits using
the learned embeddings (with a bilinear form Bq+,q− between embedding vectors in the loss
function), and the actual edge logits used to generate the network. The results are displayed
in Figure 1. By the convergence theorems discussed in Sections 3.2 and 3.4, we expect that
(27) will be op(1) if and only if p+ ≤ q+ and p− ≤ q−, and indeed this is the trend displayed
in Figure 1.

For the second result, we illustrate the validity of the sampling formulae calculated in
Section 4. To do so, we begin by generating a network of n vertices from one of the following

2. By epochs, we are referring to the cumulative number of pairs of vertices which are used to form a
gradient at each iteration, relative to the total number of edges in the graph.
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stochastic block models, where π denotes the community sizes and P the community linkage
matrices:

SBM1: π = (1/3, 1/3, 1/3), P =

0.7 0.3 0.1
0.3 0.5 0.6
0.1 0.6 0.2

 ;

SBM2: π = (0.1, 0.2, 0.2, 0.3, 0.2), P =


0.75 0.87 0.025 0.81 0.25
0.87 0.93 0.58 0.48 0.45
0.025 0.58 0.68 0.15 0.48
0.81 0.48 0.15 0.80 0.92
0.25 0.45 0.48 0.92 0.62

 .

Here each vertex is assigned a latent variable λi ∼ Unif([0, 1]) which is used to determine the
corresponding community (depending on where λi lies within the partition of [0, 1] induced
by π). As illustrated in Sections 3 and 4, depending on the sampling scheme (samp), and
whether we use a regular or Krein inner product (IP) as the similarity measure B(ω, ω′)
between embedding vectors (recall Assumption C), there is a function K∗samp,IP for which
the minimizers of (9) satisfy

1

n2

∑
i,j∈[n]

∣∣∣B(ω̂i, ω̂j)−K∗samp,IP(λi, λj)
∣∣∣ = op(1). (28)

We note that for stochastic block models, when we choose B(ω, ω′) = 〈ω, ω′〉 - corresponding
to minimizing In[K] over Z≥0 - we can numerically compute the formula for K∗samp,IP via
a convex program as a result of Proposition 59. In the case where we choose B(ω, ω′) to
be a Krein inner product, the discussion in Section 3.2 tells us that we can write down the
minima of In[K] over Z exactly.

For each generated network, we train using either a) a random vertex sampler or a
random walk + unigram sampler, and b) either the regular or Krein inner product for
B(ω, ω′). We then calculate the value of (28) for each possible form of K∗samp,IP for the
sampling schemes and inner products we consider. The experiments are then repeated for
the same values of n, and number of networks per choice of n, as in the first experiment;
the results are displayed in Figure 2. From the figure, we observe that the LHS of (28)
decays to zero only when the choice of K∗samp,IP corresponds to the sampling scheme and
inner product actually used, as expected.

5.2 Real data experiments

We now demonstrate on real data sets that the use of the Krein inner product leads to
improved prediction of whether vertices are connected in a network, and as a consequence
can lead to improvements in downstream tasks performance. To do so, we will consider a
semi-supervised multi-label node classification task on two different data sets: a protein-
protein interaction network (Grover and Leskovec, 2016; Breitkreutz et al., 2008) with 3,890
vertices, 76,583 edges and 50 classes; and the Blog Catalog data set (Tang and Liu, 2009)
with 10,312 vertices, 333,983 edges and 39 classes.

For each data set, we perform the same type of semi-supervised experiments as in Veitch
et al. (2018). We learn 128 dimensional embeddings of the networks using two sampling
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Figure 2: Plots of the values of (28) for different sampling formulae against the number of
vertices of the network, when trained under different sampling schemes and different SBM
models.
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Dataset Sampling scheme Inner product
Average macro F1 scores

Uniform Random walk p-sampling

PPI

Skipgram/RW + NS Regular 0.203 0.250 0.246
Skipgram/RW + NS Krein 0.245 0.298 0.290

p-sampling + NS Regular 0.408 0.423 0.417
p-sampling + NS Krein 0.486 0.468 0.461

Blogs

Skipgram/RW + NS Regular 0.154 0.192 0.194
Skipgram/RW + NS Krein 0.250 0.279 0.285

p-sampling + NS Regular 0.132 0.155 0.166
p-sampling + NS Krein 0.349 0.291 0.290

Table 1: Average macro F1 scores for semi-supervised classification for different data sets,
sampling schemes, choice of similarity measure B(ω, ω′) between embedding vectors, and
method of sampling test vertices.

schemes - random walk/skipgram sampling and p-sampling, both augmented with unigram
negative samplers - and either a regular inner product (with signature (128, 0)) or a Krein
inner product (with signature (64, 64)). We simultaneously train a multinomial logistic
regression classifier from the embedding vectors to the vertex classes, with half of the labels
censored during training (to be predicted afterwards), and the normalized label loss kept
at a ratio of 0.01 to that of the normalized edge logit loss.

After training, we draw test sets according to three different methods (uniform vertex
sampling, a random walk sampler and a p-sampler), and calculate the associated macro
F1 scores3. The results of this are displayed in Table 1, and the plots of the normalized
edge loss during training for each of the data sets can be found in Figure 3. From these,
we observe that for each of the data sets when using p-sampling with a unigram negative
sampler, there is a large decrease in the normalized edge loss during training when using the
Krein inner product compared to the regular inner product. We also see a sizeable increase
in the average macro F1 scores. For the skipgram/random walk sampler, we do not observe
an improvement in the edge logit loss, but observe a minor increase in macro F1 scores.

3. For a multi-class classification problem, the F1 score for a class is the harmonic average of the precision
and recall; the macro F1 score is then the arithmetic average of these quantities over all the classes.
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Figure 3: Normalized edge logit loss against iteration number for the homo-sapiens data set
and blogs data set, for different sampling schemes and choice of similarity measure B(ω, ω′)
between embedding vectors.

6. Discussion

In our paper, we have obtained convergence guarantees for embeddings learnt via minimiz-
ing empirical risks formed through subsampling schemes on a network, in generality for
subsampling schemes which depend only on local properties of the network. As a conse-
quence of our theory, we also have argued that using an inner product between embedding
vectors in losses of the form (9) can limit the information contained within the learned
embedding vectors. Mitigating this through the use of a Krein inner product instead can
lead to improved performance in downstream tasks.

We note that our results apply within the framework of (sparsified) exchangeable graphs.
While such graphs are convenient for theoretical purposes, and can reflect how real world
networks are sparse, they are generally not capable of capturing the power-law type degree
distributions of observed networks. There are alternative families of models for network
data which are not vertex exchangeable and alleviate some of these problems, such as graphs
generated by a graphex process (Veitch and Roy, 2015; Borgs et al., 2017, 2018), along with
other models such as those proposed by Caron and Fox (2017) and Crane and Dempsey
(2018). As these models all contain enough structure similar to that of exchangeability
(such as through an underlying point process to generate the network - see Orbanz (2017)
for a general discussion on these points), we anticipate that our overall approach can be
used to analyze the performance of embedding methods on broader classes of models for
networks.

Our theory only considers embeddings learnt in an unsupervised, transductive fashion,
whereas inductive methods for learning network embeddings are increasing popular. We
highlight that inductive methods such as GraphSAGE (Hamilton et al., 2017a) work by
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parameterizing node embeddings through an encoder (possibly with the inclusion of nodal
covariates), with the output embeddings then trained through a DeepWalk procedure. Pro-
vided that the encoder used is sufficiently flexible so that the range of embedding vectors
is unconstrained (which is likely the case for the neural network architectures frequently
employed), our results still apply in that we can give convergence guarantees for the output
of the encoder analogously to Theorems 10, 12 and 19.
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Appendix A. Technical Assumptions

Here we introduce a more general set of technical assumptions than those introduced in
Section 2 for which our technical results hold. For convenience, at points we will duplicate
our assumptions to keep the labelling consistent, and so Assumptions A,B and E are gener-
alizations of Assumptions 1, 2 and 5 respectively, and Assumptions C and D are the same
as Assumptions 3 and 4 respectively.

Assumption A (Regularity and smoothness of the graphon) We suppose that the
underlying sequence of graphons (Wn = ρnW )n≥1 generating (Gn)n≥1 are, up to weak equiv-
alence of graphons (Lovász, 2012), such that:

a) The graphon W is piecewise Hölder([0, 1]2, βW , LW , Q⊗2) for some partition Q of
[0, 1] and constants βW ∈ (0, 1], LW ∈ (0,∞);

b) The degree function W (x, ·) is such that W (x, ·)−1 ∈ Lγd([0, 1]) for some exponent
γd ∈ (1,∞];

c) The graphon W is such that W−1 ∈ LγW ([0, 1]2) for some exponent γW ∈ [1,∞];

d) There exists a constant C > 0 such that 1− ρnW ≥ C a.e;

e) The sparsifying sequence (ρn)n≥1 is such that ρn = ω(n−(γd−1)/γd) if γd ∈ (1,∞), and
ρn = ω(log(n)/n) if γd =∞.

Assumption B (Properties of the loss function) Assume that the loss function `(y, x)
is non-negative, twice differentiable and strictly convex in y ∈ R for x ∈ {0, 1}, and is in-
jective in the sense that if `(y, x) = `(ỹ, x) for x = 0 and x = 1, then y = ỹ. Moreover, we
suppose that there exists p ∈ [1,∞) (where we call p the growth rate of the loss function `)
such that

i) For x ∈ {0, 1}, the loss function `(y, x) is locally Lipschitz in that there exists a
constant L` such that∣∣`(y, x)− `(y′, x)

∣∣ ≤ L` max{|y|, |y′|}p−1|y − y′| for all y, y′ ∈ R;

ii) Moreover, there exists constants C` > 0 and a` > 0 such that, for all y ∈ R and
x ∈ {0, 1}, we have

1

C`
(|y|p − a`) ≤ `(y, 1) + `(y, 0) ≤ C`(|y|p + a`),

∣∣∣ d
dy
`(y, x)

∣∣∣ ≤ C`(|y|p−1 + a`).

These conditions ensure that `(y, 1) and `(y, 0) grows like |y|p as y → +∞ and y →
−∞ respectively.

Note that the cross-entropy loss satisifies the above conditions with p = 1, and also
satisifies the conditions below:
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Assumption BI (Loss functions arising from probabilistic models) In addition to
requiring all of Assumption B to hold, we additionally suppose that there exists a c.d.f F
for which

`(y, x) = `F (y, x) := −x log
(
F (y)

)
− (1− x) log

(
1− F (y)

)
,

where F corresponds to a distribution which is continuous, symmetric about 0, strictly log-
concave, and has an inverse which is Lipschitz on compact sets.

In addition to the cross-entropy loss, the above assumptions allows for probit losses
(taking F to be the c.d.f of a Gaussian distribution). Note that for such loss functions, the
value of p is linked to the tail behavior of the distribution in that it behaves as exp(−|y|p) -
for instance, the logistic distribution is sub-exponential and the cross entropy loss satisifies
Assumption BI with p = 1, whereas a Gaussian is sub-Gaussian and thus Assumption BI
will hold with p = 2.

Assumption C (Properties of the similarity measure B(ω, ω′)) Supposing we have
embedding vectors ω, ω′ ∈ Rd, we assume that the similarity measure B is equal to one
of the following bilinear forms:

i) B(ω, ω′) = 〈ω, ω′〉 (i.e a regular or definite inner product) or

ii) B(ω, ω′) = 〈ω, Id1,d−d1ω′〉 = 〈ω[1:d1], ω
′
[1:d1]〉 − 〈ω[(d1+1):d], ω

′
[(d1+1):d]〉 for some d1 ≤ d

(i.e an indefinite or Krein inner product);

where Ip,q = diag(Ip,−Iq), ωA = (ωi)i∈A for A ⊆ [d], and [a : b] = {a, a+ 1, . . . , b}.

Assumption D (Strong local convergence) There exists a sequence (fn(λi, λj , aij))n≥1

of σ(W )-measurable functions, with E[fn(λ1, λ2, a12)2] <∞ for each n, such that

max
i,j∈[n],i 6=j

∣∣∣n2P((i, j) ∈ S(Gn)|Gn)

fn(λi, λj , aij)
− 1
∣∣∣ = Op(sn)

for some non-negative sequence sn = o(1).

Assumption E (Regularity of the sampling weighs) We assume that, for each n, the
functions

f̃n(l, l′, 1) := fn(l, l′, 1)Wn(l, l′) and f̃n(l, l′, 0) := fn(l, l′, 0)(1−Wn(l, l′))

are piecewise Hölder([0, 1]2, β, Lf ,Q⊗2), where Q is the same partition as in Assump-
tion Aa), but the exponents β and Lf may differ from that of βW and LW in Assump-
tion Aa). We moreover suppose that f̃n(l, l′, 1) and f̃n(l, l′, 0) are uniformly bounded in
L∞([0, 1]2), are positive a.e, and that f̃n(l, l′, 1)−1 and f̃n(l, l′, 0)−1 are uniformly bounded
in Lγs([0, 1]2) for some constant γs ∈ [1,∞].
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Appendix B. Proof outline for Theorems 7, 10, 12 and 19

We begin with outlining the approach of the proof of Theorem 7; that is, the convergence of
the empirical risk to the population risk. Note that in the expression of the empirical risk
Rn(ωn), as a consequence of Assumption 4, we are able to replace the sampling probabilities
in Rn(ωn) with the fn(λi, λj , aij)/n

2. After also including the terms with i = j, i ∈ [n]
as part of the summation (which is possible as we are adding O(n) terms to an average of
O(n2) quantities), we can asymptotically consider minimizing the expression

R̂n(ω1, . . . , ωn) :=
1

n2

∑
i,j∈[n]2

fn(λi, λj , aij)`(B(ωi, ωj), aij).

To proceed further, we now suppose that W corresponds to a stochastic block model; more
specifically, we suppose there exists a partition Q = (A1, . . . , Aκ) of [0, 1] into intervals for
which W (·, ·) is constant on the Al × Al′ for l, l′ ∈ [κ(n)]. Note that fn(·, ·, x) is implicitly
a function of W (·, ·) for x ∈ {0, 1}, and therefore it also piecewise constant on Q. As an
abuse of notation, we write fn(l, l′, x) for the value of fn(λi, λj , x) when (λi, λj) ∈ Al ×Al′ .
If we write

An(l) :=
{
i ∈ [n] : λi ∈ Al

}
,

An(l, l′) :=
{
i, j ∈ [n] : λi ∈ Al, λj ∈ Al′

}
= An(l)×An(l′)

we can then perform a decomposition of R̂n into a sum

R̂n(ω1, . . . , ωn) :=
1

n2

∑
l,l′∈[κ]

∑
(i,j)∈An(l,l′)

fn(l, l′, aij)`(B(ωi, ωj), aij)

=
∑
l,l′∈[κ]

|An(l, l′)|
n2

· 1

|An(l, l′)|
∑

(i,j)∈An(l,l′)

fn(l, l′, aij)`(B(ωi, ωj), aij).

For now working conditionally on the λi, we note that for each of the (l, l′), the gap between
the averages

1

|An(l, l′)|
∑

(i,j)∈An(l,l′)

fn(l, l′, aij)`(B(ωi, ωj), aij) (29)

and

1

|An(l, l′)|
∑

(i,j)∈An(l,l′)

{
f̃n(l, l′, 1)`(B(ωi, ωj), 1) + f̃n(l, l′, 0)`(B(ωi, ωj), 0)

}
, (30)

where we recall that f̃n(l, l′, x) = fn(l, l′, 1)W (l, l′)x[1 −W (l, l′)]1−x, will be small asymp-
totically. In particular, the difference of the two has expectation zero as the expected value
of (29) conditional on the λi is (30), and will have variance O(1/|An(l, l′)|) as (29) is an
average of An(l, l′) independently distributed bounded random variables. As the variance
bound is independent of λi outside of the size of the set |An(l, l′)|, which will be Ωp(n

2),
it therefore follows that the difference between (29) and (30) will therefore also be small
asymptotically unconditionally on the λi too. We can therefore consider minimizing∑

l,l′∈[κ]

|An(l, l′)|
n2

· 1

|An(l, l′)|
∑

(i,j)∈An(l,l′)

∑
x∈{0,1}

f̃n(l, l′, x)`(B(ωi, ωj), x). (31)
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We now use Jensen’s inequality (which is permissible as the loss is strictly convex) and the
bilinearity of B(·, ·), which gives us that∑
l,l′∈[κ]

|An(l, l′)|
n2

· 1

|An(l, l′)|
∑

(i,j)∈An(l,l′)

∑
x∈{0,1}

f̃n(l, l′, x)`(B(ωi, ωj), x)

≥
∑
l,l′∈[κ]

|An(l, l′)|
n2

∑
x∈{0,1}

f̃n(l, l′, x)`
(
B
( 1

|An(l)|
∑

i∈An(l)

ωi,
1

|An(l′)|
∑

j∈An(l′)

ωj

)
, x
)

=
∑
l,l′∈[κ]

1

n2

∑
(i,j)∈An(l,l′)

∑
x∈{0,1}

f̃n(l, l′, x)`(B(ω̃i, ω̃j), x)

where we have defined ω̃i := 1
|An(l)|

∑
j∈An(l) ωj if i ∈ An(l), and the inequality is strict

unless the B(ωi, ωj) are constant across (i, j) ∈ An(l) × An(l′). This means that for the
purposes of minimizing (31), we know that we can restrict ourselves to only taking an

embedding vector ω̃l per latent feature. Making use of the fact that n−2|An(l, l′)| p→ plpl′ ,
we are left with∑

l,l′∈[κ]

plpl′
{
fn(l, l′, 1)W (l, l′)`(B(ω̃l, ω̃l′), 1) + fn(l, l′, 0)[1−W (l, l′)]`(B(ω̃l, ω̃l′), 0)

}
.

Making the identification η(λ) = ω̃l for λ ∈ Al, we then end up exactly with In[K] where
K(l, l′) = B(η(l), η(l′)) as desired. The details in the appendix discuss how to apply the
argument when W is a general (sufficiently smooth) graphon and not just a stochastic block
model, along with arguing that the above functions converge uniformly over the embedding
vectors, and not just pointwise.

Once we have the population risk In[K], the proof technique for the convergence of
the minimizers to (9) in Theorems 10, 12 and 19 follow the usual strategy for obtaining
consistency results - given uniform convergence of an empirical risk to a population risk, we
want to show that the latter has a unique minima which is well-separated, in that points
which are outside of a neighbourhood of the minima will have function values which are
bounded away from the minimal value also. There are a several technical aspects which
are handled in the appendix, relating to the infinite dimensional nature of our optimization
problem, the non-convexity of the constraint sets Z(Sd) and the change in domain from
embedding vectors (ω1, . . . , ωn) to kernels K(l, l′).

Appendix C. Proof of Theorem 7

For notational convenience, we will write ωn = (ω1, . . . , ωn) for the collection of embedding
vectors for vertices {1, . . . , n}, and write

∑
i,j

f(i, j) :=
n∑

i,j=1

f(i, j),
∑
i 6=j

f(i, j) :=
∑

i,j∈[n],i 6=j

f(i, j).

We will also write λn := (λ1, . . . , λn) and An := (a
(n)
ij )i,j∈[n] for the collection of latent

features and adjacency assignments for Gn. We aim to prove the following result:
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Theorem 30 Suppose that Assumptions A, B, C, D and E hold. Let Sd = [−A,A]d, and
write

Z(Sd) := {K : [0, 1]2 → R : K(l, l′) = B(η(l), η(l′)) a.e, where η : [0, 1]→ Sd}.

Then we have that∣∣ min
ωn∈(Sd)n

Rn(ωn)− min
K∈Z(Sd)

In[K]
∣∣ = Op

(
sn +

dp+1/2E[f2
n]1/2

n1/2
+

(log n)1/2 + dp/γs

nβ/(1+2β)

)
where we write E[f2

n] = E[fn(λ1, λ2, a12)2]. If moreover we have that f̃n(l, l′, 1) and f̃n(l, l′, 0)
are piecewise constant functions on a partition Q⊗2 where Q is of size κ, then

∣∣ min
ωn∈(Sd)n

Rn(ωn)− min
K∈Z(Sd)

In[K]
∣∣ = Op

(
sn +

dp+1/2E[f2
n]1/2

n1/2
+

(log κ)1/2

n1/2

)
.

Remark 31 (Issues of measurability) We make one technical point at the beginning
of the proof to prevent repetition - throughout we will be taking infima and suprema of
uncountably many random variables over sets which depend on the λn and An. Moreover,
we will want to reason about either these minimal/maximal values, or the corresponding
argmin sets. We need to ensure the measurability of these types of quantities.

We note two important facts which will allow us to do so: the fact that the fn(λi, λj , aij)
are measurable functions, and that the loss functions `(·, x) are continuous for x ∈ {0, 1}.
Consequently, all of the functions we take suprema or minima over are Carathédory; that is
of the form g : X × S → R, where x 7→ g(x, s) is continuous for all s ∈ S, and s 7→ g(x, s)
is measurable for all x ∈ X. Here X plays the role of some Euclidean space, and S a
probability space supporting the λn and An. Moreover, all of our suprema and minima will
be taken either over a) a non-random compact subset K of Rm for some m, or b) a set of
the form

φ(s) := {x ∈ K(s) : g(x, s) ≤ Cg(0, s)}

where i) K(s) := {x ∈ Rm : ‖x‖ ≤ f(s)} for some measurable function f(s) and norm ‖x‖
on Rm, ii) g(x, s) is Carathédory, and iii) the constant C satisfies C > 1 (so φ(s) is non-
empty). With this, we can guarantee the measurability of any quantities we will consider; an
application of Aubin and Frankowska (2009, Theorem 8.2.9) implies that K(s), and therefore
also φ(s), are measurable correspondences with non-empty compact values, and therefore
the measurable maximum theorem (e.g Aliprantis and Border, 2006, Theorem 18.19) will
guarantee the measurability of all the quantities we want to consider.

C.1 Replacing sampling probabilities with fn(λi, λj , aij)/n
2

To begin, we justify why minimizing

R̂n(ωn) :=
1

n2

∑
i 6=j

fn(λi, λj , aij)`(B(ωi, ωj), aij)

is asymptotically equivalent to that of minimizing Rn(ωn).
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Lemma 32 Assume that Assumptions B and D hold. Then there exists a non-empty ran-
dom measurable set Ψn such that

P
(

arg min
ωn∈(Sd)n

Rn(ωn) ∪ arg min
ωn∈(Sd)n

R̂n(ωn) ⊆ Ψn

)
→ 1, sup

ωn∈Ψn

∣∣∣Rn(ωn)− R̂n(ωn)
∣∣∣ = Op(sn).

Proof [Proof of Lemma 32] We will argue that the loss functions will converge uniformly
over sets of the form Rn(ωn) ≤ CRn(0), where C can be any constant strictly greater than
one. Such sets contain the minima of e.g Rn(ωn), and as we are working on (stochastically)
bounded level sets of Rn(ωn), this will be enough to allow us to use Assumption D in order
to obtain the desired conclusion. With this in mind, we denote C`,0 = maxx∈{0,1} `(0, x)
and then define the sets

Ψn :=

{
ωn ∈ (Sd)

n : Rn(ωn) ≤ 2C`,0
∑
i 6=j

P((i, j) ∈ S(Gn)|Gn)

}
,

Ψ̂n :=

{
ωn ∈ (Sd)

n : R̂n(ωn) ≤ C`,0
∑
i 6=j

fn(λi, λj , aij)

n2

}
.

Our aim is to show that Ψ̂n ⊆ Ψn with asymptotic probability 1. Note that

Rn(0) ≤ C`,0
∑
i 6=j

P((i, j) ∈ S(Gn)|Gn), R̂n(0) ≤ C`,0
∑
i 6=j

fn(λi, λj , aij)

n2

so 0 ∈ Ψn and 0 ∈ Ψ̂n (meaning the sets are non-empty). Moreover, these sets will
always contain the argmin sets of Rn(ωn) and R̂n(ωn) respectively (as any minimizer ωn
will satisfy e.g Rn(ωn) ≤ Rn(0)). In particular, once we show that P(Ψ̂n ⊆ Ψn) → 1 as
n→∞, we will have shown the first part of the lemma, and we can then reduce to showing
uniform convergence of Rn(ωn) − R̂n(ωn) over Ψn. Pick an arbitrary ωn ∈ Ψ̂n. Then by
Assumption D, we get that

Rn(ωn) =
∑
i 6=j

n2P((i, j) ∈ S(Gn)|Gn)

fn(λi, λj , aij)

fn(λi, λj , aij)

n2
`(B(ωi, ωj), aij)

≤ sup
i 6=j

n2P((i, j) ∈ S(Gn)|Gn)

fn(λi, λj , aij)
· R̂n(ωn) ≤ C`,0(1 + op(1))

∑
i 6=j

fn(λi, λj , aij)

n2
.

By Lemma 48 - noting that with asymptotic probability 1 all the quantities involved are
positive - we have that∑

i 6=j n
−2fn(λi, λj , aij)∑

i 6=j P((i, j) ∈ S(Gn)|Gn)
≤ sup

i 6=j

fn(λi, λj , aij)

n2P((i, j) ∈ S(Gn)|Gn)
= 1 + op(1) (32)

and so

Rn(ωn) ≤ C`,0(1 + op(1))2
∑
i 6=j

P((i, j) ∈ S(Gn)|Gn)
w.h.p
≤ 2C`,0

∑
i 6=j

P((i, j) ∈ S(Gn)|Gn)
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for n sufficiently large. This holds freely of the choice of ωn ∈ Ψ̂n, and so Ψ̂n ⊆ Ψn with
asymptotic probability 1. To conclude, we then note that over the set Ψn, we have

sup
ωn∈Ψn

∣∣∣∑
i 6=j

[
P((i, j) ∈ S(Gn)|Gn)− fn(λi, λj , aij)

n2

]
`(B(ωi, ωj), aij)

∣∣∣
≤ sup

i 6=j

∣∣∣n2P((i, j) ∈ S(Gn)|Gn)

fn(λi, λj , aij)
− 1
∣∣∣ · sup

ωn∈Ψn

Rn(ωn) ≤ Op(sn) · Rn(0) = Op(sn)

as desired. Here we use the fact that Rn(0) is Op(1), which follows as a result of the fact
that

∑
i 6=j fn(λi, λj , aij)n

−2 is Op(1) by Lemma 49 and supn≥1 E[fn(λi, λj , aij)] < ∞ (by
Assumption D), and then noting that∑

i 6=j
P
(
(i, j) ∈ S(Gn) | Gn

)
= (1 + op(1))

1

n2

∑
i 6=j

fn(λi, λj , aij)

analogously to (32).

C.2 Averaging the empirical loss over possible edge assignments

Now that we can work with R̂n(ωn), we want to examine what occurs as we take n→∞.
Intuitively, what we will attain should correspond to what occurs when we average this
risk over the sampling distribution of the graph; to do so, we begin by averaging over the
aij (while working conditionally on the λi). As a result, we want to argue that R̂n(ωn) is
asymptotically close to

E[R̂n(ωn)|λn] :=
1

n2

∑
i 6=j

∑
x∈{0,1}

f̃n(λi, λj , x)`(B(ωi, ωj), x), (33)

where we recall

f̃n(λi, λj , 1) = fn(λi, λj , 1)Wn(λi, λj), f̃n(λi, λj , 0) = fn(λi, λj , 0)[1−Wn(λi, λj)].

As the above functions depend only on the values of the B(ωi, ωj) =: Ωij , we will freely
interchange between the functions having argument Ω or ωn (whichever is most convenient,
mostly for the sake of saving space), with the dependence of Ω on ωn implicit. We write

Zn(Sd) := {Ω ∈ Rn×n : Ωij = B(ωi, ωj), ωi ∈ Sd for i ∈ [n]} (34)

for the corresponding set of Ω which are induced via ωn ∈ (Sd)
n, and define the metric

s`,∞
(
Ω, Ω̃

)
:= max

i,j∈[n]
max

{
|`(Ωij , 1)− `(Ω̃ij , 1)|, |`(Ωij , 0)− `(Ω̃ij , 0)|

}
, (35)

which is induced by the choice of loss function `(y, x) in Assumption B. (The injectivity
constraints on the loss function specified in Assumption B ensure that s`,∞(Ω, Ω̃) = 0 ⇐⇒
Ω = Ω̃; the remaining metric properties follow immediately.) We now work towards proving
the following result:
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Theorem 33 Suppose that Assumptions B and D hold. Then we have that

sup
Ω∈Zn(Sd)

∣∣E[R̂n(Ω) |λn]− R̂n(Ω)
∣∣ = Op

(γ2(Zn(Sd), s`,∞)E[fn(λ1, λ2, a12)2]1/2

n

)
where γ2(T, s) denotes the Talagrand γ2-functional of a metric space (T, s).

Here the Talagrand γ2-functional is defined as

γ2(T, s) := inf sup
t∈T

∑
n≥0

2n/2∆(An(t), s)

where the infimum is taken over all refining sequences (An)n≥1 of partitions of T , where
|An| ≤ 22n for n ≥ 1 and |A0| = 1, An(t) denotes the unique partition of An for which t
lies within the partition, and ∆(T, s) := supt,v∈T s(t, v) denotes the diameter of (T, s). See
Talagrand (2014, Chapter 2) for various definitions which are equivalent up to universal
constants.

Remark 34 We briefly note that rather than calculating the above quantity explicitly, all
we require4 are the bounds

∆(T, s) ≤ γ2(T, s) ≤ C
∫ ∞

0

√
logN(T, s, ε) dε,

where C is some universal constant, and N(T, s, ε) is the minimal size of an ε-covering of
T with respect to the metric s (so the RHS is simply the metric entropy of (T, s)). We state
the bound in terms of γ2(T, s) simply as it allows for the easier use of the chaining bound
(Theorem 35) stated and used later.

The proof technique consists of a combination of a truncation argument, a chaining
argument, and the method of exchangeable pairs. To recap from Chatterjee (2005) the
method of exchangeable pairs, suppose that X is a random variable on a Banach space and
f is a measurable function such that E[f(X)] = 0. Given an exchangeable pair (X,X ′) (so
that (X,X ′) = (X ′, X) in distribution) and an anti-symmetric function F (X,X ′) such that

E[F (X,X ′) |X] = f(X),

then provided one has E[eθf(X)|F (X,X ′)|] <∞ and the “variance bound”

v(X) :=
1

2
E
[
|{f(X)− f(X ′)}F (X,X ′)|

∣∣X] ≤ C (36)

almost surely for some constant C > 0, then we have a concentration inequality for the tails
of f(X) of the form

P
(
|f(X)| > η

)
≤ 2e−η

2/2C for all η > 0.

4. We note that when T ⊆ Rm, γ2(T, s) can only be smaller than the metric entropy by a factor of log(m)
(Talagrand, 2014, Exercise 2.3.4), and so this bound will be tight enough for our purposes.
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In particular, we can interpret this as saying that f(X) is sub-Gaussian. If we now had
a mean zero stochastic process {ft(X)}t∈T where we equip T with a metric s(·, ·), and we
could also construct an exchangeable pair (X,X ′) and functions Ft,v(X,X

′) for t, v ∈ T
such that i) E[Ft,v(X,X

′)|X] = ft(X)−fv(X) and ii) the corresponding variance term (36)
is bounded by Cs(t, v)2, we have the tail bound

P
(
|ft(X)− fv(X)| > ηs(t, v)

)
≤ 2e−η

2/2C for all η > 0.

We could then apply standard chaining results for the supremum of sub-Gaussian processes,
such as those in Talagrand (2014):

Proposition 35 (Talagrand, 2014, Theorem 2.2.27) Let (T, s) be a metric space and
suppose (Xt)t∈T is a mean-zero stochastic process on (T, s). Suppose that there exists a
constant σ > 0 such that for all t, v ∈ T ,

P
(
|Xt −Xv| > ηs(t, v)

)
≤ 2e−η

2/2σ2
for all η > 0.

Then there exist universal constants L > 0 and L′ > 0 such that

P
(

sup
t,v∈T

|Xt −Xv| > σL
(
γ2(T, s) + η∆(T, s)

))
≤ L′e−η2

for all η > 0, where γ2(T, s) is the Talagrand γ2-functional of (T, s) and ∆(T, s) denotes
the diameter of the set T with respect to s.

In particular, this result allows one to easily control the supremum of a stochastic process
with an uncountable index, by exploiting the continuity of the underlying process. With
the above result, we can rephrase Theorem 33 in terms of controlling the supremum of the
absolute value of the stochastic process

En(Ω)[An] := R̂n(Ω)− E[R̂n(Ω) |λn] (37)

=
1

n2

∑
i 6=j

fn(λi, λj , aij)`(Ωij , aij)−
1

n2

∑
i 6=j

∑
x∈{0,1}

f̃n(λi, λj , x)`(Ωij , x)

over Ω ∈ Zn(Sd), where we keep track of An where necessary (and will suppress the depen-
dence on this when not). To control the above stochastic process, we will use the method
of exchangeable pairs, while working conditional on the λn, to give us control of (37) for
fixed Ω; we can then use Proposition 35 to give us control over all the Ω ∈ Zn(Sd). We note
that as our argument will partly employ a truncation argument, we require the following
minor modification of the method of exchangeable pairs:

Lemma 36 Suppose that X is an exchangeable pair with functions f(X) and F (X,X ′)
satisfying the conditions stated above, and moreover that B ∈ σ(X) is an event such that
B ⊆ {v(X) ≤ C} and E[eθf(X)|F (X,X ′)|1B] <∞ for all θ. Then

P
(
|f(X)| > t,B

)
≤ 2e−t

2/2C for all t > 0.
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Proof [Proof of Lemma 36] The method of proof is identical to that of (Chatterjee, 2005),
except one replaces the moment generating function of f(X) with m(θ) := E[eθf(X)1B].
Following the proof through gives |m′(θ)| ≤ C|θ|m(θ), and so m(θ) ≤ eCθ

2/2, and so the
result follows from optimizing the Chernoff bound

P
(
f(X) > t,B

)
≤ P

(
eθf(X) > eθt, B

)
= E

[
1[eθf(X) > eθt]1B

]
≤ e−θtE[eθf(X)1B] ≤ e−θt+Cθ2/2

with θ = t/C as usual (and similarly so for the reverse tail).

Proof [Proof of Theorem 33] (Step 1: Breaking up the tail bound into controllable terms.)
To begin, we define

Cn,1(λn,An) :=
1

n2

∑
i 6=j

fn(λi, λj , aij)
2, (38)

Cn,2(λn) :=
1

n2

∑
i 6=j

E
[
fn(λi, λj , aij)

2 |λn
]

=
1

n2

∑
i 6=j

{
fn(λi, λj , 1)2Wn(λi, λj) + fn(λi, λj , 0)2(1−Wn(λi, λj))

}
(39)

and note that E[Cn,1(An,λn) |λn] = Cn,2(λn). We now fix ε > 0. By Lemma 49 we know
that Cn,2 = Op(E[f2

n]) (where we understand that E[f2
n] = E[fn(λ1, λ2, a12)2]), and therefore

there exists N(ε),M2(ε) for which, once n ≥ N(ε), we have that

P(Cn,2(λn) ≥ E[f2
n]M2) ≤ ε

4
.

As by Markov’s inequality we have that

P
(
Cn,1(An,λn) > t |λn

)
≤ Cn,2(λn)

t
a.s

for any t > 0, if we define Bn,2 := {Cn,2(λn) ≤ E[f2
n]M2} we therefore have that for

n ≥ N(ε) that

P
(
Cn,1(An,λn) > tE[f2

n]M2 |λn
)
1Bn,2 ≤

1

t

Cn,2(λn)

E[f2
n]M2

1Bn,2 ≤
1

t
a.s

and therefore there exists M1(ε) such that, once n ≥ N(ε), we have that

E
[
P
(
Cn,1(An,λn) > M1M2E[f2

n] |λn
)
1Bn,2

]
≤ ε

4
.

Writing Bn,1 := {Cn,1(An,λn) ≤ E[f2
n]M1M2}, we now write

P
(

sup
Ω∈Zn(Sd)

|En[Ω]| > η
)
≤ P

(
sup

Ω∈Zn(Sd)
|En[Ω]| > η,Bn,2

)
+ P(Bc

n,2)
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≤ E

[
P
(

sup
Ω∈Zn(Sd)

|En[Ω]| > η,Bn,1 |λn
)

1Bn,2

]
+ E

[
P(Bc

n,1 |λn)1Bn,2
]

+ P(Bc
n,2)

≤ E

[
P
(

sup
Ω∈Zn(Sd)

|En[Ω]− En[0]| > η/2, Bn,1 |λn
)

1Bn,2

]

+ E

[
P
(
|En[0]| > η/2, Bn,1 |λn

)
1Bn,2

]
+ E

[
P(Bc

n,1 |λn)1Bn,2
]

+ P(Bc
n,2)

:= (I) + (II) + (III) + (IV)

and control each of the four terms. For the latter two terms (III) and (IV) , we know that
once n ≥ N(ε), their sum is less than or equal to ε/2, and so we focus on the details for the
first two terms. For the first term, we will show that for any Ω, Ω̃ ∈ Zn(Sd) that

P
(∣∣En[Ω]− En[Ω̃]

∣∣ > η,Bn,1 |λn
)

1Bn,2 ≤ 2 exp
(
− η2

2E[f2
n]M2(1 +M1)n−2s`,∞

(
Ω, Ω̃

)2)
(40)

which allows us to apply Proposition 35, and for the second term we will get that

P
(
|En[0]| > η,Bn,1 |λn

)
1Bn,2 ≤ 2 exp

(
− η2

2E[f2
n]M2(1 +M1)C2

`,0n
−2

)
(41)

where C`,0 = maxx∈{0,1} `(0, x). As the details are essentially identical for both, we will
through the proof of (40) only. Before doing so though, we show how these results will allow
us to obtain the theorem statement. Note that as a consequence of Proposition 35 (recall
that L,L′ are universal constants introduced in the chaining bound) we have, writing M3 :=
CML

√
2M2(1 +M1) (where CM ≥ 1 is a constant we choose later) and η̃ ≥ (log(4L′/ε))1/2,

that

P
(

sup
Ω∈Zn(Sd)

|En[Ω]− En[0]| > M3E[f2n]1/2

n

[
γ2(Zn(Sd)) + η̃∆(Zn(Sd))

]
, Bn,1 |λn

)
1Bn,2 (42)

≤ P
(

sup
Ω,Ω̃∈Zn(Sd)

|En[Ω]− En[Ω̃]| > M3E[f2n]1/2

n

[
γ2(Zn(Sd)) + η̃∆(Zn(Sd))

]
, Bn,1 |λn

)
1Bn,2

≤ L′e−η̃2 ≤ ε/4.

Here we have temporarily suppressed the dependence of the metric on γ2(T, s) and ∆(T, s)
for reasons of space, and note that the above inequality holds provided CM ≥ 1. Taking
expectations then allows us to show that (I) ≤ ε/4 by taking any

η ≥M3

(γ2(Zn(Sd), s`,∞)E[f2
n]1/2

n
+

√
log
(4L′

ε

)∆(Zn(Sd), s`,∞)E[f2
n]1/2

n

)
(where we have inverted the bound in (42) and substituted in the value of η̃). By using
such a choice of η, we then note that in (41) we get that

P
(
|En[0]| > η,Bn,1 |λn

)
1Bn,2

≤ 2 exp
(
− C2

ML
2C−2

`,0 {γ2(Zn(Sd), s`,∞) + η̃∆(Zn(Sd), s`,∞)}/4
)
.
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Noting that A2d ≤ ∆(Zn(Sd), s`,∞) ≤ γ2(Zn(Sd), s`,∞) (recall Remark 34), it therefore
follows that by choosing

CM = max{1, C`,0A−1L−1d−1/2
√

log(8/ε)}

in the expression for M3, we get that (II) ≤ ε/4 also.
Putting this altogether, as we have that γ2(Zn(Sd), s`,∞) ≥ ∆(Zn(Sd), s`,∞), it therefore

follows from the above discussion that given any ε > 0, we will be able to find constants
N(ε) and M(ε) (the value of N given at the beginning of the proof; for M , the value of
M3(1 + η̃) from the discussion above), such that once n ≥ N(ε), we have that

P
(

sup
Ω∈Zn(Sd)

|En(Ω)| > M
γ2(Zn(Sd), s`,∞)E[f2

n]1/2

n

)
< ε

and so we get the claimed result.
(Step 2: Deriving concentration using the method of exchangeable pairs.) We now focus

on deriving the inequality (40). For the current discussion, we now make explicit the de-
pendence of e.g En(Ω)[An] on the draws of the adjacency matrix An. Note that throughout
we will be working conditionally on λn, with the intention of then later restricting ourselves
to only handling the λn which lie within the event Bn,2. (Note this set has no dependence
on the adjacency matrix An, and so we are only restricting the possible values of λn which
we are conditioning on when using the method of exchangeable pairs.) We now define an
exchangeable pair (An,A

′
n) as follows:

a) Out of the set {i < j : i, j ∈ [n]}, pick a pair (I, J) uniformly at random.

b) With this, we then make an independent draw a′I,J ∼ Bernoulli(Wn(λI , λJ)), set
a′ij = aij for the remaining i < j, and set a′ji = a′ij for j > i.

We then define the random variables

g(An) = En(Ω)[An]− En(Ω̃)[An], G(An,A
′
n) =

n(n− 1)

2

(
g(An)− g(A′n)

)
.

Note that as E[En(Ω)[An] |λn] = 0 we have that E[g(An) |λn] = 0, and similarly we have
that

E[G(An,A
′
n) |λn,An] =

1

n2

∑
i 6=j

E
[
fn(λi, λj , aij){`(Ωij , aij)− `(Ω̃ij , aij)}

− fn(λi, λj , a
′
ij){`(Ωij , a

′
ij)− `(Ω̃ij , a

′
ij)} |λn,An

]
= R̂n(Ω)− R̂n(Ω̃)−

{
E
[
R̂n(Ω)− R̂n(Ω̃) |λn

]}
= g(An).

In order to obtain a concentration inequality via the method of exchangeable pairs, we first
need to verify that E[eθg(An)|G(An,A

′
n)|1Bn,1 |λn] <∞ on Bn,2 for all θ > 0. To do so, we

note that g(An)1Bn,1 and g(A′n)1Bn,1 are in fact bounded on the event Bn,2. We argue for
the former (as the arguments for both are similar). Letting `max denote the maximum of
the `(Ωij , x) and `(Ω̃ij , x) across x ∈ {0, 1}, we can write that

|g(An)| ≤ `max
( 1

n2

∑
i 6=j

fn(λi, λj , aij) +
1

n2

∑
i 6=j

E[fn(λi, λj , aij) |λn]
)
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≤ `max

(
C

1/2
n,1 + C

1/2
n,2

)
=⇒ |g(An)|1Bn,1 ≤ `maxE[f2

n]1/2(M
1/2
1 +M

1/2
1 M

1/2
2 ) on the event Bn,2

(where the used Jensen’s inequality to obtain the bounds in terms of Cn,1 and Cn,2). We
now work on bounding the variance term. We have that

v(An |λn) =
1

2
E
[
|{g(An)− g(A′n)}G(An,A

′
n)| |λn,An

]
=
n(n− 1)

4
E
[
(g(An)− g(A′n))2 |λn,An

]
(1)
=

1

2n4

∑
i 6=j

E
[(
fn(λi, λj , aij){`(Ωij , aij)− `(Ω̃ij , aij)}

− fn(λi, λj , a
′
ij){`(Ωij , a

′
ij)− `(Ω̃ij , a

′
ij)}
)2 |λn,An, (I, J) = (i, j)

]
(2)

≤ 1

n2

{
1

n2

∑
i 6=j

fn(λi, λj , aij)
2
(
`(Ωij , aij)− `(Ω̃ij , aij)

)2
+

1

n2

∑
i 6=j

E
[
fn(λi, λj , aij)

2
(
`(Ωij , aij)− `(Ω̃ij , aij)

)2 |λn]}
(3)

≤
s`,∞

(
Ω, Ω̃

)2
n2

{
1

n2

∑
i 6=j

fn(λi, λj , aij)
2 +

1

n2

∑
i 6=j

E
[
fn(λi, λj , aij)

2 |λn
]}

=
s`,∞

(
Ω, Ω̃

)2
n2

{
Cn,1(An,λn) + Cn,2(λn)

}
(recall the definitions of Cn,1 and Cn,2 in (38) and (39) respectively). Here (1) follows via
noting that when conditioning on (I, J), only the (I, J) and (J, I) contributions to the
summation are non-zero, (2) follows by using the inequality (a− b)2 ≤ 2(a2 + b2), and (3)
follows via taking the maximum of the loss function differences out of the summation and
using the definition of s`,∞(·, ·). Now, note that on the event Bn,2, we have that

Bn,1 ⊆
{
v(An |λn) ≤ E[f2

n]M1(1 +M2)n−2s`,∞
(
Ω, Ω̃

)2}
,

and so by Lemma 36 we get the desired bound.

C.3 Approximation via a SBM

Now that we know it suffices to examine E[R̂n(ωn) |λn], we recall the proof sketch in
Section B. If the f̃n(l, l′, x) are piecewise constant functions, then this argument shows that
we can reason about the distribution of the embedding vectors which lie in some particular
regions (namely the sets on which the f̃n(l, l′, x) are constant). In general, we need to first
approximate the f̃n(l, l′, x) by a piecewise constant function, which is possible due to the
smoothness assumptions placed on them in Assumption E. Note that if the f̃n(l, l′, x) are
already piecewise constant, then this section can be skipped.
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To formalize this further, we introduce some more notation. Let Pn = (An1, . . . , Anκ(n))
be a partition of the unit interval [0, 1] into κ(n) disjoint intervals, which is a refinement of
the partition Q of [0, 1] specified in Assumption E. For now we keep Pn arbitrary; we will
later specify the choice of the partition at the end of the proof to optimize the bound we
eventually derive. We denote for n ∈ N, l ∈ [κ(n)]

pn(l) := |Anl|, An(l) := {i ∈ [n] : λi ∈ Anl}, p̂n(l) :=
1

n
|An(l)|.

We now consider the intermediate loss functions

E[R̂Pnn (ωn) |λn] :=
1

n2

∑
i 6=j

∑
x∈{0,1}

P⊗2
n [f̃n(·, ·, x)](λi, λj)`(B(ωi, ωj), x),

IPnn [K] :=

∫
[0,1]2

∑
x∈{0,1}

P⊗2
n [f̃n(·, ·, x)](l, l′)`(K(l, l′), x) dl dl′,

where for any symmetric integrable function h : [0, 1]2 → R we denote

P⊗2
n [h](x, y) :=

1

|Anl||Anl′ |

∫
Anl×Anl′

h(u, v) du dv if (x, y) ∈ Anl ×Anl′ .

To bound the approximation error, we use the following result:

Lemma 37 (Wolfe and Olhede, 2013, Lemma C.6, restated) Suppose that h is a
symmetric piecewise Hölder([0, 1]2, β,M,Q⊗2) function, and that P is a partition of [0, 1]
which is also a refinement of Q. Then we have, for any q ∈ [1,∞],

‖h− P⊗2[h]‖q ≤M
(√

2 max
i∈[κ]
|Ai|

)β
Lemma 38 Suppose that Assumptions A, B, C and E hold. Then there exists a non-empty
measurable random set Ψn such that

arg min
ωn∈(Sd)n

E[R̂Pnn (ωn) |λn] ∪ arg min
ωn∈(Sd)n

E[R̂n(ωn) |λn] ⊆ Ψn

and

sup
ωn∈Ψn

∣∣∣E[R̂Pnn (ωn) |λn]− E[R̂n(ωn) |λn]
∣∣∣ = Op

(
max
i∈[κ(n)]

pn(i)β ·max
ω∈Sd

‖ω‖2p/γs2

)
.

Similarly, there exists Φn such that

arg min
K∈Z(Sd)

In[K] ∪ arg min
K∈Z(Sd)

IPnn [K] ⊆ Φn

and
sup
K∈Φn

∣∣∣In[K]− IPnn [K]
∣∣∣ = O

(
max
l∈[κ(n)]

pn(l)β ·max
ω∈Sd

‖ω‖2p/γs2

)
.
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Remark 39 (Minimizers of infinite dimensional functions) Note that we have re-
ferred to the argmin of In[K] and IPnn [K]. For IPnn [K], the arguments in the next section
will reduce this down to a finite dimensional problem, for which showing the existence of
a minimizer is straightforward. For In[K], the issue is more technically involved; we show
later in Corollary 60 that a minimizer does exist.

Proof [Proof of Lemma 38] For convenience, write f̃n,x(l, l′) := f̃n(l, l′, x) and γ = γs. We

detail the proof for the bound on E[R̂Pnn (ωn) |λn] − E[R̂n(ωn) |λn], as the argument for
In[K]− IPnn [K] works the same way. We now begin by bounding∣∣∣E[R̂Pnn (ωn) |λn]− E[R̂n(ωn) |λn]

∣∣∣
≤ 1

n2

∑
i 6=j

∑
x∈{0,1}

∣∣f̃n,x(λi, λj)− P⊗2
n [f̃n,x](λi, λj)

∣∣`(B(ωi, ωj), x)

≤ 1

n2

∑
i 6=j

∑
x∈{0,1}

‖f̃n,x − P⊗2
n [f̃n,x]‖∞ · `(B(ωi, ωj), x)

≤M
(√

2 max
i∈[κ(n)]

pn(i)
)β · 1

n2

∑
i 6=j

∑
x∈{0,1}

`(B(ωi, ωj), x)

where in the last inequality we have used Lemma 37. We can then write

1

n2

∑
i 6=j

∑
x∈{0,1}

`(B(ωi, ωj , x)) =
1

n2

∑
i 6=j

∑
x∈{0,1}

f̃−1
n,x(λi, λj) · f̃n,x(λi, λj)`(B(ωi, ωj), x) (43)

≤

(
1

n2

∑
i 6=j

∑
x

f̃−γn,x(λi, λj)

)1/γ

·

[
1

n2

∑
i 6=j

∑
x

{
f̃n,x(λi, λj)`(B(ωi, ωj), x)

}γ/(γ−1)

]1−1/γ

where we used Hölder’s inequality. We now control the terms in the product. For the first,
we note that as we assume that supn≥1,x∈{0,1} E[f̃−γn,x] < ∞, by Markov’s inequality we get
that (

1

n2

∑
i 6=j

∑
x∈{0,1}

f̃−γn,x(λi, λj)

)1/γ

= Op(1).

For the second term, we will use a special case of Littlewood’s inequality, which tells us

that for f ∈ L1 ∩L∞ we have that ‖f‖p ≤ ‖f‖1/p1 ‖f‖
1−1/p
∞ for any p ∈ [1,∞]; we will apply

this to the sequences fi,j,x = f̃n,x(λi, λj)`(B(ωi, ωj), x) and use the `1 and `∞ norms on this
sequence. If we assume the ωn are such that we have the `1 bound

1

n2

∑
i 6=j

∑
x∈{0,1}

f̃n,x(λi, λj)`(B(ωi, ωj), x) ≤ CE[R̂n(0) |λn] (44)

for some constant C > 1, then as we also have the `∞ bound (where we write f̃n = f̃n,1+f̃n,0)

max
i 6=j

max
x∈{0,1}

f̃n,x(λi, λj)`(B(ωi, ωj), x) ≤ ‖f̃n‖∞ max
ω,ω′∈Sd

max
x∈{0,1}

`(B(ωi, ωj), x)

≤ ‖f̃n‖∞C`(a` + max
ω∈Sd

‖ω‖2p2 )
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it follows by Littlewood’s inequality with p = γ/(γ − 1) that[
1

n2

∑
i 6=j

∑
x

{
f̃n,x(λi, λj)`(B(ωi, ωj), x)

}γ/(γ−1)

]1−1/γ

≤ C ′
(
E[R̂n(0) |λn]

)1−1/γ
·max
ω∈Sd

‖ω‖2p/γ2

where C ′ is some constant free of n. As ‖f̃n,x‖1 = O(1), by Markov’s inequality we have

that E[R̂n(0) |λn] = Op(1); it therefore follows that for any ωn for which (44) is satisfied,
we have that∣∣∣E[R̂Pnn (ωn) |λn]− E[R̂n(ωn) |λn]

∣∣∣ = Op

(
max
l∈[κ(n)]

pn(l)β ·max
ω∈Sd

‖ω‖2p/γ2

)
, (45)

with the bound holding uniformly over such ωn. To conclude, note that when dividing and
multiplying by f̃n,x in the argument in (43), we could have also done so with P⊗2

n [f̃n,x] and
have the same argument apply, due to the fact that

‖P⊗2
n [f̃n,x]−1‖γ ≤ ‖f̃−1

n,x‖γ and E
[
E[R̂Pnn (0) |λn]

]
= E[R̂n(0) |λn].

(The first inequality is by Lemma 50.) Consequently, it therefore follows that if we define

Ψn =
{
ωn : E[R̂Pnn (ωn) |λn] ≤ CE[R̂Pnn (0) |λn] or E[R̂n(ωn) |λn] ≤ CE[R̂n(0) |λn]

}
for any fixed constant C > 1, we get that the bound derived in (45) holds uniformly across
all such ωn ∈ Ψn, and so the stated result holds.

C.4 Adding in the diagonal term

Here we show that the effect of changing the sum in E[R̂Pnn (ωn) |λn] from one over all i 6= j
with i, j ∈ [n], to one over all pairs (i, j) ∈ [n]2, is asymptotically negligible.

Lemma 40 Define the function

E[R̂Pn,(1)
n (ωn) |λn] :=

1

n2

∑
i,j

∑
x∈{0,1}

P⊗2
n [f̃n,x](λi, λj)`(B(ωi, ωj), x)

and suppose that Assumptions B, C and E hold. Recalling that p ≥ 1 is the growth rate of
the loss function `(y, x), we then have that

sup
ωn∈(Sd)n

∣∣E[R̂Pn,(1)
n (ωn) |λn]− E[R̂Pnn (ωn) |λn]

∣∣ = O
( 1

n
sup
ω∈Sd

‖ωi‖2p2
)
.

Proof [Proof of Lemma 40] Note that E[R̂Pn,(1)
n (ωn) |λn]−E[R̂Pnn (ωn) |λn] ≥ 0 for all ωn,

so we work on showing an upper bound on this quantity. Writing f̃n(l, l′) = f̃n(l, l′, 1) +
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f̃n(l, l′, 0), note that as supn≥1 ‖f̃n(·, ·)‖∞ <∞, we also have that supn≥1 ‖P⊗2
n [f̃n(·, ·)]‖∞ <

∞, and therefore

E[R̂Pn,(1)
n (ωn) |λn]− E[R̂Pnn (ωn) |λn] =

1

n2

∑
i∈[n]

∑
x∈{0,1}

P⊗2
n [f̃n](λi, λi, x)`(B(ωi, ωi), x)

≤ ‖P
⊗2
n [f̃n(·, ·)]‖∞

n2

∑
i∈[n]

∑
x∈{0,1}

`(B(ωi, ωi), x)

≤ ‖P
⊗2
n [f̃n(·, ·)]‖∞

n2

∑
i∈[n]

C`(a` + ‖ωi‖2p2 ) ≤ O
( 1

n
sup
ω∈Sd

‖ωi‖2p2
)
.

Here we have used that |B(ωi, ωi)| ≤ ‖ωi‖22, which holds regardless of whether B(·, ·) in
Assumption C is a regular inner product, or a Krein inner product. As the RHS above is
free of ωn, we get the claimed result.

As this is a minor change to the loss function, from now on we will just rewrite

E[R̂Pnn (ωn) |λn] :=
1

n2

∑
i,j

∑
x∈{0,1}

P⊗2
n [f̃n](λi, λj , x)`(B(ωi, ωj), x). (46)

rather than explicitly writing a superscript (1) each time.

C.5 Linking minimizing embedding vectors to minimizing kernels

With this, we now note that we can write

E[R̂Pnn (ωn) |λn] =
∑

l,l′∈[κ(n)]

p̂n(l)p̂n(l′)
∑

x∈{0,1}

{ cn(l, l′, x)

|An(l)||An(l′)|
∑

i∈An(l)
j∈An(l′)

`(B(ωi, ωj), x)
}

(47)

where

cn(l, l′, x) :=
1

pn(l)pn(l′)

∫
Anl×Anl′

f̃n(λ, λ′, x) dλdλ′

and we recall that p̂n(l) = n−1|An(l)|. In order to minimize E[R̂Pnn (ωn) |λn], we can exploit
the strict convexity of the `(·, x) and the bilinearity of the B(ωi, ωj) in order to simplify the
optimization problem.

Lemma 41 Suppose that Assumption B, C and E hold. Moreover suppose that the partition
Pn used to define the above loss functions satisfies minl∈[κ(n)] pn(l) = ω(log(n)/n). Then

minimizing E[R̂Pnn (ωn) |λn] over ωn ∈ (Sd)
n for a closed, convex and non-empty subset

Sd ⊆ Rd is equivalent to minimizing

ÎPnn [Ω] :=
∑

l,l′∈[κ(n)]

p̂n(l)p̂n(l′)
∑

x∈{0,1}

cn(l, l′, x)`(Ωl,l′ , x) (48)
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where Ωl,l′ = B(ω̃l, ω̃l′) with the ω̃l ∈ Sd for l ∈ [κ(n)], i.e Ω ∈ Zκ(n)(Sd), whose notation

we recall from (34)). Moreover, if ωn is a minimizer of E[R̂Pnn (ωn) |λn], then there must
exist vectors ω̃l ∈ Sd for l ∈ [κ(n)] such that

B(ωi, ωj) = B(ω̃l, ω̃l′) for all (i, j) ∈ An(l)×An(l′).

Proof [Proof of Lemma 41] To ease on notation, write `x(·) = `(·, x) for x ∈ {0, 1}. Note
that by Jensen’s inequality and the bilinearity of B(·, ·), we have that for all l, l′ ∈ [κ(n)],
x ∈ {0, 1}, that

1

|An(l)||An(l′)|
∑

i∈An(l)

∑
j∈An(l′)

`x(B(ωi, ωj)) ≥ `x
( 1

|An(l)||An(l′)|
∑

i∈An(l)

∑
j∈An(l′)

B(ωi, ωj)
)

= `x

(
B
( 1

|An(l)|
∑

i∈An(l)

ωi,
1

|An(l′)|
∑

j∈An(l′)

ωj

))
.

Moreover, as `x(·) is strictly convex, note that the above inequality is an equality (for a
fixed l, l′ ∈ [κ(n)]), if and only if B(ωi, ωj) is constant for all (i, j) ∈ An(l) × An(l′). As
by Assumption E we may deduce that cn(l, l′, x) > 0 for all l, l′ ∈ [κ(n)] (as f̃n(l, l′, 1) and
f̃n(l, l′, 0) are positive a.e) and x ∈ {0, 1}, it follows that if we define

ωAnn =
(
ωAnj :=

1

|An(l)|
∑

i∈An(l)

ωi if j ∈ An(l)
)
j∈[n]

(note that as Sd is convex, the averages also lie within Sd), then we have that

E[R̂Pnn (ωn) |λn] ≥ E[R̂Pnn (ωAnn ) |λn]

with equality iff B(ωi, ωj) is equal across (i, j) ∈ An(l)×An(l′), for all pairs of l, l′ ∈ [κ(n)].
(Note that the above average is well defined as minl∈[κ(n)] |An(l)| → ∞ as n → ∞ by
Lemma 46, due to the condition on the sizes of the partitioning sets of Pn.)

We can then observe that E[R̂Pnn (ωAnn ) |λn] is equivalent to ÎPnn [Ω] (where Ωl,l′ =
B(ω̃l, ω̃l′)) via the correspondence

(ω1, . . . , ωn) −→ ω̃l :=
1

|An(l)|
∑

i∈An(l)

ωi,

(ω̃l : l ∈ [κ(n)]) −→ any (ω1, . . . , ωn) with ω̃l =
1

|An(l)|
∑

i∈An(l)

ωi.

Moreover, we know that E[R̂Pnn (ωn) |λn] = E[R̂Pnn (ωAnn ) |λn] if and only if B(ωi, ωj) is
constant on each block (i, j) ∈ An(l)×An(l′). It therefore follows that if ωn is a minimizer
of E[R̂Pnn (ωn) |λn], then this must be the case. As B(·, ·) is bilinear, this implies that

B(ωi, ωj) := B
( 1

|An(l)|
∑

i1∈An(l)

ωi1 ,
1

|An(l′)|
∑

j1∈An(l′)

ωj1

)
for (i, j) ∈ An(l)×An(l′),
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so if we write ω̃l as according to the above correspondence, we get the last part of the lemma
statement.

As we can similarly write

IPnn [K] =
∑

l,l′∈[κ(n)]

pn(l)pn(l′)
∑

x∈{0,1}

cn(l, l′, x)

pn(l)pn(l′)

∫
Anl×Anl′

`(K(λ, λ′), x) dλdλ′, (49)

via essentially the same argument, we get the following:

Lemma 42 Suppose that Assumption B, C and E hold. Then minimizing

IPnn [K] =
∑

l,l′∈[κ(n)]

pn(l)pn(l′)
∑

x∈{0,1}

cn(l, l′, x)

pn(l)pn(l′)

∫
Anl×Anl′

`(K(λ, λ′), x) dλdλ′,

over K ∈ Z(Sd) - where Sd ⊆ Rd is closed, convex and non-empty, and we recall the
definition of Z(Sd) from Equation (15) - is equivalent to minimizing

IPnn [Ω] =
∑

l,l′∈[κ(n)]

pn(l)pn(l′)
∑

x∈{0,1}

cn(l, l′, x)`(Ωl,l′ , x) (50)

over Ω ∈ Zκ(n)(Sd). Moreover, if K ∈ Z(Sd) is a minimizer of IPnn [K], then K must be
of the form (up to a.e equivalence) K(λ, λ′) = B(η(λ), η(λ′)) for η : [0, 1] → Sd which is
piecewise constant on the Anl.

Proof [Proof of Lemma 42] Note that similar to before, as we can write K(λ, λ′) =
B(η(λ), η(λ′)) for some functions η(l) : [0, 1]→ Sd, we have that

1

pn(l)pn(l′)

∫
Anl×Anl′

`(K(λ, λ′), x) dλdλ′

≥ `
(
B
( 1

pn(l)

∫
Anl

η(λ) dλ,
1

pn(l′)

∫
Anl′

η(λ′) dλ′
)
, x
)
,

where there is equality if and only K(λ, λ′) is constant on Anl ×Anl′ for every l, l′ ∈ [κ(n)].
With this, the proof follows essentially identically to that of Lemma 41.

Note that by having done this, we have managed to place the problems of minimizing the
functions E[R̂Pnn (ωn) |λn] (Equation 47) and IPnn [K] (Equation 49) - the latter an infinite
dimensional problem, the former nd dimensional - into a common domain of optimization,
from which we can compare the two. Looking at ÎPnn [Ω] and IPnn [Ω] for Ω ∈ Zκ(n)(Sd), it
follows that the only remaining step is to replace the instances of p̂n(l) with pn(l) in order
for us to be done:

Lemma 43 Recall the definitions of ÎPnn [Ω] and IPnn [Ω] in (48) and (50) respectively. Then
there exists a non-empty measurable random set Φn such that

P
(

arg min
Ω∈Zκ(n)(Sd)

IPnn [Ω] ∪ arg min
Ω∈Zκ(n)(Sd)

ÎPnn [Ω] ⊆ Φn

)
→ 1
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and

sup
Ω∈Φn

∣∣IPnn [Ω]− ÎPnn [Ω]
∣∣ = Op

(( log κ(n)

nmini∈[κ(n)] pn(i)

)1/2)
.

Proof [Proof of Lemma 43] For this, begin by observing that we have∣∣IPnn [Ω]− ÎPnn [Ω]
∣∣ ≤ max

l,l′∈[κ(n)]

|p̂n(l)p̂n(l′)− pn(l)pn(l′)|
pn(l)pn(l′)

· IPnn [Ω],

where as a consequence of Proposition 47 we have that

max
l,l′∈[κ(n)]

|p̂n(l)p̂n(l′)− pn(l)pn(l′)|
pn(l)pn(l′)

= Op

(( log κ(n)

nmini∈[κ(n)] pn(i)

)1/2)
.

With this, the proof is similar to Lemma 32, and so we skip repeating the details.

C.6 Obtaining rates of convergence

To get the bounds stated in Theorem 30, we collect and chain up the previously obtained
bounds from the earlier parts. Noting that the bounds are stated in terms of suprema over
sets Ψ containing all the minimizers (or do so with asymptotic probability 1), we can bound
the difference in the minimal values by the supremum of the difference of the functions over
Ψ. Indeed, suppose we have two functions f and g such that all the minima of f and g lie
within a set X with asymptotic probability 1; letting xf and xg be some minima of these
sets, we therefore get that on an event of asymptotic probability 1 that

min
x
f(x)−min

x
g(x) = f(xf )− g(xg) ≤ f(xg)− g(xg) ≤ sup

x∈X
|f(x)− g(x)|,

and via a similar argument for minx g(x)−minx f(x) we get that∣∣min
x
f(x)−min

x
g(x)

∣∣ ≤ sup
x∈X

∣∣f(x)− g(x)
∣∣.

With this in mind, we now seek to apply the results developed earlier. To do so, we need
to make a choice of a sequence of partitions Pn. To do so, we make a choice so that the
pn(l) = Θ(n−α) uniformly over l ∈ [κ(n)], and that they each are a refining partition of
the partition Q from Assumption A. (This is possible simply by dividing each Q ∈ Q into
intervals of the same size, each of order n−α.) Recall the notation Sd = [−A,A]d; Z(Sd)
from Equation 15; and Zn(Sd) from Equation 34. It therefore follows by collating the terms
from, respectively, Lemma 32; Theorem 33 + Lemma 44; Lemma 38; Lemma 40; Lemma 41;
Lemma 43; Lemma 42; and Lemma 38 (again), we end up with a bound of the form∣∣∣ min

ωn∈(Sd)n
Rn(ωn)− min

K∈Z(Sd)
In[K]

∣∣∣
≤
∣∣∣ min
ωn∈(Sd)n

Rn(ωn)− min
ωn∈(Sd)n

R̂n(ωn)
∣∣∣ (51)

+
∣∣∣ min
ωn∈(Sd)n

R̂n(ωn)− min
ωn∈(Sd)n

E[R̂n(ωn) |λn]
∣∣∣
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+
∣∣∣ min
ωn∈(Sd)n

E[R̂n(ωn) |λn]− min
ωn∈(Sd)n

E[R̂Pnn (ωn) |λn]
∣∣∣

+
∣∣∣ min
ωn∈(Sd)n

E[R̂Pnn (ωn) |λn]− min
ωn∈(Sd)n

E[R̂Pn,(1)
n (ωn) |λn]

∣∣∣
+
∣∣∣ min
ωn∈(Sd)n

E[R̂Pn,(1)
n (ωn) |λn]− min

Ω∈Zκ(n)(Sd)
ÎPnn [Ω]

∣∣∣
+
∣∣∣ min

Ω∈Zκ(n)(Sd)
ÎPnn [Ω]− min

Ω∈Zκ(n)(Sd)
IPnn [Ω]

∣∣∣
+
∣∣∣ min

Ω∈Zκ(n)(Sd)
IPnn [Ω]− min

K∈Z(Sd)
IPnn [K]

∣∣∣+
∣∣∣ min
K∈Z(Sd)

IPnn [K]− min
K∈Z(Sd)

In[K]
∣∣∣
(52)

= Op

(
sn +

dp+1/2E[f2
n]1/2

n1/2
+
dp

n
+ n−αβdp/γs +

(log n)1/2

n1/2−α/2

)
. (53)

The remaining task is to balance the embedding dimension d and the size of α in order
to optimize the bound; to begin, the dp/n term is always negligible (as it is dominated by
the dp+1/2E[f2

n]1/2n−1/2 term). We note that when γs =∞ (so the dp/γs term disappears),
we want to balance the n−αβ and n−1/2+α/2 bounds to be equal, leading to a choice of
α = 1/(1 + 2β) to give an optimal bound. When γs ∈ (1,∞), we choose the same value of
α; we note that we can still have a bound which is op(1) for d = nc for some sufficiently
small c = c(p, β, γs,E[f2

n]). In the case where the f̃n,x are piecewise constant on a partition
Q⊗2 where Q is of size κ, the n−αβ term disappears (as we no longer need to perform the
piecewise approximation step given by Lemma 40 and can just have that Pn = Q for all
n). Consequently, the bound from Lemma 38 becomes (log κ/n)1/2, from which the claimed
result follows.

C.7 Proof for higher dimensional graphons

Proof [Proof of Theorem 15] Note that in following the proof argument above, the details
depend only on that the λi are drawn i.i.d, and does not require a particular form of the
distribution, and so the result follows immediately.

C.8 Additional lemmata

Lemma 44 Suppose that Assumptions B and C hold, where p ≥ 1 is the growth rate of
the loss function, and let Sd = [−A,A]d for some A > 0. Then there exists some universal
constant C > 0 such that

γ2(Zn(Sd), s`,∞) ≤ CA2p+1dp+1/2n1/2.
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Proof [Proof of Lemma 44] We begin by upper bounding s`,∞ by a metric which is easier
to work with. Using the fact that `(y, x) is locally Lipschitz, we have that

s`,∞(K, K̃) = max
i,j∈[n]

max
x∈{0,1}

{|`(Kij , x)− `(K̃ij , x)|}

≤ L` max
i,j∈[n]

max{|Kij |p−1, |K̃ij |p−1} · |Kij − K̃ij |

≤ L` max{‖K̃‖p−1
∞ , ‖K‖p−1

∞ }‖K − K̃‖∞ ≤ L`(A2d)p−1‖K − K̃‖∞.

To handle the ‖K − K̃‖∞ term, recall that as Kij = B(ωi, ωj) and K̃ij = B(ω̃i, ω̃j) for
ωi, ω̃i ∈ Sd, we have that when B(ω, ω′) = 〈ω, ω′〉 we can bound

max
i,j∈[n]

|〈ωi, ωj〉 − 〈ω̃i, ω̃j〉| ≤ max
i,j∈[n]

|〈ωi − ω̃i, ωj〉|+ |〈ω̃i, ωj − ω̃j〉|

≤
(

max
i∈[n]
‖ωi‖1 + max

i∈[n]
‖ω̃i‖1

)
·max
i∈[n]
‖ωi − ω̃i‖∞

≤ 2A2dmax
i∈[n]
‖ωi − ω̃i‖∞.

where we used the triangle inequality followed by Hölder’s inequality. We can achieve the
same bound when B(ω, ω′) = 〈ω,diag(Id1 ,−Id−d1)ω′〉, by using the triangle inequality to
bound

|B(ω, ω′)| ≤ |〈ω[1:d1], ω
′
[1:d1]〉|+ |〈ω[(d1+1):d], ω

′
[(d1+1):d]〉|

and then by applying the above argument twice. It therefore follows that in either case,
letting B(`∞nd, A) denote the set x ∈ Rnd such that ‖x‖∞ ≤ A, we have the bound

γ2(Zn(Sd), s`,∞) ≤ 2L`(A
2d)pγ2(B(`∞nd, A), ‖ · ‖∞).

This is because when we have two metrics s and s′ such that s ≤ Cs′, the corresponding
γ2-functionals satisfy γ2(s) ≤ Cγ2(s′) (Talagrand, 2014, Exercise 2.2.20). The RHS is then
straightforward to bound by Remark 34; note that

N(B(`∞nd, A), ‖ · ‖∞, ε) =
(2A

ε

)nd
and therefore∫ ∞

0

√
logN(B(`nd∞ , A), ‖ · ‖∞, ε) dε ≤ n1/2d1/2

∫ 2A

0

√
log(2A/ε) dε = 2Aπ1/2n1/2d1/2.

Combining everything gives the desired result.

Lemma 45 Let Xn = (Xn1, . . . , Xnm) ∼ 1
nMultinomial(n; pn) where the pni > 0,

∑m
i=1 pni =

1, m = m(n) → ∞ and npn(1)/ log(m) → ∞, where pn(1) is the minimum of the pni over
i ∈ [m]. Then we have that

max
i∈[m]

∣∣∣Xni − pni
pni

∣∣∣ = Op

(√ logm

npn(1)

)
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Proof [Proof of Lemma 45] We suppress the subscript n in the Xni and pni for the proof.
Recall that Xi ∼ 1

nB(n, pi). By e.g Vershynin (2018, Exercise 2.3.5), for all ε ∈ (0, 1) we
have that

P
(
|Xi − pi| > εpi) = P

(
|nXi − npi| > εnpi

)
≤ 2 exp(−cnpiε2),

for some absolute constant c > 0. Therefore, by taking a union bound we get that

P
(

max
i∈[m]

∣∣∣Xi − pi
pi

∣∣∣ > ε) ≤
m∑
i=1

P
(
|Xi − pi| > εpi

)
≤

m∑
i=1

2 exp(−cnε2pi) ≤ 2m exp(−cnp(1)ε
2).

In particular, given any δ > 0, if we take ε = (A log(m)/np(1))
1/2 (which will lie in (0, 1) for

any fixed A once n is large enough), then

P
(

max
i∈[m]

∣∣∣Xi − pi
pi

∣∣∣ > (A log(m)

np(1)

)1/2)
≤ 2e(1−cA) log(m) < δ

if e.g A = 2/c and m(n) ≥ 2/δ. The stated conclusion therefore follows.

Lemma 46 Let Xn = (Xn1, . . . , Xnm) ∼ Multinomial(n; p) with the same conditions on
the pni as in Lemma 45, and write pn(m) for the maximum of the pni over i ∈ [m]. Then
we have that

min
i∈[m]

Xi ≥ np(1) −Op
(√

np(m) log(2m)
)
.

In particular, if the pni = Θ(n−α) for some α ∈ (0, 1) so m = Θ(nα), then mini∈[m]Xi =

Ωp(n
1−α), so mini∈[m]Xi

p→∞ as n→∞.

Proof [Proof of Lemma 46] Again, we suppress the subscript n in the Xni and pni for the
proof. Begin by noting that if (ai)i∈[m] is a sequence of real numbers, then for all j ∈ [m]
we have that

aj + max
i
|ai| ≥ aj + |aj | ≥ 0 =⇒ min

i∈[m]
ai ≥ −max

i∈[m]
|aj |.

As a consequence we therefore have that (writing Xi = E[Xi] +Xi − E[Xi])

min
i∈[m]

Xi ≥ min
i∈[m]

E[Xi] + min
i∈[m]

(Xi − E[Xi]) ≥ np(1) −max
i∈[m]

∣∣∣Xi − npi
∣∣∣

and so we can just apply the bound derived in Lemma 45.

Proposition 47 Let Xn = (Xn1, . . . , Xnm) ∼ 1
nMultinomial(n, p), where m = m(n)→∞,

pn(1) is the minimum of the pni and (np(1))/ log(m)→∞. Then we have that

max
i,j∈[m]

|XniXnj − pnipnj |
pnipnj

= Op

(√
logm

npn(1)

)
.

59



Davison and Austern

In particular, if pni = Θ(n−α) then

max
i,j∈[m]

|XniXnj − pnipnj |
pnipnj

= Op

( √log n

n1/2−α/2

)
.

In the regime where m and p are fixed, we recover the standard Op(
1√
n

) rate.

Proof [Proof of Proposition 45] Again, we suppress the subscript n in the Xni and pni for
the proof. By the triangle inequality we have that

max
i,j∈[m]

|XiXj − pipj |
pipj

≤ max
i∈[m]

|Xi|
pi

max
j∈[m]

|Xj − pj |
pj

+ max
i∈[m]

|Xi − pi|
pi

.

As we can bound

max
i∈[m]

|Xi|
pi
≤ max

i∈[m]

|Xi − pi|+ pi
pi

= 1 + max
i∈[m]

|Xi − pi|
pi

= Op(1)

by Lemma 45, using this again and the above inequality gives the desired result.

Lemma 48 (Cauchy’s third inequality) Let (ak)k≥1, (bk)k≥1 and (ck)k≥1 be sequences
of positive numbers. Then

min
k≤n

ak
bk
≤ a1c1 + · · ·+ ancn
b1c1 + · · ·+ bncn

≤ max
k≤n

ak
bk
.

Proof [Proof of Lemma 48] This follows by writing

a1c1 + · · ·+ ancn
b1c1 + · · ·+ bncn

=
b1c1

(
a1
b1

)
+ · · ·+ bncn

(
an
bn

)
b1c1 + · · ·+ bncn

and then applying the inequalities

min
k≤n

ak
bk

n∑
i=1

bici ≤
n∑
i=1

ai
bi
bici ≤ max

k≤n

ak
bk

n∑
i=1

bici

and rearranging.

Lemma 49 Suppose (gn(λ1, λ2, a12))n≥1 is a sequence of integrable non-negative functions,

where λi
i.i.d∼ Unif[0, 1] and aij |λi, λj ∼ Bernoulli(Wn(λi, λj)). Then

Xn :=
1

n2

∑
i 6=j

gn(λi, λj , aij) = Op(E[gn]),

E[Xn|λn] :=
1

n2

∑
i 6=j

gn(λi, λj , 1)Wn(λi, λj) + gn(λi, λj , 0)(1−Wn(λi, λj)) = Op(E[gn]).
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Proof [Proof of Lemma 49] Note that as the quantities are identically distributed sums
over n(n− 1) ≤ n2 quantities, we have

E[E[Xn|λ1, . . . , λn]] = E[Xn] ≤ E[gn(λ1, λ2, a12)] <∞,

so the desired conclusions follow via an application of Markov’s inequality (as the gn are
non-negative, so are Xn and E[Xn|λ]).

Lemma 50 Suppose that P = (A1, . . . , Aκ) is a partition of [0, 1], and f : [0, 1]2 → R is
a function such that f > 0 a.e and f−1 ∈ Lp([0, 1]2). Then P⊗2[f ]−1 ∈ Lp([0, 1]2), and in
fact ‖P⊗2[f ]−1‖p ≤ ‖f‖p.

Proof [Proof of Lemma 50] We write

‖P⊗2[f ]−1‖pp =
∑
l,l′∈[κ]

|Al||Al′ | ·
( 1

|Al||Al′ |

∫
Al×Al′

f dµ
)−p

≤
∑
l,l′∈[κ]

|Al||Al′ | ·
1

|Al||Al′ |

∫
Al×Al′

f−p dµ = ‖f−1‖pp,

where the second line follows by using Jensen’s inequality applied to the function x 7→ x−p.

Appendix D. Proof of Theorems 10 - 19

We break this section up into four parts. The first discusses properties of the In[K] we
will need (such as convexity and continuity), the second considers minimizers of In[K] over
particular subsets of functions, and the third examines lower and upper bounds to the
difference in values of In[K] when minimized over different sets. These are then combined
together to talk about the embedding vectors learned by Rn(ωn), and comparing this to a
suitable minimizer of In[K].

D.1 Properties of In[K]

We begin with proving various properties of In[K] which will be necessary in order to talk
about constrained optimization of this function.

Lemma 51 Suppose that Assumptions B and E hold. Then In[K] is strictly convex on the
set of K for which In[K] <∞.

Proof [Proof of Lemma 51] Without loss of generality we may just consider the case where
K1, K2 are not equal almost everywhere, so the set

A :=
{

(l, l′) ∈ [0, 1]2 : K1(l, l′) 6= K2(l, l′)
}
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has positive Lebesgue measure. Now, letting t ∈ (0, 1) be fixed, via strictly convexity of the
loss function, we have that

Et,x[K1,K2](l, l′) := t`(K1(l, l′), x)+(1−t)`(K2(l, l′), x)−`(tK1(l, l′)+(1−t)K2(l, l′), x) > 0

on the set A for x ∈ {0, 1}, and that it equals zero on the set Ac. As the f̃n(l, l′, x) are
positive a.e, it therefore follows that Et,x[K1,K2](l, l′)f̃n(l, l′, x) is strictly positive on A and
zero on Ac, and consequently

tIn[K1] + (1− t)In[K2]− In[tK1 + (1− t)K2]

=
(∫

A
+

∫
Ac

) ∑
x∈{0,1}

Et,x[K1,K2](l, l′)f̃n(l, l′, x) dldl′ > 0

giving the desired conclusion.

Lemma 52 Suppose that Assumptions B and E hold with p ≥ 1 as the growth rate of the
loss function and γs = ∞. For convenience denote f̃n,x = f̃n(l, l′, x). Then In[K] < ∞ if
and only if K ∈ Lp([0, 1]2). Moreover, we have that

In[K] ≤ C1In[0] =⇒ ‖K‖pp ≤ a` + C`C1

(
max
x∈{0,1}

‖f̃−1
n,x‖∞

)−1 · In[0].

Proof [Proof of Lemma 52] Note that the f̃n,x are assumed to be bounded away from
zero as γs = ∞, uniformly so by δf = (supn,x ‖f̃−1

n,x‖∞)−1, and also are assumed to be

bounded above, say by Mf = supn,x ‖f̃n,x‖∞. To obtain the upper bound, we use the
growth assumptions on the loss function to give

In[K] ≤Mf

∫
[0,1]2
{f̃n(l, l′, 1) + f̃n(l, l′, 0)} dldl′ ≤ C`Mf

∫
[0,1]2

(
|K(l, l′)|p + a`

)
dldl′,

and similarly for the lower bound we find that

In[K] ≥ δf
∫

[0,1]2
{`(K(l, l′), 1) + `(K(l, l′), 0)} dldl′ ≥

δf
C`

∫
[0,1]2

(
|K(l, l′)|p − a`

)
dldl′,

giving the first part of the theorem statement. The second part then follows by using the
second inequality and rearranging.

Lemma 53 Suppose that Assumption B holds, where p ≥ 1 denotes the growth rate of the
loss function. Then In[K] is locally Lipschitz on Lrp([0, 1]2) for any r ≥ 1 in the following
sense: if K1, K2 ∈ Lrp([0, 1]2), then∣∣In[K1]− In[K2]

∣∣ ≤ L`‖f̃n‖r/(r−1)

(
‖K1‖rp + ‖K2‖rp

)p−1‖K1 −K2‖rp,

where f̃n(l, l′) = f̃n(l, l′, 1) + f̃n(l, l′, 0). In particular, In[K] is uniformly continuous on
bounded sets in Lp([0, 1]2).
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Proof [Proof of Lemma 53] Note that by the (local) Lipschitz property of the loss function
`(y, ·), we have that∣∣`(K1(l, l′), x)− `(K2(l, l′), x)

∣∣ ≤ L` max{|K1(l, l′)|, |K2(l, l′)|}p−1|K1(l, l′)−K2(l, l′)|

for x ∈ {0, 1}, and therefore via the triangle inequality we obtain the bound∣∣In[K1]− In[K2]
∣∣

≤ L`
∫

[0,1]2
f̃n(l, l′)

(
|K1(l, l′)|+ |K2(l, l′)|

)p−1∣∣K1(l, l′)−K2(l, l′)
∣∣ dl dl′.

Applying the generalized Hölder’s inequality with exponents r/(r − 1), rp/(p − 1) and rp
to each of the three products in the above integral respectively then gives that∣∣In[K1]− In[K2]

∣∣ ≤ L`‖f̃n‖r/(r−1)

(
‖K1‖rp + ‖K2‖rp

)p−1‖K1 −K2‖rp

as claimed.

Proposition 54 Suppose that Assumption B holds, where p ≥ 1 denotes the growth rate of
the loss function. Then In[K] is Gateaux differentiable on Lp([0, 1]2) with derivative

dIn[K;H] = lim
s→0

1

s

(
In[K + sH]− In[K]

)
=

∫
[0,1]2

{
f̃n(l, l′, 1)`′(K(l, l′), 1) + f̃n(l, l′, 0)`′(K(l, l′), 0)

}
H(l, l′) dl dl′

where `′(y, x) := d
dy `(y, x). In particular, In[K] is subdifferentiable with sub-derivative

∂In[K] = f̃n(l, l′, 1)`′(K(l, l′), 1) + f̃n(l, l′, 0)`′(K(l, l′), 0).

Proof [Proof of Proposition 54] For the Gateaux differentiability, we begin by noting that
if K ∈ Lp([0, 1]2), then |K|p−1 ∈ Lp/(p−1)([0, 1]2), and therefore by the assumed growth
condition on the first derivatives of `(y, x), it follows that dIn[K;H] is well-defined by
Hölder’s inequality. Writing∣∣∣1

s

(
In[K + sH]− In[K]

)
−
∫

[0,1]2

∑
x∈{0,1}

f̃n(l, l, x)`′(K(l, l′), x)H(l, l′) dl dl′
∣∣∣

≤
∫

[0,1]2

∑
x∈{0,1}

f̃n(l, l′, x)
∣∣∣1
s

{
`(K(l, l′) + sH(l, l′), x)− `(K(l, l′), x)

}
−H(l, l′)`′(K(l, l′), x)

∣∣∣ dl dl′,
we note that the integrand converges to zero pointwise when s→ 0 as `(y, x) is differentiable.
Moreover, as

|`(K(l, l′) + sH(l, l′), x)− `(K(l, l′), x)| ≤ s|H(l, l′)||`′(K(l, l′), x)|,
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by the mean value inequality the integrand is dominated by

Cf̃n(l, l′)|H(l, l′)|
(
a+ |K(l, l′)|p−1

)
which is integrable. The dominated convergence theorem therefore gives the first part of
the proposition statement. The second part therefore follows by using the fact that In[K] is
convex and Gateaux differentiable, hence the sub-gradient is simply the Gateaux derivative
(e.g Barbu and Precupanu, 2012, Proposition 2.40).

D.2 Minimizers of In[K] over Z(Sd) and related sets

Recall that we earlier denoted

Z(Sd) =
{
K(l, l′) = B(η(l), η(l′)) where η : [0, 1]→ Sd

}
with an implicit choice of the similarity measure B(ω, ω′), and Sd = [−A,A]d for some
A > 0 and d ∈ N. To distinguish between using the regular and indefinite/Krein inner
product, we define the following sets, for d, d1, d2 ∈ N and A > 0:

Z≥0
d (A) :=

{
functions K(l, l′) = 〈η(l), η(l)〉 | η : [0, 1]→ [−A,A]d

}
Z≥0
fr = Z≥0

fr (A) :=

∞⋃
d=1

Z≥0
d (A), Z≥0 = Z≥0(A) := cl

(
Z≥0
fr (A)

)
,

Zd1,d2(A) := Z≥0
d1
−Z≥0

d2

=
{

functions K(l, l′) = 〈η1(l), η1(l)〉 − 〈η2(l), η2(l′)〉 | ηi : [0, 1]→ [−A,A]di
}

Zfr = Zfr(A) :=

∞⋃
d1,d2=1

Zd1,d2(A), Z = Z(A) := cl
(
Zfr(A)

)
.

Here the closures are taken with respect to the weak topology on Lp([0, 1]2) (see Ap-
pendix G), for the value of p corresponding to that of the loss function in Assumption B.
We note that the sets Z≥0

fr (A), Z≥0(A), Zfr(A) and Z(A) are all independent of A > 0 as

a result of the lemma below, whence why e.g the equalities Z≥0 = Z≥0(A) and Z = Z(A)
are written above.

Lemma 55 For all d ∈ N and A > 0 we have that Z≥0
d (A) ⊂ Z≥0

d (2A) ⊂ Z≥0
4d (A). Con-

sequently, the sets Z≥0
fr (A) and Z≥0(A) are independent of the choice of A > 0. Similarly,

the sets Zfr(A) and Z(A) are independent of the choice of A > 0.

Proof [Proof of Lemma 55] We give the argument for the non-negative definite case as the
other case follows with the same style of argument. The first inclusion is immediate. For
the second, suppose K ∈ Z≥0

d (2A), so we have a representation

K(l, l′) =
d∑
i=1

ηi(l)ηi(l
′) where ηi : [0, 1]→ [−2A, 2A].
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Then as we can equivalently write this as

K(l, l′) =
d∑
i=1

( 1

2
ηi(l) ·

1

2
ηi(l
′) + · · ·+ 1

2
ηi(l) ·

1

2
ηi(l
′)︸ ︷︷ ︸

repeated four times

)

with 1
2ηi : [0, 1] → [−A,A], we have that K ∈ Z≥0

4d (A), and so get the second inclu-

sion. We therefore have that Z≥0
fr (A) = Z≥0

fr (2A); as one naturally has the inclusion that

Z≥0
fr (A) ⊂ Z≥0

fr (A′) for all A < A′, it follows that the sets Z≥0
fr (A) are equal for all A, and

so the same holds for the closures of these sets.

From now onwards, we will always drop the dependence of A from the sets Z≥0
fr (A),

Z≥0(A), Zfr(A) and Z(A), and only refer to Z≥0
fr , Z≥0, Zfr and Z onwards respectively.

Lemma 56 The sets Z≥0
fr and Zfr are convex, and therefore their weak and norm closures

in Lp([0, 1]2) coincide. Moreover, the sets Z≥0 and Z are convex.

Proof [Proof of Lemma 56] The style of argument is essentially the same for both cases, so
we focus on Z≥0

fr and Z≥0. Note that for any t ∈ (0, 1) we have that

tZ≥0
d (A) ⊆ Z≥0

d (A) and Z≥0
d1

(A) + Z≥0
d2

(A) = Z≥0
d1+d2

(A).

It therefore follows that Z≥0
fr is a convex set. A standard fact from functional analysis (see

Appendix G) then says that convex sets are norm closed iff they are weakly closed. More-
over, as the norm closure of a convex set is convex, we also get that Z≥0 is a convex set too.

Remark 57 We note that while Z≥0
fr (A) is a convex set, the sets Z≥0

d (A) for d > 0 are not
convex. This is analogous to how the set of n× n matrices of rank r < n is not convex.

Proposition 58 The sets Z≥0
d (A) and Zd1,d2(A) are weakly compact in Lp([0, 1]2) for p ≥ 1

and any A > 0, d, d1, d2 ∈ N.

Proof [Proof of Proposition 58] We work with Z≥0
d (A), knowing that the other case follows

similarly. We want to argue that the set is weakly closed, and then that it is relatively
weakly compact.

We begin by noting that the set of functions η : [0, 1] → [−A,A]d is weakly compact.
As this set is convex and norm closed (if fn → f in Lp, we can extract a subsequence which
converges a.e to f and whose image will therefore lie within [−A,A]d a.e), and therefore
will also be weakly closed. The compactness then follows by noting that as [−A,A]d is
bounded, the set of functions η : [0, 1] → [−A,A]d is also relatively weakly compact (by
Banach-Alogolu in the p > 1 case, and Dunford-Pettis in the p = 1 case - see Appendix G).

Now suppose we have a sequence Kn ∈ Z≥0
d (A), say Kn(l, l′) =

∑d
i=1 ηn,i(l)ηn,i(l

′) for
some functions ηn : [0, 1]→ [−A,A]d (so ηn,i are the coordinate functions of ηn), such that

65



Davison and Austern

Kn converges weakly to some K ∈ Lp([0, 1]2). By weak compactness, we can extract a
subsequence of the ηn, say ηnk , which converges weakly in Lp([0, 1]) to some function η.
Writing q for the Hölder conjugate to p, we then know that for any functions f, g ∈ Lq([0, 1])
we have that∫

[0,1]2
K(l, l′)f(l)g(l′) dl dl′ = lim

nk→∞

∫
[0,1]2

Kn(l, l′)f(l)g(l′) dl dl′

= lim
nk→∞

d∑
i=1

∫
[0,1]2

ηnk,i(l)f(l)ηnk,i(l
′)g(l′) dl dl′ =

∫
[0,1]2

( d∑
i=1

ηi(l)ηi(l
′)
)
f(l)g(l′) dl dl′

by using the weak convergence of the ηnk . By taking f = 1E and g = 1F for arbitrary closed

sets E and F , it follows that K and
∑d

i=1 ηi(l)ηi(l
′) agree on products of closed sets, and

therefore must be equal almost everywhere (as the latter is a π-system generating the Borel
sets on [0, 1]2). In particular, this implies that K ∈ Z≥0

d (A). The weak compactness follows

by noting that as [−A,A]d is bounded, and therefore the functions belonging to Z≥0
d (A)

are bounded in L∞, whence Z≥0
d (A) is relatively weakly compact. As we also know that

Z≥0
d (A) is also weakly closed, we can conclude.

We now discuss minimizing In[K] over the sets introduced at the beginning of this
section. It will be convenient to begin with the case where the f̃n(l, l′, 1) and f̃n(l, l′, 0) are
stepfunctions.

Proposition 59 Suppose that Assumption B holds, and further suppose that f̃n(l, l′, 1) and
f̃n(l, l′, 0) as introduced in Assumption E are piecewise constant on Q⊗2 (thus also bounded
below), where Q is a partition of [0, 1] into finitely many intervals, say κ in total. Then
there exists unique minimizers to the optimization problem

min
K∈Z≥0

In[K] and min
K∈Z

In[K].

Moreover, there exists A′ and q ≤ κ such that the minimum of In[K] over Z≥0
d (A) are

identical across all A ≥ A′ and d ≥ q, and therefore also equal to the minimizer over Z≥0.
The same statement holds when replacing Z≥0

d (A) → Zd1,d2(A), d ≥ q → min{d1, d2} ≥ q
and Z≥0 → Z.

Proof [Proof of Proposition 59] We give the argument for when the constraint sets are
non-negative definite, as the argument for the other case is very similar. Suppose that Q
is of size κ and is composed of intervals (Qi)i∈[κ]. Note that when f̃n(l, l′, 1) and f̃n(l, l′, 0)
are piecewise constant as assumed, we can argue analogously to Lemma 42 (via the strict
convexity of the loss function) that any minimal value of In[K] over Z≥0 must be piecewise
constant on Q = (Qi)i∈[κ], i.e we can write K(l, l′) = 〈ηi, ηj〉 if (l, l′) ∈ Qi × Qj for some

vectors ηi ∈ [−A,A]d, i ∈ [κ]. Moreover, by Lemma 52 we know any minima must satisfy
‖K‖p ≤ C for some C > 0. We want to argue that the set of functions belonging to

C := {K : ‖K‖p ≤ C} ∩ {K piecewise constant on Q⊗2}
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is weakly compact, so by Corollary 84 we know that there is a unique minima to In[K] over
Z≥0. To do so, we first note that the set is weakly closed, as C is convex and norm closed.
In the case where p > 1, the set C is therefore weakly compact by Banach-Alagolu (see
Appendix G) as C is a weakly closed subset of the weakly compact set {K : ‖K‖p ≤ C}.
In the case where p = 1, to apply the Dunford-Pettis criterion we need to argue that the
set of functions K ∈ C is uniformly integrable. Indeed, if we let Ki,j denote the value of K
on Qi ×Qj , then we can write that

(min
i,j
|Qi||Qj |) ·max

i,j
|Ki,j | ≤

∑
i,j

|Qi||Qj ||Ki,j | = ‖K‖1 ≤ C

=⇒ max
i,j
|Ki,j | ≤

C

mini,j |Qi||Qj |
,

so supK∈C ‖K‖∞ <∞, whence C is uniformly integrable. In both cases (p > 1 and p = 1),
we therefore have that there exists a (unique) minima to In[K] over Z≥0.

We note that in the discussion above, we have reduced the minimization problem to one
over the cone of κ× κ non-negative definite symmetric matrices. If we consider optimizing
the function

Ĩn[K̃] :=
∑
i,j∈[κ]

∑
x∈{0,1}

p(i)p(j)c̃n(i, j, x)`(K̃i,j , x), where c̃n(i, j, x) =

∫
Qi×Qj

f̃n(l, l′, x) dldl′

and p(i) = |Qi|, over all non-negative definite symmetric matrices K̃, then we know
that it has a unique minimizer K̃∗ with eigendecomposition K̃∗ =

∑κ
i=1(
√
µiφi)(

√
µiφi)

T .

Let q equal the rank of K̃∗, i.e the number of i for which µi 6= 0. If we then define
K∗(l, l′) = 〈√µiφi,

√
µjφj〉 if (l, l′) ∈ Qi × Qj , it therefore follows that K∗ is the unique

minima to In[K] over Z≥0. Moreover, the above representation tells us that K∗ ∈ Z≥0
d (A)

as soon as d ≥ q and A ≥ A′ = maxi∈[κ] ‖
√
µiφi‖∞, and therefore K∗ is the unique minima

of In[K] over all such Z≥0
d (A) too.

Corollary 60 Suppose that Assumptions B holds with p ≥ 1 as the growth rate of the loss,
and Assumption E holds with γs = ∞, so In[K] < ∞ iff K ∈ Lp([0, 1]2) by Lemma 52.
Then there exists solutions to

min
K∈Z≥0

d (A)

In[K] and min
K∈Zd1,d2 (A)

In[K]

for any n, d, d1, d2 and A. Moreover, there exists unique solutions to

min
K∈Z≥0

In[K] and min
K∈Z

In[K].

Additionally, the minimizers of In[K] over Z≥0 and Z are continuous in the functions
{f̃n(l, l′, 1), f̃n(l, l′, 0)} in the following sense: if we have functions (f̃n(l, l′, 1), f̃n(l, l′, 0)),
(f̃∞(l, l′, 1), f̃∞(l, l′, 0)) with minimizers

K∗n = arg min I[K; (f̃n(l, l′, 1), f̃n(l, l′, 0))], K∗∞ = arg min I[K; (f̃∞(l, l′, 1), f̃∞(l, l′, 0)]
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over Z≥0 or Z, then if maxx∈{0,1} ‖f̃n(·, ·, x) − f̃∞(·, ·, x)‖∞ → 0 as n → ∞, we have that
K∗n converges weakly in Lp([0, 1]2) to K∗∞.

Proof [Proof of Corollary 60] The first statement follows by combining Lemmas 51, 53 and
Proposition 58 and applying Corollary 84. For the second, we note that the optimization
domains are convex by Lemma 56. In the case where p > 1, Lemma 52 and Banach-Alagolu
allows us to argue that the minima over Z≥0 and Z lies within a weakly compact set, and
so such a minima exists and is unique.

In the p = 1 case, we already know that a minima to In[K] exists when the f̃n(l, l′, 1)
and f̃n(l, l′, 0) are piecewise constant on some partition Q⊗2, where Q is a partition of [0, 1].
Consider the function

I[K; g] =

∫
[0,1]2

∑
x∈{0,1}

g(l, l′, x)`(K(l, l′), x) dldl′

defined on Lp([0, 1]2) × Vδ, where Vδ = {symmetric f ∈ L∞([0, 1]2 × {0, 1}) : δ ≤ f ≤
δ−1 a.e} for some δ > 0, so In[K] = I[K; (f̃n(·, ·, 1), f̃n(·, ·, 0))]. We then know by Proposi-
tion 59 that a unique minimizer to I[K; g] exists on a set of g which is dense in Vδ (namely,
symmetric stepfunctions). We now verify that I[K; g] satisfies the conditions in Theorem 85.
The strict convexity condition in a) follows by Lemma 51. We now note that via the same
type of argument as in Lemma 53, we have that∣∣I[K; g]−I[K̃; g̃]

∣∣ ≤ L`δ−1‖K−K̃‖L1([0,1]2)+C`(a`+‖K̃‖L1([0,1]2))‖g−g̃‖L∞([0,1]2×{0,1}) (54)

from which the continuity condition b) holds. Moreover, by the same type of argument in
Lemma 52, if we have that I[K; g] ≤ λ then ‖K‖1 ≤ a` + C`δ

−1λ, and so this plus (54)
verifies condition c). With this, we can apply Theorem 85, from which we get the claimed
existence result when p = 1, along with continuity of the minimizers for p ≥ 1.

D.3 Upper and lower bounds

In order to get a convergence result for the learned embeddings, we need some upper and
lower bounds on quantities of the form In[K]− In[K∗], where K∗ is the unique minima of
In[K] over either Z≥0 or Z. We begin with lower bounds in terms of quantities involving
K −K∗.

Lemma 61 Suppose that Assumptions B and E hold, where p ≥ 1 is the growth rate of
the loss function. Let C be a weakly closed convex set in Lp([0, 1]2), and let q be the Hölder
conjugate to p. Then K∗ is the unique minima of In[K] over C if and only if

−∂In[K∗] ∈ NC(K∗) =
{
L ∈ Lq([0, 1]2) : 〈L,K∗ − C〉 ≥ 0 for all C ∈ C

}
.

Proof By the strict convexity of In[K] and the KKT conditions.
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Proposition 62 Suppose that Assumptions B and E hold with p ≥ 1 as the growth rate of
the loss function and γs =∞. Suppose C is a weakly closed convex set of Lp([0, 1]2), and that
there exists a minima (whence unique) K∗ to In[K] over C. Write f̃n,x(l, l′) = f̃n(l, l′, x).
Then for any K ∈ C, we have the following:

i) If `′′(y, x) ≥ c > 0 for some constant c > 0 for all y ∈ R and x ∈ {0, 1} (for example
the probit loss - see Lemma 68), then

In[K]− In[K∗] ≥ c

2

(
max
x∈{0,1}

‖f̃−1
n,x‖∞

)−1
∫

[0,1]2
(K(l, l′)−K∗(l, l′))2 dl dl′.

ii) Suppose that `(y, x) is the cross entropy loss. Then

In[K]− In[K∗] ≥ 1

4

(
max
x∈{0,1}

‖f̃−1
n,x‖∞

)−1
∫

[0,1]2
e−|K

∗(l,l′)|ψ(|K(l, l′)−K∗(l, l′)|) dl dl′,

where ψ(x) = min{x2, 2x}.

Proof [Proof of Proposition 62] Let Kt = tK+ (1− t)K∗; therefore K0 = K∗ and K1 = K.
Now, as `(y, x) is twice differentiable in y for x ∈ {0, 1}, by the integral version of Taylor’s
theorem we have that

`(K,x) = `(K∗, x) + `′(K∗, x)(K −K∗) +

∫ 1

0
(1− t)`′′(Kt, x)(K −K∗)2 dt

for x ∈ {0, 1}. Therefore, if we multiply by f̃n(l, l′, x), sum over x ∈ {0, 1} and integrate
over the unit square, it follows that

In[K] = In[K∗] +

∫
[0,1]2

∂In[K∗](l, l′)(K(l, l′)−K∗(l, l′)) dl dl′

+

∫
[0,1]2

∫ 1

0
(1− t)

∑
x∈{0,1}

f̃n(l, l′, x)`′′(Kt(l, l
′), x)(K(l, l′)−K∗(l, l′))2 dl dl′ dt,

where we have used the expression for ∂In[K] as derived in Proposition 54. By the KKT
conditions stated in Corollary 61, as K∗ is the unique minima to the constrained optimiza-
tion problem, we get that

In[K]−In[K∗] ≥
∫

[0,1]2

∫ 1

0
(1−t)

∑
x∈{0,1}

f̃n(l, l′, x)`′′(Kt(l, l
′), x)(K(l, l′)−K∗(l, l′))2 dl dl′ dt.

In order to lower bound the RHS further, we then work with the two specified cases in order.
In the case where `′′(y, x) ≥ c > 0 for some constant c > 0 for all y ∈ R and x ∈ {0, 1},
then we get the bound

In[K]− In[K∗] ≥ c

2

∫
[0,1]2

f̃n(l, l′)(K(l, l′)−K∗(l, l′))2 dl dl′

after integrating over t ∈ [0, 1], from which we get the stated bound by using the fact that
f̃n(l, l′, 1) and f̃n(l, l′, 0) are bounded away from zero. In the cross entropy case, this follows
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by using the expression given in Lemma 68 and then using Fubini.

We now want to work on obtaining upper bounds for In[K]−In[K∗], in the case where
K is a minimizer to In[K] over one of the sets Z≥0

d (A) or Zd1,d2(A).

Lemma 63 Suppose that Assumption B holds with 1 ≤ p ≤ 2 and Assumption E holds
with γs =∞, and let K∗n be the unique minima of In[K] over Z≥0. Moreover suppose that
K∗n ∈ L2([0, 1]2) for all n ≥ 1, so we can therefore write

K∗n(l, l′) =

∞∑
k=1

µn,kφn,k(l)φn,k(l
′), (55)

where we understand the equality sign above to be understood as a limit in L2([0, 1]2). Here
the µn,k ≥ 0 for each n are sorted in monotone decreasing order in k, and 〈φn,i, φn,j〉 = δij
for each n. Additionally assume that ‖√µn,iφn,i‖∞ ≤ A′ for all n, i. Then for any A ≥ A′,
we get that∣∣∣ min

K∈Z≥0
In[K]− min

K∈Z≥0
d (A)

In[K]
∣∣∣ ≤ 2p−1L` max

x∈{0,1}
‖f̃n,x‖∞‖K∗n‖

p−1
2

( ∞∑
k=d+1

|µn,k|2
)1/2

.

In the case when K∗n is the unique minima to In[K] over Z, we again assume that K∗n ∈
L2([0, 1]2) for all n, so the expansion (55) still holds. Here the µn,k may not be non-
negative, and are sorted so that |µn,k| ≥ |µn,k+1| for all n, k. Additionally assume that

‖
√
|µn,i|φn,i‖∞ ≤ A′ for all n, i. For each n, define J

(±)
n := {i : ±µn,i > 0}, and given a

sequence d = d(n), define

d1 = d1(n) := |J (+)
n ∩ [d]|, d2 = d2(n) := |J (−)

n ∩ [d]|.

We then have for any A ≥ A′ that∣∣∣ min
K∈Z

In[K]− min
K∈Zd1,d2 (A)

In[K]
∣∣∣ ≤ 2p−1L` max

x∈{0,1}
‖f̃n,x‖∞‖K∗n‖

p−1
2

( ∞∑
k=d+1

|µn,k|2
)1/2

.

Proof [Proof of Lemma 63] Note that

K∗n,d :=
d∑

k=1

µn,kφn,k(l)φn,k(l
′)

is a best rank-d approximation toK∗n, with the assumption that ‖√µn,iφn,i‖∞ ≤ A′ implying

K∗n,d ∈ Z
≥0
d (A) for each d. Consequently we have that min

K∈Z≥0
d (A)

In[K] ≤ In[K∗n,d] and

therefore ∣∣∣ min
K∈Z≥0

In[K]− min
K∈Z≥0

d (A)

In[K]
∣∣∣ ≤ In[K∗n,d]− In[K∗n].

We then apply Proposition 53 with r = 2/p, noting that

‖K∗n,d‖2 ≤ ‖K∗n‖2, ‖K∗n,d −K∗n‖2 =
( ∞∑
k=d+1

|µn,k|2
)1/2

,
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to get the first stated result. The argument in the case where Z≥0 is replaced with Z is the
same, after noting that our choice of d1 and d2 forces the best rank-d approximation to be
within Zd1,d2(A).

Remark 64 Note that the eigenvalue bound obtained via the Parseval identity
∑∞

k=1 µ
2
k =

‖K∗‖22 is that |µk| ≤ ‖K∗‖2k−1/2, which is unable to give rates of convergence of the best
rank-d approximation of K∗ to K, as the series

∑∞
k=1 k

−1 is not summable. Under some
additional smoothness conditions on K∗, we can obtain summable eigenvalue bounds (see
Section H).

Corollary 65 Suppose that Assumption B holds with 1 ≤ p ≤ 2 and Assumption E holds
with γs =∞, and let K∗n be the unique minima of In[K] over Z≥0. Suppose that one of the
following sets of regularity conditions hold:

(A) The K∗n satisfy supn≥0 ‖K∗n‖∞ < ∞ and are Q⊗2-piecewise equicontinuous (that is,
for all ε > 0 there exists δ > 0 such that whenever x, y lie within the same partition
of Q⊗2 and ‖x− y‖ < δ, we have that |K∗n(x)−K∗n(y)| < ε for all n).

(B) The K∗n are each piecewise Hölder([0, 1]2, β, M , Q⊗2) and supn≥0 ‖K∗n‖∞ <∞.

Then there exists A′ such that whenever A ≥ A′, we have that

sup
n

∣∣∣ min
K∈Z≥0

In[K]− min
K∈Z≥0

d (A)

In[K]
∣∣∣ =

{
o(1) as d→∞ if (A) holds,

O
(
d−(1/2+β)

)
if (B) holds.

In the case where K∗n is the unique minima of In[K] over Z and either (A) or (B) as above
hold, define d1, d2 as according to Lemma 63. Then there exists A′ such that whenever
A ≥ A′, the above bound becomes

sup
n

∣∣∣ min
K∈Z

In[K]− min
K∈Zd1,d2 (A)

In[K]
∣∣∣ =

{
o(1) as d→∞ if (A) holds,

O
(
d−β

)
if (B) holds.

Proof [Proof of Corollary 65] Under the given assumptions, this is a consequence of
Lemma 63, Theorem 89 and Proposition 91.

D.4 Convergence of the learned embeddings

Theorem 66 Suppose that Assumptions B holds with either the cross-entropy loss (so p =
1) or a loss function satisfying `′′(y, x) ≥ c > 0 for all y ∈ R, x ∈ {0, 1} with p = 2;
Assumptions A C and D hold; and that Assumption E holds with γs =∞. Suppose that ω̂n
is any minimizer of Rn(ωn) over the set ωn ∈ ([−A,A]d)n, where we require that A ≥ A′ for
a constant A′ specified as part of one of the three regularity conditions listed below. Write
rn for the relevant rate from Theorem 30, and define the function γ(β) = β+1/2 if B(ω, ω′)
the regular inner product, or γ(β) = β if B(ω, ω′) is a Krein or indefinite inner product in
Assumption C. Let K∗n be the unique minima of In[K] over Z≥0 or Z, depending on whether
B(ω, ω′) = 〈ω, ω′〉 or 〈ω, Id1,d2ω′〉 respectively. We now assume one of the following sets of
regularity conditions:
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(A) The K∗n are Q⊗2-piecewise equicontinuous (see Corollary 65) and supn≥1 ‖K∗n‖∞ <∞.
Moreover, the embedding dimension d = d(n) is chosen so that rn → 0 (for example,
one can take d = log(n) or d = nc for c sufficiently small), and d1, d2 are chosen as
described in Corollary 65. Finally, we let A′ be the constant specified in Corollary 65.

(B) In addition to (A), we assume that the K∗n are piecewise Hölder([0, 1]2, β, M , Q⊗2)
continuous for some constants β, M > 0 free of n.

(C) The functions f̃n(l, l′, 1) and f̃n(l, l′, 0) are piecewise constant on Q⊗2. Moreover, the
values of A′, d, d1 and d2 are chosen to satisfy the conditions in the last two sentences
of Theorem 59.

We then have that

1

n2

∑
i,j

∣∣K∗n(λi, λj)−B(ω̂i, ω̂j)
∣∣ =


op(1) if (A) holds,

Op(r̃
1/2
n ) if (B) holds,

Op(r
1/2
n ) if (C) holds.

where r̃n = rn + (log(n)/n)β/2 + d−γ(β).

Remark 67 We note that when K∗n = K∗n,uc as defined in (16), condition (B) will be
satisfied by Corollary 90.

Proof [Proof of Theorem 66] Let ω̂n be a minimizer of Rn(ωn) over ωn ∈ (Sd)
n =

([−A,A]d)n. We begin with associating a kernel K to a collection of embedding vectors
ωn. To do so, given λn, let λn,(i) be the associated order statistics for i ∈ [n], and πn be
the mapping which sends i to the rank of λi. We then define the sets

An,i =
[ i− 1/2

n+ 1
,
i+ 1/2

n+ 1

]
for i ∈ [n]

and the function

K̂n(l, l′) =

{
B(ω̂i, ω̂j) if (l, l′) ∈ An,πn(i) ×An,πn(j),

0 if l or l′ ∈ [0, 1] \ ∪nj=1An,j .

The purpose of defining K̂n to have a “border” around the edges of [0, 1]2 is so that we can
allow the sets An,i to be the same size, to simplify the bookkeeping below.

We will now work on upper bounding In[K̂n] − In[K∗n] to give us a rate at which this
quantity converges. We will then lower bound this by some norm of K̂n −K∗n, which will
be comparable to the quantity for which we give a rate of convergence for.

Step 1: Bounding from above. By the triangle inequality, we have that

In[K̂n]− In[K∗n] ≤
∣∣∣In[K∗n]− min

K∈Z≥0
d (A)

In[K]
∣∣∣+
∣∣∣ min
K∈Z≥0

d (A)

In[K]−Rn(ω̂n)
∣∣∣

+
∣∣∣Rn(ω̂n)− In[K̂n]

∣∣∣ = (I) + (II) + (III).
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We note that (II) is Op(rn) by Theorem 30. The other two parts require more discussion
depending on which of (A), (B) or (C) hold; we begin by bounding (I) first.

Step 1A: Bounding (I). Here we apply Corollary 65 for when either (A) or (B) hold, and
Theorem 59 for when (C) holds. In the latter case, we note that the conditions on A′ and d
(respectively A′, d1 and d2) imply that the minimizer to In[K] over Z≥0 (respectively Z) is
equal to the minimizer over Z≥0

d (A) (respectively Zd1,d2(A)) whenever A ≥ A′. It therefore
follows that in either of the three cases, when B(ω, ω′) = 〈ω, ω′〉 we know that whenever
A ≥ A′ we have that

∣∣∣ min
K∈Z≥0

In[K]− min
K∈Z≥0

d (A)

In[K]
∣∣∣ =


o(1) if (A) holds,

O(d−(β+1/2)) if (B) holds,

0 if (C) holds.

In the case where B(ω, ω′) = 〈ω, Id1,d2ω′〉, we similarly have that

∣∣∣ min
K∈Z

In[K]− min
K∈Zd1,d2 (A)

In[K]
∣∣∣ =


o(1) if (A) holds,

O(d−β) if (B) holds,

0 if (C) holds.

Step 1B: Bounding (III). We will detail the argument and bounds under condition (B)
first, and then describe what changes under conditions (A) and (C) afterwards. We begin
by defining the quantity

c̃n(i, j, x) :=
1

|An,πn(i)||An,πn(i)|

∫
An,πn(i)×An,πn(j)

f̃n(l, l′, x) dldl′

so we can therefore write (as K̂n is piecewise constant)

In[K̂n] =
1

(n+ 1)2

∑
i,j∈[n]

∑
x∈{0,1}

`(B(ω̂i, ω̂j), x)c̃n(i, j, x) +
(n− 1)

(n+ 1)2

(
`(0, 1) + `(0, 0)

)
= Ĩn[K̂n] +O(n−1) where Ĩn[K̂n] :=

1

(n+ 1)2

∑
i,j∈[n]

∑
x∈{0,1}

`(B(ω̂i, ω̂j), x)c̃n(i, j, x).

Note that the O(n−1) term holds uniformly across any choice of embedding vectors ωn.
Recalling the function

E[R̂n(ωn)|λn] :=
1

n2

∑
i 6=j

∑
x∈{0,1}

f̃n(λi, λj , x)`(B(ωi, ωj), x)

from (33), we introduce the function

E[R̂n,(1)(ωn)|λn] :=
1

n2

∑
i,j∈[n]

∑
x∈{0,1}

f̃n(λi, λj , x)`(B(ωi, ωj), x),

where we have added the diagonal term i = j, i ∈ [n], and note that analogously to
Lemma 40 (and with the exact same proof) we have that

sup
ωn∈(Sd)n

∣∣∣E[R̂n,(1)(ωn)|λn]− E[R̂n(ωn)|λn]
∣∣∣ = O

(dp
n

)
. (56)
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We can therefore write∣∣In[K̂n]−Rn(ω̂n)
∣∣ ≤ ∣∣Ĩn[K̂n]−Rn(ω̂n)

∣∣+O(n−1)

≤
∣∣∣ 1

(n+ 1)2

∑
i,j∈[n]

∑
x∈{0,1}

`(B(ω̂i, ω̂j), x)
{
c̃n(i, j, x)− f̃n(λi, λj , x)

}
+

1

(n+ 1)2

( ∑
i,j∈[n]

∑
x∈{0,1}

`(B(ω̂i, ω̂j), x)f̃n(λi, λj , x)
)
−Rn(ω̂n)

∣∣∣+O(n−1)

≤ 1

(n+ 1)2

∑
i,j∈[n]

∑
x∈{0,1}

`(B(ω̂i, ω̂j), x)
∣∣c̃n(λi, λj , x)− f̃n(λi, λj , x)

∣∣
+
∣∣∣(1− 1

n+ 1
)
)2E[R̂n,(1)(ω̂n)|λn]−Rn(ω̂n)

∣∣+O(n−1)

≤ 1

(n+ 1)2

∑
i,j∈[n]

∑
x∈{0,1}

`(B(ω̂i, ω̂j), x)
∣∣c̃n(λi, λj , x)− f̃n(λi, λj , x)

∣∣
+O(n−1)E[R̂n,(1)(ω̂n)|λn] +

∣∣E[R̂n,(1)(ω̂n)|λn]−Rn(ω̂n)
∣∣+O(n−1). (57)

We begin by bounding the second and third terms above. We note that the third term can
be bounded above by Op(rn) by combining Lemma 32, Theorem 33 and the bound (56).

This also tells us that E[R̂n(ω̂n)|λn] = Op(1), so the second term will be Op(n
−1).

For the first term, we exploit the smoothness of the f̃n(l, l′, x), noting that we need to
take some care in handling that it is only piecewise smooth. To handle the piecewise aspect,
write Q = (Q1, . . . , Qκ), where the Qi are ordered so that if x ∈ Qi and y ∈ Qj , then x < y
iff i < j. We then define the sets Nλ,n,k = {j : λj ∈ Qj}, NA,n,k = {j : An,πn(j) ⊆ Qk},

Mn,k = {j : λj ∈ Qk, An,πn(j) ⊆ Qk} = Nλ,n,k ∩NA,n,k, Mn =

κ⋃
k=1

Mn,k.

We want to determine the size of the set Mn. To do so, we note that as Q is a partition
of [0, 1], we have that the Nλ,n,k are pairwise disjoint (and similarly so for the NA,n,k), and
therefore so are the Mn,k. To determine the size of the Mn,k, we note that as πn(·) : [n]→ [n]
is a bijection (sending the index i to the order rank of λi out of the (λ1, . . . , λn)), the size of
Mn,k is equal to the size of π−1

n (Nλ,n,k)∩π−1
n (NA,n,k). We then note that the sets π−1

n (Nλ,n,k)
are sets of contiguous integers, which begin and end at points

1 +
k−1∑
l=1

|Nλ,n,k|,
k∑
l=1

|Nλ,n,k|

respectively. Note that as |Nλ,n,k| is B(n, |Qk|) distributed, we have that |Nλ,n,k| = n|Qk|+
Op(
√
n) (for example by Proposition 45) and therefore the beginning and endpoints are

equal to

n
k−1∑
l=1

|Ql|+Op(
√
n), n

k∑
l=1

|Ql|+Op(
√
n).
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Similarly, the sets π−1
n (NA,n,k) are sets of contiguous integers beginning and ending at the

points

n
k−1∑
l=1

|Ql|+O(1), n
k∑
l=1

|Ql|+O(1)

respectively. It therefore follows that the size of the intersection, and therefore |Mn,k|, must
be at least n|Qk| − En,k where En,k ≥ 0, En,k = Op(

√
n). Consequently, as the Mn,k are

disjoint we have that |Mn| ≥ n−Op(
√
n), and so |M c

n| ≤ Op(
√
n).

With this, we now begin bounding∣∣c̃n(λi, λj , x)− f̃n(λi, λj , x)
∣∣

considering separately the cases where i, j ∈ Mn, and when either i 6∈ Mn or j 6∈ Mn. In
the case where i, j ∈Mn, we get that∣∣c̃n(i, j, x)− f̃n(λi, λj , x)

∣∣ ≤ 1

|An,i||An,j |

∫
An,i×An,j

∣∣f̃n(l, l′, x)− f̃n(λn,(i), λn,(j), x)
∣∣ dldl′

≤ Lf sup
(l,l′)∈An,i×An,j

‖(l, l′)− (λn,(i), λn,(j))‖
β
2

≤ Lf2β/2
( 1

2n
+ max

i∈[n]

∣∣λn,(i) − i

n+ 1

∣∣)β = Op

(( log(n)

n

)β/2)
, (58)

where the last equality follows by Lemma 69, and we note that the stated bound holds
uniformly over all n and pairs of indices i, j ∈ Mn. In the case where either i 6∈ Mn or
j 6∈Mn, then all we can say is that the difference of the two quantities is uniformly bounded
above by supn,x ‖f̃n,x‖∞. To summarize, we have that

∣∣c̃n(i, j, x)− f̃n(λi, λj , x)
∣∣ ≤ {Op((log n)/n)β/2

)
if i, j ∈Mn,

supx,n ‖f̃n,x‖∞ otherwise,
(59)

holding uniformly across the vertices. We therefore have that

1

n2

∑
i,j∈[n]

∑
x∈{0,1}

`(B(ω̂i, ω̂j), x)
∣∣c̃n(i, j, x)− f̃n(λi, λj , x)

∣∣
≤ 1

n2

( ∑
i,j∈Mn

+
∑

i or j∈Mc
n

) ∑
x∈{0,1}

`(B(ω̂i, ω̂j), x)
∣∣c̃n(i, j, x)− f̃n(λi, λj , x)

∣∣
≤ 1

n2

∑
i,j∈Mn

∑
x∈{0,1}

`(B(ω̂i, ω̂j), x) ·Op
(
(log n)/n)β/2

)
+
|M c

n|2 + 2|Mn||M c
n|

(n+ 1)2
· sup
x,n
‖f̃n,x‖∞A2dp

≤ Op
(
(log n)/n)β/2

)
· 1

n2

∑
i,j∈[n]

∑
x∈{0,1}

`(B(ω̂i, ω̂j), x) +Op(d
p/n1/2). (60)
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To finalize the above bound, we want to argue that

1

n2

∑
i,j∈[n]

∑
x∈{0,1}

`(B(ω̂i, ω̂j), x) = Op(1). (61)

To do so, we note that as Rn(ω̂n) ≤ Rn(0), by combining Lemma 32, Theorem 33 and the
bound (56), we know that

E[R̂(1),n(ω̂n) |λn] ≤ 2E[R̂(1),n(0) |λn]

with asymptotic probability one. One of the intermediate steps in the proof of Lemma 38
then shows that this implies (61) as desired.

Consequently, it therefore follows by combining (60) and (61) with (57) that we get

(III) = Op((log(n)/n)β/2 + dpn−1/2 + rn).

Here the dpn−1/2 term is negligible compared to rn. We now discuss how this bound changes
when (A) and (C) hold. In the case of (A), the equicontinuity condition implies that we
can guarantee that the bound (58) is op(1), and so we obtain the bound (III) = op(1)
after piecing together the other parts. In the case of (C), we note that the bound (58) is
equal to zero, and consequently the bound in (60) is Op(d

pn−1/2), so we have the bound
(III) = Op(rn).

Step 2: Lower bounding and concluding. To summarize what we have shown so far in
Step 1, we have obtained the bounds

In[K̂n]− In[K∗n] =


op(1) if (A) holds,

Op(r̃n) where r̃n = rn + (log(n)/n)β/2 + d−γ(β) if (B) holds,

Op(rn) if (C) holds;

where γ(β) = β or 1/2 + β, depending on whether B(ω, ω′) is an indefinite or the regular
inner product on Rd respectively. To proceed, we work first in the case when (B) holds,
and the loss function `(y, x) is the cross-entropy loss. We then discuss afterwards what
occurs when either (A) or (C) hold, along with when the loss function instead satisfies
`′′(y, x) ≥ c > 0.

We now note that as K∗n is the unique minima of In[K] under either the constraint set
Z≥0 or Z, Proposition 62 tells us that we can obtain a lower bound on In[K̂n]− In[K∗n] of
the form∫

[0,1]2
ψ
(
|K̂n(l, l′)−K∗n(l, l′)|

)
e−|K

∗
n(l,l′)| dldl′ ≤ 4 max

x∈{0,1}
‖f̃−1
n,x‖∞

(
In[K̂n]− In[K∗n]

)
(62)

where ψ(x) = min{x2, 2x}. As K∗n is assumed to be uniformly bounded in L∞([0, 1]2), and
‖f̃−1
n,x‖∞ is assumed to be uniformly bounded too, this implies that∫

[0,1]2
ψ
(
|K̂n(l, l′)−K∗n(l, l′)|

)
dldl′ = Op(r̃n),
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and therefore by Lemma 70 we get that∫
[0,1]2

∣∣K̂n(l, l′)−K∗n(l, l′)
∣∣ = Op(r̃

1/2
n ). (63)

We now introduce the function

K̄∗n(l, l′) =

{
K∗n(λi, λj) if (l, l′) ∈ An,πn(i) ×An,πn(j)

0 if l or l′ ∈ [0, 1] \ ∪ni=1An,i

and note that by the same arguments as in (60) above, it follows that∫
[0,1]2

∣∣K̄∗n(l, l′)−K∗n(l, l′)
∣∣ dldl′ = Op

(‖K∗n‖∞
n1/2

+
( log(n)

n

)β/2)
. (64)

Note that the term above decays faster than r̃n, and as we are interested in the regime

where r̃n → 0, it will be dominated by an Op(r̃
1/2
n ) term also. It therefore follows by the

triangle inequality that

1

(n+ 1)2

∑
i,j∈[n]

∣∣K∗n(λi, λj)−B(ω̂i, ω̂j)
∣∣ =

∫
[0,1]2

∣∣K̄∗n(l, l′)− K̂n(l, l′)
∣∣ dldl′

≤
∫

[0,1]2

∣∣K̄∗n(l, l′)−K∗n(l, l′)
∣∣+
∣∣K∗n(l, l′)− K̂n(l, l′)

∣∣ dldl′ = Op(r̃
1/2
n )

(65)

as desired. In the case where (A) holds, we know that the bound (63) is now op(1), and
(64) will also be op(1) by the asymptotic equicontinuity condition, and so (65) will be
op(1) too. In the case where (C) holds, we firstly note that Theorem 59 implies that
supn≥1 ‖K∗n‖∞ < ∞, and so the parts of the argument relying on this assumption still go

through. We then have that (63) will be Op(r
1/2
n ), and (64) will be Op(‖K∗n‖∞n−1/2), and so

(65) will be Op(r
1/2
n ). In the case where the loss function `(y, x) is such that `′′(y, x) ≥ c > 0

for all y and x - we state the bounds for when (B) holds, as the argument does not change
between the cases - we note that in (62), Proposition 62 instead tells us that(∫

[0,1]2

(
K̂n(l, l′)−K∗n(l, l′)

)2
dldl′

)1/2
≤
(

2c−1 max
x∈{0,1}

‖f̃−1
n,x‖∞ ·

(
In[K̂n]− In[K∗n]

))1/2
.

Consequently, (63) becomes(∫
[0,1]2

(
K̂n(l, l′)−K∗n(l, l′)

)2
dldl′

)1/2
= Op(r̃

1/2
n ),

from which we can obtain the L1([0, 1]2) bound in (63) by Jensen’s inequality to therefore
obtain the same bound as in (65).
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D.5 Graphon with high dimensional latent features

Proof [Proof of Theorem 16] Recall that for Algorithm 4, we have that

f̃n(λ,λ′, 1) =
2kW (λ,λ′)

EW
,

f̃n(λ,λ′, 0) =
l(k + 1)(1− ρnW (λ,λ′))

EW (α)EW (α)

{
W (λ, ·)W (λ′, ·)α +W (λ, ·)αW (λ′, ·)

}
.

In particular, as the graphon W (λ,λ′) on [0, 1]q is equivalent to a graphon W ′ on [0, 1]
which is Hölder with exponent βW q

−1 by Theorem 14, it follows that

f̃ ′n(λ, λ′, 1) :=
2kW ′(λ, λ′)

EW ′
,

f̃ ′n(λ, λ′, 0) :=
l(k + 1)(1− ρnW ′(λ, λ′))

EW ′EW ′(α)

{
W ′(λ, ·)W ′(λ, ·)α +W ′(λ, ·)αW ′(λ′, ·)

}
will be Hölder with exponent αβW q

−1 by Lemma 82. Similarly by Theorem 14 and
Lemma 81, we also know that f̃ ′n(λ, λ′, 1) and f̃ ′n(λ, λ′, 0) are bounded above uniformly
in n, and are bounded below and away from zero uniformly in n. Consequently, we can
then apply Theorem 12 to get the stated result.

D.6 Additional lemmata

Lemma 68 Suppose that Assumption BI holds, so

`(y, x) = −x log
(
F (y)

)
− (1− x) log

(
1− F (y)

)
for some c.d.f function F . If F (y) = Φ(y) is the c.d.f of a standard Normal distribution,
then `′′(y, x) ≥ (4/π − 1) > 0 for all y ∈ R, x ∈ {0, 1}. If F (y) = ey/(1 + ey) is the c.d.f of
the logistic distribution (so `(y, x) is the cross entropy loss), then we have that∫ 1

0
(1− t)`′′(ty + (1− t)y∗)(y − y∗)2 dt ≥ 1

4
e−|y

∗|min{|y − y∗|2, 2|y − y∗|}.

Proof [Proof of Lemma 68] Note that if the loss function is of the stated form with a
symmetric, twice differentiable c.d.f F , we get that

d2

dy2
`(y, x) =

F ′(y)2 + (1− F (y))F ′′(y)

(1− F (y))2

for x ∈ {0, 1}. Due to the relation F (y) + F (−y) = 1, it follows that F ′ is even and F ′′ is
odd, meaning that the two derivatives for x ∈ {0, 1} will be equal, and the second derivative
is an even function in y. Consequently, we only need to work with y > 0.

With this, we begin with working with the probit loss. Note that by Abramowitz and
Stegun (1964, Formula 7.1.13) we have the tail bound

2φ(y)

y +
√
y2 + 4

φ(y) ≤ 1− Φ(y) = P(Z ≥ y) ≤ 2φ(y)

y +
√
y2 + 8/π

for y > 0
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where φ(·) is the corresponding p.d.f. It follows that the second derivative of `(y, x) is
therefore bounded below by (for y > 0)

1

4

(
y +

√
y2 + 8/π

)2 − 1

2
y
(
y +

√
y2 + 4

)
=

2

π
+

1

2
x2
(√

1 + 8
πx2
−
√

1 + 4
x2

)
.

This function is monotonically decreasing, and by the use of L’Hopitals rule we have that

lim
x→∞

x2
(√

1 + 8
πx2
−
√

1 + 4
x2

)
= lim

x→∞

√
1 + 8

πx2
−
√

1 + 4
x2

x−2

= lim
x→∞

−x−3
(

8
π (1 + 8

πx2
)−1/2 − 4(1 + 4

x2
)−1/2

)
−2x−3

=
4

π
− 2;

it follows that `′′(y, x) will be bounded below by 4/π − 1 > 0.
If F (y) = ey/(1 + ey), then we claim that

d2

dy2
`(y, x) =

ey

(1 + ey)2
≥ 1

4
e−|y|

for x ∈ {0, 1}. To see that this inequality is true, note that we can rearrange it to say that

ey+|y| ≥ 1

4
(1 + ey)2 =

1

4

(
1 + ey + e2y

)
.

In the case when y ≥ 0, the inequality follows by noting that the polynomial 1 + 2x− 3x2

is non-negative for x ≥ 1 and substituting in x = ey, and in the case when y < 0 follows by
noting that the two functions which we are comparing are even. With this inequality we
therefore have that∫ 1

0
(1− t)`′′(ty + (1− t)y∗)(y − y∗)2 dt ≥

∫ 1

0
(1− t)e−|ty+(1−t)y∗|(y − y∗)2 dt

≥
∫ 1

0
(1− t)e−|y∗|e−t|y−y∗|(y − y∗)2 dt

= e−|y
∗|{|y − y∗|+ e−|y−y

∗| − 1
}

≥ 1

4
e−|y

∗|min{|y − y∗|2, 2|y − y∗|}.

where in the second line we used the triangle inequality, and in the last line we used the
inequality x + e−x − 1 ≥ 0.25 min{x2, 2x}. (This last inequality can be derived by noting
that the inequality holds at x = 0, and that the derivatives of the functions also satisfy the
inequality.)

Lemma 69 Let µn,i
i.i.d∼ Unif[0, 1] for i ∈ [n], and let λn,(i) be the associated order statistics.

Then

max
i∈[n]

∣∣∣λn,(i) − i

n+ 1

∣∣∣ = Op

(√ log(2n)

n

)
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Proof [Proof of Lemma 69] As the λn,(i) ∼ Beta(i, n+1− i), we have by Marchal and Arbel
(2017, Theorem 2.1) that

E
[

exp
(
µ
{
λn,(i) −

i

n+ 1

})]
≤ exp

( µ2

8(n+ 2)

)
for all µ ∈ R,

i.e the λn,(i)− i
n+1 are sub-Gaussian random variables. The desired result therefore follows

by using standard maximal inequalities for sub-Gaussian random variables.

Lemma 70 Suppose that (gn) is a sequence of measurable functions on [0, 1]2 such that∫
min{|gn|2, c|gn|} dµ = o(rn)

where (rn) is a sequence converging to zero. Then
∫
|gn|dµ = o(r

1/2
n ).

Proof [Proof of Lemma 70] Recall that for x > 0, x2 ≤ cx if and only if x ≤ c, and therefore
by Jensen’s inequality we have that∫

|gn|1[|gn| ≥ c] dµ+
(∫
|gn|1[|gn| ≤ c] dµ

)2

≤
∫
{|gn|1[|gn| ≥ c] + |gn|21[|gn| ≤ c]} dµ =

∫
min{|gn|2, c|gn|} dµ.

Therefore by decomposing
∫
|gn| dµ into parts where |gn| ≥ c and |gn| ≤ c, we get contri-

butions o(rn) and o(r
1/2
n ) respectively, and so the desired result follows.

Appendix E. Additional results from Section 3

Proof [Proof of Proposition 21] Throughout, we denote sij = B(ω̂i, ω̂j) and s̃ij = K∗n(λi, λj).
In the case where d(s, b) is Lipschitz for b ∈ {0, 1}, if we let M be the maximum of the
Lipschitz constants for d(s, 1) and d(s, 0), and write d(s, b) = bd(s, 1) + (1 − b)d(s, 0), we
get that for any B ∈ An that∣∣∣L(S,B)− L(S̃, B)

∣∣∣ ≤ M

n2

∑
i 6=j

∣∣sij − s̃ij∣∣,
and therefore we can apply Theorem 66 (which encapsulates Theorems 10, 12 and 19) to
give the first claimed result. When d(s, b) is the zero-one loss, we can write∣∣Dτ (S,B)−Dτ ′(S̃, B)

∣∣ ≤ 1

n2

∑
i 6=j

∣∣1[sij < τ ]− 1[s̃ij < τ ′]
∣∣,

where we note that the RHS is free of B. We now note that the
∣∣1[sij < τ ] − 1[s̃ij < τ ′]

∣∣
term equals 1 iff either a) sij < τ and s̃ij ≥ τ ′, or b) sij ≥ τ and s̃ij < τ ′; otherwise it
equals 0. If τ ′ = τ + ε for ε > 0, then a) implies that |sij − s̃ij | > ε. If b) holds, then either
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i) sij ∈ [τ, τ + 2ε], s̃ij ∈ [τ − ε, τ + ε], and therefore |sij − s̃ij | ≤ 3ε; or

ii) one of the above conditions does not hold, in which case |sij − s̃ij | > ε.

If we instead take ε < 0, then the above statements still hold provided we write ε → |ε|;
without loss of generality, we work with ε > 0 onwards. Consequently, we get

sup
B∈An

∣∣Dτ (S,B)−Dτ+ε(S̃, B)
∣∣

≤ 1

n2

∑
i 6=j

1
[∣∣sij − s̃ij | > ε

]
+

1

n2

∑
i 6=j

1
[
s̃ij ∈ [τ − ε, τ + ε], |sij − s̃ij | < 3ε

]
≤ 1

εn2

∑
i 6=j

∣∣sij − s̃ij |+ 1

n2

∑
i 6=j

1
[
s̃ij ∈ [τ − ε, τ + ε]

]
.

The first term will converge to zero in probability by Theorem 66 provided ε→ 0 as n→∞
with ε = ω(r̃n), where r̃n is the convergence rate from Theorem 66. For the second term,
we want to control this term uniformly over all τ ∈ R \ E, where we recall that E is the
finite set of exceptions for the regularity condition stated in Equation (25). Begin by noting
that as the K∗n are uniformly bounded (as a result of the assumptions within Theorem 66),
we can reduce the above supremum to being over τ ∈ [−A,A] \E for some A > 0 free of n.
With this, if we write

Xn,τ,ε :=
1

n2

∑
i 6=j

1
[
K∗n(λi, λj) ∈ [τ − ε, τ + ε]

]
,

then if we let N(ε) be a minimal ε-covering of [−A,A] (which has cardinality ≤ 4Aε−1), we
know that

sup
τ∈[−A,A]\E

Xn,τ,ε ≤ 2 sup
τ∈N(ε)\E

Xn,τ,ε

≤ 2 sup
τ∈N(ε)

∣∣Xn,τ,ε − E
[
Xn,τ,ε

]∣∣+ 2 sup
τ∈N(ε)\E

∣∣{(l, l′) ∈ [0, 1]2 : K∗n(l, l′) ∈ [τ − ε, τ + ε]
}∣∣.

Here, the first inequality follows by noting that for any τ ∈ [−A,A] \ E, there exist two
points τ1, τ2 ∈ N(ε) (pick the closest points to the left and right of τ within N(ε)) such that

1
[
K∗n(λi, λj) ∈ [τ − ε, τ + ε]

]
≤ 1

[
K∗n(λi, λj) ∈ [τ1 − ε, τ1 + ε]

]
+ 1

[
K∗n(λi, λj) ∈ [τ2 − ε, τ2 + ε]

]
,

and the second inequality follows by adding and subtracting

E[Xn,τ,ε] =
∣∣{(l, l′) ∈ [0, 1]2 : K∗n(l, l′) ∈ [τ − ε, τ + ε]

}∣∣.
With the regularity assumption, we know that

sup
τ∈N(ε)\E

∣∣{(l, l′) ∈ [0, 1]2 : K∗n(l, l′) ∈ [τ − ε, τ + ε]
}∣∣→ 0

81



Davison and Austern

as ε → 0 uniformly in n. As for the supτ∈N(ε)

∣∣Xn,τ,ε − E
[
Xn,τ,ε

]∣∣ term, by a union bound
and the bounded differences concentration inequality (Boucheron et al., 2016, Theorem 6.2),
we have that

P
(

sup
τ∈N(ε)

∣∣Xn,τ,ε − E
[
Xn,τ,ε

]∣∣ ≥ δ) ≤ 4A

ε
e−nδ

2/8

which converges to zero for any fixed δ > 0 provided ε−1 = O(nc) for any constant c > 0.

In particular, this tells us that supτ∈[−A,A]\E Xn,τ,ε
p→ 0 provided ε → 0 with ε = ω(r̃n) as

n→∞, and so the desired conclusion follows.

Proof [Proof of Proposition 20] By the argument in the proof of Proposition 59, we know
that we can reduce the problem of optimizing In[K] over K ∈ Z≥0 to minimizing the
function

In[K] =
1

4

(
− pK11 + log(1 + eK11)− pK22 + log(1 + eK22)− 2qK12 + 2 log(1 + eK12)

)
over all positive definite matrices

K =

(
K11 K12

K21 K22

)
where K12 = K21,

and that a unique solution to this optimization problem exists. Note that the positive
definite constraint forces that K11,K22 ≥ 0 and K11K22 ≥ K2

12. Now, as the above function
is symmetric in K11 and K22 and the function −px + log(1 + ex) is strictly convex for all
p ∈ (0, 1), it follows by convexity that a minima of In[K] must have K11 = K22. This
therefore simplifies the above problem to solving the convex optimization problem

minimize: − pK11 + log(1 + eK11)− qK12 + log(1 + eK12)

subject to: K11 ≥ 0,K11 −K12 ≥ 0,K11 +K12 ≥ 0.

Letting µi ≥ 0 be dual variables for i ∈ {1, 2, 3}, the KKT conditions for this problem state
that any minima must satisfy

−p+ σ(K11)− µ1 − µ2 − µ3 = 0,

−q + σ(K22) + µ2 − µ3 = 0,

µ1K11 = 0, µ2(K11 −K12), µ3(K11 +K12) = 0.

We now work case by case, considering what occurs on the interior of the constraint region;
then the edges K11 = ±K12 with K11 > 0; and then we finish with K11 = K12 = 0:

• In the case where K11 > 0 and K11 > |K12|, the solution is given by K11 = σ−1(p)
and K12 = σ−1(q), which is feasible provided p > 1/2, p > q (if q ≥ 1/2) and p > 1−q
(if q < 1/2).

• In the case where K11 > 0 and K11 = −K12, then µ1 = µ2 = 0, and so the optimal
solution has K11 = σ−1((1 + p − q)/2) with µ3 = (1 − p − q)/2, which is feasible
provided p > q but p+ q < 1.
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• In the case where K11 > 0 and K11 = K12, then µ1 = µ3 = 0, so K11 = σ−1((p+q)/2),
and so is feasible if q > p and p+ q > 1.

• The only remaining case is when K11 = K12 = 0, and occurs in the complement of
the union of the above cases, i.e when q > p and p+ q ≤ 1.

As the optimization problem is feasible (in that we can guarantee that a minima exists)
for all values of p, q ∈ (0, 1), and each of the above cases correspond to a partition of the
(p, q) space with a unique minima in each case, these do indeed correspond to the minima
of In[K] in each of the designated regimes, as stated.

Proposition 71 Suppose that the loss function in Assumption BI is the cross-entropy loss.
Then the minima of In[K] over Z≥0 is equal to a constant c ≥ 0 if and only if

f̃n(l, l′, 1) 4 f̃n(l, l′, 0) max

{
1,

∫
[0,1]2 f̃n(x, y, 1) dxdy∫
[0,1]2 f̃n(x, y, 0) dxdy

}

where 4 denotes the positive definite ordering (see Section H) on symmetric kernels [0, 1]2 →
R. In the case where we have that f̃n(l, l′, 1) = kW (l, l′) and f̃n(l, l′, 0) = k(1−W (l, l′)) for
some k (such as when the sampling scheme is uniform vertex sampling as in Algorithm 1),
this condition is equivalent to W 4 max{1/2,

∫
[0,1]2 W (l, l′) dldl′}.

Proof [Proof of Proposition 71] We begin by noting that if K∗(l, l′) = c ≥ 0 is the minima
of In[K] over Z≥0, then the KKT conditions guarantee that∫

[0,1]2

{
f̃n(l, l′, 1)

1

1 + ec
− f̃n(l, l′, 0)

ec

1 + ec

}
·
(
c−K(l, l′)

)
dldl′ ≥ 0 (66)

for all K ∈ Z≥0. In the case where c > 0, by choosing K(l, l′) = b and varying b either side
of c, it follows that we in fact must have that

c ·
( A1

1 + ec
− A0e

c

1 + ec

)
= 0 where Ax =

∫
[0,1]2

f̃n(l, l′, x) dldl′ for x ∈ {0, 1}.

It therefore follows that if K = c is the minima, then we necessarily have that c =
log(A1/A0), which is greater than 0 if and only if A1 > A0. Substituting this value of
c back into (66) and rearranging then tells us that for all K ∈ Z≥0 we have that∫

[0,1]2

{
f̃n(l, l′, 1)

A0

A0 +A1
− f̃n(l, l′, 0)

A1

A0 +A1

}
K(l, l′) dldl′

≤ log(A1/A0)
A1A0 −A0A1

A0 +A1
= 0. (67)

In the case where c = 0, we instead immediately obtain∫
[0,1]2

{
f̃n(l, l′, 1)− f̃n(l, l′, 0)

}
·K(l, l′) dldl′ ≤ 0 (68)
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from (66). As the f̃n ∈ L∞ and are non-negative, by a density argument we can extend (67)
and (68) to hold for all non-negative definite kernels K ∈ L2. Consequently, if we write 4
for the positive definite ordering of symmetric kernels, this is equivalent to saying that

f̃n(l, l′, 1) 4 f̃n(l, l′, 0) max
{

1,
A1

A0

}
.

Specializing further to the case where f̃n(l, l′, 1) = kW (l, l′) and f̃n(l, l′, 0) = k(1−W (l, l′)),
this simplifies to saying that (recalling the notation EW =

∫
[0,1]2 W (l, l′) dldl′)

W 4 (1−W ) max
{

1,
EW

1− EW

}
⇐⇒ W 4 max

{1

2
,

∫
[0,1]2

W (l, l′) dldl′
}
,

and so we are done.

Appendix F. Proof of results in Section 4

We begin with several results which give concentration and quantative results for various
summary statistics of the network (e.g the number of edges and the degree), before giving
the sampling formula (and rates of convergence) for each of the algorithms we discuss in
Section 4.

F.1 Large sample behavior of graph summary statistics

Proposition 72 Let Gn = (Vn, En) be a graph drawn from a graphon process with generating
graphon Wn(x, y) = ρnW (x, y) for some sequence (ρn) with ρn → 0. Recall that part of
Assumption A requires that W (λ, ·) ∈ Lγd([0, 1]2) for some γd ∈ (1,∞]. Then we have the
following:

a) Letting degn(i) denote the degree of a vertex i ∈ Vn with latent feature λi, we have for
all t > 0 that

P
(∣∣ degn(i)

(n− 1)ρnW (λi, ·)
− 1
∣∣ ≥ t |λi) ≤ 2 exp

(−nρnt2W (λi, ·)
4(1 + 2t)

)
.

b) Under the additional requirement that Assumption A holds with γd ∈ (1,∞], we have
that

max
i∈[n]

∣∣∣ degn(i)

(n− 1)ρnW (λi, ·)
− 1
∣∣∣ =

Op
(

(log n)1/2(nρn)−1/2
)

if γd =∞,

Op

((
n(γd−1)/γdρn

)−1/2
)

if γd ∈ (1,∞).

c) Under the additional requirement that Assumption A holds, we have that

max
i∈[n]

1

degn(i)
=

Op
(

(nρn)−1
)

if γd =∞,

Op

((
n(γd−1)/γdρn

)−1
)

if γd ∈ (1,∞);

84



Asymptotics of Network Embeddings Learned via Subsampling

and

min
i∈[n]

degn(i) =

Ωp

(
nρn

)
if γd =∞,

Ωp

(
n(γd−1)/γdρn

)
if γd ∈ (1,∞).

d) We have that

P
(∣∣∑n

i=1Wn(λi, ·)α

nραnEW (α)
− 1
∣∣ ≥ t) ≤ 2 exp

(−nEW (α)t2

2(1 + t)

)
,

where we write EW (α) :=
∫ 1

0 W (λ, ·)α dλ, and consequently

n∑
i=1

Wn(λi, ·)α = nραnEW (α) ·
(
1 +Op(n

−1/2)
)
.

e) Writing En := E[Gn] for the number of edges of Gn, we have for all t > 0 that

P
(∣∣ 2En
n(n− 1)ρnEW

− 1
∣∣ ≥ t) ≤ exp

(−nρnEW t2
4(1 + 2t)

)
and consequently En = n2ρnEW ·

(
1 +Op((nρn)−1/2)

)
.

f) Under the additional requirement that Assumption A holds with γd ∈ (1,∞], we have
that

max
i∈[n]

∣∣∣ degn(i)/2En
W (λi, ·)/nEW

− 1
∣∣∣ =

Op
(

(log n)1/2(nρn)−1/2
)

if γd =∞,

Op

((
n(γd−1)/γdρn

)−1/2
)

if γd ∈ (1,∞).

Proof [Proof of Proposition 72] For a), begin by noting that for the degree we can write

degn(i)
d
=
∑
j∈[n]\i

1

[
Uj ≤Wn(λi, λj)

]

where Uj
i.i.d∼ U [0, 1]. We then form an exchangeable pair (λn,−i, λ̃n,−i) (where we work

conditional on λi and write λn,−i = (λj)j≤n,j 6=i) by selecting a vertex J ∼ Unif([n] \ {i})
and then redrawing λ̃J ∼ U [0, 1] and otherwise setting λ̃j = λj for j 6= J . Writing λ′n,−i
and U ′j for independent copies of λn,−i and Uj , and also writing degn(i)[λn,−i] to make the
dependence on λn,−i explicit, we have that

E
[degn(i)[λn,−i]

Wn(λi, ·)
− degn(i)[λ̃n,−i]

Wn(λi, ·)

∣∣∣λi,λn,−i]
=

1

(n− 1)Wn(λi, ·)
∑
j 6=i

{
1

[
Uj ≤Wn(λi, λj)

]
− E

[
1

[
U ′j ≤Wn(λi, λ

′
j)
] ∣∣λi]}

=
degn(i)[λn,−i]

(n− 1)Wn(λi, ·)
− 1.
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We then have that

v(λn,−i) =
1

2(n− 1)
E
[(degn(i)[λn,−i]

Wn(λi, ·)
− degn(i)[λ̃n,−i]

Wn(λi, ·)

)2 ∣∣∣λi,λn,−i]
=

1

2(n− 1)2Wn(λi, ·)2

∑
j 6=i

{
E
[(
1

[
Uj ≤Wn(λi, λj)

]
− 1

[
U ′j ≤Wn(λi, λ

′
j)
])2 ∣∣∣λi]

≤ 1

(n− 1)2Wn(λi, ·)2

(
degn(i)[λn,−i] + (n− 1)Wn(λi, ·)

)
≤ 2

nWn(λi, ·)

( degn(i)[λn,−i]

(n− 1)Wn(λi, ·)
+ 2
)
,

where we used the inequality (a − b)2 ≤ 2(a2 + b2) to obtain the penultimate line, and
the inequality 1/(n − 1) ≤ 2/n in the last. With this, we apply a self-bounding exchange-
able pair concentration inequality (Chatterjee, 2005, Theorem 3.9) which states that for an
exchangeable pair (X,X ′) and mean-zero function f(X), if we have that the associated vari-
ance function v(X) (see Equation 36 in Section C.2 for a recap) satisfies v(X) ≤ Bf(X)+C,
then we have that

P
(
|f(X)| ≥ t

)
≤ 2 exp

( −t2

2C + 2Bt

)
. (69)

For b), by part a) and taking a union bound, we get that

P
(

max
i∈[n]

∣∣∣ degn(i)

(n− 1)ρnW (λi, ·)
− 1
∣∣∣ ≥ t) ≤ 2nE

[
exp

(−nρnt2W (λ, ·)
4(1 + 2t)

)]
where the expectation is over λ ∼ U(0, 1). If there exists a constant cW > 0 such that
W (λ, ·) ≥ cW a.e, then we can upper bound this expectation by 2n exp(−cWnρnt2/4(1+2t)).
Consequently, if one takes t = C(log n/nρn)1/2 for some C sufficiently large, this quantity
will decay towards zero as n → ∞, giving us the first part of the result. For the second
part of b), note that for a positive random variable X we have

E[e−λX ] = E
[ ∫ ∞

X
λe−λt dt

]
= E

[ ∫ ∞
0

1[X ≤ t]λe−λt dt
]

=

∫ ∞
0

λe−λtP
(
X ≤ t

)
dt

by Fubini’s theorem, and therefore we get that

2nE
[

exp
(−nρnt2W (λ, ·)

4(1 + 2t)

)]
= 2nλ(n, t)

∫ ∞
0

e−sλ(n,t)P
(
W (λ, ·) ≤ s) ds.

where we write λ(n, t) = nρnt
2/4(1+2t). When W (λ, ·)−1 ∈ Lγd([0, 1]2) for some γd > 1, as

a consequence of Markov’s inequality we get that P(W (λ, ·) ≤ s) ≤ Csγd for some constant
C > 0, and consequently that

2nλ(n, t)

∫ ∞
0

e−sλ(n,t)P
(
W (λ, ·) ≤ s) ds ≤ 2Cnλ(n, t)

∫ ∞
0

sγde−sλ(n,t) ds =
2CnΓ(γd + 1)

λ(n, t)γd
.

In particular, if one takes t = C(n(γd−1)/γdρn)−1/2, then for any ε > 0 one can choose C
sufficiently large such that the RHS is less than ε for n sufficiently large, and so we get the
stated result.
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For c), we note that by the prior result that

degn(i) = (n− 1)ρnW (λi, ·) ·
(

1 +Op(rn)
)

holds uniformly across all the vertices, and rn = (log n/nρn)1/2 if γd = ∞ or rn =
(n(γd−1)/γdρn)−1/2 if γd ∈ (1,∞). As a result of the delta method (by considering the
function f(x) = x−1 about x = 1), it therefore follows that

1

degn(i)
=

1

(n− 1)ρnW (λi, ·)
(
1 +Op(rn)

)
holds uniformly across all vertices too. With these two results, it follows that to study
the minimum degree (or maximum reciprocal degree) we can instead focus on the i.i.d
sequence W (λi, ·). In the case where W (λ, ·) is bounded away from zero (i.e when γd =∞),
W (λi, ·)−1 is bounded above and consequently

1

degn(i)
≤ Op(1)

nρnW (λi, ·)
≤ Op((nρn)−1).

In the case where γd <∞, the fact that P(W (λ, ·)−1 ≥ s) ≤ Cs−γd implies that W (λi, ·)−1

has tails dominated by a Pareto distribution with shape parameter γd and scale parame-
ter 1. It is known from extreme value theory that the maximum of n i.i.d such random
variables, say Zn, is such that n−1/γZn = Op(1) (Vaart, 1998, Example 21.15), and con-
sequently we have that maxi∈[n]W (λi, ·)−1 is Op(n

1/γd). Combining this all together gives

that maxi∈[n] degn(i)−1 = Op
(
(n(γd−1)/γdρn)−1

)
. As the minimum degree is the reciprocal

of the maximum of the degn(i)−1, the other part follows immediately.
For d), we choose a similar exchangeable pair as above, except we now no longer work

conditional on some λi (and choose J ∼ Unif[n]), in which case we see that

E
[∑n

i=1Wn(λi, ·)α

ραnEW (α)
−
∑n

i=1Wn(λ̃i, ·)α

ραnEW (α)

∣∣∣λn] =

∑n
i=1Wn(λi, ·)α

nραnEW (α)
− 1

and we get an associated stochastic variance term

v(λn) :=
1

2n
E
[(∑n

i=1Wn(λi, ·)α

ραnEW (α)
−
∑n

i=1Wn(λ̃i, ·)α

ραnEW (α)

)2 ∣∣∣λn]
=

1

2n2EW (α)2

n∑
i=1

E
[(
W (λi, ·)α −W (λ′i, ·)α

)2 ∣∣λi]
≤ 1

n2EW (α)2

n∑
i=1

{
W (λi, ·)2α + E(2α)

}
≤ 1

nEW (α)

[∑n
i=1Wn(λi, ·)α

nραnEW (α)
+ 1
]

where in the last line we used the inequalities (a − b)2 ≤ 2(a2 + b2), W (λ, ·)2α ≤ W (λ, ·)α
and E(2α) ≤ E(α) (the last two hold as W (λ, ·) ∈ [0, 1]). We get the stated concentration
inequality by applying (69).

For the concentration of the edge set in e), we will form an exchangeable pair (An, Ãn)
by drawing a vertex I uniformly at random from [n], then letting (for j < k) ãjk = ajk if
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j, k 6= I and otherwise redrawing ãjk|λj , λk ∼ Bern(W (λj , λk)) if either j = I or k = I. We
then set ãjk = ãkj for k > j. If we define

F (An, Ãn) =
1

(n− 1)ρnEW

(∑
i<j

aij −
∑
i<j

ãij

)
then we can calculate that

E
[
F (An, Ãn) |An

]
=

1

(n− 1)ρnEW
· 1

n

n∑
k=1

{ ∑
i<j

i or j=k

aij −
∑
i<j

i or j=k

ρnEW
}

=
2
∑

i<j aij

n(n− 1)ρnEW
− 1.

The associated stochastic variance term is then of the form, letting (a′ij) be an independent
copy of (aij),

v(An) =
1

n(n− 1)2ρ2
nE2

W

E
[(∑

i<j

aij −
∑
i<j

ãij

)2
|An

]
=

1

n(n− 1)2ρ2
nE2

W

· 1

n

n∑
k=1

E
[( ∑

i<j
i or j=k

aij − a′ij
)2
|An

]

≤ 1

n(n− 1)2ρ2
nE2

W

n∑
k=1

∑
i<j

i or j=k

E
[
(aij − a′ij)2 |An

]

≤
2
∑

i<j aij + 2n(n− 1)ρnEW
n(n− 1)2ρ2

nEW
≤ 2

nρnEW

[ 2
∑

i<j aij

n(n− 1)ρnEW
+ 2
]
,

where the first inequality follows by Cauchy-Schwarz, the second by using the inequality
(a − b)2 ≤ 2(a2 + b2) = 2(a + b) when a, b ∈ {0, 1}, and the third by using the inequality
1/(n− 1) ≤ 2/n. The stated concentration inequality then holds by applying (69).

For part f), we simply combine some of the earlier parts, and write∣∣∣degn(v)

2En
· nEW
W (λv, ·)

− 1
∣∣∣ ≤ n2ρnEW

2En
·
∣∣∣ degn(v)

nρnW (λv, ·)
− 1
∣∣∣+
∣∣∣n2ρnEW

2En
− 1
∣∣∣ = Op(s̃n),

where s̃n is the rate obtained from part b).

Proposition 73 Write En := E[Gn], and let π(· | Gn) be the stationary distribution of a
simple random walk on Gn, so π(v | Gn) = degn(v)/2En for all v ∈ Vn, and let (ṽi)i≥1 be a
simple random walk on Gn where ṽ1 ∼ π(· | Gn). Write

Qk(v | Gn) = P
(
ṽi = v for some i ≤ k | Gn

)
and Ugα(v | Gn) =

Qk(v | Gn)α∑
u∈Vn Qk(u | Gn)α
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be the corresponding unigram distribution for any α > 0. Suppose that Assumption A also
holds with γd ∈ (1,∞]. Then for k ≥ 3, we have that

max
v∈Vn

∣∣∣ Qk(v | Gn)

kW (λv, ·)/nEW
− 1
∣∣∣ = Op

(
s̃n(γd)

)
and max

v∈Vn

∣∣∣ Ugα(v | Gn)

W (λv, ·)α/nEW (α)
− 1
∣∣∣ = Op

(
s̃n(γd)

)
where s̃n(γd) = (n(γd−1)/γdρn)−1/2 if γd ∈ (1,∞) and s̃n(∞) = (log(n)/nρn)1/2.

Proof [Proof of Proposition 73] We begin by handling the probability that a vertex is
sampled in a simple random walk of length k; the idea is to show that the self-intersection
probability of the walk is negligible. Note that by stationarity of the simple random walk
we have for all i that

P
(
ṽi = v | Gn

)
=

degn(v)

2En
.

Also note that for any sequence of events Ai, we have that( k∑
i=1

1[Ai]
)
− 1[∪kj=1Aj ] =

k−1∑
i=1

1[Ai ∩ ∪j>iAj ]

(simply consider the LHS and RHS when x ∈ Ai exactly when i ∈ S ⊆ [k]). Therefore if
we let Ai = {ṽi = v} and take expectations, we get the inequality

∣∣Qk(v | Gn)− kdegn(v)

2En

∣∣ =
∣∣Qk(v | Gn)−

k∑
i=1

P
(
ṽi = v | Gn

)∣∣
≤

k−1∑
i=1

P
(
ṽi = v, ṽj = v for some j ∈ [i+ 1, k] | Gn

)
=

k−1∑
i=1

P(ṽi = v | Gn)P
(
ṽj = v for some j ∈ [i+ 1, k] | Gn, ṽi = v

)
=

degn(v)

2En

k−1∑
i=1

P
(
ṽj = v for some j ∈ [2, k − i+ 1] | Gn, ṽ1 = v

)
≤ kdegn(v)

2En
P
(
ṽj = v for some j ∈ [2, k] | Gn, ṽ1 = v

)
To proceed with bounding the self-intersection probability, write N(v | Gn) for the set of
neighbours of a vertex v in Gn, so by the Markov property we can write

P
(
ṽj = v for some j ∈ [2, k] | Gn, ṽ1 = v

)
=

∑
u∈N(v | Gn)

P
(
ṽj = v for some j ∈ [3, k] | Gn, ṽ2 = u

)
P
(
ṽ2 = u | ṽ1 = v

)
=

∑
u∈N(v | Gn)

2En
degn(u)degn(v)

P(ṽj = v for some j ∈ [3, k] | Gn, ṽ2 = u
)
P
(
ṽ2 = u | Gn

)
≤
∑
u∈Vn

2En
degn(u)degn(v)

P(ṽj = v for some j ∈ [3, k] | Gn, ṽ2 = u
)
P
(
ṽ2 = u | Gn

)
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≤ Qk−2(v | Gn) max
u∈Vn

2En
degn(u)degn(v)

≤ (k − 2) max
u∈Vn

1

degn(u)
,

where in the last line we pulled the max term out of the summation, used stationarity
of the simple random walk, and that Qk(v | Gn) ≤ kdegn(v)/2En for all k. By part c) of
Proposition 72, it therefore follows that

max
v∈Vn

∣∣∣ Qk(v | Gn)

kdegn(v)/2En
− 1
∣∣∣ =

Op
(

(nρn)−1
)

if γd =∞,

Op

((
n(γd−1)/γdρn

)−1
)

if γd ∈ (1,∞).

By part f) of Proposition 72, we can then control the denominator to find that

max
v∈Vn

∣∣∣ Qk(v | Gn)

kW (λv, ·)/nEW
− 1
∣∣∣ = Op

(
s̃n(γd)

)
.

For the large sample behaviour of the unigram distribution, we may then deduce that∣∣∣∑u∈Vn Qk(u | Gn)α −
∑

u∈Vn(kW (λu, ·)/nEW )α∑
u∈Vn(kW (λu, ·)/nEW )α

∣∣∣
≤ max

u∈Vn

∣∣∣ Qk(u | Gn)α

(kW (λu, ·)/nEW )α
− 1
∣∣∣ = Op

(
s̃n(γd)

)
for any α > 0 (where we used Lemma 48 followed by the delta method applied to f(x) = xα).
Combining this with part d) of Proposition 72 then allows us to get the desired conclusion.

F.2 Sampling formula for different sampling schemes

Here it will be convenient to define the rate function

s̃n(γ) =

{
(n(γ−1)/γρn)−1/2 if γ ∈ (1,∞),

(log(n))1/2(nρn)−1/2 if γ =∞

which depends on the choice of the sparsifying sequence ρn used to generate the model;
we note that s̃n(γd) = o(1) under our assumptions. Propositions 74 to 77 correspond to
Propositions 23 to 26 in Section 4.

Proposition 74 Suppose that Assumption A holds. Then for Algorithm 1, Assumptions D
and E hold with

fn(λi, λj , aij) = k(k − 1),

sn = 0, E[f2
n] = ρnk

2(k − 1)2 and β = βW and γs = γW .

Proof [Proof of Proposition 74] Here a vertex is sampled with probability k/n, and any
two distinct vertices are sampled with probability k(k − 1)/n(n − 1); the stated formulae
therefore follow immediately. We then calculate that E[fn(λi, λj , aij)

2] = k2(k − 1)2 and
‖f̃n(l, l′, 1)‖∞, ‖f̃n(l, l′, 0)‖∞ ≤ k(k − 1). Under the stated assumptions, the integrability
conditions on f̃n(l, l′, 1) and f̃n(l, l′, 0) then follow directly.
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Proposition 75 Suppose that Assumption A holds. Then for Algorithm 2, Assumptions D
and E hold with

fn(λi, λj , aij) =


2k

EWρn
if aij = 1,

2kl

EWEW (α)

{
W (λi, ·)W (λj , ·)α +W (λj , ·)W (λi, ·)α

}
if aij = 0;

with sn = s̃n(γd), E[f2
n] = O(ρ−1

n ), and β = βW min{α, 1} and γs = min{γW , γd, γd/α}.

Proof [Proof of Proposition 75] Let S0(Gn) denote the k edges which are sampled without
replacement from the edge set of Gn, and recall that En = E[Gn] denotes the number of
edges of Gn. We then have that

P
(
(u, v) ∈ S0(Gn) | Gn

)
= auv

(
En − 1

k − 1

)(
En
k

)−1

=
kauv
En

=
2kauv
EWρnn2

(
1 +Op((nρn)−1/2)

)
where we note that the Op(·) term has no dependence on u or v. Note by Lemma 79 we
have that

1−
(
En − degn(u)

k

)(
En
k

)−1

=
kdegn(u)

En

(
1 +O

(degn(u)

En

))
=
kdegn(u)

En

(
1 +Op(n

−1))

uniformly across all vertices u, and consequently

P
(
u ∈ V(S0(Gn)) | Gn

)
= 1− P

(
no edge containing a vertex u is sampled from En | Gn

)
= 1−

(
En − degn(u)

k

)(
En
k

)−1

=
kdegn(u)

En

(
1 +Op

(
n−1

))
=

2kW (λu, ·)
EWn

(
1 +Op

(
s̃n(γd)

))
where the last equality follows by Proposition 72. The same arguments as in Proposition 73
tell us that

Ugα
(
v | Gn

)
=
W (λv, ·)α

nEW (α)

(
1 +Op

(
s̃n(γd)

))
. (70)

With this, we are now in a position to derive the sampling formula for the specified sampling
scheme. As (u, v) can only be part of S0(Gn) or Sns(Gn) (not both), we can write that

P
(
(u, v) ∈ S(Gn) | Gn

)
= P

(
(u, v) ∈ S0(Gn) | Gn

)
+ P

(
(u, v) ∈ Sns(Gn) | Gn

)
=

2kauv
EWρnn2

(
1 +Op((nρn)−1/2)

)
+ P

(
u ∈ V(S0(Gn)), v 6∈ V(S0(Gn)), (u, v) ∈ Sns(Gn) | Gn

)
(I)

+ P
(
u 6∈ V(S0(Gn)), v ∈ V(S0(Gn)), (u, v) ∈ Sns(Gn) | Gn

)
(II)

+ P
(
u, v ∈ V(S0(Gn)), (u, v) 6∈ S0(Gn), (u, v) ∈ Sns(Gn) | Gn

)
. (III)

We begin with (I) and (II); as they are symmetric in (u, v) we can just consider (I). Writing
on occasion V0 = V(S0(Gn)) for reasons of space, we have

P
(
u ∈ V0, v 6∈ V0, (u, v) ∈ Sns(Gn) | Gn

)
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= P
(
(u, v) ∈ Sns(Gn) |u ∈ V0, v /∈ V0,Gn

)
P
(
u ∈ V0, v /∈ V0 | Gn

)
= (1− auv)P

(
B(l,Ugα(v | Gn)) ≥ 1

)
·
[
P
(
v 6∈ V0 | Gn

)
− P

(
u, v 6∈ V0 | Gn

)]
.

By Lemma 79 and (70), we know that

P
(
B(l,Ugα(v | Gn)) ≥ 1

)
=
lW (λv, ·)α

nEW (α)

(
1 +Op

(
s̃n(γd)

)
.

As for the P
(
v 6∈ V(S0(Gn)) | Gn

)
−P
(
u, v 6∈ V(S0(Gn)) | Gn

)
term, we note that it equals (as

without loss of generality we can assume auv = 0)

−P
(
v ∈ V(S0(Gn)) | Gn

)
+ 1− P

(
u, v 6∈ V(S0(Gn)) | Gn

)
= −1 +

(
En − degn(v)

k

)(
En
k

)−1

+ 1−
(
En − degn(u)− degn(v)

k

)(
En
k

)−1

=
2kW (λu, ·)

nEW
(
1 +Op

(
s̃n(γd)

))
by Lemma 79, and whence

(I) = (1− auv)
2klW (λv, ·)αW (λu, ·)

n2EWEW (α)

(
1 +Op

(
s̃n(γd)

))
.

For (III), we begin by noting that as

P(A ∩B) = P(A) + P(B)− (1− P(Ac ∩Bc))

for any events A and B, we have by Lemma 80 that

P
(
u, v ∈ V(S0(Gn))

)
= 1−

(
En − degn(u)

k

)(
En
k

)−1

+ 1−
(
En − degn(v)

k

)(
En
k

)−1

−

(
1−

(
En − degn(u)− degn(v) + auv

k

)(
En
k

)−1
)

=
( 2kauv
n2ρnEW

+
4k(k − 1)W (λu, ·)W (λv, ·)

E2
Wn

2

)
·
(
1 +Op

(
s̃n(γd)

))
.

As by a similar argument to above we know that

P
(
(u, v) ∈ Sns(Gn) |u, v ∈ V(S0(Gn))) = (1−auv)

l(W (λu, ·)α +W (λv, ·)α))

nEW (α)

(
1+Op

(
s̃n(γd)

))
,

it therefore follows that the (III) term will be asymptotically negligible, leaving us with the
sampling formula

P
(
(u, v) ∈ S(Gn) | Gn

)
= auv ·

2k

n2EWρn
(
1 +Op

(
(nρn)−1/2

))
+ (1− auv) ·

2kl{W (λu, ·)W (λv, ·)α +W (λv, ·)W (λu, ·)α}
n2EWEW (α)

(
1 +Op

(
s̃n(γd)

))
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from which we get the stated result for the sampling formula and convergence rate. The
remaining properties to check can then be done so via routine calculation and the use of
Lemmas 81 and 82.

Proposition 76 Suppose that Assumption A holds. Then for Algorithm 3, Assumptions D
and E hold with

fn(λi, λj , aij) =


4k

EWρn
+

4k(k − 1)W (λi, ·)W (λj , ·)
E2
W

if aij = 1,

4k(k − 1)W (λi, ·)W (λj , ·)
E2
W

if aij = 0;

with sn = s̃n(γd), β = βW , and E[f2
n] = O(ρ−1

n ) and γs = min{γd, γW }.

Proof [Proof of Propsition 76] We note that most of the calculations can be taken from
Proposition 24. Begin by noting that (u, v) is selected either as part of S0(Gn), or u, v ∈
V(S0(Gn)) but (u, v) is not selected as part of S0(Gn) (and that these occurrences are
mutually exclusive). The probability of the first we know from earlier, and the probability
of the second is given by

P
(
u, v ∈ V(S0(Gn)) | (u, v) 6∈ S0(Gn),Gn

)
· P
(
(u, v) 6∈ S0(Gn) | Gn

)
.

The second term in the product equals 1 − 2kauvE−1
W ρ−1

n n−2(1 + Op((nρn)−1/2)), and the
first equals

1−
(
En − degn(u)

k

)(
En − auv

k

)−1

+ 1−
(
En − degn(v)

k

)(
En − auv

k

)−1

−

(
1−

(
En − (degn(u) + degn(v)− auv)

k

)(
En − auv

k

)−1
)

=
( kauv
En − auv

+
k(k − 1) degn(u) degn(v)

(En − auv)2

)
(1 +Op(n

−1))

=
( 2kauv
EWρnn2

+
4k(k − 1)W (λu, ·)W (λv, ·)

E2
Wn

2

)(
1 +Op

(
s̃n(γd)

))
,

where we have used Lemma 80 followed by Proposition 72. It therefore follows that

P
(
(u, v) ∈ S(Gn) | Gn

)
=
( 4kauv
EWρnn2

+
4k(k − 1)W (λu, ·)W (λv, ·)

E2
Wn

2

)(
1 +Op

(
s̃n(γd)

))
.

The remaining properties to check can then be done so via routine calculation and the use
of Lemmas 81 and 82.
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Proposition 77 Suppose that Assumption A holds. Then for Algorithm 3 with choice of
initial distribution π0(v | Gn) = degn(v)/2En, Assumptions D and E hold with

fn(λi, λj , aij) =


2k

EWρn
if aij = 1,

l(k + 1)

EWEW (α)

{
W (λi, ·)W (λj , ·)α +W (λj , ·)W (λi, ·)α

}
if aij = 0;

with sn = s̃n(γd), E[f2
n] = O(ρ−1

n ), and β = βW min{α, 1} and γs = min{γW , γd, γd/α}.

Proof [Proof of Proposition 77] We begin by handling the probability that (u, v) appears
within S0(Gn). Letting (ṽi)i≤k+1 be a SRW on Gn, we first note that for any (u, v) and
i ≥ 1, we have that

P
(
ṽi = u, ṽi+1 = v | Gn

)
= P

(
ṽi+1 = v | Gn, ṽi = u)P

(
ṽi = u | Gn

)
=

auv
degn(u)

· degn(u)

2En
=

auv
2En

.

Writing Ai(u→ v) = {ṽi = u, ṽi+1 = v} for i ≤ k and u, v ∈ Vn, we then have

P
(
(u, v) ∈ S0(Gn) | Gn

)
= P

( k⋃
i=1

{
Ai(u→ v) ∪Ai(v → u)

}
| Gn
)
.

By bounding the probability of the walk intersecting through either u or v twice in a way
analogous to that in Proposition 73, and then using Proposition 72, we get that

P
(
(u, v) ∈ S0(Gn) | Gn

)
=
kauv
En

(
1 +Op(s̃n(γd)

2)
)

=
2kauv
EWρnn2

(
1 +Op(max{s̃n(γd)

2, (nρn)−1/2})
)
.

As for the negative samples, if we write Ai(u) = {ṽi = u} for i ≤ k + 1 and u ∈ Vn, and
Bi(v|u) = {v selected via negative sampling from u}, we can write

P
(
(u, v) ∈ Sns(Gn) | Gn

)
= P

( k+1⋃
i=1

(
Ai(u) ∩Bi(v|u)

)
∪
(
Ai(v) ∩Bi(u|v)

))
.

Note that Ai(u) ∩Ai(v) = ∅ for u 6= v, and moreover that

P
(
Ai(u) ∩Bi(v|u) | Gn

)
= P

(
Ai(u) | Gn

)
P
(
Bi(v|u) | Gn

)
=

degn(u)

2En
· P
(
B(l,Ugα(v | Gn)) ≥ 1 | Gn

)
(1− auv).

Now, via the same arguments as in Proposition 73 with regards to the self intersection
probability of the random walk, we have that

P
(
(u, v) ∈ Sns(Gn) | Gn

)
=
( k+1∑
i=1

{
P
(
Ai(u) ∩Bi(v|u) | Gn

)
+ P

(
Ai(v) ∩Bi(u|v) | Gn

)})(
1 +Op

(
s̃n(γd)

2
))
,
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Combining Proposition 73 and Lemma 78 therefore gives

P
(
(u, v) ∈ Sns(Gn) | Gn

)
= (1− auv)

l(k + 1)
{
W (λu, ·)W (λv, ·)α +W (λv, ·)W (λu, ·)α

}
n2EWEW (α)

(
1 +Op

(
s̃n(γd)

))
.

The remaining properties to check can then be done so via routine calculation and the use
of Lemmas 81 and 82.

Proof [Proof of Proposition 29] We begin with the expectation; note that by the strong
local convergence property of the sampling scheme we have that

E[Gi|Gn] =
∑
j∈Vn

P
(
(i, j) ∈ S(Gn) | Gn

)
ωj`
′(〈ωi, ωj〉, aij)

=
1

n2

∑
j∈Vn\{i}

{ 2aij
EWρn

+
2lH(λi, λj)(1− aij)

EWEW (α)

}
ωj`
′(〈ωi, ωj〉, aij) · (1 + op(sn))

where H(λi, λj) := W (λi, ·)W (λj , ·)α + W (λj , ·)W (λi, ·)α is free of k, and so the first part
of the theorem statement holds.

For the variance of the estimate, we look at Gir, the r-th entry of Gi, and note that as
for k 6= l the events 1[(i, k) ∈ S(Gn)] and 1[(i, l) ∈ S(Gn)] are not necessarily independent,
we have that

Var[Gir | Gn] =
1

k2

∑
j∈Vn\{i}

Var
(
1
[
(i, j) ∈ S(Gn)

]
| Gn
)
ω2
jrc

2
ij

+
1

k2

∑
j,s∈Vn\{i},k 6=l

Cov
(
1
[
(i, j) ∈ S(Gn)

]
,1
[
(i, s) ∈ S(Gn)

]
| Gn
)
ωjrωsrcijcis

where we write cij = `′(〈ωi, ωj〉, aij) to reduce notation. To study these terms, we make use
of the fact that

Var(1[A]) = P(A) ·
(
1− P(A)

)
, Cov(1[A],1[B]) = P(A,B)− P(A) · P(B).

In particular, we have that

Var
(
1
[
(i, j) ∈ S(Gn)

]
| Gn
)

=
fn(λi, λj , aij)

n2
·
(

1− fn(λi, λj , aij)

n2

)
· (1 + op(sn))

=
fn(λi, λj , aij)

n2
· (1 + op(sn))

by the strong local convergence assumption holding. Studying the covariance term requires
more care; in particular, we note the covariance will depend on both of the values of aij and
aik. The case where aij = 1 and aik = 1 will be most involved, and so we focus on this case
first. Recall that in this case, (i, j) and (i, k) can only be sampled as part of a random walk;
letting ṽ1, . . . , ṽk+1 denote the vertices obtained on a random walk, we define the events

Al(i→ j) := {ṽl = i, ṽl+1 = j}, Al(i, j) := Al(i→ j) ∪Al(j → i),

A(i, j) :=

k⋃
l=1

Al(i, j), Am<(i, j) :=

k⋃
l=m+1

Al(i, j)
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and so we want to study the covariance of the events A(i, j) and A(i, s). For now, we will
also write PGn to refer to probabilities computed conditional on the realization of the graph
Gn. Recalling the identity

1
[
∪kl=1 Al

]
=

k∑
i=1

1[Al]−
k−1∑
l=1

1
[
Al ∩ ∪j>lAj

]
,

for any sequence of events (Al)l≤k, by applying this identity twice we can derive that

PGn(A(i, j) ∩A(i, s)) =
k∑
l=1

k∑
m=1

PGn(Al(i, j) ∩Am(i, s))

−
k∑
l=1

k−1∑
m=1

PGn(Al(i, j) ∩Am(i, s) ∩Am<(i, s))

−
k−1∑
l=1

k∑
m=1

PGn(Al(i, j) ∩Am(i, s) ∩Al<(i, j))

+

k−1∑
l=1

k−1∑
m=1

PGn(Al(i, j) ∩Am(i, s) ∩Al<(i, j) ∩Am<(i, s))

For the terms in the first sum, we can expand this as

PGn(Al(i, j) ∩Am(i, s)) = PGn(ṽl = i, ṽl+1 = j, ṽm = i, ṽm+1 = s)

+ PGn(ṽl = i, ṽl+1 = j, ṽm = i, ṽm+1 = s)

+ PGn(ṽl = i, ṽl+1 = j, ṽm = i, ṽm+1 = s)

+ PGn(ṽl = i, ṽl+1 = j, ṽm = i, ṽm+1 = s).

We note that when l = m, all the probabilities equal 0, and when l = m± 1 there are two
contributions of the form e.g

PGn(ṽm−1 = j, ṽm = i, ṽm+1 = s) =
1

deg(i)2En

(where we have used the Markov property and the stationarity of the random walk), with
the remaining terms equaling zero. The contributions of the terms where l = m± 2 are all
of the order e.g

PGn(ṽm = i, ṽm+1 = j, ṽm+2 = i, ṽm+3 = s) =
1

2En deg(i) deg(j)
=

1

deg(i)2EnOp(nρn)

(where the bounds hold uniformly over any (i, j, s)). For terms l = m± r where r ≥ 3, we
get terms of the order e.g

PGn(ṽm = i, ṽm+1 = j, ṽm+r = i, ṽm+3 = s)

=
1

deg(i)
· PGn(ṽm+r = i | ṽm+1 = j) · 1

2En
=

1

2 deg(i)En
· PGn(ṽr = i | ṽ1 = j)
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=
1

2 deg(i)En deg(j)
·
∑

u2,...,ur−1

aiur−1aur−1ur−2 · · · au2j
deg(ur−1) · · · deg(u2)

=
1

2 deg(i)EnOp(nρn)
·Op(1)

where the Op(1) term follows by using the fact that deg(i) = nρnW (λi, ·)(1 +Op(sn)) uni-
formly across i, and that the number of paths of length r−2 between i and j is Op((nρn)r−2)
uniformly across i and j. By similar arguments, the terms in the other sums will be an
order of magnitude less than that of the terms from the first sum (they will be multiplied
by factors no greater in magnitude than 1/ deg(i)), and consequently it follows that when
aij = ais = 1, we have that

CovGn(A(i, j), A(i, s)) =
2(k − 1)

W (λi, ·)EWn3ρ2
n

(1 + op(sn))

where we already have calculated the asymptotics for PGn(A(i, j)) and PGn(A(i, s)) in Propo-
sition 73, and we applied Proposition 72 to handle the degree term.

When aij = 1 and ais = 0, the covariance is equal to zero, as once i has been sampled as
part of the random walk, the pair (i, s) can only be subsampled from the negative sampling
distribution, which does so independently of the process from the random walk; the same
argument applies for when aij = 0 and ais = 1.

The final case to consider is when aij = 0 and ais = 0; to handle this term, we note
that if i is not sampled as part of the random walk, then the events that (i, j) and (i, s) are
sampled as part of the negative sampling distribution are independent. As a result, we only
need to focus on conditioning on the events where i does appear in the random walk; note
that if i appears multiple times, then the pairs (i, j) and (i, s) could be sampled during any

of the corresponding negative sampling steps. if we let X
(l)
m ∼ Multinomial(l; (pj)j 6=i) be

drawn independently for m ≥ 1 (which corresponds to the vertices negative sampled) with
probability pj = lW (λj , ·)α/nEW (α)(1 + op(sn)) according to the unigram distribution (by
Proposition 73), and let Y be the number of times the vertex i appears in the random walk,
then we have that

CovGn((i, j) ∈ Sns(Gn), (i, s) ∈ Sns(Gn))

=

k∑
r=1

CovGn((i, j) ∈ Sns(Gn), (i, s) ∈ Sns(Gn) |Y = r)PGn(Y = r)

=
k∑
r=1

Cov
( r∑
m=1

X l
mj ≥ 1,

r∑
m=1

X(l)
ms ≥ 1

)
PGn(Y = r)

=
k∑
r=1

Cov(X
(rl)
1j ≥ 1, X

(rl)
1s ≥ 1)PGn(Y = r)

= − l
2W (λj , ·)αW (λs, ·)α

n2EW (α)2
· (1 +Op(n

−1)) ·
k∑
r=1

rPGn(Y = r)

= − l
2W (λj , ·)αW (λs, ·)α

n2EW (α)2
· (1 +Op(n

−1)) · EGn [Y ]
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= −kl
2W (λj , ·)αW (λs, ·)αW (λi, ·)

n3EWEW (α)2
· (1 + op(sn))

where in the fourth line, we used the fact that the sum of independent multinomial distri-
butions is multinomial; in the fifth line we used Lemma 83; and in the last line, we used
the fact that as Y =

∑k+1
r=1 1[ṽr = i], by linearity of expectations we have

EGn [Y ] =
k+1∑
r=1

PGn(ṽr = i) =
kdeg(i)

2En
=
kW (λi, ·)
nEW

(1 + op(sn))

where again we have used Proposition 72.
Pulling this altogether, it follows that

Var[Gir | Gn] =
1

kn2

∑
j∈Vn\{i}

{ 2aij
EWρn

+
2lH(λi, λj)(1− aij)

EWEW (α)

}
ω2
jrc

2
ij · (1 + op(sn))

+
1

k

∑
j,s∈Vn\{i},j 6=s

H̃(λi, λj , λs, aij , ais)ωjrωsrcijcis · (1 + op(sn))

where we write

H̃(λi, λj , λs, aij , ais) :=
2(1− k−1)aijais
W (λi, ·)EWn3ρ2

n

− (1− aij)(1− ais)
l2W (λj , ·)αW (λs, ·)αW (λi, ·)

n3EWEW (α)2

To bound the variance, we note that uniformly across all i we have that∑
j∈Vn\{i}

aij = Op((nρn)),
∑

j,s∈Vn\{i},j 6=s

aijais = Op((n
2ρ2
n)).

To conclude, we note that under the assumption that the embedding vectors ‖ωj‖∞ ≤ A for
all j, and as the gradient of the cross entropy is absolutely bounded by 1 (and consequently
so are the cij and cis), by applying Hölder’s inequality we find that

Var[Gir | Gn] = Op(
1

kn
)

uniformly across all i and r, and so the stated conclusion follows.

F.3 Additional quantative bounds

Lemma 78 Suppose that Xn,m ∼ B(k, pn,m) for n ≥ 1, m ≤ n with maxm≤n pn,m → 0 as
n→∞. Then

max
m≤n

∣∣∣P(Xn,m ≥ 1)

kpn,m
− 1
∣∣∣ = O(max

m≤n
pn,m).

Proof [Proof of Lemma 78] The result follows by noting that

P(Xn,m ≥ 1) = 1− (1− pn,m)k =
k∑
r=1

(−1)r−1

(
k

r

)
prn,m
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and whence ∣∣∣P(Xn,m ≥ 1)

kpn,m
− 1
∣∣∣ =

k∑
r=2

(−1)r−1 1

k

(
k

r

)
pr−1
n,m = O(max

m≤n
pn,m).

as desired.

Lemma 79 Suppose that m, r →∞ with m� r and k = O(1). Then we have that

1−
(
m− r
k

)(
m

k

)−1

=
rk

m

(
1 +O

( r
m

))
.

Proof [Proof of Lemma 79] We begin by recalling Stirling’s approximation, which tells us
that

Γ(n+ 1) =
√

2πn
(n
e

)n(
1 +

1

12n
+ o
( 1

n

))
.

We can then write

1−
(
m− r
k

)(
m

k

)−1

= 1− Γ(m− r + 1)Γ(m− k + 1)

Γ(m+ 1)Γ(m− r − k + 1)

= 1− (m− r)m−r(m− k)m−k

mm(m− r − k)m−r−k
(
1 +O(m−1)

)
= 1−

[(
1− r

m

)k
·
(

1− k

m

)r
·
(

1 +
rk/m

m− r − k

)m−r−k]
·
(
1 +O(m−1)

)
.

Letting (A) denote the [· · · ] term, and using that log(1 + x) = x− x2/2 + x3/3 + o(x3) and
exp(x) = 1 + x+ x2/2 + o(x2) as x→ 0, we have that

log(A) = k log
(

1− r

m

)
+ r log

(
1− k

m

)
+ (m− r − k) log

(
1 +

rk/m

m− r − k

)
= −rk

m
− kr2

2m2
+ o(r2m−2) =⇒ (A) = 1− rk

m

(
1 +O

( r
m

))
.

Combining this all together gives the stated result.

Lemma 80 Suppose that m, r1, r2 →∞ with m� r1, r2, r1 and r2 of the same order, and
k, c = O(1) with k > 1. Then we have that

1−
(
m− r1

k

)(
m

k

)−1

+ 1−
(
m− r2

k

)(
m

k

)−1

−

[
1−

(
m− (r1 + r2 − c)

k

)(
m

k

)−1
]

=
(kc
m

+
k(k − 1)r1r2

m2

)(
1 +O

(r1 + r2

m

))
.
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Proof [Proof of Lemma 80] The argument is the same as in Lemma 79, except we need to
use the higher ordered termed expansion

1−
(
m− r
k

)(
m

k

)−1

=
rk

m

(
1− r(k − 1)

2m
+ o
( r
m

))
,

in order to get the stated result. With this, the result follows by routine calculations which
we therefore omit.

Lemma 81 Suppose that g : [0, 1] → [0, 1] is such that g−1 ∈ Lγ([0, 1]) for some γ ∈
[1,∞]. Then the function f(x, y) = (g(x)g(y)α + g(x)αg(y))−1 belongs to Lγ̃([0, 1]2) where
γ̃ = min{γ, γ/α}.

Proof [Proof of Lemma 81] Note that we have that f(x, y) ≤ (g(x)g(y)α)−1+(g(y)g(x)α)−1.
As we have that g−1 ∈ Lγ([0, 1]), it follows that g−α ∈ Lγ/α([0, 1]), and consequently
g(x)−1g(y)−α ∈ Lγ̃([0, 1]2), so the conclusion follows.

Lemma 82 Suppose that W : [0, 1]2 → [0, 1] is piecewise Hölder([0, 1]2, β, L,Q⊗2) for some
partition Q of [0, 1]. Then

a) The degree function W (λ, ·) is piecewise Hölder([0, 1], β, L,Q);

b) The function W (x, ·)W (y, ·)α + W (x, ·)αW (y, ·) is piecewise Hölder([0, 1]2, βα, L′,
Q⊗2) where βα = βmin{α, 1} and L′ = 4Lmax{1, α}.

Proof [Proof of Lemma 82] The first part follows immediately by noting that, whenever
x, y ∈ Q,

|W (x, ·)−W (y, ·)| ≤
∑
Q′∈Q

∫
Q′
|W (x, z)−W (y, z)| dz ≤ L|x− y|β

by using the Hölder properties of W . For the second part, note that the function x 7→
xα is Hölder([0, 1],min{α, 1}, Cα) where Cα = max{α, 1}, and so W (λ, ·) is piecewise
Hölder([0, 1], min{αβ, β}, LCα, Q). To conclude, by the triangle inequality we then get
that whenever (x1, y1), (x2, y2) ∈ Q×Q′, we have

|W (x1, ·)W (y1, ·)α −W (x2, ·)W (y2, ·)α|
≤W (x1, ·)|W (y1, ·)α −W (y2, ·)α|+W (y2, ·)α|W (x1, ·)−W (x2, ·)|

≤ LCα|y1 − y2|min{αβ,β} + L|x1 − x2|β ≤ 2LCα‖x− y‖min{αβ,β}
2 ,

giving the stated result.
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Lemma 83 Let X ∼ Mutinomial(l; p1, . . . , pn) be such that we have that pi = Θ(n−1)
uniformly across all i. Then

Cov(Xi ≥ 1, Xj ≥ 1) = −lpipj · (1 +O(n−1)).

Proof [Proof of Lemma 83] Note that

P(Xi ≥ 1, Xj ≥ 1) = P(Xi ≥ 1) + P(Xj ≥ 1)− (1− P(Xi = 0, Xj = 0))

and consequently we get that

Cov(Xi ≥ 1, Xj ≥ 1)

= 1− (1− pi)l − (1− pj)l + (1− pi − pj)l − (1− (1− pi)l)(1− (1− pj)l)
= (1− pi − pj)l − (1− pi − pj + pipj)

l

= lpipj(1− pi − pj)l−1 · (1 +O(n−2)) = lpipj · (1−O(n−1))

as desired.

Appendix G. Optimization of convex functions on Lp spaces

In this section we summarize the necessary functional analysis needed in order to study the
minimizers of convex functionals on Lp spaces.

G.1 Weak topologies on Lp

The material stated in this section is textbook, with Aliprantis and Border (2006); Barbu
and Precupanu (2012); Brézis (2011) and Riesz and Szőkefalvi-Nagy (1990) all useful ref-
erences. We begin with a Banach space X, whose continuous dual space X∗ consists of all
continuous linear functionals X → R. The weak topology on X is the coarsest topology on
X for which these functionals remain continuous. (The norm topology on X is also referred
to as the strong topology.) We can describe this topology via a base of neighbourhoods

N(L, x, ε) :=
{
y ∈ X : L(y − x) < ε

}
for L ∈ X∗, x ∈ X and ε > 0. For sequences, we say that a sequence (xn)n≥1 converges
weakly to some element x provided y(xn)→ y(x) as n→∞ for all y ∈ X∗. We now state
some useful facts about weak topologies on Banach spaces:

a) A non-empty convex set is closed in the weak topology iff it is closed in the strong
topology. (The corresponding statement for open sets is not true.)

b) A convex, norm-continuous function f : X → R is lower semi-continuous (l.s.c) in the
weak topology; that is, the level sets Lλ := {x : f(x) ≤ λ} are weakly closed for all
λ ∈ R.

c) The weak topology on X is Hausdorff.
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Corollary 84 Let X be a Banach space and f : X → R be a convex, norm continuous
function, and let A be a weakly compact set. Then there exists a minimizer of f over A. If
the set A is convex and f is strictly convex, then the minima is unique.

Proof [Proof of Corollary 84] By applying a) and b) above and using Weierstrass’ theorem
in the weak topology, we get the first part; the second part is standard.

Specializing now to the case where X = Lp(µ) = Lp(X,F , µ) where (X,F , µ) is a σ-
finite measure space, the Riesz representation theorem guarantees that for p ∈ [1,∞), if q
is the Hölder conjugate of p so q−1 + p−1 = 1, then the mapping

g ∈ Lq(µ) 7→ Lg(·) ∈ (Lp(µ))∗ where Lg(f) :=

∫
X
fg dµ := 〈f, g〉

gives an isometric isomorphism between (Lp(µ))∗ and Lq(µ). The relatively weakly compact
sets (that is, the sets whose weak closures are compact) in Lp(µ) can be characterized as
follows:

a) (Banach–Alaoglu) For p > 1, the closed unit ball {x ∈ Lp(µ) : ‖x‖p ≤ 1} is weakly
compact, and the relatively weakly compact sets are exactly those which are norm
bounded.

b) (Dunford-Pettis) A set A ⊂ L1(µ) is relatively weakly compact if and only if the set
A is uniformly integrable. (This is a stricter condition than in the p > 1 case.)

G.2 Minimizing functionals over L1(µ)

Note that to apply Corollary 84, we require the optimization domain A to be weakly com-
pact. In the case where we are optimizing over Lp(µ) for p = 1, we note that the uniform
integrability property is stricter than that of norm-boundedness. We are mainly motivated
by wanting to optimize the functional In[K] over a weakly closed set which is only norm-
bounded, which therefore will cause us trouble in the regime where p = 1. However, if the
function we are seeking to optimize is more structured, we can still guarantee the existence
of a minimizer; this is the purpose of the next result.

Theorem 85 Let P be a norm closed subset of a Banach space U equipped with a norm
‖ · ‖U , and let (P,P) denote the corresponding subspace topology on P . Let X be a Banach
space equipped with strong and weak topologies S and W, and whose norm is denoted ‖ · ‖X .
Let I[K; g] : X × P → R be a function which is bounded below, and has the following
additional properties:

a) K 7→ I[K; g] is strictly convex for all g ∈ P ;

b) (K, g) 7→ I[K; g] is S × P-continuous;

c) For any λ such that the level set Lλ := {(K, g) : I[K; g] ≤ λ} is non-empty, there
exists a constant Cλ for which∣∣I[K; g]− I[K; g̃]

∣∣ ≤ Cλ‖g − g̃‖U (71)

for any (K, g) ∈ Lλ and g̃ ∈ P .
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Let C be a weakly closed convex set in X, and let µ̃(g) := arg minK∈C I[K; g]. By the strict
convexity, there exists a set A for which µ̃(g) = {µ(g)} if g ∈ A and µ̃(g) = ∅ for g ∈ Ac. If
there exists a dense set D for which D ⊆ A, then A = P , and the function µ(g) is P-to-W
continuous.

The purpose of the above theorem is that provided we can argue the existence of a
minimizer on a dense set of values of g, then we can exploit the continuity and convexity
of I[K; g] in order to upgrade our existence guarantee to hold for all functions g. In order
to prove the above result, we require two intermediate results: one is a simple topological
result, and the other a refinement of a version of Berge’s maximum principle introduced in
Horsley et al. (1998). Before doing so, we introduce some terminology:

a) A correspondence B : P � X is a set-valued mapping for which every p ∈ P is
assigned a subset B(p) ⊆ X. (A function is therefore a singleton valued correspon-
dence.)

b) The graph of a correspondence B is the subset of P ×X given by {(p,B(p)) : p ∈ P}.

c) Let P be a topology on P , and τ a topology on X. Then we say that B is P-to-τ
lower hemicontinuous if the set {p : B(p)∩U 6= ∅} is open in P for every open set U
in τ .

d) We say a correspondence B is P-to-τ upper hemicontinuous if the set {p : B(p) ⊆ U}
is open in P for all open sets U ∈ τ .

e) When B is a bond-fide function, the above notions in c) and d) are the same as lower
semi-continuity (l.s.c) and upper semi-continuity (u.s.c) for functions respectively.

Lemma 86 Let (P,P) and (X,X ) be topological spaces. Suppose that B : P � X is at
most singleton valued, with A denoting the set of p for which B(p) 6= ∅, so B(p) = {b(p)}
for p ∈ A and B(p) = ∅ if p ∈ Ac. If B is an upper hemicontinuous correspondence, then A
is closed in P , and b : A→ X is a continuous function with respect to the subspace topology
on A induced by X. In particular, if A is also dense, then A = P .

Proof [Proof of Lemma 86] Note that by the upper hemicontinuity property, (Ac) = {p :
B(p) ⊆ ∅} is open and whence A is closed. As for the continuity, we want to show
that b−1(U) is open in the subspace topology on A given any open set U in X. As
b−1(U) = A ∩ {p : B(p) ⊆ U}, this is indeed the case. For the final statement, we
simply note that A = cl(A) = P , where the first equality is because A is closed, and the
second as A is dense.

Theorem 87 (Summary and extension of Horsley et al., 1998) Let (P,P) be a
Hausdorff topological space, and let X be a Banach space equipped with topologies S (infor-
mally, a “strong” topology) and W (informally, a “weak” topology). Let B : P � X be a
correspondence, and suppose that f : X × P is a function. Define the sets

R :=
{

(z, p, x) ∈ X × P ×X : f(z, p) ≥ f(x, p)
}
, (72)

X̂(p) :=
{
x ∈ B(p) : f(z, p) ≥ f(x, p) for all z ∈ B(p)

}
. (73)
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Then we have the following:

a) Suppose that B is P-to-S lower hemicontinuous, the graph of B is P ×W-closed in
P ×X, and that the set R is S × P ×W-closed in X × P ×X. Then the graph of X
is also P ×W-closed in P ×X.

b) If in addition to a) we have that B is P-to-W upper hemicontinuous and has W-
compact values, then X̂ is also P-to-W upper hemicontinuous and has W-compact
values.

c) If in addition to a) we have that B is P-to-W upper hemicontinuous and X̂ is W-
compact valued, then X̂ is P-to-W upper hemicontinuous.

Proof [Proof of Theorem 87] The first two parts are simply Theorem 2.2 and Corollaries 2.3
and 2.4 of Horsley et al. (1998) applied to the relation defined by the set R above. The
third is a modification of the argument in Corollary 2.4. Begin by writing X̂ = B ∩ X̂. It
is known that the intersection of a closed correspondence φ and a upper hemicontinuous,
compact-valued correspondence ψ is upper hemicontinuous and compact-valued (Aliprantis
and Border, 2006, Theorem 17.25, p567); one can show with the same proof that if ψ is
only upper hemicontinuous and closed-valued, and φ ∩ ψ is compact valued, then φ ∩ ψ is
upper hemicontinuous also. From this, part c) follows.

Proof [Proof of Theorem 85] Our aim is to apply Theorem 87, using the correspondence
B(g) = C for all g ∈ P , and f(K, g) = I[K; g] (now writing x → K and p → g). As this
correspondence is constant, the graph of B is closed in P ×W, as it simply equals P × C
and C is weakly closed. As C is convex and weakly closed, it is also strongly closed, and
therefore the correspondence B(g) is both P-to-S lower hemicontinuous and P-to-W upper
hemicontinuous. Note that X̂(g) as defined in (73) is the correspondence which defines the
minima set of I[K; g] for each g ∈ P and so equals µ̃(g); via the strict convexity of I[K; g]
for each g, we know that X̂(g) is at most a singleton, and therefore is W-compact valued
(as the empty set and singletons are compact).

Consequently, in order to apply part c) of Theorem 87, the remaining part is to show
that the set R as defined in (72) is S × P × W-closed. To do so, we will argue that the
complement Rc is open. Fix a point (K0, g0,K

′
0) ∈ X × P ×X. As I[K0; g0] < I[K ′0; g0],

there exists λ ∈ R such that I[K0; g0] < λ < I[K ′0; g0]. Note that if we can find

a) a S-nbhd (neighbourhood) NS of K0 and a P-nbhd NP of g0 such that I[K; g] < λ
for all (K, g) ∈ NS ×NP ; and

b) a W-nbhd NW of K ′0 and a P-nbhd N ′P of g0 such that I[K; g] > λ for all (K, g) ∈
NW ×N ′P ;

then NS × (NP ∩N ′P )×NW would be a S × P ×W-nbhd of (K0, g0,K
′
0) contained in Rc,

whence Rc would be open. To do so, we want to show that a) I[K; g] is S ×P-u.s.c and b)
I[K; g] is W ×P-l.s.c.

Part a) follows immediately by the assumption that I[K; g] is S × P-continuous. For
b), it suffices to show that the level sets Lλ = {(K, g) : I[K; g] ≤ λ} are W × V-closed.
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To do so, let (Kα, gα)α∈A be a net which converges to (K∗, g∗); note that as the weak and
norm topologies on a Banach space are Hausdorff and the product topology on Hausdorff
topologies is Hausdorff, the limit is unique. We aim to show that for any ε > 0, we have
that I[K∗, g∗] ≤ λ+ ε, so the conclusion follows by taking ε→ 0.

To do so, we begin by noting that as gα is a net converging to g∗ in a metrizable
space (the topology P is induced by the metric d(f, g) = ‖f − g‖U ), we can find a cofinal
subsequence (that is, a subnet which is a sequence) (αi)i≥1 along which gαi → g∗ as i→∞.
(Indeed, we simply note that for each i, we can find αi for which d(gβ, g) ≤ 1/i for all
β ≥ αi.) With this, we now note that for each αi, K

∗ must be in the weak closure of
conv(Kβ : β ≥ αi) (i.e, the convex hull of the Kβ for β ≥ αi, which therefore contains each
Kβ for β ≥ αi). As this is a convex set, the weak and strong closures of this set are equal,
and consequently K∗ must be in the strong closure of each of the conv(Kβ : β ≥ αi) too.
Consequently, we can therefore always find some element K̃αi ∈ conv(Kβ : β ≥ αi) for
which ‖K̃αi −K∗‖X ≤ 1/i. In particular, we therefore have that the sequence (K̃αi , gαi)i≥1

S × V-converges to (K∗, g∗).
To proceed further, we note that for each i, there exists (µ(i)β)β≥αi such that all but

finitely many of the µ(i)β are zero, with the non-zero elements positive and
∑

β≥αi µ(i)β = 1,

with K̃αi =
∑

β≥αi µ(i)βKβ. The convexity of I[K; g] plus the continuity condition (71)
then implies that

I[K̃αi ; gαi ] ≤
∑
β≥αi

µ(i)βI[Kβ; gαi ]

=
∑
β≥αi

µ(i)β
{
I[Kβ; gαi ]− I[Kβ; gβ] + I[Kβ; gβ]

}
≤ λ+

∑
β≥αi

µ(i)β
∣∣I[Kβ; gαi ]− I[Kβ; gβ]

∣∣ ≤ λ+
∑
β≥αi

µ(i)βCλ‖gαi − gβ‖P

≤ λ+ Cλ
∑
β≥αi

µ(i)β
{
‖gαi − g∗‖P + ‖gβ − g∗‖P

}
.

In particular, given any ε > 0, we can choose j ∈ N such that ‖gβ − g‖U ≤ ε/(2Cλ) for all
β ≥ αj , and whence for i ≥ j we have that

I[K̃αi ; gαi ] ≤ λ+ ε
∑
β≥αi

µ(i)β = λ+ ε.

Consequently passing to the strong limit using the S ×P-continuity of I[K; g] gives us that
I[K∗; g∗] ≤ λ+ ε, as desired.

With this, we can now apply part c) of Theorem 87 to conclude that µ(g) is P-to-W
upper hemicontinuous. The desired result then follows by applying Lemma 86.

Appendix H. Properties of piecewise Hölder functions and kernels

In this section we discuss some useful properties of symmetric, piecewise Hölder continuous
functions, relating to the decay of their eigenvalues when viewed as operators between Lp
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spaces. Letting q be the Hölder conjugate of p (so p−1 + q−1 = 1), for a symmetric function
K ∈ L∞([0, 1]2) we can consider the operator TK : Lp([0, 1])→ Lq([0, 1]) defined by

TK [f ](x) :=

∫ 1

0
K(x, y)f(y) dy. (74)

We usually refer to K as the kernel of such an operator. TK is then self-adjoint, in that for
any functions f, g ∈ Lp([0, 1]) we have that 〈TK [f ], g〉 = 〈f, TK [g]〉, where 〈f, g〉 =

∫
fg dµ.

We introduce some terminology and theoretical results concerning such operators. We
say that an operator T is compact if the image of the ball {f ∈ Lp([0, 1]) : ‖f‖p ≤ 1} under
T is relatively compact in Lq([0, 1]). If K ∈ L∞([0, 1]2), then TK is a compact operator.
An operator T is of finite rank r if the range of T is of dimension r. We say that an
operator T is positive if 〈T [f ], f〉 ≥ 0 for all f ∈ Lp([0, 1]). This induces a partial ordering
on the operators, where T1 4 T2 iff T2 − T1 is positive. In the case when p = q = 2,
if K is positive, then there exists a unique positive square root of K (say J) such that
J2 = K, i.e that K[f ] = J [J [f ]] for all f ∈ L2([0, 1]). Again in the case where p = q = 2,
as TK is a self-adjoint compact operator, by the spectral theorem (e.g Fabian et al., 2001,
Theorem 7.46) there exists a sequence of eigenvalues µi(K)→ 0 and eigenvectors φi (which
form an orthonormal basis of L2([0, 1])) such that

TK [f ] =
∞∑
n=1

µn(K)〈f, φn〉φn for all f ∈ L2([0, 1]2), K(x, y) =
∞∑
n=1

µn(K)φn(x)φn(y)

where the latter sum is understood to converge in L2, and ‖K‖L2([0,1]2) =
∑∞

n=1 µn(K)2 <
∞. Supposing that TK is also positive, then one can prove (e.g König, 1986, Theorem 3.A.1)
that TK is trace class, in that ‖K‖tr :=

∑∞
n=1 µn(K) <∞, and we refer to this as the trace,

or trace norm, of TK .
We now give some useful properties of the algebraic properties of piecewise Hölder

continuous functions, before proving a result concerning the eigenvalues of TK when K is
piecewise Hölder.

Lemma 88 Let f, g : [0, 1]2 → R be two piecewise Hölder([0, 1]2, β,M,Q) continuous
functions, which are both bounded below by δ > 0 and bounded above by C > 0, so
0 < δ ≤ f, g ≤ C. Then:

i) For any scalar A, Af is piecewise Hölder([0, 1]2, β, |A|M , Q), and f + g is piecewise
Hölder([0, 1]2, β, 2M , Q).

ii) f/(f + g) is bounded below by δ/(δ + C) and bounded above by C/(C + δ);

iii) f/g and f/(f + g) are Hölder([0, 1]2, β, 2CMδ−2,Q) continuous.

iv) If F is a continuous distribution function satisfying the conditions in Assumption BI,
then ‖F−1(f/(f + g))‖∞ ≤ C ′ = C ′(F, δ, C), and F−1(f/(f + g)) is
Hölder([0, 1]2, β,M ′,Q) where M ′ = M ′(F, δ, C,M).
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Proof [Proof of Lemma 88] Part i) is immediate. Part ii) follows by noting that as f and
g are bounded below by δ and above by C, we have that

δ

C
≤ f

g
≤ C

δ
=⇒ 0 <

δ

δ + C
≤ f

f + g
≤ C

C + δ
< 1.

As F−1 is a monotone bijection (0, 1) → R, we therefore get the first part of iv) also. For
iii), for any Q ∈ Q and x, y ∈ Q we have that∣∣∣f(x)

g(x)
− f(y)

g(y)

∣∣∣ =
∣∣∣f(x)g(y)− f(y)g(x)

g(x)g(y)

∣∣∣ ≤ δ−2|f(x)(g(y)− g(x)) + g(x)(f(x)− f(y))|

≤ δ−2
(
|f(x)||g(y)− g(x)|+ |g(x)||f(x)− f(y)|

)
≤ 2CMδ−2‖x− y‖β

giving the first part of iii). For the second, note that we can write f/(f+g) = h(f/g) where
h(x) = x/(1 + x) is 1-Lipschitz; consequently f/(f + g) has the same Hölder properties as
f/g. As F−1 is Lipschitz on compact sets and we know that f/(f +g) is contained within a
compact interval (say J), the same reasoning gives that F−1(f/(f + g)) is also Hölder with
the same exponent and partition, and a constant depending only on the Hölder constant of
f/(f + g), the upper/lower bounds on f/(f + g) and the Lipschitz constant of F−1 on J .
This then gives the second part of iv).

To have the next theorem hold in slightly more generality, we introduce the notion of
P-piecewise equicontinuity of a family of functions K, which holds if for all ε > 0, there
exists δ > 0 such that whenever x, y lie within the same partition of P and ‖x− y‖ < δ, we
have that |K(x)−K(y)| < ε for all K ∈ K.

Theorem 89 Suppose that K : [0, 1]2 → R is Hölder([0, 1]2, β, M , Q⊗2) continuous and
symmetric. For such a K, define TK as in (74), so TK is a self-adjoint, compact operator.
Writing µd(K) for the eigenvalues of TK sorted in decreasing order of magnitude, we have
that

sup
K∈Hölder

(
[0,1]2,β,M,Q⊗2

) ( ∞∑
i=d+1

µi(K)2
)1/2

= O(d−β)

or that |µd(K)| = O(d−(1/2+β)) (also uniformly over such K). If TK is also positive, then
this bound can be improved to µd(K) = O(d−(1+β)) uniformly, or

sup
K positive, K∈Hölder

(
[0,1]2,β,M,Q⊗2

) ( ∞∑
i=d+1

µi(K)2
)1/2

= O(d−(1/2+β))

For any given m ∈ N and A > 0, the second bound stated also holds uniformly across TK for
which ‖K‖∞ ≤ A and TK having at most m negative eigenvalues. More generally, suppose
that K is a family of Q⊗2-piecewise equicontinuous functions, in which case we have that

sup
K∈K

( ∞∑
i=d+1

µi(K)2
)1/2

= o(1).
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Proof [Proof of Theorem 89] We adapt the proofs of Reade (1983a, Lemma 1) and the
main result of Reade (1983b) so that they apply when K is piecewise Hölder, and to track
the constants from the aforementioned proofs so we can argue that the bounds we adapt
hold uniformly across all K which are Hölder([0, 1]2, β, M , Q⊗2). The idea of these proofs is
to exploit the smoothness of K to build finite rank approximations whose error in particular
norms is easy to calculate, giving eigenvalue bounds. We then discuss how the proofs can
be modified for the equicontinuous case.

Starting when a-priori TK is not known to be positive, for any kernel Rd corresponding
to an operator of rank ≤ d, we know that

∑∞
k=d+1 µk(K)2 ≤ ‖K −Rd‖22. As K is piecewise

Hölder continuous with respect to a partition Q⊗2, one strategy is to choose Rd to be
piecewise constant on a partition Pd which is a refinement of Q.

To do so, begin by writing Q = (Q1, . . . , Qk) for some k. For d � (mini |Qi|)−1, note
that we can find ñi(d) ∈ N for i ∈ [k] such that (ñi−1)/d ≤ |Qi| ≤ (ñi+ 1)/d. By summing
over the i index, this implies that

∑
i ñi − k ≤ d ≤

∑
i ñi + k, and so we can choose

ni(d) ∈ {ñi(d) − 1, ñi(d), ñi(d) + 1} such that
∑

i ni(d) = d by the pigeonhole principle,
as there are 2k possible values of the sum, yet 3k possible choices of ni(d). With this, we
can define a partition Pd = (Ad,1, . . . , Ad,d) of [0, 1] where the Ad,j are intervals of length
|Ad,j | = |Qi|/ni(d) stacked alongside each other in consecutive order, where i such that∑i−1

r=1 nr(d) ≤ j ≤
∑i

r=1 nr(d). This is a refining partition of Q, and moreover∣∣∣ |Qi|
ni(d) · d

− 1
∣∣∣ ≤ 1

d
=⇒

∣∣Ad,j∣∣ = d−1(1 + d−1Ed,j) where |Ed,j | ≤ k(min
i
|Qi|)−1.

With this, if we define Rd as being a piecewise constant on P⊗2
d , equal to the value

of K on the midpoint of the Adi × Adj , then Rd is the kernel of an operator of rank ≤ d
by Lemma 92. We then note that by the piecewise Hölder properties of K, and as Rd is
piecewise constant on a refinement of Q, if (u, v) ∈ Ad,i ×Ad,j then

|K(u, v)−Rd(u, v)| ≤M2−β(|Ad,i|2 + |Ad,j |2)β/2 ≤M2−β/2d−βkβ(min
i
|Qi|)−β

Consequently ‖K −Rd‖2 ≤ ‖K −Rd‖∞ ≤ O(d−β) (where the implied constant attached to
the O(·) term depends only on M , β and the partition Q), and so we get the first part of
the result.

Note that if we only know that the K belong to a equicontinuous family K, then we
can still apply the same construction and find that supK∈K ‖K − Rd‖∞ → 0 as d → ∞.
Indeed, given ε > 0, let δ > 0 be such that once ‖(u, v) − (u′, v′)‖2 < δ we have that
|K(u, v) − K(u′, v′)| < ε for all K ∈ K. Then provided we choose d to be so that the
|Ad,i| < δ, the above construction guarantees us that |K(u, v)−Rd(u, v)| < ε a.e uniformly
over all K ∈ K.

For the case where K is non-negative definite, we will use a version of the Courant-
Fischer min-max principle (Reade, 1983b, Lemma 1), which states that if Rd is a kernel of
a rank ≤ d symmetric operator, then

∑∞
k=d+1 µk(K) ≤ ‖K −Rd‖tr. Define

Sd(u, v) =
d∑
i=1

|Ad,i|−1φi(u)φi(v) where φi(u) = 1[u ∈ Ad,i].
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Note that Sd is non-negative definite, of rank ≤ d, and 0 2 Sd 2 I as, by Jensen’s inequality,

〈Sd[f ], f〉 =
d∑
i=1

|Ad,i|−1
(∫

Ad,i

f(x) dx
)2
≤

d∑
i=1

∫
Ad,i

f(x)2 dx = 〈f, f〉

for any function f ∈ L2([0, 1]). Therefore if we define Rd = JSdJ (where J is the square
root of K), then by Lemma 94 we know that Rd is of rank ≤ d and 0 4 JSdJ 4 K.
By following through the arguments in Reade (1983b, p.155) (noting that in Lemma 94
we verify that the trace of a piecewise continuous kernel is given by its integral over the
diagonal), we may then argue that

‖K − JSdJ‖tr =

d∑
i=1

|Ad,i|−1

∫
Ad,i×Ad,i

1

2
(K(u, u) +K(v, v))−K(u, v) du dv

≤
d∑
i=1

|Ad,i|−1

∫
Ad,i×Ad,i

M |u− v|β du dv ≤
d∑
i=1

M |Ad,i|1+β = O(d−β)

and so µd(K) = O(d−(1+β)) as desired, with the implied constant depending only on M
and Q; this then gives the stated bound on (

∑∞
k=d+1 µk(K)2)1/2. In the case where K

has m negative eigenvalues, note that the eigenvectors are piecewise Hölder by Lemma 93,
and the eigenvalues are bounded above by ‖K‖2 ≤ ‖K‖∞. In particular, for each m, if we
subtract the negative part of K from itself then we still have a class of piecewise Hölder
continuous functions with partition Q, exponent β and constant depending on M , m and
‖K‖∞. We can then apply the above result (as we are only interested in tail bounds for
the eigenvalues), and get tail bounds which depend only on these quantities again.

We want to apply these results to K of the form

K∗n,uc := F−1
( f̃n(l, l′, 1)

f̃n(l, l′, 1) + f̃n(l, l′, 0)

)
(75)

where F is a c.d.f as in Assumption BI, and the f̃n(l, l′, 1) and f̃n(l, l′, 0) come from As-
sumption E. By the above results, we can obtain the following:

Corollary 90 Suppose that Assumptions A and E hold with γs =∞, and that F is a c.d.f
satisfying the properties stated in Assumption BI. Denote f̃n,x(l, l′) = f̃n(l, l′, x). Then there
exists A′, free of n and depending only on supn,x ‖f̃n,x‖∞, supn,x ‖f̃−1

n,x‖∞ and F , such that
supn ‖K∗n,uc‖∞ ≤ A < ∞ where K∗n,uc is as in (75). Moreover, there exists L′ depending

only on supn,x ‖f̃n,x‖∞, supn,x ‖f̃−1
n,x‖∞, Lf and F - so again free of n - such that K∗n,uc is

piecewise Hölder([0, 1]2, β, L′, Q⊗2) for all n.

Proof [Proof of Corollary 90] Apply Lemma 88.
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Proposition 91 Suppose that Assumption B holds with 1 ≤ p ≤ 2, where p is the growth
rate of the loss function `, that Assumption A holds, and Assumption E holds with γs =∞.
Then we have that K∗n,uc ∈ Z; if K∗n,uc is positive for all n, then we moreover have that
K∗n,uc ∈ Z≥0. Moreover, there exists A′ free of n such that whenever A ≥ A′, denoting
Kn,d1,d2 for the best rank (d1, d2) approximation in L2 to K∗n,uc (that is, the operator S1−S2

for which ‖K∗n,uc − (S1 − S2)‖2 is minimized over all positive rank di operators Si for
i ∈ {1, 2}), then Kn,d1,d2 ∈ Zd1,d2(A) for all n, d1 and d2.

In the case when K∗n,uc is positive, then Kn,d1,d2 is also positive for all d1 and d2, and

consequently Kn,d1,d2 ∈ Z
≥0
d1

(A) for all n, d1 and d2. In fact, the same conclusions above

hold provided K ∈ K where K is a family of Q⊗2-piecewise equicontinuous functions with
supK∈K ‖K‖∞ <∞, with the choice of A′ holding uniformly over all K ∈ K.

Proof [Proof of Proposition 91] Let µi(K
∗
n,uc) and φn,i denote, respectively, the eigenvalues

and eigenvectors of K∗n,uc. Working with the eigenvalues, note that supn,i |µi(K∗n,uc)| ≤
‖K∗n,uc‖2 ≤ ‖K∗n,uc‖∞, which is bounded uniformly in n by Corollary 90. As for the eigen-
vectors, we note that by Lemma 93 they are all piecewise Hölder([0, 1], β, L, Q) (where L is
as in Corollary 90); as they all have L2 norm equal to one, it therefore follows by Lemma 95
that the eigenvectors are also uniformly bounded in L∞. As we now can write

K∗n,uc(l, l
′) =

∑
i :µi(K∗n,uc)>0

(
|λi(K∗n,uc)|1/2φn,i(l)

)(
|λi(K∗n,uc)|1/2φn,i(l′)

)
−

∑
i :µi(K∗n,uc)<0

(
|λi(K∗n,uc)|1/2φn,i(l)

)(
|λi(K∗n,uc)|1/2φn,i(l′)

)
,

where the sum is understood to converge in L2 (and therefore also in Lp([0, 1]2) for any p ∈
[1, 2]), the desired conclusion follows with A′ = supn,i

∣∣λi(K∗n,uc)
∣∣1/2 · supn,i ‖φn,i‖∞. In the

case where the K lie within a piecewise equicontinuous class K where supK∈K ‖K‖∞ ≤ A,
the same arguments hold and therefore the stated conclusion does too.

H.1 Additional lemmata

Lemma 92 Let K : [0, 1]2 → R be symmetric and piecewise constant on a partition P⊗2,
where P is a partition of [0, 1]. Then if P is of size r, TK is of rank ≤ r.

Proof [Proof of Lemma 92] Suppose P = (A1, . . . , Ar) for some intervals Ar, and define the
matrix Mi,j = K(u, v) where we can choose any (u, v) ∈ Ai×Aj and have M be well defined
as K is piecewise constant. Then as M is a r-by-r symmetric matrix, by the spectral the-
orem, there exists λi ∈ R (possibly allowing for zero eigenvalues) and eigenvectors vi ∈ Rr
such that M =

∑r
i=1 λiviv

T
i . Then if we define functions φi : [0, 1] → R by φi(l) = vi,j for

l ∈ Aj , j ∈ [r], we have that K(u, v) =
∑r

i=1 λiφi(u)φi(v) and therefore TK is of rank ≤ r.

Lemma 93 Suppose that K : [0, 1]2 → R is Hölder([0, 1]2, β, M , Q⊗2) continuous and
symmetric. Then for any f ∈ L2 we have that TK [f ] is Hölder([0, 1], β, M‖f‖2, Q).

110



Asymptotics of Network Embeddings Learned via Subsampling

In particular, TK is a self adjoint, compact operator. Moreover, the eigenvectors of TK ,
normalized to have L2([0, 1]) norm 1, can be taken to each be piecewise Hölder([0, 1], β, M ,
Q), and are uniformly bounded in L∞([0, 1]).

Similarly, if K is a Q⊗2-piecewise equicontinuous family of symmetric functions [0, 1]2 →
R, then the collection of all the eigenvectors of TK for K ∈ K are Q-piecewise equicontinuous
and uniformly bounded in L∞([0, 1]).

Proof [Proof of Lemma 93] Let f : [0, 1] → R. Beginning with the Hölder case, for any
pair x, y ∈ Q ∈ Q we have

|TK [f ](x)− TK [f ](y)| ≤
∫ 1

0
|K(x, z)−K(y, z)||f(z)| dz

=
∑
Q∈Q

∫
Q
|K(x, z)−K(y, z)||f(z)| dz

≤
∑
Q∈Q

∫
Q
M |x− y|β|f(z)| dz = M |x− y|β ·

∫ 1

0
|f(z)| dz ≤M‖f‖2|x− y|β,

so the image of the L2([0, 1]) ball is contained within the class of Hölder([0, 1], β, M‖f‖2, Q)
functions. This implies the claimed results, where the compactness of the operator follows
by using the Arzela-Ascoli theorem with this fact, and the statement on eigenvectors of TK
is immediate by the above derivation and an application of Lemma 95. For the case where
we have some equicontinuous family K, let ε > 0, so there exists some δ > 0 such that
whenever ‖(x, u) − (y, x)‖2 < δ and (x, y), (u, v) lie within the same partition of Q⊗2, we
have that |K(x, u)−K(y, v)| < ε for all K ∈ K. Therefore, if |x−y| < δ, ‖(x, z)−(y, z)‖2 < δ
for all z and so we get that

|TK [f ](x)− TK [f ](y)| ≤
∫
Q
|K(x, z)−K(y, z)||f(z)| dz ≤ ε‖f‖1 ≤ ε‖f‖2 = ε,

giving the desired conclusion.

Lemma 94 (Mercer’s theorem + more for piecewise continuous kernels) Let K :
[0, 1]2 → R be a symmetric piecewise continuous function on Q⊗2, according to some
partition Q of [0, 1], for which the associated operator TK is positive. Then ‖K‖tr =∫ 1

0 K(u, u) du. Moreover, if J is the unique positive square root of K and S is an oper-
ator of rank ≤ d such that 0 4 S 4 I, then JSJ is of rank ≤ d, the corresponding kernel is
piecewise continuous, and 0 4 JSJ 4 K.

Proof [Proof of Lemma 94] Note that in the case where K is positive and continuous, it
is well known as a consequence of Mercer’s theorem that we can write the trace norm of
K as the integral over the diagonal of K. In the case where K is piecewise continuous,
if we write λi and φi for the eigenvalues and (normalized) eigenfunctions of TK , then we
know that the eigenfunctions are piecewise continuous (by the argument in Lemma 93). By
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following the arguments in the proof of Mercer’s theorem for the continuous case (e.g Riesz
and Szőkefalvi-Nagy, 1990, p245-246), one can argue that

K(u, u) =
∞∑
i=1

λiφi(x)2 (76)

convergences pointwise for all u ∈ [0, 1] except at (potentially) the discontinuity points of
u 7→ K(u, u), of which there are only finitely many. Therefore by the monotone convergence
theorem, we then get that

‖K‖tr = lim
N→∞

N∑
i=1

µi(K) = lim
N→∞

∫ 1

0

N∑
i=1

µi(K)φi(u)2 du =

∫ 1

0
K(u, u) du.

Moreover, as a consequence of Dini’s theorem, we know that for any x ∈ int(Q) for some
Q ∈ Q, there exists a compact set C such that x ∈ C ⊆ Q and the convergence in (76) is
uniform on C. This last part then allows us to follow through the proof of Reade (1983b,
Lemma 2) to note that if J(u, v) is the unique non-negative definite square root of K, then
J [f ] is piecewise continuous for any f ∈ L2([0, 1]). It then follows by the same argument
as in Reade (1983b, Lemma 3) that if S is an operator of rank ≤ d such that 0 4 S 4 I
and K is a non-negative definite operator which is piecewise continuous with square root
J , then JSJ is of rank ≤ d, is piecewise continuous and satisfies 0 4 JSJ 4 K.

Lemma 95 Let X ⊆ Rd be compact, and let (fn)n≥1 be a sequence of piecewise
Hölder(X, β, M , Q) functions. If we also suppose that supn≥1 ‖fn‖Lp(X) for any p ≥ 1, then
supn≥1 ‖fn‖L∞(X) <∞. The same conclusion follows if we have a sequence fn of piecewise
equicontinuous functions.

Proof [Proof of Lemma 95] Without loss of generality we may suppose that p = 1 (as
uniform boundedness in any Lp norm with p > 1 implies uniform boundedness in p = 1
when X is compact). If we pick Q ∈ Q and x ∈ int(Q) (so that fn(x) is well defined as fn
is piecewise continuous on Q), by the triangle inequality and integrating we then have that

|fn(x)| ≤
∫
Q
|fn(x)− fn(y)| dy +

∫
Q
|fn(y)| dy

≤
∫
Q
M‖x− y‖β2 dy +

∫
Q
|fn(y)| dy ≤Mµ(X)diam(X)β + ‖fn‖L1(X)

where µ(X) denotes the Lebesgue measure of X. As the RHS is finite and bounded uni-
formly in n, we get the desired result. The same argument works in the piecewise equicon-
tinuous case.
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Basel, 1986. doi: 10.1007/978-3-0348-6278-3. URL https://doi.org/10.1007/

978-3-0348-6278-3.

Jing Lei. Network representation using graph root distributions. The Annals of Statistics,
49(2):745–768, April 2021. ISSN 0090-5364, 2168-8966. doi: 10.1214/20-AOS1976.
URL https://projecteuclid.org/journals/annals-of-statistics/volume-49/

issue-2/Network-representation-using-graph-root-distributions/10.1214/

20-AOS1976.full. Publisher: Institute of Mathematical Statistics.

Jing Lei and Alessandro Rinaldo. Consistency of spectral clustering in stochastic block
models. The Annals of Statistics, 43(1), February 2015. ISSN 0090-5364. doi: 10.1214/
14-AOS1274. URL http://arxiv.org/abs/1312.2050. arXiv: 1312.2050.

Keith D. Levin, Fred Roosta, Minh Tang, Michael W. Mahoney, and Carey E. Priebe.
Limit theorems for out-of-sample extensions of the adjacency and Laplacian spectral

116

https://doi.org/10.1007/978-1-4419-8462-3_9
http://www.sciencedirect.com/science/article/pii/0378873383900217
http://www.sciencedirect.com/science/article/pii/0378873383900217
https://projecteuclid.org/journals/electronic-communications-in-probability/volume-14/issue-none/Standard-representation-of-multivariate-functions-on-a-general-probability-space/10.1214/ECP.v14-1477.full
https://projecteuclid.org/journals/electronic-communications-in-probability/volume-14/issue-none/Standard-representation-of-multivariate-functions-on-a-general-probability-space/10.1214/ECP.v14-1477.full
https://projecteuclid.org/journals/electronic-communications-in-probability/volume-14/issue-none/Standard-representation-of-multivariate-functions-on-a-general-probability-space/10.1214/ECP.v14-1477.full
https://projecteuclid.org/journals/electronic-communications-in-probability/volume-14/issue-none/Standard-representation-of-multivariate-functions-on-a-general-probability-space/10.1214/ECP.v14-1477.full
http://arxiv.org/abs/2101.07587
http://arxiv.org/abs/2101.07587
https://www.jstor.org/stable/44245780
https://doi.org/10.1007/978-3-0348-6278-3
https://doi.org/10.1007/978-3-0348-6278-3
https://projecteuclid.org/journals/annals-of-statistics/volume-49/issue-2/Network-representation-using-graph-root-distributions/10.1214/20-AOS1976.full
https://projecteuclid.org/journals/annals-of-statistics/volume-49/issue-2/Network-representation-using-graph-root-distributions/10.1214/20-AOS1976.full
https://projecteuclid.org/journals/annals-of-statistics/volume-49/issue-2/Network-representation-using-graph-root-distributions/10.1214/20-AOS1976.full
http://arxiv.org/abs/1312.2050


Asymptotics of Network Embeddings Learned via Subsampling

embeddings. Journal of Machine Learning Research, 22(194):1–59, 2021. ISSN 1533-
7928. URL http://jmlr.org/papers/v22/19-852.html.
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