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Abstract

Bilevel optimization has recently attracted growing interests due to its wide applications
in modern machine learning problems. Although recent studies have characterized the
convergence rate for several such popular algorithms, it is still unclear how much fur-
ther these convergence rates can be improved. In this paper, we address this fundamen-
tal question from two perspectives. First, we provide the first-known lower complexity

~ T2 ~
bounds of Q( L“yz”;y) and Q(ﬁ min{k,, %}) respectively for strongly-convex-strongly-
x Yy <

convex and convex-strongly-convex bilevel optimizations. Second, we propose an acceler-
ated bilevel optimizer named AccBiO, for which we provide the first-known complexity
bounds without the gradient boundedness assumption (which was made in existing analy-
ses) under the two aforementioned geometries. We also provide significantly tighter upper
bounds than the existing complexity when the bounded gradient assumption does hold. We
show that AccBiO achieves the optimal results (i.e., the upper and lower bounds match
up to logarithmic factors) when the inner-level problem takes a quadratic form with a
constant-level condition number. Interestingly, our lower bounds under both geometries
are larger than the corresponding optimal complexities of minimax optimization, estab-
lishing that bilevel optimization is provably more challenging than minimax optimization.
Our theoretical results are validated by numerical experiments.

Keywords: Bilevel optimization, lower bounds, accelerated algorithms, computational
complexity, convergence rate, optimality.

1. Introduction

Bilevel optimization was first introduced by Bracken and McGill (1973), and since then has
been studied for decades (Hansen et al., 1992; Shi et al., 2005; Moore, 2010). Recently,
bilevel optimization has attracted growing interests due to its important role in various
machine learning applications including meta-learning (Franceschi et al., 2018; Rajeswaran
et al., 2019), hyperparameter optimization (Franceschi et al., 2018; Feurer and Hutter,
2019), imitation learning (Arora et al., 2020), and network architecture search (Liu et al.,
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2019; He et al., 2020). A general formulation of unconstrained bilevel optimization can be
written as follows.

min &(z) := f(z,y™(2)), s.t. y"(z) = argming(z,y), (1)
z yERY

where f and g are continuously differentiable functions. The problem eq. (1) contains two
optimization procedures: at the inner level we search y*(z) as the minimizer of g(z,y) with
respect to (w.r.t.) y given z, and at the outer level we minimize the objective function ®(x)
w.r.t. x, which includes the compositional dependence on z via y*(z).

Most theoretical studies of bilevel optimization algorithms have focused on the asymp-
totic analysis without the convergence rate characterization. For example, Franceschi et al.
(2018); Shaban et al. (2019) established the asymptotic convergence for gradient-based
approaches when there is one single solution for the inner-level problem, and Liu et al.
(2020); Li et al. (2020) extended the analysis to the setting where the inner-level problem
allows multiple solutions. The finite-time analysis that characterizes the convergence rate
of bilevel optimization algorithms is rather limited except a few studies recently. Grazzi
et al. (2020) provided the iteration complexity of two dominant types of strategies, i.e.,
approximate implicit differentiation (AID) and iterative differentiation (ITD), for approxi-
mating the hypergradient V®(x), but did not characterize the finite-time convergence for
the entire execution of algorithms. Ghadimi and Wang (2018) proposed an AID-based
bilevel approximation (BA) algorithm as well as an accelerated variant ABA, and analyzed
their finite-time complexities under different loss geometries. In particular, the complexity
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upper bounds of BA and ABA are given by O (U L

7ypyy) nd (9(7”[)”) for the strongly-
HE R ok
convex-strongly-convex settmg where ®(-) is i -strongly-convex and g(z,-) is p,-strongly-
1 25

convex, (9( 5 ) and (9( 075) for the convex- strongly convex setting, and (9( 125) for

the nonconvex-strongly-convex setting, where U, Lmy and p,, are Lipschitz parameters of
objective functions (see Section 2.1). Ji et al. (2021) further improved the bound for the

nonconvex-strongly-convex setting to O(?)

In this paper, we address several open and important questions about bilevel optimiza-
tion. We first observe that the existing complexity results on bilevel optimization are much
worse than those on minimax optimization, which is a special case of bilevel optimization
with f(x,y) = g(z,y). For example, for the convex-strongly-convex case, it was shown
in Lin et al. (2020) that the optimal complexity for minimax optimization is given by

~ 0.5 6.75

O(’:gﬁ), which is much smaller than the best known (’)( 075) for bilevel optimization.
Similar observations hold for the strongly-convex-strongly-convex setting. Therefore, one
fundamental question arises.

1. What is the performance limit of bilevel optimization in terms of computational com-
plexity? Whether bilevel optimization is provably more challenging (i.e., requires more
computations) than minimaz optimization?

Furthermore, existing analyses reply on a strong assumption on the boundedness of the
outer-level gradient V, f(z,-)! to guarantee that the smoothness parameter of ®(-) and the

1. Grazzi et al. (2020) assume that the inner-problem solution y*(z) is uniformly bounded for all z so that
Vyf(z,y*(x)) is bounded.
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hyperparameter estimation error are bounded as the algorithm runs. Then the following
question needs to be addressed.

2. Can we design a new bilevel optimization algorithm, which provably converges with-

out the gradient boundedness? If so, whether such an algorithm achieves the optimal
computational complexity?

In addition, even when the boundedness assumption holds, existing complexity bounds

show pessimistic complexity dependences on the condition numbers, e.g., O<ﬁ2'75) for the

convex-strongly-convex case. Then, the following question arises.

3. Under the bounded gradient assumption, can we provide new upper bounds with tighter

complezity dependences on the condition numbers for strongly-convez-strongly-convex
and convex-strongly-convex bilevel optimizations?

In this paper, we provide affirmative answers to the above questions.

1.1 Summary of Contributions

Our main contributions lie in developing several new results for bilevel optimization, includ-
ing the first-known lower bounds on the computational complexity, a new convergence analy-
sis without the gradient boundedness assumption, and significantly tighter upper bounds for
bilevel optimization under different geometries. Our upper bounds meet the lower bounds
in various cases, suggesting the tightness of the lower bounds and the optimality of the
proposed algorithms. We summarize our results as follows.

L}j’i“’) for solving the strongly-convex-
strongly-convex bilevel optimization. We then propose a new accelerated bilevel opti-
mizer named AccBiO. In contrast to existing bilevel optimizers, we show that AccBiO
converges to the e-accurate solution without the requirement on the boundedness of the

gradient V, f(z,-) for any . In particular, Table 1 shows that AccBiO achieves an upper

complexity bound of O LyL%%,Ly + L”‘p” LGr* + MFT . When the inner-
Ha Iy o Ha iy

level function g(z,y) takes the quadratic form as g(z,y) = y"Hy + 27 Jy + by + h(x),

we further improve the upper bounds to 5( %) For such a quadratic subclass

Py

e We provide the first-known lower bound of ﬁ(

of bilevel problems with Zy = O(uy), our upper bound matches the lower bound up to
logarithmic factors, suggesting that AccBiO is near-optimal. Technically, our analysis
of the lower bound involves careful construction of quadratic f and g functions with a
properly structured bilinear term, as well as novel characterization of subspaces of iter-
ates for updating x and y. For upper bounds, our analysis controls the finiteness of all
iterates xp, k = 0,.... as the algorithm runs via an induction proof to ensure that the
hypergradient estimation error will not explode after the acceleration steps.

We next provide lower and upper bounds for solving convex-strongly-convex bilevel op-
Lyzgyzy
ews

+
1/ ””yp““’ v Gr 4/ ””ypey:L oLy F* , which is further improved to (9(\/ LoLs L ) for the quadratic
Y

timization. As shown in Table 1, AccBiO achieves an upper bound of (5(
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Table 1: Comparison of computational complexities for finding an e-approximate point
without the gradient boundedness assumption. All listed results are from
this paper, as all existing results were developed under the gradient bounded-
ness condition, which we compare in Table 2. The complexity is measured by
7(ny + ng) + ng (Theorem 3), where ng,ny,ny are the numbers of gradients,
Jacobian- and Hessian-vector products, and 7 is a universal constant. In the ‘ref-
erences’ column, quadratic g(x,y) means that g takes a quadratic form as g(x,y) =
yI'Hy + 27 Jy + b7y + h(x) for the constant matrices H, J and a constant vector b.
‘LowerB’ represents ‘lower bound’. In the ‘computational complexity’ column, L,,

Ly, Lyy, pzy and py, are the Lipschitz parameters of objective functions as shown
1

in Section 2.1. Gr* = W, and Fr* = (%(@(0) —®(z")) + Hx*||2+fn) ,
Gr* and Fr* take the same form as Gr* and Fr* but with x*, f, ®, u, replaced
by z*, f, ® and & (see Section 4.3 for details). The lower bounds hold for both the
general and quadratic g(z,y) cases. By ‘L, = ©(p,)’, we mean that there exists

universal constants C1,C; > 0 that is independent of p, s.t. Cipy < L, < Copy.

Types References Computational Complexity
AccBi Th %) \/Lyziyzy \/Ziypmyiy * \/Zgypyyeyzy r*
Strongly- ccBiO (Theorem ?L (9( T m ~Gr~+ e )
~ 2
Convex- AccBiO (quadratic g, Coro 10) 0<\/Lszy3Ly>
Strongly- fh 13
Convex LowerB (Theorem 4) Q (\ / L;_%)
Py
AccBiO ( Theorem 11) 6(\/%?5‘5@, + \/Ziy;ﬁyzy Gr* + \/Ly;}j;:yiy f:)
Convex- ) . N
Strongly- AccBiO (quadratic g, Coro 12) (f)( %>
Convex _ z
LowerB (Coro 7, Ly = ©(uy)) Q( —Z’zed)
LowerB (Coro 8, L, = ©(1)) Q(\/Lg min{ry, \/L:S})

g(z,y). For such a quadratic case with Ey = O(jy), our upper bound matches the lower
bound up to logarithmic factors, suggesting the optimality of AccBiO. Technically, the
analysis of the lower bound is different from that for the strongly-convex ®(-), and ex-
ploits the structures of different powers of an unnormalized graph Laplacian matrix Z.

e Furthermore, when the gradient V, f(z,-) is bounded, as assumed by existing studies,
we provide new upper bounds with significantly tighter dependence on the condition

numbers. For example, as shown in Table 2, our upper bounds outperform the best
4.75

K.
known result by an order of 2 for the convex-strongly-convex case.

e To compare between bilevel optimization and minimax optimization, for the strongly-
convex-strongly-convex case, our lower bound is larger than the optimal complexity
for the same type of minimax optimization by a factor of ,/r,. Similar observation
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Table 2: Comparison of computational complexities for finding an e-approximate point
with the gradient boundedness assumption. U is the gradient bound.

Types References Computational Complexity
o B ~ ULi, ey, Lo
Strongly-Convex- 7BA(Ghad1ml and Wangl 2018) O~< max{ u%u‘;‘ ’ “25 })
Strongly-Conconvex ABA (Ghadimi and Wang, 2018) O ( max { s Ly })
AccBiO-BG (this paper, Theorem 13) Oy Forpte)
Ty
- — TT.25
BA (Ghadimi and Wang, 2018) O (%= )
Convex- — - = €b.75
Strongly-Convex ABA (Ghadimi and Wang, 2018) (’)(53.75 )
AccBiO-BG (this paper, Theorem 14) 6( %)
Y

holds for the convex-strongly-convex case. This establishes that bilevel optimization is
fundamentally more challenging than minimax optimization.

1.2 Related Works

The studies of bilevel optimization problems and algorithms can be dated back to Bracken
and McGill (1973), and since then, different types of approaches have been proposed. Earlier
approaches in Aiyoshi and Shimizu (1984); Edmunds and Bard (1991); Al-Khayyal et al.
(1992); Hansen et al. (1992); Shi et al. (2005); Lv et al. (2007); Moore (2010) reduced
the bilevel problem to a single-level optimization problem using the Karush-Kuhn-Tucker
(KKT) conditions or penalty function methods. In comparison, gradient-based approaches
are more attractive due to their efficiency and effectiveness. Such a type of approaches
estimate the hypergradient V®(z) for iterative updates, and are generally divided into
AID- and ITD-based categories. ITD-based approaches (Maclaurin et al., 2015; Franceschi
et al., 2017; Finn et al., 2017; Grazzi et al., 2020) estimate the hypergradient V®(z) in either
a reverse (automatic differentiation) or forward manner. AID-based approaches (Domke,
2012; Pedregosa, 2016; Grazzi et al., 2020; Ji et al., 2021) estimate the hypergradient via
implicit differentiation.

Theoretically, bilevel optimization has been studied via both the asymptotic and finite-
time (non-asymptotic) analysis. Franceschi et al. (2018) characterized the asymptotic con-
vergence of a backpropagation-based approach as one of ITD-based algorithms by assuming
the inner-level problem is strongly convex. Shaban et al. (2019) provided a similar analysis
for a truncated backpropagation scheme. Liu et al. (2020); Li et al. (2020); Sow et al.
(2022) analyzed the asymptotic performance of bilevel approaches when the inner-level
problem is convex. The finite-time complexity analysis for bilevel optimization has also
been explored. In particular, Ghadimi and Wang (2018) provided a finite-time conver-
gence analysis for an AID-based algorithm under two different loss geometries, where ®(-)
is strongly convex, convex or nonconvex, and g(z,-) is strongly convex. Ji et al. (2021,
2022) provided an improved finite-time analysis for AID- and ITD-based algorithms under
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the nonconvex-strongly-convex geometry. In this paper, we provide the first-known lower
bounds on complexity as well as tighter upper bounds under these two geometries.

When the objective functions can be expressed in an expected or finite-time form,
Ghadimi and Wang (2018); Ji et al. (2021); Hong et al. (2020) developed stochastic bilevel
algorithms and provided the finite-time analysis. In particular, Ji et al. (2021) proposed a
SGD type of bilevel optimization algorithm named stocBiO with a sample efficient hyper-
gradient estimator. Since then, there have been a few subsequent studies on accelerating
SGD-type bilevel optimization via momentum-based variance reduction Chen et al. (2021);
Guo et al. (2021); Khanduri et al. (2021); Yang et al. (2021); Huang and Huang (2021). For
example, Guo et al. 2021 proposed a single-loop algorithm SEMA based on the momentum-
based technique introduced by Cutkosky and Orabona 2019. Chen et al. 2021 proposed a
single-loop method named STABLE by using a similar momentum scheme for the Hessian
updates. Yang et al. 2021 improved the sample complexity of stocBiO via both single-loop
and double-loop variance reduction. While the stochastic setting is not within the scope of
this paper, the accelerating algorithms and lower bounds developed here can be extended
to the stochastic setting.

Bilevel optimization has been applied to meta-learning and led to various algorithms such
as model-agnostic meta-learning (MAML) (Finn et al., 2017), implicit MAML (iMAML) (Ra-
jeswaran et al., 2019), and almost no inner loop (ANIL) (Raghu et al., 2019). Theoretically,
Rajeswaran et al. (2019) analyzed the complexity of iMAML via implicit differentiation
under the strongly-convex setting. Ji et al. (2020b); Fallah et al. (2020) characterized the
convergence of MAML under the nonconvex function geometry. Ji et al. (2020a) analyzed
the convergence and complexity of ANIL with either strongly-convex or nonconvex inner-
level geometries.

Bilevel optimization has been applied to study various machine learning problems. For
example, bilevel optimization has exhibited great effectiveness in hyperparameter opti-
mization, and received tremendous attention recently in automatic machine learning (au-
toML) (Okuno et al., 2018; Yu and Zhu, 2020; Ji and Liang, 2018). A variety of bilevel
optimization algorithms have been proposed for this area, which include but not limited to
AID-based (Pedregosa, 2016; Franceschi et al., 2018), ITD-based (Franceschi et al., 2018;
Shaban et al., 2019; Grazzi et al., 2020), self-tuning network based (Mackay et al., 2018; Bae
and Grosse, 2020), penalty-based (Mehra and Hamm, 2019; Sinha et al., 2020; Liu et al.,
2021), and proximal approximation based (Jenni and Favaro, 2018) approaches. Bilevel
optimization has also been exploited to improve the search efficiency for neural architecture
search (NAS) (Liu et al., 2019; Xie et al., 2018; He et al., 2020). For example, Liu et al.
(2019) proposed a continuous relaxation of the discrete architecture representation, and
tremendously accelerated the architecture search via a gradient-based bilevel optimization
method named DARTS. Xie et al. (2018) further proposed a new stochastic reformulation
of NAS coupled with a sampling process to address the bias issue of DARTS. He et al.
(2020) reformulated the bilevel objective function of NAS into a mixed-level optimization
procedure, and proposed an efficient MiLeNAS method with a lower validation error. We
anticipate that the proposed acceleration schemes will be useful for the aforementioned
applications.
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2. Preliminaries on Bilevel Optimization

2.1 Bilevel Problem Class

In this section, we introduce the problem class we are interested in. First, we suppose
functions f(z,y) and g(x,y) satisfy the following smoothness property.

Assumption 1 The outer-level function f satisfies, for Va1, xo,x € RP and y1,y2,y € RY,
there exist constants Ly, Lyy, Ly > 0 such that

IVaf(z1,y) = Vaf (@2, y)|| <Lallz1 — x2ll, [[Vaf(@,y1) = Vaf (2,92)|| < Layllyr — 2|l
IVyf(r1,y) = Vyf (e, y)|| SLayllvr — 22|, [Vyf(z,91) — Vyf(z,92)ll < Lyllyr — vl (2)

The inner-level function g satisfies that, there exist Ewy,iy > 0 such that

IVyg(x1,y) — Vyg(ao, y)|| < Layllar — z2|l, |Vya(z,y1) — Vyg(z, y2)|| < Lyllyr — ). (3)

The hypergradient V®(z) plays an important role for designing bilevel optimization algo-
rithms. The computation of V®(z) involves Jacobians V,V,g(z,y) and Hessians Vz g(z,y).
In this paper, we are interested in the following inner-level problem with general Lipschitz
continuous Jacobians and Hessians, as adopted by Ghadimi and Wang (2018); Ji et al.
(2021); Hong et al. (2020). For notational convenience, let z := (x,y) denote both vari-
ables.

Assumption 2 There exist constants pyy, pyy > 0 such that for any z1 € RP x R%, 25 €
RP x RY,

IV2Vy9(21) = VaVyg(22)[l < payllzr — 22, [V59(21) = Vig(za)ll < pyyller — 22l (4)
In this paper, we study the following two classes of bilevel optimization problems.

Definition 1 (Bilevel Problem Classes) Suppose f and g satisfy Assumptions 1, 2. We
define the following two classes of bilevel problems under different geometries.

e Strongly-convex-strongly-convex class Fycsc @ O(+) is py-strongly-convex and g(z, )
is fuy-strongly-convex.

e Convex-strongly-convex class F,. : (-) is convex and g(x,-) is pi,-strongly-convez.

In addition, assume that there exists a constant B > 0 such that ||z*|| = B, where
x* € argming gy, P().

A simple but important subclass of the bilevel problem class in Theorem 1 includes the
following quadratic inner-level functions g(x,y).

1
(Quadratic g subclass:) g(z,y) = inHy + 2T Jy +bTy + h(x), (5)

where the Hessian H and the Jacobian J satisfy H < zyI and J < Ewyl for Vo € RP and
Vy € RY. Note that the above quadratic subclass also covers a large collection of applications
such as few-shot meta-learning with shared embedding model (Bertinetto et al., 2018) and
biased regularization in hyperparameter optimization (Grazzi et al., 2020). Further note
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that it is possible to extend the constant coupling matrix H of the quadratic subclass to the
more general matrix H (z) that is Lipschitz continuous, i.e., ||H (z1) — H (z2)|| < Lgl|z1—x2]]
for a constant L.

Another convex-strongly-convex example of practical interest is the fair resource alloca-
tion problem over communication networks (Srikant and Ying, 2013). Consider a network
with n users/devices. Each user i is associated with a convex cost function C(x;) (or U(x;)
for utility function U), where z; is the resource (e.g., the package transmission rate). In the
network implementation, C(z;) is fabricated to be a simple function, e.g., a-fairness. Let
x = [x1, 22, ...,4,]7. Then, the lower-level strongly-convex problem is given by

*(\) = argmaxg T, \) ZC’ x;) %HxHZ, (6)

where A|z||? is used for capacity and traffic control. However, the underlying true network
cost function can be more complicated, e.g., the aggregation loss C(z) = Y i | 1 C/(x;).
Then, the upper-level problem is to find the best regularization constant A that minimizes
the true cost

m)z\ix C’ Z C

We next justify that the total function C(z*()\)) is convex w.r.t. A. Using the implicit
differentiation and the optimality condition of =] , it can be shown that

VO(x}) + Mzt =0

*

(V20 + 025

oA T

which, in conjunction with the second order derivative of the total upper-level function

7826(§§;(>‘)) =3, (TiVQC(:U;k)( ) +7,VC(x ) ) yields
PC(z*(\) & driNe  m(VC(x))?
DN 2_: <”VQC( )< 8)\> TNVECE) + A)) 20.

This implies that the total objective function C(z*()\)) is convex w.r.t. A. Besides, there are
some quasiconvex-strongly-convex and convex-strongly-convex examples in batch selection
problems for model fairness (Roh et al., 2021).

2.2 Algorithm Class for Bilevel Optimization

Compared to minimization and minimax problems, the most different and challenging
component of bilevel optimization lies in the computation of the hypergradient V®(-).
In specific, when functions f and g are continuously twice differentiable, it has been shown
in Foo et al. (2008) that V®(-) takes the form of

V() =V f(z,y* () = VaVyg(z,y* () [Vig(z, y* ()] 7V fa, 5" (2)). (7)
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In practice, exactly calculating the Hessian inverse (V2 ()~ !in eq. (7) is computationally
infeasible, and hence two types of hypergradient estimation approaches named AID and
ITD have been proposed, where only efficient Hessian- and Jacobian-vector products
need to be computed. We present AID-based bilevel optimization algorithms as follows,
and the introduction of ITD-based methods can be found in Appendix A.

Example 1 (AID-based Bilevel Algorithms) (Domke, 2012; Pedregosa, 2016; Grazzi
et al., 2020; Ji et al., 2021) Such a class of algorithms use AID-based approaches for hy-
pergradient computation, and take the following updates.

For each outer iteration m =0, ....,Q — 1
e Update variable y using gradient decent (GD) or accelerated gradient descent (AGD)

(GD:) by =yt = nVyg(@m,yh ')t =1,...,N
(AGD:) yb, = 21t = 0Vyg(m, 21 1),

1
( \ﬁ+1>yt \/\/@4—1 b=l N (8)

where Ky = Ey/uy denotes the condition number of the inner-level function g(z,-).

e Update x via Tpyy1 = Ty — BG o, where Gy, is constructed via AID and takes the form of

Gp = vmf(xn% ynj\i) - vzvyg(xma y%)vqf‘m (9)
where vector US s obtained by running S steps of GD (wzth mztzalzzatzon 00 =0) or ac-
celerated gradient methods (e.g., heavy-ball method with v9, = v} = 0) to solve a quadratic
programming

. 1
mvln Q(U) §UTvzg(xm7 ym)v - vTvyf(xm’ ym) (10)

We next verify that Example 1 belongs to the algorithm class defined in Theorem 2. For
the case when S-steps GD with initialization O is applied to solve the quadratic program
in eq. (10), simple telescoping yields

Z I aVQg xm,ym))tvyf(xm,y%),
t=0

which, incorporated into eq. (9), implies that G, falls into the span subspaces in eq. (13),
and hence all updates fall into the subspaces Hk Hk k = 0,..., K defined in Theorem 2.
For the case when heavy—ball method, i.e., vift = fut — ntVQ( L)+ 0c (v, — ol b, with
initialization v2, = vl = 0 is applied to eq. (10), expressing the updates via a dynamic

system perspective yields

’US S S-1 o T N
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Combining v in eq. (11) with eq. (9), we can see that the resulting G,, falls into the span
subspaces in eq. (13), and hence this case still belongs to the algorithm class in Theorem 2.
Note that the algorithm class considered in Theorem 2 also includes single-loop bilevel
optimization algorithms, e.g., by setting N = 1 in Example 1.

We next introduce a general hypergradient-based algorithm class, which includes popular
AID-based (given above) and ITD-based (in Appendix A) bilevel optimization algorithms.

Definition 2 (Hypergradient-Based Algorithm Class) Suppose there are totally K
iterations and x is updated for Q) times at iterations indexed by s;, 1 = 1,...,Q — 1 with
50 < ... < sg—1 < K. Note that Q) is an arbitrary positive integer in 0, ..., K and s;,i =
1,...,Q — 1 are Q arbitrary distinct integers in 0, ..., K. The iterates {(xg, Yr) }r=o0,.. Kk are
generated according to (xg,yx) € H’;,Hly“, where the linear subspaces H];,H’;,k =0,...K
with H) = HY) = {0} are given as follows.

HY™ = Span {y;, V,9(F:, 5:), V& € Mo, Yy, 5 € Hi 1 <i < k}. (12)

For x, we have, for allm=0,...,Q0 — 1

t
H;Snm = Span{xla :t?f(%za gl) \% vyg 7,7 yz H - QVQ 7,]? yzg))vyf(i‘ia Ql)a

t=0,...T,Vz;, &, 2! EH;,VyZ,yZ,y” €M 1<i<s,—1,Ya ER,TGN}
Hy =Hm Vs <n < sy — 1 with sg = K + 1. (13)

We note that this algorithm class in Theorem 2 can be enlarged by replacing V, f(z,y) in
eq. (13) with Span(y1, Vyg(22,y2), Vy f(23,y3)), where y1, 2, y2, 3, y3 can be any points in
previous iterations.

Further note that in the algorithm class in Theorem 2, x can be updated at any iteration
due to the arbitrary choices of @, s;,7 = 1,...,Q — 1, and the hypergradient estimate can
be constructed using any combination of points in the historical search space (which holds
similarly for y). Moreover, this algorithm class allows to update = and y at the same time
or alternatively, and hence include both single- and double-loop bilevel optimization algo-
rithms. Note that the above hypergradient-based algorithm class include popular examples
such as HOAG (Pedregosa, 2016), AID-FP (Grazzi et al., 2020), reverse (Franceschi et al.,
2017), K-RMD (Shaban et al., 2019), AID-BiO and ITD-BiO (Ji et al., 2021).

2.3 Complexity Measures

We introduce the criterion for measuring the computational complexity of bilevel opti-
mization algorithms. Note that the updates of x and y of bilevel algorithms involve com-
puting gradients, Jacobian- and Hessian-vector products. In practice, it has been shown
in Griewank (1993); Rajeswaran et al. (2019) that the time and memory cost for computing
a Hessian-vector product V2 f(-)v (similarly for a Jacobian-vector product) via automatic
differentiation (e.g., the widely-used reverse mode in PyTorch or TensorFlow) is no more
than a (universal) constant order (e.g., usually 2-5 times) over the cost for computing gra-
dient V f(-). For this reason, we take the following complexity measures.

10
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Definition 3 (Complexity Measure) The total complexity Cpn(A,€) of a bilevel opti-
mization algorithm A to find a point T such that the suboptimality gap f(z)—min, f(z) <€
is given by Cran(A,€) = 7(ng + ng) + ng, where ny,nyg and ng are the total numbers of
Jacobian- and Hessian-vector product, and gradient evaluations, and 7 > 0 is a universal
constant. Similarly, we define Cgraq(A,€) = T(ng + nu) + ng as the complexity to find a
point T such that the gradient norm |V f(z)|| < e.

3. Lower Bounds for Bilevel Optimization

3.1 Strongly-Convex-Strongly-Convex Bilevel Optimization

We first study the case when ®(-) is p,-strongly-convex and the inner-level function g(z, -)
is p1,-strongly-convex. We present our lower bound result for this case as below.

Theorem 4 Let M = K + QT + Q + 2 with K,T,Q given by Theorem 2. There exists a
problem instance in Fgese defined in Theorem 1 with dimensions p = q = d as in eq. (40)
such that for this problem, any output =¥ belonging to the subspace ”Hf, i.e., generated by
any algorithm in the hypergradient-based algorithm class defined in Theorem 2, satisfies

(I)(QS‘K)—(I)(J}*) :Q<(I)($0)_q)(x*)r2M)’ (14)

Ry

1
where x* = arg min,cpa ®(z) and the parameter r satisfies 1— <%+ §+ %) <r <1 with
8piz i

fgivenbyéZnyy-i— Lo

i — %. To achieve ®(z™) — ®(2*) < ¢, the total complexity
Crun(A, €) satisfies

L,L2 B
Cfun(-A, 6) = Q( My LYy IOg (I)(‘TO) (p(l' ))7

where K, = i—j 1s the condition number for the total objective function.

Note that the inner-level function g(x,y) in our constructed worst-case instance takes the
same quadratic form as in eq. (5) so that the lower bound in Theorem 4 also applies to the
quadratic g subclass. We provide a proof sketch of Theorem 4 as follows, and present the
complete proof in Appendix B.

Proof Sketch of Theorem 4

The proof of Theorem 4 is divided into four main steps: 1) constructing a worst-case instance
(f,9) € Fscse; 2) characterizing the optimal point z* = argmin,cge ®(x); 3) characterizing
the subspaces HX, ”Hf ; and 4) lower-bounding the convergence rate and complexity.

Step 1 (construct a worse-case instance): We first construct the following instance
functions f and g.

1 o L L L
fla,y) = §$T(aZQ + pe D)z — ~£$TZ3y + %wTZy + f’\lyll2 + Eibey,
Yy xy

11
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1 I
g(z,y) = §yT(/BZ2 + pyl)y — %xTZy + by, (15)

where o = %, B= %, and the coupling matrices Z, Z2, Z* take the forms of

2 -3 1
1 _11 _21 . -3 6 —4 1
1 -1 1 -4 6 -4 1
7 = ,Z% = 2t = (16)
-1 2 -1 )
1 -1 P 1 -4 6 -4

The above matrices play an important role in developing lower bounds due to their following
zero-chain properties (Nesterov, 2003; Zhang et al., 2019). Let R*? = {z € R|z; =
0 for k+ 1 < < d}, where x; denotes the ith coordinate of the vector z.

Lemma 5 (Zero-Chain Property) For any given vector v € R we have Z%v € RFFL4,

Theorem 5 indicates that if a vector v has nonzero entries only at the first & coordinates,
then multiplying it with a matrix Z2 has at most one more nonzero entry at position k + 1.
We demonstrate the validity of the constructed instance by showing that f and g in eq. (15)
satisfy Assumptions 1 and 2, and ®(x) is u,-strongly-convex. The proof of these statements
can be found in Step 1 in Appendix B.

Step 2 (characterize the minimizer z*): We show that the unique minimizer x* satisfies
the following equation

Z4x* + \Z2%x* + T2t = yZb, (17)

where A = 0(1) and vy = 0(1), 7 = @(uxuz) (see eq. (33) for its complete form). We choose
b in eq. (17) such that (Zb); = 0 for all ¢ > 3, which is feasible because we show that Z is
invertible. Using the structure of Z in eq. (16), we show that there exists a vector Z with
its it" coordinate #; = r* such that

lz* — |l = O(r?), (18)

T2
where 0 < r < 1 satisfies %@(%) Then, based on the above eq. (18), we are able to
Ty

characterize z*, e.g., its norm ||z*||, using its approximate (exponentially close) .
Step 3 (characterize the iterate subspaces): By exploiting the forms of the subspaces
{HE, HEY | defined in Theorem 2, we use the induction to show that

HE C Span{z2E+QT+Q) (zp), ..., Z*(Zb), (Zb)}.
Then, noting that (Zb); = 0 for all ¢+ > 3 and using the zero-chain property of Z2, we have
the t** coordinate of the output 2% to be zero, i.e., (x%); =0, for all t > M + 1.

Step 4 (combine Steps 1,2,3 and characterize the complexity): By choosing d >
maX{QM,M + 1+ log, (m)}, and based on Steps 2 and 3, we have ||z — 2*|| >

12
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lz"=20ll .M \hich, in conjunction with the form of ®(z), yields the result in eq. (14). The

3v2
T2
complexity result then follows because - = @(Ljfff) and from the definition of the
Ty
complexity measure in Theorem 3.
Remark. We note that the introduction of the term -E‘—B:UTZ?’y in f is necessary to obtain
Ty
=~ LyL2 . . - .
the lower bound Q( : :;’). Without such a term, there will be an additional high-order
Ty

term Q(A%z) at the left hand side of eq. (17). Then, following the same steps as in Step 2,
we would obtain a result similar to eq. (18), but with a parameter r satisfying 0 < ﬁ =

@(M) Then, following the same steps as in Steps 3 and 4, the final overall complexity

Ha fy
L Lo . LyL2 . .
Cran(A,€) = Q(%)’ which is not as tight as Q(yi“;y) obtained under the selection in

/’LI/‘Ly
eq. (15).

3.2 Convex-Strongly-Convex Bilevel Optimization

We next characterize the lower complexity bound for the convex-strongly-convex setting,
where ®(-) is convex and the inner-level function g(z,-) is p,-strongly-convex. We state
our main result for this case in the following theorem.

Theorem 6 Let M = K + QT — Q + 3 with K, T,Q given by Theorem 2, and let ' be an
output belonging to the subspace HE | i.e., generated by any algorithm in the hypergradient-
based algorithm class defined in Theorem 2. There exists an instance in Fqs. defined in The-
orem 1 with dimensions p = q = d such that in order to achieve |V®(zX)|| < e, it requires
M > |r*| — 3, where r* is the solution of the equation
A 284 483 4B\  BYL%,L,+ Loi2)?
T —|—’I“ T + 3 + 2 - 4.2 ) (]‘9)
Hy 1y iy 128 €

where f = w and B is given in Theorem 1. The complexity satisfies Cgrad (A, €) = Q(r*).

Note that Theorem 6 uses the gradient norm ||V®(x)|| < e rather than the suboptimality gap
() — ®(x*) as the convergence criteria. This is because for the convex-strongly-convex
case, lower-bounding the suboptimality gap requires the Hessian matrix A in the worst-case
construction of the total objective function ®(z) to have a nice structure, e.g., the solution
of A'z = e1 (e1 has a single non-zero value 1 at the first coordinate) is explicit, where A’
is derived by removing last k£ columns and rows of A. However, in bilevel optimization,
A often contains different powers of the zero-chain matrix Z, and does not have such a
structure. We will leave the lower bound under the suboptimality criteria for the future
study. Note that r* in Theorem 6 has a complicated form. The following two corollaries
simplify the complexity results by considering specific parameter regimes.

Corollary 7 Under the same setting of Theorem 6, consider the case when = ©O(puy).

1 ~ 1
B2(L2,Ly+Lyp?)2
Then, we have Cgrad(A, €) = Q( (Lay y% ) )
Hy€

Corollary 8 Under the same setting of Theorem 6, consider the case when = O(1), i.e.,
at a constant level. Then, we have Cgrad(A,€) = Q(ﬁ min{rx,, \/%}).

13
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The proof sketch of Theorem 6 is provided as follows. The complete proof is provided in
Appendix C.

Proof Sketch of Theorem 6

Step 1(construct the worst-case instance): We construct the instance functions f and
g as follows.

L L
flz,y) = gmwTZ% + é’l!yIIQ,

1 I
g(z,y) = §yT(BZ2 + pyl)y — %xTZy + by, (20)

where 5 = Here, the coupling matrix Z is different from that eq. (16) for the
strongly-convex-strongly-convex case, which takes the form of

Ly—py
T -

It can be verified that Z is invertible and Z? in eq. (21) also satisfies the zero-chain prop-
erty, i.e., Theorem 5. We can further verify that ®(z) is convex and functions f, g satisfy
Assumptions 1 and 2.

Step 2 (characterize the minimizer 2*): Recall that 2* € arg min,cga (). We then
show that x* satisfies the equation

=, 9 ~
L$/82B/~Ly Z4 + (Lyjccy + Lzuy>22) ¥ = Lyﬁxy 7h.

L:rﬂQ 6
Z
( 4 + 2

Let b = %Zb and choose b such that Et = 0 for all £ > 4. Then, by choosing 51,52,33
properly, we derive that x* = %1, where 1 is the all-one vector, and hence ||z*|| = B.

Step 3 (characterize the gradient norm): In this step, we show that for any = whose
last three coordinates are zeros, the gradient norm of V®(z) is lower-bounded. Namely, we
prove that

ZQ L Lz 2\ 2
. 2 BQ( “"”Z . + 4'uy>
min IV (z)||* >

. 22
zER: xy_o=xg_1=24=0 o 8/113614 + 16d,84 + 32d63ﬂy + 32dﬂ2/‘§/ ( )

Step 4 (characterize the iterate subspaces): By exploiting the forms of the subspaces
{HE, M1}/, defined in Theorem 2 and by induction, we show that

HE C Span{z2E+QT=Q)(zp), ..., Z*(Zb), (Zb)}.

14
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Since (Zb); = 0 for all ¢ > 4 and using the zero-chain property of Z2, we have the t**

coordinate of the output z is zero, i.e., (z); = 0, for all t > M + 1, where M =
K+QT —Q+3.

Step 5 (combine Steps 1,2,3,4 and characterize the complexity): Choose d such
that the right hand side of eq. (22) equals € by solving eq. (19). Then, using the results
in Steps 3 and 4, it follows that for any M < d — 3, |[V®(z®)| > e. Thus, to achieve
[V®(x)|| < e, it requires M > d—3 and the complexity result follows as Cgrad (A, €) = Q(M).

4. Accelerated Gradient Method and Upper Bounds for Bilevel
Optimization

In this section, we propose a new bilevel optimization algorithm, and characterize its com-
putational complexity, which serves as new upper bounds for bilevel optimization.

4.1 Accelerated Bilevel Optimization Algorithm: AccBiO

As shown in Algorithm 1, we propose a new accelerated algorithm named AccBiO for
bilevel optimization. At the beginning of each outer iteration, we run N steps of accel-
erated gradient descent (AGD) to get y,iv as an approximate of y; = argmin, 9(zk,y).
Then, based on the inner-level output yév , we construct a hypergradient estimate via
Gr, = Vo f(xr, YY) — Vi Vyg(ag, y )oM | where v is the output of an M-step heavy ball
method with stepsizes 17 and 6 for solving a quadratic problem as shown in line 7. Finally, as
shown in lines 8-9, we update the variables z; and zj using Nesterov’s momentum accelera-
tion scheme (Nesterov et al., 2018) over the estimated hypergradient Gj. Next, we analyze
the convergence and complexity performance of AccBiO for the two bilevel optimization
classes Fycse and Fegse described in Theorem 1.

4.2 Strongly-Convex-Strongly-Convex Bilevel Optimization

In this setting, ®(x) is pz-strongly-convex and g(z, -) is p1,-strongly-convex. The following
theorem provides a performance guarantee for AccBiO. Recall z* = arg min,, ®(x).

Theorem 9 Suppose that (f,g) belong to the strongly-convez-strongly-convex class Fsese in

Theorem 1. Choose the inner iteration number N = é(/iy). Choose stepsizes A = —=—2——
(VEyt+vi)?

and 6 = max{(1 — \/)\,uy)z, (1- \/)\Ey)Q} and M = é(/—@y) for the heavy-ball method. Let

~ T2
Ky = /LTZ be the condition number for the inner-level function g(x,-) and Lo = @(Lm + Lyﬂi%” +

T2 ‘ T3
L%%Wﬂvyf(x*, y*(m*))”—&—%%y%\/f—z(@m) — ®(x*)) + ||z*]|? + #iz) be the smoothness parameter

of the objective ®(-). Then, we have

1
NG

a(z) — 2(at) < (1- =) (®(0) ~ Ba) + B2 a*?) + 5,
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Algorithm 1 Accelerated Bilevel Optimization (AccBiO) Algorithm
1: Input: Initialization zg = zg = yo = 0, parameters A and 6
2: for k=0,1,..., K do
3:  Set yY = 0 as initialization
3 fort=1,...,N do
yi —_ 82_1 o j‘ vyg(xk7 t 1)7 5?@ _ 2\/:1y f+1 t—l'
6: end for Ly vy @
7 Hypergradient computation:
1) Get v,lc” after running M steps of heavy-ball method v,tjl =
with initialization vg = v,i = 0 over

, 1
min Q(v) := 0" Vieg(@r yp v — " Vy f (e, yp)

2
2) Compute V.V, g(zk,yY )vM via automatic differentiation;

vl —AVQ(vh) + (vtfv,tg 1)

3) compute Gy := V. f(zk, Y& ) — VaVyg(zg, yi¥ Jo.
8:  Update zx41 = ) — LG’;C

9:  Update zx41 = (1 RRp AT )Zk+1 ﬁﬁ

Va1
10: end for

where Kk, = % is the condition number for ®(-). To achieve ®(zx) — ®(a*) < €, the complexity

satisfies
L,L L,L2 Z L2, pq .
cfun(A,e):o<\/>y+ v oy y yp yL \/HV o f (@, y* (x)) ||

Lgyl)nyyLy

Lo b5,

=

(Ii@’(o)“I’W*”“*”Q*i) ) @

To the best of our knowledge, our result in Theorem 9 is the first-known upper bound
on the computational complexity for strongly-convex bilevel optimization under only mild
assumptions on the Lipschitz continuity of the first- and second-order derivatives of the
outer- and inner-level functions f,g. As a comparison, existing results in Ghadimi and
Wang (2018); Ji et al. (2021) for bilevel optimization further make a strong assumption
that the gradient norm ||V, f(z,y)| is bounded for all (z,y) € RP x R? to upper-bound
the smoothness parameter Ly, of ®(z;) and the hypergradient estimation error ||Gj —
V&(xy)| at the k™ iteration. This is because Lg, and |Gy — V@(zy)|| turn out to be
increasing with the gradient norm ||V, f(zk, y*(zx))||, for which it is challenging to prove
the boundedness given the theoretical frameworks in Ghadimi and Wang (2018); Ji et al.
(2021) where no results on bounded iterates are established. Our analysis does not require
such a restrictive assumption because we show by induction that the optimality gap ||xx—x*||
is well bounded as the algorithm runs. As a result, we can guarantee the boundedness of
the smoothness parameter Ly, and the error |G, — V®(zy)|| during the entire optimization
process. In Section 5, we further develop tighter upper bounds than existing results under
this additional bounded gradient assumption.
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Based on Theorem 9, we next study the quadratic g subclass, where the inner-level
function g(x,y) takes a quadratic form as in eq. (5). The following corollary provides upper
bounds on the convergence rate and complexity of AccBiO under this case.

Corollary 10 (Quadratic g subclass) Under the same setting of Theorem 9, consider
the quadratic inner-level function g(x,y) in eq. (5), where V,Vyg(-,-) and Vzg(-, -) are con-
~ T2 T
stant. To achieve ®(zx) — ®(x*) < €, the complexity satisfies Ceun (A, €) = (’)( %)
TPy
Theorem 10 shows that for the quadratic g subclass, the complexity upper bound in Theo-
Lyz%yzy
Ha by
case in eq. (23) comes from tighter upper bounds on the smoothness parameter Lg of the
objective function ®(z) and a smaller hypergradient estimation error |Gy — V®(zy)||. In

addition, it can be seen that when the inner-level problem is easy to solve, i.e., L, = C,

rem 9 specializes to 6( ) This improvement over the complexity for the general

Lyz?zy )
papd /7
which matches the lower bound established by Theorem 4 up to logarithmic factors.

for any constant C' > 1 that is independent of p,, the complexity becomes O (

4.3 Convex-Strongly-Convex Bilevel Optimization

We next provide an upper bound for convex-strongly-convex bilevel optimization, where
the function ®(z) is convex. Recall from Theorem 1 that ||z*|| = B for some constant
B > 0, where z* is one minimizer of ®(-). For this case, we construct a strongly-convex-
strongly-convex function Cf() = f(w,y*(m)) by adding a small quadratic regularization to
the outer-level function f(z,y), i.e.,

~ €

flz,y) = flx,y) + ﬁ\\xllz- (24)

Then, we can apply the results in Theorem 9 to 5(:10), and obtain the following theorem.

Theorem 11 Suppose that (f,g) belong to the convex-strongly-conver class Fesc in Theo-
rem 1. Let Lz be the smoothness parameter of function ®(-), which takes the same form
as Lg in Theorem 9 except that Ly, f,x* and ® become L, + 5, f,%* and <AIS, respectively.
Choose M = é(ny) for the heavy-ball method. We consider two widely-used convergence
criterions as follows.

¢ (Suboptimality gap) Choose R = B? in eq. (24), and choose the same parameters
as in Theorem 9 with € and p, being replaced by €/2 and &, respectively. To achieve
O(zg) — ®(z*) <€, the required complexity is at most

/| B2L,12 L B2L2 p., L ~
C A,<o(g—iﬁlﬁ 2 ety i, F G,y
fun(A, ) < 7 R VIV f@, v @)l

BzigypnyyEy (232

®(0) — (7 w12+ 52) ).
" (B(0) - B(@")) + |2 + B2) )

€
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e (Gradient norm) Choose R = B in eq. (24), and choose the same parameters as in
Theorem 9 with € and py being replaced by 62/(4L5 + %ﬁ) and 5, respectively. To achieve

R’
IV®(21)|| < 5e, the required complexity is at most

/| BL,L2,L BL2,psyL -
CornalA,0) <O( (| Ty | PEPR 15 Fe e )|
€Ll 0y
BL3, pyyLyLy

5
ELLy

2B ~ ~ N I
(S2 @) - @) + 13712 +B)").
As far as we know, Theorem 11 is the first convergence result for convex-strongly-convex
bilevel optimization without the bounded gradient assumption. Then, similarly to Theo-
rem 10, we also study the quadratic g(z,y) case where the inner-level functiong(z,y) takes
the quadratic form as given in eq. (5).

Corollary 12 (Quadratic g subclass) Under the same setting of Theorem 11, consider
the quadratic g(x,y) where V;Vyg(-,-) and Vgg(-, -) are constant. Then, we have

e (Suboptimality gap) To achieve ®(zx) — ®(z*) <€, Crun(A, €) = 5(3 %>

e

e (Gradient norm) To achieve ||V®(z)|| < €, we have Cgrada(A, €) = (5( %>

3
epy

It can be seen from Theorem 12 that for the quadratic g subclass, AccBiO achieves a
BLyL2,L,

" ) in term of the gradient norm. For the case
Y

computational complexity of (5(

~ ~ 7.2
where L, = ©(p,), the complexity becomes O( BL;;W ), which matches the lower bound

Y

in Theorem 7 up to logarithmic factors.

4.4 Optimality of Bilevel Optimization and Discussion

We compare the lower and upper bounds and make the following remarks on the optimality
of bilevel optimization and its comparison to minimax optimization.

Optimality of results for quadratic g subclass. We compare the developed lower and
upper bounds and make a few remarks on the optimality of the proposed AccBiO algorithms.
Let us first focus on the quadratic g subclass where g(z,y) takes the quadratic form as in
eq. (5). For the strongly-convex-strongly-convex setting, comparison of Theorem 4 and
Theorem 10 implies that AccBiO achieves the optimal complexity for Ey = O(py), i.e., the
inner-level problem is easy to solve. For the general case, there is still a gap of | /K, between
lower and upper bounds. For the convex-strongly-convex setting, comparison of Theorem 6
and Theorem 12 shows that AccBiO is optimal for Zy = O(py), and there is a gap for the
general case. Such a gap is mainly due to the large smoothness parameter Lg of ®(-). We
note that a similar issue also occurs for minimax optimization, which has been addressed
by Lin et al. (2020) using an accelerated proximal point method for the inner-level problem
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and exploiting Sion’s minimax theorem min, max, f(z,y) = max, min, f(z,y). However,
such an approach is not applicable for bilevel optimization due to the asymmetry of x and
y, e.g., min, f(z,y*(x)) # miny g(z*(y),y). This gap between lower and upper bounds
deserves future efforts.

Optimality of results for general g. We now discuss the optimality of our results
for a more general g whose second-order derivatives are Lipschitz continuous. For the
strongly-convex-strongly-convex setting, it can be seen from the comparison of Theorem 4
and Theorem 9 that there is a gap between the lower and upper bounds. This gap is
because the lower bounds construct the bilinearly coupled worst-case g(x, y) whose Hessians
and Jacobians are constant, rather than generally py,- and pg,-Lipschitz continuous as
considered in the upper bounds. Hence, tighter lower bounds need to be provided for this
setting, which requires more sophisticated worst-case instances with Lipschitz continuous
Hessians V%g(m,y) and Jacobians V,V,g(z,y). For example, it is possible to construct
g(z,y) as g(z,y) = o)y’ Zy — 27 Zy + by, where o(-) : R — R satisfies a certain
Lipschitz property. For example, if ¢ is Lipchitz continuous, simple calculation shows that
L scales at an order of /12. However, it still requires significant efforts to determine the form
of o such that the optimal point of ®(-) and the subspaces H,, H, are easy to characterize
and satisfy the properties outlined in the proof of Theorem 9.

Comparison to minimax optimization. We compare the optimality between minimax
optimization and bilevel optimization. For the strongly-convex-strongly-convex minimax
optimization, Zhang et al. (2019) developed a lower bound of ﬁ(\/m) for minimax opti-
mization, which is achieved by the accelerated proximal point method proposed by Lin et al.
(2020) up to logarithmic factors. For the same type of bilevel optimization, we provide a
lower bound of ﬁ(\/@ﬁy) in Theorem 4, which is larger than that of minimax optimization
by a factor of /K. A similar comparison is also observed for the convex-strongly-convex
bilevel optimization. This establishes that bilevel optimization is fundamentally more chal-
lenging than minimax optimization. This is because bilevel optimization needs to handle
the different structures of the outer- and inner-level functions f and g (e.g., second-order
derivatives in the hypergradient), whereas for minimax optimization, the fact of f = g sim-
plifies the problem (e.g., no second-order derivatives) and allows more efficient algorithm
designs.

5. Upper Bounds with Gradient Boundedness Assumption

Our study in Section 4 does not make the bounded gradient assumption, which has been
commonly taken in the existing studies (Ghadimi and Wang, 2018; Ji et al., 2021; Hong
et al., 2020; Ji et al., 2020a). In this section, we establish tighter upper bounds than
those in existing works (Ghadimi and Wang, 2018; Ji et al., 2021) under such an additional
assumption.

Assumption 3 (Bounded gradient) There exists a constant U such that for any (', y') €
RP x RY, ||Vy f(2,y)| < U.
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Algorithm 2 Accelerated Bilevel Optimization Method under Bounded Gradient Assump-
tion (AccBiO-BG)

1: Input: Initialization zg = xg = yo = 0, parameters ny, 7x.ak, Bk, A and 6

2: for k=0,...,K do

3. Set T =npxr + (1 — )2k

4: Set y) =y | if k>0 and yo otherwise (warm start)
6: fort=1,..,N do

B 1 L 2,k VEy—1
(AGD) y;&c :St 1 yg(xk7st 1)7 S?@ _ Y t Y yz 1'

kT F k Yk
VEy+1 VEy +1
7:  end for Ly Y Y
8: Hypergradient computation:
1) Get v} after running M steps of heavy-ball method vjt! = vt —AVQ(v}) +0(vE — v )
with initialization v = vi = 0 over

1 ~ ~
(Quadratic programming;:) m;n Q) := fvTV§g(w;€, y o — oIV, f (@, yn );

2
2) Compute Jacobian-vector product V,V,g(Zx, y v} via automatic differentiation;

3) compute hypergradient estimate Gy, := V., f(Zx, v ) — VaVy9(Tk, v oM.
9:  Update zgy1 = 7Tk + (1 — 7))z — BeGr
10: Update zx 11 = T — ax Gy
11: end for

5.1 Accelerated Bilevel Optimization Algorithm: AccBiO-BG

We propose an accelerated algorithm named AccBiO-BG in Algorithm 2 for bilevel optimiza-
tion under the additional bounded gradient assumption. Similarly to AccBiO, AccBiO-BG
first runs N steps of accelerated gradient descent (AGD) at each outer iteration. Note
that AccBiO-BG here adopts a warm start strategy with y,g = y{l 1 so that our analy-
sis does not require the boundedness of y*(x),k = 0..., K and reduces the total com-
putational complexity. Then, AccBiO-BG constructs the hypergradient estimate Gy :=
Vo f @k, vt ) — VuVyg (T, yi JoM following the same steps as in AccBiO. Finally, we update
variables xy, z; via two accelerated gradient steps, where we incorporate a variant (Ghadimi
and Lan, 2016) of Nesterov’s momentum. We use this variant instead of vanilla Nesterov’s
momentum (Nesterov et al., 2018) in Algorithm 1, because the resulting analysis is easier
to handle the warm start strategy, which backpropagates the tracking error [y — y*(zy)||
to previous loops.

5.2 Strongly-Convex-Strongly-Convex Bilevel Optimization
The following theorem provides a theoretical performance guarantee for AccBiO-BG.

Theorem 13 Suppose that (f,g) belong to the strongly-convez-strongly-convex class Fsese
in Theorem 1 and further suppose Assumption § is satisfied. Choose ay, = o < ﬁ, N =

\/TVZZLL, T = Y Oé”z, Br = 4 /ﬁ and N = é(ﬁy); where Lg is the smoothness parameter of

. 2 T \2 ~
O (). Choose stepsizes A = m, 0 =max {(1—/Any)", (1=1/ALy)"} and M = O(ky)
for the heavy-ball method. Then, to achieve ®(zx) — ®(2*) < €, the required complexity
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Ctun (A, €) is at most

U Lgy PyyL
a1y

Crun(A, €) = 6(

)

The proof of Theorem 13 is provided in Appendix J. Theorem 13 shows that the upper bound
Uziypyyzy )

Ha 11

~ T2 T2
the best known O(max { UlLiubuy Ly ) (see eq. (2.10) and (2.60) therein) achieved by the

achieved by our proposed AccBiO-BG algorithm is O( . This bound improves

Bapy 7 pg
accelerated bilevel approximation algorithm (ABA) in Ghadimi and Wang (2018) by a factor
Uziypyy
of O( Ty ).

5.3 Convex-Strongly-Convex Bilevel Optimization

Similarly to Theorem 11, we consider a strongly-convex-strongly-convex function 5() =

f(@,y*(x)) with f(z,y) = f(z,y) + 352 [|=]|?, where B = |lz*| as defined in Theorem 1.

Then, we have the following theorem.

Theorem 14 Suppose that (f,g) belong to the convex-strongly-convex class Fese in Theo-
rem 1 and further suppose Assumption 3 is satisfied. Let Lg be the smoothness parameter of
<AIS(), which takes the same form as Lg in Theorem 15 but with L, being replaced by Ly + %55 -
Choose the same parameter as in Theorem 15 with o = i, N = é(ny), M = é(liy) and
pz = 55z- Then, to achieve ®(zx) — ®(x*) < ¢, the required complexity Crun(A, €) is at most
L?cyﬂwLy)

epy ’

Ctan(A, €) = 5(3

As shown in Theorem 14, our proposed AccBiO-BG algorithm achieves a complexity of

A Zgyl’yy Zy
O ( ey

), which significantly improves the best known result achieved by the ABA
algorithm in Ghadimi and Wang (2018) (see Table 2).

Extension to nonconvex-strongly-convex case. By applying the acceleration scheme
in Algorithm 2 with 7, = 0, = @(ﬁ)n@)k = ﬁ and 7, = k‘i-i-l (following the ABA
method in Ghadimi and Wang (2018)), we can also improve the complexity by a factor
of O(,/ky). In this case, we need the bounded gradient assumption because we cannot
guarantee the boundedness of the iterates under the nonconvex geometry unlike the convex
case.

6. Numerical Experiments

n this section, we conduct experiments to validate our theoretical results. We consider the
following bilevel optimization problem, where the upper and lower functions are given by

1 1
[z, y) = ?UTUQQ«" + 5”2’4”2
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Figure 1: Gradient norm ||[V®(Z)|| v.s. running time (in seconds). Left plot: dimension
d = 30; right plot: dimension d = 50.

1 1
g(@y) = y" (H* + Dy — ca'Vy + by, (25)
where U, H and V' are random matrices with each entry sampled from [0, 1) uniformly at
random. We compare the proposed AccBiO method with two widely-used bilevel benchmark
algorithms AID and ITD in Grazzi et al. (2020); Ji et al. (2021).

Hyperparameter setting. For AID and ITD, we choose their best inner- and outer-loop
learning rates from {10%,i = —6, -5, —4, -3, -2,-1,0,1,2,...,6}. For AccBiO, we choose
the coefficients o and 3 in thg inner-loop acceleration updates y!, = szfl—avyg(a:k, 5?1), st =
1+ B)yk — 53/,';_1 from {10",¢ = —5,...,4,5}. Similarly, we choose the coefficients in the
outer-loop acceleration updates (i.e., line 8-9 in Algorithm 2) from {10%,¢ = —7, —6, ..., 6, 7}.
For ITD, we choose the number N of inner-loop iterations from {5, 10, 15,20}. For AID and
our AccBiO method, we choose N from {5,10,15,20} and the number M of the iterations
for solving the linear system from {5, 10, 15}.

In Figure 1, we plot the gradient norm [|[V®(Z)| v.s. running time (in seconds) over
the problem dimension d = 30 and d = 50, where Z is the output of the algorithm. It can
be seen that our proposed AccBiO has the fastest convergence rate, and AID achieves a
convergence performance similarly to ITD. This validates our theoretical result that AccBiO
achieves a lower computational complexity than non-acceleration methods of ITD and AID.

7. Conclusion and Discussion

In this paper, we provide the first-known lower bounds and new upper bounds with relaxed
assumptions and tighter characterizations for bilevel optimization under various function
geometries. We here discuss the extensions and applications of our results as follows.

Other loss geometries. In this paper, we study two typical loss geometries, i.e., the
strongly-convex-strongly-convex and convex-strongly-convex geometries. It will be inter-
esting to investigate other types of loss landscapes. For example, when the total objective
function ®(x) involves neural networks and is generally nonconvex, new efforts are needed
to address the boundedness of iterates x; as the algorithm runs, e.g., by adding a pro-
jection onto a bounded domain or a regularizer to force such a boundedness. Moreover,
existing convergence rate analysis relies on the strong convexity of the inner problem to
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better capture the inner-level convergence behavior. It is interesting to extend to more gen-
eral geometries that allows more than one unique solution, e.g., convexity or star-convexity,
which, however, requires us to revise the hypergradient form in eq. (7) or explore the con-
vergence under other criterions such as stationarity based on the Moreau envelope (Davis
and Drusvyatskiy, 2019) due to the nonsmoothness of the inner-level solution y*(x) and the
objective function ®(x).

Applications of results. We note that some of our analysis can be applied to other prob-
lem domains such as minimax optimization. For example, our lower-bounding technique
for Theorem 6 can be extended to convex-concave or convex-strongly-concave min-
imax optimization, where the objective function f(x,y) satisfies the general smoothness
property as in eq. (2) with the general smoothness parameters L, Ly, Ly, > 0. The result-
ing lower bound will be different from that in Ouyang and Xu (2019), which considered a
special case with L, = 0 and the convergence is measured in terms of the suboptimality gap
O(®(x) — ®(2*)) rather than the gradient norm ||V®(z)|| considered in this paper. Thus,
such an extension will serve as a new contribution to lower complexity bounds for minimax
optimization.
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Appendix A. ITD-Based Bilevel Algorithms

In this section, we present existing ITD-based bilevel optimization algorithms, and show
that they belong to the hypergradient-based algorithm class we consider in Theorem 2.

Example 2 (ITD-based Bilevel Algorithms) (Maclaurin et al., 2015; Franceschi et al.,
2017; Ji et al., 2021; Grazzi et al., 2020) Such type of algorithms use ITD-based approaches
for hypergradient computation, and take the following updates.

For each outer iteration m =0, ....,Q — 1,

e Update variable y for N times via iterative algorithms (e.g., gradient descent, accelerated
gradient methods).

(Gradient descent:) y' =yb ! —nVyg(xm, vy ), t =1,...,N. (26)

m
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Of(zm 7ern (zm))
ox

o Compute the hypergradient estimate Gy, = via backpropagation. Under the

gradient updates in eq. (26), G, takes the form ofm

N-—1 N-—1
G = Vel @mym) =1 > VaVyg(@myh) [ (I = nVig(@m, v3))Vyf @m,ym)- (27)
=0 j=t+1

A similar form holds for case when updating y with accelerated gradient methods.
e Update x based on G,, via gradient-based iterative methods.

It can be seen from eq. (27) that only Hessian-vector products Vig(wm, yﬁ;@)vj,j =1,.,.N

and Jacobian-vector products V,Vyg(xm, yi'n)vj, Jj =1,...,N are computed, where each v;
is obtained recursively via

vji—1 = — avzg(xm,y%))vj with vy = Vyf(xm,y%).

~~

Hessian-vector product

Appendix B. Proof of Theorem 4

In this section, we provide a complete proof of Theorem 4 under the strongly-convex-
strongly-convex geometry. Note that our construction sets the dimensions of variables x
and y to be the same, i.e., p = ¢ = d. The main proofs are divided into four steps: 1)
constructing the worst-case instance that belongs to the problem class Fgqs. defined in
Theorem 1; 2) characterizing the optimal point 2* = argmin,cra ®(x); 3) characterizing
the subspaces HF, Hly“; and 4) developing lower bounds on the convergence and complexity.

Step 1: Constructing the worst-case instance that satisfies Theorem 1.

In this step, we show that the constructed f,g in eq. (15) satisfy Assumptions 1 and 2,
and ®(x) is p-strongly-convex. It can be seen from eq. (15) that f, g satisfy eq. (2) (3) and
(4) in Assumptions 1 and 2 with arbitrary constants Ly, Ly, Ly, Ly, and pgy = pyy = 0 but

requires L, > (LI_MQI»LZM (which is still at a constant level) due to the introduction
Ty

of the term Zo‘ﬁ 2T Z3%y in f. We note that such a term introduces necessary connection

between f andzyg, and yields a tighter lower bound, as pointed out in the remark at the end
of Section 3.1.
We next show that the overall objective function ®(x) = f(z,y*(x)) is pg-strongly-

convex. According to eq. (15), we have g(z,-) to be pu,-strongly-convex with a single min-

imizer y*(x) = (822 + pyI)_l(Lgy Zz —b), and hence we obtain from eq. (1) that ®(z) is

given by

1 I,
0@) =2 (@2 4 plya = 2227 )7 (22 )

Ty
L. L, L. L,
+ =T Z(BZ 4 iy D) (Tny - b) + 2 4 ) (Tny - b)
xy
Ly (L. T L,
+ 2 (Tny - b) (BZ2 + p, 1) H(BZ2 + py 1)~ (Tny - b). (28)
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Note that Z is symmetric and invertible with Z~! given by

1111
S (29)
o
|

and hence the eigenvalue decomposition of Z can be written as Z = U Diag{ Ay, ..., )\d}UT,
where \; # 0,i = 1,...,d and U is an orthonormal matrix. Then, for any integers i,j > 0,
simple calculation yields

A A A M\ o
7 2 -7 : 1 d T _ 2 —J 7%
ZHBZ? + pyT) —UDlag{(ﬁ)\%_i_'uy)j,..., (6A§+uy)j}U — B2+ p, D)7 Z0. (30)

Using the relationship in eq. (30), we have

1

ixTaZ% :a—fxTZ4(ﬁZ2 + 1)t + %xTZQ(BZ2 + 1)~ ta,
which, in conjunction with eq. (28) and eq. (30), yields

20y + I_/:Unyy 2T 72

Ly
1 (BZ?% + p, 1)t — E—be(ﬁZQ + uy )70

1
®(z) = Spall|® +
2 2y

L, Zwy T 2 —o(Lay 208,17 9 2 1
7(72.@—1)) (BZ2 + p,I) ( 73 b) nyb ZX(BZ2 + uyI)~'b,  (31)

which is p,-strongly-convex.
Step 2: Characterizing z* = arg min_ cpa @(-).

Based on the form of ®(-), we have

Loy L LyLyy (L
VO (x) =(B2% + pyl) e + (Oz,uy + =2 "”y) (BZ2+ iy 1) 2% + =25 ( 7% - Zb)
LoyL LoyLey — LyL2
= (B2us + 0By + Playlay = ) 24 + (2Bptapty + opil + 22 D ) 7%
L,L
+ ,ugguzx - %Zb. (32)
By setting V®(z*) = 0, we have
o Lz L, Zi
B2 + By + C i
A
) -
+ T LyLay 70 ET" (33)
B2 e + By + 5 2B 41z + aBpy + Pegleny’
T b
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where we define A, T,g for notational convenience. The following lemma establishes useful
properties of z* under a specific selection of b.

Lemma 15 Let b be chosen such that b as defined in eq. (33) satisfies by = 24+ A+71)r—
B+ Nr2+r3by=r—1andb, =0,t=3,...d, where 0 < r < 1 is a solution of equation

1— A4+ Nr+6+2X+7)r% — 4+ A +rt=0. (34)

Let & be a vector with each coordinate &; = r*. Then, we have

7T+
& —2¥| < (J;)rd. (35)

Proof Note that the choice of b is achievable because Z is invertible with Z~! given by

1 1 11
Z7 1= 1
1
1

Then, define a vector b with by = Zt fort=1,...,d — 2 and

b1 =r®3 — (4 4+ N)r?2 + (6 + 22 4+ 7)rT ! — (4 + \)rd (34) _ d+1
ba =r% — (4 + Nt + (5 + 20 + ) 3 _,.d (44 A g2, (36)

Then, it can be verified that & satisfies the following equations

2+ A+ 7)E1 — (34 Nag + 23 = by
—(B4+ N1 4 (642X + 7)o — (4+ Nz + &4 = by
Bt — (44 N1 + (642X + T)Ergo — (44 N)dpps + Gpgq = bayg, for 1 <t <d—4
Faog — (44 NZgo+ (6 + 2\ + T)Eg_1 — (44 N)ig = by
Faeo — (A4 NZg1 + (542X + 7)idg = by,

which, in conjunction with the forms of Z2 and Z4 in eq. (16), yields
Z% + \Z%% + 1@ = b.
Noting that Z*z* + \Z2%2* + 12* = Z, we have
rllet - dl < (2 + 0224 7Da® — )] = B b £ (7 + N

where (i) follows from the definition of b in eq. (36). [ |

Step 3: Characterizing subspaces HX and ’Hf
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In this step, we characterize the forms of the subspaces HX and 7—[5 for bilevel optimiza-
tion algorithms considered in Theorem 2. Based on the constructions of f, g in eq. (15), we
have

af L
Vggf(l‘, y) = (QZQ + ,U/acl)x - ngy + %Zy
Yy
L I 9
Vi) =~ gte 4 B g g Ly Zo0y - %ﬁZ%
Ly 2 Lay 2

L L
5 2 Vyg(wy) = B2 + wyl, Vyg(w,y) = (BZ° + py D)y = = *Zx +b,

which, in conjunction with eq. (12) and eq. (13), yields
HY = Span{0}, ..., H3* = Span{Z**~Yp, ..., Z%b, b}
HO = . H2™! = Span{0}, H2° C Span{Z2T+0)(zb), ..., Z%(Zb), (Zb)}. (37)

vayg(:c, y) = -

Repeating the same steps as in eq. (37), it can be verified that
H,9"" C Span{Z2(@1+QT+Q)(zp) ... 7% (Zb), ..., Z*(Zb), (Zb)}. (38)

Recall eq. (13) that HEX = H;°" and sg_; < K. Then, we obtain from eq. (38) that HX
satisfies

HE C Span{z22E+QT+Q) (zp). ..., Z%(Zb), (Zb)}. (39)
Step 4: Characterizing convergence and complexity.

Based on the results in Steps 1 and 2, we are now ready to provide a lower bound on the
convergence rate and complexity of bilevel optimization algorithms. Let M = K+QT+Q+2
and zg = 0, and let the dimension d satisfy

d > max {2M, M +1+log, ( (40)

)
4T+ N1
Recall Theorem 15 that Zb has zeros at all coordinates with ¢ = 3,...,d. Then, based on
the form of subspaces HE in eq. (39) and using the zero-chain property in Theorem 5, we
have 2 has zeros at the coordinates with ¢t = M + 1, ..., d, and hence

d .
X @ M
Z 12l = rM\/r2 4 p20d-M) > \ﬁHx—on, (41)
i=M+1

where (i) follows from eq. (40). Then, based on Theorem 15 and eq. (40), we have
T+ M@ M

-l < T2 < Tar S el (42
where (i) follows from the fact that ||z — xo|| = ||Z|| > r. Combining eq. (41) and eq. (42)
further yields
o a2 o ] 2 ol — T ol = ol (43
V2 2v2 2v2
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In addition, note that

THA L0011
r

1 1
Jo* — | < < g < glElh s gliz =2+ el

which, in conjunction with ||zg — &|| > ||z* — zo|| — ||=* — ||, yields
N 20
lwo = &l = S lla™ = ol (44)
Combining eq. (43) and eq. (44) yields

”.I‘K _l'*H > H.CC _xOH,rM' (45)

3v2

Then, since the objective function ®(x) is p,-strongly-convex, we have ®(zX) — ®(2*) >
be||zf — 2% and ||zg — 2*||? > %(@(mo) — ®(2*)), and hence eq. (45) yields

O(z0) = D(2") om
D(25) — B(a*) = Q( ) 4
(") ~ B(a") Yo (16)
Recall that  is the solution of the equation 1 — (4+X)r+ (6 +2X+7)r? — (4+ \)r3 +rt = 0.
Based on Lemma 4.2 in Zhang et al. (2019), we have

[ S— ) (47)

which, in conjunction with the definitions of A and 7 in eq. (33) and the fact Ly, > 0, yields
the first result eq. (14) in Theorem 4. Then, in order to achieve an e-accurate solution, i.e.,
®(x5) — ®(2*) < e, it requires

log P(z0)—P(z”)

M:K+QT+Q+2:Q<—“Z;)
2log

0 Q( B logw> _ Q< Lyigy log D(xg) — <I>(:c*)>7 (48)

27 €Ky Pt Kg€
where (i) follows from eq. (47). Recall that the complexity measure is given by Cgy, (A, €) =
Q(ny +npg + ng), where the numbers ny, ng of Jacobian- and Hessian-vector products are
given by ny = Q and nyg = QT and the number ng of gradient evaluations is given by
ng = K. Then, the total complexity Crn(A,€) = Q(Q + QT + K), which combined with
eq. (48) implies

LyL%y log O (o) — @(x*))
/"L.Z’:u’y Rz€

Ctan(A, €) = Q(
Then, the proof is complete.
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Appendix C. Proof of Theorem 6

In this section, we provide the proof for Theorem 6 under the convex-strongly-convex geom-
etry. The proof is divided into the following steps: 1) constructing the worst-case instance
that belongs to the convex-strongly-convex problem class Fs. defined in Theorem 1; 2)
characterizing z* € arg min,cpa ®(z); 3) developing the lower bound on the gradient norm
||V®(z)| when the last several coordinates of x are zeros; 4) characterizing the subspaces

HE and HE; and 5) characterizing the convergence and complexity.

Step 1: Constructing the worst-case instance that satisfies Theorem 1.

It can be verified that the constructed f,g in eq. (20) satisfy eq. (2) (3) and (4) in
Assumptions 1 and 2. Then, similarly to the proof of Theorem 4, we have y*(z) = (82 2 4

uyI)_l(Lgy Zz —b) and hence ®(z) = f(z,y*(x)) takes the form of

L Ly (L L
O(x) = %xTZ2m + 7@/( ;y

2

which can be verified to be convex.
Step 2: Characterizing z*.
Note that the gradient V®(x) is given by

L L,L L
VO(r) = ZE 2% + S Z(B2° 4 iy 1) (%Zx - b).

Then, setting V®(z*) = 0 and using eq. (30), we have

4+4

4 2

Let b = %Zb, and we choose b such that Et =0fort=4,..,dand

-~ B /5 2L, L

by =—(>L.f*+ Ly LYY T2
1 JZZ<4 B° 4+ LzBuy + 4 + 4uy>,

~ B L.j B L3

by =—=(—L,3* — , by = —= :
2 ﬁ( b 2 ,uy) 3 Vd 4

where the selection of b is achievable because Z is invertible with Z~! given by

-1
_— -1 -1

-1 -1 -1 -1

30

Zz — b)T(5Z2 + D)2 (ny Zr— b),

T2 2
Lacﬁ25,uy 74 + (Lnyy Lm#y>22>x* _ LyLacy 7.

(50)
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Based on the form of Z2 in eq. (21) and the forms of Z*4, Z6 given by

14 —14 6 —1 ]
5 —4 1 —14 20 —15 6 —1
—4 6 —4 1 6 —15 20 —15 6 —1
1 —4 6 —4 1 -1 6 —15 20 —15 6 —1
7t = . N A . (52)
1 —4 6 -3 —1 6 —15 20 —15 5
1 -3 2 -1 6 —15 19 -9
L -1 5 -9 5 |

B

it can be checked from eq. (50) that x* = \/&1’ where 1 denotes the all-one vector and thus

2] = B.
Step 3: Characterizing lower bound on |[V®(z)|.

Next, we characterize a lower bound on ||V®(z)|| when the last three coordinates of z
are zeros, i.e., ¥y o = 41 = x4 = 0. Let Q = [I;_3,0]" and define € R%~3 such that
T; = x; for i = 1,...,d — 3. Then for any matrix H, HS) is equivalent to removing the last
three columns of H. Then, based on the form of V®(z) in eq. (49), we have

min Vo(2)|? = min_||HQF — (822 + p,I) 20| 53
perig, M2 IVE@)T = min | (B2 + 1y, I)~0]| (53)
where the matrix H is given by
L.32 L3 LyL2,  Lyu2
H=(82%+ p,I)~2 (LBZG+MZ4+<M+L%)Z2>. (54)
4 2 4 4
H
Then using an approach similar to (7) in Carmon et al. (2019), we have
; ~ 2 —272 _ (3T 2 -2 )2
_Inin_ |HOZ — (BZ7 + py D) 20))° = (b" (BZ% + py D) 2)", (55)
where z is the normalized (i.e., ||z = 1) solution of equation (HQ)Tz = 0. Next we
characterize the solution z. Since H = (822 + p,I)"2H, we have
(HQ) 2 = (HQ)T(BZ? + p, )22 = 0. (56)

Based on the definition of H in eq. (54) and the forms of Z2, Z4, Z% in eq. (21) and eq. (52),
we have that the solution z takes the form of z = A\(8Z% + u,I)?h, where X is a factor such
that ||z|| = 1 and h is a vector satisfying hy =t for t = 1,...,d. Based on the definition of
Z?% in eq. (21), we have

¥
no

1l = D) (= 0= 320 i+ 200

1

..
I

¥
no

SA\ (i12)% + 2(d — 1)2pd + 28* + 2d2p + 2(82 + 2B,)?

@
I
—
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2
<A\/3u;‘;(d +1)3 + 481 + 8831, + 86212,

which further implies that

A ! . (57)

\/gugu +1)3 + 441 + 833y + 8622

Then, combining eq. (53), eq. (55) and eq. (57) yields

min _[V(x)|? (b7 (BZ2 + pyI)22)" = (ABTh)? = N2(by + 2by + 3b3)°

TTg—2=Td—1=Td=

@A232<LgyLy+Lm“§>2
4d 4 4

2L Lap2\ 2
B2 ( gjl Y + 1 y)
Spdd(d+1)3 4 16dB* + 32dB3u, + 32d B2

ZQ L Lz 2\ 2
) B (Pt g )

> 58
= 8ugd* + 16dB* + 32d33py, + 32d 5?2 i (58)
where (i) follows from the definition of b in eq. (51), and (ii) follows because d > 3.
Step 4: Characterizing subspaces % and H* .
Based on the constructions of f, g in eq. (20), we have
L:D 2 INJ:):y
fo(l‘?y) = IZ z, Vyf(l',y) = Lyya vayg($ay) = - 9 zZ
2 2 2 zﬂcy
which, in conjunction with eq. (12) and eq. (13), yields
0 _ so __ 2(sp—1 2
H, = Span{0}, ..., H,;? = Span{Z (s0=Dp, ... Z2%, b}
HO = . H2™! = Span{0}, HE = Span{Z2T+0=2)(zp), ..., Z*(Zb), (Zb)}.
Repeating the above procedure and noting that sg_1 < K yield
HE = 343971 = Span{z2(5e-1+QT=Q=V(zp) . Z%(Zb), (Zb)}
C Span{Z2K+QT=Q)(zp). ..., Z*(Zb), (Zb)}. (59)
Step 5: Characterizing convergence and complexity.
Let M = K+ QT — @ + 3 and consider the following equation
2(T72 2)?
. opt ap agey BRI+ Lod)
LA A Bl e R 1.9 ) (60)
Py Hy My 12841,€
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which has a solution denoted as 7*. We choose d = |r*|. Then, based on eq. (58), we have

) B2< zyly + LﬂZ‘i)Q
i Vo >
pirg 0, o IVE@IT 2 Bud(r*)A + 16751 + 321 B3, + 32 B21:2

=é (61)

Then, to achieve ||V®(zX)|| < e, it requires that M > d — 3. Otherwise (i.e., if M < d—3),
based on eq. (59) and the fact that Zb has nonzeros only at the first three coordinates, we
have ¥ has zeros at the last three coordinates, and hence eq. (61) yields ||[V®(z®)| > e,
which leads to a contradiction. Therefore, we have M > |r*| — 3.

To characterize the total complexity, using the metric in Theorem 3, we have

Cgrad(A> 6) = Q(Q + QT + K) = Q(M) = Q(T‘*)

Then, the proof is complete.

Appendix D. Proof of Theorem 7

In this case, the condition number &, satisfies x, = % = O(1). Then, it can be verified
Y

that 7* satisfies (r*)3 = 9(2%4 i%g 4%2), and hence it follows from eq. (19) that
Yy Yy Yy

B2(L2, Ly, + Lyp2)?
Corad (A, €) > 1" = Q( Ty Y . Y )
Hy€2

Appendix E. Proof of Theorem 8

In this case, Ly = ©(1). Then, we consider two cases i = Q(e%) and é = O(e2) separately.

< W Nlw

K

Case 1: é Qe ) For this case, we have (264 % %) = O(m) Then, it
follows from eq. (19) that Cgraq(A, €) > 1r* = Q(;}g)

Case 2: é = (9(62 ). For this case, first suppose (r*)% = (9(2!%4—!— 45,3 2 ) and then it

Yy
follows from eq. (19) that r* = Q(e%) On the other hand, if (r*)3 = Q(%ﬁl—ﬁg) 2 ) then
Yy

we obtain from eq. (19) that r* = Q(E'I%) = Q(%), which yields Cgrad(A, €) > r* = Q(%).
Then, combining these two cases finishes the proof.

Appendix F. Proof of Theorem 9

To simplify the notations, we define the following quantities.

M =lly* @) + =2 a2l N = [V, £ 5" @D+ (Lay + 22 ) [l — 27|
'UEJ y
3L, 2
M. =y @) + =2 ¢ = (@(0) = (a%)) + 272 + -
Y Mo Mo
_ k(K LL:):y 2 % %112 €
N =|19, £,y @ DI +3(Lay + 222 ) [ (@(0) = @(@) + a*2+—,  (62)
Y Hea Ha
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where M}, and AV, change with the optimality gap ||z, —z*| at the k'" iteration, and M, and
N, are two positive constants depending on the information of the objective function at the
optimal point x*. We first establish the following lemma to upper-bound the hypergradient
estimation error [|[V®(xy) — Gil|

Lemma 16 Let G, be the hypergradient estimator used in Algorithm 1 at iteration k. Then,
we have

L, + 2L,,L L N
|Gx — VO (x1)|| <t/ L—2 Hy L,+ ==Y 4 Py + ZeyPyy Ni | Mpexp | —
y 2
fhy Ly Hy My 2\ /Fy

@ Viy — 1\ M
iy <\/@+1> M (63)

where the quantities My and N}, are defined in eq. (62).

+

Theorem 16 shows that the estimation error |[V®(zy) — G| is bounded given that the
optimality gap ||z —2*| is bounded. We will show in the proof of Theorem 9 that ||z —z*|| is
bounded as the algorithm runs due to the strongly-convex geometry of the objective function
®(x). In addition, it can be seen that this error decays exponentially with respect to the
number N of inner-level steps and the number M of steps of the heavy-ball method for
solving the linear system in Algorithm 1. Then, to prove the convergence of Algorithm 1,
we set N = M = c,/Fy log(k,) in the proof of Theorem 9, where c is a constant independent
of Ky.

Proof Recall line 7 of Algorithm 1 that

G, := Vaof(zpup)) — vayg(xbyljcv)vljcwv (64)

where v,i\/[ is the M step output of the heavy-ball method for solving

. 1
min Q(v) := 30" Vg(ri yl o — oV, f ().

Recall the smoothness parameter Zy of g(x,-) defined in Assumption 1. Then, based on the
convergence result of the heavy-ball method in Badithela and Seiler (2019) with stepsizes

A= m and 6 = max{(l — \/)\,uy)Q, (1 . \/)\Zy)Q} and noting that 1)2 = v,i =0,

we have
||UIJ<:V[ - vzg(xk7yljcv)_lvyf(xk>yl]cv)”
Ky — 1I\M _
S(” ) (Vg i) T s )|

VR
<Ly (V@— 1 IV f (e, v (z) | (\/@— 1)M

M
)y () — I+

_"Ty VEy +1 Hy VEy 1
SR e gy ARG G Y ATy (65)
Hy Hy Vhy +1
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where y* () = arg min,cgq g(2x,y) and (i) follows because ?H < 1. Then, based on the

forms of Gy and V®(z) in eq. (64) and eq. (7), and using Assumptions 1 and 2, we have
Gl = VO ()|

@) _
SUVef @ yr ) = Vaf (@e, v (@) | + Layllve’ — Vag(ar, y* (x)) " Vy f (2r, y* (zx) |

Vo f(zk, y*(x *
Nl @@ G G o, o) = VaV gy @)l
Y

<Lylly*(zx) — y,iVH + Ery””k V2g(xk,yk ) yf(wk,yév)\l
+ Lay || Vag(@r yt ) Vo f (@, up ) = Vog(@e, y* (21) 7 Vo f (2, y* (21)) |
pm
My“yk =y (@) IV f (@r, y* (2x)) |

<(Ly+ 2222 4 22 f gy @) )l — o ()
Hy Hy

nypyy”yljgv —y*(zr) ||

+ — 190 iy @)+ Layllod! = V2g(an, y)) 79y ()|
Y
(id) 2L, L pey  Layp
< zyty Pzy zyPyy * N
< (L + = (2 4 2219, ) ok = o)
ny /iy—l)M .
R —— v , , 66
w2 (L) IV ) (60

where (i) follows from Assumption 1 that ||[V,Vy,g(-,-)| < Ewy and [|(Vig(-,) 7' <

and (i) follows from eq. (65). Note that yi is obtained as the N-step output of AGD for
minimizing the inner-level loss function g(wg,-) and recall y*(zx) = argmingcpq g(Tk, y)-
Then, based on the analysis in Nesterov (2003) for AGD, we have

Ey + [y N )
Y 2\/Ry

L + w L N
< Y Y * * Ty o * _ 67
<y 7 (@l 2 o exp (- ). (67

where z* = arg min, g, ®(z). Moreover based on Lemma 2.2 in Ghadimi and Wang (2018),

o — v (@)l < 98 — v ()l exp (

we have |ly*(x1) — y*(z2)|| < “y Ha:1 — xo|| for any x1,z9 € RP, and hence

LyLay

Y

190 f @y @D < IV @y @D+ (Lay + 2222 ) o =™ (689)

Substituting eq. (67) and eq. (68) into eq. (66), and using the definition of My and N} in
eq. (62), we have

L + u 21~}x L Pz Ew p N
Gr — V()| <) 22 (L, + 2 + (2 + 2N ) Myexp | —
| (@l Hy ( Y Hy <Ny It ) ) ( 2\/"331)
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ny Fy — 1\ M
b (51,
Hy Ry +1

which completes the proof. |

+

We then establish the following lemma to characterize the smoothness parameter of the
objective function ®(z) around the iterate zj. Recall eq. (7) that V®(z) is given by

VO(z) = Vo f(z,y*(2)) = VaVyg(z,y* (@) [Viyg(a, y (@) 7 Vy f(z,y* (),  (69)
where y*(z) = argmin, g(z, -) denotes the minimizer of the inner-level function g(z, -).
Lemma 17 Consider the hypergradient V®(z) given by eq. (69). For any x € RP, we have

IV®(2) — V& ()|

ayLey  LyL2,  (Laypyy P L
wyley me+( ﬂry2yy+ﬂ)<1+ﬂ)/\/]€>|’x—xk”, (70)
Uy My 'u’y ’uy ,U/y

g(Lﬁ

~~

Ly,

where Ny, is defined in eq. (62). Furthermore, eq. (70) implies that, for any v € RP,
L
(x) < B(ay) + (VO(ay), x — ap) + =3 o — a1 (71)

Theorem 17 shows that V®(x) is Lipschitz continuous around the iterate zy, i.e., ®(z) is
smooth, where the smoothness parameter Ly, contains a term proportional to |z — «*||.
We will show in the proof of Theorem 9 that the optimality distance ||z —x*|| is bounded as
the algorithm runs, and hence the smoothness parameter Lg, is bounded by (’)(M—lg) during
the entire process. !

Proof Based on the form of V®(z) in eq. (69), we have

[V®(x) = Ve (k)|

<IVaf(z,y" (%)) = Vo f (@r, v (zx)) || + L/j;y IVyf (@, y™(2) = Vy f(or, v (z)l

+IVaVyg(a,y* () Vyg(z, y* (@) ™" = VaVyg(ar, y* (2x) Vag (@, v (@) IV f (@r, y" (@),

P

which, in conjunction with the inequality

P <=8 (o — apll + |y (=) — y* () ) + =L (e — 2l + ly* (2) — y* (xx)]])
luy )U“y
@)/ L L
S(%ﬂyy—f—@)(l—l— xy)ux_xk||7
:U’y My IU’Z/

and using Assumption 1, yields

9Ll L,L2
W ) gy
W

Y Y

IVe(2) - Vo)l <(L. +
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Laypyy | Pay Lgy *
(2 B2 (14 219 (e ) e = el (72)

where (i) follows from the Lﬂ—’“’yy—smoothness of y*(+). Substituting eq. (68) into eq. (72) and
using the definition of N in eq. (62), we have

IV®(z) = V& ()|

9Ly Lyy  LyL2 Luypuy P L
ooy | Dol | (Lovpws y pov) (14 v Vg g ga)
Hy Ky Hy Hy Hy

<(Lo+

n'g

Le,
Based on eq. (73), we further obtain
|[@(z) — P(xr) —(VE(21), z — )]
= /OIW‘I’(% +t(x —ay)), x — x)dt — (VO(x), x — $k>‘

1
g(/<V@@k+ﬂx—xﬁ)—V®@%Lx—xmﬁ‘
0

1
< / IVO(xp + t(x — k) — VO(xp)]||||x — :ck||dt‘
0

1
Lo
<| [ Lol = awlPrae] = 22 o - P
0

Then, the proof is now complete. |

Based on Theorem 16 and Theorem 17, we are ready to prove Theorem 9.
Proof [Proof of Theorem 9| Algorithm 1 conducts the following updates

1
21 =T — f@Gk,

VEz — 1 VEz — 1
z :1+7>z _ Ve 74
k1 ( Sra 1) T ek (74)

where the smoothness parameter Lg takes the form of

pyLey LyL?, /(L L
Lo =Ly + =02y D00 (2P Pou (44 B9 g ey (a0))|
Hy Hy Ky Ky Ky
L L L,L 2
_1_3(%%@/ + @) (1 i xy) (ny 4 ﬂ) \/(@(0) () + a2+ =
Ky Hy Hy Hy Kz Kz
L2, L2
—o(L,+ 2rkm  Bbeng e o)
12 %
L3 Pnyy\/ 2 €
P [ 2 (@(0) — (at)) + ]2 + ), 75
O @0 8w+ o+ )
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and K, = L—q’ is the condition number of the objective function ®(x).

The remalmng proof adapts the results in Section 2.2.5 of Nesterov et al. (2018), but with
two key differences: we need to (a) prove the boundedness of the iterates as the algorithm
runs, and (b) carefully handle the hypergradient estimation error in the convergence analysis
for accelerated gradient methods. In specific, we first construct the estimate sequences as
follows.

So(w) =B (w0) + £ & - o

_(1- 1 1 - Bapo g2 + €
Spin(2) 7(1 m)sk(x)+\/@(q>(xk)+<c;k,x 2+ Bl — | +4). (76)
Note that V2Sy(x) = p,I and V2Sy,1(z) = (1—f)V25k( x)+ \ﬁ induction,

it can be verified that V2Sy(x) = I for all k = 0,..., K. This implies that Sk(x) can be
written as Sg(z) = S + &2|lz — vi||?, where v, = argmin, gy Sg(z). Next, we show by
induction that

2
Lo |z —2¥|| < \/'u(tI)(O) — O(z%)) + ||z*|]? + ,ui forall k =0,..., K. (77)
2. St >®(z) forall k=0,..., K. (78)

Combining the first item in eq. (77) with the updates in eq. (74) also implies the boundedness
of the sequence xp, k =0, ..., K by noting that

: VR =1y R
low = ol < (14 L2 e — ol + r+1um—ocn
2
S3\/M((I)(O) — O(x*)) + [J2*]]2 + E (79)

Next, we prove the above two items given in eq. (77) and eq. (78) by induction. First, it
can be verified that they hold for £ = 0 by noting that ||zg — 2*|| = ||z*|| and S§ = ®(z0).
Then, we suppose that they hold for all k =0, ..., k" and prove the k' + 1 case.

Based on Theorem 17, we have, for all k = 0, ..., k’,

L
B(zt1) SB(ar) + (VB(r), 2ur — @)+~ ll2en — 2]l

i 1 L
L (a) — T (V(ai), Gi) + 532
d

2
o Gl (50)

where (i) follows from the updates in eq. (74). Note that for k = 0,...,k’, it is seen from
eq. (79) that the optimality gap |z — z*| < 3\/#%@)(0) = ®(a*)) + [l2*|[* + 5, which,
combined with the definition of Lg, in eq. (70), yields Ly, < Lg for all k =0, ..., k', where
Lg is given by eq. (75). Then, we obtain from eq. (80) that for all k =0, ..., ¥/,

P(zp41) <P(xk) — ?@<v¢($k) ,Gr) + 7HGkHQ

_ o 2_7 _ L 2
—b() — V()| 1 (V). G = VO(an)) + 571Gl
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1 1 1
=P — _|IV® 24~ |IVD 2, - Ve 2
(20) = 2 VR + 5 VR + 5 1Gr — V()|

— _L 2 L _ 2
=®(a) ~ 5| V(@) + 57lIGe — V()| (81)

which, in conjunction with the strong convexity of ®(-), yields

D(zpn) <(1- \})@(zk) +(1- %)(V@(wk),xk )+ ()
- o= VeI + 5 |G = V()|
2(1- \/%)Sk (- \/%)(Vfb(xk),xk )+ \/%@(mk)
- S VB + 5 Gy~ VB, 52

where (i) follows because S} > ®(z) for k =0, ..., k’. Next, based on the definition of Sy (z)
in eq. (76) and taking derivative w.r.t. x on both sides of eq. (76), we have

VSpir(z) 2 (1 - J%)vs,ﬁ(m) + \/%Gk + \’/‘%(x — )
= (1 - \/%)(x—vk)jL \/%GH ;%(w—wk), (83)

where (i) follows because S(z) = Sf + 2|z — vg|*. Noting that VSgi1(vkt+1) = 0, we
obtain from eq. (83) that

1 1 Mo
1- ) - G — ) =0,
/%:( N (Vk41 ?Jic)vL\/a k‘f‘\/@(vk—i—l )
which yields
1 1 1
—(1- ) - G, 84
Vk41 ( N Vg + T%xk P k (84)

Based on eq. (76) and using Si(z) = Sj + & ||z — vg|?, we have

* Mz 2 1 * Mz 2 1 €
S Ha ), — - (1 — —) (s B — ) o ,
k1t 5 ok = vk N ko e —ull” ) + NG (ﬂ?k)+4\/@
which, in conjunction with eq. (84), yields
1 1\ pz 9 1 €
St =(1— )i+ (1 )l
k41 R k1 N ok — vgl|” + N (zk) + W
1 \2 4, ) 1 ) 1y 1
= - e (1 L)
(1= ) o =l = 5GP o (1= ) = o = s G
1 1 1 pg 9 1 €
- 1—7)5* (1— ) Ha iy, — )
(1= )5 (- J) G s el + 0w +
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G + (1= =) o — 1, G (35)

Based on the definition of k;, we simplify eq. (85) to

gk

St 2 (1= =) St =) + = g G
+(1- \/%) \/%@k — 3, Ga). (36)

Next, we prove vy — x = /kz(xr — 2;) by induction. First note that this equality holds
for k = 0 based on the fact that vy — zo = \/kz (o — 20) = 0. Then, suppose that it holds
for iteration k, and for iteration k 4 1, we obtain from eq. (84) that

1 1 1
_ —(1- ) dp - ——G
Vk4+1 — Tk+1 ( R Uk‘i‘\/amc Th+1 M\/@ k
(i)( : )< ) ( = ) ,/ ,1/
=(1-— 14+ kg |z — VK2 + ———Tk — Tk — Gy,
Ry g e M/ Rz

1
=Kz (xk — ka> (Vi — 1)zx — Trp1
o

W K (Tht1 — Zht1)s (87)

where (i) follows because vy — xp = \/kz(zr — 2x) and (i7) follows from the updating step in

q. (74). Then, by induction, we have that vy — xp = \/kz(zr — 2i) holds for all iterations.
Combining this equality with eq. (86), we have

Sier 2 (1= =)0+ = (m) + 4f 1y 10+ (1= =) o= 20,6
~(1- @)Sk j?@( 0 - s IveE@lP+ (1- V%)m—zk?ka»
+ (1 — \/%)Qch — 2k, Gk — V@ (a)) — mHGk — V() |* - i«;k — VO(xy), VO(x))
@ .1 1 1 ¢
2 (1= )8t =) = g VeI + (1= =) o= 2 V(o)) + e
(1~ \/1@) ek — 2 [l1Gx — V()| — inGk VB (ay) |
— 1IGx — Vo (ax) [k — 2| (38)

where (7) follows from Theorem 17 with Lg, < Lg for k = 0,...,k’. Based on ||z — 2| <

VE@0) = () + [lo*|? + ;5 and [l — o < 3,/ Z(B(0) — B(a*)) + ¥ + ;5 for

k=0,.. K, and using ||z — zk|| < ||z — 2*| + ||z — 2*||, we obtain from eq. (88) that

Sier 2(1- %)Sk + j—z@(xk) — o VeI + (1 - \/%)m — 2, V()
* 4\;@ B (7 \/L,%) \/ip(@(()) — O(z*)) + [|l=*]* + iHG’“ — V(x|
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1
- EHGk — V()| (89)

Next, we upper-bound the hypergradient estimation error |G —V®(x)|| in eq. (89). Based
on Theorem 16, we have

|G — VO (zi)|| < Lyt iy (Ly + 2ayLy + (@ + LLS”)ﬂ@)Mk exp ( - )

Hy Hy Hy Hy 2\/Fy
L VEy — I\M
My \y/Fy +1

which, combined with ||z} — 2*|| < 3\/5—1@)(0) — ®(z*)) + ||lz*||? + = for k=0, .., k" and
the definitions of My, N} in eq. (62), yields

L 2L, L - L, N
Gy — V()] < M(Lgﬂ—#—k (B 4 22PN M exp (- )

Hy Hoy Hy Il 2/Fy
+ @(7” v 1)MN*,
My \/Ky +1

where the constants M, and N, are defined in eq. (62). We choose sufficiently large

N = Oy 10g (o, gy 2. 1y (2) |, @(0) — @(a7), €) )

M = Oy 10g (s iy, 127, lly* (2*) ], 2(0) = (@), €) ), (90)
such that
6Lq>
G~ ()| < V=0
2\/5/{1
(7= <)y 2 @(0) ~ 8@ + o |2 + -G~ V)] < g
- — - — |Gk — k)= .
Rx Ha Mo 8\/kK
Substituting these two inequalities into eq. (89) yields, for any k =0, ..., ¥/,
>(1— _
St = (1 \/@)Sk + @) = 5V
1 €
1-— — P
+( mx)@’“ 7 V() + 5=
(9
2P (2k+1), (91)

where (i) follows from |Gy — V& (zy)|| < 2\}; L{’ﬂ in eq. (82), which, by induction, finishes
K

the proof of the second item eq. (78). To prove the first item eq. (77), letting x = x* in
eq. (76) yields, for z =0, ..., k’,

1
vV

Siar(@®) = (1= —=) i) + —=(@(@x) + (VO(r),x" — o) + Bl 2 — a2+ )

1
Kz 4
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+ 2 (G — VO(xp), 2" — zy)
;(1 - \/%)Sk(x*) + \/%Q(x*) + 4\;@ + \/% V@ (xy)||
(Zg)(l - \/%)Sk(x*) + \/%@(x*) + 2\;@, (92)

where (i) follows because ||z — *||||Gr, — VO(xp)|| < ﬁ/(? - \/%) < 24\6/5 < %

Subtracting both sides of eq. (92) by ®(z*) yields, for all k =0, ..., K,

1 €

N 2

Telescoping eq. (93) over k from 0 to k' and using So(z*) = ®(0) + £2||2*||?, we have

Sia(a?) = @) < (1= —=) (Sule") - (") + (93)

Sun(et) = o) < (1= =) (00 - 96 + )+ 5
< ®(0) — @) + Eofla|? + 5,

which, in conjunction with Sk y1(z*) > S, | > ®(2pr41) and @(zpr41) — (%) > G ||z 11—
x*||2, yields

: 2
12 — 2| < \/ (®(0) = (z%)) + [l*|]> + —.
Ha [

Then, by induction, we finish the proof of the first item eq. (77). Therefore, based on
eq. (77) and eq. (78) and using an approach similar to eq. (93), we have

D(ex) — (") < Sic(a®) ~ B(a®) < (1~ \/%

In order to achieve ®(zx) — ®(z*) < Sk (z*) — ®(z*) < ¢, it requires at most

. O(\/Ebg (2O + IR

(’)( &_'_ LyL2 ypxy |Vy fz*, y*(z*))]]
K Nxﬂy

)" (@(0) — e + 220ty + S (o)

La:ypny

e (M<<I><0>—<I>< Y + 2+ ;)i), (95)

Following from the choice of M = N = (:)(\/@), the complexity of Algorithm 1 is given by
Crun(A,€) = O(ng+ng+ng) =O0(K+ KM+ KN)

42



LOowWER BOUNDS AND ACCELERATED ALGORITHMS FOR BILEVEL OPTIMIZATION

zypzy V 1V, £ ( x*,y (@)l

~35y~y (/i(cb(()) = (") + [|l2"]* + i) i)’

which finishes the proof. |

Appendix G. Proof of Theorem 10

The proof follows a procedure similar to that for Theorem 9 except that the smoothness
parameter of ®(-) at iterate zj and the hypergradient estimation error |Gy — V® ()|
are different. In specific, for the quadratic inner problem, we have that Vyg(a: y) =
H,V,Vyg(z,y) = J,Vx € RP,y € R?. Then, based on the form of V®(z) in eq. (69),
we have

[V@(z1) — VO(z2)
< Vaf (21, y" (1)) — Vaf (22,47 (22))]|
+ |JH 'y f 21,y (21)) — JH'V, f (29, 4" (22))]|

* * Lﬂ? * *
<Lyl — m2|| + Laylly™ (21) — y*(22)|| + T Y (Layllzy — zo| + Lylly* (z1) — y* (z2)])
Y

which, in conjunction with ||y*(z1) — y*(z2)]| < o H951 — xo||, yields

2Ly L LL2
e LY |z - sl (96)

:uy :uy
Ly

[V (1) ~ V@ (a2) | < (L

Note that eq. (96) shows that the objective function ®(-) is globally smooth, i.e., the smooth-
ness parameter is bounded at all z € RP. This is different from the proof in Theorem 9,
where the smoothness parameter is unbounded over x € RP, but can be bounded at all
iterates xx, k = 0, ..., K along the optimization path of the algorithm. Therefore, the proof
for such a quadratic special case is simpler.

We next upper-bound the hypergradient estimation error |G — V®(zy)||. Using an
approach similar to eq. (66), we have

|G — V()]

<Lylly*(zx) = v Il + Layllot’ = H'Vy f (92|
+ Loy |H 'Yy f(an,ui) = H 'V f (2,57 () |

Dl =y @l + Loy lvf! = HV, f @yl
Y
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LyyL L Ry — 1\ M
< ayby Ny Nk Ly y «
(B + 22 =yl + 22 (L) 19y )

L Loy L N Luy (/g — 1\ M

y+'uy (Ly+ Y y)M*eXp<_ )+ wy( Y ) N*a (97)
Hy Hy 2\/Ky fy \/Fy +1

where M, and N, are given by eq. (62). Based on eq. (96), eq. (97), we choose N =
O(/Fy), M = ©(,/F,). Then, using an approach similar to eq. (94) with p,, = py, = 0, we
have

IN

Ban) - 8(a") < (1— [ 22) " (@(0) - 0(") + B ot ) + 5, (98)

where Lg is given in eq. (96). Then, in order to achieve ®(zx) — ®(x*) < ¢, it requires at
most

Crun(A,€) =O(n +npr +ng) = O(K + KM + KN) = 0(

which finishes the proof.

Appendix H. Proof of Theorem 11

Recall that ®(-) = f(z,y*(z)) with f(z,y) = f(z,y) + 5= [lz][?. Then, we have ®(z) =
®(x) + 55/z|* is strongly-convex with parameter p, = 5. Note that the smoothness
parameters of f(m,y) are the same as those of f(x,y) except that L, in eq. (2) becomes
Ly + § for f(x,y). Let 2* € argmin,cg, ®(x) be one minimizer of the original objective
function ®(-) and let ¥ = arg min, gy ®(x) be the minimizer of the regularized objective
function ®(-). We next characterize some useful inequalities between * and z*. Based on
the definition of 2* and 7*, we have V®(2*) = 0 and V®(z*) = V®(z*)+ 52" = {2*, which,
combined with the strong convexity of ®(-), implies that sllz*=z*| < VO (T*) -V (a*)|| =
%llz*]| and hence [|z*| < 2[|z*||. Similarly, the following (in)equalities hold:

_ i 3Lay
ly™ @) < lly* (@) + T“’Hx I,
Y

IV f @y @) < IV f @y @) + %Ilf*\l

_i_i

3Ly Ly, 26) 1z
Hy R

<9y @y @)+ (3L +

~ € (1)
®(0) — @(27) = 2(0) — ®(z7) — ﬁ”f*H2 < @(0) — @(z7), (99)

where (i) follows from the definition of z* € arg min, ®(z).
Let Lg be one smoothness parameter of the function ®(-), which takes the same form as

Lg in eq. (75) except that Ly, f,2* , ju, and ® become L, + f, f,f*, % and ® in eq. (75),
respectively. Similarly to eq. (90), we choose

N =0(y/Fy log(poly (e, R, ky, |7, ly™ @) ||, |V f@ .y (@), 2(0) — D(3)))),
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M =6(y/Fy log(poly(e, R, wy, 17|, [y (@), |V, f (@, 4" (@)l ®(0) — 2(37)))). ~ (100)

We first prove the case when the convergence is measured in term of the suboptimality
gap. Note that in this case we choose R = B?. Using an approach similar to eq. (94) in the

proof of Theorem 9 with € and p, being replaced by €/2 and %2, respectively, we have

Ber) ~ 8 < (1 ) @0) =86 + 517 1) +

which, in conjunction with ®(zx) > ®(2x) and ®(7*) < (z*) = ®(a*) +

55 llz*|?, yields

B(zr) () < (1 [0 ) @(0) ~ 3@ + S5l IP) + S+ gogle I (101)
- B2L;15
Recall ||z*|| = B. Similarly to eq. (95), we choose
_ B2Lg 0(0) — (@) + g5 ll7°|°
K =6y = 108 ( 6 )
~/ |B2L,I2 B2L2 p, ~ —
—@(\/ P +\/ = v IV, TGy @)l

B2Z’%y/’nyy (232

€Ly €

(®(0)— 3@ + 717+ B*) "), (102)

Then, we obtain from eq. (101) that ®(zx) — ®(z*) < ¢, and the complexity Cpn (A, €) after
substituting eq. (99) into eq. (100) and eq. (102) is given by

Ctun(A,€) = O(ng+ng+ng) =0O(K+ KM+ KN)

/| B2L,I2,L, B2I2, pry L, —
( | T 19 f v @)
€Ly Efly

_l’_

BZEQypnyyzy (232

” - (5(0)—5(97*))+H%*||2+BZ)Z> (103)
Yy

Next, we characterize the convergence rate and complexity under the gradient norm metric.
Note that in this case we choose R = B. Using eq. (9.14) in Boyd et al. (2004), we have

||2V<T>(z;.c)||2 < 2L‘$(€I;(ZK) - ®(7*)), which, combined with ||[V®(z)[?> > HIVe(2) | —
Bllzl? > g1V () * — F=(2ll2k — T+ + 2/|7*[|?) yields

~ ~ . 4€? s 4€? s
IV®(2)* <4Lg(®(2) — B(T*)) + ﬁsz T+ ﬁHx 2
(i) ~ ~ 8¢ ~ ~ 16€2

<ALg(B(2x) — () + 5 (R(2x) — B(F")) + 5|21
8¢\ & =y 1662
:<4L5 * E)(@(ZK) = ®@) + 5z ll7I% (104)

where (i) follows from the strong convexity of ®(-) and [|Z*| < 2||z*||, and Lz takes the
same form as Lg¢ in eq. (75) except that L., f,2* and ® become L, + 5, f,f* and @ in
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eq. (75), respectively. Then, using an approach similar to eq. (94) in the proof of Theorem 9
with € and p, being replaced by €2/ (4Lgz + %) and f, respectively, we have

2

~ ~ € \K =~ = € €
B(zr) ~ 3@ < (1- BL&)) (2(0) = 8@ + 551719 + 55y
P B

which, in conjunction with eq. (90) and eq. (104), yields

K/~ ~ € 8e €2 16¢€2
o 2<(1— € ) (cI> _3E + |7 2)(4L~ 7) < “12.
Vel < (1= 5)" (30 -8 + 5515 1) (125 + ) + 5 + o o'

Note that ||z*|| = B. Then, to achieve ||[V®(zy)|| < 5e, it suffices to choose M, N similarly
to eq. (100), and choose

¢ =028 1og (PO 2 + 57PN + F) )

This in conjunction with eq. (99) yields

Corad(A, €) =O(nj +ng +ng) = O(K + KM + KN)

_/ | BL,12, L, BL2, pryLy —
=O(\| Tty | TR 19 F e g @)
€L, ELLy

BL3,pyyLyLy, /2B ~ = ~
Y (T2 @(0)  3@) + )P+ B)
Yy

NI
~—

€

which finishes the proof.

Appendix I. Proof of Theorem 12

Note that for the quadratic inner problem, the Jacobians V,V,g(z,y) and Hessians V?/g(x, Y)
are constant matrices, which imply that the parameters p,, = pzy = 0 in Assumption 2.
Then, letting pzz = pzy = 0 in the results of Theorem 11 finishes the proof.

Appendix J. Proof of Theorem 13

Based on the update in line 9 of Algorithm 2, we have, for any z € RP

(BeGry Tpy1 — @) = Tk (T — Ty 1, o1 — T) +(1 = 71) (T — Tpy1, Thp1 — ). (105)
P Q

Note that P in the above eq. (105) satisfies

P = (T — app1,2 — T) + |z — Tpl]” — lz — 24 )?

= =P+ o =Tl = |13k — 2ar1l® = llz — zpsa?,
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which yields P = £(||z — Zy||* — |Z5 — 2x41]|* — [|# — zx11]|?). Taking an approach similar to
the derivation of P, we can obtain @ = 3(||lz — zy||? — ||z — 241> — [|#x — 2k+1]|?). Then,
substituting the forms of P, @ to eq. (105) and using the choices of 7, and Sk, we have

<Gk VOl Ozl
’ 8

2
202 — /Ol 2
VOB (1 — g

(Th1 — @) (lz = Zkl* = 17k — zp41 ] = llo = zpsa )

+ — & = zpal® = |z — e ]?). (106)

Based on the update 211 = T, — ax Gy and the choice of ay, = «, we have, for any 2’ € RP,

1 —
(241 — 2', G) :a@’ — 2415 Zht1 — Tk)
1 ~ -
:ﬁ(”l’/ — Tl = 12" = 2rg1l® = l2rgr — Zll). (107)

Let 2/ = (1 — ¥, + ¥k

and recall T = ngzr + (1 — ng)2k. Then, we have

/ / 2
(Bl ZH o (Try1 — 2x) + e (2 — Jfk)H
2 Vo + 2

||V Qfly H2
—H 5 (The1 —zp) + 2 Jar. 1 2) (2x — 1)
i) O apl au ~ 12
D21 Y g — ) + Yo (e — )

a NG Qflz/COfl ~
= Zx (1= g — el + %leﬁl - z)%, (108)

where (i) follows because T — xp = ﬁ(zk — x1). Then, substituting eq. (108) into
eq. (107), adding eq. (106) and eq. (107), and cancelling out several negative terms, we have

N Vou
<Gkv 9 x(zkﬂ —z)+ (1 - 9 x)(2k+1 - Zk)>
VOl ~ 1 ~ P/ CUfL _
S%Hl’—ka—%”zkﬂ _kaQ_%kaJrl —kaz
200 — \/afiz
- %Hl‘ - xk+1H2 - %Hl‘k — $k+1H2. (109)

Next, we characterize the smoothness property of ®(z). Using the form of V®(x) in eq. (7),
and based on Assumptions 1, 2 and Assumption 3 that |V, f(-,-)|| < U, we have, for any
r1,x2 € RP,

VO (z1) — VO(22)||
<IVaf(z1,y™(21)) = Vaf(z2, y" (z2))]
+ IVeVyg(@1, v (21))Vog(er, y* (1)) 7 Vy (a1, 5% (21))
— Vo Vyg(@e, v (22))Vag(ao, y* (22)) 7' Vy f (22, " (22))]]

* * L * *
<Lallzy = @2 + Laylly™ (1) — y" (z2)]| + Tfy(nyllfﬂl = @2|| + Lylly™ (21) — y" (x2)])
Y
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i <pry i nyUpyy

p2 o 22 ) ey =zl + o) =" @),

which, combined with Lemma 2.2 in Ghadimi and Wang (2018) that [[y*(z1) — y*(22)| <

L :
ﬁ”xl — xa||, yields

[VO(z1) = VO(x2)||
2Lzyzxy pry Uixypyy zmy Z%Z/Ly
< (Lx+ +< + )<1+7)+ )||$1—902||' (110)

[y Ly I Ly 2

Lg

Then, based on the above Lg-smoothness of ®(-), we have

B(zi1) SO(E) + (VO(E), 21— 7+ Jopr — Tl

— (1= V) (@(5) + (VO 2101 — )

VO (35 + (VR (@), 2601 — F) + e — Bl (11)

Adding eq. (109) and eq. (111) yields

(k1) <(1 = VP (@(@) + (VO(@E), 21 — 3)) + Yo (@) + (VO(E), @ — )
(V@) = G Y (3 — @) + (1= Y55 (o1 — )
YR 2 — (1= aLa)es — Tl = B -
7’

2:“:5 — Oz g |
16

- f”x — x| — lz) — Tpp1])?

which, in conjunction with the strong-convexity of ®(-), \/au, <1 and a < ﬁ, yields

D(zper) < Y0 (@) 2oy — )+ VI (@() — 22— )

2 2
Va Val
+ <V(I)(Ll?k) Gk, 9 z (Zk—i-l - .CL‘) + (1 - 9 x)(Zk_H — Zk)>
VOl ~ 1 ~ /Ol ~
+ e = TP ek = el - T e — 3P (112)
8 4o 16
Note that we have the equality that
Nz N
5 = (2hpr — 2)+(1 = 5 =) (2h41 — 2)
~ oy . N
= (21 = T) + 7 “(@) — @)+ (1 - 5 =) (@), — zx) (113)
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~—

Then, using eq. (113) and the Cauchy-Schwarz inequality, we have

~ VOl VO
(V@ (2k) — G, 5 (zht1 — )+ (1 — 5 ) (241 — 2k))
1 Vo 5 1 ~ 2 VOl
< I _ y e —
<204 5+ P ) IVRE) — Gull* + gollonn = Bl + Yo 7~ al
VO | gy ~
+ (1= Y B — (114)

Substituting eq. (114) into eq. (112

and cancelling out negative terms, we have

Vo 1 _ M~/ -
P(zk41) <(1 - =)@ (z1) + O(@) — gollzre — Zkll” - %ka—kl — T
a:“’x) 2
2 Vo Grl?. 115
+ (204 5+ VP )IVRGE) - Gil (115)

We next upper-bound the hypergradient estimation error |[V® () — G||?. Recall that
Gr:= Vaf Tk, 0 ) = VaVyg (@r, yi )0k (116)

where U]]CV[ is the M'™ step output of the heavy-ball method for solving

. 1
rnvln Qv) == §UTV29($I§, Y )U -V vyf(%’yk )

Then, based on the convergence result of the heavy-ball method in Badithela and Seiler

(2019) with the stepsizes A = m and 6 = max { (1 — w/)\uy)Q, (1— \/)\Ey)Q}, we
have
~ — ~ K ~
ok = V3o,V Gl < (V2 ) [ V20 )y o)
(i) —1\M
2U (ot )
py \y/Ry +1

where (i) follows from Assumption 3 that ||V, f(-,-)|[| < U. Let y; = argmin, g(zy,y).
Then, based on the form of V®(z) in eq. (7), we have

|G—V @ (Zy)|
Ve f @ yr) — Vaf @ vi)l + Layllo” = Vig@r, vi) ™ Vi f @ vi)

V f EE 7y* o z X
4 WHVxVyg(fﬁka yr) — VaVyg @i, yp)||
Y

* N T ~ N
<Lyllyi = v | + Layllod" = V9@, vl )~ Vo f (T ui)) |

T ~ — ~ ~ *\ — ~ * Up *
+ L.Tvazg(xlmyljcv) 1vyf($k7yk ) - v:?/g(xkayk) 1vyf<$k,yk)H + — Hyi:v - yk”
(i) LyyL ey . Lo oo ULgy (/Fy — 1\ M
< (Ly+ =2 (B0 g 2P )y — g 4 = (V) (118)

Hy Hy Hy Py NyRy+1
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where (i) follows from eq. (117). Note that y,]cv is obtained as the N** step output of AGD.
Then, based on the analysis in Nesterov (2003) for AGD, we have

w2 Ly . N Ly+p . N
o = il <= E R — gl esp (= =) = =L~ sl e (— <)

y vy Hy Viy
2(Ly + 1) N
< T TI ep (— Y (s — v I + i — )
Hy Vhy
2(Ly + p1y) N .
< ST exp (= ) s — vl F = Fa D), (119)
1y \/@ k—1 k—1 Y
TN

which, in conjunction with Zy — Zp_1 = nr(zr — Tr—1) + (1 — ng) (2 — Tg—1), yields

" = will? < wllyels — vieal® + mymernller — Zx |l
+ iy (1= me)7v || 2k — T || (120)

Telescoping eq. (120) over k yields

k-1 k-1
g = wil® < T llye = wol® + DTN mymillzi = EllP DTN Ry (L= ez — Tl
=0 =0

which, in conjunction with eq. (115) and eq. (118) and letting x = z*, yields

. Vo N 1 ~ Bar/Op ~
B(zp1) = B(a7) (1= ¥5)(@ar) = B(27) = o flomen — Til* = =Y ken — Tl
k—1 ) k—1 '
FAD TR eyl mien — FlP AN TR ey (1 — )z — 3l
=0 =0
+ A+ 2R llys — wd' 117, (121)

where A and A are given by

A :(4a+ 1 + \/W> Uziiy (\/@— 1)21\/[

fe 20 py  \Ey+1
1 Ja Loyl vy | Lo 2

A:(&1+4—+— a”)(Ly+4—iii+(3ﬂ~%—£§ﬂ)U). (122)
Mz 2p Hy Hy

Telescoping eq. (121) over k from 0 to K — 1 and noting that 0 < n < 1, we have

K—1
. TN 7 " 1 O by K—1—k ~
D(zg) — D(z*) 3(1 — x) (®(20) — ®(2z)) — — (1 — x) llzrs1 — 2k
2 8« 2
k=0
Mg/ O g = \/TNI K—-1-k ~ 12 2A
- 16 (]‘ - 9 ) ”karl - ka + o
5—0 VO
= VOllg \ K—1—k
+ ) (1=357)" A llys — o I?
k=0
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A (1 . \/a/J:L’)Kflfk k—i

N ‘Eyllzig — Tl

+A (1_\/0‘/14:1:)1( 1-k k—i

™ ”y”zwl_mzH )

which, in conjunction with the fact that k < K — 1, yields

K-1

. NGNS . 1 VOl K—1—k ~
P(zx)—P(2") < (1 Ty m) (®(20) — ®(z")) — 3o Z (1 - Tx) [
k=0
K-1
/O VOollz\ K—1—k - 2A
- (=) 1 — Tl + —==
16 Pt 2 oy
K-1
1-k *
+ My — wo II?
k=0
-2
QTN)\I/»'y Z 2 2TN>\’%1/ K—2—
|5UZ+1 -l + — Z ™~ ZHZerl - 551” (123)
Vs =

Recall the definition of 7 in eq. (119). Then, choose N such that

- M _ l ; Vi O‘M?g Va2
S e ( \/@) Smm{mmy\/a’?mny’(l y a2

which, in conjunction with eq. (123), yields

NETENS 2 lys — vo' II? 2A
D(zr0) 0 (") < (1= Y L) M ((20) - 0(a” 0% L) .
(21)=2(a") < (1= F57) 7 (@(a0) = D(a") + === ) o+~
Then, based on the definitions of A and A in eq. (122) and Lg in eq. (110), to achieve
®(25) — ®(z*) < €, we have

Uf“’ﬂ) w=0(,/2) (125)

K= 5( -
:uml'ty

In addition, it follows from eq. (124) that

N = 6( i’y) (126)

Based on eq. (125) and eq. (126), the total complexity is given by
Cran(A, ) = O(ng+ng +ng) =O(K+ KM+ KN)

which finishes the proof.
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Appendix K. Proof of Theorem 14
Let #* be the minimizer of ®(-). Then, applying the results in Theorem 13 to ®(z) with

the strongly-convex parameter yi, = %5 and choosing N = @(1 / i—z log(poly(B, €, fiy, U))),

we have

(2x )~ ¢ 3 = 2 2L By — NP\ 2R /ILoB
o)) < (1 5 ) () - 807 4 2020 \/l*yo L)+ ﬂ? ,
(]

where A and X take the same forms as A and A in eq. (122) with . being replaced by 5.

/L, ~ A\2LzB
By choosing M = @( e log M) in A, we have % < §, and hence

= =~ € ~ ~ V2L BA||yg — 2 €
P(zx)—P(F) < (1 - 22\/\%3)’(@(%) (T*) + 2y/2 \/!Tyo % | )+ Z’
P

which, in conjunction with ®(zx) > ®(zx), D(T*) < B(z*) = ®(a*) + 55
yields

lz*||? and 2 = 0,

Y |[.* _ N2
D(zk) — P(z") S(l - 22\/I%~B)K<(I)<O) — (f)('xv*) n 2%332720 Yo | )

2
+ =+ 5l (127)

Based on eq. (99), we have ®(0) — &(z*) < ®(0) — ®(z*), which, combined with ||z*|| = B
and K = @( \/%ﬂyy) yields ®(zx) — ®(z*) < e. Then, the total complexity satisfies

Crun(A, €) = O(ny +ng +ng) = OK + KM + KN) = 6(3

which finishes the proof.
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